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Abstract

We prove that the category of Nachbin’s compact ordered spaces and order-preserving
continuous maps between them is dually equivalent to a variety of algebras, with
operations of at most countable arity. Furthermore, we show that the countable bound
on the arity is the best possible: the category of compact ordered spaces is not dually
equivalent to any variety of finitary algebras. Indeed, the following stronger results
hold: the category of compact ordered spaces is not dually equivalent to (i) any finitely
accessible category, (ii) any first-order definable class of structures, (iii) any class
of finitary algebras closed under products and subalgebras. An explicit equational
axiomatisation of the dual of the category of compact ordered spaces is obtained; in
fact, we provide a finite one, meaning that our description uses only finitely many
function symbols and finitely many equational axioms. In preparation for the latter
result, we establish a generalisation of a celebrated theorem by D. Mundici: our result
asserts that the category of unital commutative distributive lattice-ordered monoids
is equivalent to the category of what we call MV-monoidal algebras. Our proof is
independent of Mundici’s theorem.
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Introduction

In 1936, in his landmark paper [Stone, 1936], M. H. Stone described what is nowa-
days known as Stone duality for Boolean algebras. In modern terms, the result states
that the category of Boolean algebras and homomorphisms is dually equivalent to the
category of totally disconnected compact Hausdorff spaces and continuous maps, now
known as Stone or Boolean spaces. If we drop the assumption of total disconnected-
ness, we are left with the category CH of compact Hausdorff spaces and continuous
maps. J. Duskin observed in 1969 that the opposite category CHop is monadic over the
category Set of sets and functions [Duskin, 1969, 5.15.3]. In fact, CHop is equivalent
to a variety of algebras with primitive operations of at most countable arity: a finite
generating set of operations was exhibited in [Isbell, 1982], while a finite equational
axiomatisation was provided in [Marra and Reggio, 2017]. Therefore, if we allow
for infinitary operations, Stone duality can be lifted to compact Hausdorff spaces,
retaining the algebraic nature of the category involved.

Shortly after his paper on the duality for Boolean algebras, Stone published a
generalisation of this theory to bounded distributive lattices [Stone, 1938]. In his for-
mulation, the dual category consists of what are nowadays called spectral spaces and
perfect maps. In 1970, H. A. Priestley showed that spectral spaces can be equivalently
described as what are now known as Priestley spaces, i.e. compact spaces equipped
with a partial order satisfying a condition called total order-disconnectedness [Priest-
ley, 1970]. More precisely, Priestley duality states that the category of bounded
distributive lattices is dually equivalent to the category of Priestley spaces and order-
preserving continuous maps. The latter category is a full subcategory of the category
CompOrd of compact ordered spaces and order-preserving continuous maps. Com-
pact ordered spaces, introduced by L. Nachbin [Nachbin, 1948, Nachbin, 1965] before
Priestley’s result on bounded distributive lattices, are compact spaces equipped with a
partial order which is closed in the product topology. Similarly to the case of Boolean
algebras, one may ask if Priestley duality can be lifted to the category CompOrd of
compact ordered spaces, retaining the algebraic nature of the opposite category. In
[Hofmann et al., 2018], D. Hofmann, R. Neves and P. Nora showed that CompOrdop

is equivalent to an ℵ1-ary quasivariety, i.e. a quasivariety of algebras with operations
of at most countable arity, axiomatised by implications with at most countably many
premises. In the same paper, the authors left as open the question whether CompOrdop

is equivalent to a variety of (possibly infinitary) algebras.
The main aims of this manuscript are (i) to show that the dual of the category of

compact ordered spaces is in fact equivalent to a variety of (infinitary) algebras—thus
providing a positive answer to the open question in [Hofmann et al., 2018]—and (ii)
to obtain a finite equational axiomatisation of CompOrdop.
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xii Introduction

The main results of this thesis are presented in Chapters 2 to 7.
In Chapter 2, we prove that CompOrdop is equivalent to a variety, with primi-

tive operations of at most countable arity (Theorem 2.43); the proof rests upon a
well-known categorical characterisation of varieties. In Chapter 3, we show that the
countable bound on the arity of the primitive operations is the best possible: CompOrd
is not dually equivalent to any variety of finitary algebras (Theorem 3.5). Indeed, the
following stronger results hold: CompOrd is not dually equivalent to (i) any finitely
accessible category, (ii) any first-order definable class of structures, (iii) any class of
finitary algebras closed under products and subalgebras.

The main goal of the subsequent chapters is to provide explicit equational axioma-
tisations of CompOrdop. This is first achieved in Chapter 6, where we prove that the
category of compact ordered spaces is dually equivalent to the variety consisting of
what we call limit dyadic MV-monoidal algebras (Theorem 6.39). The axiomatisation
builds on what we call MV-monoidal algebras. These generalise MV-algebras, orig-
inally introduced by [Chang, 1958] to serve as algebraic semantics for Łukasiewicz
many-valued propositional logic. In Chapter 7, we take a further step by providing
a finite equational axiomatisation of CompOrdop, meaning that we use only finitely
many function symbols and finitely many equational axioms to present the variety:
the dual of CompOrd is there presented as the variety of limit 2-divisible MV-monoidal
algebras (Theorem 7.33). This finite axiomatisation is a bit more complex than the
infinite one in Chapter 6.

The intermediate Chapters 4 and 5 are of independent interest. Even if they are
not really necessary to obtain the results reported above, they serve to provide a better
intuition on the algebras of the equational axiomatisations of Chapters 6 and 7, which
otherwise may seem a bit obscure.

In particular, in Chapter 4, we show that MV-monoidal algebras are exactly the
unit intervals of the more intuitive structures that we call unital commutative distribu-
tive lattice-ordered monoids. In fact, we prove that the categories of unital commu-
tative distributive lattice-ordered monoids and MV-monoidal algebras are equivalent
(Theorem 4.74). This equivalence generalises a well-known result by [Mundici, 1986,
Theorem 3.9] asserting that the category of Abelian lattice-ordered groups with strong
order unit is equivalent to the category of MV-algebras.

Starting from 1940, several descriptions of the dual of the category of compact
Hausdorff spaces were obtained: we here cite the works of [Krein and Krein, 1940,
Gelfand, 1941, Kakutani, 1941, Stone, 1941, Yosida, 1941]. The latter used lattice-
ordered vector spaces with strong order unit, and in Chapter 5 we obtain an ordered
analogue of this result, that we call ordered Yosida duality. In our formulation, com-
pact Hausdorff spaces are replaced by compact ordered spaces, and lattice-ordered
vector spaces with strong order unit are replaced by what we call dyadic commutative
distributive lattice-ordered monoids. Even if these structures fail to form a variety,
we find them interesting because their axiomatisation is simpler than the equational
ones of the following chapters. This ordered version of Yosida duality fits in the gen-
eral structure of the manuscript by providing a more accessible intuition to the ideas
behind the dualities in Chapters 6 and 7. Also, to prove some of the results in these
last two chapters, we will rely on analogous ones obtained in Chapter 5, for which an
easier-to-follow proof will have already been carried out in details.
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We conclude this introduction by commenting on the novelty of the results pre-
sented here. It is well-known that the category of compact ordered spaces and order-
preserving continuous maps is isomorphic to the category of so-called stably compact
spaces and perfect maps [Gierz et al., 2003, Proposition VI.6.23]. Dualities for sta-
bly compact spaces are already known. For example, the category of stably compact
spaces is dually equivalent to the category of stably locally compact frames [Gierz
et al., 2003, Theorem VI-7.4], as well as to the category of strong proximity lattices
[Jung and Sünderhauf, 1996]. However, neither of these two categories is (in its usual
presentation) a variety of algebras.

To the best of our knowledge, the fact that the category of compact ordered spaces
is dually equivalent to a variety of algebras was first proved in [Abbadini, 2019a],
where an explicit (infinite) equational axiomatisation was also presented. Then, in
[Abbadini and Reggio, 2020], a nicer and shorter proof was obtained, which rested
upon a well-known categorical characterisation of varieties. Additionally, in the latter
paper, the aforementioned negative axiomatisability results about CompOrdop were
observed. The result that CompOrd is not dually equivalent to any first-order definable
class of structures was suggested to us by S. Vasey (private communication) as an
application of a result of M. Lieberman, J. Rosický and S. Vasey [Lieberman et al.,
2019], replacing a previous weaker statement. Chapters 2 and 3 follow very closely
the lines of [Abbadini and Reggio, 2020].

We believe that the equational axiomatisation of CompOrdop in Chapter 6 is nicer
than the one available in [Abbadini, 2019a], one of the reasons being the self-duality
of the primitive operation of countably infinite arity. The result in Chapter 7 that
also a finite equational axiomatisation exists is new.





Chapter 0

Background

We collect here some basic notions and some preliminary results about sets, preordered
sets, topological spaces, categories and algebras. The reader may wish to move to
Chapter 1, skipping the present chapter and referring to it if the need arises.

0.1 Foundations
For the concepts of set and class we refer to [Adámek et al., 2006, Chapter 2].

0.2 Sets
We denote with N the set of natural numbers {0, 1, 2, . . . }, and with N+ the set
N \ {0} = {1, 2, 3, . . . }.

We assume the axiom of choice.
Given a function f : X → Y , we let f [A] denote the image of a subset A ⊆ X

under f and f−1[B] the preimage of a subset B ⊆ Y under f .

0.2.1 Binary relations
A binary relation on a set X is a subset R ⊆ X×X. We write x R y as an alternative
to (x, y) ∈ R. Given a binary relation R, we let Rop denote the relation defined by

x Rop y if, and only if, y R x.

A binary relation R on a set X is called

reflexive provided that, for all x ∈ X, we have x R x;

transitive provided that, for all x, y, z ∈ X, if x R y and y R z, then x R z;

anti-symmetric provided that, for all x, y ∈ X, if x R y and y R x, then x = y;

symmetric provided that, for all x, y ∈ X, if x R y, then y R x.

1



2 Chapter 0. Background

A preorder on a set X is a reflexive transitive binary relation on X. A partial order
on X is an anti-symmetric preorder on X. An equivalence relation on X is a reflexive
transitive symmetric binary relation on X.

Usually, we use the symbol 4 for preorders, and the symbol 6 for partial orders.
A preordered set is a pair (X,4) where X is a set and 4 is a preorder on X. A

partially ordered set is a pair (X,6) where X is a set and 6 is a preorder on X. To
keep notation simple, we shall often write simply X instead of (X,4) or (X,6).

An up-set in a preordered set (X,4) is a subset U of X such that, for every x ∈ U
and y ∈ X, if x 4 y, then y ∈ U . A down-set is a subset U of X such that, for every
x ∈ U and y ∈ X, if y 4 x, then y ∈ U .

Analogous concepts are defined for the case of classes instead of sets.

0.3 Preordered sets
Let (X,4X) and (Y,4Y ) be preordered sets. An order-preserving function from
(X,4X) to (Y,4Y ) is a function f : X → Y such that, for all x, y ∈ X, if x 4X y,
then f(x) 4Y f(y).

0.3.1 Initial and final preorder
In this subsection we define the notions of initial, final, product, coproduct, discrete,
indiscrete, induced and quotient (pre)order. The motivation for most of this terminol-
ogy will become clear after the discussion on topological functors below (Section 0.5.1).

Given a set X and a class-indexed1 family (fi : X → Ai)i∈I of functions from X
to the underlying set of a preordered set (Ai,4i), we define the initial preorder on X
as the greatest preorder 4 on X that makes each fi order-preserving. It is given by

x 4 y ⇐⇒ ∀i ∈ I fi(x) 4i fi(y).

Given a set X and a class-indexed family (fi : Ai → X)i∈I of functions from X to
the underlying set of a preordered set (Ai,4i), we define the final preorder on X as
the smallest preorder 4 on X that makes each fi order-preserving. It is given by the
transitive closure of the reflexive closure of the relation

x 4′ y ⇐⇒ ∃i ∈ I ∃x′, y′ ∈ Ai : x′ 4i y
′, fi(x′) = x, fi(y′) = y. (1)

As one of the anonymous referees pointed out, correcting an error in a preliminary
version of this thesis, the reflexive closure of the relation 4′ described in eq. (1) might
fail to be transitive. For example, let {a, b, c, d} be a preordered set on four elements
with a 6 b and c 6 d, and no other pairs of distinct elements in relation, and consider
the map f : {a, b, c, d} → {x, y, z} that maps a to x, b and c to y and d to z.

Given a family (Xi,4i)i∈I (with I a set) of preordered sets, the product preorder
on the set-theoretic product X := ∏

i∈I Xi is the initial preorder 4 on X with respect
to the family of projections (πi : X → Xi)i∈I , i.e.

(xi)i∈I 4 (yi)i∈I ⇐⇒ ∀i ∈ I xi 4i yi.
1We use a class as index to adhere to the definition of topological functors (Definition 0.12 below).



0.4. Topological spaces 3

Unless otherwise specified, it is understood that the set ∏i∈I Xi, when regarded as a
preordered set, is equipped with the product preorder.

The coproduct preorder on the set-theoretic coproduct X := ∑
i∈I Xi is the final

preorder on X with respect to the family of coproduct injections (ιi : Xi ↪→ X)i∈I , i.e.

x 4 y ⇐⇒ ∃i ∈ I ∃x′, y′ ∈ Xi : x′ 4i y
′, ιi(x′) = x, ιi(y′) = y.

Every set X carries two canonical preorders: the discrete preorder , i.e. {(x, x) ∈
X ×X | x ∈ X}, and the indiscrete preorder , i.e. X ×X.

Let (X,4X) be a preordered set, and let ι : Y ↪→ X be an injective function. The
induced preorder on Y is the initial preorder 4Y on Y with respect to ι, i.e.

x 4Y y ⇐⇒ ι(x) 4X ι(y).

Let (X,4X) be a preordered set, and let q : X � Y be a surjective function.
The quotient preorder on Y is the final preorder 4Y on Y with respect to q, i.e. the
transitive closure of the relation

x 4′ y ⇐⇒ ∃x′, y′ ∈ X : x′ 4X y′, q(x′) = x, q(y′) = y. (2)

If, for all x, y ∈ X with q(x) = q(y), we have x 4X y, then the relation on Y defined
by eq. (2) is transitive, so there is no need to take the transitive closure.

Unless otherwise specified, it is understood that subsets and quotient sets of a
preordered sets, when regarded as a preordered set, are equipped with the induced
and quotient preorder, respectively.

Initial (resp. final, product, coproduct, discrete, indiscrete, induced, quotient)
preorder will also be called initial (resp. final, product, coproduct, discrete, indiscrete,
induced, quotient) order.

0.4 Topological spaces
We assume that the reader has basic knowledge of topology, for which we refer to
[Willard, 1970].

A topology on a set X is a set of subset of X which is closed under arbitrary unions
and finite intersections (where by ∅-indexed union we mean the empty set, and by
∅-indexed intersection we mean the set X). A topological space is a pair (X, τ) where
X is a set and τ is a topology on X. To keep notation simple, we shall often write
simply X instead of (X, τ).

Let (X, τX) and (Y, τY ) be topological spaces. A continuous function from (X, τX)
to (Y, τY ) is a function f : X → Y such that, for all O ∈ τY , we have f−1[O] ∈ τX .

0.4.1 Initial and final topology
In this subsection we define the notions of initial, final, product, coproduct, discrete,
indiscrete, induced and quotient topology. As for preordered sets, the motivation for
most of this terminology will become clear after the discussion on topological functors
below (Section 0.5.1).



4 Chapter 0. Background

Given a set X and a class-indexed family (fi : X → Ai)i∈I of functions from X
to the underlying set of a topological space (Ai, τi), we define the initial topology on
X as the smallest topology τ on X that makes each fi continuous, i.e. the topology
generated by {f−1

i [O] | i ∈ I, O ∈ τi}.
Given a set X and a class-indexed family (fi : Ai → X)i∈I of functions from X to

the underlying set of a topological space (Ai,4i), we define the final topology on X
as the greatest topology τ on X that makes each fi continuous, i.e.

S ∈ τ ⇐⇒ ∀i ∈ I f−1
i [S] ∈ τi.

Given a family (Xi, τi)i∈I (with I a set) of topological spaces, the product topology
on the set-theoretic product X := ∏

i∈I Xi is the initial topology on X with respect
to the family of projections (πi : X → Xi)i∈I , i.e. the topology generated by {π−1

i [O] |
i ∈ I, O ∈ τi}. Unless otherwise specified, it is understood that the set ∏i∈I Xi, when
regarded as a topological space, is equipped with the product topology.

The coproduct topology on the set-theoretic coproduct X := ∑
i∈I Xi is the final

topology on X with respect to the family of coproduct injections (ιi : Xi ↪→ X)i∈I ,
i.e.

S ∈ τ ⇐⇒ ∀i ∈ I ι−1
i [S] ∈ τi.

Every set X carries two canonical topology: the discrete topology, consisting of all
subsets of X, and the indiscrete topology, consisting of ∅ and X.

Let (X, τX) be a topological space, and let ι : Y ↪→ X be an injective function.
The induced topology on Y is the initial topology τY on Y with respect to ι, i.e.

S ∈ τY ⇐⇒ ∃O ∈ τX : ι−1[O] = S.

Let (X, τX) be a topological space, and let q : X � Y be a surjective function.
The quotient topology on Y is the final topology τY on Y with respect to q, i.e.

S ∈ τY ⇐⇒ q−1[S] ∈ τX .

Unless otherwise specified, it is understood that subsets and quotient sets of a
topological space, when regarded as a topological space, are equipped with the induced
and quotient topology, respectively.

0.4.2 Compact Hausdorff spaces
We recall that a topological space X is said to be compact if each open cover of X
has a finite subcover, and Hausdorff if, for all distinct x, y ∈ X, there exist disjoint
open sets U and V in X with x ∈ U and y ∈ V . We recall some basic facts about
compact Hausdorff spaces.

Proposition 0.1 ([Willard, 1970, Theorem 13.7]). A topological space X is Hausdorff
if, and only if, its diagonal {(x, x) | x ∈ X} is a closed subspace of X ×X.

Proposition 0.2 ([Willard, 1970, Theorem 17.7]). The image of a compact space
under a continuous map is compact.
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Proposition 0.3 ([Willard, 1970, Theorem 17.5.b]). A compact subset of a Hausdorff
space is closed.

Proposition 0.4 ([Willard, 1970, Theorem 17.5.a]). Every closed subspace of a com-
pact space is compact.

Proposition 0.5. Every continuous map between compact Hausdorff spaces is closed.

Proof. Let f : X → Y be a continuous map between compact Hausdorff spaces, and
let K be a closed subspace of X. Then, by Proposition 0.4, K is compact. Then, by
Proposition 0.2, f [K] is compact. Then, by Proposition 0.3, f [K] is closed.

Proposition 0.6 ([Willard, 1970, Theorem 17.14]). Every continuous bijection be-
tween compact Hausdorff spaces is a homeomorphism.

Theorem 0.7 (Thychonoff’s theorem, [Willard, 1970, Theorem 17.8]). A product of
compact spaces is compact.

0.5 Categories
We assume that the reader has basic knowledge of categories, functors, and adjunc-
tions, for which we refer to [Mac Lane, 1998].

Throughout this manuscript all categories are assumed to be locally small, i.e.
given two objects X and Y , the morphisms from X to Y form a set.

For infinite products, we use the notation ∏i∈I Xi, or X1 × · · · ×Xn in case of a
finite index set. For infinite coproducts, we use the notation ∑i∈I Xi, or X1 + · · ·+Xn

in case of a finite index set.

Proposition 0.8 ([Mac Lane, 1998, Theorem 1]). Left adjoints preserve colimits and
right adjoints preserve limits.

Definition 0.9. A reflective full subcategory of a category C is a full subcategory D
whose inclusion functor D ↪→ C admits a left adjoint, called the reflector .

Proposition 0.10 ([Borceux, 1994a, Propositions 3.5.3 and 3.5.4]). Let D be a re-
flective full subcategory of a category C. If C is complete (resp. cocomplete), then D
is complete (resp. cocomplete).

0.5.1 Topological functors
We recall basic notions and results concerning topological functors. For more details,
we refer to [Adámek et al., 2006, Chapter 21].

Definition 0.11. A source is a pair (A, (fi)i∈I) consisting of an object A and a family
of arrows fi : A→ Ai with domain A, indexed by some class I. The object A is called
the domain of the source and the family (Ai)i∈I is called the codomain of the source.
Whenever convenient we use the notation (fi : A→ Ai)i∈I instead of (A, (fi)i∈I).
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Given a faithful functor U : A → X, given two objects A and B of A and an X-
morphism f : U(A) → U(B), we say that f is an A-morphism from A to B if there
exists a (necessarily unique) A-morphism f : A → B such that U(f) = f . When A
and B are understood, we simply say that f is an A-morphism.

Definition 0.12. Let U : A→ X be a faitfhul functor.

1. A U-structured source is a pair (X, (fi, Ai)i∈I) consisting of an object X of X
and a family of pairs (fi, Ai), indexed by some class I, consisting of an object Ai of
A and an X-morphism fi : X → U(Ai). Whenever convenient, we use the notation
(fi : X → U(Ai))i∈I instead of (X, (fi, Ai)i∈I).

2. A source (fi : A → Ai)i∈I in A is said to be U-initial provided that, for each
object C of A, an X-morphism h : U(C)→ U(A) is an A-morphism if, and only if, for
all i ∈ I, the composite U(C) h−→ U(A) G(fi)−−−→ U(Ai) is an A-morphism. As a particular
case, an A-morphism f : A → B is U-initial provided that, for each object C of A,
an X-morphism h : U(C) → U(A) is an A-morphism if, and only if, the composite
U(C) h−→ U(A) G(f)−−→ U(B) is an A-morphism.

3. A lift of a U -structured source (fi : X → U(Ai))i∈I is a source (f̄i : A→ Ai)i∈I
such that U(A) = X and U(f̄i) = fi.

4. We say that U is topological if every U -structured source has a unique U -initial
lift.

Topological functors are sometimes introduced with a definition that does not
assume faithfulness [Adámek et al., 2006, Definition 21.1]. However, faithfulness is a
consequence [Adámek et al., 2006, Theorem 21.3].

We let Set denote the category of sets and functions.

Examples 0.13. Topological spaces. Let Top denote the category of topolog-
ical spaces and continuous functions. The forgetful functor Top→ Set is topological:
the unique initial lift of a family of functions (fi : X → Ai) is obtained by providing
X with the initial topology (see Section 0.4.1).

Preordered sets. Let Preo denote the category of preordered sets and order-
preserving functions. The forgetful functor Preo → Set is topological: the unique
initial lift of a family of functions (fi : X → Ai) is obtained by providing X with the
initial preorder (see Section 0.3.1).

Definition 0.14. Let U : A → X be a faithful functor. Given an object X of X, we
call fibre of X the preordered class consisting of all objects A of A with U(A) = X
ordered by:

A 4 B if, and only if, 1X : U(A)→ U(B) is an A-morphism.

Examples 0.15. Topological spaces. The fibre of a set X with respect to the
forgetful functor Top→ Set is the set of topologies on X, ordered by reverse inclusion.
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Preordered sets. The fibre of a set X with respect to the forgetful functor
Preo→ Set is the set of preorders on X, ordered by inclusion.

Proposition 0.16. Let U : A → X be a topological functor. Then, the fibre of every
object of X is a partially ordered class in which every subclass has a join and a meet.

Proof. Each fibre is a partially ordered class by the implication (1)⇒ (2) in [Adámek
et al., 2006, Proposition 21.5], and every subclass has a join and a meet by [Adámek
et al., 2006, Proposition 21.11].

The dual notion of source is sink, and the dual notion of initial is final.
Remark 0.17. Let U : A → X be a topological functor. Then, the unique initial lift
of a U -structured source (fi : X → U(Ai))i∈I is the smallest element A in the fibre
of X such that, for every i ∈ I, fi is an A-morphism from A to Ai. Similarly, every
U -structured sink (fi : U(Ai) → X)i∈I admits a unique U -final lift, i.e. the greatest
element A in the fibre of X such that, for every i ∈ I, fi is an A-morphism from Ai
to A. In fact, for any topological functor U : A→ X, also the functor Uop : Aop → Xop

is topological [Adámek et al., 2006, Topological duality theorem 21.9].
Let U : A → X be a faithful functor, and let A be an object of A. The object A

is called discrete whenever, for each object B, every X-morphism U(A) → U(B) is
an A-morphism. The object A is called indiscrete whenever, for each object B, every
X-morphism U(B)→ U(A) is an A-morphism.

Proposition 0.18 ([Adámek et al., 2006, Proposition 21.11]). The smallest (resp.
largest) element of each fibre of a topological functor is discrete (resp. indiscrete).

Examples 0.19. Topological spaces. A topological space (X, τ) is (in)discrete
with respect to the forgetful functor Top → Set if, and only if, the topology τ is
(in)discrete (see Section 0.4.1).

Preordered sets. A preordered set (X,4) is (in)discrete with respect to the
forgetful functor Preo → Set if, and only if, the preorder 4 is (in)discrete (see Sec-
tion 0.3.1).

Proposition 0.20 ([Adámek et al., 2006, Proposition 21.12]). Let U : A → X be a
topological functor.

1. The functor U has a left adjoint F : X→ A that maps

(a) an object X of X to the smallest element in its fibre (the discrete object), and
(b) an X-morphism f : X → Y to the unique A-morphism f̄ : F (X) → F (Y ) such

that U(f̄) = f .

2. The functor U has a right adjoint G : X→ A that maps

(a) an object X of X to the greatest element in its fibre (the indiscrete object), and
(b) an X-morphism f : X → Y to the unique A-morphism f̄ : G(X) → G(Y ) such

that U(f̄) = f .
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The functors F and G are full, faithful and injective on objects. Moreover, U ◦F and
U ◦G are the identity functor on X.

Proposition 0.21 ([Adámek et al., 2006, Proposition 21.15]). A topological functor
uniquely lifts both limits (via initiality) and colimits (via finality), and it preserves
both limits and colimits.

Theorem 0.22 ([Adámek et al., 2006, Theorem 21.16(1)]). Given a topological func-
tor U : A → X, the category A is complete (resp. cocomplete) if, and only if, the
category X is complete (resp. cocomplete).

These last two results provide a description of limits and colimits in Top and Preo,
as explained in the following.

Examples 0.23. Topological spaces. The category Top is complete and cocom-
plete. The forgetful functor Top→ Set uniquely lifts both limits (via initiality)
and colimits (via finality), and it preserves both limits and colimits.

Preordered sets. The category Preo is complete and cocomplete. The forgetful
functor Top → Set uniquely lifts both limits (via initiality) and colimits (via
finality), and it preserves both limits and colimits.

0.6 Algebras
We assume that the reader has basic knowledge of abstract algebras. We warn the
reader that we admit infinitary algebras, i.e. algebras with operations of infinite arity,
and we allow large signatures (i.e. a class, rather than a set).

In particular, we work with a large signature Σ which is the union of the classes
of κ-ary operations, for κ cardinal. We introduce Σ-algebras and homomorphisms as
usual, and we let Alg Σ denote the category of Σ-algebras and homomorphisms2.

With a common abuse of notation, we will often make no notational distinction
between an algebraic structure and its underlying set. When we want to stress the
difference between the algebraic structure and its underlying set, we use a letter in
bold font for the structure (A, B, . . . ) and the same letter in plain font for the
underlying set (A, B, . . . ).

The interpretation of a function symbol f on an algebra A is denoted by fA, or
simply by f when A is understood.

When a class of algebras with a common signature is considered as a category, it
is understood that the morphisms are the homomorphisms.

By finitary algebra we mean an algebra with a signature consisting of operations
of finite arity.

By trivial algebra we mean an algebra whose underlying set is a singleton.

2Technically speaking, if Σ is large, Σ-algebras and homomorphisms do not form a legitimate
category because there is more than a proper class of algebras on a two-elements set. However, we
will always end up restricting to a class contained in Alg Σ.
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0.6.1 Products, subalgebras, homomorphic images
Notation 0.24. Let Σ be a signature.

1. An isomorphic copy of a Σ-algebra A is an algebra which is isomorphic to A.
Given a class A of Σ-algebras, we let I(A) denote the class of isomorphic copies of
algebras in A. Note that the class A is contained in I(A).

2. A (direct) product of a family (Ai)i∈I of Σ-algebras is a Σ-algebra which is iso-
morphic to the set-theoretic direct product of (Ai)i∈I , in which the operation symbols
are defined coordinatewise. Given a class of Σ-algebras A, we let P(A) denote the class
of direct products of algebras in A. Note that P(A) is closed under isomorphisms, the
class A is contained in P(A), and any trivial algebra belongs to P(A).

3. A subalgebra of a Σ-algebra A is an algebra whose underlying set is a subset of
A and on which the interpretation of each operation symbol is the restriction of its
interpretation on A. Given a class A of Σ-algebras, we let S(A) denote the class of
subalgebras of algebras in A. The class A is contained in S(A). The class S(A) is not
guaranteed to be closed under isomorphism. However, if A is closed under isomorphic
copies, then the class S(A) is closed under isomorphic copies. Thus, for example,
S P(A) = I S P(A).

4. A homomorphic image of a Σ-algebra A is a Σ-algebra B such that there exists
a surjective Σ-homomorphism from A to B. Given a class of Σ-algebras A, we let
H(A) denote the homomorphic images of algebras in A. Note that H(A) is closed
under isomorphisms, and the class A is contained in H(A).

Remark 0.25. Let A be a class of algebras.

1. The classes I(A), P(A), H(A) are closed under isomorphic images.

2. The class P(A) is closed under products.

3. The class S(A) is closed under subalgebras.

4. The class H(A) is closed under homomorphic images.

5. If A is closed under isomorphic images, then I(A), P(A), S(A) and H(A) are
closed under isomorphic images.

6. If A is closed under products, then I(A), P(A), S(A) and H(A) are closed under
products.

7. If A is closed under subalgebras, then I(A), S(A) and H(A) are closed under
subalgebras.

8. If A is closed under homomorphic images, then I(A) and H(A) are closed under
homomorphic images.

For the sake of clarity, we will use expressions such as ‘the algebra A is isomorphic
to a subalgebra of a product of B’, even if, with our isomorphism-invariant convention
about products, the expression ‘isomorphic to’ is redundant.
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0.6.2 Birkhoff’s subdirect representation theorem
An algebra A is a subdirect product of an indexed family (Ai)i∈I of algebras if A is a
subalgebra of ∏i∈I Ai and, for every i ∈ I, the projection of A on the i-th coordinate
is Ai. An injective homomorphism α : A ↪→ ∏

i∈I Ai is subdirect if the image of α is
a subdirect product of (Ai)i∈I . An algebra A is subdirectly irreducible if, for every
subdirect injective homomorphism α : A ↪→ ∏

i∈I Ai, there exists j ∈ I such that
πjα : A → Aj is an isomorphism, where πj : ∏i∈I Ai → Aj is the j-th projection. By
taking I = ∅, we observe that every subdirectly irreducible algebra is non-trivial.

