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In the context of functional determinants of cardiovascular risk, a simple excess in

body weight, as indexed by a rise in body mass index (BMI), plays a significant,

well-recognized causal role. Conversely, BMI reductions toward normal result in an

improvement of risk. Obesity is associated with impaired cardiac autonomic regulation

(CAR), through either vagal or sympathetic mechanisms, which could favor the tendency

to foster hypertension. Here we study the changing properties of the relationship

between increasing grades of BMI and CAR in a population of 756 healthy subjects

(age 35.9 ± 12.41 years, 37.4% males, 21.6% overweight, and 16% obese). Evaluation

of CAR is based on autoregressive spectral analysis of short-term RR interval and

systolic arterial pressure variability, from which a multitude of indices, treated overall

as autonomic nervous system (ANS) proxies, is derived. Inspection of the study

hypothesis that elevated BMI conditions associate significantly with alterations of

CAR, independently of age and gender, is carried out using a mix of statistical

transformations, exploratory factor analysis, non-parametric testing procedures, and

graphical tools particularly well suited to address alterations of CAR as a disturbed

process. In particular, to remove the effects of the inter-individual variability, deriving

from components like age, gender or ethnicity, and to reduce the number of ANS

proxies, we set up six age-and-gender-adjusted CAR indicators, corresponding to four

ANS latent domains (oscillatory, amplitude, pressure, and pulse), cardiac baroreflex

regulation, and autonomic nervous system index (ANSI). An impairment of the CAR

indicators is overall evident in the overweight group and more marked in the obesity

group. Empirical evidence is strong (9/9 concordant non-parametric test results) for

pressure domain, almost strong (8/9) for ANSI, medium-strong for baroreflex (6/9) and

pulse (7/9), weak for oscillatory (2/9) and amplitude (1/9) domains. In addition, the

distribution of the CAR indicators corresponding to pressure, pulse, baroreflex, and
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ANSI is skewed toward the unfavorable abscissa extremity, particularly in the obese

group. The significant association of increased BMI with progressive impairments of

CAR regarding specifically the pressure domain and the overall ANS performance might

underscore the strong hypertensive tendency observed in obesity.

Keywords: sympathetic-parasympathetic balance, percentile rank transformation, life style, exploratory factor

analysis, cardiovascular risk, non-parametric statistical inference

INTRODUCTION

Non-communicable diseases have become the primary cause of
health concern worldwide, accounting for about 63% of annual
deaths (Arena et al., 2015). In 2017, behavioral, environmental
and occupational, and metabolic risks accounted for 34 million
deaths (GBD 2017 Risk Factor Collaborators, 2018). In this
context, risk factor ranks resulted: high systolic arterial pressure,
smoking, high fasting plasma glucose, and high body mass
index (BMI), which alone was responsible for 4.7 million
deaths and 148 million DALYs (Disability-Adjusted Life Years).
BMI was also among the risks that increased most in the
last decade. The rise in metabolic risk might also lead to
growing cardiovascular mortality, coincidentally calling for more
successful risk reduction strategies (GBD 2019 Risk Factors
Collaborators, 2020). It follows that our current delivery model is
poorly constructed to manage chronic disease. It may be best to
base our approach on patient-centered technologies (Milani et al.,
2004; Lucini et al., 2020) and rely on simple lifestyle interventions
such as healthy diet and physical exercise (Fock and Khoo, 2013).

Considering that obesity is associated with increases in
all-cause and cardiovascular mortality (Jensen et al., 2014),
it is advisable to investigate in every patient all possible
concomitant risk factors (hypertension, dyslipidemia, diabetes,
smoking, sleep apnea, etc.) and treat them aggressively. It is
also recommended to investigate lifestyle and physical activity
history to define a comprehensive intervention, inclusive of a
reduced-calorie diet and increased physical activity. Among the
multiple physiopathologic components of obesity inflammation
(Vinik et al., 2013), hyperinsulinemia (Emdin et al., 2001),
and adipokines (Smith and Minson, 2012) contribute to the
development of autonomic dysfunction, variously combining
sympathetic over-activity (Grassi et al., 2019) and baroreflex
impairment (Skrapari et al., 2007).

The obesity-linked autonomic dysfunction (Costa et al.,
2019) may also present various degrees of cardiac autonomic
neuropathy (CAN) (Williams et al., 2019), a potentially serious,
partly reversible, complication of metabolic conditions that at
the extremes of diabetes elevates the risk of death to 3.6 (Vinik
and Ziegler, 2007). Early screening for autonomic dysfunction
may be clinically advantageous and may be performed using
multiple techniques, ranging from the moderately invasive
electroneurographic recordings of efferent muscle sympathetic
activity (Grassi et al., 1998) to the non-invasive analysis of
heart rate variability (HRV) (Katsilambros et al., 2011; Kokkinos
et al., 2013) and cardiac baroreflex (Skrapari et al., 2007).
This method may also be employed to assess reversibility of
autonomic impairment with weight loss (Costa et al., 2019)

or physical activity (Voulgari et al., 2013). The complexity of
the role of the autonomic nervous system (ANS) in obesity
has been recently described (Guarino et al., 2017) and the
usefulness of HRV analysis, particularly for early screening,
indicated (Williams et al., 2019). The combination of HRV and
baroreflex is a powerful tool to assess cardiac risk in various
conditions ranging from myocardial infarction (La Rovere et al.,
2001) to hypertension (Pagani et al., 1988) or heart failure
(Chattipakorn et al., 2007).

Spectral analysis of RR interval variability and cardiac
baroreflex (Zilliox and Russell, 2020) could, in particular, furnish
a convenient method to assess early phenotypic alterations of
cardiac autonomic regulation (CAR), especially the vagal arm
(Zygmunt and Stanczyk, 2010), supported by a medium-strong
correlation between cardiac baroreflex and several RR variability-
derived autonomic indices (Solaro et al., 2019). Proponents
of this computational approach (e.g., Pagani, 2000; Bernardi
and Bianchi, 2016) pointed out that this method was simpler,
less demanding of patients, better streamlined, and ideal for
clinical protocols requesting repeated assessments also in real-life
conditions, or at a distance.

Data collection and interpretation of analysis represent,
therefore, the major steps of autonomic assessment, with a
goal of supporting clinical decisions based on these novel
patient-oriented biomarkers (Kerkhof et al., 2019). However, it
must be noted that HRV provides, as in other clinical fields,
like, e.g., cardiology or radiology, measured and calculated
quantities, which are considered unequivocally interpretable
against reference values (hence ongoing debates). Notably,
measured variables are expressed in physical units (ms, kg,
m, etc.) while computed (or transformed) variables, often
obtained as ratios (e.g., normalized units or LF/HF ratio),
assume “pure” numbers having no measurement unit. Focusing
on single numbers corresponds to a loss of information.
However, the exploitation of their additive value allows
combining congruent measures: hidden physiological meaning
might become manifest. Transposing this problem into a context
where a multitude of HRV and cardiac baroreflex indices,
each with its own unit measurement or not, is available,
necessarily requires to extract a limited set of statistical indicators
(Lucini et al., 2018) derived, e.g., from multivariate statistical
analysis (Jobson, 1991). Statistical indicators, reducing data
dimensionality, allow more straightforward interpretations of
complex phenomena than multiple separate indices. They must
nonetheless provide indications that could be of immediate
clinical or prevention value (Goossens, 2017) and allow analyses
to be carried out as best as possible ceteris paribus, e.g., for
comparative purposes.
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Consequently, the challenge was to set up statistical indicators
capable, at the same time, of reducing the complexity of a
set of multiple indices, being immediately interpretable in the
study field, and being free of individual characteristics that, if
not controlled for, could bias analysis conclusions or severely
affect comparisons among groups. A possible solution can be
pursued by using a mix of statistical methods in an integrated
manner, in particular statistical transformations and multivariate
statistical analysis techniques (Jobson, 1991). In this specific
context, we developed a methodology to cope with the problem
of detecting and synthesizing specific traits of CAR. The starting
set of variables was given by the multitude of indices obtained
by the autoregressive spectral analysis of short-term RR interval
and systolic arterial pressure variability (Pagani et al., 1986) that
we treated overall as ANS proxies (Lucini et al., 2018; Solaro
et al., 2019). These proxies were collected on a population of 756
otherwise healthy subjects together with personal data and BMI.

Subsequently, we transformed the ANS proxies to free
them of age and gender bias and obtained so-called adjusted
ANS proxies (Solaro et al., 2017, 2019). Next, to reduce
data dimensionality, we applied the exploratory factor analysis
(EFA) (Thompson, 2004), which is one of the most popular
multivariate statistical analysis methods (Jobson, 1991). As
the main advantage, EFA allows the construction of a small
number of uncorrelated common latent factors from the original
set of the interrelated variables that may reproduce a good
percentage of the observed data variability. In this sense, latent
factors can be regarded as statistical indicators. Nonetheless,
the main disadvantage is that latent factor values (i.e., factor
scores) might not admit straight practical interpretations,
even if latent factors link with a precise meaning to the
original variables. To overcome this drawback, we applied
the percentile rank transformation (Conover and Iman, 1981;
Murphy and Davidshofer, 2004) to latent factors in order to
obtain synthetic indicators with values ranging from 0 to 100,
where, depending on the meaning assigned to each factor, values
at the extremes of the range can identify either the better or the
worst condition.

