Optimization algorithms for resilient path selection in
networks

Marco Casazza*, Alberto Ceselli

Dipartimento di Informatica, Universita degli Studi di Milano, Italy

Abstract

We study a Resilient Path Selection Problem (RPSP) arising in the design of
communication networks with reliability guarantees. A graph is given, in which
every arc has a cost and a probability of failure, and in which two nodes are
marked as source and destination. The aim of our RPSP is to find a subgraph
of minimum cost, containing a set of paths from the source to the destination
nodes, such that the probability that all paths fail simultaneously is lower than
a given threshold. We explore its theoretical properties and show that, despite
a few interesting special cases can be solved in polynomial time, it is in gen-
eral NP-hard. In fact, we prove that even deciding if a given subgraph has a
probability of failure not exceeding a given threshold is already NP-Complete.
We therefore introduce an integer relaxation that simplifies the computation of
such probability, and we design an exact algorithm for the full RPSP exploiting
this relaxation and other ad-hoc procedures. We present computational results,
highlighting that our exact algorithms can handle graphs with up to 30 nodes
within minutes of computing time, consistently producing proven optimal solu-
tions. Moreover, we show that our algorithms can be used also as heuristics,
outperforming path protection schemes from the literature also on much larger
networks.

Keywords: network reliability, failure probability, path selection, column
generation, branch and price

1. Introduction

In a world where everything is connected, network services are an asset.
Everyday more and more companies rely on the availability of their online plat-
forms, and the trend is to push services to the cloud in order to reduce costs.
Within such a context, network reliability is a key factor for the success of a
business. Both physical and logical links are subject to failures: entire portions

*Corresponding author
Email addresses: marco.casazza@unimi.it (Marco Casazza),
alberto.ceselli@unimi.it (Alberto Ceselli)

Preprint submitted to Elsevier January 20, 2021

of a network or a virtual network function can fail due to local disruptions, and
the overall probability of success of a communication, called availability, is of-
ten subject to Service Level Agreements (SLA) between network operators and
clients.

Operators are well aware of possible adverse phenomena; they continuously
need to balance availability with network costs, such as the usage of the links
of the network, often expressed as the sum of costs of single links. From a
cost perspective, simple paths are generally the cheapest solution, as they only
select those links that are necessary to establish the connection with no re-
dundancy; however, they are too fragile: the failure of a single link (or node)
induces the overall connection failure. Path protection schemes are known since
decades: their main philosophy is to always keep one or more backup paths [1],
to re-establish connectivity in case of breakdowns in the primary one. However
keeping backup paths is not free of costs: they are normally as expensive as pri-
mary ones to setup and maintain. Furthermore, each additional path protects
only against the failure of one additional link: more reliable schemes can only
be obtained by very expensive solutions.

We also mention that similar scenarios arise in logistics, when planners need
to find a routing for goods or people in a network where links availability is
uncertain, and checking has a cost. It is the case of online flight search engines,
for instance: the queries for flights are normally free for the user, but subject
to charge for the company.

We address what we name the Resilient Path Selection Problem (RPSP). 1t is
given a network where each arc has both a cost and a probability of failure. Two
nodes of the network are marked as endpoints of connections. The RPSP is the
problem of finding a minimum cost subgraph, whose probability of containing
paths between endpoints which all fail simultaneously (that is, none of them is
available) is lower than a given threshold.

Literature review. Network reliability includes a wide range of different works
that share a common feature: the components of the network (i.e., links and
nodes) may fail. However, the arising optimization problems are very different
on the basis of a few distinguishing features, such as which of the components
is assumed to be unreliable, the network topology, additional operational con-
straints involving distances [2].

Indeed, while setup, maintenance or even query costs can be modeled with
standard techniques from combinatorial optimization, availability involves prob-
abilities, and requires therefore a different setting.

Those problems where nodes are not reliable are usually variants of the
well-known Uncapacitated Facility Location Problem: nodes are modeled as
facilities and the aim is to minimize both the cost for reinforcing them, and the
penalty in case of failures which either require reassignments or leave customers
without service [3]. Another option is backing up facilities, assigning customers
to both a primary and a secondary facility: if the primary fails its customers
are seamlessly served by the secondary. This case is addressed for example by
[4] and by [5], where the idea of extensive facilities is taken into account.

Multiple backup facilities are also an option: in [6] the authors consider the
problem where facilities are partitioned into two sets: unreliable ones that may
fail, and reliable ones that do not fail, though more expensive. Each customer
must be assigned to a sequence of facilities, either reliable or unreliable, in such
a way that if the first facility of the sequence fails, the customer is served by
the next one in the sequence as a backup, until the first reliable facility is found
or a penalty is paid for the unavailable service.

However there is no trivial way to map reliability problems involving paths,
like the RPSP, to problems on nodes. Therefore these models can hardly be
applied to our case.

For what concerns the failure of the links, the works in the literature usually
revolve around the problem of connecting two terminal nodes. A research stream
simplifies the setting by considering solutions which are always composed by a
single path. As representative recent examples, in [7] the authors study a variant
of the resource constrained shortest path problem where, given an upper bound
to the cost of the path and a probability of resource consumption, a path must
be found that maximizes the probability of not exceeding the available resources.
They propose branch-and-bound approaches that solve instances with up to 50
nodes within one hour and a half of computing time. Similarly, [8] proposes
an approach to find the most reliable multi-leg (single path) flight itinerary to
reach a destination within a time limit. The authors suppose that each edge of
the network is a leg departing and arriving at given times, which are modeled
by certain probability distributions.

Another simplification made in the literature is to consider only collections
of independent paths, that is being either arc or node disjoint. For instance,
in [9] the authors study the problem of finding a set of k > 2 arc-independent
paths such that the probability of connecting the source to the destination is at
least a given threshold and the cost of the selected arcs is minimized.

In [10] the authors propose a tabu search approach for a survivable network
design problem where each pair of source and destination node of the graph
defines the number of disjoint paths that must be found to establish a reliable
connection.

The more general problem of establishing reliable communications is con-
sidered in works such as [11], where the authors investigate on the complexity
of computing the probability of failure of a given network, and [12], where the
authors propose heuristic methods and a mathematical model to actually find
reliable networks, based on an enumeration of all the possible states of the net-
work. However, since the number of states is exponential in the number of
network nodes, the authors avoid the generation of all the states at the cost of
losing any optimality guarantee on the solutions obtained.

When the problem consists in connecting all terminal nodes in a graph,
since computing the reliability of any generic network is known to be NP-hard,
evolutionary metaheuristics have been exploited [13].

Also in [14] the authors attack the problem of finding a subgraph connecting
all nodes of a graph in such a way that a given availability probability threshold
is satisfied. The authors make the assumption that the probabilities of failure of

the links are all the same, which eventually lead to a simpler way of computing
the reliability of the network: after this simplification the probability of failure
depends only on the number of the selected links. In fact, the authors decompose
the problem in a finite set of subproblems, each forcing solutions with a fixed
number of selected links.

A different type of simplification is applied in [15], where the authors study
the problem of maximizing the reliability of a network under budget constraints
and propose an integer formulation using sample average approximation.

We finally report that there are indeed general means of handling stochastic
components in optimization problems [16]. One of them is the methodology
of chance-constrained programming. While they vastly prove effective in con-
tinuous optimization, successful applications to combinatorial problems require
either to trade genericity for efficacy, or to embed specific problem structure
and additional theoretical properties. In fact, the approach from the literature
that is the closest to our setting is that of [17], where the authors also search for
a subgraph of minimum cost connecting two endpoints. A reliability constraint,
ensuring a path to exist between the endpoints, is modeled to be respected in
probability. In order to obtain resolution algorithms, the authors assume that
failures are not completely random, but instead a restricted set of failure scenar-
ios is known, together with their realization probabilities. When this is the case,
their formulation can be effectively optimized by exact Benders decomposition
techniques. When this is not the case, heuristic solutions need to be found by
a-priori sampling a set of scenarios, using Monte Carlo methods, and setting
uniform scenario realization probabilities.

Main contributions and outline. In this paper we combine modeling generality,
theoretical guarantees and computing affordability. We introduce an integer
linear programming formulation for the RPSP, allowing us to explicitly model
arbitrary failures on links, without any need for simplifications on the probability
computations or approximations by a-priori sampling.

We investigate its theoretical properties, and propose exact branch-and-price
solution algorithms. Our contribution is mainly methodological, as prior con-
tributions from the literature make it clear that effective exact handling of
probabilities in combinatorial optimization problems like the RPSP requires
the careful design of novel algorithmic techniques. However, our algorithms al-
low us also to experimentally assess the practical gain of using RPSP models
instead of more traditional path protection mechanisms.