Theorem 0.26 (Birkhoff’s subdirect representation theorem [Birkhoff, 1944, The-
orem 2]). Every finitary algebra is isomorphic to a subdirect product of subdirectly
irreducible algebras.

0.6.3 Definition of varieties and quasivarieties
An implication is a (universally quantified) formula∧

i∈I
(ui = vi) =⇒ (u0 = v0)

where I is a (possibly infinite) set, and ui, vi are, for i ∈ I ∪ {0}, terms over a given
set of variables.

Definition 0.27. We say that a class of algebras A has free algebras if, for each
cardinal κ, there exists an algebra A in A and a function ι from κ to (the underlying
set of) A such that, for every algebra B in A and every function f from κ to (the
underlying set of) B, there exists a unique homomorphism f : A → B such that
f = fι.

Definition 0.28. A class A of Σ-algebras is called a quasivariety of Σ-algebras if

1. the class A can be presented by a class of implications, and

2. the class A has free algebras.

As shown in [Adámek, 2004, Subsection 3.1], given item 1, we have that item 2
holds if, and only if, for each cardinal κ, the class A has only a set of isomorphism
classes of algebras on κ generators.

Definition 0.29. A class A of Σ-algebras is called a variety of Σ-algebras if

1. the class A can be presented by a class of equations, and

2. the class A has free algebras.

As for quasivarieties, given item 1, we have that item 2 holds if, and only if, for
each cardinal κ, the class A has only a set of isomorphism classes of algebras on κ
generators.

Varieties of algebras in this sense coincide, up to equivalence, with monadic (also
known as tripleable) categories over Set; see [Borceux, 1994b, Section 4.1] for the
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related definitions. Moreover, varieties of algebras coincide, up to equivalence, with
varietal categories in the sense of [Linton, 1966, Section 1]: the equivalence between
Linton’s varietal categories and triplable categories over Set is asserted at the end of
Section 6 in [Linton, 1966].

Proposition 0.30 ([Adámek, 2004, Proposition 3.5]). A class of Σ-algebras having
free algebras is a quasivariety if, and only if, it is closed in Alg Σ under products and
subalgebras.

Lemma 0.31. Given a Σ-algebra A, the class S P(A) is a quasivariety.

Proof. The class S P(A) has free algebras. Indeed, following a standard construction,
a free algebra over a set X is given by the subalgebra of AAX generated by the set
of projections {πx : AX → A | x ∈ X}. Moreover, by Remark 0.25, S P(A) is closed
under products and subalgebras. By Proposition 0.30, S P(A) is a quasivariety.

As observed in [Adámek et al., 2006, Section 4.1], we have an analogous version
of Proposition 0.30 for varieties, which generalises a celebrated theorem by [Birkhoff,
1935] for varieties in a small signature.

Proposition 0.32. A class of Σ-algebras having free algebras is a variety if, and only
if, it is closed in Alg Σ under products, subalgebras and homomorphic images.

Comparison with other definitions

We warn the reader that the term ‘variety of algebras’ (and ‘quasivariety of algebras’)
admits different non-equivalent definitions in the literature, depending on the desired
level of generality. Our convention (see Definition 0.29) is listed here as item 3.

1. Classically (but not in this manuscript), one considers a class of algebras in
a small signature (i.e., a set), with operations of finite arity, defined by a set of
equations. Boolean algebras and distributive lattices are an example. Any such class
has free algebras by a theorem of [Birkhoff, 1935] (see also [Grätzer, 2008, Chapter 4,
Section 25, Corollary 2]). In our convention, these classes are3 the varieties of algebras
in a signature whose operations have finite arity.

2. [Słomiński, 1959] considers a class of algebras in a small signature (with oper-
ations of possibly infinite arity), defined by a set of equations. Boolean σ-algebras
[Givant and Halmos, 2009, Chapter 29] are an example. Any such class has free al-
gebras [Słomiński, 1959, 8.3]. In our convention, these classes are4 the varieties of
algebras in a small signature, also called varieties with rank.

3. In this manuscript, the term ‘variety of algebras’ (Definition 0.29) denotes a
class of algebras (in a possibly large signature), defined by a class of equations, with
free algebras. Complete join-semilattices (cf. [Adámek, 2004, Examples 3.2]) and
frames (cf. [Johnstone, 1986, Theorem II.1.2]) are examples. Even if this definition is

3Indeed, the smallness of the signature and of the class of equations is not relevant (in terms of
algebraic theories).

4Indeed, the smallness of the class of equations is not relevant (in terms of algebraic theories).
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the one we use for the term ‘variety of algebras’, it should be noted that the varieties
of algebras that we deal with in this manuscript are also varieties of algebras in the
more restrictive sense of [Słomiński, 1959], described in item 2 above.

4. One may consider a class of algebras (in a possibly large signature) that can be
presented by a class of equations (but possibly lacking some free algebras). Complete
Boolean algebras are an example; it was proved independently by [Gaifman, 1961,
Hales, 1962] that complete Boolean algebras lack free algebras over a countably infinite
set (see [Solovay, 1966] for a shorter proof).



Chapter 1

Compact ordered spaces

1.1 Introduction
What is the correct partially-ordered version of compact Hausdorff spaces? More to
the point, what is the missing piece in the equation

Stone spaces are to Priestley spaces as compact Hausdorff spaces are to . . . , (1.1)

or, equivalently, in the equation

Stone spaces are to compact Hausdorff spaces as Priestley spaces are to . . . ? (1.2)

Our view (which is not new) is that the answer is given by those structures that
L. Nachbin introduced under the name of compact ordered spaces1 ([Nachbin, 1948],
[Nachbin, 1965, Section 3]). A compact ordered space is a compact space X equipped
with a partial order 6 that is a closed subspace of X×X with respect to the product
topology. In this chapter we collect some known background results on compact
ordered spaces to motivate this view. In doing so, we discuss limits and colimits of
compact ordered spaces and an ordered version of Urysohn’s lemma, which will come
handy in the following chapters.

No result in this chapter is new.
The reader who has familiarity with compact ordered spaces may move to Chap-

ter 2.

1.2 Stone is to Priestley as compact Hausdorff is
to compact ordered

To motivate the fact that compact ordered spaces are the missing piece in eq. (1.1), we
compare some characterisations of Stone, Priestley, compact Hausdorff and compact
ordered spaces which best show the analogies between them. In the following sections,
we will recall the classical definition of compact ordered spaces (Definition 1.5) and

1These structure appear in the literature also under the name of ‘compact pospaces’, ‘compact
partially ordered spaces’, ‘partially ordered compact spaces’, ‘separated ordered compact Hausdorff
spaces’, or ‘Nachbin spaces’.

13



14 Chapter 1. Compact ordered spaces

we will make sure that the characterisations of compact ordered spaces stated below
are correct.

1. A Stone space (also known as Boolean space) is a compact topological space X
such that, for all x, y ∈ X such that x 6= y, there exist an open set U containing x
and an open set V containing y such that U ∩ V = ∅ and U ∪ V = X.

2. A Priestley space is a compact topological space X equipped with a partial
order 6 such that, for all x, y ∈ X such that x 66 y, there exist an open up-set U
containing x and an open down-set V containing y such that U∩V = ∅ and U∪V = X.

3. A compact Hausdorff space is a compact topological space X such that, for all
x, y ∈ X such that x 6= y, there exist an open set U containing x and an open set V
containing y such that U ∩ V = ∅.

4. A compact ordered space is a compact topological space X equipped with a
partial order 6 such that, for all x, y ∈ X such that x 66 y, there exist an open up-set
U containing x and an open down-set V containing y such that U∩V = ∅ (Lemma 1.3
below).

Note that the characterisation of compact Hausdorff spaces is obtained from the one
of Stone spaces simply by dropping the requirement that the separating sets U and V
cover the whole space. The characterisation of compact ordered spaces is obtained in
an analogous way from the one of Priestley spaces. Thus, ‘compact ordered spaces’
is a good fit in eq. (1.2). Furthermore, Stone spaces are precisely the Priestley spaces
whose partial order is equality, and compact Hausdorff spaces are precisely the com-
pact ordered spaces whose partial order is equality. Thus, ‘compact ordered spaces’
is a good fit in eq. (1.1).

Other closely related characterisations, which again show the analogies, are as
follows.

1. A Stone space is a compact topological space X such that, for all (x, y) ∈ (X×
X) \ {(s, t) ∈ X ×X | s = t}, there exist an open set U containing x and an open set
V containing y such that U ∪V = X and such that U×V and {(s, t) ∈ X×X | s = t}
are disjoint.

2. A Priestley space is a compact topological space X such that, for all (x, y) ∈
(X × X) \ {(s, t) ∈ X × X | s 6 t}, there exist an open set U containing x and an
open set V containing y such that U ∪ V = X and such that U × V and {(s, t) ∈
X ×X | s 6 t} are disjoint.

3. A compact Hausdorff space is a compact topological space X such that, for all
(x, y) ∈ (X ×X) \ {(s, t) ∈ X ×X | s = t}, there exist an open set U containing x
and an open set V containing y such that U × V and {(s, t) ∈ X × X | s = t} are
disjoint. (In other words, a compact Hausdorff space is a compact space with a closed
diagonal, see Proposition 0.1.)

4. A compact ordered space is a compact topological space X such that, for all
(x, y) ∈ (X ×X) \ {(s, t) ∈ X ×X | s 6 t}, there exist an open set U containing x
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and an open set V containing y such that U × V and {(s, t) ∈ X × X | s 6 t} are
disjoint. (In other words, a compact ordered space is a compact space equipped with
a closed partial order. In fact, this is Nachbin’s original definition, to which we will
conform.)

To present some additional analogies, let us fix some conventions. On the set
{0, 1} we consider the discrete topology and the canonical total order (0 6 1); on
the unit interval [0, 1] we consider the Euclidean topology and the ‘less or equal’
total order 6. Powers are set-theoretic powers equipped with the product topology
and product order, and subsets are equipped with the induced topology and the
induced order (see Sections 0.3.1 and 0.4.1). Isomorphisms of topological structures
are simply homeomorphisms, and isomorphisms of ordered-topological structures are
homeomorphisms which preserve and reflect the partial order. We can now state our
desired analogies.

1. A Stone space is a topological space which is isomorphic to a closed subspace
of a power of the topological space {0, 1}.

2. A Priestley space is a topological space equipped with a partial order which is
isomorphic to a closed subspace of a power of the ordered-topological space {0, 1}.

3. A compact Hausdorff space is a topological space which is isomorphic to a closed
subspace of a power of the topological space [0, 1].

4. A compact ordered space is a topological space equipped with a partial order
which is isomorphic to a closed subspace of a power of the ordered-topological space
[0, 1] (Lemma 1.18 below).

In the following sections, we make sure that the characterisations of compact ordered
spaces stated above are correct.

1.3 Compact ordered spaces
The following concept is an ordered analogue of the Hausdorff property.

Definition 1.1 (See [Nachbin, 1965, Chapter I, Section 1, p. 25]). We say that a
preorder on a topological space X is closed if it is a closed subset of the topological
space X ×X.

The reader who is acquainted with nets ([Willard, 1970, Definition 11.2]) will
notice that a preorder 4 on a topological space X is closed if, and only if2, for any
two converging nets xi → x and yi → y, the property ‘xi 4 yi for all i’ implies x 4 y.
Note that, replacing 4 with = in this condition, we obtain the Hausdorff property
[Willard, 1970, Theorem 13.7].

2This equivalence holds because (i) a set is closed if, and only if, together with any net it contains
all its limits [Willard, 1970, Theorem 11.7], and (ii) the product topology is the topology of pointwise
convergence [Willard, 1970, Theorem 11.9].
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Example 1.2. By Proposition 0.1, the discrete order {(x, x) ∈ X ×X | x ∈ X} on a
topological space X is closed if, and only if, X is Hausdorff.

The following shows that the first characterisation of compact ordered spaces in
Section 1.2 is correct.

Lemma 1.3 ([Nachbin, 1965, Proposition 1, p. 26]). A preorder on a topological space
X is closed if, and only if, for all x, y ∈ X such that x 66 y, there exist an open up-set
U containing x and an open down-set V containing y such that U ∩ V = ∅.

Lemma 1.4 ([Nachbin, 1965, Proposition 2, p. 27]). Every topological space X
equipped with a closed partial order is a Hausdorff space.

Definition 1.5 (See [Nachbin, 1965, Chapter I, Section 3, p. 44]). A compact ordered
space (X, τ,6) consists of a set X with a compact topology τ and a closed partial
order 6.

(We have already observed that the closure of the order has a natural character-
isation in terms of convergence of nets. The same happens for the compactness and
the Hausdorff properties [Willard, 1970, Theorems 13.7 and 17.4].)

To keep the notation simple, we will often write X or (X,6) instead of (X, τ,6).
We denote with CompOrd the category of compact ordered spaces and order-

preserving continuous maps.

Examples 1.6. 1. A basic example of compact ordered space is any compact
interval [a, b] ⊆ R—let alone the unit interval [0, 1]—equipped with the Euclidean
topology and the usual total order.

2. Every compact Hausdorff space equipped with the discrete order is a compact
ordered space.

3. Every finite partially ordered set equipped with the discrete topology is a com-
pact ordered space.

4. Every Priestley space is a compact ordered space.

1.4 Limits and colimits
In this section, we show that the category CompOrd of compact ordered spaces is
complete and cocomplete (see also [Tholen, 2009, Corollary 2, p. 2153]). Moreover, we
characterise limits and finite coproducts: the product of a family of compact ordered
spaces consists of the set-theoretic product equipped with the product topology and
product order, and the coproduct of a finite family of compact ordered spaces consists
of their disjoint union equipped with the coproduct topology and coproduct order.

To prove these facts, we play with reflections and topological functors. Let us first
define some categories.
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Set Objects: Sets.
Morphisms: Functions.

Preo Objects: Preordered sets.
Morphisms: Order-preserving functions.

Top Objects: Topological spaces.
Morphisms: Continuous functions.

CH Objects: Compact Hausdorff spaces.
Morphisms: Continuous functions.

Top×Set Preo Objects: Topological spaces with a preorder.
Morphisms: Order-preserving continuous functions.

CH×Set Preo Objects: Compact Hausdorff spaces with a preorder.
Morphisms: Order-preserving continuous functions.

CHPreo Objects: Compact Hausdorff spaces with a closed preorder.
Morphisms: Order-preserving continuous functions.

CompOrd Objects: Compact ordered spaces.
Morphisms: Order-preserving continuous functions.

The following diagram illustrates some of the inclusion and forgetful functors be-
tween these categories. We will observe that the functors labelled ‘refl.’ are inclusions
of reflective full subcategories, and the functors labelled ‘topol.’ are topological func-
tors.

CompOrd CHPreo CH×Set Preo Top×Set Preo

CH Top Preo

Set

refl. refl.

topol.
topol.

refl.

topol. topol.

refl.

topol.
topol.

(1.3)
To this end, we recall from Definition 0.9 that a reflective full subcategory of a

category C is a full subcategory D whose inclusion functor D ↪→ C admits a left
adjoint, called the reflector.

Furthermore, we recall from Definition 0.12 that a faithful functor G : A → X is
called topological provided that every family of morphisms (fi : X → G(Ai))i∈I in X
has a unique G-initial lift. Spelling out the details, the existence of a unique G-initial
lift amounts to say that there exists a unique family of morphisms (f i : A → Ai)i∈I
in A that is

1. a lift of (fi : X → G(Ai))i∈I , i.e. such that G(A) = X and, for every i ∈ I,
G(f i) = fi, and

2. G-initial, i.e., for each object C of A, an X-morphism h : U(C) → X is (the
image of) an A-morphism from C to A if, and only if, for every i ∈ I, the
composite U(C) h−→ X

fi−→ G(Ai) is (the image of) an A-morphism from C to Ai.

Remark 1.7. We observe the following pleasant facts.

1. The forgetful functor Top→ Set is topological (see Examples 0.13).



18 Chapter 1. Compact ordered spaces

2. The forgetful functor Preo→ Set is topological (see Examples 0.13).

3. The inclusion functor CH ↪→ Top is reflective. The reflector is the Stone-Čech
compactification functor β : Top→ CH [Borceux, 1994a, 3.3.9.d].

4. The inclusion functor Ord ↪→ Preo is reflective. The reflector maps a preordered
set (X,4) to the partially ordered set (X/∼,6), where ∼ is the equivalence relation
defined by

x ∼ y ⇐⇒ x 4 y and y 4 x,

and 6 is the quotient order with respect to the map X � X/∼, which, in this case,
is defined by

[x]∼ 6 [y]∼ ⇐⇒ x 4 y.

5. The inclusion functor TopPreo ↪→ Top ×Set Preo is reflective. The reflector
maps a topological space X equipped with a preorder 4 to the topological space
X itself, equipped with the smallest closed preorder on X which extends 4. Note
that the reflector Top ×Set Preo → TopPreo commutes with the forgeftul functors
TopPreo→ Top and Top×Set Preo→ Top.

The facts above are the ingredients to obtain the following.
Remark 1.8. In fig. 1.3, the functors labelled ‘refl.’ are inclusions of reflective full
subcategories, and the functors labelled ‘topol.’ are topological functors. In the
following, we carry out some details.

Reflector of CH ↪→ Top. See item 3 in Remark 1.7.

Reflector of CH×Set Preo ↪→ Top×Set Preo. The reflector maps an object (X,4)
to (βX,4′), where 4′ is the final preorder with respect to the map X → βX, i.e. the
smallest preorder that makes this function order-preserving.

Reflector of CHPreo ↪→ CH×Set Preo. The reflector is the restriction of the re-
flector of the inclusion TopPreo ↪→ Top×Set Preo (see item 5 in Remark 1.7).

Reflector of CompOrd ↪→ CHPreo. The reflector is the restriction of the reflector
of the inclusion functor Top×Set Ord ↪→ Top×Set Preo. The reflector

Top×Set Preo −→ Top×Set Ord

maps a topological space with a preorder (X,4) to the set X/(4 ∩ 4op) with the
quotient order (which is a partial order) as described by the reflector of Ord ↪→ Preo,
equipped with the quotient topology. This reflector restricts to a functor CHPreo →
CompOrd. Indeed, if (X,4) is compact, then also its continuous image X/(4∩4op) is
compact, by Proposition 0.2. Since any continuous map between compact Hausdorff
spaces is closed (Proposition 0.5), and the continuous map

X ×X −→ X/(4 ∩4op)×X/(4 ∩4op)

maps the subset 4 to 6 and the subset 4 ∩4op to the diagonal of X/(4 ∩4op), we
have that X/(4 ∩4op) has a closed partial order and a Hausdorff topology.

Let us now take a look at the topological functors.
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The topological functor Top→ Set. See item 1 in Remark 1.7.

The topological functor Preo→ Set. See item 2 in Remark 1.7.

The topological functor Top×Set Preo→ Preo. The unique initial lift of a fam-
ily of order-preserving functions (fi : X → Ai) is obtained by providing X with the
initial topology.

The topological functor Top×Set Preo→ Top. The unique initial lift of a fam-
ily of continuous functions (fi : X → Ai) is obtained by providing X with the initial
preorder.

The topological functor CH×Set Preo→ CH. The unique initial lift of a family
of continuous functions (fi : X → Ai) is obtained by providing X with the initial
preorder.

The topological functor CHPreo→ CH. Recall from the discussion above that
the inclusion functor CHPreo ↪→ CH ×Set Preo has a reflector that commutes with
the forgetful functors to CH. Therefore, by [Adámek et al., 2006, Proposition 21.31],
denoting with U the forgetful functor CH ×Set Preo → CH, every U -initial source
whose codomain is a family of objects in CHPreo has its domain in CHPreo. Hence,
by [Adámek et al., 2006, Proposition 21.30], the forgetful functor CHPreo → CH is
topological.

Proposition 1.9. The category CompOrd is complete and cocomplete.

Proof. By Remark 1.8, CompOrd is a full reflective subcategory of CHPreo, which is
topological over CH, which is a full reflective subcategory of Top, which is topolog-
ical over Set. The category Set is complete and cocomplete. By Proposition 0.10
and Theorem 0.22, CompOrd is complete and cocomplete.

Proposition 1.10. Every functor in fig. 1.3 preserves limits. In particular, the for-
getful functors CompOrd → Set, CompOrd → Preo and CompOrd → Top preserve
limits.

Proof. By Remark 1.8, each functor in fig. 1.3 is either an inclusion of a full reflective
subcategory or a topological functor. In either cases, it is a right adjoint: in the first
case by definition of full reflective subcategory, in the second case by Proposition 0.20.
By Proposition 0.8, right adjoint preserve limits.

Lemma 1.11. The product in CompOrd of a family of compact ordered spaces (Xi)i∈I
consists of the set-theoretic product ∏i∈I Xi equipped with the product topology and
product order.

Proof. By Proposition 1.10.

We conclude this section with a note on finite coproducts.

Lemma 1.12. Every functor in fig. 1.3 preserves finite coproducts. In particular, a
coproduct in CompOrd of two compact ordered spaces X and Y is given by the disjoint
union of X and Y equipped with the coproduct topology and coproduct order.
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Proof. This is clearly true for the topological functors. Let us settle the statement
for the inclusion functors. The case of binary coproduct follows from the following
observations.

1. If X and Y are Hausdorff (resp. compact) spaces, then the coproduct topology
on their disjoint union is Hausdorff (resp. compact).

2. If X and Y are partially ordered sets, then the coproduct preorder on their
disjoint union is a partial order.

3. If X and Y are topological spaces equipped with a closed preorder, then the
coproduct preorder on their disjoint union is closed with respect to the coproduct
topology.

The nullary coproduct turns out to be the emptyset (with the only possible topology
and preorder) in each category under consideration.

1.5 Ordered Urysohn’s lemma
The following important result, due to L. Nachbin, is an ordered version of a celebrated
result of P. Urysohn [Willard, 1970, Urysohn’s lemma 15.6].

Theorem 1.13 (Ordered version of Urysohn’s lemma). For any two disjoint closed
subsets F0, F1 of a compact ordered space X where F0 is a down-set and F1 is an
up-set, there exists a continuous order-preserving function f : X → [0, 1] such that
f(x) = 0 for x ∈ F0 and f(x) = 1 for x ∈ F1.

Proof. The assertion holds by [Nachbin, 1965, Theorem 1, p. 30], which applies to
compact ordered spaces in light of [Nachbin, 1965, Corollary of Theorem 4, p. 48].

For X a preordered set and x ∈ X, we set ↓x := {z ∈ X | z 4 x} and ↑x := {z ∈
X | x 4 z}.

Lemma 1.14 ([Nachbin, 1965, Proposition 1, p. 26]). Given a topological space X
equipped with a closed preorder, for every x ∈ X the sets ↓x and ↑x are closed.

To illustrate Lemma 1.14 with an example, note that, applying Lemma 1.14 to
a compact Hausdorff space X equipped with the discrete order, we obtain that the
points of X are closed.

Lemma 1.15. Let X be a compact ordered space, and let x, y ∈ X be such that
x 6> y. Then there exists a continuous order-preserving function ψ : X → [0, 1] such
that ψ(x) = 0 and ψ(y) = 1.

Proof. Apply Theorem 1.13 with F0 = ↓x and F1 = ↑y, both of which are closed by
Lemma 1.14.
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Lemma 1.16. For every compact ordered space X, the function

ev : X −→
∏

homCompOrd(X,[0,1])
[0, 1]

x 7−→ evx : f 7→ f(x)

is continuous, order-preserving, injective and order-reflective (with respect to the prod-
uct order and product topology).
Proof. It is continuous and order-preserving by the construction of products (see
Lemma 1.11). It is injective and order-reflective by Lemma 1.15.
Lemma 1.17. Let X be a topological space equipped with a closed preorder, and let
Y be a subset of X. Then, the induced preorder on Y is closed with respect to the
induced topology on Y .
Proof. By Lemma 1.3.

We obtain that compact ordered spaces are precisely, up to isomorphisms, the
closed subspaces of some power of [0, 1] with the induced order, as shown in the
following.
Lemma 1.18. A topological space X equipped with a preorder is a compact ordered
space if and only if there exists an isomorphism (in Top ×Set Preo, i.e. an order-
preserving order-reflecting homeomorphism) between X and a closed subspace of a
power of [0, 1].
Proof. By Lemma 1.16, for every compact ordered space X, the function

ev : X →
∏

homCompOrd(X,[0,1])
[0, 1]

is continuous, order-preserving, injective and order-reflective. Since the image of a
compact space under a continuous map is compact (Proposition 0.2), the image of ev
is compact. Since a compact subset of a Hausdorff space is closed (Proposition 0.3),
the image of evX is closed. Therefore, every compact ordered space is isomorphic to
a closed subspace of a power of [0, 1]. This settles one direction.

As observed in item 1 in Examples 1.6, the unit interval [0, 1] is a compact ordered
space. By Lemma 1.11, any power of a compact ordered space is a compact ordered
space. By Lemma 1.17, for every topological space X equipped with a closed preorder
and every subset Y of X, the induced preorder on Y is closed with respect to the
induced topology on Y . By Proposition 0.4, every closed subspace of a compact space
is compact. Therefore, every closed subspace of a compact ordered space is a compact
ordered space. In conclusion, every closed subspace of a power of [0, 1] (and of its
isomorphic copies) is a compact ordered space.

1.6 Conclusions
We completed our work of showing that the various characterisations of compact
ordered spaces in Section 1.2 are correct. With these facts at hand, we believe we can
finally conclude: Stone spaces are to Priestley spaces as compact Hausdorff spaces are
to compact ordered spaces.





Chapter 2

The dual of compact ordered
spaces is a variety

2.1 Introduction
In the previous chapter we presented compact ordered spaces as the correct solution
for X in the equation

Stone spaces are to Priestley spaces as compact Hausdorff spaces are to X.

It has been very well known for at least half a century that Stone spaces, Priestley
spaces and compact Hausdorff spaces all have an equationally axiomatisable dual.

1. The category Stone of Stone spaces and continuous maps is dually equivalent to
a variety of finitary algebras—namely, the variety of Boolean algebras [Stone,
1936].

2. The category Pries of Priestley spaces and order-preserving continuous maps
is dually equivalent to a variety of finitary algebras—namely, the variety of
bounded distributive lattices [Priestley, 1970].

3. The category CH of compact Hausdorff spaces and continuous maps is dually
equivalent to a variety of algebras (as observed in [Duskin, 1969, 5.15.3]; for
a proof see [Barr and Wells, 1985, Chapter 9, Theorem 1.11]), with primitive
operations of at most countable arity1.

The question now arises:

Is the category of compact ordered spaces dually equivalent to a variety
of (possibly infinitary) algebras?

In fact, this question appears as an open problem in [Hofmann et al., 2018], and
it will be the driving force of this manuscript. In this chapter, we provide a clear-cut

1Given the fact that the functor homCH(−, [0, 1]) : CHop → Set is monadic [Duskin, 1969], the
bound on the arity follows from the fact that every morphism from a power of [0, 1] to [0, 1] factors
through a countable sub-power [Mibu, 1944, Theorem 1], or, alternatively, from the fact that [0, 1] is
ℵ1-copresentable [Gabriel and Ulmer, 1971, 6.5(a)]. See also [Isbell, 1982, Marra and Reggio, 2017].

23



24 Chapter 2. The dual of compact ordered spaces is a variety

answer: The category of compact ordered spaces is dually equivalent to a variety, with
primitive operations of at most countable arity.

Whether a better bound on the arity can be achieved is a question that we will
address in the next chapter.

The structure of our proof is the following. In Section 2.2, we recall a well-known
result in category theory, which characterises those categories which are equivalent
to some variety of possibly infinitary algebras. A key property, which characterises
varieties among quasivarieties, is the effectiveness of (internal) equivalence relations.
In Section 2.3 we prove that CompOrdop is equivalent to a quasivariety. Then, in
Section 2.5, we characterise equivalence relations on a compact ordered space X,
seen as an object of CompOrdop, as certain preorders on the order-topological coprod-
uct X + X. Then, we rephrase effectiveness into an order-theoretic condition, and
show, in Section 2.6, that this condition is satisfied by every preorder arising from
an equivalence relation. This proves the important result stated in Theorem 2.38:
equivalence relations in CompOrdop are effective. Finally, we show that this implies
that CompOrdop is equivalent to a variety.

Let us note that the proof of effectiveness of equivalence relations in CompOrdop

is far more involved than the proof of the corresponding fact for CHop. To our un-
derstanding, this is due to the fact that—as it emerges in the proof of [Barr and
Wells, 1985, Chapter 9, Theorem 1.11]—every reflexive relation in CHop is an equiv-
alence relation (i.e., CHop is a Mal’cev category), whereas the same does not hold for
CompOrdop: the study of symmetry and transitivity seems necessary in our case.

This chapter is based on a joint work with L. Reggio [Abbadini and Reggio, 2020],
whose novel results can be found in Sections 2.4 to 2.6 below. Sections 2.2 and 2.3,
instead, collect some useful results from the literature.

2.2 Varieties and quasivarieties as categories

In this section we provide the background needed to state a well-known character-
isation of those categories which are equivalent to some (quasi)variety of algebras
(Theorem 2.1 below).

Recall, from Definitions 0.28 and 0.29, that by variety of algebras (resp. quasiva-
riety of algebras) we mean a class of algebras in a (possibly large) signature that can
be presented by a class of equations (resp. implications) and that has free algebras.

The abstract characterisation of varieties and quasivarieties (also called primitive
and quasiprimitive classes) has a long history in category theory, starting in the
‘60s: in particular, we mention [Lawvere, 1963, Isbell, 1964, Linton, 1966, Felscher,
1968, Duskin, 1969, Vitale, 1994, Adámek, 2004]2.

2To add some detail, [Lawvere, 1963] studies varieties of finitary algebras, [Isbell, 1964] quasi-
varieties of finitary algebras, [Linton, 1966] varieties of possibly infinitary algebras, [Felscher, 1968]
varieties and quasivarieties of possibly infinitary algebras, [Duskin, 1969] varieties of possibly infini-
tary algebras, [Vitale, 1994] varieties of possibly infinitary algebras, and [Adámek, 2004] varieties
and quasivarieties of finitary algebras and varieties and quasivarieties of possibly infinitary algebras.
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2.2.1 Characterisation of quasivarieties
Each quasivariety of algebras has an object of special interest: the free algebra over
one element. This object possesses certain categorical properties which are used in
the characterisation of quasivarieties: it is both a regular generator and a regular
projective object.