Once we composed the set of different CAR indicators, we
inspected our study hypothesis that elevated BMI conditions
associate significantly with CAR alterations (Molfino et al.,
2009) net of age and gender effects. At the same time,
we employed the autonomic nervous system indicator
(ANSI) introduced by Sala et al. (2017) as a composite
indicator of CAR, which is free of age and gender effects by
construction. ANSI aims to substitute a multitude of indices
in describing the function of a multidimensional control
network (Malliani et al., 1991; Fukuda et al., 2015), with
the concerted goal of supporting decision-makers, such as
physicians and trainers. In a similar way to the other EFA-
based indicators, ANSI ranges from 0 to 100 (the higher,
the better), so that it immediately furnishes an indicator of
the efficiency of CAR (Sala et al., 2017). Then, to inspect
our study hypothesis validity, we relied on several different
non-parametric inferential testing procedures (Bowman and
Azzalini, 1997; Hollander et al., 2014) in order to draw the
most reliable inference possible. In particular, we assessed

whether there exist significant differences concerning the
CAR indicators in the comparisons among the considered
BMI groups (i.e., normoweight, overweight, and obese).
Parenthetically, we also tested the hypothesis that ANSI might
prove useful to assess the impairment of CAR occurring
with initial, simple obesity (Guarino et al., 2017) as defined
by elevated BMI, independently of age and gender. Besides,
by testing the exchange of information (Haken, 1983)
between ANSI and the cardiac baroreflex, we provided an
additional criterion to evaluate the potential value of this novel
monovariate proxy of CAR.

MATERIALS AND METHODS

This retrospective, proof of concept study is based on
data from the short-term HRV anonymized database of the
Exercise Medicine Clinic of the University of Milan that is
part of an ongoing project on the feasibility of HRV as
an autonomic metric in the management of cardiovascular
prevention in outpatients (approved by the Ethical Committee
of the University of Milano) (Lucini and Pagani, 2012). We
employed data from healthy individuals (n = 756 in all,
see Table 1) with 283 males and 473 females, and mean
age 35.9 ± 12.41 years, with BMI ranging from normal to
elevated (overweight and obese). Health status was defined
based on their family physician judgment or by clinical
history and physical examination. Exclusion criteria comprised:
age < 17 years; acute illness within the past 3 months;
chronic conditions, particularly those known to alter autonomic
regulation (such as diabetes or hypertension). Considering recent
guidelines (Jensen et al., 2014), we divided the total population
into three different groups according to BMI (Table 1):
normoweight group (NW) (BMI < 25 Kg/m2), overweight
group (OW) (25 ≤ BMI < 30 Kg/m2), and obesity group
(OB) (BMI ≥ 30 Kg/m2). The study conforms to the standards
set by the declaration of Helsinki on investigations regarding
human subjects. All participants at the time of the Surgery
visit had signed an agreement to use anonymized data for
population studies.

Cardiac Autonomic Regulation
Assessment of CAR is based on autoregressive spectral
analysis (methodological details in the Supplementary
Material) of short-term RR and systolic arterial pressure
(SAP) variability [as recently summarized in Solaro et al.
(2019)]. Briefly, a single-lead ECG (CM5), respiratory activity
(piezoelectric belt), and SAP (plethysmographic approach –
Finometer Midi, FMS) are continuously recorded over a 5–
7 min period at rest and subsequently for additional 5 min,
while standing up unaided. The active stand condition
is thought to induce a physiological shift of the ANS
sympathetic-parasympathetic balance toward a sympathetic
predominance mostly due to baroreceptor unloading and
depotentiation of the negative feedback baroreflex (Pagani
et al., 1986). A series of cardiac autonomic proxies are
derived using HeartScope (AMPS, NY, United States), an
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TABLE 1 | Frequency and percentage distributions of the BMI groups along with descriptive statistics of BMI, age, and gender within the BMI groups.

BMI group Definition Count Percentage BMI mean ± SD Age (years) mean ± SD n Male / n Female

Normoweight (NW) Subjects with BMI < 25 Kg/m2 472 62.4% 21.33 ± 2.10 32.85 ± 11.68 163 / 309

Overweight (OW) Subjects with 25 ≤ BMI < 30 Kg/m2 163 21.6% 26.91 ± 1.36 40.03 ± 12.17 89 / 74

Obese (OB) Subjects with BMI ≥ 30 Kg/m2 121 16.0% 38.28 ± 7.81 42.26 ± 11.49 31 / 90

Total 756 100.0% 25.24 ± 7.09 35.90 ± 12.41 283 / 473

TABLE 2 | Definition of the variables (ANS proxies) utilized for the study(a).

Vars. Units Definition

HR beat/min Heart Rate, sinus rhythm from single trace ECG

RR Mean ms Average of RR interval from tachogram, discretization to 0.1 ms, sampling frequency 300 Hz or more. If slower, use

parabolic interpolation to detect peak R wave

RR TP ms2 RR variance from tachogram

RR LFa ms2 Absolute power(a) of Low Frequency (LF) spectral component of RR variability (V) (frequency range 0.03–0.14 Hz)

RR HFa ms2 Absolute power(a) of High Frequency (HF) spectral component of RRV (frequency range 0.14–0.45)

RR LFnu nu Normalized power (nu) of Low Frequency (LF) component of RRV

RR HFnu nu Normalized power (nu) of High Frequency (HF) component of RRV

RR LF/HF — Ratio between absolute values of LF and HF

RR LFHz Hz Center frequency of LF oscillatory component, considering extremes of 0.03–0.14 Hz

RR HFHz Hz Center frequency of HF component, normally synchronous and highly coherent (>0.5) with the respiratory series

(respirogram), providing a measure of respiratory rate

�RR LFnu nu Difference in LF power in nu between stand and rest

α index ms/mmHg Frequency domain measure of baroreflex gain

SAP mmHg Systolic arterial pressure by sphygmomanometer

DAP mmHg Diastolic arterial pressure by sphygmomanometer

SAP Mean mmHg Average of systogram (i.e. systolic arterial pressure variability by Finometer)

SAP LFa mmHg2 Absolute power of LF component of systogram

(a)Modified from Pagani et al. (1986, 1988), Lucini et al. (2018), Solaro et al. (2019). Notice that HRV (heart rate variability) is commonly and interchangeably used with

RRV (RR interval variability). This latter term would be more appropriate when dealing indeed with RR interval metrics. However, the more common term HRV is also used

in the present study to indicate the general topic of variability of inter-beats intervals, for simplicity.

RR variability autoregressive spectral analysis tool (Table 2;
Badilini et al., 2005).

Statistics
The methodology we developed for setting up synthetic
indicators was employed to detect and synthesize specific CAR
traits controlling for age and gender effects. These age-and-
gender-adjusted statistical indicators were then used as primary
references to study our hypothesis that the transition from
normoweight to obesity according to BMI associates significantly
with alterations in the overall ANS state, as reflected by the ANS
proxies. Specifically, the reference point in all the analyses was
the n = 756 study participants’ subdivision in the three BMI
groups defined in Table 1. In particular, the majority of subjects
(62.4%) fell into the NW group (with mean BMI 21.33 and mean
age 32.85 years), while 21.6% into the OW group (mean BMI
26.91 and mean age 40.03 years), and 16% into the OB group
(mean BMI 38.28 and mean age 42.26 years). Regarding the ANS
individual state description, we relied on the 16 ANS proxies
(HRV and blood pressure measures) listed in Table 2, with a
particular focus put on the α index (Lucini et al., 2002).

Regarding the need to set up and work with adjusted statistical
indicators, we had to cope with twomain issues while meeting the

study objective. First, similarly to what already argued in previous
works (Solaro et al., 2017, 2019; Lucini et al., 2018), statistical
analyses concerning the relationship between the ANS state and
the BMI condition required to be carried out under the same
combinations of gender and classes of age, i.e., as far as possible
ceteris paribus. However, stratifying subjects into gender-by-age
combinations was not appropriate here because it would have
implied forming subgroups too small in size (see Supplementary
Table 1 in the Supplementary Material reporting the within-
BMI-groups distributions of the 756 subjects in gender-by-age
combinations. E.g., there are only three obese males in the age
class 17–30 years). A second issue was the need to take into
account the multicollinearity among the ANS proxies and then
reduce their number according to some optimal criteria and with
a limited loss of information. To overcome these drawbacks,
we applied several statistical transformations (methodological
details in Figure 1) addressed to:

(1) adjusting the ANS proxies for gender and age effects to
obtain so-called adjusted ANS proxies. The procedure we
used, already applied in Lucini et al. (2018) and Solaro et al.
(2019), is the transformation 1 described in Figure 1.
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FIGURE 1 | Transformations applied to the original variables to set up CAR indicators.

(2) setting up a limited number of indicators from the original
set of the ANS proxies such that they were free of gender
and age effects by construction. To this aim, we relied
on two alternative procedures: (a) we applied EFA (with
the maximum likelihood extraction method and varimax
rotation (Thompson, 2004)) to the set of the 16 adjusted
ANS proxies to produce a smaller number of uncorrelated
variables that were by nature net of gender and age
effects. We kept in analysis the first q < 16 common
latent factors such that they reproduced each at least
10% of the total variance and at least 15% of the total
communality. Then, we interpreted the meaning of the
extracted common factors using the factor loadings, i.e., the
correlation coefficients between the factors and the adjusted
ANS proxies, greater than, or equal to, 0.5 in absolute
value; (b) we constructed ANSI (Sala et al., 2017) using
the procedure described in the transformation 2, Figure 1.
ANSI is a composite indicator based on the three selected
HRV measures RR Mean, RR TP, and �RR LFnu, and
is free of gender and age effects by construction. One of
the main advantages is that ANSI, being set up by the
percentile rank transformation, ranges over the interval [0,
100], so that the information it carries with it is immediately
valuable from a clinical point of view. In particular, higher
percentiles correspond to better ANS conditions, while
lower percentiles indicate impaired ANS states;

(3) re-expressing a selected subset of variables of interest, i.e.,
the first q extracted common factors, BMI, and the α

index, in percentile ranks so that throughout the statistical
analyses, their performance could be compared directly to
ANSI (transformation 3, Figure 1). Regarding the common
factors, despite the meaning assigned to them by factor
loadings, their values (i.e., factor scores) might be of no
immediate practical interpretation (e.g., common factors,
having zero-mean by construction, assume both negative
and positive scores). The percentile rank transformation
helped overcome this drawback, translating factor scores
into percentiles and being interpreted more quickly in
clinical terms. We regarded the common latent factors
thus transformed as real ANS indicators. On the other
hand, we assigned ANSI-like properties to BMI and the
α index (i.e., gender-and-age-effects adjustment and range
in the interval [0, 100]) by applying the percentile rank
transformation to the corresponding adjusted variables
obtained by transformation 1 in Figure 1. We denoted
BMI and the α index thus transformed as “BMIaPRT” and
“αaPRT index” (where subscript “aPRT” stands for “adjusted
Percentile Rank Transformation), respectively.