In Section 2 we formalize the RPSP, we provide a mathematical program-
ming formulation, and we highlight a few key theoretical properties. They
include general hardness proves as well as simplifying conditions and polyno-
mially solvable special cases. Unfortunately, it turns out that even checking if
the availability of a given subgraph is above a given threshold in NP-Complete.
Therefore, in Section 3 we introduce a suitable model for feasibility by failure
probability computations, exploiting Bayesian Networks. Then, in Section 4 we
propose a noticeable integer relaxation, whose simplifying idea is to consider
path failures as independent events, and we design an exact branch-and-price

algorithm that combines such a relaxation and the feasibility models to solve the
RPSP to proven optimality. In Section 5 we present the results of an extensive
experimental analysis. In Section 6 we draw some conclusions.

2. Modeling and theoretical properties

A graph G = (N, A) is given, where N is the set of nodes and A is the set of
arcs. A source node s € N and a destination node t € N are also given, and for
each arc a € A we are given a cost ¢, and its probability of failure 0 < p, < 1.
In this paper we perform the mild assumption that failures of single arcs are
independent events, even when they belong to the same path.

A feasible path r = (01, 09, ...,0k) is a sequence of nodes o, having o1 = s,
ok = t, and such that it exists an arc between each pair of nodes o, and 0,1,
form=1,...,k—1.

Given a SLA maximum failure target 0 < F < 1, a RPSP solution is a
set of feasible (not necessarily disjoint) paths S = {ry,rq,...} such that the
probability of failure of all the paths connecting s to t is at most F or, in other
words, that the probability of having an available connection from s to t is at
least A = 1 — F. The cost of a solution is the sum of the costs of the arcs
traveled by at least one path in S. A feasible RPSP solution is optimal when
its cost is minimum.

It is peculiar that failure probabilities are measured on selected paths, while
costs on selected arcs. Intuitively, the RPSP is the problem of selecting a sub-
graph, which is a superposition of possibly overlapping paths, such that F is
not exceeded and the sum of the costs of the selected arcs is minimum. When
an arc a is traversed by at least one path, its cost ¢, is paid. The cost of an arc
is paid only once even if it is shared by many paths.

2.1. Mathematical programming formulation

Let R be the set of all feasible paths. We encode each path r € R as a
pattern z" € B4l having zZl = 1 if arc a belongs to r, and 0 otherwise. We
therefore model the RPSP as follows:

min Z Cq* Tq (1)

acA

st. Ply)<F (2)
zZr oy <m, Vae A,r € R (3)
Tq €B Ya e A (4)
y eB Vr € R. (5)

Each y” is a binary variable associated to a path r and it is set to 1 if path
r is selected, 0 otherwise. We also denote as y the vector of all y” variables.
Each z, is a binary variable that is set to 1 if arc a belongs to at least one path
in the solution, and 0 otherwise. The P(y) term is a function computing the
probability that all the paths having y” = 1 fail simultaneously. The objective

function (1) aims at minimizing the overall cost of the selected arcs. Constraint
(2) imposes that the overall failure probability of the set of selected paths does
not exceed the SLA target 7. Constraints (3) impose that no path containing
arc a is selected, unless variable x, is set to 1; symmetrically, when costs are
positive, z, is set to 1 only if arc a belongs to at least one selected path.

2.2. Theoretical properties

From now on we assume w.l.o.g. that ¢, > 0, as it is profitable to fix as
select in preprocessing any arc with ¢, < 0 (and either use it in selected paths
or not). Let us denote as p” = 1 —]],c 4(1 —pa) - 2, the probability of failure of
each path r € R, computed as 1 minus the probability that the path r succeeds.
We can first observe that:

Observation 1. If (1) — (5) is feasible, then there always exists an optimal
solution where no path r having p” = 1 is selected,

as these may increase the solution cost without contributing to satisfy con-
straint (2). Therefore we assume w.l.o.g. that:

Remark 1. Any arc having p, = 1 can be removed from A.
We also prove that:

Observation 2. If an optimal solution exists, in which a path r with p" = 0 is
selected, then also the solution selecting only r is optimal.

In fact, by selecting a path having probability of failure equal to 0, any failure
target F is satisfied. This does not imply that such a path always represents an
optimal RPSP solution, as its cost can be higher than a suitable combination
of other paths. It however follows that:

Corollary 1. If a path r having p" = 0 is not representing an optimal solution,
then no optimal solution exists in which such a path is selected.

These observations lead to the following:

Theorem 1. When F = 0 any instance of RPSP can be solved in polynomial
time.

A simple proof is to solve a traditional Shortest Path Problem on a subgraph
of G containing only the arcs a € A with probability of failure p, = 0.

Therefore, since when F = 1 the problem admits a trivial null solution, in
the following we assume w.l.o.g. 0 < F < 1. We remark that, in this general
case, the following negative result holds:

Theorem 2 ([18]). When 0 < F < 1, even the problem of deciding if a RPSP
solution is feasible is NP-complete.

Proof. The proof directly follows from [18], observing that in our case two ter-
minals are given (k = 2 in the notation of [18]): under this condition, on general
graphs as ours, the problem of deciding if the failure target is respected becomes
NP-Complete as soon as paths composed by more than two arcs are allowed,
even if the graph was undirected. O

This also trivially implies that the whole RPSP, on general graphs, is NP-
Hard.
However, Theorem 1 leads to the following:

Observation 3. A path having p" = 0, if any, can be found in polynomial time.
We therefore conclude by observing the following.

Observation 4. Given an instance of RPSP, an optimal solution is the best
between the path of minimum cost found on the subset of arcs having p, = 0
as in Theorem 1, and the solution on a RPSP where paths having p" = 0 are
forbidden.

In the following, we then assume that all paths having p” = 0 and p” = 1 are
excluded from set R. In fact, the only interesting member of the former class
(that of minimum cost) can be found in polynomial time in a preprocessing
phase, while the latter are never selected in an optimal solution. We remind to
Section 4.3.1 for a description on how such a removal is done dynamically.

3. Modeling and solving the failure probability computation problem.

As reported in the previous section, the problem of deciding if a given sub-
graph encodes a solution satisfying the failure probability constraint is NP-
Complete. Being a cornerstone of our methods, we therefore designed a method-
ology that is based on two ingredients: the availability of a path representation
of a RPSP solution and the inference of a Bayesian Network (BN).

BNs are mathematical formulations that model stochastic processes and can
be exploited to compute the probabilities of success and failure of complex sys-
tems [19]. A BN can be represented as a directed acyclic graph where each
node corresponds to a random variable and each arc represents the dependency
between two random variables. BNs are solved accordingly by conditional prob-
ability computations.

BN are certainly a convenient modeling tool, but unfortunately not a direct
template for the design of computationally effective methods. In fact, their use
in network optimization is complicated by two factors. First, the number of ran-
dom variables (and therefore the size of the BN) may grow combinatorially with
network size. It is indeed our case. We have three types of random variables:
the main one models the failure of the whole connection; this is dependent on
a set of random variables, each modeling the failure of a single path; these, in
turn, are dependent on a set of random variables, each modeling the failure of
single arcs. The latter ones are independent. Since the number of paths grows
combinatorially in network size, so does the size of a BN.

P,5) Ps.0
u=0.98;0=0.12 p=0.97;,0=0.18

0 j 1.57;/j 0 j 3.3azj
1 98.43¢ 1 96.62

Pi.2)
1=0.99;0=0.09

0 j 0.73j
1 99.27°

Pis.1) P2y PG.o pe.3)
u=0.92;0=027 1=0.950=022 1=0.94;0=023 1=093;0=026

01 7 aszj 01 527:j 01 5,53;/j 01 7.09‘ﬂ
1 92.15¢ 1 94.73 1 94.17" 1 92,917

Figure 1: Example of a Bayesian Network for a solution with two paths r’ and r”’ sharing arc
(2,3).

Second, the evaluation of the BN requires to compute tables, having one row
for each possible combination of logical values to the independent events in the
system. In our case, they are the failure (or not) of each single arc. Therefore,
also the size of these tables grows combinatorially with the network size. We
also remark that, in general, even the enumeration of paths in a graph requires
computing effort.

However, in our case we can rely on features of our models which strongly
limit these drawbacks. In particular, instead of statically creating a BN for
the full network, we create BNs on the fly only for selected candidate solutions
produced by a relaxation of our model, satisfying (3) — (5) and only a simpli-
fication of (2) (as detailed in Section 4). Additionally, these solutions already
come decomposed in terms of selected paths: these are the only ones needing a
corresponding random variable to be considered, and therefore requiring a node
in the BNs. That is, even if the number of potential paths in the network can
be huge, very few of them are actually selected (and ready available) in a can-
didate solution. On top of this simplification, fast processing techniques from
the literature can be applied in our case.

Formally, given a set of selected paths R satisfying (3) — (5) and a relaxation
of (2), we design a BN g = (®,9Q) where ® and 2 are the set of nodes and arcs
of the BN, respectively. Set ® has one node ¢, for each arc a traveled by any
path r € R, one node ¢, for each path r € R, and one terminal node ¢;. Nodes
ba, Or, and ¢; represent the random variables that describe the failure or the
success of arcs, paths, and whole communication.