Recall that an object G of a category C with coproducts is a regular generator if,
for every object A of C, the canonical morphism∑

homC(G,A)
G→ A

is a regular epimorphism. In a quasivariety, the free algebra over one element is a
regular generator3: this fact corresponds to the fact that every algebra is the quotient
of some free algebra.

Further, an object G of a category C is regular projective if, for every morphism
f : G→ A and every regular epimorphism g : B � A, there exists a morphism h : G→
B such that the following diagram commutes.

G B

A

h

f
g

In a quasivariety, the free object over one element is regular projective4.

Theorem 2.1 (Characterisation of quasivarieties). A category is equivalent to a quasi-
variety if, and only if, it is cocomplete and it has a regular projective regular generator
object.

Proof. By [Adámek, 2004, Theorem 3.6].

2.2.2 Characterisation of varieties
To obtain a categorical characterisation of varieties, one addresses the question: when
is a quasivariety a variety? By Propositions 0.30 and 0.32, a quasivariety A is a
variety if, and only if, it is closed under homomorphic images. This happens if, and
only if, for every algebra A in A and every congruence ∼ on A, the quotient A/∼
still belongs to A, or, equivalently, ∼ is the kernel of some morphism. In categorical
terms, congruences are internal equivalence relations, and kernels are kernel pairs: so,
a quasivariety is a variety if, and only if, every internal equivalence relation is a kernel
pair. We now recall the related definitions.

Notation 2.2. Given morphisms f0 : X → Y0 and f1 : X → Y1, the unique morphism
induced by the universal property of the product is denoted by 〈f0, f1〉 : X → Y0×Y1.
Similarly, given morphisms f0 : X0 → Y and f1 : X1 → Y , the coproduct map is
denoted by

(
g0
g1

)
: X0 +X1 → Y .

3In fact, the statement is true for any free algebra over a non-empty set.
4In fact, the statement is true for any free algebra.
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Let C be a category with finite limits, and A an object of C. An (internal) binary
relation on A is a subobject 〈p0, p1〉 : R� A × A, (or, equivalently, a pair of jointly
monic maps p0, p1 : R⇒ A). A binary relation 〈p0, p1〉 : R� A× A on A is called

reflexive provided there exists a morphism d : A → R such that the following
diagram commutes;

A R

A× A
〈1A,1A〉

d

〈p0,p1〉

symmetric provided there exists a morphism s : R→ R such that the following
diagram commutes;

R R

A× A

s

〈p1,p0〉 〈p0,p1〉

transitive provided that, if the left-hand diagram below is a pullback square,
then there exists a morphism t : P → R such that the right-hand diagram commutes.

P R

R A

π1

π0
p

p0

p1

P R

A× A
〈p0◦π0,p1◦π1〉

t

〈p0,p1〉

An (internal) equivalence relation on A is a reflexive symmetric transitive binary
relation on A.

Definition 2.3. An equivalence relation p0, p1 : R⇒ A is effective if it coincides with
the kernel pair of its coequaliser.

For categories of algebras, the definition of equivalence relation given above co-
incides with the usual notion of congruence, while the effective equivalence relations
in quasivarieties are the so-called relative congruences, i.e. congruences that induce a
quotient which still belongs to the quasivariety.

We can now state the following folklore result.

Proposition 2.4. A quasivariety C is a variety if, and only if, every equivalence
relation in C is effective.

Theorem 2.5 (Characterisation of varieties). A category C is equivalent to a variety
if, and only if, C is cocomplete, C has a regular projective regular generator object,
and every equivalence relation in C is effective.

Proof. This follows immediately from Theorem 2.1 and Proposition 2.4 (using the
fact that varieties are quasivarieties).
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2.2.3 Quasivarieties with a cogenerator
In Theorem 2.1, we have seen that a category is equivalent to a quasivariety if, and only
if, it is cocomplete and it has a regular projective regular generator object. Dualising
these notions, by regular injective we mean the dual notion of regular projective, and
by regular cogenerator we mean the dual notion of regular generator. It follows that
a category C is dually equivalent to a quasivariety if, and only if, it is complete and
it has a regular injective regular cogenerator object. In this case, the description
of a quasivariety dual to C can be obtained by inspection of the proof of [Adámek,
2004, Theorem 3.6]. However, in the case C admits a faitfhul representable functor
U : C → Set, an easier description can be given. This is explained in Proposition 2.8
below, for which we need a couple of lemmas. These results combine the categorical
characterisation of quasivarieties and the theory of natural dualities, for an overview
of which we refer to [Porst and Tholen, 1991].

In analogy with the definition of regular generator, we recall that an object G of
a category C with coproducts is a generator if, for every object A of C, the canonical
morphism ∑

homC(G,A)
G→ A

is an epimorphism. The dual notion is cogenerator .

Lemma 2.6. An algebra A of a quasivariety D is a cogenerator if, and only if,

D = S P(A).

Proof. By definition, an object A of D is a cogenerator if, and only if, for every object
B of D, the canonical map

B →
∏

hom(B,A)
A

is a monomorphism, or, equivalently, there exists a monomorphism from B to some
power of A. Since D is a quasivariety, categorical products are classical direct products
of algebras and monomorphisms are injective functions. Therefore, A is a cogenerator
if, and only, D ⊆ S P(A). The inclusion D ⊇ S P(A) holds for every object A because
quasivarieties are closed under products and subalgebras.

We remark that there are examples of varieties which do not have a cogenerator,
such as the category of semigroups, the category of groups and the category of rings
[Adámek et al., 2006, Examples 7.18(8)].

Lemma 2.7. Let C be a cocomplete category, let X be a regular projective regular
generator of C, and let X0 be a cogenerator of C. Let Σ be the signature whose elements
of arity κ (for each cardinal κ) are the morphisms from X to ∑i∈κX, and let X̄ be the
Σ-algebra whose underlying set is hom(X,X0) and on which the interpretation of any
operation symbol s of arity κ maps (fi)i∈κ to the composite X s−→ ∑

i∈κX
(fi)i∈κ−−−−→ X0.

Then, C is equivalent to S P(X̄).

Proof. Following [Adámek, 2004, Theorem 3.6], we have a functor E : C → Alg Σ,
defined as follows: given an object Y , the underlying set of E(Y ) is hom(X, Y ), and
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the interpretation of an operation symbol s of arity κ maps (fi)i∈κ to the composite
X

s−→ ∑
i∈κX

(fi)i∈κ−−−−→ Y ; given a morphism f : Y → Z, the map E(f) maps g to
f ◦ g. Let D be the closure of the image of E under isomorphisms. By [Adámek,
2004, Theorem 3.6], we have the following: since X is a generator, the functor E is
faithful, and since X is a regular projective regular generator, the functor E is full,
and D is a quasivariety. In particular, it follows that C is equivalent to D. Since X0 is
a cogenerator of C, the object E(X0) is a cogenerator in D. Therefore, by Lemma 2.6,
we have D = S P(E(X0)). Note that the object E(X0) coincides with the object X̄ of
the statement.

We remark that the fact that the class S P(X̄) in the statement of Lemma 2.7 is a
quasivariety (as attested by the proof) should be self-evident because of Lemma 0.31.

We recall that a functor U : C → Set is said to be representable if there exists an
object C in C such that U is naturally isomorphic to hom(C,−). For the following
result, we recall that representable functors preserve all limits—let alone powers. We
anticipate the fact that we will use the following result with C = CompOrd, X = [0, 1],
and U : C→ Set the obvious forgetful functor.

Proposition 2.8. Let C be a complete category, let X be a regular injective regular
cogenerator of C, and let U : C → Set be a faitfhul representable functor. Let Σ be
the signature whose elements of arity κ (for each cardinal κ) are the morphisms from
Xκ to X, and let X̄ be the Σ-algebra whose underlying set is U(X) and on which
the interpretation of any operation symbol f is U(f). Then, C is dually equivalent to
S P(X̄).

Proof. Let X0 be an object such that U ' hom(−, X0). Faithfulness of U is equivalent
to the fact that X0 is a generator [Borceux, 1994a, Corollary 4.5.9]. The result then
follows from Lemma 2.7.

2.3 The dual of compact ordered spaces is a qua-
sivariety

Proposition 2.9. The following statements hold.

1. A morphism in CompOrd is a monomorphism if, and only if, it is injective.

2. A morphism in CompOrd is a regular monomorphisms if, and only if, it is
injective and order-reflecting.

3. A morphism in CompOrd is an epimorphisms if, and only if, it is surjective.

4. A morphism in CompOrd is an isomorphism if, and only if, it is bijective and
order-reflecting.

Proof. Recall that faithful functors reflect monomorphisms and right adjoints pre-
serve monomorphisms. The forgetful functor CompOrd → Set is faithful and, by
Remark 1.8, right adjoint. Item 1 follows.

For items 2 and 3 see, e.g., [Hofmann et al., 2018, Theorem 2.6].
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It is clear that any isomorphism in CompOrd is bijective and reflects the order. Let
f : X → Y be a bijective order-reflective morphism of compact ordered spaces. Then,
by Proposition 0.6, f is a homeomorphism, and thus it admits a continuous inverse
function g; the function g is order-preserving because f is order-reflecting.

Note that, by item 2 in Proposition 2.9, the regular monomorphisms are, up to
isomorphisms, the closed subets with the induced topology and order.

Proposition 2.10. The unit interval [0, 1] is a regular cogenerator of CompOrd.

Proof. By Lemma 1.16, for every compact ordered space X, the canonical morphism

X →
∏

homCompOrd(X,[0,1])
[0, 1]

is injective and order-reflective. By item 2 in Proposition 2.9, the regular monomor-
phisms are precisely the injective and order-reflecting monomorphisms. It follows that
[0, 1] is a regular cogenerator.

Lemma 2.11. Let X be a compact ordered space equipped with a closed partial order
and let F be a closed subset of X. Then, every continuous order-preserving real-
valued function on F can be extended to the entire space in such a way as to remain
continuous and order-preserving.

Proof. The statement holds by [Nachbin, 1965, Theorem 6, p. 49], which applies to
compact ordered spaces by [Nachbin, 1965, Corollary of Theorem 4, p. 48].

Proposition 2.12. The unit interval [0, 1] is a regular injective object of CompOrd.

Proof. By Lemma 2.11.

Lemma 2.13. Every morphism in CompOrd from a power of [0, 1] to [0, 1] factors
through a countable sub-power.

[0, 1]X [0, 1]

[0, 1]Y

f

Proof. Every continuous map from a power of [0, 1] to [0, 1] depends on at most
countably many coordinates [Mibu, 1944, Theorem 1].

We let ΣOC (for ‘Signature of Order-preserving Continuous function’) denote the
signature whose operation symbols of arity κ are the order-preserving continuous
functions from [0, 1]κ to [0, 1]. Every operation symbol in ΣOC has an obvious in-
terpretation on [0, 1]. We let ΣOC

6ω denote the sub-signature of ΣOC consisting of the
operations symbols in ΣOC of at most countable arity.
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Theorem 2.14. The category CompOrd is dually equivalent to the quasivarieties5

S P
(〈

[0, 1]; ΣOC
〉)
,

and
S P

(〈
[0, 1]; ΣOC

6ω

〉)
.

Proof. By Proposition 1.9, CompOrd is complete. The compact ordered space [0, 1]
is a regular injective regular cogenerator of CompOrd by Propositions 2.10 and 2.12.
The forgetful functor from CompOrd to Set is faitfhul, and it is represented by the
one-element compact ordered space. So, Proposition 2.8 applies and we obtain that
CompOrd is dually equivalent to S P

(〈
[0, 1]; ΣOC

〉)
, which, by Lemma 0.31, is a qua-

sivariety.
By Lemma 2.13, we can restrict to operations of at most countable arity. (Alter-

natively, one can use the fact that [0, 1] is ℵ1-copresentable in CompOrd [Hofmann
et al., 2018, Proposition 3.7]; see [Adámek and Rosický, 1994, Definition 1.16] for the
definition of κ-presentability for κ a regular cardinal.6)

A stronger version of Theorem 2.14 was obtained in [Hofmann et al., 2018], where
the authors proved that CompOrdop is an ℵ1-ary quasivariety, i.e., it can be presented
by means of operations of at most countable arity, and of implications with at most
countably many premises. The main contribution of this chapter consists in a proof
of the fact that every equivalence relation in CompOrdop is effective (Theorem 2.38).
When this result is coupled with the fact that CompOrdop is equivalent to a quasiva-
riety, we obtain the main result of this chapter: CompOrdop is equivalent to a variety
(Theorem 2.43).

2.4 Quotient objects
We will study equivalence relations in CompOrdop by looking at their dual in CompOrd.
In order to do so, we need to introduce some notation for the dual concepts.

Notation 2.15. We let Q(X) denote the class of epimorphisms of compact ordered
spaces with domain X. We equip Q(X) with a relation 4 as follows: an element
f : X � Y is below an element g : X � Z if, and only if, there exists a (necessarily
unique) morphism h : Y → Z such that the following diagram commutes7.

X Y

Z

f

g
h

5As we will prove, they are actually varieties.
6The reader might also want to take a look at [Pedicchio and Vitale, 2000, Proposition 2.4], where

it is proved that the notions of abstractly finite and finitely generated are equivalent for a regular
projective regular generator with copowers.

7We warn the reader that, in [Abbadini and Reggio, 2020], the order of Q̃ is the opposite of what
we consider here.
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It is immediate that 4 is reflexive and transitive, so that Q(X) becomes a preordered
class.

There is a standard way in which a partially ordered set is obtained from a pre-
ordered set, i.e. by identifying elements of an equivalence class (see item 4 in Re-
mark 1.7). In the same fashion, from Q(X), we obtain a partially ordered class (in
fact, a set) Q̃(X). Explicitly, Q̃(X) is the set of equivalence classes of epimorphisms
of compact ordered spaces with domain X, where two epimorphisms f : X � Y and
g : X � Z are equivalent if, and only if, there exists an isomorphism h : Y → Z such
that hf = g; moreover, the equivalence class of f : X � Y is below the equivalence
class of g : X � Z if, and only if, there exists a morphism h : Y → Z such that
hf = g. Elements of Q̃(X) are called quotient objects of X. We warn the reader
that our terminology is non-standard. By a quotient object we do not mean a regular
epimorphism, but what may be called a cosubobject. With a little abuse of notation,
we take the liberty to refer to an element of Q̃(X) just with one of its representatives.

Our next goal is to encode quotient objects on X internally on X. To make a
parallelism: by [Engelking, 1989, The Alexandroff Theorem 3.2.11]8, in the category
CH of compact Hausdorff spaces, an epimorphism f : X � Y (equivalently, a sur-
jective continuous function) is encoded by the equivalence relation ∼f := {(x, y) ∈
X × X | f(x) = f(y)}; the equivalence relation ∼f is closed, and, in fact, there is
a bijection between equivalence classes of epimorphisms of compact Hausdorff spaces
with domain X and closed equivalence relations on X. There is also an analogous
version for Stone spaces, namely Boolean relations9 (see [Givant and Halmos, 2009,
Lemma 1, Chapter 37]), and an analogous version for Priestley spaces, introduced
under the name of lattice preorders in [Cignoli et al., 1991, Definition 2.3]10.

In the case of compact ordered spaces, we encode a quotient object f : X � Y via
a certain preorder 4f on X, as follows.

Notation 2.16. Given a morphism f : (X,6X)→ (Y,6Y ) in CompOrd, we set

4f= {(x1, x2) ∈ X ×X | f(x1) 6Y f(x2)}.

To illustrate Notation 2.16 with an example, consider the following compact or-
dered space X = {a, b, c} with a 6 b.

•

•

•

c

b

a

8The reader is warned that, in [Engelking, 1989], by ‘compact space’ is meant what we here call
a compact Hausdorff space.

9Sometimes called Boolean equivalences.
10Lattice preorders are also called Priestley quasiorders ([Schmid, 2002, Definition 3.5]), or com-

patible quasiorders.
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It is understood that the topology is the discrete one (the topology of any finite Stone
space is discrete). Consider a chain Y of two elements ⊥ 6 >, equipped with the
discrete topology, and let f : X → Y be the function that maps a and b to ⊥ and c
to >.

•

•

•

X
f

•

•

Y

Then, 4f looks as the following preorder on X.

•

•

•

Example 2.17. If Y is a compact Hausdorff space equipped with the identity partial
order, and f : X → Y is a morphism of compact ordered spaces, then 4f = {(x, y) ∈
X × X | f(x) = f(y)}. So, the specialisation to compact Hausdorff spaces of this
approach is precisely the one that we have discussed before Notation 2.16.

Notation 2.16 will be relevant especially for f an epimorphism. The idea is that,
up to an isomorphism, an epimorphism f can be completely recovered from 4f . In
order to establish an inverse for the assignment f 7→ 4f , we shall investigate the
properties satisfied by 4f : these properties are precisely that 4f is a closed preorder
which extends the given partial order, as we now shall see.

Lemma 2.18. If f : (X,6X) → (Y,6Y ) is a morphism in CompOrd, then 4f is a
closed preorder on X that extends 6X .

Proof. The fact that 4f is a preorder follows from the fact that 6Y is reflexive and
transitive. The monotonicity of f entails 6X ⊆ 4f . The set 4f is closed in X ×X
because 4f is the preimage of 6Y under the continuous map f × f : X × X →
Y × Y .

Remark 2.19. We shall now see how one recovers an epimorphism f from 4f . Let
(X,6X) be a compact ordered space and let 4 be a closed preoder on X that extends
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6X . We equip X/(4∩4op) with the quotient topology and the quotient order, defined
by

[x]4∩4op 6X/(4∩4op) [y]4∩4op ⇐⇒ x 4 y.

Then, X/(4∩4op) is a compact ordered space, as proved in the paragraph ‘Reflector
of CompOrd ↪→ CHPreo’ in Remark 1.8. Moreover, since 6X ⊆ 4, the function
X � X/(4 ∩4op) is order-preserving. In conclusion, the function

X � X/(4 ∩4op)

is an epimorphism in CompOrd.
For X a compact ordered space, we let P(X) denote the set of closed preorders

on X that extend 6X . We equip P(X) with the partial order given by inclusion.
Our goal, met in Theorem 2.26, is to prove that the assignments

Q̃(X) −→ P(X)(
f : X � Y

)
7−→ 4f

P(X) −→ Q̃(X)
4 7−→

(
X � X/(4 ∩4op)

)

establish an isomorphism between the partially ordered sets Q̃(X) and P(X). This
will allow us to work with P(X) instead of Q̃(X).

The adjunction between the coslice category over X and P(X)

For the rest of this section, we fix a compact ordered space X. In Theorem 2.26
below, we will prove the correspondence between quotients objects on X and closed
preorders onX extending the given partial order. To do so, we start by establishing, in
Lemma 2.22 below, an adjunction between the coslice category X ↓ CompOrd (whose
objects are morphisms with domain X) and the partially ordered set P(X), regarded
as a category. From this adjunction, we will obtain an equivalence by restricting to
the fixed points, and then an isomorphism via a certain quotient.

We let X ↓ CompOrd denote the coslice category of CompOrd over X, i.e., the
category whose objects are the morphisms in CompOrd with domain X and whose
morphisms from an object f : X → Y to an object g : X → Z are the morphisms
h : Y → Z in CompOrd such that the following triangle commutes.

X Y

Z

f

g
h

Whenever convenient, we shall regard P(X) as a category, in the way in which it is
usually done for partially ordered sets.

Notation 2.20. We let

F : X ↓ CompOrd −→ P(X)(
f : X → Y

)
7−→ 4f



34 Chapter 2. The dual of compact ordered spaces is a variety

denote the assignment described in Notation 2.16. Note that 4f belongs to P(X) by
Lemma 2.18. This assignment can be extended on morphisms so that G becomes a
functor: given f : X → Y and g : X → Z in X ↓ CompOrd, and given h : Y → Z such
that g = hf , we set G(h) as the unique morphism in P(X) from 4f to 4g.

We let

F : P(X) −→ X ↓ CompOrd
4 7−→

(
X � X/(4 ∩4op)

)
denote the assignment described in Remark 2.19. This assignment can be extended
on morphisms so that F becomes a functor: given 41,42 ∈ P(X) such that 41 ⊆ 42,
F maps the unique morphism from 41 to 42 to the morphism of compact ordered
spaces

X/(41 ∩4op
1 ) −→ X/(42 ∩4op

2 )
[x]41∩4

op
1
7−→ [x]42∩4

op
2
.

It is easily seen that the functor GF : P(X)→ P(X) is the identity functor. We let η
denote the identity natural transformation from the identity functor 1P on P to itself.

Given the adjunction between CompOrd and CHPreo described in Remark 1.8, for
all compact ordered spaces we have a morphism

εf : X/(4f ∩4op
f ) −→ Y

[x] 7−→ f(x).
(2.1)

Claim 2.21. ε is a natural transformation.

Proof of Claim. Let f : X → Y and g : X → Z be elements of X ↓ CompOrd, and
let h : Y → Z be such that the g = hf . We shall prove that the following diagram
commutes.

(X π−→ X/∼f ) (X f−→ Y )

(X π−→ X/∼g) (X g−→ Z)

εf

FG(h) h

εg

The commutativity of the diagram above amounts to the commutativity of the fol-
lowing one.

X/∼f Y

X/∼g Z

εf

FG(h) h

εg

For every x ∈ X we have

h(εf ([x]∼f )) = h(f(x)) = g(x) = εg([x]∼g) = εg(FG(h)(x)).

This proves our claim. �
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Lemma 2.22. The functor

F : P(X)→ X ↓ CompOrd

is left adjoint to the functor

G : X ↓ CompOrd→ P(X),

with unit η and counit ε.

Proof. It remains to prove that the triangle identities hold. One triangle identity is
trivial because every diagram commutes in a category arising from a partially ordered
set. We now set the remaining triangle identity. Let 4 ∈ P(X). We shall prove that
the following diagram commutes.

F (4) FGF (4)

F (4)

F (η4)

1F (4)
εF (4) (2.2)

Since GF is the identity functor, and η is the identity natural transformation, the
commutativity of eq. (2.2) amounts to the fact that εF (4) is the identity on F (4),
which is not hard to see.

We recall that a morphism in a coslice category X ↓ C is an isomorphism in X ↓ C
if, and only if, it is an isomorphism in C. Then, we have the following.

Lemma 2.23. Given an object f : X → Y of X ↓ CompOrd, the component of the
counit ε at f is an isomorphism if, and only if, f is an epimorphism.

Proof. For every f : X → Y , the function εf : X/(4f ∩4op
f )→ Y is injective because,

for all x, y ∈ X, we have

εf ([x]) = εf ([y])⇐⇒ f(x) = f(y)
⇐⇒ f(x) 6 f(y) and f(y) 6 f(x)
⇐⇒ x 4f y and y 4f x
⇐⇒ [x] = [y],

and reflects the order because, for all x, y ∈ X, we have

εf (x) 6 εf (y) ⇐⇒ f(x) 6 f(y) ⇐⇒ x 4f y ⇐⇒ [x] 6 [y].

Therefore, by item 4 in Proposition 2.9, εf is an isomorphism if, and only if, it is
surjective, i.e. an epimorphism.

We state the following for future reference.
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Lemma 2.24. Let f : X → Y and g : X → Z be morphisms of compact ordered
spaces, and suppose f is surjective. Then, the condition 4f ⊆ 4g holds if, and only
if, there exists a morphism h : Y → Z of compact ordered spaces such that the following
diagram commutes.

X Y

Z

f

g
h

Proof. By Lemmas 2.22 and 2.23.

We now consider the preordered class Q(X) of epimorphisms with domain X as
a full subcategory of X ↓ CompOrd.

Lemma 2.25. The restrictions of the functors F and G to P(X) and Q(X) are
quasi-inverses.

Proof. By Lemma 2.22, the functor F : P(X) → (X ↓ CompOrd) is left adjoint to
G : (X ↓ CompOrd) → P(X). For every 4 ∈ P(X), the component of the unit η
at 4 is the identity morphism; in particular, it is an isomorphism. As observed in
Lemma 2.23, the component of the counit ε at an element f : X → Y of X ↓ CompOrd
is an isomorphism if and only if f : X → Y is an epimorphism (Lemma 2.23).

We obtain now the main result of this section.

Theorem 2.26. The assignments

Q̃(X) −→ P(X)(
f : X � Y

)
7−→ 4f

P(X) −→ Q̃(X)
4 7−→

(
X � X/(4 ∩4op)

)

establish an isomorphism between the partially ordered sets P(X) and Q̃(X).

Proof. By Lemma 2.25.

2.5 Equivalence corelations
In this section we provide a description of equivalence relations in the category
CompOrdop, which will then be exploited in the next section to prove that equiva-
lence relations in CompOrdop are effective.

Recall that a binary relation on an object A of a category C is a subobject of
A × A. Dualising this definition, given a compact ordered space X, we call a binary
corelation on X a quotient object

(
q0
q1

)
: X + X � S of the compact ordered space

X +X. We recall from Lemma 1.12 that X +X is the disjoint union of two copies of
X equipped with the coproduct topology and coproduct order. A binary corelation
on X is called respectively reflexive, symmetric, transitive provided that it satisfies
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the properties:

X +X

S X

(q0
q1) (1X

1X
)

d

reflexivity

X +X

S S

(q0
q1) (q1

q0)

s

symmetry

X S

S P

q0

q1 λ1

λ0

y
=⇒

X +X

S P

(q0
q1) (λ0◦q0

λ1◦q1)

t

transitivity

An equivalence corelation onX is a reflexive symmetric transitive binary corelation
on X. The key observation is that, since quotient objects on X + X are in bijection
with certain preorders on X + X, equivalence corelations are more manageable than
their duals.

Definition 2.27. We call binary corelational structure on a compact ordered space X
an element of P(X+X), i.e. a closed preorder on X+X which extends the coproduct
order 6X+X on X +X.

As an example consider a chain X of two elements with discrete topology.

•

•

Then X +X looks as follows.
• •

• •

Here are some examples of binary corelational structures on X; the one on the left is
the smallest one, the one on the right is the greatest one.

• •

• •

• •

• •

• •

• •

Theorem 2.26 establishes a bijective correspondence between binary corelational
structures on X (i.e., elements of P(X + X)) and binary corelations on X (i.e.,
elements of Q(X +X)).
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Definition 2.28. A binary corelational structure on a compact ordered space X is
called reflexive (resp. symmetric, transitive, equivalence) if the corresponding binary
corelation on X is reflexive (resp. symmetric, transitive, equivalence).

Notation 2.29. We denote the elements of X +X by (x, i), where x varies in X and
i varies in {0, 1}. Further, i∗ stands for 1− i. For example, (x, 1∗) = (x, 0).

We anticipate the fact that on the chain of two elementsX = {⊥,>} (with ⊥ 6 >)
there are exactly four equivalence corelational structures.

• •

• •

• •

• •

• •

• •

• •

• •

In general, as we will prove, every equivalence corelational structures 4 on a compact
ordered space X is obtained as follows: consider a closed subset Y of X and let 4 be
the smallest preorder on X +X that extends the coproduct order of X +X and that
satisfies (y, 0) 4 (y, 1) and (y, 1) 4 (y, 0) for every y ∈ Y . For example, the binary
corelational structures above are obtained by taking, respectively, Y = ∅, Y = {⊥},
Y = {>}, and Y = X. In fact, as we will see, proving that an equivalence corelational
structure is effective boils down to proving that it arises with the construction above.

Lemma 2.30. A binary corelational structure 4 on a compact ordered space X is
reflexive if, and only if, for all x, y ∈ X and i, j ∈ {0, 1}, we have

(x, i) 4 (y, j) =⇒ x 6 y.

Proof. Let
(
q0
q1

)
: X+X � S be the binary corelation associated with 4. By definition

of reflexive binary corelational structures, 4 is reflexive if, and only if,
(
q0
q1

)
: X+X �

S is above
(

1X
1X

)
: X + X � X in the poset Q(X + X). By Theorem 2.26, this is

equivalent to 4 ⊆ 4(1X
1X

). Given (x, i), (y, j) ∈ X +X, we have

(x, i) 4(1X
1X

) (y, j) ⇐⇒ x 6 y.

It follows that the binary corelational structure 4 is reflexive if, and only if, (x, i) 4
(y, j) entails x 6 y.

For example, the following is a reflexive corelational structure on a two-element
chain

• •

• •

whereas the following are not.
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• •

• •

• •

• •

Lemma 2.31. A binary corelational structure 4 on a compact ordered space X is
symmetric if, and only if, for all x, y ∈ X and i, j ∈ {0, 1}, we have

(x, i) 4 (y, j) =⇒ (x, i∗) 4 (y, j∗).

Proof. Let
(
q0
q1

)
: X+X � S be the binary corelation associated with 4. By definition

of symmetric corelational structure, 4 is symmetric if, and only if,
(
q0
q1

)
: X +X � S

is above
(
q1
q0

)
: X + X � S in Q(X + X). By Theorem 2.26, this happens exactly

when 4 ⊆ 4(q1
q0)

. For all (x, i), (y, j) ∈ X +X, we have

(x, i) 4(q1
q0)

(y, j) ⇐⇒ (x, i∗) 4 (y, j∗).

Therefore, the binary corelational structure 4 is symmetric if, and only if, (x, i) 4
(y, j) entails (x, i∗) 4 (y, j∗).

For example, the following are symmetric corelational structures on a two-element
chain

• •

• •

• •

• •

whereas the following is not.
• •

• •

The last example shows a reflexive corelational structure which is not symmetric: this
witnesses the fact that CompOrdop is not a Mal’cev category (i.e., a finitely complete
category where every reflexive relation is an equivalence relation), in contrast to what
happens for CHop.

Lemma 2.32. Consider regular monomorphisms f0 : X ↪→ Y0, f1 : X ↪→ Y1 in
CompOrd and their pushout as displayed below.

X Y1

Y0 P

f1

λ1f0

λ0

y

Then, for every i ∈ {0, 1}, the following conditions hold.
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1. For all u, v ∈ Yi, the condition λi(u) 6 λi(v) holds if, and only if, u 6 v.

2. For all u ∈ Yi and v ∈ Yi∗, the condition λi(u) 6 λi∗(v) holds if, and only if,
there exists x ∈ X such that u 6 fi(x) and fi∗(x) 6 v.

Proof. Let q : Y0 + Y1 → P be the unique morphism such that the following diagram
commutes.

Y0 Y0 + Y1 Y1

P

ι0

λ0
q

ι1

λ1

The existence and uniqueness of q is given by the universal property of the coproduct.
A straightforward argument shows that q is the coequalizer of

ι0 ◦ f0, ι1 ◦ f1 : X ⇒ Y0 + Y1.

By the universal property of coequalizers, and by Theorem 2.26, 4q is the smallest
preorder 4 on Y0 + Y1 such that 4 is a closed subspace of (Y0 + Y1) × (Y0 + Y1), 4
extends the coproduct order of Y0 + Y1, and, for all x ∈ X, ι0f0(x) 4 ι1f1(x) and
ι1f1(x) 4 ι0f0(x).