The set consisting of the q ANS indicators, ANSI, and the
αaPRT index thus obtained represented the actual set of variables
to which we addressed statistical analyses for inspecting their
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relationship with the BMI categorization into the three groups
NW, OW, and OB. For completeness, we also involved BMI
in several analyses as a continuous variable. That was why we
transformed BMI to assign it ANSI-like properties and obtained
the “BMIaPRT” version of BMI.

Statistical analyses were carried out substantially according
to a data-driven instead of a model-based approach. At a
preliminary, exploratory stage, we studied the mean dependency
of each original ANS proxy on the BMI groups through testing
procedures, i.e., the usual univariate ANOVA (Jobson, 1991)
and the Kruskal–Wallis (KW) non-parametric test (Hollander
et al., 2014). We also examined the correlation coefficients of
BMI and the ANS proxies and provided the standard significance
test for null correlation. After that, we focused extensively on
the relationship of the q ANS indicators, the αaPRT index, and
ANSI [denoted in brief as the set of the (q + 2) “synthetic
indicators”] with BMI. The main goal was to infer, net of age and
gender, whether the transition from a normoweight to an obesity
condition combined with significant changes, as captured by the
synthetic indicators, in the ANS state. To this aim, we applied the
four analysis steps described in Figure 2 and addressed to study
the effects of the BMI categorization in NW, OW, and OB groups
on the distribution of the synthetic indicators representing
various CAR traits. The main objective of the four analysis
steps, applied in the order reported in Figure 2, was to study,
by increasing the complexity of the approaches and without

a priori conjectures on the data distribution, the relationship
between BMI and the synthetic indicators through different non-
parametric statistical methods. In particular, by the Jonckheere–
Terpstra (JT) (Hollander et al., 2014) and Hettmansperger–
Norton (HN) tests (Hettmansperger and Norton, 1987) for
ordered alternatives (Step d, Figure 2), we intended to assess
whether the transition from normoweight to obesity combines
with a worsening in the overall ANS condition as captured by the
set of synthetic indicators. Then, as the final stage of the analyses,
we evaluated the non-parametric test result consistency degree
to draw the most reliable possible inference toward our study
conjecture. We regarded the observed changes in the ANS states,
as captured by the synthetic indicators, as fairly strongly linked
to the BMI condition transition if the KW, median, BA, JT, and
HN test results (Figure 2) were highly consistent. Specifically, we
distinguished six strength levels of the overall empirical evidence
(from “insignificant” to “strong”; all the definitions are in the
legend below Figure 6) according to the consistency degree of
the test results and regarded our objective as met in the presence
of at least a “medium” level of consistency of the test results.

We performed all the statistical analyses with the R software,
version 3.6.1 (R Core Team, 2019), together with the R
contributed packages: “corrplot” for the correlation plot in
Figure 3 (Wei and Simko, 2017); “DescTools” for the non-
parametric bootstrap confidence intervals of the medians and
the JT test (Signorell et al., 2019); “ggplot2” for the notched box

FIGURE 2 | Steps of data-driven statistical analyses performed to study the effects of the BMI categorization in NW, OW, and OB groups on the synthetic indicators.
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FIGURE 3 | Correlation plot of BMI and the ANS proxies computed over the whole set of subjects. In the lower triangular part of the matrix, displayed values are the

Pearson correlation coefficients r computed for every pair of variables
(
Xj, Xt

)
, j, t = 1, ..., 17, and j �= t. In each cell, background gray shades denote the empirical

significance level of each test for null correlation, i.e., H0: ρ (
Xj, Xt

) = 0 vs. H1: ρ (
Xj, Xt

) �= 0:

In the upper triangular part, these same correlation coefficients are represented as ellipses including the empirical significance level code internally: ∗∗∗ = P ≤ 0.001,
∗∗ = 0.001 < P ≤ 0.01, ∗ = 0.01 < P ≤ 0.05.

plots in Figure 4 (Wickham, 2016); “pseudorank” for the HN test
(Happ et al., 2018); “psych” for factor analysis (Revelle, 2018);
“sm” for the smoothed empirical density curves in Figure 5 and
the BA test (Bowman and Azzalini, 2018).

RESULTS

Descriptive data concerning the 16 ANS proxies listed in Table 2
are presented in Table 3 in the form of total and within-BMI-
groups means and standard deviations. Table 3 highlights the
presence of quite expected monotonic trends of the within-BMI-
groups means as the groups vary from NW to OB. In particular,
the OB group is characterized by the highest means of HR, RR
LFnu, RR LF/HF, RR HFHz, SAP, DAP, and SAP Mean, and

the lowest means of RR Mean, RR TP, RR LFa, RR HFa, RR
HFnu, RR LFHz, �RR LFnu, and the α index. The NW group
has the opposite characteristics, while the OW group represents
an intermediate condition (excepted SAP LFa, whose mean is
the highest). Overall, the ANOVA and KW tests give empirical
evidence of BMI-groups effects on the population ANS proxy
means, except for SAP LFa. For instance, by both ANOVA and
KW tests, at least two BMI-groups effects on the α index result
significantly different (P < 0.001). The other test results can
be read similarly.

Figure 3 encloses all the analyses regarding the correlation
between BMI and the ANS proxies. Two remarks are worth
making. First, by various intensity and sign, BMI correlates
significantly with all the ANS proxies (first row and first column
in Figure 3). The highest correlation coefficients (in absolute
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FIGURE 4 | Notched box plots of the distributions of the four ANS indicators, the αaPRT index, and ANSI within the BMI groups. Notches around the sample

medians medg(Y) of the synthetic indicator Y within the BMI groups: g = normoweight (NW), overweight (OW), obese (OB), are given by the formula:

medg (Y) ± 1.58IQRg(Y)/
√

ng, where IQRg (Y) = Q3,g (Y) − Q1,g (Y) is the interquartile difference for Y within group g with sample size ng, and Q1,g and Q3,g

are the first and third quartiles, respectively (McGill et al., 1978; Chambers et al., 1983; Wickham, 2016). Notches providing an approximate 95%-confidence interval

for the corresponding population medians can be used as a convenient graphical tool for comparing pairs of groups. If the notches of the medians of two groups do

not overlap, then there may be systematic differences in the population. Notches depicted in the above box plots are not, however, adjusted for simultaneous

comparisons of all the three groups together (McGill et al., 1978; Chambers et al., 1983). Only pairwise comparisons are allowed.

value) concerning BMI are observed, positively, with the blood
pressure measures SAP, DAP, and SAP Mean (0.355, 0.275,
and 0.259, respectively, with P < 0.001), and the Heart Rate
measure (0.257, P < 0.001), and negatively with �RR LFnu
(−0.295, P < 0.001) and the α index (−0.294, P < 0.001).
This finding further suggests meaningful connections between
the BMI conditions and at least a subset of the ANS proxies.
Second, as expected, the ANS proxies also are inter-correlated
by a very different intensity and sign. For instance, RR LFnu,
RR HFnu, and �RR LFnu correlate pairwise to a great extent.
The correlation coefficient of RR LFnu and RR HFnu is strongly
negative (−0.945, P < 0.001), as well as the correlation coefficient
of RR LFnu and �RR LFnu (−0.711, P < 0.001). However, the
correlation coefficient of RR HFnu and �RR LFnu is strongly
positive (0.683, P < 0.001). On the other hand, the α index and
RR LFHz are almost uncorrelated (0.048, P = 0.187), as are �RR
LFnu and RR LFa (−0.052, P = 0.155). That further supports the
need for reducing the numeric complexity of the whole set of the
intertwined ANS proxies.

Although valuable from an exploratory point of view, the
above analyses concerning the mean dependency of the ANS
proxies on the BMI groups and the correlation of BMI and the
ANS proxies suffer from a main critical point, i.e., they do not
control for the effects of the fundamental biological parameters
represented by age and gender. Accordingly, we have applied

transformation 1 described in Figure 1 to obtain the ANS proxies
adjusted for age and gender effects. By box plots of the within-
BMI-groups distributions of both the original and the adjusted
ANS proxies (see Supplementary Figure 1 in the Supplementary
Material), specific trends in the original ANS proxy distributions
can be observed with the varying from NW to OB, and the
adjusted ANS proxies share these trends. That is a crucial point
in that it suggests the presence of meaningful connections of the
various ANS states with the BMI conditions even when age and
gender effects are taken under control in the analyses.

The next step is constructing a limited number of indicators
from the original set of the ANS proxies to reduce the ANS
complexity and consider their reciprocal interrelations. We have
then applied EFA to the 16 adjusted ANS proxies to produce
latent factors that are naturally adjusted for age and gender
effects. Table 4 displays the factor loadings of the first q = 4
common latent factors, which are kept in the analysis because
they jointly satisfy the two criteria fixed a priori, i.e., reproducing
each at least 10% of the total variance and at least 15% of the total
communality. By Table 4, the first four common factors, which
reproduce together 60.62% of the total variance, reveal clusters of
multiple adjusted ANS proxies that link to a smaller number of
hidden components carrying a similar meaning.