Only the ¢, nodes are unconditional nodes. Instead each ¢, node succeeds
only if all the ¢, nodes corresponding to arcs in path r succeed. While node ¢,
succeeds if at least one node ¢, succeeds.

An example of a BN representing a solution with two distinct paths r’ =
(s,1,2,3,¢t) and "’ = (s,2,3,5,1) is depicted in Figure 1: each random variable
corresponding to an arc is given a probability of failure (corresponding to label
0) and a probability of success (corresponding to label 1). While the probability
of failure of a random variable ¢, depends solely on the probabilities of the arcs
of r, the probability of failure of the communication, represented by the node
@+, also considers the fact that the two paths 7/ and " share arc (2, 3).

Once the BN is created, we conduct inference on the node ¢; in order to

obtain the probability of failure and success of the communication. To obtain
fast computations, we employ the preprocessing techniques of [20], together with
lazy propagation (see Section 5).

4. Optimization algorithms

In order to solve the RPSP, we proceed as follows: we perform an inte-
ger relaxation of the RPSP, that we name Independent path RPSP (IRPSP),
suitably relaxing the computation of P(y) but keeping integrality conditions
(Subsection 4.1). We solve a continuous relaxation of the IRPSP by means
of column generation techniques, obtaining a dual bound that is valid also for
RPSP (Subsection 4.3).

If the solution found by the continuous relaxation is fractional, we enter a
search tree by performing branching to enforce integrality conditions; when all
variables have integer values in the continuous relaxation, an integer IRPSP
solution is found: we test its feasibility for the RPSP, checking constraint (2) by
means of the BN introduced in Section 3, and accept it only if it passes the test.
Otherwise, further branching is applied to impose the selection of additional
paths to the solution (Subsection 4.4).

To strengthen our formulation we also introduce valid inequalities (Subsec-
tion 4.2) showing how they interact with the column generation pricing scheme.

Incumbent integer RPSP solutions are both retained when found through
branching, and produced by primal heuristics (Subsection 4.5). They are used
both for early pruning the search tree, and to perform reduction by variable
fixing (Subsection 4.6).

4.1. Integer relazation

As discussed, computing P(y) is hard in the general case, because the paths
in R could share arcs, and thus, although arcs failures are independent, paths
failures are not. Therefore, we build our computational methods around the
following relaxation:

Theorem 3. When the failures of the paths are assumed to be independent,
Inequality (2) becomes:
Ply) =[5 v < F. (6)
rER

Hence, replacing (2) with (6) produces an integer relazation of the RPSP.

Proof. In fact, P(y) < P(y) for each y, and therefore each solution which is
feasible with respect to (2), is also feasible for (6). Besides matching the common
understanding of joint probability of dependent and independent random events,
it is possible to formally prove the statement by induction on the number of
paths and the number of shared arcs. O

Indeed Equation (6) is nonlinear, but by means of logarithmic mapping and
since y" are binary variables, we obtain:

> log(p") - y" < log(F). (7)
r€R

Formally, we indicate as Independent paths RPSP (IRPSP) the relaxed model
obtained by (1) — (5), replacing (2) with (7).

A strong point about our relaxation is that it keeps the encoding of single
path failure probabilities unchanged. It is therefore much stronger than standard
approaches like the use of Boole-Bonferroni inequalities (or union bounds) and
similar approximations [16]. Finding tight bounds on generic mathematical
programs is indeed a challenging research stream on its own [21].

4.2. Valid inequalities

To strengthen our formulation we include sets of valid inequalities that either
increase the number of paths selected in a solution or the number of arcs selected.
First, let 67 (i) (resp. d7(i)) be the set of the outgoing arcs from i (resp.
ingoing arcs to i), we can state that at least one arc outgoing the source node and
one arc ingoing the destination node are selected in a feasible integer solution,

and therefore
> ma>1 (8)
a€dt(s)

Z Ty, > 1 9)

a€d—(t)

and

are valid inequalities

Then, let r* be a feasible path minimizing the probability of failure. We
use the value of the probability of failure p”~ of such a path to compute the
minimum number of paths ki, that must be selected in a solution in order to
satisfy constraint (7).

Formally, let)

kmin = [log(F)/log(p")1,
we have that
reR
is a valid inequality.

Furthermore, we design a set of inequalities to reduce the gap between P(y)
and P(y) by computing a more accurate probability of failure.

Let B C A be an arbitrary subset of arcs and let Rg = {r € R | z| =
1,Ya € B} and Rz = R\ Rp be two partitions of set R, that are the subset
of paths traveling all the arcs in B and the subset of paths missing at least
one arc in B, respectively. It follows that if any arc in B fails, all the paths in

10

Rp fail too. Therefore, the probability of failure of the paths in Rp is at least
1 —J],ep(1 —p%). Therefore, when a subset B is found such that

L-JIa-pa)> II 7

a€B r€Rp
we have
=117] <a-J[0-p)) [] 7
rcR rERp reERp a€EB reERp

thus the inequality

A-J]a-paza) J] By <F

a€EB reERp

strengthen our formulation, possibly reducing the gap between P(y) and P(y).
In our setting, we found to be profitable to include all inequalities for |B| = 1,
obtaining the following constraints

(1-(=pza) [» -y <F VacA
rER|Zr=0

that we linearize into

l0g(pa) - o + » (1 —2)log(p")y" < log(F), Va € A. (11)
reR

4.8. Solving the continuous relaxation of IRPSP

Concerning model (1) — (5), we observe that the set R grows exponentially
in the size of the graph. We recur to column (and row) generation techniques
to solve the continuous relaxation of the IRPSP (C-IRPSP). We refer to the
model containing the full set of columns and rows as Master Problem (MP);
in order to optimize it we iteratively solve a Restricted MP (RMP) involving
only a small set of columns R C R, and only the constraints of the set (3)
related to the elements of R. Given a RMP optimal dual solution, we search
for negative reduced cost columns, which are in the MP but not in the RMP,
by solving a pricing problem. If no such column is found, the optimal RMP
solution is optimal for the C-IRPSP as well. The corresponding value is a valid
lower bound for the IRPSP and as a consequence for the RPSP. Otherwise we
iterate.

In particular we relax the integrality on y” variables with non-negativity
conditions only, and the integrality on x, variables by both non-negativity con-
ditions and variable upper bounds of value 1. An upper bound of value 1 to the
value of y" variables is therefore imposed implicitly by means of constraints (3).
In fact, while these variable upper bounds are often disregarded in column gen-
eration algorithms, in our case the following holds.

11

Theorem 4. When the graph is connected, by dropping variable upper bounds,
an optimal solution to the continuous relazation of (1), (7), (3) — (5) always
exists, in which only a single path having best ratio between cost and failure
probability is selected (possibly in multiple copies).

Proof. Due to Constraints (3) and the sense of the objective function, we have
that in an optimal solution x, =) . 7, -y". Therefore, the objective function
(1) can be rewritten as

minz (Z Ca zQ) -~y (12)

reER \a€A

Since constraints (4) and (5) are relaxed, only Constraint (7) remains: the prob-
lem turns out to be a continuous unbounded knapsack, whose optimal solution
is known to have the structure of our claim. O

In a round of preliminary explorations, we experimented variants of model
(1) = (5), but all those neglecting such variable upper bounds yielded very poor
relaxations. On the other hand, constraints (3) are exponential in number and
need to be managed implicitly and dynamically, as we do with the columns.
We handle them with a special procedure, which intertwines with the pricing
algorithm, discussed in the following.

We initialize the RMP by including both the path of minimum cost and the
path with smaller probability of failure in R.

4.3.1. Pricing problem.

Let por < 0,7 <0, v >0, and 7, < 0 be the dual variables corresponding
to constraints (3), (7), (10), and (11) respectively.

The reduced cost of a column r is:

Xr:*zuar'zafyfZﬂ-a'(lfza)'pfn’p (13)

a€A a€A

12

The pricing problem can be stated as follows:

min
s.t. p=log(l— H (1= pa) - 2a) (14)
acA
Z Zg = Z Za = U; Vie N\ {s,t} (15)
a€d+ (i) a€d— (i)
S oa= Y e 19
a€dt(s) acd(t)
Y oz VSCN,|S|>1,keS (17)
a€s+(S)
p<0 (18)
v, €B Vie N
za €B Va e A

where variable p is the logarithm of the probability of failure of the path, each
variable v; is set to 1 if node ¢ is selected in the path, and 0 otherwise, each
variable z, is set to 1 if arc a is selected, and 0 otherwise.

We remind that according to Observation 4 we can assume that p is always
well defined.

Constraint (14) accounts the failure probability of the path, while con-
straints (15) — (17) ensure that a path from s to ¢ is selected.