Let 40 be the relation on Y0 + Y1 defined as follows.

1. For all u, v ∈ Yi, ιi(u) 40 ιi(v) if, and only if, u 6 v.

2. For all u ∈ Yi and v ∈ Yi∗ , ιi(u) 40 ιi(v) if, and only if, there exists x ∈ X such
that u 6 fi(x) and fi∗(x) 6 v.

We shall prove 4q = 40. Let us prove 40 ⊆ 4q.

1. For all u, v ∈ Yi, if u 6 v, then ιi(u) 6Y0+Y1 ιi(v), which implies ιi(u) 4q ιi(v).

2. For all u ∈ Yi and v ∈ Yi∗ , if there exists x ∈ X such that u 6 fi(x) and fi∗(x) 6
v, then ιi(u) 6 ιifi(x) and ιi∗fi∗(x) 6 ιi∗(v), which implies ιi(u) 4q ιifi(x) and
ιi∗fi∗(x) 4q ιi∗(v), which implies ιi(u) 4q ιifi(x) 4q ιi∗fi∗(x) 4q ιi∗(v), which
implies ιi(u) 4q ιi∗(v).

This proves 40 ⊆ 4q. To obtain the converse inclusion it is enough to notice that
40 is a closed preorder that extends the coproduct order of Y0 + Y1, and that, for all
x ∈ X, we have ι0f0(x) 40 ι1f1(x) and ι1f1(x) 40 ι0f0(x).

Lemma 2.33. A reflexive binary corelational structure 4 on a compact ordered space
X is transitive if, and only if, for all x, y ∈ X and all i ∈ {0, 1}, we have

(x, i) 4 (y, i∗) =⇒ ∃z ∈ X s.t. (x, i) 4 (z, i∗) and (z, i) 4 (y, i∗).

Proof. Let
(
q0
q1

)
: X +X � S be the binary corelation associated with 4. To improve

readability, we write [x, i] instead of
(
q0
q1

)
(x, i). By definition of transitivity, the binary
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corelational structure4 is transitive if, and only if, given a pushout square in CompOrd
as in the left-hand diagram below,

X S

S P

q0

q1 λ1

λ0

y

X +X

S P

(q0
q1) (λ0◦q0

λ1◦q1)

t

there is a morphism t : S → P such that the right-hand diagram commutes. By
Lemma 2.24, such a t exists precisely when, for every (x, i), (y, j) ∈ X + X, the
condition (x, i) 4 (y, j) implies(

λ0 ◦ q0

λ1 ◦ q1

)
(x, i) 6

(
λ0 ◦ q0

λ1 ◦ q1

)
(y, j),

i.e., λi([x, i]) 6 λj([y, j]). Recall that4 is reflexive provided q0 and q1 are both sections
of a morphism d : S → X. In particular, q0 and q1 are regular monomorphisms in
CompOrd. Thus, by Lemma 2.32, the condition λi([x, i]) 6 λj([y, j]) holds if, and only
if,

(i = j and (x, i) 4 (y, j)) or (i 6= j and ∃z ∈ X s.t. (x, i) 4 (z, j) and (z, i) 4 (y, j)).
(2.3)

We conclude that 4 is transitive if, and only if, eq. (2.3) holds whenever (x, i) 4 (y, j).
In turn, this is equivalent to the condition in the statement of the lemma.

For example, the following are transitive corelational structures on a two-element
chain

• •

• •

• •

• •

whereas the following is not.
• •

• •

This last example shows a reflexive (and symmetric) corelational structure which is
not transitive, witnessing again the fact that CompOrdop is not a Mal’cev category.

Finally, we obtain a characterisation of equivalence corelational structures.

Proposition 2.34. A binary corelational structure 4 on a compact ordered space
X is an equivalence corelational structure if, and only if, for all x, y ∈ X and all
i, j ∈ {0, 1} we have

(x, i) 4 (y, j) =⇒ x 6 y and (x, i∗) 4 (y, j∗)

and
(x, i) 4 (y, i∗) =⇒ ∃z ∈ X s.t. (x, i) 4 (z, i∗) and (z, i) 4 (y, i∗).
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Proof. By Lemmas 2.30, 2.31 and 2.33.

As an exercise, using Proposition 2.34, the reader may verify that, as anticipated
before, the equivalence corelational structures on a two-element chain are precisely
the following ones.

• •

• •

• •

• •

• •

• •

• •

• •

2.6 Main result: equivalence corelations are effec-
tive

Dualising Definition 2.3, we say that an equivalence corelation
(
q0
q1

)
: X + X � S

on a compact ordered space X (and so the corresponding equivalence corelational
structure) is effective provided it coincides with the cokernel pair of its equaliser.
That is, provided the following is a pushout square in CompOrd,

Y X

X S

k

q1k

q0

where k : Y → X is the equaliser of q0, q1 : X ⇒ S in CompOrd.

Notation 2.35. Given a compact ordered space X and a closed subspace Y of X,
we define the relation 4Y on X +X as follows: for all x, y ∈ X and i ∈ {0, 1} we set

(x, i) 4Y (y, i) ⇐⇒ x 6 y,

and
(x, i) 4Y (y, i∗) ⇐⇒ ∃z ∈ Y s.t. x 6 z 6 y.

Lemma 2.36. Let X be a compact ordered space, let Y be a closed subspace of X,
equipped with the induced topology and order. The binary corelational structure on X
associated with the pushout in CompOrd of the inclusion Y ↪→ X along itself is 4Y .

Proof. This is an immediate consequence of Lemma 2.32.

Lemma 2.37. An equivalence corelational structure 4 on a compact ordered space X
is effective if, and only if, for all x, y ∈ X and i ∈ {0, 1}, we have

(x, i) 4 (y, i∗) =⇒ ∃z ∈ X s.t. x 6 z 6 y, (z, i) 4 (z, i∗) and (z, i∗) 4 (z, i).

Proof. Set
Y := {x ∈ X | (x, i) 4 (x, i∗) and (x, i∗) 4 (x, i)},
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and let us endow Y with the induced topology and induced partial order. Denoting
by

(
q0
q1

)
: X +X � S the binary corelation on X associated with 4, we have

Y = {x ∈ X | q0(x) 6 q1(x) and q1(x) 6 q0(x)} = {x ∈ X | q0(x) = q1(x)}.

By Proposition 1.10, the inclusion Y ↪→ X is the equaliser of q0, q1 : X ⇒ S in
CompOrd. Therefore, the binary corelational structure 4 is effective if and only if the
following diagram is a pushout in CompOrd.

Y X

X S

k

q1k

q0

In turn, by Lemma 2.36, this is equivalent to saying that 4 = 4Y . By definition of
4Y , we have, for all x, y ∈ X and i ∈ {0, 1},

(x, i) 4Y (y, i) ⇐⇒ x 6 y,

and

(x, i) 4Y (y, i∗) ⇐⇒ ∃z ∈ X s.t. x 6 z 6 y, (z, i) 4 (z, i∗) and (z, i∗) 4 (z, i).

Note that any reflexive binary corelational structure 4′ on X satisfies, for all x, y ∈ X
and i ∈ {0, 1},

(x, i) 4′ (y, i)⇐⇒ x 6 y.

The left-to-right implication follows from Lemma 2.30, while the right-to-left impli-
cation holds because 4 extends the coproduct order of X +X.

Moreover, note that every transitive binary corelational structure 4′ on X satisfies(
∃z ∈ X s.t. x 6 z 6 y, (z, i) 4′ (z, i∗) and (z, i∗) 4′ (z, i)

)
=⇒ (x, i) 4′ (y, i∗),

because 4′ extends the partial order of X +X.
Therefore, since 4 is reflexive and transitive, the condition 4 = 4Y holds if, and

only if, for all x, y ∈ X and i ∈ {0, 1}, we have

(x, i) 4 (y, i∗) =⇒
(
∃z ∈ X s.t. x 6 z 6 y, (z, i) 4 (z, i∗) and (z, i∗) 4 (z, i)

)
.

Theorem 2.38. Every equivalence relation in CompOrdop is effective.

Proof. Let 4 be an equivalence corelational structure on a compact ordered space X.
In view of Lemma 2.37, it is enough to show that, whenever (x, i) 4 (y, i∗), there is
z ∈ X such that

x 6 z 6 y, (z, i) 4 (z, i∗) and (z, i∗) 4 (z, i).

Fix arbitrary x, y ∈ X and i ∈ {0, 1} satisfying (x, i) 4 (y, i∗), and set

Ω = {u ∈ X | (x, i) 4 (u, i∗) and (u, i) 4 (y, i∗)}.

The idea is to apply Zorn’s Lemma to show that Ω has a maximal element z satisfying
the desired properties.

Since (x, i) 4 (y, i∗) and 4 is transitive, by Lemma 2.33 Ω is non-empty.
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Claim 2.39. Every non-empty chain contained in Ω admits a supremum in X and this
element belongs to Ω.

Proof of Claim. First, we show that Ω is a closed subset of X. The set Ω can be
written as the intersection of the sets

Ω1 = {u ∈ X | (x, i) 4 (u, i∗)} and Ω2 = {u ∈ X | (u, i) 4 (y, i∗)}.

The set Ω1 is the preimage, under the coproduct injection ιi∗ : X ↪→ X +X, of

↑(x, i) = {(w, j) ∈ X +X | (x, i) 4 (w, j)}.

Since 4 is a closed preorder onX+X, the set ↑(x, i) is closed inX+X by Lemma 1.14.
Therefore, its preimage Ω1 is closed in X. Analogously, Ω2 is closed. Since Ω is the
union of the closed subsets Ω1 and Ω2 of X, we conclude that Ω is a closed subset of
X.

Let C be a chain contained in Ω. By [Gierz et al., 1980, Proposition VI.1.3], every
directed set in a compact ordered space has a supremum, which coincides with the
topological limit of the set regarded as a net. Thus, C has a supremum s in X, which
belongs to the topological closure of C in X. Since Ω is a closed subset of X, the
element s belongs to Ω. �

Having established that Ω is non-empty and that every non-empty chain in Ω
admits an upper bound in Ω, we can apply Zorn’s Lemma, and obtain that Ω has a
maximal element z. By Lemma 2.30, since 4 is reflexive, from (x, i) 4 (z, i∗) and
(z, i) 4 (y, i∗) we deduce x 6 z 6 y.
Claim 2.40. We have (z, i) 4 (z, i∗) and (z, i∗) 4 (z, i).

Proof of Claim. By Lemma 2.33, since 4 is transitive, from (z, i) 4 (y, i∗) it follows
that there is u ∈ X such that (z, i) 4 (u, i∗) and (u, i) 4 (y, i∗). Also, (x, i) 4 (z, i)
because 4 extends the partial order of X. Thus, (x, i) 4 (z, i) 4 (u, i∗), which implies
u ∈ Ω. By reflexivity, (z, i) 4 (u, i∗) entails z 6 u. Since z is maximal, we have z = u.
Therefore, (z, i) 4 (z, i∗). By Lemma 2.31, since 4 is symmetric, from (z, i) 4 (z, i∗)
we deduce (z, i∗) 4 (z, i). �

We have shown that, if (x, i) 4 (y, i∗), then there is z ∈ X such that x 6 z 6 y,
(z, i) 4 (z, i∗) and (z, i∗) 4 (z, i). As already pointed out at the beginning of the
proof, by Lemma 2.37, this implies that 4 is effective.

Remark 2.41. In the proof above, the topology plays a relevant role. In fact, the
dual of the category Ord of partially ordered sets does not have effective equivalence
relations [Hofmann and Nora, 2020, Remark 4.18]. To see the difference between
Ord and CompOrd, consider the partially ordered set [0, 1], with its canonical total
order. Consider the relation 4 on [0, 1] + [0, 1] defined as follows: for i ∈ {0, 1} and
x, y ∈ [0, 1], set

(x, i) 4 (y, i) ⇐⇒ x 6 y,

and
(x, i) 4 (y, i∗) ⇐⇒ x < y.
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The relation 4 satisfies the condition in Proposition 2.34 that characterises equiva-
lence relations, whereas it does not satisfy the condition in Lemma 2.37 that char-
acterises effective equivalence relations. In this case, the reason why this happens is
because the relation 4 is not closed: indeed, the sequence xn :=

(
1− 1

n
, 0
)
converges

to (1, 0), the constant sequence yn := (1, 1) converges to (1, 1), for all n ∈ N we have
xn 4 yn, but (1, 0) 64 (1, 1).

We recall that ΣOC is the signature whose operation symbols of arity κ are
the order-preserving continuous functions from [0, 1]κ to [0, 1], and ΣOC

6ω is the sub-
signature of ΣOC consisting of the operations symbols of at most countable arity.

Corollary 2.42. The category CompOrd is dually equivalent to

S P
(〈

[0, 1]; ΣOC
〉)

and
S P

(〈
[0, 1]; ΣOC

6ω

〉)
,

both of which are varieties.

Proof. The two classes are quasivarieties by Lemma 0.31, and they are equivalent
to CompOrdop by Theorem 2.14. By Theorem 2.38, every equivalence relation in
CompOrdop is effective. Since a quasivariety is a variety if and only if equivalence
relations are effective (Proposition 2.4), the result follows.

We finally summarise our results.

Theorem 2.43. The category CompOrd of compact ordered spaces is dually equivalent
to a variety of algebras, with primitive operations of at most countable arity.

Proof. By Corollary 2.42, the category CompOrd is dually equivalent to the variety
S P

(〈
[0, 1]; ΣOC

6ω

〉)
, whose primitive operations are of at most countable arity.

2.7 Conclusions
In Chapter 1 we motivated our view that, as Priestley spaces are the partially-ordered
generalisation of Stone spaces, the structures introduced by L. Nachbin under the
name of compact ordered spaces are the correct partially-ordered generalisation of
compact Hausdorff spaces.

In the present chapter, starting from the observation that the categories of Stone
spaces, Priestley spaces and compact Hausdorff spaces all have an equationally defin-
able dual, we investigated whether the same happens for compact ordered spaces. In
fact, this is the case: The category of compact ordered spaces is dually equivalent to
a variety of algebras, with primitive operations of at most countable arity.

Exploiting the insights from decades of invastigation of natural dualities and cat-
egorical characterisations of (quasi)varieties, we provided a varietal description of the
dual of the category of compact ordered spaces: using Linton’s language, this is the
category of models of the varietal theory of order-preserving continuous functions be-
tween powers of the unit interval [0, 1], which happens to consists of all the subalgebras
of powers of [0, 1].
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However, some questions still remain unaddressed: Is it necessary to resort to
infinitary operations? Does there exist a manageable set of primitive operations and
axioms for the dual of the category of compact ordered spaces? These questions we
address in the following chapters.



Chapter 3

Negative axiomatisability results

3.1 Introduction
In Chapter 2 we proved that the category CompOrd of compact ordered spaces is
dually equivalent to a variety of algebras with operations of at most countable arity.
One may wonder whether it is necessary to resort to infinitary operations. In this
short chapter we show that this is indeed the case: CompOrdop is not equivalent to
any variety of finitary algebras. In fact, we show the following stronger results.

1. The category CompOrd is not dually equivalent to any finitely accessible category
(Theorem 3.5).

2. The category CompOrd is not dually equivalent to any first-order definable class
of structures (Theorem 3.8).

3. The category CompOrd is not dually equivalent to any class of finitary algebras
closed under products and subalgebras (Theorem 3.9).

The second result was suggested by S. Vasey (private communication) as an applica-
tion of a result of M. Lieberman, J. Rosický and S. Vasey [Lieberman et al., 2019],
replacing a previous weaker statement.

This chapter is based on a joint work with L. Reggio [Abbadini and Reggio, 2020].

3.2 Negative results

3.2.1 The dual of CompOrd is not a finitely accessible category
The first negative result makes use of the concept of finitely accessible category.

Classically, a finitary algebra is called finitely presentable if it can be presented by
finitely many generators and finitely many equations. In any variety of finitary alge-
bras, each algebra is the colimit of a directed system of finitely presentable algebras.
We will recall the classical categorical abstraction of finitely presentable algebras and
then show that not every object of CompOrdop is a directed colimit of the objects of
this kind, thus proving CompOrdop not to be equivalent to a variety of finitary alge-
bras. A categorical abstraction of the notion of finitely presentable algebra has been

47
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introduced independently by [Gabriel and Ulmer, 1971, Definition 6.1] and [Artin
et al., 1972, Expose I, Definition 9.3, p. 140]. To this end, first recall that a partially
ordered set is called directed provided that every finite subset has an upper bound.
Directed colimits (also known as direct limits in universal algebra) are colimits of
directed systems.

Definition 3.1 (See [Gabriel and Ulmer, 1971, Definition 6.1], or [Adámek and
Rosický, 1994, Definition 1.1]). An object A of a category C is said to be finitely
presentable if the covariant hom-functor homC(A,−) : C→ Set preserves directed col-
imits. Explicitly, this means that if D : I → C is a functor with I a directed partially
ordered set and (ci : D(i) → C)i∈I is a colimit cocone for D, then, for every mor-
phism f : A → C in C, the following two conditions are satisfied [Borceux, 1994b,
Proposition 5.1.3].

1. The morphism f factors through some ci, i.e., there exists i ∈ I and g : A→ D(i)
such that f = ci ◦ g.

A C

D(i)

f

g
ci

2. The factorisation is essentially unique, in the sense that, for all j, k ∈ I, for all
g′ : A → D(j) and g′′ : A → D(k) such that f = cj ◦ g′ = ck ◦ g′′, there exists a
common upper bound l of j and k such that D(j → l) ◦ g′ = D(k → l) ◦ g′′.

A C

D(l)

D(j) D(k)

f

g′

g′′ cj

ck

cl

In every variety of finitary algebras, the finitely presentable objects are precisely
the algebras which are finitely presentable in the classical sense [Borceux, 1994b,
Proposition 3.8.14].

Definition 3.2 (See [Adámek and Rosický, 1994, Definition 2.1]). A category C is
said to be finitely accessible provided it has directed colimits, and there exists a set
S of finitely presentable objects of C such that each object of C is a directed colimit
of objects in S.
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For example, varieties and quasivarieties of finitary algebras (with homomor-
phisms) are finitely accessible categories (cf. [Adámek and Rosický, 1994, Corollary 3.7
and Theorem 3.24]).

We recall that a Priestley space is a compact topological space X equipped with
a partial order such that, for all x, y with x 66 y, there exists a clopen up-set C of
X such that x ∈ C and y /∈ C. Priestley spaces were introduced by [Priestley, 1970]
to obtain a duality for bounded distributive lattices. It is easily seen that the partial
order of a Priestley space is closed; hence, every Priestley space is a compact ordered
space. The full subcategory of CompOrd defined by all Priestley spaces is denoted by
Pries.

Lemma 3.3. A compact ordered space is a Priestley space if, and only if, it is the
codirected limit in CompOrd of finite partially ordered sets equipped with the discrete
topologies.

Proof. Let us denote with Ordfin the category of finite partially ordered sets and
order-preserving maps. Recall from [Johnstone, 1986, Corollary VI.3.3(ii)]) that the
functor Ordfin ↪→ Pries which equips a finite partially ordered set with the discrete
topology provides the pro-completion of Ordfin. Moreover, it is not difficult to see
that the inclusion functor Pries ↪→ CompOrd preserves limits. The desired result then
follows.

We say that an object in a category C is finitely copresentable if it is finitely
presentable when regarded as an object of Cop. The finitely copresentable objects in
CompOrd are precisely the finite ones [Hofmann and Nora, 2020, Remark 4.41]. For
our purposes, we need only one direction, and we here provide a self-contained proof
of a slightly more general version of it.

Lemma 3.4. Let F be a full subcategory of CompOrd containing all Priestley spaces.
Every finitely copresentable object in F is finite.

Proof. Let (X,6) be a finitely copresentable object in F. Consider a surjective mor-
phism γ : Y � X in CompOrd with Y a Priestley space; for example, let Y = β|X| be
the Stone-Čech compactification of the underlying set of X equipped with the discrete
topology, and let γ : (β|X|,=) → (X,6) be the unique continuous extension of the
identity function |X| → |X|. By Lemma 3.3, Y is the codirected limit in CompOrd of
finite posets {Yi}i∈I with the discrete topologies. Denote by αi : Y → Yi the i-th limit
arrow. Since Y lies in F, and the inclusion functor F ↪→ CompOrd reflects limits, Y is
in fact the codirected limit of {Yi}i∈I in F. Since the object X is finitely copresentable
in F, there exist j ∈ I and a morphism φ : Yj → X such that γ = φ ◦ αj.

Y X

Yj

γ

αj
φ

The map γ is surjective, hence so is φ: this shows that X is finite.



50 Chapter 3. Negative axiomatisability results

The category Priesop is equivalent to the category of bounded distributive lattices
with homomorphisms [Priestley, 1970]. In particular, Priesop is a finitely accessible
category. The following result is an adaptation of [Marra and Reggio, 2017, Proposi-
tion 1.2] to the ordered case.
Theorem 3.5. Let F be a full subcategory of CompOrd extending Pries. If Fop is a
finitely accessible category—let alone a variety or quasivariety of finitary algebras—
then F = Pries.
Proof. It suffices to show that every object in F is a Priestley space. Since Fop is finitely
accessible, every object of F is the codirected limit of finitely copresentable objects.
Using the fact that the inclusion functor F ↪→ CompOrd reflects limits and that finitely
copresentable objects in F are finite by Lemma 3.4, we deduce by Lemma 3.3 that
every object of F is a Priestley space, as was to be shown.

Finally, we have already observed that finitary varieties and finitary quasivarieties
are finitely accessible categories.

3.2.2 The dual of CompOrd is not a first-order definable class
A first-order definable class of structures is the class of models of a first-order theory,
for which the reader is referred to [Chang and Keisler, 1990]. When one such class is
referred to as a category, it is understood that the morphisms are the homomorphism,
i.e., a function that preserves all function symbols and all relation symbols.
Lemma 3.6 ([Richter, 1971]). The forgetful functor from a first-order definable class
of structures to Set preserves directed colimits.

Lemma 3.6 was used by M. Lieberman, J. Rosický and S. Vasey to prove that the
category of compact Hausdorff spaces is not dually equivalent to a first-order definable
class of structures [Lieberman et al., 2019, Corollary 12]. In fact, they showed the
following fact.
Lemma 3.7. No faithful functor from CHop to Set preserves directed colimits.
Proof. See the final section of [Lieberman et al., 2019].

We use this fact in the proof of the following result.
Theorem 3.8. The category CompOrd is not dually equivalent to any first-order de-
finable class of structures.
Proof. Let ∆′ : CH→ CH×SetPreo be the functor that maps a compact Hausdorff space
X to the spaceX itself with the discrete order (this is the left adjoint of the topological
forgetful functor CH ×Set Preo → CH). It is not difficult to see that this functor
preserves products and equalisers: thus, it preserves limits. Moreover, note that the
objects in the image of ∆ are compact ordered spaces, so we can restrict ∆′ to a functor
∆: CH→ CompOrd that preserves limits. Then, the functor ∆op : CHop → CompOrdop

preserves directed colimits. Hence, if there were a faithful functor F from CompOrdop

to Set preserving directed colimits, then the composition F ◦ ∆: CHop → Set would
also be a faithful functor preserving directed colimits, contradicting Lemma 3.7. Thus,
no faithful functor from CompOrdop to Set preserves directed colimits. By Lemma 3.6,
this shows that CompOrd cannot be dually equivalent to a first-order definable class
of structures.
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3.2.3 The dual of CompOrd is not an S P-class of finitary alge-
bras

The fact that CompOrd is not dually equivalent to a variety of finitary algebras,
together with the fact that equivalence corelations are effective, allows us to obtain
another negative result.

Theorem 3.9. The category CompOrd is not dually equivalent to any class of finitary
algebras closed under products and subalgebras.

Proof. Let us suppose, by way of contradiction, that CompOrdop is equivalent to a
class of finitary algebras closed under products and subalgebras. In [Banaschewski,
1983], it is observed that every class of finitary algebras closed under subalgebras
and products in which every equivalence relation is effective is a variety of algebras.
By Theorem 2.38, every equivalence relation in CompOrdop is effective. Therefore,
CompOrdop is equivalent to a variety of finitary algebras, but this contradicts Theo-
rem 3.5 (and Theorem 3.8).

3.3 Conclusions
In Chapter 2 we proved that the category CompOrd of compact ordered spaces is dually
equivalent to a variety, with operations of at most countable arity. In the present
chapter, we showed that it is indeed necessary to resort to infinitary operations, since
CompOrd is not dually equivalent to any variety of finitary algebras.

Having established the best possible bound on the arities in an equational ax-
iomatisation of CompOrdop, we are now left with the question: Can we provide a
manageable set of primitive operations and axioms for CompOrdop? Addressing this
question will be our main concern in the following chapters.





Chapter 4

Equivalence à la Mundici for unital
lattice-ordered monoids

4.1 Introduction
Given a compact ordered space X, the set

C6(X, [0, 1]) := {f : X → [0, 1] | f is order-preserving and continuous}

is closed under pointwise application of each order-preserving continuous function
from a power of [0, 1] to [0, 1]. Thus, recalling that ΣOC denotes the signature whose
operation symbols of arity κ are the order-preserving continuous functions from [0, 1]κ
to [0, 1], the set C6(X, [0, 1]) acquires a structure of a ΣOC-algebra.

In fact, as described in Chapter 2, the assignment associating to each compact
ordered space X the ΣOC-algebra C6(X, [0, 1]) gives rise to a duality between the
category of compact ordered spaces and the variety of algebras

S P
(〈

[0, 1]; ΣOC
〉)
.

One may wonder whether manageable sets of primitive operations and axioms
for this variety exist. Even if choosing one specific signature seems to us a somewhat
arbitrary task, we believe that the choice we will present is natural enough to be worth
of consideration. In particular, as MV-algebras were at the core of the equational
axiomatisation of the dual of the category of compact Hausdorff spaces in [Marra
and Reggio, 2017], we find it reasonable to base our work on those term-operations
of MV-algebras whose interpretation in [0, 1] is order-preserving. By [Cabrer et al.,
2019, Section 1], such term-operations are generated by ⊕, �, ∨, ∧, 0 and 1 (arities
2, 2, 2, 2, 0, 0), with interpretations in [0, 1] as follows.

x⊕ y = min{x+ y, 1};
x� y = max{x+ y − 1, 0};
x ∨ y = max{x, y};
x ∧ y = min{x, y};

0 = the element 0;
1 = the element 1.

53



54 Chapter 4. Equivalence à la Mundici for unital lattice-ordered monoids

Which reasonable set of equational axioms should we consider for algebras in the
signature {⊕,�,∨,∧, 0, 1}? The key insight is that, to gain a better intuition on
the subject, we might replace the set C6(X, [0, 1]) of [0, 1]-valued order-preserving
continuous functions with the set C6(X,R) of real-valued ones. Then, we should
accordingly replace the operations ⊕, �, ∨, ∧, 0 and 1 with the operations +, ∨, ∧,
0, 1 and −1. The set C6(X,R) is abstracted by what we call unital commutative
distributive `-monoids, which are algebras in the signature {+,∨,∧, 0, 1,−1} that
satisfy certain reasonable axioms. The set C6(X, [0, 1]) is abstracted by what we
call MV-monoidal algebras, which are algebras in the signature {⊕,�,∨,∧, 0, 1} that
satisfy the axioms needed for our main result to hold. Our main success is to have
kept these axioms equational and in a finite number: a non-trivial task. The main
result is presented in Theorem 4.74: we exhibit an equivalence

u`M MVMΓ

Ξ

between the category u`M of unital commutative distributive `-monoids and the cat-
egory MVM of MV-monoidal algebras. The functor Γ maps a unital commutative
distributive `-monoid M to its unit interval Γ(M) := {x ∈ M | 0 6 x 6 1} (Sec-
tion 4.3), and the functor Ξ maps an MV-monoidal algebra A to the set Ξ(A) of ‘good
Z-sequences in A’ (Section 4.4).

There are both pros and cons in working with unital commutative distributive
`-monoids or MV-monoidal algebras, respectively. On the one hand, as we mentioned
above, it is easier to work with the operations and axioms of unital commutative
distributive `-monoids rather than those of MV-monoidal algebras. On the other
hand, the class of MV-monoidal algebras is a variety of finitary algebras, so the tools
of universal algebra apply. The equivalence established in this chapter allows one to
transfer the pros of each category to the other one.

As shown in Section 4.8, our result specialises to (and is inspired by) D. Mundici’s
celebrated result stating that the categories of unital Abelian lattice-ordered groups
and MV-monoidal algebras are equivalent [Mundici, 1986, Theorem 3.9] (see also
[Cignoli et al., 2000, Section 2]). Knowledge about MV-algebras and lattice-ordered
groups is assumed but not needed (except for Section 4.8); the chapter is written so
as to maximise the insights for an MV-algebraist, and the reader who does not have
such a knowledge might simply disregard the comments about MV-algebras.

We conclude this introduction with a comparison with [Abbadini, 2019b]. The
main result presented here—namely, that the categories of unital commutative dis-
tributive `-monoids and MV-monoidal algebras are equivalent—coincides with the one
in [Abbadini, 2019b]. However, the proofs are different: in the present manuscript,
we use Birkhoff’s subdirect representation theorem, which simplifies the arguments
but relies on the axiom of choice, in contrast with the choice-free proof in [Abbadini,
2019b]. Moreover, in this document we use Z-indexed sequences instead of N-indexed
sequences, which provides some simplifications, and which seems more elegant.
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4.2 The algebras

4.2.1 Unital commutative distributive `-monoids
The interplay between lattice and monoid operations is the object of a long-standing
interest (see [Fuchs, 1963, Chapter XII], [Birkhoff, 1967, Chapter XIV]). The subject
emerged with the study of ideals, which has its roots in the work of R. Dedekind,
and to which W. Krull provided some important contributions. We mention that,
in this direction, the introduction of the notion of residuated lattices (a special class
of lattice-ordered monoids) by [Ward and Dilworth, 1939] has opened the way to a
research field which is still very active today, also due to its connection to logics; see
[Galatos et al., 2007] for a recent account on the subject.

In this subsection, we start by recalling the notions of lattice-ordered semigroup
and lattice-ordered monoid; we warn the reader that one may encounter slightly differ-
ent definitions in the literature, depending on the distributivity laws that the author
wants to assume. However, these notions are only auxiliary: in Definition 4.11 we will
define the structures we are primarily interested in: unital commutative distributive
lattice-ordered monoids. In our view, these structures are an adequate analogue of
Abelian lattice-ordered groups with strong order unit when one wants to replace the
group structure with a monoid structure.

We first recall the definition of a lattice.

Definition 4.1. A lattice is an algebra 〈A;∨,∧〉 (arities 2, 2, 2) with the following
properties.