In detail, factor 1 (nearly 19% of total variance and 32% of total
communality) relates to the normalized oscillatory information.
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FIGURE 5 | Panel plot of estimated density curves and non-parametric 95%-confidence regions for the pairwise equality of the distributions of the four ANS

indicators, the αaPRT index, and ANSI within the BMI groups. Density estimates are obtained through the kernel density method by Bowman and Azzalini (1997) in

order to have smoothed empirical density curves. In the above panels, the black curve refers to the normoweight group, the blue curve to the overweight group, and

the red curve to the obese group. The gray region is a reference band for the equality test of the curves in each pairwise comparison, i.e., H0: fg (y) = fg′ (y), for all

y, against: H1: fg (y) �= fg′ (y), for at least one y, where fg(y) and fg′ (y) are population density functions of the synthetic indicator Y within the BMI groups g and g′,
respectively, with g �= g′ = NW, OW, and OB. P-values of the Bowman and Azzalini (BA) test are reported in each panel. A Bonferroni correction is applied to the

nominal significance level α = 0.05 to preserve the significance level of the overall null hypothesis H0: fNW (y) = fOW (y) = fOB(y), for all y. Because there are

three distinct pairwise comparisons for each indicator Y , the significance level applied to each BA test is: α∗ = 0.05
3

= 0.017. P-values resulted as lower or equal

to α∗ are written in red.

Because it correlates (highly) positively with adjusted RR LFnu
and RR LF/HF, and negatively with adjusted RR HFnu and �RR
LFnu, it represents the oscillatory domain. Factor 2 (about 17% of
total variance and 28% of total communality) links to the absolute
amplitude domain for its high positive correlations with adjusted
RR TP, RR LFa, RR HFa, and the α index. Factor 3 (about 13%
of total variance and 21% of total communality) relates to the
pressure domain because of the high positive correlations with
adjusted SAP, DAP, and SAP Mean. Finally, factor 4 (nearly 12%
of total variance and 19% of total communality) expresses the
pulse variations given the high positive correlation with adjusted
HR and the high negative correlation with adjusted RR Mean. It
represents, therefore, the pulse domain.

After that, we have set up the six following synthetic indicators
for the arguments previously advanced. These indicators
represent the central reference in the subsequent analyses

addressed to prove our study conjecture. In detail, we have re-
expressed the extracted four common latent factors in terms of
real ANS indicators by applying transformation 3 in Figure 1. In
such a way, we have obtained the oscillatory indicator (OSC-ind)
from factor 1, the amplitude indicator (AMP-ind) from factor 2,
the pressure indicator (PRESS-ind) from factor 3, and the pulse
indicator (PUL-ind) from factor 4. We have also applied the same
transformation 3 to the α index and obtained the αaPRT index.
At the same time, we have set up ANSI (transformation 2 in
Figure 1) by using three selected ANS proxies, each linking to
a different factor (Table 4), i.e., �RR LFnu to factor 1 (oscillatory
domain), RR TP to factor 2 (amplitude domain), and RRMean to
factor 4 (pulse domain).

The last stage of the statistical analyses regards the in-depth
examination of the six synthetic indicators within the BMI groups
according to the four analysis steps in Figure 2. Specifically:
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FIGURE 6 | Synoptic figure summing up the results of the Kruskal–Wallis (KW) test, non-parametric bootstrap median test (Mt), Bowman–Azzalini (BA) test,

Jonckheere–Terpstra (JT), and Hettmansperger–Norton (HN) tests for ordered monotonic alternatives. Let θg be the effect of BMI group g on the synthetic indicator

Y , with g = NW, OW, OB. For each test, the null and alternative hypotheses along with symbols in the above cells, indicating either acceptance or rejection of the

null hypothesis, are: (1) KW test: H0: θNW = θOW = θOB (symbol=) against: H1: θg �= θg′ (symbol �=) for at least one pair of groups (g, g′), with g �= g′; (2) Median test

(Mt): see the legend below Table 6, with H0: Medg (Y) = Medg′ (Y) (symbol=) and H1: Medg (Y) �= Medg′ (Y) (symbol �=), with g �= g′; (3) BA test: see the legend

below Figure 5, with H0: fg (y) = fg′ (y) (symbol=) and H1: fg (y) �= fg′ (y) (symbol �=), with g �= g′; (4)JT and HN tests: H0: θNW = θOW = θOB (symbol=) against the

two ordered monotonic alternatives: (a) H1: θNW ≤ θOW ≤ θOB (symbol ↗), and: (b) H1: θNW ≥ θOW ≥ θOB (symbol ↘), with at least a strict inequality.
(∗)Background color shades for the significance level of each single test:

(∗∗)Strength of the overall empirical evidence: strong = all the tests are significant; almost strong = a test only is not significant; medium-strong = KW test is

significant and at least one median test plus one BA test are significant followed by both significant JT and HN tests; medium = at least one among KW, median, and

BA tests is significant followed by either significant JT or HN test (case not occurred here); weak = either KW/median/BA tests are significant or JT/HN tests are

significant; insignificant = no test is significant (case not occurred here).

TABLE 3 | Descriptive data (mean and standard deviation) of the ANS proxies within the BMI groups and over the whole set of subjects.

Normoweight Overweight Obese Total

Vars. Mean SD Mean SD Mean SD Mean SD

HR**,††,(a) 64 11 65 12 74 12 66 12

RR Mean**,†† 961.23 175.68 949.03 171.27 834.23 138.96 938.27 175.23

RR TP**,†† 3,515.62 3,423.43 2,662.22 2,900.60 1,669.39 2,073.07 3,036.12 3,205.15

RR LFa*,†† 968.07 1,014.66 902.03 1,611.30 539.37 818.82 885.22 1,153.01

RR HFa**,†† 1,254.08 1,975.67 652.07 1,114.50 398.13 789.31 987.28 1,710.25

RR LFnu**,†† 47.99 21.17 55.8 19.48 55.89 22.9 50.94 21.42

RR HFnu**,†† 45.3 21.23 37.66 19.43 36.25 21.79 42.2 21.3

RR LF/HF** 2.15 3.66 2.96 4.11 4.59 9.57 2.72 5.23

RR LFHz* 0.1 0.02 0.1 0.03 0.09 0.03 0.1 0.03

RR HFHz**,†† 0.26 0.06 0.26 0.06 0.3 0.08 0.27 0.07

�RR LFnu**,†† 32.24 19.44 24.31 21.8 13.98 25.51 27.61 22.06

a index**,†† 25.85 18.34 19.18 11.79 13.06 10.66 22.37 16.78

SAP**,†† 110.58 11.97 116.98 9.78 119.58 9.9 113.4 11.81

DAP**,†† 69.91 9.2 74.68 8.81 76.61 8.39 72.01 9.4

SAP Mean**,†† 114.41 14.28 120.17 13.13 121.86 12.18 116.84 14.07

SAP LFa 4.47 6.14 5.04 6.67 5.02 7.39 4.68 6.47

(a)HR means and standard deviations are rounded to integers. In every comparison among the within-BMI-groups means of each variable, a green cell denotes the

largest computed mean, while a gray cell denotes the smallest computed mean. Univariate parametric ANOVA (based on the F test) and Kruskal–Wallis test are alternative

inferential procedure used to verify, for each ANS proxy, the null hypothesis of equality of BMI-groups effects: H0: τNW = τOW = τOB against the alternative hypothesis:

H1: τg �= τg′ for at least one pair of groups (g, g′), with g �= g′ = normoweight (NW), overweight (OW), obese (OB), and where τg is the effect of group g. Empirical

significance level code in the univariate parametric ANOVA: ** = P ≤ 0.001, * = 0.01 < P ≤ 0.05. Empirical significance level code in the Kruskal–Wallis test: †† = P ≤ 0.001.
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TABLE 4 | Factor analysis with the maximum likelihood extraction method arrested to the first four factors: rotated factor loadings with the varimax method.

Adjusted ANS proxies Factor 1 Factor 2 Factor 3 Factor 4

Adj RR LFnu 0.977 � −0.079 0.087 0.075

Adj RR HFnu −0.940 � 0.076 −0.096 −0.115

Adj RR LF/HF 0.546 � −0.032 0.093 0.155

Adj �RR LFnu −0.707 � 0.083 −0.123 −0.067

Adj RR TP −0.119 0.985 � −0.015 −0.106

Adj RR LFa 0.256 0.726 � 0.010 −0.123

Adj RR HFa −0.364 0.794 � −0.002 −0.020

Adj α index −0.148 0.561 � −0.236 −0.294

Adj SAP 0.049 −0.058 0.948 � −0.018

Adj DAP 0.111 −0.088 0.629 � 0.018

Adj SAP Mean 0.046 −0.043 0.744 � −0.019

Adj HR 0.262 −0.285 0.172 0.903 �
Adj RR Mean −0.251 0.285 −0.146 −0.882 �
Adj RR LFHz −0.059 0.077 −0.112 0.224

Adj RR HFHz 0.203 −0.125 −0.045 0.267

Adj SAP LFa 0.173 0.116 0.212 0.032

% of total variance 19.33% 16.71% 12.85% 11.73%

cumulative % of total variance 19.33% 36.04% 48.89% 60.62%

% of total communality 31.89% 27.56% 21.20% 19.34%

cumulative % of total communality 31.89% 59.46% 80.66% 100.00%

Total communality (i.e., total reproduced variance) = 9.699, total variance = 16, percentage of total variance explained = 60.62%. Printed values are correlation coefficients

between the adjusted ANS proxies and the first q = 4 common latent factors. Black lozenges flag correlation coefficients greater than, or equal to, 0.5 in absolute value.