The objective function (13) minimizes the difference between costs and prof-
its. Besides a fix profit —v, we gain a profit n that is proportional to the
logarithm of the probability of failure of the path, and for each arc a that is
not selected in the solution we also gain a profit m, still proportional to the
probability of failure of the path. Furthermore, we pay a cost —pg, to select
arc a. However, if » ¢ R, constraints (3) cannot be binding. In fact, they do
not even appear in the RMP. Therefore we implicitly have p,,. = 0. That is,
we incur the cost —pug, only if the path r defined by variables z, is already in
the RMP; furthermore in such a case we know that y, > 0, since the RMP is
solved to optimality.

4.3.2. Pricing algorithm.

To solve our pricing problem we devised a dynamic programming algorithm:
let I = (4, ¢, p, p) be a label defining the partial reduced cost ¢ and the probability
p of a partial path p = (s,...,7). Our algorithm is designed as follows.

Initialization. We start by creating a single label | = (s, gcut, p, p), representing
a partial path p = (s) starting from source node s, where geut = — > 4 Ta
is the profit gained when arcs are avoided in the solution, and p = 1 is the
probability of success of the partial path. We then push label [in a queue of
labels.

13

Eztension. At each iteration we select a label | = (i, geut, p, p) from the queue
in a LIFO way and create a new label I’ = (3§, geut, P/, p’) for each arc a = (i, j)
outgoing from i to j, such that:

e we add the node j to the partial path, that is p’ = (s,01,09,...,,7);

e we decrease the profit g.,: because of the selected arc a, that is ¢, =
Jeut + Ta;

e we update the probability of success of the partial path p’ = p- (1 — p,).

Dominance. For each new label I = (i, geut, p, p) we perform a dominance check.
If it exists a label I = (4, gL, P, p') having p’ > 0 in the queue of labels
with:

(a) higher profit of non selected arcs, that is gey: -log(1—p) < ¢, -log(1—p’),
(b) smaller probability of failure 1 —p > 1 —p/,

(¢) smaller partial reduced cost, and at least one of these conditions is strict,
then label [cannot lead to an optimal solution, and therefore can be
deleted. Otherwise, we add [to the labels queue.

The condition p’ > 0 is enforced to guarantee that no path is dominated by
another one eventually leading to p” = 0 at termination.

Checking condition (c), however, needs special care. In fact, due to the
contribution of —p,, dual variables, the actual reduced cost depends also on
the possible belonging of the final path to R or not. Therefore, for each r € R,
we conceptually define as M, = Eae A Za * Mar the contribution of constraints
(3) to the reduced cost of path r. Then we define M, as the minimum among
M, values such that the partial path p is a sub-path of r. Therefore, —M, is
the maximum reduced cost worsening that we might incur if, by extending p,
we end up generating a path already in R.

We perform the following relaxed check of the dominance condition on cost:

geut - 1og(1 —p) = n-log(1 = p) = gey; - log(1 —p') —n-log(1 = p') = M,
that is, we dominate [only if another label I’ is found that, although possibly
leading to a path already in R, would produce a non-worse reduced cost.

Algorithmically speaking, one of the key elements of our label correcting
algorithm is actually how to manage the set of generated paths: in order to
compute M, and M, costs efficiently we designed a prefix tree which is detailed
in the Appendix A.

Stopping criterion. When the labels queue is empty, we stop and select the first
label having minimum reduced cost among the ones having p > 0. If it is non-
negative, we stop column generation. Otherwise we enrich the RMP with that
single column, and the corresponding constraints of the set (3), and iterate.

As a technical remark, according to our dominance rule the best path with
p > 0 is never dominated. Therefore in this way we enforce the removal of paths
having p” = 0 from R, matching the assumption of Observation 4, without loss
of optimality guarantees.

14

4.4. Branching strategy

We remark that, the continuous relaxation lower bound found through col-
umn generation is a valid dual bound for both IRPSP and RPSP. When an
optimal solution to C-IRPSP is found, which is fractional and whose value is
lower than a RPSP primal bound, we enter a search tree. We designed three
branching strategies: the first is meant to speed up the reduction of the integral-
ity gap, the second drives towards integrality on variables x,, while the latter
is used only to ensure that integer solutions satisfy failure target constraint (2).

Branching on number of paths. In our first branching strategy we force the
sum of the path variables to be integer. Let §” be the value of variable y” in
a solution of C-IRPSP which is fractional. If the number of selected paths,
that is 5 9", is fractional we create two branching nodes, the first with an
additional constraint

Sy Doy (19)
reR reR

and the second one with constraint

Sy S| (20)

réeR reR

Both constraints origin new dual variables that are, respectively a fixed cost
or a fixed profit for any additional priced path. In neither case the structure of
our pricing problem is changed.

Branching on arcs. When the sum of path variables is integer, we proceed by
fixing arc variables to integer values: we search for the most fractional arc a,
that is @ € argmin,c 4 {|z, — 0.5]}, and we create two new branching nodes: one
having x; = 1 and one where x; = 0.

In both nodes we add a constraint to the MP, respectively:

dozy =1 (21)

reR

and
>zt <o (22)
reR
When we set x; = 0, each column having 2] = 1 is removed from the RMP,
arc a is removed from the graph, and the pricing problem remains unchanged.
Instead, when we set x5 = 1 and add the corresponding constraint in the MP,
such a constraint induces a new dual variable in the pricing problem that is a
profit for selecting arc a, changing the structure of pricing.
Therefore we modify our dynamic programming algorithm as follows: in the
dominance phase of our algorithm, we add a new condition that is:

15

(d) a label [is dominated by a label I’ only if the partial path p has visited
all nodes in p'.

In fact, this condition excludes the case where [is dominated but still be prof-
itable by collecting the additional profit of an arc a. A formal proof is given in
the Appendix B.

Branching for failure probability. When an integer solution is found, both in
terms of path and arc variables, the values of z, variables define a subgraph G =
(N, A) that connects s to t and satisfies constraint (6), and 3" variables define a
corresponding path representation. It is indeed a feasible IRPSP solution, which
is also an optimal IRPSP solution for the particular branching node subproblem.
However, when solving the RPSP we must perform an additional check to ensure
that the actual probability of failure of the selected paths is lower than F,
satisfying also constraint (2).

Such a check is performed by BN computations, as detailed in Section 3.

If the failure probability BN check succeeds, the solution found is feasible
also for the RPSP (and optimal for the particular branching node subproblem
as well): we update the value of the RPSP primal bound (and keep the solution
as incumbent), if profitable, we close the corresponding branching node and we
backtrack.

On the contrary, the failure of the BN check is unfortunately not enough
to mark the branching node as infeasible and backtrack. A clear example may
be given by any RPSP instance whose C-IRPSP solution at the root node is
automatically integer, and therefore feasible and optimal for the IRPSP, but
infeasible for the RPSP. In such a case we are not allowed to stop branching,
since we have no guarantee that, by forcing either additional paths or arcs
variables to be selected, no feasible RPSP solution can be found. However,
the IRPSP and the C-IRPSP as a consequence, is blind with respect to both
possibilities.

Therefore, we may fall in one of these two cases: either the subgraph selected
in such an integer C-IRPSP solution is not part of any optimal RPSP solution,
or it belongs to an optimal solution but additional paths are required. We
generate two children branching nodes accordingly.

In the first child we impose that at least one of the arcs of the selected
subgraph has its z, variable set to 0, that is

Z ZTq < |A| -1 (23)

acA

In the second child we set all variables z, = 1 for @ € A, and we increase
the number of selected paths, that is

oy |D i+ (24)

reR reER

16

We remark that increasing the number of selected paths does not necessarily
increase the cost of a solution: in fact, the selected paths may be a subset of all
the paths that can be generated from the selected subgraph.

4.5. Primal heuristics

To speed up the overall branch-and-bound procedure we design two primal
heuristics, one greedy heuristic that is run once before the start of the overall
branch-and-price framework, and one rounding heuristic run at the end of the
evaluation of each branching node.

Independent path heuristic. Our first heuristic is run once and iteratively searches
for a new path connecting the source to the destination in such a way that no
arc of the new path has been traveled before. In other words, our heuristic
searches for a set of independent paths.

Our heuristic works as follows: (a) we find a minimum cost path from s
to t and we add such a path to a set R of minimum cost paths; (b) if no
path can be found, the heuristic stops without any feasible solution; (c) if the
paths contained in R satisfy constraint (2), we stop with a feasible solution;
(d) otherwise all the arcs belonging to the paths in R are removed from the
graph, and procedure restarts from step (a).

We remark that any solution found by such heuristic is feasible for both
IRPSP and RPSP: in fact, because no arc is shared between the selected paths,
those paths are independent, and the probability of failure is not greater than
F also for RPSP.

The philosophy of this heuristic is to be aggressive on cost while producing
a feasible solution for the IRPSP. As a weakness it might be fragile w.r.t. the
failure constraint, especially on poorly connected graphs.

Knapsack heuristic. The second primal heuristic is run at the end of the column
generation process that solves the C-IRPSP of each node of the branching tree.