1. x ∨ y = y ∨ x.

2. x ∧ y = y ∧ x.

3. x ∨ (y ∨ z) = (x ∨ y) ∨ z.

4. x ∧ (y ∧ z) = (x ∧ y) ∨ z.

5. x ∨ (x ∧ y) = x.

6. x ∧ (x ∨ y) = x.

A lattice is distributive if it satisfies any of the following equivalent conditions.

1. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

2. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

A prototypical example of the algebras in this subsection is R, endowed with the
binary operations + (addition), ∨ (maximum), ∧ (minimum), and (for the algebras
that require them) the constants 0, 1 and −1.

Definition 4.2. A lattice-ordered semigroup (`-semigroup, for short) is an algebra
〈M ; +,∨,∧〉 (arities 2, 2, 2) with the following properties.

1. 〈M ;∨,∧〉 is a lattice.
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2. 〈M ; +〉 is a semigroup, i.e., + is associative.

3. The operation + distributes over ∨ and ∧ on both sides:

(a) (x ∨ y) + z = (x+ z) ∨ (y + z);
(b) x+ (y ∨ z) = (x+ y) ∨ (x+ z);
(c) (x ∧ y) + z = (x+ z) ∧ (y + z);
(d) x+ (y ∧ z) = (x+ y) ∧ (x+ z).

We say that an `-semigroup is commutative if the operation + is commutative, and
distributive if the underlying lattice is distributive.

Even if we have provided the definition in the general case, we will only be con-
cerned with `-semigroups that are commutative and distributive.
Remark 4.3. Item 3 in Definition 4.2 expresses the fact that + is a lattice homo-
morphism in both coordinates. In fact, as pointed out by one of the referees, an
`-semigroup is an internal semigroup in the monoidal category of lattices and lattice
homomorphisms (where the monoidal operation is given by the tensor product). For
the notion of monoidal category we refer to [Mac Lane, 1998, Chapter VII].

In this manuscript, ‘`-’ will always be a shorthand for ‘lattice-ordered ’.

Examples 4.4. 1. The algebra 〈R; +,max,min〉 is an example of a commutative
distributive `-semigroup, as well as any of its subalgebras, such as Q, Z, N, N+,
N \ {0, 1}, {0,−1,−2,−3, . . . }.

2. Given a distributive lattice 〈L;∨,∧〉, the algebras 〈L;∨,∨,∧〉 (i.e. + := ∨) and
〈L;∧,∨,∧〉 (i.e. + := ∧) are commutative distributive `-semigroups.

Lemma 4.5. In every `-semigroup the operation + is order-preserving in both coor-
dinates.

Proof. Let M be an `-semigroup. For every y ∈M , the map

M −→M

x 7−→ x+ y

is a lattice homomorphism by definition of `-semigroup. Therefore, it is order-
preserving. Thus, + is order preserving in the first coordinate. Analogously for
the second coordinate.

Lemma 4.6. For all x and y in a commutative `-semigroup we have

(x ∧ y) + (x ∨ y) = x+ y.

Proof. We recall the proof, available in [Choudhury, 1957, Section 2, p. 72], of the
two inequalities:

(x ∧ y) + (x ∨ y) = ((x ∧ y) + x) ∨ ((x ∧ y) + y) 6 (y + x) ∨ (x+ y) = x+ y;
(x ∧ y) + (x ∨ y) = (x+ (x ∨ y)) ∧ (y + (x ∨ y)) > (x+ y) ∧ (y + x) = x+ y.
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Definition 4.7. A lattice-ordered monoid (or `-monoid, for short) is an algebra
〈M ; +,∨,∧, 0〉 (arities 2, 2, 2, 0) with the following properties.

N1. 〈M ;∨,∧〉 is a lattice.

N2. 〈M ; +, 0〉 is a monoid.

N3. The operation + distributes over ∨ and ∧ on both sides.

We say that an `-monoid is commutative if the operation + is commutative, and
distributive if the underlying lattice is distributive.

Even if we have provided the definition in the general case, we will only be con-
cerned with `-monoids that are commutative and distributive.
Remark 4.8. An `-monoid is an internal monoid in the monoidal category of lattices
and lattice homomorphisms (where the monoidal operation is given by the tensor
product, and the unit is given by the one-element lattice).

Examples 4.9. 1. The set R, with obviously defined operations, is a commuta-
tive distributive `-monoid, as well as any of its subalgebras, such as Q, Z, 2Z, N,
{0,−1,−2,−3, . . . }.

2. If 〈L;∨,∧〉 is a distributive lattice with a bottom element 0, then the algebra
〈L;∨,∨,∧, 0〉 (i.e. we set + := ∨) is a commutative distributive `-monoid. Similarly,
if L is a distributive lattice with a top element 0, then 〈L;∧,∨,∧, 0〉 is a commutative
distributive `-monoid.

3. For every topological space X equipped with a preorder, the set of continuous
order-preserving functions from X to R with pointwise defined operations is a unital
commutative distributive `-monoid.

Remark 4.10. Since `-monoids are defined by equations, they are closed under prod-
ucts, subalgebras and homomorphic images. This allows one to obtain several exam-
ples.

Definition 4.11. A unital lattice-ordered monoid (unital `-monoid, for short) is an
algebra 〈M ; +,∨,∧, 0, 1,−1〉 (arities 2, 2, 2, 0, 0, 0) with the following properties.

M0. 〈M ; +,∨,∧, 0〉 is an `-monoid.

M1. −1 + 1 = 0 and 1 +−1 = 0.

M2. −1 6 0 6 1.

M3. For all x ∈M , there exists n ∈ N+ such that

−1 + · · ·+−1︸ ︷︷ ︸
n times

6 x 6 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

A unital `-monoid is called commutative if the operation + is commutative, and
distributive if the underlying lattice is distributive1.

1In [Abbadini, 2019b], we assumed distributivity of the lattice and called ‘unital commutative
`-monoids’ the algebras that here are referred to as ‘unital commutative distributive `-monoids’.
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We will refer to the element 1 as the positive unit, and to the element −1 as the
negative unit.

In this manuscript we will restrict our attention to those unital `-monoids which
are commutative and distributive. We denote with u`M the category of unital com-
mutative distributive `-monoids with homomorphisms.

Given n ∈ N, we write nx for x+ · · ·+ x︸ ︷︷ ︸
n times

, and we write n for n1 and −n for n(−1).

Furthermore, we use the shorthand z − 1 for z + (−1).

Examples 4.12. 1. The set R, with obviously defined operations, is a unital com-
mutative distributive `-monoid, as well as any of its subalgebras, such as Q and Z.
An example of a subalgebra of R which is not a group is, for any irrational element s
in R, the algebra Z[s] = {a+ bs | a ∈ Z, b ∈ N}.

2. For every topological space X equipped with a preorder, the set of bounded
continuous order-preserving functions from X to R with pointwise defined operations
is a unital commutative distributive `-monoid.

3. For every totally ordered unital commutative distributive `-monoid M and ev-
ery commutative distributive `-monoid L, we have a unital commutative distributive
`-monoid M

→
× L defined as follows: the underlying set is M × L, the order is lexico-

graphic, i.e. (
(x, y) 6 (z, w)

)
⇐⇒

(
(x 6 z, x 6= z) or (x = z, y 6 w)

)
,

the operation + is defined componentwise, i.e. (x, y) + (z, w) = (x + z, y + w), the
positive unit is (1, 0) and the negative unit is (−1, 0).

Remark 4.13. All the axioms of unital commutative distributive `-monoids are equa-
tions, except Axiom M3. However, notice that Axiom M3 is preserved by subalgebras,
homomorphic images and finite products. Thus, unital commutative distributive `-
monoids are closed under subalgebras, homomorphic images and finite products. This
is not the case for arbitrary products: for example, RN does not satisfy Axiom M3.
Remark 4.14. Given a unital commutative distributive `-monoid 〈M ; +,∨,∧, 0, 1,−1〉,
one defines the operation

x · y := x− 1 + y.

Note that this operation does not coincide on R with the usual multiplication. How-
ever, it might deserve to be denoted in this way because the equations x ·1 = x = 1 ·x
hold2. In fact, unital commutative distributive `-monoids admit a term-equivalent
description in the signature {+, ·,∨,∧, 0, 1}. (From this signature, the constant −1
can be recast as 0 · 0.) In this signature, Axioms M0 and M1 are equivalent to:

S1. 〈M ;∨,∧〉 is a lattice.

S2. 〈M ; +, 0〉 and 〈M ; ·, 1〉 are monoids.
2An additional reason for this notation is the fact that ⊕ is to + what � is to ·; this will be clear

once the functor Γ will be defined.
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S3. Both the operations + and · distribute over both ∨ and ∧.

S4. (x · y) + z = x · (y + z).

S5. (x+ y) · z = x+ (y · z).

(Note that Axioms S4 and S5 are equivalent if + and · are commutative.) The addition
of Axiom M2 equals the addition of the following axiom.

S5. 0 6 1.

The addition of Axiom M3 equals the addition of the following axiom.

S6. For every x ∈M there exists n ∈ N+ such that 0 · · · · · 0︸ ︷︷ ︸
n times

6 x 6 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

Moreover, the distributivity of the lattice in the old signature is equivalent to the
distributivity of the lattice in the new signature, and the commutativity of + in the
old signature is equivalent to the commutativity of + and · in the new signature. The
class of algebras satisfying Axioms S1 to S6, distributivity of the underlying lattice,
and commutativity of + and ·, is term-equivalent to the class of unital commutative
distributive `-monoids. In our treatment, however, we shall stick to the signature
and axioms of Definition 4.11, and we will use the present remark only to explain the
axioms of MV-monoidal algebras below.

4.2.2 MV-monoidal algebras
The idea that we pursue is that a unital commutative distributive `-monoid is deter-
mined by its unit interval. For a unital commutative distributive `-monoid M , we
set

Γ(M) := {x ∈M | 0 6 x 6 1}.
On Γ(M) we define the constants 0 and 1 and the binary operations ∨ and ∧ by
restriction from M , and, for x, y ∈ Γ(M), we set

x⊕ y := (x+ y) ∧ 1,

and
x� y := (x+ y − 1) ∨ 0.

By Lemma 4.5, ⊕ and � are internal operations on Γ(M): indeed, we have x ⊕ y ∈
Γ(M) because x + y > 0 + 0 = 0, and we have x � y ∈ Γ(M) because x + y − 1 6
1 + 1− 1 = 1.

The intent behind Definition 4.15 below is to provide a finite equational axioma-
tisation of the algebras which are isomorphic to 〈Γ(M);⊕,�,∨,∧, 0, 1〉 for some uni-
tal commutative distributive `-monoid M . We will call the algebras satisfying this
axiomatisation MV-monoidal algebras. The main result of this chapter is that the
categories of unital commutative distributive `-monoids and MV-monoidal algebras
are equivalent, the equivalence being witnessed by the functor Γ.

On [0, 1], consider the elements 0 and 1 and the operations x ∨ y := max{x, y},
x ∧ y := min{x, y}, x⊕ y := min{x+ y, 1}, and x� y := max{x+ y − 1, 0}. This is a
prime example of what we call an MV-monoidal algebra.
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Definition 4.15. An MV-monoidal algebra is an algebra 〈A;⊕,�,∨,∧, 0, 1〉 (arities
2, 2, 2, 2, 0, 0) satisfying the following equational axioms.

E1. 〈A;∨,∧〉 is a distributive lattice.

E2. 〈A;⊕, 0〉 and 〈A;�, 1〉 are commutative monoids.

E3. Both the operations ⊕ and � distribute over both ∨ and ∧.

E4. (x⊕ y)� ((x� y)⊕ z) = (x� (y ⊕ z))⊕ (y � z).

E5. (x� y)⊕ ((x⊕ y)� z) = (x⊕ (y � z))� (y ⊕ z).

E6. (x� y)⊕ z = ((x⊕ y)� ((x� y)⊕ z)) ∨ z.

E7. (x⊕ y)� z = ((x� y)⊕ ((x⊕ y)� z)) ∧ z.

MV-algebras are unit intervals of unital Abelian `-groups; the name ‘MV-monoidal
algebra’ suggests that these algebras play the role of MV-algebras when ‘group’ is re-
placed by ‘monoid’. In fact, as we will prove, MV-monoidal algebras are unit intervals
of unital commutative distributive `-monoids.

We let MVM denote the category of MV-monoidal algebras with homomorphisms.
Notice that Axioms E1 to E3 coincide with Axioms S1 to S3 in Remark 4.14,

together with the distributivity of the underlying lattice and the commutativity of
the monoidal operations.

Axiom E4 is a sort of associativity, which resembles Axiom S4, i.e. (x · y) + z =
x · (y + z). In particular, one verifies that the interpretation on [0, 1] of both the
left-hand and right-hand side of Axiom E4 equals

((x+ y + z − 1) ∨ 0) ∧ 1. (4.1)

Notice that, using the definition of · from Remark 4.14, the element x + y + z − 1
appearing in (4.1) coincides with the interpretation on R of (x · y) + z and x · (y+ z).
In fact, in our view, Axiom E4 is essentially the condition (x · y) + z = x · (y + z)
expressed at the unital level, i.e.:

(((x · y) + z) ∨ 0) ∧ 1 = ((x · (y + z)) ∨ 0) ∧ 1. (4.2)

In fact, the term x ·y in the left-hand side of (4.2) corresponds to the terms x⊕y and
x� y in the left-hand side of Axiom E4, and the term y + z in the right-hand side of
(4.2) corresponds to the terms y ⊕ z and y � z in the right-hand side of Axiom E4.

Analogously, Axiom E5 corresponds to Axiom S5, i.e. (x + y) · z = x + (y · z).
Notice that Axioms E4 and E5 are equivalent, given the commutativity of ⊕ and �; we
have included both so to make it clear that, if 〈A;⊕,�,∨,∧, 0, 1〉 is an MV-monoidal
algebra, then also its order-dual 〈A;�,⊕,∧,∨, 1, 0〉 is an MV-monoidal algebra.

Axiom E6 expresses how the term (x�y)⊕z differs from its non-truncated version
(x · y) + z: essentially, the axiom can be read as

(x� y)⊕ z = ((x · y) + z) ∨ z.

Analogously, Axiom E7 can be read as

(x⊕ y)� z = ((x+ y) · z) ∧ z.
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Examples 4.16. 1. The unit interval [0, 1] is an MV-monoidal algebra.

2. Every bounded distributive lattice L can be made into an MV-monoidal algebra
by setting x⊕y := x∨y, and x�y := x∧y. In fact, the category of bounded distributive
lattices is a subvariety of the variety of MV-monoidal algebras, obtained by adding
the axioms ∀x, y (x⊕ y = x ∨ y) and ∀x, y (x� y = x ∧ y).

3. For every topological space X equipped with a preorder, the set of continuous
order-preserving functions from X to [0, 1] with pointwise defined operations is an
MV-monoidal algebra.

We remark that MVM is a variety of algebras whose primitive operations are
finitely many and of finite arity, axiomatised by a finite number of equations.

Basic properties of MV-monoidal algebras

If 〈A;⊕,�,∨,∧, 0, 1〉 is an MV-monoidal algebra, then also its so-called dual algebra3
〈A;�,⊕,∧,∨, 1, 0〉—obtained by interchanging the roles of � and ⊕, the roles of
∧ and ∨ and the roles of 1 and 0—is an MV-monoidal algebra. We will use this
observation to shorten some proofs.

We give a name to the right- and left-hand terms of Axioms E4 and E5; we will
then prove that their interpretations in an MV-monoidal algebra coincide.

Notation 4.17. We set

σ1(x, y, z) := (x⊕ y)� ((x� y)⊕ z);
σ2(x, y, z) := (x� y)⊕ ((x⊕ y)� z);
σ3(x, y, z) := (x� (y ⊕ z))⊕ (y � z);
σ4(x, y, z) := (x⊕ (y � z))� (y ⊕ z).

In [0, 1], the interpretation of any of these terms is

((x+ y + z − 1) ∨ 0) ∧ 1.

Note that Axioms E5 to E7 can be written, respectively, as

σ1(x, y, z) = σ3(x, y, z),
σ2(x, y, z) = σ4(x, y, z),

(x� y)⊕ z = σ1(x, y, z) ∨ z,
(x⊕ y)� z = σ2(x, y, z) ∧ z.

Lemma 4.18. The terms σ1, σ2, σ3, σ4 in the theory of MV-monoidal algebras are
all invariant under any permutation of the variables, and they all coincide. In other
words, for every MV-monoidal algebra A, for all i, j ∈ {1, 2, 3, 4}, for all permutations
τ, ρ : {1, 2, 3} → {1, 2, 3} and for all x1, x2, x3 ∈ A we have

σi(xτ(1), xτ(2), xτ(3)) = σj(xρ(1), xρ(2), xρ(3)).
3Not to be confused with the notion of categorical dual.
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Proof. In the theory of MV-monoidal algebras, by commutativity of⊕ and�, the term
σ1 is invariant under transposition of the first and the second variable, and the term
σ3 is invariant under transposition of the second and the third variable. Moreover,
by Axiom E4, we have σ1(x, y, z) = σ3(x, y, z). Since any two distinct transpositions
in the symmetric group on three elements generate the whole symmetric group, it
follows that σ1 and σ3 are invariant under every permutation of the variables. By
commutativity of ⊕ and �, we have σ1(x, y, z) = σ4(z, y, x). Therefore, also σ4 is
invariant under every permutation, and σ1(x, y, z) = σ4(x, y, z). By Axiom E5, we
have σ2(x, y, z) = σ4(x, y, z), and we conclude that σ1, σ2, σ3, σ4 are invariant under
any permutation of the variables, and coinciding.

In particular, Lemma 4.18 guarantees that, for all x, y, z in an MV-monoidal al-
gebra, we have

σ1(x, y, z) = σ2(x, y, z) = σ3(x, y, z) = σ4(x, y, z).

Notation 4.19. For x, y, z in an MV-monoidal algebra, we let σ(x, y, z) denote the
common value of σ1(x, y, z), σ2(x, y, z), σ3(x, y, z) and σ4(x, y, z).

We recall the interpretation of σ(x, y, z) in [0, 1]:

σ(x, y, z) = ((x+ y + z − 1) ∨ 0) ∧ 1.

Loosely speaking, σ(x, y, z) is the second layer of the sum of x, y, and z. In fact, the
symbol σ should be evocative of the word ‘sum’.

Lemma 4.20. For every element x of an MV-monoidal algebra we have 0 6 x 6 1.

Proof. We have

x = (x� 1)⊕ 0 (Axiom E2)
= σ1(x, 1, 0) ∨ 0 (Axiom E6)
= σ3(x, 1, 0) ∨ 0 (Axiom E4)
= ((x� (1⊕ 0))⊕ (1� 0)) ∨ 0 (def. of σ3)
= ((x� 1)⊕ 0) ∨ 0 (Axiom E2)
= x ∨ 0. (Axiom E2)

Thus 0 6 x. Dually, x 6 1.

Lemma 4.21. For every element x in an MV-monoidal algebra, we have x ⊕ 1 = 1
and x� 0 = 0.

Proof. We have

0 = 1� 0 (Axiom E2)
= (1 ∨ x)� 0 (Lemma 4.20)
= (1� 0) ∨ (x� 0) (Axiom E3)
= 0 ∨ (x� 0) (Axiom E2)
= x� 0. (Lemma 4.20)

Dually, x⊕ 1 = 1.
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Lemma 4.22. In every MV-monoidal algebra, the operations ⊕ and � are order-
preserving in both coordinates.

Proof. For every MV-monoidal algebra 〈A;⊕,�,∨,∧, 0, 1〉, the algebras 〈A;⊕,∨,∧〉
and 〈A;�,∨,∧〉 are `-semigroups. Therefore, by Lemma 4.5, the operations ⊕ and �
are order-preserving in both coordinates.

Lemma 4.23. For all x and y in an MV-monoidal algebra we have x 6 x ⊕ y and
x > x� y.

Proof. By Lemma 4.20, we have 0 6 y. Thus, by Lemma 4.22, we have x = x⊕ 0 6
x⊕ y. Dually, x > x� y.

Lemma 4.24. For all x, y, z in an MV-monoidal algebra we have

x� (y ⊕ z) 6 (x� y)⊕ z.

Proof. Using Axioms E4 to E7, we obtain

x� (y ⊕ z) = x ∧ σ(x, y, z) 6 σ(x, y, z) 6 σ(x, y, z) ∨ z = (x� y)⊕ z.

4.3 The unit interval functor Γ
In this section we define a functor Γ: u`M→ MVM. The main goal of the chapter is
to show that Γ is an equivalence. Recall from the beginning of Section 4.2.2 that, for
a unital commutative distributive `-monoid M , we set

Γ(M) := {x ∈M | 0 6 x 6 1},

and we define on Γ(M) the operations 0, 1, ∨, ∧ by restriction, x⊕ y := (x+ y) ∧ 1,
and x� y := (x+ y− 1)∨ 0. Our next goal—met in Theorem 4.29 below—is to show
that Γ(M) is an MV-monoidal algebra. We need some lemmas.

Lemma 4.25. Let M be a unital commutative distributive `-monoid. For all x, y, z ∈
Γ(M) we have

(x� y)⊕ z = ((x+ y + z − 1) ∨ z) ∧ 1,

and

(x⊕ y)� z = ((x+ y + z − 1) ∧ z) ∨ 0.

Proof. We have

(x� y)⊕ z = ((x� y) + z) ∧ 1 (def. of ⊕)
= (((x+ y − 1) ∨ 0) + z) ∧ 1 (def. of �)
= ((x+ y + z − 1) ∨ z) ∧ 1 (+ distr. over ∧)

and

(x⊕ y)� z = ((x⊕ y) + z − 1) ∨ 0 (def. of �)
= (((x+ y) ∧ 1) + z − 1) ∨ 0 (def. of ⊕)
= ((x+ y + z − 1) ∧ z) ∨ 0. (+ distr. over ∧)
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The following establishes Axioms E1 to E3 for Γ(M).

Lemma 4.26. For any unital commutative distributive `-monoid M the following
properties hold.

1. 〈Γ(M);∨,∧〉 is a distributive lattice.

2. 〈Γ(M);⊕, 0〉 and 〈Γ(M);�, 1〉 are commutative monoids.

3. In Γ(M) the operations ⊕ and � distribute over ∨ and ∧.

Proof. 1. This follows from the fact that 〈M ;∨,∧〉 is a distributive lattice.

2. We show that 〈Γ(M);⊕, 0〉 is a commutative monoid.

(a) We have

(x⊕ y)⊕ z = (((x+ y) ∧ 1) + z) ∧ 1
= (x+ y + z) ∧ (1 + z) ∧ 1
= (x+ y + z) ∧ 1
= (x+ y + z) ∧ (x+ 1) ∧ 1
= (x+ ((y + z) ∧ 1)) ∧ 1
= x⊕ (y ⊕ z).

(b) We have x⊕ y = (x+ y) ∧ 1 = (y + x) ∧ 1 = y ⊕ x.
(c) We have x⊕ 0 = (x+ 0) ∧ 1 = x ∧ 1 = x.

We show that 〈Γ(M);�, 1〉 is a commutative monoid.

(a) We have

(x� y)� z = (((x+ y − 1) ∨ 0) + z − 1) ∨ 0
= (x+ y + z − 2) ∨ (z − 1) ∨ 0
= (x+ y + z − 2) ∨ 0
= (x+ y + z − 2) ∨ (x− 1) ∨ 0
= (x+ ((y + z − 1) ∨ 0)− 1) ∨ 0
= x� (y � z).

(b) We have x� y = (x+ y − 1) ∨ 0 = (y + x− 1) ∨ 0 = y � x.
(c) We have x� 1 = (x+ 1− 1) ∨ 0− 1 = x ∨ 0 = x.

3. We show that ⊕ distributes over ∨ and ∧: we have

(x ∨ y)⊕ z = ((x ∨ y) + z) ∧ 1
= ((x+ z) ∨ (y + z)) ∧ 1
= ((x+ z) ∧ 1) ∨ ((y + z) ∧ 1)
= (x⊕ z) ∨ (y ⊕ z).
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and

(x ∧ y)⊕ z = ((x ∧ y) + z) ∧ 1
= ((x+ z) ∧ (y + z)) ∧ 1
= ((x+ z) ∧ 1) ∧ ((y + z) ∧ 1)
= (x⊕ z) ∧ (y ⊕ z).

We show that � distributes over ∨ and ∧: we have

(x ∨ y)� z = ((x ∨ y) + z − 1) ∨ 0
= ((x+ z − 1) ∨ (y + z − 1)) ∨ 0
= ((x+ z − 1) ∨ 0) ∨ (((y + z − 1) ∨ 0))
= (x� z) ∨ (y � z).

and

(x ∧ y)� z = ((x ∧ y) + z − 1) ∨ 0
= ((x+ z − 1) ∧ (y + z − 1)) ∨ 0
= ((x+ z − 1) ∨ 0) ∧ (((y + z − 1) ∨ 0))
= (x� z) ∧ (y � z).

Lemma 4.27. Let M be a unital commutative distributive `-monoid. For all x, y ∈
Γ(M) we have

(x⊕ y) + (x� y) = x+ y.

Proof. We have

(x⊕ y) + (x� y) = ((x+ y) ∧ 1) + ((x+ y − 1) ∨ 0) (def. of ⊕ and �)
= ((x+ y) ∧ 1) + ((x+ y) ∨ 1)− 1 (+ distr. over ∨)
= x+ y + 1− 1 (Lemma 4.6)
= x+ y.

Lemma 4.28. Let M be a unital commutative distributive `-monoid. For all x, y, z ∈
Γ(M), the elements

(x⊕ y)� ((x� y)⊕ z),

(x� y)⊕ ((x⊕ y)� z),

(x� (y ⊕ z))⊕ (y � z),

(x⊕ (y � z))� (y ⊕ z)

coincide with
(x+ y + z − 1) ∨ 0) ∧ 1.
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Proof. We have

(x⊕ y)� ((x� y)⊕ z)
= (((x⊕ y) + (x� y) + z) ∧ (x⊕ y)) ∨ 0 (Lemma 4.25)
= ((x+ y + z − 1) ∧ (x⊕ y)) ∨ 0 (Lemma 4.27)
= ((x+ y + z − 1) ∧ (x+ y) ∧ 1) ∨ 0 (def. of ⊕)
= ((x+ y + z − 1) ∧ 1) ∨ 0 (x+ y 6 x+ y + z − 1)
= ((x+ y + z − 1) ∨ 0) ∧ 1.

and

(x� (y ⊕ z))⊕ (y � z)
= ((x+ (y ⊕ z) + (y � z)) ∨ (y � z)) ∧ 1 (Lemma 4.25)
= ((x+ y + z − 1) ∨ (y � z)) ∧ 1 (Lemma 4.27)
= ((x+ y + z − 1) ∨ (y + z − 1) ∨ 0) ∧ 1 (def. of �)
= ((x+ y + z − 1) ∨ 0) ∧ 1. (y + z − 1 6 x+ y + z − 1)

The fact that also (x � y) ⊕ ((x ⊕ y) � z) and (x ⊕ (y � z)) � (y ⊕ z) coincide with
(x + y + z − 1) ∨ 0) ∧ 1 follows from the commutativity of ⊕ and � (which is easily
seen to hold) and the commutativity of +.

Theorem 4.29. If M is a unital commutative distributive `-monoid, then Γ(M) is
an MV-monoidal algebra.

Proof. Axioms E1 to E3 in Definition 4.15 hold by Lemma 4.26. Axioms E4 and E5
hold by Lemma 4.28. Axioms E6 and E7 hold by Lemma 4.25 and Lemma 4.28.

Given a morphism of unital commutative distributive `-monoids f : M → N , we
denote with Γ(f) its restriction Γ(f) : Γ(M)→ Γ(N). This establishes a functor

Γ: u`M→ MVM.

The main goal of this chapter is to show that Γ is an equivalence of categories.

4.4 Good Z-sequences: definition and basic prop-
erties

The idea to establish a quasi-inverse of the functor Γ: u`M → MVM is that every
element x of a unital commutative distributive `-monoid is uniquely determined by
the function

ζM(x) : Z −→ Γ(M)
n 7−→ ((x− n) ∨ 0) ∧ 1.

The intent behind the definition of good Z-sequence (Definition 4.31 below) is to
describe the properties of the function ζM(x). Indeed, in Theorem 4.72, we will prove
that a unital commutative distributive `-monoidM is in bijection with the set of good
Z-sequences in Γ(M).
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Definition 4.30. Let A be an MV-monoidal algebra. A good pair in an MV-monoidal
algebra A is a pair (x0, x1) of elements of A such that x0⊕ x1 = x0 and x0� x1 = x1.

A function from Z to a set A will be called a Z-sequence in A.

Definition 4.31. Let A be an MV-monoidal algebra. A good Z-sequence in an MV-
monoidal algebra A is a Z-sequence x in A which satisfies the following conditions.

1. The value x(k) is eventually 1 for k → −∞, i.e., there exists n ∈ Z such that,
for every k < n, we have x(k) = 1.

2. The value x(k) is eventually 0 for k → +∞, i.e., there exists m ∈ Z such that,
for every k > m, we have x(k) = 0.

3. For every k ∈ Z, the pair (x(k),x(k + 1)) is good.

Notation 4.32. We will write, more concisely, (x0, x1, x2, . . . ) for the Z-sequence

Z −→ A

k 7−→

1 if k < 0;
xk if k > 0.

Moreover, instead of (x0, . . . , xn, 0, 0, 0, . . . ) we will write, more concisely, (x0, . . . , xn).
In particular, for each x ∈ A, (x) denotes the good Z-sequence

Z −→ A

k 7−→


1 if k < 0;
x if k = 0;
0 if k > 0.

The use of sequences indexed by Z instead of N is not new: in [Ball et al., 2002,
Section 2.1] it was used for the equivalence between unital Abelian `-groups and MV-
algebras.
Remark 4.33. In our definition of good pair we included both the conditions x0⊕x1 =
x0 and x0 � x1 = x1 because, in general, they are not equivalent. For example,
let A = Γ(Z

→
× {0, 1}), where Z

→
× {0, 1} is the lexicographic product of the two

commutative distributive `-monoids Z (with addition) and {0, 1} (with + := ∨), with
(1, 0) as positive unit and (−1, 0) as negative unit (see item 3 in Examples 4.12). We
have (0, 1)⊕ (0, 1) = (0, 1) and (0, 1)� (0, 1) = (0, 0) 6= (0, 1).

Basic properties of good Z-sequences

Remark 4.34. Given two elements x0 and x1 in an MV-monoidal algebra A, (x0, x1)
is a good pair in A if, and only if (x1, x0) is a good pair in the dual of A.