Interpretation underlying the first four factors: Factor 1 = oscillatory domain (variables colored in lilac), Factor 2 = amplitude domain (variables in pink), Factor 3 = pressure

domain (variables in green), Factor 4 = pulse domain (variables in blue).

TABLE 5 | Correlation coefficients of BMIaPRT , the αaPRT index, and ANSI with the four ANS indicators, and p-values of the tests for null correlation.

Indicators OSC-ind AMP-ind PRESS-ind PUL-ind αaPRT index ANSI

BMIaPRT −0.071

P = 0.050*

−0.154

P < 0.001***

0.293

P < 0.001***

0.149

P < 0.001***

−0.252

P < 0.001***

−0.279

P < 0.001***

OSC-ind AMP-ind PRESS-ind PUL-ind BMIaPRT ANSI

αaPRT index 0.178

P < 0.001***

0.580

P < 0.001***

−0.267

P < 0.001***

−0.357

P < 0.001***

−0.252

P < 0.001***

0.646

P < 0.001***

OSC-ind AMP-ind PRESS-ind PUL-ind BMIaPRT αaPRT index

ANSI 0.459

P < 0.001***

0.555

P < 0.001***

−0.150

P < 0.001***

−0.565

P < 0.001***

−0.279

P < 0.001***

0.646

P < 0.001***

Meaning of the labels of the four ANS indicators: OSC-ind = oscillatory indicator (from factor 1); AMP-ind = amplitude indicator (from factor 2); PRESS-ind = pressure

indicator (from factor 3); PUL-ind = pulse indicator (from factor 4). Because the synthetic indicators are expressed as percentile scores, Pearson correlation coefficients

coincide with Spearman correlation coefficients for rank variables. Correlation coefficients between the indicators generated by factor analysis, i.e., OSC-ind, AMP-ind,

PRESS-ind, and PUL-ind, are not displayed because these indicators are uncorrelated by construction (in the same way as the original factors, Table 4). Significance

codes of the test for the null hypothesis H0: ρ (
Yj, Yt

) = 0 against H1: ρ (
Yj, Yt

) �= 0, with j �= t: *** = P ≤ 0.001, ** = 0.001 < P ≤ 0.01, * = 0.01 < P ≤ 0.05. Test

statistic is given by the Spearman statistic with a Student t asymptotic distribution.

Step a: Table 5 reports the correlation coefficients of the
six synthetic indicators in addition to BMIaPRT , i.e., BMI re-
expressed according to transformation 3 in Figure 1. Several
remarks are worth making. First, all the correlation coefficients
result as significant. Second, BMIaPRT correlates moderately and
positively with PRESS-ind (0.293, P < 0.001), and moderately
and negatively with the αaPRT index (−0.252, P < 0.001) and
ANSI (−0.279, P < 0.001), [note in particular that the correlation
coefficient between the original BMI and α index is −0.294,
P < 0.001, (Figure 3)]. That evidences that, net of age and

gender, higher BMI values tend to connect to higher values
of blood pressure measures, on the one hand, and to lower
values of the baroreflex gain index and ANSI, on the other
hand. In other words, this approach also shows that obesity
tends to associate significantly with altered ANS states. Third, the
correlation coefficient of the αaPRT index and ANSI is high and
positive (0.646, P < 0.001). Fourth, in their turn, the αaPRT index
and ANSI correlate at least moderately with most of the four
ANS indicators. In particular, as expected, the correlation of the
αaPRT index and AMP-ind is positive and medium-high (0.580,
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P < 0.001) because the adjusted α index is one of the variables
that have contributed to the set-up and the meaning of factor 2
(Table 4). Similarly, ANSI correlates medium-highly with OSC-
ind (0.459, P < 0.001), AMP-ind (0.555, P < 0.001), and PUL-ind
(−0.565, P < 0.001), since, as already mentioned, it originates
from the three selected ANS proxies, each linking to the common
latent factor underlying its corresponding ANS indicator.

Step b: Figure 4 displays the notched box plots of the
within-BMI-groups distributions of the six indicators. With
the exceptions of OSC-ind and AMP-ind (first row of
panels, Figure 4), the other four indicators exhibit clear
trends when moving from NW to OB, i.e., boxes are
depicted at, respectively, increasing percentiles for PRESS-
ind and PUL-ind, and decreasing percentiles for the αaPRT
index and ANSI. In particular, in the PRESS-ind case (first
panel, second row), notches around the BMI-groups medians
(which provide approximate 95%-confidence intervals for the
populationmedians; see legend below Figure 4) do not overlap in
any comparison between pairs of groups. A similar trend is seen
for ANSI (second panel, third row), although it is less apparent
in comparing NW and OW. On the other hand, regarding
the αaPRT index and PUL-ind, notches around the medians
overlap in comparingNWandOW, thus indicating no significant
differences between these two group medians. Nonetheless, in
both cases, notches do not overlap in the comparisons NW vs.
OB and OW vs. OB.

Moreover, Table 6 reports the non-parametric 95% bootstrap
confidence intervals for the within-BMI-groups indicator
medians. That is a more advanced analysis compared to the
notches around the medians depicted in Figure 4. Results of
the non-parametric bootstrap median test are also displayed
(in the “Mt” columns). This further analysis fully confirms the
above remarks apropos of PRESS-ind and ANSI. Neither of the
confidence intervals overlaps, thus proving significant differences
in median between every two BMI groups compared at a time.
For example, the non-overlapping confidence intervals for the
ANSI medians, which are equal to: [53.97, 61.84] in group NW,
[39.82, 53.04] in group OW, and [17.33, 28.37] in group OB,
evidence how obesity associates with a significant worsening
in the ANS state, as captured by ANSI. Regarding the other
indicators, the PUL-ind medians are significantly different in
the comparisons NW vs. OB and OW vs. OB, but not in NW
vs. OW. That is in line with what has been already observed in
the pertaining notched box plots (Figure 4). Moreover, the only
significant comparison of the αaPRT index turns out to be NW vs.
OB, while OSC-ind and AMP-ind do not produce any significant
pairwise difference.

Step c: Figure 5 displays the results of the BA non-parametric
procedure. It is applied to obtain smoothed density curves
(an advancement to the box plots) of the within-BMI-groups
synthetic indicator distributions and compare them considering
two BMI groups at a time. Moreover, the p-values of the BA
tests related to these comparisons are reported inside the panels
and are written in red if they result lower than, or equal to, the
nominal significance level corrected by the Bonferroni method
(i.e., α∗ = 0.017). It is immediate to notice that PRESS-ind is
the only indicator for which the comparisons are all significant. T
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In the other cases, PUL-ind, the αaPRT index, and ANSI have
significant results in the two comparisons NW vs. OB andOWvs.
OB, while AMP-ind only in the comparison NW vs. OB. Finally,
no comparison is significant in the OSC-ind case. Besides this, it
is interesting to note the reciprocal position of the curves in the
various panels. For instance, by looking at the last panel, third
row, in Figure 5, the PRESS-ind NW (black) curve is positively
skewed, while the OB (red) curve is negatively skewed. In other
terms, subjects in the NWgroup tend to have lower percentiles on
PRESS-ind, while subjects in the OB group higher percentiles. On
the other hand, the αaPRT index and ANSI (fifth and last rows in
Figure 5) share a similar trend in the comparisonNWvs. OB (last
panels), since now the NW (black) curve is negatively skewed,
while the OB (red) curve is positively skewed. Therefore, subjects
in the NW group tend to have higher percentiles of the αaPRT
index andANSI, while subjects in the OB group lower percentiles.

Step d: Results of the KW test and the JT and HN tests for
ordered alternatives are given in Figure 6 (second column and
third last and second last columns, resp.). The KW test results are
all significant. Regarding the JT and HN tests, we notice that in
all the cases, but AMP-ind, there is empirical evidence toward the
presence of BMI effects on the synthetic indicators that are either
increasing (PRESS-ind and PUL-ind) and decreasing (OSC-ind,
the αaPRT index, and ANSI). That further confirms most of the
remarks already made. Net of age and gender, one can observe
an overall progressive worsening in ANS, as captured by the
considered indicators, when moving from the NW to OB groups,
and ultimately, the existence of an altered ANS state in the
presence of obesity.

As the final stage of the analysis, Figure 6 sums up also the
results of the performed non-parametric median and BA tests
(Table 6 and Figure 5, resp.). The last column in Figure 6
reports, for each indicator, the level of strength of the overall
empirical evidence in proving the presence of BMI-groups effects
on the synthetic indicator distributions. It is worth observing
that PRESS-ind has associated the strongest level of consistency
of the test results, i.e., all the tests agree in revealing the
presence of significant BMI-groups effects controlling for age and
gender. ANSI has the second-highest level of strength, the αaPRT
index and PUL-ind the third one, while OSC-ind and AMP-ind
turn out, overall, to have a weak level of strength. Summing
up, controlling for age and gender effects, the blood pressure
domain, through PRESS-ind, shows the highest tendency for
alterations to a worsening in the BMI condition, as well as
the overall ANS state results adversely affected by obesity, as
assessed on ANSI firstly, and on the αaPRT index and PUL-
ind secondly.

DISCUSSION

This retrospective, proof of concept, observational study on
a population of otherwise healthy subjects shows that a
set of synthetic statistical indicators can be employed to
describe the CAR impairment associated with the progressive
increase of BMI from normal to obesity, controlling for
age and gender. Besides the PRESS-ind, ANSI has proved

to be particularly sensitive to BMI increments and tends to
capture overweight subjects’ intermediate condition. In addition,
the medium-strong correlation between ANSI and cardiac
baroreflex further supports the contention that this composite,
unitary, monovariate indicator might be used in practice
as a proxy of CAR.