Given the values of y" variables of a fractional solution of the C-IRPSP , we
select the subset R C R of paths having positive y" variables, that is R= {r e
R |y" > 0}. Then we solve the following optimization problem aiming to select
a subset of R such that the failure constraint (7) is satisfied at minimum cost:

min Z ¢ - w, (25)

rT€ER

st log(p") - w, < log(F) (26)
reR
wy €B (27)

where each w, variable is set to 1 if path r is selected, 0 otherwise. However, we
can reformulate the problem in terms of selecting those paths that should not
be part of a solution: in fact, the objective function (25) can be reformulated

as
> —max Y e (1—w,) (28)

reR reR

17

while constraint (26) can be reformulated as follows:

> log(p) - w, < log(F) =
r€R

> log(p") - w, — Y log(p") < log(F) — Y log(p") =

’I‘ER TER TER

> —log(p") - (1 —wy) <log(F)— Y log(p") (29)
reR reR
Therefore, to select a subset of paths that satisfy constraint (7), we solve
a binary knapsack problem where we have an item for each path in R, each
item has a non-negative profit & and a non-negative weight [—log(p”)], and
the capacity of the knapsack is set to [log(F) =) . log(p")]. Since we always
start from a feasible fractional solution of the C-IRPSP , we also have that the
capacity of such a knapsack is always non-negative.

4.6. Reduction techniques

Within the column generation procedure, we found to be profitable to exploit
the value of a valid RPSP primal bound to reduce the size of our problem. In
fact, if we are given a primal bound to the value of an optimal RPSP solution,
we can discard all paths in R having a cost greater than such primal bound,
since if they were selected they would provide a more expensive solution.

Therefore, in our methodology we make use of such consideration as follows.

Arc variable firing. In a preliminary phase of our algorithm we compute each
path of minimum cost from s to ¢t passing through an arc a € A.

Every time a feasible solution is found and the RPSP primal bound is im-
proved, we then fix all arc variables z, corresponding to arcs having a minimum
cost path greater than the primal bound value, as passing though that arc would
lead to a more expensive subgraph.

Ezxpensive path avoidance. We further exploit the value of a RPSP primal bound
to avoid the generation of paths with higher cost in the pricing procedure. In
fact, in a feasible integer solution, those paths that cost more than a feasible
solution are not selected. To achieve such behavior we include an additional
constraint

Z Ca - 2q <UB (30)

a€A

in our pricing problem, where UB is the value of a primal bound.

Our dynamic programming algorithm is then modified as follows: a label !
also includes the cost of the partial path considering arcs costs only. Such a
cost is then taken into account when testing the dominance between labels, and
the pricing procedure avoid the extension of labels that have a cost higher than
uB.

18

Also, whenever we find an improving primal bound, we fix y" variables al-
ready in the RMP that correspond to paths with a cost higher than such a
primal bound.

5. Computational results

We implemented our algorithms in C++ using SCIP framework [22], while
LP subproblems were solved using the simplex algorithm implemented in CPLEX
12.6 [23]. In SCIP we kept the default settings although we set single thread
execution. The resolution of the BNs is carried out using the framework of
[20]. Tt automatically performs BN minimalization by introducing intermediate
nodes by need, before applying lazy propagation algorithms.

We produced a randomly generated benchmark consisting of graphs where
each node is a point whose coordinates are randomly drawn in the range (—100, 100).

Each pair of nodes is connected with a probability +. If an arc a exists,
its cost ¢, is the euclidean distance between its endpoints, and its probability
of failure p, is chosen uniformly at random as one of the values in the set {5 -
1073,1073,107%,107°}. We generated instances for different sizes of the graph
(IN| € {20,30}) and different density (v € {0.25,0.50,0.75}). For each pair
of size and density, we generated 10 instances, thereby producing 60 instance
graphs with costs and probabilities on arcs overall.

Also, for each instance graph we perform several runs where we set a different
failure probability target F € {1-1071,5-1072,1-1072,5-1072,1-1073,5 -
1074,1-1074,5-1075,1-107°,5-1075,1-1076}, for a total of 660 RPSP instances.

All our tests have been conducted on a PC equipped with an AMD Ryzen
Threadripper 1950X CPU at 3400 MHz and 32GB of memory and setting a
time limit of one hour of computing time for each run.

We do not report algorithm profiling, but we mention that the component
requiring the largest share of computing time is by far the resolution of LP
subproblems. Indeed, we experimented on several settings for LP resolution al-
gorithms, without substantial improvements. Instead all our custom algorithmic
components, when taken independently, run extremely fast. Also the computing
time spent in pricing new reduced cost variables is on average smaller by one
order of magnitude w.r.t the time spent in solving RMPs.

5.1. Strength of the IRPSP relaxation

At first, we evaluate how tight is the dual bound produced by the IRPSP
integer relaxation. We designed the experiment as follows. Branching for failure
probability was deactivated: each integer solution found during the exploration
of the search tree was retained. Upon termination, the best among them rep-
resents an optimal IRPSP solution. That might in general be super-optimal
for the RPSP; nevertheless, it represents a valid dual bound for the RPSP. In
Tables 1 and 2 we report, for networks of 20 and 30 nodes respectively, results
as average values over classes of 10 instances having same density v and same
target failure probability F, as indicated in the first two columns. The analysis

19

Table 1: Computational effort for IRPSP instances with 20 nodes.

o F #s. dual. br. time F RSPP opt.
gap (%) nodes (s) gap (%) gap (%)

025 1-107% 10 - 1.0 0 0.0 0.0
5.10"2 10 - 1.0 0 0.0 0.0
1.1072 10 - 1.6 0 0.0 0.0
5.1073 10 - 4.3 0 1.let01 -2.6
1-1073 10 - 19.2 0 2.9e+02 7.5
5.107% 10 - 18.8 0 6.4e102 -7.9
1-1074 10 - 18.4 0 3.8¢+03 -28.6
5.107° 10 - 73.4 0 3.2e+03 -21.7
1.107° 10 - 243.1 3 5.8¢+03 -29.0
5.1076 10 - 276.7 2 3.9e+04 -43.3
1-10-6 10 - 758.4 25 1.7e+05 -45.5

0.50 1-1071 10 - 1.0 0 0.0 0.0
5.1072 10 - 1.0 0 0.0 0.0
1-1072 10 - 1.0 0 0.0 0.0
5.1072 10 - 8.1 0 2.0e-01 -2.1
1.107° 10 - 5.0 0 4.0e+02 -3.8
5.107% 10 - 10.0 0 9.0e+02 -3.5
1-10"4 10 - 21.4 0 4.2¢+03 -10.8
5.107° 10 - 61.5 0 5.6e+03 -9.1
1-107° 10 - 90.3 133 1.1e+04 -21.0
5.1076 10 - 125.9 34 2.1e+04 -22.0
1-107° 10 - 79.6 95 6.4e404 -22.9

0.75 1-1071% 10 - 1.0 0 0.0 0.0
5.10"2 10 - 1.0 0 0.0 0.0
1-1072 10 - 1.0 0 0.0 0.0
5.107% 10 - 1.6 0 0.0 0.0
1-1073 10 - 6.8 0 4.0e+02 -0.1
5.1074 10 - 6.0 0 9.0e+02 -0.1
1.1074 10 - 26.3 1 2.7e+03 -9.8
5.107° 10 - 37.5 1 2.8e+03 -12.7
1-107° 10 - 41.5 1 3.0e+03 -21.0
5.107¢ 10 - 2985.7 116 6.8e+03 -18.6
1-1076 10 - 32304 98 7.Tet+04 -20.0

in this subsection complements further (although preliminary) results concern-
ing the general behavior of column generation for the IRPSP case, which have
been presented in [24].

In columns 3 to 6 we report the number of instances terminating within
the time limit of one hour, the average IRPSP optimality gap left open on
the instances that did not terminate (expressed as relative value w.r.t. IRPSP
dual bound), the average number of explored branching nodes and the average
computing time on the terminating instances. In all but a few cases the IRPSP
could be solved to proven optimality within the time limit. On the terminating
instances, computing times are in the range of few minutes. Unfortunately, on
the instances hitting the timeout the optimality gap remains large. This suggests
that instances with specific structures may be harder than others, although our
investigations did not highlight which is the critical structure. The expected
computing effort increases both as = increases and as F decreases; that is,
dense instances with low failure target probability are harder.