Lemma 4.35. Let A be an MV-monoidal algebra, let (x0, x1) be a good pair in A,
and let y ∈ A. Then

x0 � (x1 ⊕ y) = x1 ⊕ (x0 � y),
and the terms on both sides coincide with σ(x0, x1, y).
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Proof. We have

x0 � (x1 ⊕ y) = (x0 ⊕ x1)� ((x0 � x1)⊕ y) ((x0, x1) is good)
= σ1(x0, x1, y) (def. of σ1)
= σ2(x0, x1, y) (Lemma 4.18)
= (x0 � x1)⊕ ((x0 ⊕ x1)� y) (def. of σ2)
= x1 ⊕ (x0 � y). ((x0, x1) is good)

Lemma 4.36. Let A be an MV-monoidal algebra, and let x, y ∈ A. Then (x⊕y, x�y)
is a good pair.

Proof. We have

(x⊕ y)⊕ (x� y) = (1� (x⊕ y))⊕ (x� y) (Axiom E2)
= σ3(1, x, y) (def. of σ3)
= σ4(1, x, y) (Lemma 4.18)
= (1⊕ (x� y))� (x⊕ y) (def. of σ4)
= 1� (x⊕ y) (Lemma 4.21)
= x⊕ y. (Axiom E2)

Dually, (x⊕ y)� (x� y) = x� y.

Lemma 4.37. Let n,m ∈ N, let x0, . . . , xn, y0, . . . , ym be elements of an MV-monoidal
algebra and suppose that, for every i ∈ {0, . . . , n}, and every j ∈ {0, . . . ,m}, the pair
(xi, yj) is good. Then,

(x0 � · · · � xn, y0 ⊕ · · · ⊕ ym)

is a good pair.

Proof. The statement is trivial for (n,m) = (0, 0). The statement is true for (n,m) =
(1, 0) because

(x0 � x1)⊕ y0
Lemma 4.35= (x0 ⊕ y0)� x1 = x0 � x1,

and
(x0 � x1)� y0 = x0 � (x1 � y0) = x0 � y0 = y0.

The case (n,m) = (0, 1) is analogous. Let (n,m) ∈ N × N \ {(0, 0), (0, 1), (1, 0)},
and suppose that the statement is true for each (h, k) ∈ N × N such that (h, k) 6=
(n,m), h 6 n and k 6 m. We prove that the statement holds for (n,m). At
least one of the two conditions n 6= 0 and m 6= 0 holds. Suppose, for example,
n 6= 0. Then, by inductive hypothesis, the pairs (x0 � · · · � xn−1, y0 ⊕ · · · ⊕ ym) and
(xn, y0 ⊕ · · · ⊕ ym) are good. Now we apply the statement for the case (1, 0), and
we obtain that (x0 � · · · � xn, y0 ⊕ · · · ⊕ ym) is a good pair. The case m 6= 0 is
analogous.
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4.5 Subdirectly irreducible MV-monoidal algebras
In this section we prove that, for every subdirectly irreducible MV-monoidal algebra
A, we have: (i) A is totally ordered and (ii) for every good pair (x0, x1) in A we have
either x0 = 1 or x1 = 0. These two conditions are of interest because, as one may
prove, for an MV-monoidal algebra A, the conjunction of (i) and (ii) is equivalent to
the enveloping unital commutative distributive `-monoid of A being totally ordered.

4.5.1 Subdirectly irreducible algebras are totally ordered
In this subsection we prove that every subdirectly irreducible MV-monoidal algebra
is totally ordered (Theorem 4.42). Our source of inspiration is [Repnitzkii, 1984,
Section 1], in analogy to which we proceed.

Given an MV-monoidal algebra A and a lattice congruence θ on A such that
|A/θ| = 2, we set

θ∗ := {(a, b) ∈ A× A | ∀x ∈ A (a⊕ x, b⊕ x) ∈ θ and (a� x, b� x) ∈ θ},

and we let 0(θ) and 1(θ) denote the classes of the lattice congruence θ corresponding
to the smallest and greatest element of the lattice A/θ, respectively.

Lemma 4.38. Let A be an MV-monoidal algebra, and let θ be a lattice congruence on
A such that |A/θ| = 2. Then, θ∗ is the greatest {⊕,�,∨,∧, 0, 1}-congruence contained
in θ.

Proof. We have θ∗ ⊆ θ because, for every (a, b) ∈ θ∗, we have (a, b) = (a⊕0, b⊕0) ∈ θ.

Claim 4.39. The relation θ∗ contains every {⊕,�,∨,∧, 0, 1}-congruence contained in
θ.

Proof of Claim. Let ρ be a {⊕,�,∨,∧, 0, 1}-congruence contained in θ. Let (a, b) ∈ ρ,
and let x ∈ A. Since (x, x) ∈ ρ, and ρ is a congruence, we have (a⊕x, b⊕x) ∈ ρ ⊆ θ,
and (a� x, b� x) ∈ ρ ⊆ θ. Thus, (a, b) ∈ θ∗. �

Claim 4.40. The relation θ∗ is a {⊕,�,∨,∧, 0, 1}-congruence.

Proof of Claim. The relation θ∗ is an equivalence relation because θ is so. In the
following, let a, a′, b, b′ ∈ A, and suppose (a, a′) ∈ θ∗ and (b, b′) ∈ θ∗: for all x ∈ A, we
have (a⊕ x, a′ ⊕ x) ∈ θ, (a� x, a′ � x) ∈ θ, (b⊕ x, b′ ⊕ x) ∈ θ, and (b� x, b′ � x) ∈ θ.

Let us prove (a∨b, a′∨b′) ∈ θ∗. Let x ∈ A. Since (a⊕x, a′⊕x) ∈ θ, (b⊕x, b′⊕x) ∈ θ,
and θ is a lattice congruence, we have(

(a⊕ x) ∨ (b⊕ x), (a′ ⊕ x) ∨ (b′ ⊕ x)
)
∈ θ,

i.e., (
(a ∨ b)⊕ x, (a′ ∨ b′)⊕ x

)
∈ θ.

Analogously, (
(a ∨ b)� x, (a′ ∨ b′)� x

)
∈ θ.
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This proves (a ∨ b, a′ ∨ b′) ∈ θ∗. Analogously, (a ∧ b, a′ ∧ b′) ∈ θ∗.
Let us prove (a⊕ b, a′ ⊕ b′) ∈ θ∗. Let x ∈ A. We shall prove

(a⊕ b⊕ x, a′ ⊕ b′ ⊕ x) ∈ θ (4.3)

and (
(a⊕ b)� x, (a′ ⊕ b′)� x

)
∈ θ. (4.4)

Since (a, a′) ∈ θ∗, we have (
a⊕ (b⊕ x), a′ ⊕ (b⊕ x)

)
∈ θ.

Since (b, b′) ∈ θ∗, we have (
b⊕ (a′ ⊕ x), b′ ⊕ (a′ ⊕ x)

)
∈ θ.

Hence, by transitivity of θ, we have (a ⊕ b ⊕ x, a′ ⊕ b′ ⊕ x) ∈ θ, and so eq. (4.3) is
proved.

Let us prove eq. (4.4). By transitivity of θ, it is enough to prove(
(a⊕ b)� x, (a′ ⊕ b)� x

)
∈ θ, (4.5)

and (
(a′ ⊕ b)� x, (a′ ⊕ b′)� x

)
∈ θ. (4.6)

Let us prove eq. (4.5). Suppose, by way of contradiction, ((a⊕b)�x, (a′⊕b)�x) /∈ θ.
Then, without loss of generality, we may assume (a⊕ b)� x ∈ 0(θ) and (a′⊕ b)� x ∈
1(θ). We have 1(θ) 3 (a′ ⊕ b)� x 6 x; thus x ∈ 1(θ). We have

(a⊕ b)� x︸ ︷︷ ︸
∈0(θ)

= σ(a, b, x) ∧ x︸︷︷︸
∈1(θ)

,

and thus σ(a, b, x) ∈ 0(θ). We have

(a′ ⊕ b)� x︸ ︷︷ ︸
∈1(θ)

= σ(a′, b, x) ∧ x︸︷︷︸
∈1(θ)

,

and thus σ(a′, b, x) ∈ 1(θ). We have

0(θ) 3 σ(a, b, x) = (a� (b⊕ x))⊕ (b� x) > a� (b⊕ x),

and thus a� (b⊕ x) ∈ 0(θ). Since (a, a′) ∈ θ∗, it follows that a′ � (b⊕ x) ∈ 0(θ). We
have

a′ � (b⊕ x)︸ ︷︷ ︸
∈0(θ)

= a′ ∧ σ(a′, b, x)︸ ︷︷ ︸
∈1(θ)

.

Therefore, a′ ∈ 0(θ). We have

1(θ) 3 σ(a′, b, x) = (a′ ⊕ (b� x))� (b⊕ x) 6 a′ ⊕ (b� x),
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and thus a′ ⊕ (b� x) ∈ 1(θ). Since (a, a′) ∈ θ∗, it follows that a⊕ (b� x) ∈ 1(θ). We
have

a⊕ (b� x)︸ ︷︷ ︸
∈1(θ)

= a ∨ σ(a, b, x)︸ ︷︷ ︸
∈0(θ)

.

Therefore, a ∈ 1(θ). Thus, a ∈ 1(θ) and a′ ∈ 0(θ), and this contradicts (a, a′) ∈ θ∗ ⊆
θ. In conclusion, eq. (4.5) holds, and analogously for eq. (4.6). By transitivity of θ,
eq. (4.4) holds. This proves (a ⊕ b, a′ ⊕ b′) ∈ θ∗. Analogously, (a � b, a′ � b′) ∈ θ∗.
Therefore, θ∗ is a {⊕,�,∨,∧, 0, 1}-congruence. �

Given a set A, we let ∆A (or simply ∆, when A is understood) denote the identity
relation {(s, s) | s ∈ A} on A.

Lemma 4.41. For every subdirectly irreducible MV-monoidal algebra A there exists
a lattice congruence θ on A such that |A/θ| = 2 and θ∗ = ∆.

Proof. Since A is distributive as a lattice, it can be decomposed into a subdirect
product of two-element lattices. Let {θi}i∈I be the set of lattice congruences of A
corresponding with such a decomposition. Then ⋂i∈I θi = ∆. By Lemma 4.38, each
θ∗i is a {⊕,�,∨,∧, 0, 1}-congruence, and ∆ ⊆ θ∗i ⊆ θi. Therefore we have

⋂
i∈I θ

∗
i = ∆,

and the fact that A is subdirectly irreducible implies θ∗j = ∆ for some j ∈ I.

Theorem 4.42. Every subdirectly irreducible MV-monoidal algebra is totally ordered.

Proof. Let A be a subdirectly irreducible MV-monoidal algebra. By Lemma 4.41,
there exists a lattice congruence θ on A such that |A/θ| = 2 and such that θ∗ = ∆,
i.e., for all distinct a, b ∈ A, there exists x ∈ A such that (a ⊕ x, b ⊕ x) /∈ θ, or
(a� x, b� x) /∈ θ.

Let a, b ∈ A. We shall prove that either a 6 b or b 6 a holds. Suppose, by way of
contradiction, that this is not the case, i.e., a ∧ b 6= a and a ∧ b 6= b. Since a ∧ b 6= a,
there exists x ∈ A such that ((a ∧ b)⊕ x, a⊕ x) /∈ θ or ((a ∧ b)� x, a� x) /∈ θ. Since
a∧ b 6= b, there exists y ∈ A such that ((a∧ b)⊕y, b⊕y) /∈ θ or ((a∧ b)�y, b�y) /∈ θ.
We have four cases.

1. Suppose ((a∧b)⊕x, a⊕x) /∈ θ and ((a∧b)⊕y, b⊕y) /∈ θ. Then, since a∧b 6 a,
and a ∧ b 6 b, we have (a ∧ b) ⊕ x ∈ 0(θ), a ⊕ x ∈ 1(θ), (a ∧ b) ⊕ y ∈ 0(θ), and
b⊕ y ∈ 1(θ). Then, we have

0(θ) 3 ((a ∧ b)⊕ x) ∨ ((a ∧ b)⊕ y)
= (a ∧ b)⊕ (x ∨ y) (⊕ distr. over ∨)
= (a⊕ (x ∨ y)) ∧ (b⊕ (x ∨ y)) (⊕ distr. over ∧)
> (a⊕ x) ∧ (b⊕ y) (Lemma 4.22)
∈ 1(θ),

which is a contradiction.

2. The case ((a ∧ b) � x, a � x) /∈ θ and ((a ∧ b) � y, b � y) /∈ θ is analogous to
item 1.
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3. Suppose ((a∧b)⊕x, a⊕x) /∈ θ and ((a∧b)�y, b�y) /∈ θ. Then, since a∧b 6 a,
we have (a ∧ b)⊕ x ∈ 0(θ), and a⊕ x ∈ 1(θ). Therefore,

0(θ) 3 (a ∧ b)⊕ x = (a⊕ x)︸ ︷︷ ︸
∈1(θ)

∧(b⊕ x).

Hence, b ⊕ x ∈ 0(θ), which implies b ∈ 0(θ), which implies (a ∧ b) � y ∈ 0(θ) and
b� y ∈ 0(θ), which contradicts ((a ∧ b)� y, b� y) /∈ θ.

4. The case ((a ∧ b) � x, a � x) /∈ θ and ((a ∧ b) ⊕ y, b ⊕ y) /∈ θ is analogous to
item 3.

In each case, we are led to a contradiction.

4.5.2 Good pairs in subdirectly irreducible algebras
The goal of this subsection—met in Corollary 4.48—is to prove that, for every good
pair (x0, x1) in a subdirectly irreducible MV-monoidal algebra A, we have either x0 = 1
or x1 = 0. This implies that good Z-sequences in A are of the form

Z −→ A

k 7−→


1 if k < n;
x if k = n;
0 if k > n.

for some n ∈ Z and x ∈ A.

Notation 4.43. Let A be an MV-monoidal algebra and let t, x, y ∈ A. We write
x &t⊥ y if, and only if, there exists n ∈ N such that

x⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
n times

> y.

We write x ∼t⊥ y if, and only if, x &t⊥ y and y &t⊥ x.
We write x .>t y if, and only if, there exists n ∈ N such that

x� t� · · · � t︸ ︷︷ ︸
n times

6 y.

We write x ∼>t y if, and only if, x .>t y and y .>t x.

Lemma 4.44. Let A be an MV-monoidal algebra. For every t ∈ A the following
conditions hold.

1. The relation ∼t⊥ is the smallest {⊕,�,∨,∧, 0, 1}-congruence ∼ on A such that
t ∼ 0.

2. The relation ∼>t is the smallest {⊕,�,∨,∧, 0, 1}-congruence ∼ on A such that
t ∼ 1.
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Proof. We prove item 1; item 2 is dual. It is immediate that t ∼t⊥ 0, and that, if ∼
is a {⊕,�,∨,∧, 0, 1}-congruence on A such that t ∼ 0, then ∼t⊥ ⊆ ∼. To prove that
∼t⊥ is a congruence, we first prove that ∼t⊥ is an equivalence relation. It is enough
to prove that &t⊥ is reflexive and transitive. Reflexivity of &t⊥ is trivial. To prove
transitivity, suppose x &t⊥ y &t⊥ z. Then there exist n, n′ ∈ N such that

x⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
n times

> y

and
y ⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸

n′ times

> z.

Therefore,
x⊕ (t⊕ · · · ⊕ t︸ ︷︷ ︸

n times

)⊕ (t⊕ · · · ⊕ t︸ ︷︷ ︸
n′ times

) > y ⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
n′ times

> z.

It follows that x &t⊥ y. Thus, &t⊥ is transitive. This proves that ∼t⊥ is an equivalence
relation.

Let us prove that ∼t⊥ is a congruence. Suppose x ∼t⊥ x′ and y ∼t⊥ y′. Then, there
exist n, n′,m,m′ ∈ N such that

x⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
n times

> x′,

x′ ⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
m times

> x,

y ⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
n′ times

> y′,

and
y′ ⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸

m′ times

> y.

We have x ∧ y &t⊥ x′ ∧ y′ because

(x ∧ y)⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
max{n,n′} times

= (x⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
max{n,n′} times

) ∧ (y ⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
max{n,n′} times

) > x′ ∧ y′.

Analogously, we have x′ ∧ y′ &t⊥ x ∧ y. Hence, x ∧ y ∼t⊥ x′ ∧ y′, and, analogously,
x ∨ y ∼t⊥ x′ ∨ y′.

We have x⊕ y &t⊥ x′ ⊕ y′ because

x⊕ y ⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
(n+n′) times

= (x⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
n times

)⊕ (y ⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
n′ times

) > x′ ⊕ y′.

Analogously, x′ ⊕ y′ &t⊥ x⊕ y. Hence, x⊕ y ∼t⊥ x′ ⊕ y′.
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We have x� y &t⊥ x′ � y′ because

(x� y)⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
(n+n′) times

= ((x� y)⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
n times

)⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
n′ times

> ((x⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
n times

)� y)⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
n′ times

(Lemma 4.24)

> (x⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
n times

)� (y ⊕ t⊕ · · · ⊕ t︸ ︷︷ ︸
n′ times

) (Lemma 4.24)

> x′ � y′.

Analogously, we have x′ � y′ &t⊥ x � y. Hence, x � y ∼t⊥ x′ � y′, and item 1 is
proved.

Lemma 4.45. Let A be an MV-monoidal algebra, let (x0, x1) be a good pair in A,
and let a, b ∈ A be such that a 6 b⊕ x1 and a� x0 6 b. Then a 6 b.

Proof. By Birkhoff’s subdirect representation theorem, it is enough to prove it for A
a subdirectly irreducible algebra. By Theorem 4.42, the algebra A is totally ordered.
Therefore, we have either a 6 b or b 6 a. In the first case, the desired statement is
proved. So, let us assume b 6 a. We have

a ∧ σ(a, x0, x1) Axiom E7= a� (x0 ⊕ x1) = a� x0.

Since A is totally ordered, we have either a = a � x0 or σ(a, x0, x1) = a � x0. In
the first case, we have a = a � x0 6 b, so the desired statement holds. So, we can
assume σ(a, x0, x1) = a � x0. Dually, σ(b, x0, x1) = b ⊕ x1. Since b 6 a, and since
every operation of MV-monoidal algebras is order-preserving (Lemma 4.22), we have
σ(b, x0, x1) 6 σ(a, x0, x1). Therefore,

a 6 b⊕ x1 = σ(b, x0, x1) 6 σ(a, x0, x1) = a� x0 6 b.

Lemma 4.46. Let A be an MV-monoidal algebra. For all x, y ∈ A, the intersection
of ∼x�y⊥ and ∼>x⊕y is the identity relation on A.

Proof. Set u := x ⊕ y, and v := x � y. Let us take a, b ∈ A such that a ∼v⊥ b and
a ∼>u b. Then, there exists n,m ∈ N such that

a 6 b⊕ v ⊕ · · · ⊕ v︸ ︷︷ ︸
m times

and
a� u� · · · � u︸ ︷︷ ︸

n times

6 b.

Since (u, v) is a good pair by Lemma 4.36, also (u � · · · � u, v ⊕ · · · ⊕ v) is so, by
Lemma 4.37. By Lemma 4.45, a 6 b; analogously, b 6 a, and therefore a = b.

Theorem 4.47. Let A be a subdirectly irreducible MV-monoidal algebra. Then, for
all x, y ∈ A, we have either x⊕ y = 1 or x� y = 0.
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Proof. By Lemma 4.46, the intersection of ∼x�y⊥ and ∼>x⊕y is the identity relation ∆
on A. By Lemma 4.44, ∼x�y⊥ and ∼>x⊕y are {⊕,�,∨,∧, 0, 1}-congruences, x�y ∼

x�y
⊥ 0

and x ⊕ y ∼>x⊕y 1. Since A is subdirectly irreducible, either ∼x�y⊥ = ∆ or ∼>x⊕y= ∆.
In the former case we have x� y = 0; in the latter one we have x⊕ y = 1.

Corollary 4.48. Let (x0, x1) be a good pair in a subdirectly irreducible MV-monoidal
algebra. Then, either x0 = 1 or x1 = 0.

Corollary 4.49. Let x be a good Z-sequence in a subdirectly irreducible MV-monoidal
algebra A. Then, there exists k ∈ Z and x ∈ A such that x is the following function.

Z −→ A

n 7−→


1 if n < k;
x if n = k;
0 if n > k.

4.6 Operations on the set Ξ(A) of good Z-sequences
in A

We denote with Ξ(A) the set of good Z-sequences in an MV-monoidal algebra A. We
will endow Ξ(A) with a structure of a unital commutative distributive `-monoid.

4.6.1 The constants

We denote with 0 the good Z-sequence

Z −→ A

n 7−→

1 if n < 0;
0 if n > 0.

We denote with 1 the good Z-sequence

Z −→ A

n 7−→

1 if n < 1;
0 if n > 1.

We denote with −1 the good Z-sequence

Z −→ A

n 7−→

1 if n < −1;
0 if n > −1.
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4.6.2 The lattice operations
For good Z-sequences a and b in A, we let a ∨ b denote the function

Z −→ A

n 7−→ a(n) ∨ b(n),

and we let a ∧ b denote the function

Z −→ A

n 7−→ a(n) ∧ b(n).

Proposition 4.50. For all good Z-sequences a and b in an MV-monoidal algebra,
the Z-sequences a ∨ b and a ∧ b are good.

Proof. By Birkhoff’s subdirect representation theorem, we can safely suppose the MV-
monoidal algebra to be subdirectly irreducible. Then, by Theorem 4.42 and Corol-
lary 4.49, the Z-sequence a ∨ b is either a or b, and the same holds for a ∧ b.

Proposition 4.51. Let A be an MV-monoidal algebra. Then, 〈Ξ(A);∨,∧〉 is a dis-
tributive lattice.

Proof. The statement holds because ∨ and ∧ are applied componentwise on Ξ(A),
and 〈A;∨,∧〉 is a distributive lattice.

For A an MV-monoidal algebra, we have a partial order 6 on Ξ(A), induced by the
lattice operations. Since the lattice operations are defined componentwise, we have
the following.

Lemma 4.52. For all good Z-sequences a and b in an MV-monoidal algebra we have
a 6 b if, and only if, for all n ∈ Z, we have an 6 bn.

4.6.3 The addition
We now want to define sum of good Z-sequences. Let a and b be good Z-sequences
in an MV-monoidal algebra. There are two natural ways to define a + b. The first
one is

(a + b)(n) :=
⊙
k∈Z

a(k)⊕ b(n− k) (4.7)

and the second one is

(a + b)(n) :=
⊕
k∈Z

a(k)� b(n− k − 1). (4.8)

Note that the right-hand side of eq. (4.7) is well-defined because all but finitely many
terms equal 1; analogously, the right-hand side of eq. (4.7) is well-defined because all
but finitely many terms equal 0.

In fact, these two ways coincide, as shown in the following.
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Lemma 4.53. Let a and b be good Z-sequences in an MV-monoidal algebra. Then,
for every n ∈ Z, we have⊙

k∈Z
a(k)⊕ b(n− k) =

⊕
k∈Z

a(k)� b(n− k − 1).

Proof. By Birkhoff’s subdirect representation theorem, it is enough to prove the state-
ment for a subdirectly irreducible MV-monoidal algebra A. By Corollary 4.49, up to
a translation of a and b, we can assume a = (a) and b = (b) for some a, b ∈ A. Then
⊙
k∈Z

a(k)⊕ b(n− k) =
 ⊙
k∈Z,k<0

1⊕ b(n− k)
� (a⊕ b(n))�

 ⊙
k∈Z,k>0

0⊕ b(n− k)


= (a⊕ b(n))�
 ⊙
k∈Z,k>0

b(n− k))


=


1 if n < 0;
a⊕ b if n = 0;
a� b if n = 1;
0 if n > 1.

Moreover,
⊕
k∈Z

(a(k)� b(n− k − 1)) =
 ⊕
k∈Z,k<0

1� b(n− k − 1)
⊕ (a� b(n− 1))⊕ 0

=
 ⊕
k∈Z,k<0

b(n− k − 1)
⊕ (a� b(n− 1))

=


1 if n < 0;
a⊕ b if n = 0;
a� b if n = 1;
0 if n > 1.

Given good Z-sequences a and b in an MV-monoidal algebra, we set, for every
n ∈ Z,

(a + b)(n) :=
⊙
k∈Z

a(k)⊕ b(n− k), (4.9)

or, equivalently (by Lemma 4.53),
(a + b)(n) :=

⊕
k∈Z

a(k)� b(n− k − 1). (4.10)

Proposition 4.54. For all good Z-sequences a and b in an MV-monoidal algebra,
the Z-sequence a + b is good.
Proof. By Birkhoff’s subdirect representation theorem, it is enough to prove the state-
ment for a subdirectly irreducible MV-monoidal algebra A. Then, up to a translation
of a and b, we can assume a = (a) and b = (b) for some a, b ∈ A. Then we have
a + b = (a⊕ b, a� b). The pair (a⊕ b, a� b) is good by Lemma 4.36. Therefore, a + b
is good.
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4.6.4 The algebra Ξ(A) is a unital commutative distributive
`-monoid

Proposition 4.55. Addition of good Z-sequences in an MV-monoidal algebra is com-
mutative.

Proof. By commutativity of ⊕ and �.

Proposition 4.56. For every good Z-sequence a in an MV-monoidal algebra we have
a + 0 = a.

Proof. The proof is straightforward.

Proposition 4.57. Addition of good Z-sequences in an MV-monoidal algebra is as-
sociative.

Proof. By Birkhoff’s subdirect representation theorem, it is enough to prove the state-
ment for a subdirectly irreducible MV-monoidal algebra A. So, let a, b and c be good
Z-sequences in A. By Corollary 4.49, up to a translation for each of a, b and c, we can
suppose a = (a), b = (b) and c = (c), for some a, b, c ∈ A. Then, a+b = (a⊕b, a�b),
and b + c = (b⊕ c, b� c). We have

(a + b) + c = (a⊕ b, a� b) + (c)
=
(
(a⊕ b)⊕ c, (a⊕ b)� ((a� b)⊕ c), (a� b)� c

)
=
(
a⊕ (b⊕ c), (a⊕ (b� c))� (b⊕ c), a� (b� c)

)
(Lemma 4.18)

= (a) + (b⊕ c, b� c)
= a + (b + c).

Proposition 4.58. For all good Z-sequences a, b, c in an MV-monoidal algebra we
have

a + (b ∨ c) = (a + b) ∨ (a + c) (4.11)

and

a + (b ∧ c) = (a + b) ∧ (a + c). (4.12)

Proof. Let us prove eq. (4.11). By Birkhoff’s subdirect representation theorem, it is
enough to prove the statement for a subdirectly irreducible algebra. In this case, by
Theorem 4.42, we have either b 6 c or c 6 b. Without loss of generality, we can
suppose b 6 c. Then, by the definition of + and monotonicity of ⊕ and �, we have
a+b 6 a+c, and thus a+(b∨c) = (a+b)∨(a+c). Equation (4.12) is analogous.

Theorem 4.59. For an MV-monoidal algebra A, the algebra Ξ(A) is a unital com-
mutative distributive `-monoid.

Proof. By Proposition 4.51, Ξ(A) is a distributive lattice. By Propositions 4.55
to 4.57, Ξ(A) is a commutative monoid. By Proposition 4.58, + distributes over
∧ and ∨. Thus, Ξ(A) is a commutative distributive `-monoid. It is easily verified that
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−1 + 1 = 0. Since the order in Ξ(A) is pointwise (Lemma 4.52), and 0 6 1 in A, we
have −1 6 0 6 1. By induction, one proves that, for every n ∈ N, the Z-sequence n1
is the function

Z −→ A

k 7−→

1 if k < n;
0 if k > n,

and n(−1) is the function

Z −→ A

k 7−→

1 if k < −n;
0 if k > −n.

Since 1 is the maximum of A and 0 is the minimum of A, we have Axiom M3, i.e., for
all a ∈ Ξ(A), there exists n ∈ N+ such that n(−1) 6 a 6 n1.

Every morphism of MV-monoidal algebras f : A → B preserves 0, 1, and good
pairs; thus, we are allowed to define the function

Ξ(f) : Ξ(A) −→ Ξ(B)
x 7−→

(
Z→ B;n 7→ f(x(n))

)
.

More concisely: Ξ(f)(x)(n) = f(x(n)).

Lemma 4.60. For every morphism f : A→ B of MV-monoidal algebras, the function
Ξ(f) is a morphism of unital commutative distributive `-monoids.

Proof. Let us prove that Ξ(f) preserves +. Let a,b ∈ Ξ(A), and let n ∈ Z. Then,(
Ξ(f)(a + b)

)
(n) = f((a + b)(n))

= f

⊙
k∈Z

a(k)⊕ b(n− k)


=
⊙
k∈Z

f(a(k))⊕ f(b(n− k))

=
⊙
k∈Z

Ξ(f)(a)(k)⊕ Ξ(f)(b)(n− k)

=
(
Ξ(f)(a) + Ξ(f)(b)

)
(n).

Therefore, Ξ(f) preserves +. Straightforward computations show that Ξ(f) preserves
also 0, 1, −1, ∨ and ∧.

It is easy to see that Ξ: MVM→ u`M is a functor.

4.7 The equivalence
The aim of the present section is to prove that the functors Γ: u`M → MVM and
Ξ: MVM→ u`M defined in Sections 4.3 and 4.6 are quasi-inverses.



80 Chapter 4. Equivalence à la Mundici for unital lattice-ordered monoids

4.7.1 Natural isomorphism for MV-monoidal algebras
For each MV-monoidal algebra A, define the function

ηA : A −→ ΓΞ(A)
x 7−→ (x).

Proposition 4.61. For every MV-monoidal algebra A, the function ηA : A→ ΓΞ(A)
is an isomorphism of MV-monoidal algebras.

Proof. The facts that ηA is a bijection and that it preserves 0, 1,∨,∧ are immediate.
Let x, y ∈ A. Then (x) + (y) = (x⊕ y, x� y). Therefore

ηA(x)⊕ ηA(y) = (x)⊕ (y)
= ((x) + (y)) ∧ 1
= (x⊕ y, x� y) ∧ 1
= (x⊕ y)
= ηA(x⊕ y)

and

ηA(x)� ηA(y) = (x)� (y)
= (((x) + (y)) ∨ 1)−1
= ((x⊕ y, x� y) ∨ 1)−1
= (1, x� y)−1
= (x� y)
= ηA(x� y).

Proposition 4.62. For every morphism of MV-monoidal algebras f : A → B, the
following diagram commutes.

A ΓΞ(A)

B ΓΞ(B),

ηA

f ΓΞ(f)

ηB

Proof. For every x ∈ A we have

ΓΞ(f)(ηA(x)) = ΓΞ(f)((x)) = Ξ(f)((x)) = (f(x)) = ηB(f(x)).