Obesity and Altered CAR
In keeping with the well-known association of obesity with CAR
alterations, such as an increase in efferent sympathetic activity,
various raw or transformed indices of RRV appear significantly
different in the three weight classes, globally indicating
autonomic impairment. However, it is difficult to ascribe specific
functional meaning to each index or compare various individuals
or conditions, also considering the interrelated significant
bivariate correlations (Figure 3). Conversely, the progressive
decrement of the composite ANSI values from NW to OW
and up to OB unquestionably indicates an impairment of CAR,
simultaneously providing a standardized measure of the extent
of impairment that can be confronted longitudinally considering
multiple measurements in the same subject or cross-sectionally
in several subjects.

That is a key clinical point, resulting from the novelty that
a single (percentile-ranked) indicator of CAR (Sala et al., 2017)
may be used to synthesize the autonomic information distributed
across the multitude of RRV derived variables (Table 2)
commonly employed to (simplistically) separate sympathetic and
parasympathetic activity.

It is also important to recall that modern neurophysiological
investigations are unraveling the importance of networks (Stam,
2014) that could be extended to visceral nervous activity (Jänig,
2016). Accordingly, it is impossible to distinctly separate various
afferent and efferent pathways working together with central
structures in “synergistic coordination” (Malliani et al., 1991).
In keeping with the original unitary model proposed by Hess
(1949), a cybernetic, dual-channel, input-output structure “uses”
the dual opposite efferent pathways to govern the heart, in order
to correspond, beat-by-beat, to the dynamic requests of the
periphery. Such a structural complexity, compounded with the
presence of RRV derived parameters that are both reported as
physical quantities or else pure “numbers” (Kerkhof et al., 2019),
is operationally well served by the unitary index ANSI. In fact, the
use of ANSI, in addition to being independent of age and gender,
permits to recover the potential loss of information resulting
from the difference of autonomic metrics from RRV (Kerkhof
et al., 2019), and even improve clinical usefulness, thanks to
immediate quantitative (percentile-ranked) evaluation of CAR.

Statistical Indicators and Clinical

Implications
Utilization of HRV derived proxies of CAR in a clinical setting
is hampered by several aspects ranging from uncertainties
regarding measurement techniques to attribution of individual
index meaning. Moreover, autonomic proxies are sensitive to
age and gender. All these limitations are overcome by using
synthetic statistical indicators built free of age and gender effects
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(Solaro et al., 2017, 2019; Lucini et al., 2018). In particular, ANSI
recapitulates all the information carried by the principal CAR
domains (Lucini et al., 2018) through the physical or numerical
value attributed to indicators and has, besides, a medium-strong
correlation with cardiac baroreflex (Solaro et al., 2019).

The percentile rank transformation applied to all the
synthetic statistical indicators (Figure 4) is expected to simplify
the attribution of different autonomic regulation levels to
individuals and clinical interest groups. Nonetheless, a few
statistical technical aspects must be considered. First, as well-
known in statistics (see, e.g., Murphy and Davidshofer, 2004,
Chap. 5), the percentile rank transformation, re-expressing
values of variables into ranks (and subsequently transforming
ranks into percentiles), loses the interval (and then the scale)
property of variables that are measured at interval (or scale)
level. Differences (or ratios) between variable values in the
original scale are not preserved because a metric system
is replaced by a ranking system formulated in percentile
terms. Second, strictly related to the previous remark, the
percentile rank transformation tends to amplify small differences
of values at the center of the variable distribution and
compress large differences in the distribution tails (Murphy and
Davidshofer, 2004). Third, by construction, rank-transformed
variables are uniformly distributed over the entire support,
so they cannot meet, even approximately, the assumption of
normality, which is the basic theoretical assumption required
in the application of many parametric statistical inferential
procedures (e.g., Student t-test for equality of the means between
two populations, or for nullity of parameters in a linear
regression model).

However, while acknowledging these drawbacks, we opted
all the same for a rank transformation procedure (according
to transformations 2 and 3 in Figure 1) in building the
six synthetic indicators in Figure 4 (i.e., the four EFA-based
ANS indicators, the αaPRT index, and ANSI) for the following
reasons. In the spirit of the study, we did not intend to set
up statistical indicators addressed to measuring various CAR
facets (in particular autonomic activity). We argue that this
should be part of a more ambitious project requiring, before
everything else, a larger number of subjects with a broader
spectrum of different characteristics. Indeed, while dealing
with cross-sectional data, we intended above all to capture
the transition process underlying CAR when moving from a
control group (i.e., normoweight subjects) to a special-interest
group (i.e., obese subjects) through an intermediate-condition
group (i.e., overweight subjects). From this perspective, the
statistical indicators we introduced should then be regarded
more appropriately as process indicators (Ahn et al., 2006) rather
than measure indicators, while the studied BMI groups-effects
as determinants contributing to a transition process. At the
same time, the main limitations advanced for the percentile rank
transformation can even be regarded as good properties because
instrumental in unraveling the transition process. Specifically,
the loss of the metric property is not a matter of concern
here because we were not interested in providing quantitative
measures of CAR impairment in overweight and obese subjects
compared to normoweight subjects or in quantifying how much

different the overall ANS state is (e.g., on average) in the
obese compared to the normoweight subjects. The problem of
measuring alterations in CAR and the consequent development
of CAR statistical measure indicators is a demanding challenge
beyond the scope of the study.

Strictly connected to the above remarks, we involved BMI
in the analyses as a grouping rather than a continuous variable
because we intended to detect the CAR transition process
as the BMI states change. Nonetheless, we also performed
correlation analyses with the original BMI (Figure 3) and the
transformed BMIaPRT (Table 5) to have additional insights into
the linear relationships between BMI and the other variables.
Parenthetically, employing BMI as a grouping variable is the
closest approach to clinical practice. It is routine to examine
excess weight problems according to BMI categorizations based
on standard thresholds.

Moreover, since our focus was put on the transition process
underlying the CAR impairment rather than its measurement,
we needed a statistical tool capable of reducing the magnitude
of large differences of values, which mostly lie in the distribution
tails, and simultaneously magnifying small differences of values,
which mostly lie in the middle of the distribution. In other
words, we intended to put extreme conditions and intermediate
conditions on the same level, thus using a sort of magnifier
for better capturing the transition at the intermediate state.
Otherwise, the highest values overall observed at the opposite
BMI groups (i.e., NW and OB) for the individual ANS states
would have masked the intermediate BMI group (i.e., OW).
Parenthetically, it is worth noting that the percentile rank
transformation has the advantage of producing transformed
variables (i.e., here the synthetic indicators) that are robust to
the presence of outlying subjects. In general, that means that
subjects with characteristics extremely far from the main core of
data do not severely affect the analyses and do not require being
dropped out from data.

Lastly, the statistical approach employed here is essentially
data-driven and non-parametric, i.e., distribution-free.We aimed
to extract the highest degree of informative content without
constraining the data within a priori formulated conjectures, in
particular distribution assumptions, that could have been too
restrictive or, more seriously, could have put us on the wrong
track. Consequently, the non-normality of the six statistical
indicators is not a matter of concern in this study because all the
statistical testing procedures we applied to them, whose results
are schematically summed up in Figure 6, are distribution-free. It
is worth noting that using the percentile rank transformation as
a basis for the construction of statistical process indicators could
be ascribed to the general approach by Conover and Iman (1981).
The authors regarded data-rank-transforming before carrying
out statistical analyses as a possible way to develop new non-
parametric statistical procedures.

As further remarks, it is worth stressing that the strength of the
overall empirical evidence assigned to the six statistical indicators
in the last column of Figure 6 concerns both their reliability and
sensitivity in catching CAR alterations across thewhole transition
from the NW to the OB groups passing by the OW group. From
a clinical perspective, that means that these process indicators
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can be regarded as real pathophysiological indicators capable of
detecting, as best as possible, independently of age and gender,
the underlying physiological mechanisms that are affected more
severely by excess weight up to obesity. Overall, the indicators
that have proved to be more responsive to changes in the BMI
groups are, first, PRESS-ind, second, ANSI, and finally, at the
same level, the αaPRT index and PUL-ind. Hence clinically, these
findings prove, first of all, that progression to obesity has a
strong tendency to contribute to the onset of hypertension as
its primary pathophysiological reaction, independently of age
and gender. Regarding, in particular, the direct comparison NW
vs. OB, the last panel in the third row of Figure 5 provides
an effective representation of the impact of obesity on the
pressure domain. The PRESS-ind red curve of group OB presents
higher ordinates in correspondence to higher percentiles in the
abscissa, while the black curve of group NW tends to have an
opposite shape (i.e., higher ordinates with lower percentiles), thus
showing that obesity tends overall to impair individual pressure
conditions. There is also meaningful empirical evidence that the
progressive development of obesity adversely affects the overall
ANS state (almost strong evidence), along with cardiac baroreflex
regulation and pulse variations (medium-strong evidence). These
findings have clear pictures regarding NW vs. OB in the last
column of panels in Figure 5. For instance, the two ANSI curves
depicted in the panel in the last row and column have higher
ordinates, respectively, in correspondence to lower percentiles
for group OB (red curve) and higher percentiles for NW group
(black curve), thus evidencing that obesity tends overall to impair
individual ANS states. Similar remarks hold for cardiac baroreflex
regulation and pulse variations.