20

Table 2: Computational effort for IRPSP instances with 30 nodes.

o F #s. dual. br. time F RSPP opt.
gap (%) nodes (s) gap (%) gap (%)

025 1-107% 10 - 1.0 0 - 0.0
5.10"2 10 - 1.0 0 - 0.0
1.1072 10 - 1.0 0 - 0.0
5.1073 10 - 1.0 0 - 0.0
1-1073 10 - 2.6 0 - 0.0
5.1074 10 - 2.6 0 - 0.0
1-1074 10 - 27.1 4 1.0e+03 -4.0
5.107° 10 - 50.7 0 2.2e+03 -4.9
1.107° 10 - 95.9 1 5.0e+03 -24.0
5.1076 10 - 173.6 2 1.2e+04 -13.5
1-10-6 10 - 286.4 6 2.9e+04 -13.9

0.50 1-1071 10 - 1.0 0 - 0.0
5.1072 10 - 1.0 0 - 0.0
1-1072 10 - 1.0 0 - 0.0
5.1073 10 - 1.4 0 - 0.0
1.107° 10 - 2.2 0 - 0.0
5.107% 10 - 2.0 0 - 0.0
1-10"4 10 - 12.6 0 - 0.0
5.107° 10 - 122.0 1 3.9¢+03 -0.1
1-107° 9 51.3 285.6 11 1.4e402 -19.0
5.107° 10 - 601.4 21 5.4e+02 -24.0
1-107¢ 8 50.4 874.4 91 1.4e+04 -17.8

0.75 1-1071% 10 - 1.0 0 - 0.0
5.10"2 10 - 1.0 0 - 0.0
1-1072 10 - 1.0 0 - 0.0
5.107% 10 - 1.0 0 - 0.0
1-1073 10 - 3.4 0 - 0.0
5.1074 10 - 3.4 0 - 0.0
1.1074 10 - 820.6 31 - 0.0
5.107° 10 - 820.2 33 1.0e+03 -0.8
1-107° 9 38.0 1332.9 368 3.8¢+02 -18.0
5.10°¢ 8 21.0 2771.0 16 1.5e+03 -22.2
1-1076 8 35.9 1127.8 41 4.5e+03 -20.4

In column 7 we report the average difference between the actual failure
probability of the optimal IRPSP solution (or best known in case of timeout),
when measured by BN computations, and F (expressed as relative value w.r.t.
F). In column 8 we report the difference between the same IRPSP solution and
the best known RPSP solution (which is usually the global RPSP optimum, as
found by our algorithms, see subsection 5.2), expressed as relative values w.r.t.
the best known RPSP solution value. Both values are remarkably tight when
F is high, but worsen quickly as F decreases.

Overall, we conclude that our algorithms are indeed effective for the IRPSP.
Although being a pertinent ingredient, however, our experiments verify that
IRPSP solutions require to be embedded with further components to be suc-
cessful in RPSP algorithms: IRPSP bounds are in general not particularly tight
at the root node, but can be improved quickly by branching and reduction.

21

Table 3: Computational effort for RPSP instances with 20 nodes.

o F #s. dual. br. time BN
gap (%) nodes (s) nodes

025 1-107% 10 - 1.0 0 0.0
5.10"2 10 - 1.0 0 0.0
1.1072 10 - 1.6 0 0.0
5.1073 10 - 8.5 0 0.8
1-1073 10 - 291.5 1 0.8
5.107% 10 - 337.9 4 0.0
1-1074 8 43.8 6634.6 2 10.4
5.107° 9 11.6 7930.3 137 0.0
1-107° 8 47.9 9357.0 18 2.3
5.1076 5 67.9 13823.5 285 2.5
1-10°6 3 59.6 17148.1 657 1.8

050 1-1071T 10 - 1.0 0 0.0
5.1072 10 - 1.0 0 0.0
1.1072 10 - 1.0 0 0.0
5.1073 10 - 210.3 1 5.9
1.1072 10 - 159.0 1 0.2
5.1074 10 - 129.8 1 0.0
1-1074 10 - 205.0 1 1.5
5.107° 10 - 539.2 4 0.0
1-107° 8 52.7 16054.4 510 2.5
5.106 8 52.5 16364.5 521 0.1
1-1076 8 53.9 17542.9 533 1.1

075 1-10°1 10 - 1.0 0 0.0
5.1072 10 - 1.0 0 0.0
1-1072 10 - 1.0 0 0.0
5.107% 10 - 1.6 0 0.0
1.1073 10 - 6.8 0 0.0
5.107% 10 - 6.2 0 0.0
1-1074 9 50.1 1104.4 180 1.0
5.107° 8 46.5 2728.4 52 0.0
1-107° 7 50.5 3280.9 204 1.3
5.107° 7 51.2 3114.2 179 0.0
1-107¢ 6 53.6 2069.5 64 0.1

5.2. Solving RPSP with optimality guarantees

As second experiment, we analyzed the behavior of our branch-and-price
algorithm in solving the full RPSP to proven optimality. As before, tables 3
and 4 report, for networks of 20 and 30 nodes respectively, results as average
values over classes of 10 instances having same density v and same target failure
probability F, as indicated in the first two columns.

In columns 3 to 6 we report in turn the number of instances terminating
within the time limit, the average optimality gap left open on the instances
that did not terminate (expressed as relative value w.r.t. the dual bound), the
average number of explored branching nodes and the average computing time
on the terminating instances. Our algorithms can consistently solve instances
to proven optimality. Similarly to the previous experiment, each test either
produced proven optimal solutions within minutes, or hit the timeout leaving
non negligible gaps. The parameter which has highest impact on the compu-
tational behavior is the failure probability target F. Neither graph density
nor size seems to be so correlated to the computational effort required to solve

22

Table 4: Computational effort for RPSP instances with 30 nodes.

o F #s. dual. br. time BN
gap (%) nodes (s) nodes

025 1-107% 10 - 1.0 0 0.0
5.10"2 10 - 1.0 0 0.0
1.1072 10 - 1.0 0 0.0
5.1073 10 - 1.0 0 0.0
1-1073 10 - 2.6 0 0.0
5.1074 10 - 2.6 0 0.0
1-1074 10 - 776.1 16 1.0
5.107° 10 - 882.6 12 0.0
1-107° 8 77.6 6527.1 309 4.0
5.1076 9 54.5 6217.3 262 0.0
1-10°6 8 55.7 3494.4 59 0.0

050 1-1071T 10 - 1.0 0 0.0
5.1072 10 - 1.0 0 0.0
1.1072 10 - 1.0 0 0.0
5.1073 10 - 1.4 0 0.0
1.1072 10 - 2.2 0 0.0
5.1074 10 - 2.0 0 0.0
1-1074 10 - 12.6 0 0.0
5.107° 10 - 130.4 2 0.0
1-107° 6 51.0 1414.3 53 4.2
5.106 5 55.3 1378.4 64 0.0
1-107° 5 57.3 1249.0 51 0.0

075 1-10°1 10 - 1.0 0 0.0
5.1072 10 - 1.0 0 0.0
1-1072 10 - 1.0 0 0.0
5.107% 10 - 1.0 0 0.0
1.1073 10 - 3.4 0 0.0
5.107% 10 - 3.4 0 0.0
1-1074 10 - 901.4 40 0.0
5.107° 10 - 949.0 41 0.0
1-107° 6 50.2 2178.7 159 3.2
5.107¢ 5 51.6 2108.3 201 0.0
1-10-6 4 45.4 3891.1 22 0.0

RPSP. In column 7 we report the average number of times in which branching
for failure probability was called, that is the average number of BN evaluations
per instance. Such values are usually very low; that is, normally the first two
branching rules are enough to both improve the dual bounds and allow primal
bounding heuristics to find optimal RPSP solutions.

5.83. Comparing to standard protection schemes

As third experiment we tried to evaluate the impact in network optimization
when using RPSP models instead of standard path protection schemes from the
literature.

We consider as benchmark methods k-shortest path models, whose philoso-
phy is to find a set of k arc disjoint paths between s and ¢, whose sum of costs
is minimum [1]. For fixed k, optimal k-shortest path solutions can be found in
polynomial time by simple min-cost flow computations on a graph identical to
G, having capacity 1 on each arc, and having s (resp. t) as source (resp. sink)
of k units of flow.

23

Table 5: Comparison of path protection schemes on instances with 20 nodes.

o F 2-shortest path 3-shortest path
#£ inf F # target RSPP opt. # inf F # target RSPP opt.
gap (%) missed gap (%) gap (%) missed gap (%)
025 1-1071% 2 - 0 192.5 5 - 0 370.8
5.1072 2 - 0 192.5 5 - 0 370.8
1.1072 2 - 0 190.4 5 - 0 365.5
5.1073 2 - 0 167.9 5 - 0 307.7
1-1073 2 - 0 75.2 5 - 0 211.5
5.107% 2 - 0 75.2 5 - 0 211.5
1-1074 2 - 0 29.0 5 - 0 128.8
5.107° 2 - 0 29.0 5 - 0 128.8
1-107° 2 9.9e+01 5 2.5 5 - 0 74.2
5.106 2 2.5e+02 6 -21.2 5 - 0 44.1
1.-107° 2 1.7e+03 6 -27.3 5 - 0 59.7
0.50 1-10717 0 - 0 124.9 0 - 0 275.3
5.1072 0 - 0 124.9 0 - 0 275.3
1-1072 0 - 0 124.9 0 - 0 275.3
5.1072 0 - 0 104.4 0 - 0 237.7
1-1073 0 - 0 87.0 0 - 0 209.9
5.107% 0 - 0 79.0 0 - 0 196.6
1-107% 0 - 0 57.6 0 - 0 162.1
5.107° 0 - 0 34.3 0 - 0 123.0
1-107° 0 1.6e+02 1 -1.3 0 - 0 62.8
5.107¢ 0 1.1e+02 4 -4.7 0 - 0 57.2
1-107¢ 0 6.5e+02 6 -8.0 0 - 0 51.7
0.75 1-1071T 0 - 0 145.3 0 - 0 322.4
5.1072 0 - 0 145.3 0 - 0 322.4
1-1072 0 - 0 145.3 0 - 0 322.4
5.1072 0 - 0 135.5 0 - 0 305.0
1-1073 0 - 0 115.7 0 - 0 273.5
5.10"% 0 - 0 65.2 0 - 0 169.1
1-107% 0 - 0 27.3 0 - 0 107.7
5.107° 0 - 0 18.7 0 - 0 94.9
1-107° 0 1.6e402 1 -0.1 0 - 0 65.0
5.107¢ 0 1.1e+02 5 -3.4 0 - 0 58.6
1-10-8 0 7.0e+02 7 -9.9 0 - 0 47.7

In tables 5 and 6 we assess the relative quality of k-shortest path solutions
with respect to RPSP, in terms of both cost and probability of failure, when
k = 2 or k = 3, that represent popular choices in path protection schemes. The
tables are organized as in the previous experiments.