4.7.2 Natural isomorphism for unital lattice-ordered monoids
Lemma 4.63. For every x in a unital commutative distributive `-monoid we have

((x ∨ −1) ∧ 0) + ((x ∨ 0) ∧ 1) = (x ∨ −1) ∧ 1.
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Proof. We have

((x ∨ −1) ∧ 0) + ((x ∨ 0) ∧ 1) = (((x ∨ −1) ∧ 1) ∧ 0) + (((x ∨ −1) ∧ 1) ∨ 0)
= (x ∨ −1) ∧ 1.

Proposition 4.64. Let M be a unital commutative distributive `-monoid, let x ∈M
and set, for each n ∈ Z,

x(n) := ((x− n) ∨ 0) ∧ 1.
Then x is a good Z-sequence in Γ(M).

Proof. Clearly, for each n ∈ Z, we have x(n) ∈ Γ(M).
Since there exists n ∈ N+ such that −n 6 x 6 n, we have, for every k < −n,

x(k) = 1, and, for every k > n, x(k) = 0.
Let us prove that, for every n ∈ Z, (x(n),x(n+ 1)) is a good pair. We have

x(n) + x(n+ 1)
= (((x− n) ∨ 0) ∧ 1) + (((x− n− 1) ∨ 0) ∧ 1)
= (((x− n− 1) ∨ −1) ∧ 0) + (((x− n− 1) ∨ 0) ∧ 1) + 1
= (((x− n− 1) ∨ −1) ∧ 1) + 1 (Lemma 4.63)
= ((x− n) ∨ 0) ∧ 2.

Then, we have

(x(n)⊕ x(n+ 1)) = x(n) + x(n+ 1)) ∧ 1
= ((x− n) ∨ 0) ∧ 2 ∧ 1
= ((x− n) ∨ 0) ∧ 1
= x(n),

and

(x(n)� x(n+ 1)) = (x(n) + x(n+ 1)− 1) ∨ 0
= ((((x− n) ∨ 0) ∧ 2)− 1) ∨ 0
= (((x− n− 1) ∨ −1) ∧ 1) ∨ 0
= ((x− n− 1) ∨ 0) ∧ 1
= x(n+ 1).

Lemma 4.65. Let M be a unital commutative distributive `-monoid, let x ∈M , and
let y ∈ Γ(M). Set x0 := (x ∨ 0) ∧ 1 and x−1 := ((x+ 1) ∨ 0) ∧ 1. Then, we have

((x+ y) ∨ 0) ∧ 1 = x−1 � (x0 ⊕ y).

Proof. First, note that

x−1 + x0 = (((x+ 1) ∨ 0) ∧ 1) + ((x ∨ 0) ∧ 1)
= ((x ∨ −1) ∧ 0) + ((x ∨ 0) ∧ 1) + 1
= ((x ∨ −1) ∧ 1) + 1. (Lemma 4.63)
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We have

x−1 � (x0 ⊕ y) = ((x−1 + x0 + y − 1) ∨ 0) ∧ 1 (Lemma 4.28)
= ((((x ∨ −1) ∧ 1) + 1 + y − 1) ∨ 0) ∧ 1
= (((x ∨ (1 + y)) ∧ (1 + y)) ∨ 0) ∧ 1
= ((x+ y) ∨ 0) ∧ 1.

Notation 4.66. For every unital commutative distributive `-monoid M , and every
x ∈M , we define the Z-sequence

ζM(x) : Z −→ Γ(M)
n 7−→ ((x− n) ∨ 0) ∧ 1.

This defines a function ζM : M → Ξ(Γ(M)) that maps an element x ∈M to ζM(x).

Proposition 4.67. For every unital commutative distributive `-monoid M , the func-
tion ζM : M → ΞΓ(M) is a morphism of unital commutative distributive `-monoids,
i.e. it preserves +, ∨, ∧, 0, 1 and −1.

Proof. It is easily seen that ζM preserves 0, 1, −1, ∨ and ∧. Let us prove that ζM
preserves +. Let x, y ∈M . Let k ∈ Z. We shall prove(

ζM(x) + ζM(y)
)
(k) = ζM(x+ y)(k).

We settle the case y > 0; the case of not necessarily positive y is obtained via a
translation. We prove the statement by induction on n ∈ N+ such that 0 6 y 6 n.
For every k ∈ Z, we write xk for ζM(x)(k) = ((x− k) ∨ 0) ∧ 1. Let us prove the base
case n = 1. For every k ∈ N, we have

ζM(x+ y)(k) = ((x+ y− k)∨ 0)∧ 1 Lemma 4.65= xk−1 � (xk ⊕ y) =
(
ζM(x) + ζM(y)

)
(k),

so the base case is settled. Let us suppose that the case n holds for a fixed n ∈ N+,
and let us prove the case n+ 1. So, let us suppose 0 6 y 6 n+ 1. Therefore,

ζM(x+ y) = ζM
(
x+ (y ∧ n) + ((y − n) ∨ 0)

)
= ζM

(
x+ (y ∧ n)

)
+ ζM

(
(y − n) ∨ 0

)
(base case)

= ζM(x) + ζM(y ∧ n) + ζM
(
(y − n) ∨ 0

)
(ind. case)

= ζM(x) + ζM
(
(y ∧ n) + ((y − n) ∨ 0)

)
(base case)

= ζM(x) + ζM(y).

Proposition 4.68. Let M be a unital commutative distributive `-monoid, let x ∈M
and let n 6 m ∈ Z be such that n 6 x 6 m. Then,

x = n+
m−1∑
i=n

((x− i) ∨ 0) ∧ 1.
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Proof. LetM be a unital commutative distributive `-monoid, let x ∈M and let n ∈ Z
be such that n 6 x. We prove, by induction on m > n, that

x ∧m = n+
m−1∑
i=n

((x− i) ∨ 0) ∧ 1. (4.13)

The case m = n is trivial. Let us suppose that eq. (4.13) holds for a certain m > n,
and let us prove that the statement holds for m+ 1. We have

x ∧ (m+ 1) =
(
(x ∧ (m+ 1)) ∧m

)
+
(
(x ∧ (m+ 1)) ∨m

)
−m

= n+
(
m−1∑
i=n

((x− i) ∨ 0) ∧ 1
)

+
(
((x−m) ∨ 0) ∧ 1

)
(ind. hyp.)

= n+
m∑
i=n

((x− i) ∨ 0) ∧ 1.

Lemma 4.69. Let M be a unital commutative distributive `-monoid, and let m ∈ N.
Then, for every good Z-sequence (x0, . . . , xm) in Γ(M), we have

(x0 + · · ·+ xm) ∧ 1 = x0.

Proof. We prove the statement by induction on m ∈ N. The case m = 0 is trivial.
Suppose the statement holds for a fixed m ∈ N, and let us prove that it holds for
m+ 1:

(x0 + · · ·+ xm+1) ∧ 1 = (x0 + · · ·+ xm+1) ∧ (x0 + · · ·+ xm−1 + 1) ∧ 1
=
(
x0 + · · ·+ xm−1 + ((xm + xm+1) ∧ 1)

)
∧ 1

= (x0 + · · ·+ xm−1 + xm) ∧ 1
= x0. (ind. hyp.)

Lemma 4.70. Let M be a unital commutative distributive `-monoid. Then, for every
k ∈ N and every good Z-sequence (x0, . . . , xk) in Γ(M), we have

(x0 + · · ·+ xk) ∨ 1 = 1 + x1 + · · ·+ xk. (4.14)

Proof. We prove this statement by induction on k ∈ N. The case k = 0 is trivial. Let
us suppose that the statement holds for a fixed k ∈ N, and let us prove that it holds
for k + 1. We have

1 + x1 + · · ·+ xk+1 = (1 + x1 + · · ·+ xk) + xk+1

= ((x0 + · · ·+ xk) ∨ 1) + xk+1 (ind. hyp.)
= (x0 + · · ·+ xk + xk+1) ∨ (1 + xk+1)
= (x0 + · · ·+ xk+1) ∨

(
(xk + xk+1) ∨ 1

)
=
(
(x0 + · · ·+ xk+1) ∨ (xk + xk+1)

)
∨ 1

= (x0 + · · ·+ xk+1) ∨ 1.
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Proposition 4.71. Let M be a unital commutative distributive `-monoid, let x and y
be good Z-sequences in Γ(M). Let n,m ∈ Z with n 6 m be such that x(k) = y(k) = 1
for all k < n, and x(j) = y(j) = 0 for all j > m. If n+∑m−1

i=n x(i) = n+∑m−1
i=n y(i),

then x = y.

Proof. Without loss of generality, we may suppose n = 0. We prove the statement by
induction on m. The case m = 0 is trivial. Suppose that the statement holds for a
fixed m ∈ N, and let us prove it for m+ 1. By Lemma 4.69, we have

x(0) = (x(0) + · · ·+ x(m+ 1)) ∧ 1 = (y(0) + · · ·+ y(m+ 1)) ∧ 1 = y(0).

By Lemma 4.70,

x(1) + · · ·+ x(m+ 1) =
(
(x(0) + x(1) + · · ·+ x(m+ 1)) ∨ 1

)
− 1

=
(
(y(0) + y(1) + · · ·+ y(m+ 1)) ∨ 1

)
− 1

= y(1) + · · ·+ y(m+ 1).

By inductive hypothesis, for all i ∈ {1, . . . ,m+ 1}, we have x(i) = y(i).

Theorem 4.72. Let M be a unital commutative distributive `-monoid. The map
ζM : M → ΞΓ(M) is bijective, i.e., for every good Z-sequence x in Γ(M) there exists
exactly one element x ∈M such that, for every n ∈ Z, we have

x(n) = ((x− n) ∨ 0) ∧ 1.

Proof. We construct an inverse θM of ζM : Z → ΞΓ(M). Given a good sequence Z-
sequence x in Γ(M), let n,m ∈ Z with n 6 m be such that x(k) = 1 for all k < n, and
x(j) = 0 for all j > m. Elements n and m with these properties exist by the definition
of good Z-sequence. Define θM(x) = n + ∑m−1

i=n x(i); note that this value does not
depend on the choice of n and m with the properties above. By Proposition 4.68, for
every x ∈ M , we have θM(ζM(x)) = x, i.e. the composite M ζM−→ ΞΓ(M) θM−−→ M is
the identity on M . By Proposition 4.71, the map θM is injective. From θM ◦ ζM = 1M
and the injectivity of θM , it follows that θM is the inverse of ζM .

Proposition 4.73. For every morphism of unital commutative distributive `-monoids
f : M → N , the following diagram commutes.

M ΞΓ(M)

N ΞΓ(N)

f

ζM

ΞΓ(f)

ζN

Proof. For every x ∈M and every k ∈ Z, we have

ζN(f(x))(k) = ((f(x)− k) ∨ 0) ∧ 1 = f(((x− k) ∨ 0) ∧ 1) = f(ζM(x)(k)).
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4.7.3 Main result: the equivalence
Theorem 4.74. The categories u`M of unital commutative distributive `-monoids
(see Definition 4.11) and MVM of MV-monoidal algebras (see Definition 4.15) are
equivalent, as witnessed by the quasi-inverse functors

u`M MVM.Γ

Ξ

Proof. The functor ΓΞ: MVM→ MVM is naturally isomorphic to the identity functor
on MVM by Propositions 4.61 and 4.62. The functor ΞΓ: u`M → u`M is naturally
isomorphic to the identity functor on u`M by Propositions 4.67 and 4.73 and Theo-
rem 4.72.

4.8 The equivalence specialises to Mundici’s equiv-
alence

We recall that an Abelian lattice-ordered group (Abelian `-group, for short) is an alge-
bra 〈G; +,∨,∧, 0,−〉 (arities 2, 2, 2, 0, 1) such that 〈G;∨,∧〉 is a lattice, 〈G; +, 0,−〉 is
an Abelian group, and + distributes over ∨ and ∧. It is well-known that the underly-
ing lattice of any Abelian `-group is distributive [Goodearl, 1986, Proposition 1.2.14].

Furthermore, we recall that a unital Abelian lattice-ordered group (unital Abelian
`-group, for short) is an algebra 〈G; +,∨,∧, 0,−, 1〉 (arities 2, 2, 2, 0, 1, 0) such that
〈G; +,∨,∧, 0,−〉 is an Abelian `-group and 1 is a strong order unit, i.e. 0 6 1 and,
for all x ∈ M , there exists n ∈ N such that x 6 n1. We let u`G denote the category
of unital Abelian `-groups and homomorphisms.

For all basic notions and results about lattice-ordered groups, we refer to [Bigard
et al., 1977].

In every unital Abelian `-group one defines the constant −1 as the additive inverse
of 1.
Remark 4.75. It is not difficult to prove that the {+,∨,∧, 0, 1,−1}-reducts of uni-
tal Abelian `-groups are precisely the unital commutative distributive `-monoids in
which every element has an inverse. Moreover, the forgetful functor from u`G to the
category of {+,∨,∧, 0, 1,−1}-algebras is full, faithful and injective on objects. Thus,
the category of unital Abelian `-groups is isomorphic to the full subcategory of u`M
given by those unital commutative distributive `-monoids in which every element has
an inverse.

We recall that an MV-algebra 〈A;⊕,¬, 0〉 is a set A equipped with a binary oper-
ation ⊕, a unary operation ¬ and a constant 0 such that 〈A;⊕, 0〉 is a commutative
monoid, ¬0 ⊕ x = ¬0, ¬¬x = x and ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x. We let MV
denote the category of MV-algebras with homomorphisms. For all basic notions and
results about MV-algebras we refer to [Cignoli et al., 2000].

Via ⊕,¬, 0, one defines the operations 1 := ¬0, x � y := ¬(¬x ⊕ ¬y), x ∨ y :=
(x� ¬y)⊕ y, and x ∧ y := x� (¬x⊕ y).

By a result of [Mundici, 1986, Theorem 3.9], the categories of unital Abelian `-
groups and MV-algebras are equivalent. In this section, we prove that this equivalence
follows from Theorem 4.74.
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Lemma 4.76. Every MV-algebra is an MV-monoidal algebra.

Proof. Since [0, 1] generates the variety of MV-algebras [Cignoli et al., 2000, Theo-
rem 2.3.5], it suffices to check that Axioms E1 to E7 hold in [0, 1]. This is the case
because R is easily seen to be a unital commutative distributive `-monoid and thus,
by Theorem 4.29, the unit interval [0, 1] is an MV-monoidal algebra.

Proposition 4.77. The reducts of MV-algebras to the signature {⊕,�,∨,∧, 0, 1} are
the MV-monoidal algebras A such that, for every x ∈ A, there exists y ∈ A such that
x⊕ y = 1 and x� y = 0.

Proof. If A is an MV-algebra, then the {⊕,�,∨,∧, 0, 1}-reduct of A is an MV-
monoidal algebra by Lemma 4.76 and, for every x ∈ A, we have x ⊕ ¬x = 1 and
x� ¬x = 0. This settles one direction.

For the converse direction, let A be an MV-monoidal algebra, and suppose that,
for every x ∈ A, there exists y ∈ A such that x ⊕ y = 1 and x � y = 0. One such
element is unique because, if y, z ∈ A are such that x ⊕ y = 1, x � y = 0, x ⊕ z = 1
and x� z = 0, then

y = 0⊕ y = (z � x)⊕ y
Lemma 4.24
> z � (x⊕ y) = z � 1 = z,

and, analogously, z > y.
For x ∈ A, we let ¬x denote the unique element such that x ⊕ ¬x = 1 and

x� ¬x = 0.
We have ¬0 = 1 because 0⊕1 = 1 and 0�1 = 1; hence, x⊕¬0 = x⊕1 = 1 = ¬0.

We have ¬¬x = x because ¬x⊕x = 1 = x⊕¬x and ¬x�x = 0 = x�¬x. Moreover,
we have x� y = ¬(¬x⊕ ¬y) because

(x� y)⊕ (¬x⊕ ¬y) > ((x⊕ ¬x)� y)⊕ ¬y (Lemma 4.24)
= (1� y)⊕ ¬y
= y ⊕ ¬y
= 1

(and hence (x� y)⊕ (¬x⊕ ¬y) = 1), and

(x� y)� (¬x⊕ ¬y) 6 x� ((y � ¬y)⊕ ¬x) (Lemma 4.24)
= x� (0⊕ ¬x)
= x� ¬x
= 0

(and hence (x� y)� (¬x⊕ ¬y) = 0). Furthermore, we have

σ(x,¬y, y) = (x� (¬y ⊕ y))⊕ (¬y � y) = (x� 1)⊕ 0 = x,

and thus
¬(¬x⊕ y)⊕ y = (x� ¬y)⊕ y = σ(x,¬y, y) ∨ y = x ∨ y.

Analogously, ¬(¬y ⊕ x)⊕ x = y ∨ x. Therefore,

¬(¬x⊕ y)⊕ y = x ∨ y = y ∨ x = ¬(¬y ⊕ x)⊕ x.
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Remark 4.78. It is not difficult to see that the forgetful functor from MV to the
category of {⊕,�,∨,∧, 0, 1}-algebras is full, faithful and injective on objects. Thus,
by Proposition 4.77, the category of MV-algebras is isomorphic to the full subcategory
of MVM given by those MV-monoidal algebras A such that, for every x ∈ A, there
exists y ∈ A such that x⊕ y = 1 and x� y = 0.

Theorem 4.79. The equivalence u`M MVMΓ

Ξ
restricts to an equivalence be-

tween u`G and MV.

Proof. By Remarks 4.75 and 4.78, it is enough to prove that, for every M ∈ u`M, the
following conditions are equivalent.

1. Every element of M is invertible.

2. For every x ∈ Γ(M), there exists y ∈ Γ(M) such that x⊕ y = 1 and x� y = 0.

Suppose item 1 holds. Let x ∈ Γ(M). It is immediate that 1− x ∈ Γ(M). Moreover,
we have

x⊕ (1− x) = (x+ 1− x) ∧ 1 = 1 ∧ 1 = 1,
and

x� (1− x) = (x+ 1− x− 1) ∨ 0 = 0 ∨ 0 = 0.
So item 2 holds.

Suppose item 2 holds. We first prove that every element of Γ(M) has an inverse.
For x ∈ Γ(M), let y ∈ Γ(M) be such that x⊕ y = 1 and x� y = 0. The element y− 1
is the inverse of x, because

x+ (y − 1) = ((x+ y − 1) ∨ 0) + ((x+ y − 1) ∧ 0)
= (x� y) + (((x+ y) ∧ 1)− 1)
= (x� y) + (x⊕ y)− 1
= 0 + 1− 1
= 0.

Every element of G is invertible since it may be written as a sum of elements of
Γ(M) ∪ {−1}.

4.9 Conclusions
In the direction of obtaining an equational axiomatisation of the dual of the category
of compact ordered spaces, we paid special attention to the operations ⊕, �, ∨, ∧,
0 and 1. In order to arrive at a convenient set of axioms to impose on algebras in
this signature, we first considered a reasonable set of axioms using the operations +,
∨, ∧, 0, 1, and −1. Then, we showed that the unit intervals of unital commutative
distributive `-monoids are the algebras in the signature {⊕,�,∨,∧, 0, 1} that we called
MV-monoidal algebras.

This result provides us with a good set of axioms to impose on algebras in the
signature {⊕,�,∨,∧, 0, 1}. We can now build on these algebras to obtain a duality for
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CompOrd. However, before turning to our equational axiomatisation of CompOrdop, we
shall still take advantage of the algebras in the signature {+,∨,∧, 0, 1,−1} to clarify
the intuitions behind the dualities that we will encounter in Chapters 6 and 7.



Chapter 5

Ordered Yosida duality

5.1 Introduction
In this chapter the main character is R: we investigate algebras of continuous order-
preserving real-valued functions. We obtain a duality between the category CompOrd
of compact ordered spaces and a certain class of algebras, in the style of [Yosida,
1941]. K. Yosida gave the essential elements of a proof of the fact that the category of
compact Hausdorff spaces is dually equivalent to the category of vector lattices with
a unit that are complete in the metric induced by the unit, along with their unit-
preserving linear lattice homomorphisms. Of the several descriptions of the dual of
the category of compact Hausdorff spaces that were obtained at around the same time
as [Yosida, 1941], it is appropriate to mention here the result due to [Stone, 1941],
where divisible Archimedean lattice-ordered groups with a unit are used in place of
vector lattices.

The class of algebras that we use in this chapter to dualise CompOrd is not equa-
tionally definable (not even first-order definable); an equational axiomatisation of
CompOrdop will be obtained in Chapter 6.

We conclude this introduction with an outline of the chapter, which is structured
around three points.

Few operations are enough. Given two topological spaces X and Y equipped
with a preorder, we set

C6(X, Y ) := {f : X → Y | f is order-preserving and continuous}.

For every cardinal κ, every order-preserving continuous function f : Rκ → R, and
every topological space X equipped with a preorder, the set C6(X,R) is closed under
pointwise application of f . So, we have a contravariant functor

C6(−,R) : CompOrd→ Alg{+,∨,∧, 0, 1,−1}.

We show that this functor is full and faithful (Theorem 5.17 and Proposition 5.3),
and we deduce that the category of compact ordered spaces is dually equivalent to
the category of {+,∨,∧, 0, 1,−1}-algebras which are isomorphic to C6(X,R) for some
compact ordered space X (Theorem 5.18).

89
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A more explicit Yosida-like duality. We then proceed to obtain a duality with
a class of algebras which is more explicitly defined. We let D denote the set of dyadic
rationals. In the same spirit as above, we have a contravariant functor from CompOrd
to Alg{+,∨,∧} ∪ D, still denoted by C6(−,R). This functor is full and faithful, and
so the category of compact ordered spaces is dually equivalent to the category of
({+,∨,∧}∪D)-algebras which are isomorphic to C6(X,R) for some compact ordered
space X. Next, we characterise these algebras as the algebras M in the signature
{+,∨,∧} ∪ D such that the function

dMhom : M ×M −→ [0,+∞]
(x, y) 7−→ sup

f∈hom(M,R)
|f(x)− f(y)|

is a metric, andM is Cauchy complete with respect to it (Theorem 5.38). We conclude
that the category of compact ordered spaces is dually equivalent to the category of
algebras with these properties (Theorem 5.39).

An intrinsic definition of dhom. Next, we provide a more intrinsic definition of the
function dhom, as follows. We define a dyadic commutative distributive `-monoid as an
algebra M in the signature {+,∨,∧} ∪ D such that 〈M ; +,∨,∧, 0〉 is a commutative
distributive `-monoid, for all x ∈M there exist α, β ∈ D such that αM 6 x 6 βM, and,
for all α, β ∈ D, we have (i) if α 6 β, then αM 6 βM, and (ii) αM+MβM = (α+Rβ)M.
With the help of Birkhoff’s subdirect representation theorem, we prove that, for every
dyadic commutative distributive `-monoid M , the function dMhom coincides with the
function

dMint : M ×M −→ [0,+∞)
(x, y) 7−→ inf

{
t ∈ D ∩ [0,+∞) | y + (−t)M 6 x 6 y + tM

}
.

We conclude that the category of compact ordered spaces is dually equivalent to the
category of dyadic commutative distributive `-monoids M that satisfy

dMint(x, y) = 0⇒ x = y

(so that dMint is a metric) and are Cauchy-complete with respect to dMint (Theorem 5.58).

5.2 Few operations are enough
In this section, we show that the category of compact ordered spaces is dually equiv-
alent to the class of algebras in the signature {+,∨,∧, 0, 1,−1} which are isomorphic
to C6(X,R) for some compact ordered space X (Theorem 5.18). To prove it, we de-
fine a contravariant functor C6(−,R) : CompOrd→ Alg{+,∨,∧, 0, 1,−1}, which maps
a compact ordered space X to the algebra C6(X,R) of order-preserving continuous
functions from X to R, and we show that this functor is full and faithful.
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5.2.1 The contravariant functor C6(−,R): definition
As already mentioned in the outline of the chapter, given two topological spaces X
and Y equipped with a preorder, we set

C6(X, Y ) := {f : X → Y | f is order-preserving and continuous}.

For every cardinal κ, every order-preserving continuous function f : Rκ → R, and
every topological space X equipped with a preorder, the set C6(X,R) is closed under
pointwise application of f .
Remark 5.1. The functions +,∨,∧ : R2 → R, and all function from R0 to R are con-
tinuous and order-preserving with respect to the product order and product topology.

We have a contravariant functor

C6(−,R) : CompOrd→ Alg{+,∨,∧, 0, 1,−1},

which maps a compact ordered space X to the algebra C6(X,R) of order-preserving
continuous functions from X to R with pointwise defined operations, and which maps
a morphism f : X → Y to the homomorphism − ◦ f : C6(Y,R)→ C6(X,R).

5.2.2 The contravariant functor C6(−,R) is faithful
Lemma 5.2. Let X and Y be compact ordered spaces, and let f and g be order-
preserving continuous maps from X to Y . If f 6= g, then there exists an order-
preserving continuous function h : Y → R such that h ◦ f 6= h ◦ g.

Proof. By hypothesis, there exists x ∈ X such that f(x) 6= g(x). Without loss of
generality, we may suppose f(x) 6> g(x). By Lemma 1.15, there exists an order-
preserving continuous function h : Y → [0, 1] such that h(f(x)) = 0 and h(g(x)) =
1.

Proposition 5.3. The contravariant functor

C6(−,R) : CompOrd→ Alg{+,∨,∧} ∪ D

is faithful.

Proof. By Lemma 5.2.

5.2.3 The contravariant functor C6(−,R) is full
The results in the remaining part of this section are essentially an adaptation of the
results in [Hofmann and Nora, 2018].

Lemma 5.4 ([Nachbin, 1965, Proposition 5, p. 45]). Let X be a compact ordered
space, let F be an up-set and let V be an open neighbourhood of F . Then there exists
an open up-set W such that F ⊆ W ⊆ V .

Lemma 5.5. Let A and B be disjoint closed up-sets of a compact ordered space.
Then, there exist two disjoint open up-sets that contain A and B respectively.
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Proof. Using the fact that any compact ordered space is compact and Hausdorff and
thus normal (see [Willard, 1970, Theorem 17.10]), we obtain that there exist two
disjoint open neighbourhoods U ′ and V ′ of A and B respectively. By Lemma 5.4,
there exists an open up-set U such that A ⊆ U ⊆ U ′; again by Lemma 5.4, there
exists an open up-set V such that B ⊆ V ⊆ V ′. The sets U and V satisfy the desired
properties.
Lemma 5.6. Let x and y be elements of a compact ordered space with no common
upper bound. Then there exist two disjoint open up-sets that contain x and y respec-
tively.
Proof. By Lemma 1.14, the sets ↑x and ↑y are closed. Then, apply Lemma 5.5.
Notation 5.7. Given a compact ordered space X and a map Φ: C6(X,R)→ R, we
set

D(Φ) :=
⋂

ψ∈C6(X,R)
{y ∈ X | ψ(y) 6 Φ(ψ)}.

Our goal is, given a map Φ: C6(X,R)→ R that preserves +,∨,∧ and every real
number, to find x ∈ X such that Φ is the evaluation at x, i.e., for every ψ ∈ C6(X,R),
we have Φ(ψ) = ψ(x). To do so, we show that D(Φ) has a maximum element x, and
we then show that Φ(ψ) = ψ(x) for every ψ ∈ C6(X,R).
Lemma 5.8. Let X be a compact ordered space, and let Φ: C6(X,R)→ R be a map
that preserves +, ∨, ∧ and every real number. Then, the set D(Φ) is a closed down-set
of X.
Proof. For every ψ ∈ C6(X,R), the set {y ∈ X | ψ(y) 6 Φ(y)} is closed. Thus, D(Φ)
is an intersection of closed subsets of X, and hence D(Φ) is closed. To prove that
D(Φ) is a down-set of X, let y ∈ D(Φ) and let x 6 y. Then, for every ψ ∈ C6(X,R),
we have ψ(x) 6 ψ(y) by monotonicity of ψ, and we have ψ(y) 6 Φ(ψ) by definition
of D(Φ); hence, ψ(x) 6 Φ(ψ), and thus x ∈ D(Φ).
Lemma 5.9. Let X be a compact ordered space and let Φ: C6(X,R)→ R be a map
that preserves +,∨,∧ and every real number. Then, for every t ∈ R we have

D(Φ) =
⋂

ψ∈C6(X,R):Φ(ψ)=t
{y ∈ X | ψ(y) 6 t}.

Proof. [⊆] Let y ∈ D(Φ). For every ψ ∈ C6(X,R) such that Φ(ψ) = t, we have
ψ(y) 6 Φ(ψ) = t, where the inequality follows from the fact that y ∈ D(Φ).

[⊇] Let x ∈ ⋂ψ∈C6(X,R):Φ(ψ)=t{y ∈ X | ψ(y) 6 t}. Let ψ ∈ C6(X,R). We shall
prove ψ(x) 6 Φ(ψ). Define the function

ψ′ : X −→ R
x 7−→ ψ(x)− Φ(ψ) + t.

The function ψ′ is order-preserving and continuous because ψ is such. Then

Φ(ψ′) = Φ(ψ − Φ(ψ) + t) (by def. of ψ′)
= Φ(ψ)− Φ(ψ) + t (by hyp. on Φ)
= t.
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By hypothesis on x, it follows that ψ′(x) 6 t, i.e. ψ(x)−Φ(ψ)+t 6 t, i.e. ψ(x) 6 Φ(ψ),
as was to be proved.

The following is inspired by [Hofmann and Nora, 2018, Proposition 6.12].

Lemma 5.10. Let X be a compact ordered space and let Φ: C6(X,R)→ R be a map
that preserves +,∨,∧ and every real number. Then, for all ψ ∈ C6(X,R), we have

Φ(ψ) = max
y∈D(Φ)

ψ(y). (5.1)

Proof. Let ψ ∈ C6(X,R). We shall prove that Φ(ψ) is the maximum of the image
ψ[D(Φ)] of D(Φ) under ψ. By Lemma 5.8, the set D(Φ) is a closed subset of the
compact space X. Hence, D(Φ) is compact. Thus, ψ[D(Φ)] is compact, as well.
Therefore, it is enough to prove

Φ(ψ) = sup
y∈D(Φ)

ψ(y).

[>] By definition of D(Φ), for every y ∈ D(Φ), we have ψ(y) 6 Φ(ψ).

[6] Given z ∈ R and a subset Z of R, the condition z 6 supZ holds if, and only
if, for every real upper bound t of Z and every ε > 0 we have z 6 t + ε. We apply
this observation with z := Φ(ψ) and Z := {ψ(y) | y ∈ D(Φ)}. So, we let t ∈ R be
such that, for every y ∈ D(Φ), we have ψ(y) 6 t, and we let ε > 0. We shall prove
Φ(ψ) 6 t+ ε. Set

U := {y ∈ X | ψ(y) < t+ ε} .
Clearly, U is open and D(Φ) ⊆ U . Since X is compact, the image of ψ is a compact
subset of R, and so it admits an upper bound M ∈ R. For every ψ′ ∈ C6(X,R) we
set

s(ψ′) := {x ∈ X | ψ′(x) > M}.