Limitations
Limitations must be considered. This is an observational study
using indirect CAR proxies and involving otherwise healthy
subjects, in which the observed male obese group is of small
size. However, it should be recalled that spectral oscillations
of direct measures of Muscle Sympathetic Nerve Activity
(MSNA) in humans show a remarkable correlation with like
oscillations in RR V and arterial pressure. That suggests that
“normalized units or the LF/HF ratio (as used to compute
ANSI) provides the strongest correlation with attendant changes
in MSNA particularly if assessed by its amplitude or spectral
components rather than in bursts/min” (Pagani et al., 1997).
Moreover, the overall number of subjects and the adopted
statistical methodology support the hypothesis that a unitary
index (Hess, 1949) might indeed furnish a convenient approach
to individually assess the process (Ahn et al., 2006) of autonomic
(dys)regulation. This view also suggests that ANSI could
detect sensitively different conditions characterized by impaired
autonomic regulation, like coronary artery disease (Sala et al.,
2017) and heart failure or even better than normal in professional
soccer players (Lucini et al., 2020).

Besides, the study and the statistical methodology we
developed consider only one data set. We have tried to
overcome this potential limitation using non-parametric
bootstrap procedures (Efron and Tibshirani, 1993) to set up
confidence intervals and test statistical hypotheses. However,
these procedures represent the first step in unanchoring, as

much as possible, the analyses to the available data set. A more
advanced statistical approach to mimic the presence of more
than one data set would require, e.g., a real non-parametric
bootstrap study, which was not our focus here.

Finally, this is a cross-sectional study. Only longitudinal
protocols will possibly overcome this limitation. On the other
hand, the relatively large population permits the application of
modern statistical tools, capable of unraveling latent information,
whose clinical value might be evaluated with more rational
study protocols.

CONCLUSION

The present study suggests, we believe for the first time, a
method to assess the strength of the empirical evidence of the
information link between obesity and CAR as recapitulated
by multiple synthetic statistical indicators extracted from 756
otherwise healthy subjects. These indicators taking under control
potential age and gender bias serve as descriptors of the CAR
impairment according to a transition process detected toward
changes of states due to increasing BMI. In this sense, these
indicators are to be treated as process indicators (Ahn et al.,
2006), providing a clinically convenient technique to assess
cardiovascular autonomic performance individually with simple
numerical indicators of rank.

We observe that the pressure domain (through the pressure
indicator) shows the highest sensitivity in alterations toward
the transition from the normoweight group to the obese
group through the overweight group. This finding provides
further empirical evidence to the progressive tendency of
obesity to foster hypertension independently of age and
gender. Moreover, obesity proves also to have significant
effects in impairment of the overall ANS state (as described
by ANSI (Sala et al., 2017)), cardiac baroreflex regulation
(given by the αaPRT index, i.e., the age-and-gender-adjusted α

index transformed in rank percentiles), and pulse variations
(through the pulse indicator). More in detail, the skewed
distribution of pressure and pulse indicators, the αaPRT index,
and ANSI toward the unfavorable extremity of the abscissa
particularly evident in the obese group suggests the existence
in obese patients of a phenotype characterized by a trend
to impaired CAR and increased arterial pressure (Hall et al.,
2015). The clinical value of these findings requires further
ad hoc investigations.

Finally, simplifying the study of autonomic mechanisms may
provide further insight into risk stratification and treatment. The
growing success of cardiac wearables (Piwek et al., 2016)might, in
addition, render short-term HRV within everybody’s reach, likely
contributing to a greater appreciation that numerical assessment
of autonomic regulation might be conveniently added to the
clinical management of overweight and obesity.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Frontiers in Physiology | www.frontiersin.org 15 January 2021 | Volume 11 | Article 567312



Solaro et al. Altered CAR in Obese Subjects

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Independent Ethics Committee of
IRCCS Humanitas Clinical Institute (Rozzano, Italy). The
patients/participants provided their written informed consent
to participate in this study.

AUTHOR CONTRIBUTIONS

NS, MP, and DL contributed to the conception and design
of the study. NS designed the statistical methodological

approach, implemented the R programming codes, and
performed the statistical analyses. NS and MP wrote the
first draft of the manuscript. NS, MP, and DL contributed
to critically revising the text, read, and approved the
submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2020.567312/full#supplementary-material

REFERENCES

Ahn, A. C., Tewari, M., Poon, C. S., and Phillips, R. S. (2006). The limits of
reductionism in medicine: could systems biology offer an alternative? PLoS
Med. 3:e208. doi: 10.1371/journal.pmed.0030208

Arena, R., Guazzi, M., Lianov, L., Whitsel, L., Berra, K., Lavie, C. J., et al. (2015).
Healthy lifestyle interventions to combat noncommunicable disease – a novel
nonhierarchical connectivity model for key stakeholders: a policy statement
from the American Heart Association, European Society of Cardiology,
European Association for Cardiovascular Prevention and Rehabilitation, and
American College of Preventive Medicine. Mayo Clin. Proc. 90, 1082–1103.
doi: 10.1016/j.mayocp.2015.05.001

Badilini, F., Pagani,M., and Porta, A. (2005). Heartscope: a software tool addressing
autonomic nervous system regulation. Comput. Cardiol. 32, 259–262. doi: 10.
1109/CIC.2005.1588086

Bernardi, L., and Bianchi, L. (2016). Integrated cardio-respiratory control: insight
in diabetes. Curr. Diab. Rep. 16:107. doi: 10.1007/s11892-016-0804-9

Bowman, A. W., and Azzalini, A. (1997). Applied Smoothing Techniques for
Data Analysis: The Kernel Approach with S-Plus Illustrations. Oxford: Oxford
University Press.

Bowman, A. W., and Azzalini, A. (2018). R Package “sm”: Nonparametric
Smoothing Methods (Version 2.2-5.6). Available online at: http://www.stats.gla.
ac.uk/~{}adrian/sm

Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. (1983). Graphical
Methods for Data Analysis. Boca Raton, FLA: CRC Press.

Chattipakorn, N., Incharoen, T., Kanlop, N., and Chattipakorn, S. (2007). Heart
rate variability in myocardial infarction and heart failure. Int. J. Cardiol. 120,
289–296. doi: 10.1016/j.ijcard.2006.11.221

Conover, W. J., and Iman, R. L. (1981). Rank transformations as a bridge between
parametric and nonparametric statistics. Am. Stat. 35, 124–129. doi: 10.2307/
2683975

Costa, J., Moreira, A., Moreira, P., Delgado, L., and Silva, D. (2019). Effects of
weight changes in the autonomic nervous system: a systematic review and
meta-analysis. Clin. Nutr. 38, 110–126. doi: 10.1016/j.clnu.2018.01.006

Efron, B., and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York:
Chapman and Hall.

Emdin, M., Gastaldelli, A., Muscelli, E., Macerata, A., Natali, A., Camastra, S.,
et al. (2001). Hyperinsulinemia and autonomic nervous system dysfunction in
obesity: effects of weight loss. Circulation 103, 513–519. doi: 10.1161/01.CIR.
103.4.513

Fock, K. M., and Khoo, J. (2013). Diet and exercise in management of obesity and
overweight. J. Gastroenterol. Hepatol. 28, 59–63. doi: 10.1111/jgh.12407

Fukuda, K., Kanazawa, H., Aizawa, Y., Ardell, J. L., and Shivkumar, K. (2015).
Cardiac innervation and sudden cardiac death. Circ. Res. 116, 2005–2019. doi:
10.1161/CIRCRESAHA.116.304679

GBD 2017 Risk Factor Collaborators (2018). Global, regional, and national
comparative risk assessment of 84 behavioural, environmental and
occupational, and metabolic risks or clusters of risks for 195 countries and
territories, 1990-2017: a systematic analysis for the Global Burden of Disease
Study 2017. Lancet 392, 1923–1994. doi: 10.1016/S0140-6736(18)32225-6

GBD 2019 Risk Factors Collaborators (2020). Global burden of 87 risk factors in
204 countries and territories, 1990 – 2019: a systematic analysis for the Global
Burden of Disease Study 2019. Lancet 396, 1223–1249. doi: 10.1016/S0140-
6736(20)30752-2

Goossens, G. H. (2017). The metabolic phenotype in obesity: fat Mmass, body fat
distribution, and adipose tissue function. Obes. Facts 10, 207–215. doi: 10.1159/
000471488

Grassi, G., Biffi, A., Seravalle, G., Trevano, F. Q., Dell’oro, R., Corrao, G.,
et al. (2019). Sympathetic neural overdrive in the obese and overweight state:
meta-analysis of published studies. Hypertension 74, 349–358. doi: 10.1161/
HYPERTENSIONAHA.119.12885

Grassi, G., Seravalle, G., Colombo, M., Bolla, G., Cattaneo, B. M., Cavagnini, F.,
et al. (1998). Body weight reduction, sympathetic nerve traffic, and arterial
baroreflex in obese normotensive humans. Circulation 97, 2037–2042. doi: 10.
1161/01.cir.97.20.2037

Guarino, D., Nannipieri, M., Iervasi, G., Taddei, S., and Bruno, R. M. (2017). The
role of the autonomic nervous system in the pathophysiology of obesity. Front.
Physiol. 8:665. doi: 10.3389/fphys.2017.00665

Haken, H. (1983). Synergetics – An Introduction. Berlin: Springer-Verlag.
Hall, J. E., do Carmo, J. M., da Silva, A. A., Wang, Z., and Hall, M. E.

(2015). Obesity-induced hypertension: interaction of neurohumoral and renal
mechanisms. Circ. Res. 116, 991–1006. doi: 10.1161/CIRCRESAHA.116.305697

Happ, M., Zimmermann, G., Bathke, A. C., and Brunner, E. (2018). “Pseudorank”:
Pseudo-Ranks. R Package Version 0.3.8. Available online at: https://CRAN.R-
project.org/package=pseudorank

Hess, W. R. (1949). The Central Control of the Activity of Internal Organs. Nobel
Lecture. Nobelprize.Org. NobelMedia AB 2020. Available online at: https://www.
nobelprize.org/prizes/medicine/1949/hess/lecture/ (accessed March 7, 2020).