No CPU time is reported, as all min-cost flow computations took negligible
time. Column 3-7 and 8-11 refer to the cases k = 2 and k = 3, respectively.
We remark that in some instances (especially when graphs are sparse) it might
be impossible to find k disjoint paths from s to ¢, and therefore k-shortest path
protection schemes simply cannot be used (while RPSP could); for each tech-
nique (columns 3 and 8) we report the number of instances in each class where
such a condition happened: these were excluded from the tests. In subsequent
columns we report the difference between the actual failure probability of the
k-shortest path optimal solution, when evaluated through BN computations,
and F (expressed as relative value w.r.t. F), the number of instances in which
the failure probability target was not reached by the k-shortest path protection

24

Table 6: Comparison of path protection schemes on instances with 30 nodes.

o F 2-shortest path 3-shortest path
#£ inf F # target RSPP opt. # inf F # target RSPP opt.
gap (%) missed gap (%) gap (%) missed gap (%)
025 1-1071% 1 - 0 169.0 3 - 0 364.4
5.1072 1 - 0 169.0 3 - 0 364.4
1.1072 1 - 0 168.1 3 - 0 362.6
5.1073 1 - 0 168.1 3 - 0 362.6
1-1073 1 - 0 141.5 3 - 0 328.2
5.1074 1 - 0 127.4 3 - 0 289.6
1-1074 1 - 0 78.4 3 - 0 198.5
5.107° 1 - 0 29.0 3 - 0 130.0
1.107° 1 - 0 8.3 3 - 0 87.8
5.106 0 3.0e+00 1 8.5 2 - 0 88.2
1.-107° 0 2.0et02 4 4.0 2 - 0 78.8
0.50 1-10717 0 - 0 125.4 0 - 0 266.5
5.1072 0 - 0 125.4 0 - 0 266.5
1-1072 0 - 0 125.4 0 - 0 266.5
5.1072 0 - 0 122.6 0 - 0 262.1
1-1072 0 - 0 104.0 0 - 0 229.1
5.107% 0 - 0 104.0 0 - 0 229.1
1-107% 0 - 0 93.2 0 - 0 212.1
5.107° 0 - 0 64.6 0 - 0 165.1
1-107° 0 2.6e+02 1 13.1 0 - 0 83.6
5.107¢ 0 3.1e+02 2 -4.6 0 - 0 52.9
1-107¢ 0 1.9¢+03 2 -4.6 0 - 0 52.9
0.75 1-1071T 0 - 0 110.3 0 - 0 226.1
5.1072 0 - 0 110.3 0 - 0 226.1
1-1072 0 - 0 110.3 0 - 0 226.1
5.1072 0 - 0 110.3 0 - 0 226.1
1-1073 0 - 0 108.4 0 - 0 223.1
5.107% 0 - 0 100.1 0 - 0 210.1
1-107% 0 - 0 95.4 0 - 0 203.1
5.107° 0 - 0 74.8 0 - 0 170.8
1-107° 0 - 0 23.6 0 - 0 91.9
5.10¢ 0 1.2e+00 1 -1.4 0 - 0 52.7
1-10-8 0 2.0e+02 2 -2.4 0 - 0 51.2

scheme, and the difference between the k-shortest path optimum and the best
known RPSP solution value (expressed as relative value w.r.t. the best known
RPSP solution value). That is, when this last value is positive, k-shortest path
solutions are more expensive than RPSP ones (when they are negative the op-
posite holds). All values in these columns are averages only over those instances
containing k disjoint paths.

Our results convey a clear message: k-shortest path models are unsuitable
to meet failure probability targets with effective cost solutions. In all instances
both path protection schemes produced solutions which were either more ex-
pensive than RPSP (when F is large), or infeasible w.r.t. failure probability
(when F is small); sometimes, both conditions hold simultaneously. Indeed, a
similar effect has been observed in previous attempts from the literature [17].
The aspect of costs appear particularly relevant: often the cost of RPSP solu-
tions is a fraction of that of k-shortest path models, even when F is very high.
Only 2-path protection seems competitive w.r.t. costs, when F takes values

25

Table 7: Comparison of RPSP heuristics on instances with 60 nodes.

o F 2-shortest path 3-shortest path
#£ inf F # target RSPP opt. # inf F # target RSPP opt.
gap (%) missed gap (%) gap (%) missed gap (%)
025 1-1071% 1 - 0 165.3 1 - 0 374.1
5.1072 1 - 0 165.3 1 - 0 374.1
1-1072 1 - 0 146.4 1 - 0 342.5
5.1073 1 - 0 149.9 1 - 0 348.3
1-1073 1 - 0 72.4 1 - 0 200.8
5.107% 1 - 0 72.4 1 - 0 200.8
1-1074 1 5.9e+01 1 48.1 1 - 0 162.0
5.107° 1 2.2e+02 1 28.2 1 - 0 126.5
1-107° 1 6.5e+02 3 2.9 1 - 0 82.5
5.106 1 8.4e+02 5 -3.2 1 - 0 72.5
1.-107° 1 3.9e+03 6 -16.1 1 - 0 46.4
0.50 1-10717 0 - 0 146.7 0 - 0 334.2
5.1072 0 - 0 146.7 0 - 0 334.2
1-1072 0 - 0 146.7 0 - 0 334.2
5.1072 0 - 0 84.9 0 - 0 230.8
1-1072 0 - 0 59.8 0 - 0 175.1
5.107% 0 - 0 67.3 0 - 0 189.1
1-107% 0 - 0 49.5 0 - 0 159.7
5.107° 0 - 0 24.1 0 - 0 115.0
1-107° 0 2.4e+00 1 2.1 0 - 0 77.2
5.107¢ 0 3.2e+01 4 -4.3 0 - 0 66.8
1-107¢ 0 4.5e+02 5 -8.8 0 - 0 58.6
0.75 1-1071T 0 - 0 137.4 0 - 0 298.1
5.1072 0 - 0 137.4 0 - 0 298.1
1-1072 0 - 0 137.4 0 - 0 298.1
5.1072 0 - 0 136.5 0 - 0 296.8
1-1073 0 - 0 91.0 0 - 0 213.1
5.107% 0 - 0 99.1 0 - 0 225.7
1-1074 0 - 0 86.8 0 - 0 207.1
5.107° 0 - 0 43.9 0 - 0 132.3
1-107° 0 1.8e402 2 4.9 0 - 0 69.9
5.10¢ 0 3.0e+02 3 -7.1 0 - 0 50.5
1-10-8 0 1.9¢+03 3 -7.8 0 - 0 49.4

in the order of 107°, but in these cases the violation of the failure probability
constraint is very large.

5.4. RPSP as heuristics

The experiments of the previous subsection did not take into account com-
puting time scalability. Therefore, we analyzed the suitability of our RPSP
algorithms in a different setting. First, we considered larger instances: we kept
the same instance structure, but created graphs with 40 to 60 nodes. Second, we
set a limit to RPSP computations, stopping them at the root not or in any case
after 60 seconds of CPU time, and the RPSP incumbent was kept as heuristic
solution. Our results on the graphs of 60 nodes are reported in Table 7; its
structure is identical to that of tables 5 and 6. Other results are omitted, being
pretty much in line with previous ones.

The outcome is similar to the previous experiment: only 2-shortest path
solutions allow lower costs than heuristic RPSP solutions, when F is in the

26

order of 107%, but especially in these cases the relative violation of the failure
probability constraint is large. 3-shortest path solutions are often impossible
to find in sparse graphs (y = 0.25); when they exist, the failure probability
constraint is always met also in the 3-shortest path solutions, but their cost is
much larger that the heuristic RPSP ones.

6. Conclusions

The first message we get from our theoretical analysis is the following: there
is no free lunch for refining the handling of probabilistic components in net-
work problems like the RPSP. In fact, as soon as constraints explicitly handling
failure probabilities are included in optimization models, even feasibility check-
ing problems become NP-Complete. We showed that if no assumption on the
topology of the network is made, the RPSP can be solved in polynomial time
only for cases where the target failure probability is either 0 or 1. Although
these are very specific cases, their understanding helps in the design of RPSP
algorithms.

Fortunately, mathematical programming offers tools to cope with such an
additional complexity, at least from a computational point of view: we designed
algorithms which are able to consistently provide proven optimal solutions on
networks of realistic size (i.e. 89% of instances with graphs of 20 nodes, and
90% of those with 30 nodes). The expected computing effort seems to be more
correlated to the failure probability target value than to network size. The key
ingredients in our case are two: an effective way of checking feasibility (i.e. a
careful use of Bayesian Networks), and an effective integer relaxation scheme.
In fact, these ingredients nicely fit in a branch-and-price framework.

Finally, we report that indeed models like the RPSP require additional design
and computational effort, but their use strongly pay off with respect to standard
path protection mechanisms from the literature. Scalability remains a key factor
in favor of standard path protection schemes: networks with thousands of nodes
appear out of reach for our methods. However, our algorithms prove to behave
well also when used as heuristics by strongly limiting the computing time. At
the same time, in all our experiments the RPSP solutions were either much
more cost effective than competitors, or even the only way of achieving failure
probability targets.

Acknowledgments

Partially funded by Universita degli Studi di Milano, "Piano Sostegno alla
Ricerca 2016-2020" and Regione Lombardia, grant agreement n. E97F 17000000009,
Project AD-COM. The authors are grateful to three anonymous reviewers,
whose insightful comments helped to improve the paper.

27

References

[1]

2]

13]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

M. Pioro, D. Medhi, Routing, Flow, and Capacity Design in Communica-
tion and Computer Networks, The Morgan Kaufmann Series in Networking,
Elsevier Science, 2004.

H. Kerivin, A. R. Mahjoub, Design of survivable networks: A survey, Net-
works 46 (1) (2005) 1-21.

Z.-J. M. Shen, R. L. Zhan, J. Zhang, The reliable facility location prob-
lem: Formulations, heuristics, and approximation algorithms, INFORMS
Journal on Computing 23 (3) (2011) 470-482.

O. Berman, D. Krass, M. B. C. Menezes, Facility reliability issues in net-
work p-median problems: Strategic centralization and co-location effects,
Operations Research 55 (2) (2007) 332-350.

J. Puerto, F. Ricca, A. Scozzari, Reliability problems in multiple path-
shaped facility location on networks, Discrete Optimization 12 (2014) 61 —
72.

L. V. Snyder, M. S. Daskin, Reliability models for facility location: The
expected failure cost case, Transportation Science 39 (3) (2005) 400-416.

J. Cheng, A. Lisser, Maximum probability shortest path problem, Discrete
Applied Mathematics 192 (2015) 40 — 48, 11th Cologne/Twente Workshop
on Graphs and Combinatorial Optimization (CTW 2012).

M. Redmond, A. Campbell, J. Ehmke, The most reliable flight itinerary
problem, Networks 73 (3) (2019) 325-343, cited By 1.

A. Andreas, J. Smith, S. Kiigiikyavuz, Branch-and-price-and-cut algo-
rithms for solving the reliable h-paths problem, Journal of Global Opti-
mization 42 (2008) 443-466.

S. J. Koh, C. Y. Lee, A tabu search for the survivable fiber optic communi-
cation network design, Computers & Industrial Engineering 28 (4) (1995)
689 — 700.

F. Robledo, P. Romero, M. Saravia, On the interplay between topological
network design and diameter constrained reliability, in: 12th International
Conference on the Design of Reliable Communication Networks (DRCN),
2016.

N. Gonzalez-Montoro, R. Cherini, J. M. Finochietto, A multiple-link fail-
ures enumeration approach for availability analysis on partially disjoint
paths, in: 13th International Conference on the Design of Reliable Com-
munication Networks (DRCN), 2017.

A. Konak, A. E. Smith, Network Reliability Optimization, Springer US,
Boston, MA, 2006, pp. 735-760.

28

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Rong-Hong Jan, Fung-Jen Hwang, Sheng-Tzong Chen, Topological opti-
mization of a communication network subject to a reliability constraint,
IEEE Transactions on Reliability 42 (1) (1993) 63-70.

J. Barrera, H. Cancela, E. Moreno, Topological optimization of reliable net-
works under dependent failures, Operations Research Letters 43 (2) (2015)
132 - 136.

A. Preékopa, Stochastic Programming, Elsevier B.V., 2003, Ch. Probabilis-
tic Programming, pp. 267-351.

Y. Song, J. Luedtke, Branch-and-cut approaches for chance-constrained
formulations of reliable network design problems, Mathematical Program-
ming Computation 5 (2013) 397-432. doi:10.1007/s12532-013-0058-3.

E. Canale, H. Cancela, F. Robledo, P. Romero, P. Sartor, Diameter con-
strained reliability: Complexity, distinguished topologies and asymptotic
behavior, Networks 66 (4).

P. Weber, L. Jouffe, Complex system reliability modelling with dynamic
object oriented bayesian networks (doobn), Reliability Engineering & Sys-
tem Safety 91 (2) (2006) 149 — 162, selected Papers Presented at QUALITA
2003.

C. Gongzales, L. Torti, P.-H. Wuillemin, aGrUM: a Graphical Universal
Model framework, in: International Conference on Industrial Engineering,
Other Applications of Applied Intelligent Systems, Proceedings of the 30th
International Conference on Industrial Engineering, Other Applications of
Applied Intelligent Systems, Arras, France, 2017.

E. Boros, A. Scozzari, F. Tardella, P. Veneziani, Polynomially computable
bounds for the probability of the union of events, Mathematics of Opera-
tions Research 39 (4) (2014) 1311-1329.

T. Achterberg, Scip: solving constraint integer programs, Mathematical
Programming Computation 1 (1) (2009) 1-41.

CPLEX development team, IBM Ilog CPLEX Optimization Studio:
CPLEX User’s Manual - Version 12 Release 6, Tech. rep., IBM corp. (2011).

M. Casazza, A. Ceselli, A. Taverna, Mathematical formulations for the
optimal design of resilient shortest paths, in: New Trends in Emerging
Complex Real Life Problems, Proceedings of AIRO 2018, 2018.

A. Ceselli, G. Righini, E. Tresoldi, Combined location and routing problems
for drug distribution, Discrete Applied Mathematics (2014) 130-145.

29

r=(s1,2,3,5,6,1)

1—2—3—4—1t 1—2—3 —4—1t
~ ~ ~N
s s 5 —6 —1t

~N ~N
3—6—t 3—6—t

Figure 2: Example of path insertion into the prefix tree: a new path r = (s,1,2,3,5,6,t) is
inserted; the longest subpath of r found in the tree is (1,2, 3), and the rest of the path is
attached as a new branch.

Appendix A

In this section we detail the implementation of the prefix tree that we use
to efliciently retrieve the values of M, values during pricing.

A similar technique is used in [25]. The prefix tree is defined as T# =
(N AR) where N is its set of nodes of the tree and A% is its set of the arcs.

init The tree starts with N© = {s} and A% = 0.

insert When a column encoding a new path r = (01, 09,...,0%) is generated,
the tree is enlarged: first, we search for the longest branch in the tree T,
which encodes a subpath (o1, ...,0,,) of r; such a branch may also be the
single root node (i.e. m = 1). Then a sequence of nodes (op41,--.,0%)
is created and appended to the branch of the tree. Each insert requires
linear time in k.

An example of how the insertion is performed is depicted in Figure 2. It
follows that our tree has a root node that is the source node s, while each
leaf is a copy of the destination node t.

update A path r € R corresponds to each leaf. At each RMP optimization,
such a leaf is labeled with value M,.. Each other node of the tree is labeled
recursively with the minimum label among its direct children. This is done
bottom up from leaves to the root. Each update requires linear time in
NE,

query Each M, value can be computed during dominance checks by visiting
T, Each query requires linear time in the length of p.

30

Appendix B

In this section we detail the proof of correctness for branching on arcs. Let
us assume that and arc @ = (4, 7) has a positive profit, we may have four distinct
cases:

e both partial paths p and p’ has visited j: in this case both paths either
collected or not the profit, but both paths cannot collect it in the future;

e [visited j but I’ did not: [cannot collect the profit but I’ might collect it
if it has not visited i yet;

e both partial paths have not visited j yet: if both did not visit ¢, both can
collect the profit. If both visited 4, then they both can collect the profit
only if ¢ is the last node of the partial path. If only [visited ¢, then [
cannot collect the profit.

We remark that any other combination where I’ has visited a node that | does
not it is excluded by our condition.

31