Hettmansperger, T. P., and Norton, R. M. (1987). Tests for patterned alternatives
in k-sample problems. J. Am. Stat. Assoc. 82, 292–299. doi: 10.2307/2289166

Hollander, M., Wolfe, D. A., and Chicken, E. (2014). Nonparametric Statistical
Methods, 3rd Edn. Hoboken, NJ: John Wiley & Sons.

Jänig, W. (2016). Neurocardiology: a neurobiologist’s perspective. J. Physiol. 594,
3955–3962. doi: 10.1113/JP271895

Jensen, M. D., Ryan, D. H., Apovian, C. M., Ard, J. D., Comuzzie, A. G., Donato,
K. A., et al. (2014). 2013 AHA/ACC/TOS guideline for the management
of overweight and obesity in adults: a report of the American College of
Cardiology/American Heart Association Task Force on Practice Guidelines
and The Obesity Society. Circulation 129, S102–S138. doi: 10.1161/01.cir.
0000437739.71477.ee

Jobson, J. D. (1991). Applied Multivariate Data Analysis, Vol. I-II. New York:
Springer-Verlag.

Katsilambros, N. L., Boulton, A. J., Tentolouris, N., Kokkinos, A., and Liatis, S.
(2011). Autonomic neuropathy in diabetes mellitus and obesity: an update. Exp.
Diabetes Res. 2011:607309. doi: 10.1155/2011/607309

Kerkhof, P. L. M., Peace, R. A., and Handly, N. (2019). Ratiology and a
complementary class of metrics for cardiovascular investigations. Physiology 34,
250–263. doi: 10.1152/physiol.00056.2018

Kokkinos, A., Alexiadou, K., Liaskos, C., Argyrakopoulou, G., Balla, I., Tentolouris,
N., et al. (2013). Improvement in cardiovascular indices after Roux-en-Y gastric

Frontiers in Physiology | www.frontiersin.org 16 January 2021 | Volume 11 | Article 567312



Solaro et al. Altered CAR in Obese Subjects

bypass or sleeve gastrectomy for morbid obesity. Obes. Surg. 23, 31–38. doi:
10.1007/s11695-012-0743-8

La Rovere, M. T., Pinna, G. D., Hohnloser, S. H., Marcus, F. I., Mortara, A.,
Nohara, R., et al. (2001). Barorefiex sensitivity and heart rate variability in the
identification of patients at risk for life-threatening arrhythmias: implications
for clinical trials. Circulation 103, 2072–2077. doi: 10.1161/01.CIR.103.16.
2072

Lucini, D., Malacarne, M., Gatzemeier, W., and Pagani, M. (2020). A simple home-
based lifestyle intervention program to improve cardiac autonomic regulation
in patients with increased cardiometabolic risk. Sustainability (Switzerland)
12:7671. doi: 10.3390/su12187671

Lucini, D., Milani, R. V., Costantino, G., Lavie, C. J., Porta, A., and Pagani, M.
(2002). Effects of cardiac rehabilitation and exercise training on autonomic
regulation in patients with coronary artery disease. Am. Heart J. 143, 977–983.
doi: 10.1067/mhj.2002.123117

Lucini, D., and Pagani, M. (2012). From stress to functional syndromes: an
internist’s point of view. Eur. J. Intern. Med. 23, 295–301. doi: 10.1016/j.ejim.
2011.11.016

Lucini, D., Solaro, N., and Pagani, M. (2018). Autonomic differentiation map: a
novel statistical tool for interpretation of heart rate variability. Front. Physiol.
9:401. doi: 10.3389/fphys.2018.00401

Malliani, A., Pagani, M., Lombardi, F., and Cerutti, S. (1991). Cardiovascular
neural regulation explored in the frequency domain. Circulation 84, 482–492.
doi: 10.1161/01.CIR.84.2.482

McGill, R., Tukey, J. W., andWayne, A. L. (1978). Variations of box plots.Am. Stat.
32, 12–16. doi: 10.2307/2683468

Milani, R. V., Lavie, C. J., and Mehra, M. R. (2004). Cardiopulmonary exercise
testing: how do we differentiate the cause of dyspnea? Circulation 110, e27–e31.
doi: 10.1161/01.CIR.0000136811.45524.2F

Molfino, A., Fiorentini, A., Tubani, L., Martuscelli, M., Rossi Fanelli, F., and
Laviano, A. (2009). Body mass index is related to autonomic nervous system
activity as measured by heart rate variability. Eur. J. Clin. Nutr. 63, 1263–1265.
doi: 10.1038/ejcn.2009.35

Murphy, K. R., and Davidshofer, C. O. (2004). Psychological Testing: Principles and
Applications, 6th Edn. New Jersey, NJ: Pearson Prentice Hall.

Pagani, M. (2000). Heart rate variability and autonomic diabetic neuropathy.
Diabetes Nutr. Metab. 13, 341–346.

Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., et al.
(1986). Power spectral analysis of heart rate and arterial pressure variabilities as
a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res.
59, 178–193. doi: 10.1161/01.RES.59.2.178

Pagani, M., Malfatto, G., Pierini, S., Casati, R., Masu, A. M., Poli, M., et al. (1988).
Spectral analysis of heart rate variability in the assessment of autonomic diabetic
neuropathy. J. Auton. Nerv. Syst. 23, 143–153. doi: 10.1016/0165-1838(88)
90078-1

Pagani, M., Montano, N., Porta, A., Malliani, A., Abboud, F. M., Birkett,
C., et al. (1997). Relationship between spectral components of
cardiovascular variabilities and direct measures of muscle sympathetic
nerve activity in humans. Circulation 95, 1441–1448. doi: 10.1161/01.cir.95.
6.1441

Piwek, L., Ellis, D. A., Andrews, S., and Joinson, A. (2016). The rise of consumer
health wearables: promises and barriers. PLoS Med. 13:e1001953. doi: 10.1371/
journal.pmed.1001953

R Core Team (2019). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing. Available online at: https://
www.Rproject.org/

Revelle, W. (2018). “Psych”: Procedures for Personality and Psychological Research
(Version 1.8.12). Evanston, IL: Northwestern University.

Sala, R., Malacarne, M., Solaro, N., Pagani, M., and Lucini, D. (2017). A composite
autonomic index as unitary metric for heart rate variability: a proof of concept.
Eur. J. Clin. Invest. 47, 241–249. doi: 10.1111/eci.12730

Signorell, A., Aho, K., Alfons, A., Anderegg, N., Aragon, T., Arachchige, C., et al.
(2019). “DescTools”: Tools for Descriptive Statistics. R Package Version 0.99.28.
Available online at: https://cran.r-project.org/package=DescTools

Skrapari, I., Tentolouris, N., Perrea, D., Bakoyiannis, C., Papazafiropoulou, A.,
and Katsilambros, N. (2007). Baroreflex sensitivity in obesity: relationship with
cardiac autonomic nervous system activity. Obesity 15, 1685–1693. doi: 10.
1038/oby.2007.201

Smith, M. M., and Minson, C. T. (2012). Obesity and adipokines: effects on
sympathetic overactivity. J. Physiol. 590, 1787–1801. doi: 10.1113/jphysiol.2011.
221036

Solaro, N., Lucini, D., and Pagani, M. (2017). “Handling missing data in
observational clinical studies concerning cardiovascular risk: an insight into
critical aspects,” in Data Science: Innovative Developments in Data Analysis and
Clustering, eds F. Palumbo, A. Montanari, and M. Vichi (Cham: Springer),
175–188. doi: 10.1007/978-3-319-55723-6_14

Solaro, N., Malacarne, M., Pagani, M., and Lucini, D. (2019). Cardiac baroreflex,
HRV, and statistics: an interdisciplinary approach in hypertension. Front.
Physiol. 10:478. doi: 10.3389/fphys.2019.00478

Stam, C. J. (2014). Modern network science of neurological disorders. Nat. Rev.
Neurosci. 15, 683–695. doi: 10.1038/nrn3801

Thompson, B. (2004). Exploratory and Confirmatory Factor Analysis:
Understanding Concepts and Applications. Washington, DC: American
Psychological Association.

Vinik, A. I., Erbas, T., and Casellini, C. M. (2013). Diabetic cardiac autonomic
neuropathy, inflammation and cardiovascular disease. J. Diabetes Investig. 4,
4–18. doi: 10.1111/jdi.12042

Vinik, A. I., and Ziegler, D. (2007). Diabetic cardiovascular autonomic neuropathy.
Circulation 115, 387–397. doi: 10.1161/CIRCULATIONAHA.106.634949

Voulgari, C., Pagoni, S., Vinik, A., and Poirier, P. (2013). Exercise improves cardiac
autonomic function in obesity and diabetes. Metabolism 62, 609–621. doi: 10.
1016/j.metabol.2012.09.005

Wei, T., and Simko, V. (2017). R Package “Corrplot”: Visualization of a
Correlation Matrix (Version 0.84). Available online at: https://CRAN.R-project.
org/package=corrplot

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York:
Springer-Verlag.

Williams, S. M., Eleftheriadou, A., Alam, U., Cuthbertson, D. J., and Wilding,
J. P. H. (2019). Cardiac autonomic neuropathy in obesity, the metabolic
syndrome and prediabetes: a narrative review. Diabetes Ther. 10, 1995–2021.
doi: 10.1007/s13300-019-00693-0

Zilliox, L. A., and Russell, J. W. (2020). Is there cardiac autonomic neuropathy in
prediabetes? Auton. Neurosci. 229:102722. doi: 10.1016/j.autneu.2020.102722

Zygmunt, A., and Stanczyk, J. (2010). Methods of evaluation of autonomic nervous
system function. Arch. Med. Sci. 6, 11–18. doi: 10.5114/aoms.2010.13500

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Solaro, Pagani and Lucini. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 17 January 2021 | Volume 11 | Article 567312