Claim. We have
X = U ∪

⋃
ψ′∈C6(X,R):Φ(ψ′)6t

s(ψ′).

Proof of Claim. For every x ∈ X \ D(Φ), there exists, by Lemma 5.9, an element
ψ̃ ∈ C6(X,R) such that Φ(ψ̃) = t and ψ̃(x) > t. Let n ∈ N and k ∈ Z be such that
n(Φ(ψ̃)) + k 6 t and n(ψ̃(x)) + k > M (such n and k do exist because ψ̃(x) > t). Set
ψ′ := nψ̃ + k. Then, ψ′ ∈ C6(X,R), Φ(ψ′) 6 t and ψ′(x) > M . �

Since X is compact, there exist ψ1, . . . , ψn ∈ C6(X,R) with Φ(ψi) 6 t for all
i ∈ {1, . . . , n} such that

X = U ∪ s(ψ1) ∪ · · · ∪ s(ψn).

Therefore, for all x ∈ X, either x ∈ U , i.e. ψ(x) < t+ ε, or there exists j ∈ {1, . . . , n}
such that x ∈ s(ψj), i.e., ψj(x) > M , and thus ψj(x) > ψ(x). Hence, we have

ψ 6 (t+ ε) ∨ ψ1 ∨ · · · ∨ ψn.
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Therefore, we have

Φ(ψ) 6 (t+ ε) ∨ Φ(ψ1) ∨ · · · ∨ Φ(ψn)
= (t+ ε) ∨ t ∨ · · · ∨ t
= t+ ε.

Lemma 5.11. Let X be a compact ordered space, and let Φ: C6(X,R)→ R be a map
that preserves +,∨,∧ and every real number. Then, D(Φ) is directed.

Proof. The set D(Φ) is non-empty by Lemma 5.10.
Let x and y be elements of D(Φ). We claim that x and y admit a common upper

bound which belongs to D(Φ). Suppose, by way of contradiction, that this is not
the case. By Lemma 5.8, the set D(Φ) is a closed subspace of X; hence, D(Φ) is a
compact ordered space. By Lemma 5.6, there exist two disjoint open up-sets U and
V of D(Φ) that contain x and y respectively. By Lemma 1.14, the sets ↑x and ↑y are
closed. Hence, by Theorem 1.13, there exist an order-preserving continuous function

ψ1 : D(Φ)→ [0, 1]

such that for all z ∈ D(Φ)\V we have ψ1(z) = 0, and for all z ∈ ↑y we have ψ1(z) = 1,
and an order-preserving continuous function

ψ2 : D(Φ)→ [0, 1]

such that for all z ∈ D(Φ)\U we have ψ2(z) = 0, and for all z ∈ ↑x we have ψ2(z) = 1.
Using again the fact that D(Φ) is closed (Lemma 5.8), the functions ψ1 and ψ2 can
be extended to order-preserving continuous functions on X by Lemma 2.11. Then, by
Lemma 5.10, we have Φ(ψ1) = maxz∈D(Φ) ψ1(z) = 1 and Φ(ψ2) = maxz∈D(Φ) ψ2(z) = 1.
Since Φ preserves ∧, we have

Φ(ψ1 ∧ ψ2) = Φ(ψ1) ∧ Φ(ψ2) = 1 ∧ 1 = 1. (5.2)

By Lemma 5.10, we have also

Φ(ψ1 ∧ ψ2) = max
z∈D(Φ)

ψ1(z) ∧ ψ2(z). (5.3)

Since U and V are disjoint subsets of D(Φ), for every z ∈ D(Φ) we have either
z ∈ D(Φ) \ V (and thus ψ1(z) = 0), or z ∈ D(Φ) \ U (and thus ψ2(z) = 0). In any
case, for z ∈ D(Φ), we have ψ1(z) ∧ ψ2(z) = 0. It follows that the right-hand side
of eq. (5.3) equals 0, and therefore also the left-hand side: Φ(ψ1 ∧ ψ2) = 0. This
contradicts the equality Φ(ψ1 ∧ ψ2) = 1 obtained in eq. (5.2). This settles our claim
that x and y admit a common upper bound which belongs to D(Φ), and this concludes
the proof.

Lemma 5.12. Let X be a compact ordered space, and let Φ: C6(X,R) → R be a
map that preserves ∨,∧,+ and every element in R. Then D(Φ) admits a maximum
element.
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Proof. Every directed set in a compact ordered space has a supremum, which co-
incides with the topological limit of the set regarded as a net [Gierz et al., 1980,
Proposition VI.1.3]. Since D(Φ) is directed (Lemma 5.11), the set D(Φ) admits a
supremum x which coincides with the topological limit of the set regarded as a net.
Since D(Φ) is closed (Lemma 5.8), the element x belongs to D(Φ).

Theorem 5.13. Let X be a compact ordered space, and let Φ: C6(X,R) → R be a
map that preserves ∨,∧,+ and every real number. Then, there exists a unique x0 ∈ X
such that Φ is the evaluation at x0, i.e. such that, for every ψ ∈ C6(X,R), we have
Φ(ψ) = ψ(x0).

Proof. Uniqueness follows from Lemma 1.15. Let us prove existence. By Lemma 5.12,
D(Φ) admits a maximum element x0. By Lemma 5.10, we have, for all ψ ∈ C6(X,R),

Φ(ψ) = max
z∈D(Φ)

ψ(z) = ψ(x0),

where the last equality holds because x0 is the maximum of D(Φ) and ψ is order-
preserving.

Theorem 5.14. Let X be a compact ordered space, and let Φ: C6(X,R) → R be
a map that preserves ∨, ∧, +, 0, 1, and −1. Then, there exists a unique x0 ∈ X
such that Φ is the evaluation at x0, i.e. such that, for every ψ ∈ C6(X,R), we have
Φ(ψ) = ψ(x0).

Proof. By Theorem 5.13, it is enough to prove that Φ preserves every real number.
It is immediate that Φ preserves every element of Z. Let p

q
be any rational number.

Then, we have qΦ(p
q
) = Φ(q p

q
) = Φ(p) = p, which implies Φ(p

q
) = p

q
. Thus, Φ preserves

every rational number. By monotonicity of Φ and order-density of Q, the function Φ
preserves every real number.

We note that this fact specialises to compact Hausdorff spaces. To this end, let
C(X, Y ) denote the set of continuous functions.

Corollary 5.15. Let X be a compact Hausdorff space, and let Φ: C(X,R) → R be
a map that preserves ∨, ∧, +, 0, 1, and −1. Then, there exists a unique x0 ∈ X
such that Φ is the evaluation at x0, i.e. such that, for every ψ ∈ C(X,R), we have
Φ(ψ) = ψ(x0).

Lemma 5.16. A function f : X → Y between compact ordered spaces is order-
preserving and continuous if, and only if, for every order-preserving continuous func-
tion h : Y → R, the composite h ◦ f is order-preserving and continuous.

Proof. This follows from the fact that every compact ordered space embeds in a power
of [0, 1] (see Lemma 1.18).

Theorem 5.17. The contravariant functor

C6(−,R) : CompOrd→ Alg{+,∨,∧, 0, 1,−1}

is full.
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Proof. Let X and Y be compact ordered spaces and let s : C6(Y,R)→ C6(X,R) be a
function that preserves +, ∨, ∧, 0, 1 and −1. We define a function s : X → Y . Given
an element x ∈ X, we define the function

evx : C6(X,R) −→ R
f 7−→ f(x).

The function evx preserves +, ∨, ∧, 0, 1 and −1. Therefore, also the composite
C6(Y,R) s−→ C6(X,R) evx−−→ preserves +, ∨, ∧, 0, 1 and −1. Hence, by Theorem 5.14,
given an element x ∈ X, there exists a unique element y ∈ Y such that, for every
ψ ∈ C6(Y,R), we have (evx ◦s)(ψ) = ψ(y), i.e. s(ψ)(x) = ψ(y). This defines the
unique function s : X → Y such that, for every ψ ∈ C6(X,R), we have

s(ψ) = ψ ◦ s. (5.4)

Let us prove that s is order-preserving and continuous. By Lemma 5.16, to prove that
s is a morphism, it is enough to prove that, for every order-preserving continuous
function h : Y → R, the composite h ◦ s is order-preserving and continuous. Let
h : Y → R be an order-preserving continuous function. Then, for every x ∈ X, we
have

(h ◦ s)(x) = h(s(x)) eq. (5.4)= s(h)(x).

Hence, h ◦ s = s(h), and this proves that h ◦ s is order-preserving and continu-
ous. Therefore, s is order-preserving and continuous. By eq. (5.4), the functor
C6(−,R) : CompOrd→ Alg{+,∨,∧, 0, 1,−1} maps the morphism s to s.

Theorem 5.18. The category of compact ordered spaces is dually equivalent to the cat-
egory of algebras in the signature {+,∨,∧, 0, 1,−1} which are isomorphic to C6(X,R)
for some compact ordered space X.

Proof. The contravariant functor

C6(−,R) : CompOrd→ Alg{+,∨,∧, 0, 1,−1}

is faithful by Proposition 5.3 and full by Theorem 5.17.

5.3 Ordered Stone-Weierstrass theorem
In the next section, we will obtain a duality between CompOrd and a class of algebras
whose definition is more intrinsic than the definition of the class of algebras described
in Theorem 5.18. Before moving to such a duality, we obtain an ordered version
of the classical Stone-Weierstrass theorem, which will suggest us a signature for the
corresponding algebras.

In 1885, K. Weierstraß proved an approximation theorem for continuous functions
over the unit interval [0, 1] [Weierstraß, 1885]. Later, M. H. Stone provided a simpler
proof of Weierstraß’ approximation theorem and proved some additional similar results
[Stone, 1937, Stone, 1948], which fall under the name of Stone-Weierstrass theorem.
We recall that a set of functions F from a set X to Y separates the elements of
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X (or is separating) if, for all x, y ∈ X such that x 6= y, there exists f ∈ F such
that f(x) 6= f(y). One version of the classical Stone-Weierstrass theorem asserts:
If X is a compact Hausdorff space and L is a real vector subspace of the set of
continuous functions from X to R which is closed under ∨ and ∧, which contains the
constant function 1 and which separates the elements of X, then every continuous
function from X to R is the uniform limit of a sequence in L [Hewitt and Stromberg,
1975, Theorem 7.29]1. We would like to obtain an analogous result, where compact
Hausdorff spaces are replaced by compact ordered spaces. To do so, we rely on the
following theorem, which characterises in a simple way the closure under uniform
limits of a sublattice of the lattice of real-valued continuous functions over a compact
space2.
Theorem 5.19. Let X be a compact space, let L be a set of continuous functions from
X to R that is closed under ∨ and ∧, and suppose that either X or L is non-empty.
For every function f : X → R, the following conditions are equivalent.

1. The function f is a uniform limit of a sequence in L.

2. The function f is continuous and, for all x, y ∈ X and all ε > 0, there exists
g ∈ L such that |f(x)− g(x)| < ε and |f(y)− g(y)| < ε.

3. The function f is continuous, for all z ∈ X the value f(z) belongs to the topo-
logical closure of {h(z) | h ∈ L}, and, for all distinct x, y ∈ X and all ε > 0,
there exists g ∈ L such that g(x) > f(x)− ε and g(y) < f(y) + ε.

Proof. The equivalence item 1 ⇔ item 2 is due to M. H. Stone [Stone, 1948, The-
orem 1]. The implication item 2 ⇒ item 3 is trivial. Let us prove the implication
item 3 ⇒ item 2. So, let f be a continuous function, suppose that, for all x, y ∈ X
and all ε > 0, there exists g ∈ L such that f(x) < g(x) + ε and f(y) > g(y)− ε, and
suppose that, for all z ∈ X, f(z) belongs to the closure of {h(z) | h ∈ L}. The desired
conclusion holds for x = y because in this case, by hypothesis on f , there exists h ∈ L
such that |f(x) − h(x)| < ε. So, we are left with the case x 6= y. By hypothesis on
f , there exists h ∈ L such that |f(x) − h(x)| < ε, and there exists k ∈ L such that
|f(y) − k(y)| < ε. We have either k(x) > f(x) or k(x) 6 f(x), and we have either
h(y) > f(y) or h(y) 6 f(y). Thus, we have four cases:

1. Case k(x) > f(x) and h(y) > f(y). In this case we obtain the desired conclusion
by taking g = h ∧ k.

2. Case k(x) 6 f(x) and h(y) 6 f(y). In this case we obtain the desired conclusion
by taking g = h ∨ k.

3. Case k(x) 6 f(x) and h(y) > f(y). Since x 6= y, by hypothesis there exists
l ∈ L such that l(x) > f(x) − ε and l(x) < f(x) + ε. Then, we obtain the desired
conclusion by taking g = (h ∧ l) ∨ k.

4. Case k(x) > f(x) and h(y) 6 f(y). This case is similar to the previous one.
1As noted in the cited reference, the hypothesis are slightly redundant: if X admits a separating

family of continuous real-valued functions, then X has to be a Hausdorff space.
2The theorem is essentially due to [Stone, 1948, Theorem 1], who proved the implication item 1

⇔ item 2. I would like to thank V. Marra and L. Spada for a discussion which highlighted the
equivalent item 3.
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Consequences in the ordered case

Proposition 5.20. Let X be a compact ordered space, and let L be a subset of
C6(X,R) which is closed under ∨ and ∧ and which contains every constant in a
dense subset of R. Then, the set of uniform limits of sequences in L is C6(X,R) if,
and only if, for every x, y ∈ X with x 6> y, and every s, t ∈ R with s < t, there exists
g ∈ L such that g(x) 6 s and g(y) > t.

Proof. The left-to-right implication is a consequence of the ordered Urysohn’s lemma
(Theorem 1.13). Let us prove the right-to-left implication. Since L is contained
in C6(X,R), and C6(X,R) is closed under uniform limits, every uniform limit of a
sequence in L is in C6(X,R). For the opposite direction, let f ∈ C6(X,R): we shall
prove that f is a uniform limit of a sequence in L. Let x, y ∈ X, and let ε > 0.
Claim 5.21. There exists a function g ∈ L such that g(x) < f(x) + ε and g(y) >
f(y)− ε.

Proof of Claim. If f(x) > f(y), then, since L contains every constant in a dense subset
of R, there exists an element d ∈ R such that the function g which is constantly equal
to d belongs to L, and f(y) − ε < d < f(x) + ε. The function g has the desired
properties.

We are left with the case f(x) < f(y). Since f is order-preserving, we deduce
x 6> y. Therefore, by hypothesis, there exists a function g ∈ L such that g(x) 6 f(x)
and g(y) > f(y). The function g has the desired properties. �

Therefore, applying the implication item 3⇒ item 1 in Theorem 5.19, we conclude
that f is a uniform limit of a sequence in L.

An ordered version of separation is the following.

Definition 5.22. Let X and Y be preordered sets, and let F be a set of order-
preserving functions from X to Y . We say that F order-separates the elements of X,
or that F is order-separating if, for all x, y ∈ X such that x 6> y, there exists f ∈ F
such that f(x) 6> f(y).

By contraposition, and using the fact that the elements of F are order-preserving,
the condition of order-separation above is equivalent to the following one:

∀x, y ∈ X (x 6 y ⇔ ∀f ∈ F f(x) 6 f(y)).

This means that the source (f : X → Y )f∈F is initial with respect to the forgetful
functor Preo→ Set (cf. Section 0.3.1).

When the orders of both X and Y are discrete (i.e., the identity), order-separation
is equivalent to separation, because 6> coincides with 6=.

Lemma 5.23. Let X be a compact ordered space, and let L be an order-separating
subset of C6(X,R) which is closed under ∨ and ∧ and contains every constant in a
dense subset of R. Suppose that, for all a, b, c, d ∈ R with a 6 b < c 6 d, there exists
a function θ : R → R such that θ(b) 6 a, θ(c) > d, and L is closed under θ. Then,
the set of uniform limits of sequences in L is C6(X,R).
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Proof. By Proposition 5.20.

Lemma 5.24. For all a, b, c, d ∈ R with a 6 b < c 6 d, and for every dense subset D
of R, there exists n ∈ N+ and u ∈ D such that nb+ u 6 a and nc+ u > d.

Proof. This is a well known fact.

Theorem 5.25 (Ordered Stone-Weierstrass theorem). Let X be a compact ordered
space, let L be an order-separating3 set of continuous order-preserving functions from
X to R which is closed under +, ∨, ∧ and which contains every constant in a dense
subset of R. Then, the set of uniform limits of sequences in L is the set of continuous
order-preserving functions from X to R.

Proof. By Lemmas 5.23 and 5.24.

5.4 Description as Cauchy complete algebras
We now proceed to obtain a duality between the category CompOrd of compact ordered
spaces and a class of algebras which, compared to the one in Theorem 5.18, is more
explicitly defined. The choice of the signature is suggested by the ordered version of
the Stone-Weierstrass theorem (Theorem 5.25). We will apply the theorem with the
dense subset of R in the statement being the set of dyadic rationals (i.e. the elements
of the form k

2n for k ∈ Z and n ∈ N), denoted by D.
Remark 5.26. By Lemma 5.2, the contravariant functor

C6(−,R) : CompOrd→ Alg{+,∨,∧} ∪ D

is faithful. From Theorem 5.17 we deduce that it is also full. It follows that the
category of compact ordered spaces is dually equivalent to the category of algebras
in the signature {+,∨,∧} ∪ D which are isomorphic to C6(X,R) for some compact
ordered space X.

We next characterise these algebras.

Notation 5.27. Given an algebra M in the signature {+,∨,∧} ∪ D, we define the
function

dMhom : M ×M −→ [0,+∞]
(x, y) 7−→ sup

f∈hom(M,R)
|f(x)− f(y)|.

We recall that, given two algebras A and B in a common signature, we have a
canonical homomorphism

ev : A −→ Bhom(A,B)

x 7−→ evx,
3The hypothesis are slightly redundant: if X is a compact space equipped with a partial order,

and X admits an order-separating family of continuous order-preserving real-valued functions, then
X has to be a compact ordered space.
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where evx is defined by

evx : hom(A,B) −→ B

f 7−→ f(x).

Remark 5.28. Let M be an algebra in the signature {+,∨,∧} ∪D. Denoting with ev
the canonical homomorphism from M to Rhom(M,R), we note that, for all x, y ∈ M ,
the element dMhom(x, y) coincides with the value assumed on the pair (ev(x), ev(y)) by
the uniform possibly ∞-valued metric on Rhom(M,R).

Lemma 5.29. For every algebra M in the signature {+,∨,∧}∪D, the function dMhom
satisfies positivity, symmetry and triangle inequality.

Proof. The uniform possibly ∞-valued metric on Rhom(M,R) satisfies positivity, sym-
metry and triangle inequality. By Remark 5.28, the function dMhom possesses these
properties, as well.

Remark 5.30. The function dMhom is not guaranteed to be a metric: indeed, it might
fail to be finite-valued and to satisfy the identity of indiscernibles property, i.e.

∀x ∀y dMhom(x, y) = 0 =⇒ x = y.

For example, the function dMhom is not finite-valued for M = RN. Moreover, the
function dMhom does not satisfy the identity of indiscernibles property for M = R

→
× R,

i.e., the lexicographic product of R and R (see item 3 in Examples 4.12) on which the
interpretation of a dyadic rational t is (t, 0).

Lemma 5.31. For every compact ordered space X, the function

dC6(X,R)
hom : C6(X,R)× C6(X,R)→ R

is the uniform metric.

Proof. By Theorem 5.14, any function f : C6(X,R)→ R that preserves +, ∨, ∧, 0, 1
and −1 is the evaluation at an element z ∈ X. Moreover, evaluations at elements of
X are homomorphisms with respect to the signature {+,∨,∧} ∪ D. It follows that,
for every x, y ∈ C6(X,R), we have

dC6(X,R)
hom = sup

f∈hom(M,R)
|f(x)− f(y)| = sup

z∈X
|x(z)− y(z)|,

and this last term is the value of the uniform metric at (x, y). The fact that dC6(X,R)
hom

is finite-valued is guaranteed by the fact that X is compact, and that continuous
functions map compact sets to compact sets (Proposition 0.2).

Lemma 5.32. The following conditions are equivalent for an algebra M in the sig-
nature {+,∨,∧} ∪ D.

1. The canonical homomorphism ev : M → Rhom(M,R) is injective.

2. The function dMhom satisfies the identity of indiscernibles property.
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Proof. Injectivity of ev is expressed by the condition

∀x ∀y ev(x) = ev(y) =⇒ x = y.

The identity of indiscernibles property of dMhom is expressed by the condition

∀x ∀y dMhom(x, y) = 0 =⇒ x = y.

For every x, y ∈ M , the condition ev(x) = ev(y) holds if, and only if, for every
homomorphism f from M to R we have ev(x)(f) = ev(y)(f), i.e. f(x) = f(y); in
turn, the latter condition is equivalent to supf∈hom(M,R)|f(x)−f(y)| = 0, i.e. dMhom = 0.
It follows that injectivity of ev and the identity of indiscernibles property of dhom are
equivalent.

We recall that Top ×Set Preo denotes the category whose objects are topological
spaces equipped with a preorder, and whose morphisms are the continuous order-
preserving maps. With a bit of theory on natural dualities (see [Hofmann and Nora,
2018, Proposition 5.4]), one shows that we have two adjoint contravariant functors

Top×Set Preo Alg{+,∨,∧} ∪ D,
C6(−,R)

hom(−,R)

with the evaluation functions as units. For an algebraM in the signature {+,∨,∧}∪D,
the set hom(M,R) is endowed with the initial topology and order with respect to the
structured source of evaluation maps (evx : hom(M,R) → R)x∈M , or, equivalently,
the induced topology and order with respect to the inclusion hom(M,R) ⊆ RM .

Lemma 5.33. The order on hom(M,R) is closed and the topology is Hausdorff.

Proof. Every subset of a power of R has a closed order (by Lemma 1.3) and a Hausdorff
topology.

Lemma 5.34. The set hom(M,R) is a closed subset of RM .

Proof. The idea is that hom(M,R) is closed because it is defined by the equations
that express the preservation of primitive operation symbols of `Mdyad.

To make this precise, set L = {+,∨,∧} ∪ D. For each h ∈ L, we let arh denote
the arity of h; moreover, we let hM denote the interpretation of h in M , and we let
hR denote the interpretation of h in R. For a ∈ M , we let πa : RM → R denote the
projection onto the a-th coordinate (which is continuous). We have

hom(M,R)
=
⋂
h∈L

⋂
a1,...,aarh∈M

{
x : M → R | x

(
hM(a1, . . . , aarh)

)
= hR(x(a1), . . . , x(aarh))

}
=
⋂
h∈L

⋂
a1,...,aarh∈M

{
x ∈ RM | πhM (a1,...,aarh)(x) = hR(πa1(x), . . . , πaarh(x))

}
.

By Remark 5.1, the function hR is continuous; therefore, the function from RM to R
which maps x to hR(πa1(x), . . . , πaarh(x)) is continuous. Since R is Hausdorff, the set{

x ∈ RM | πhM (a1,...,aarh)(x) = hR(πa1(x), . . . , πaarh(x))
}

is closed.
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Concerning the proof of Lemma 5.34 above, the reader can compare [Lambek and
Rattray, 1979, Proposition 2.3(a)], whose application shows that hom(M,R) is an
equaliser of a power of R.

Lemma 5.35. For every algebra M in the signature {+,∨,∧} ∪ D, the topology on
hom(M,R) is compact (or, equivalently, hom(M,R) is a compact ordered space) if,
and only if, the function dMhom is finite-valued.

Proof. Suppose hom(M,R) is compact. Then, for every x ∈M , the projection

hom(M,R) −→ R
f 7−→ f(x)

onto the x-th coordinate has a compact image, since the image of a compact set under
a continuous map is compact by Proposition 0.2. Therefore, for every x ∈ M , there
exists t ∈ R such that, for every homomorphism f : M → R, we have |f(x)| 6 t.
Let x, y ∈ M . Let t, s ∈ R be such that, for every homomorphism f : M → R, we
have |f(x)| 6 t and |f(y)| 6 s. By the previous discussion, t and s exist with these
properties. Then, for every homomorphism f : M → R, we have

|f(x)− f(y)| 6 |f(x)|+ |f(y)| 6 t+ s.

Thus,
dMhom(x, y) = sup

f∈hom(M,R)
|f(x)− f(y)| 6 t+ s <∞.

Hence, dMhom is finite-valued.
For the converse direction, let us suppose that dMhom is finite-valued. Then, for

every x ∈M , we have

∞ > dMhom(x, 0) = sup
f∈hom(M,R)

|f(x)− f(0)| = sup
f∈hom(M,R)

|f(x)|.

Therefore, for every x ∈ M , the image of the projection hom(M,R) onto the x-th
coordinate is bounded. Therefore, there exists a family (tx)x∈M of real numbers such
that hom(M,R) ⊆ ∏x∈M [−tx, tx]. By Thychonoff’s theorem, the space ∏x∈M [−tx, tx]
is compact. By Lemma 5.34, hom(M,R) is a closed subspace of RM , and thus it is
a closed subspace of ∏x∈M [−tx, tx]. Since a closed subspace of a compact space is
compact (Proposition 0.4), hom(M,R) is compact.

By Lemma 5.33, the order of hom(M,R) is closed. Therefore, hom(M,R) is a
compact ordered space if, and only if, it is compact.

Remark 5.36. Every element in the image of the canonical homomorphism

ev : M → Rhom(M,R)

is an order-preserving continuous function.

Lemma 5.37. Let M be an algebra in the signature {+,∨,∧}∪D. The image of the
canonical homomorphism ev : M → Rhom(M,R) is order-separating.
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Proof. Let f, g ∈ hom(M,R), and suppose f 66 g. Then, there exists x ∈ M such
that f(x) 66 g(x), i.e. evx(f) 66 evx(g).

Theorem 5.38. The following conditions are equivalent for an algebra M in the
signature {+,∨,∧} ∪ D.

1. The algebra M is isomorphic to C6(X,R) for some compact ordered space X.

2. The function dMhom is a metric and M is Cauchy complete with respect to it.

3. The canonical homomorphism ev : M → Rhom(M,R) is injective, hom(M,R) is a
compact ordered space, and the image of ev is C6(hom(M,R),R).

Proof. Suppose item 1 holds. Then, by Lemma 5.31, dC6(X,R)
hom is a metric; precisely,

dC6(X,R)
hom is the uniform metric. Since uniform limit of continuous functions is contin-

uous and pointwise limits of order-preserving functions is order-preserving, it follows
that C6(X,R) is Cauchy complete with respect to dC6(X,R)

hom . Item 2 follows.
Suppose now item 2 holds. By Lemma 5.32, the function ev is injective. By

Lemma 5.35, hom(M,R) is a compact ordered space. By Remark 5.36, every element
in the image of ev is an order-preserving continuous function. By Lemma 5.37, the
image of ev is order-separating. Therefore, by the ordered version of the Stone-
Weierstrass theorem (Theorem 5.25), the closure under uniform convergence of the
image of ev is C6(hom(M,R),R). We claim that the function dev[M ]

hom is the uniform
metric. It is enough to prove that, for every homomorphism f : ev[M ] → R, there
exists g ∈ hom(M,R) such that, for every h ∈ ev[M ], we have f(h) = h(g). Indeed,
if f : ev[M ] → R is a homomorphism, we define g as the composite f ◦ ev : M → R;
then, for every h = ev(x), we have

f(h) = f(ev(x)) = (f ◦ ev)(x) = g(x) = evx(g) = ev(x)(g) = h(g).

This proves our claim that the function dev[M ]
hom is the uniform metric. Since M is

Cauchy complete with respect to dMhom, ev[M ] is Cauchy complete with respect to
dev[M ]

hom , i.e. the uniform metric. Therefore, ev[M ] = C6(hom(M,R),R). In conclusion,
item 3 holds.

It is immediate that item 3 implies item 1.

Theorem 5.39. The category of compact ordered spaces is dually equivalent to the
category of algebras M in the signature {+,∨,∧} ∪ D such that dMhom is a metric and
M is Cauchy complete with respect to it.

Proof. By Remark 5.26, the category of compact ordered spaces is dually equivalent
to the category of ({+,∨,∧}∪D)-algebras which are isomorphic to C6(X,R) for some
compact ordered space X. By the equivalence between items 1 and 2 in Theorem 5.38,
these algebras are precisely the algebras such that dMhom is a metric and M is Cauchy
complete with respect to it.
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5.5 An intrinsic definition of the metric
Next, we replace the function dhom with a function which has a more intrinsic defini-
tion.

Definition 5.40. A dyadic commutative distributive `-monoid is an algebra M in the
signature {+,∨,∧} ∪ D (where +, ∨ and ∧ have arity 2, and each element of D has
arity 0) with the following properties.

DM0. 〈M ; +,∨,∧, 0〉 is a commutative distributive `-monoid (see Definition 4.7).

DM1. For all α, β ∈ D with α 6 β we have αM 6 βM.

DM2. For all α, β ∈ D we have αM +M βM = (α +R β)M.

DM3. For all x ∈M , there exist α, β ∈ D such that αM 6 x 6 βM.

Axioms DM1 to DM3 say that the constants in D behave (with respect to +, ∨,
∧) exactly as in the algebra R (or D). In other words, Axioms DM1 to DM3 are
(equivalent to) the positive atomic diagram of D (cf. e.g. [Prest, 2003, Section 3.2, p.
211]). Notice that Axiom DM3 is equivalent to the Axiom M3 of order unit for unital
commutative distributive `-monoids (Definition 4.7).

The sets R and D are given the structure of a dyadic commutative distributive
`-monoid in an obvious way.

We let D>0 denote the set D ∩ [0,∞).

Notation 5.41. Given a dyadic commutative distributive `-monoid M and given
x, y ∈M we set

dMint(x, y) := inf
{
t ∈ D>0 | y + (−t)M 6 x 6 y + tM

}
.

When M is understood, we write simply dint(x, y) for dMint(x, y).

Remark 5.42. On R, the function dint is the euclidean distance, i.e., for every x, y ∈ R,
we have

dR
int(x, y) = |x− y|.

Remark 5.43. On algebras of real-valued functions, the function dint is the uniform
metric. Indeed, if X is a set, and f and g are functions from X to R, we have

inf{t ∈ D>0 | g − t 6 f 6 g + t} = inf{t ∈ D>0 | −t 6 f − g 6 t}
= inf{t ∈ D>0 | |f − g| 6 t}
= sup|f − g|;

therefore, if M ⊆ RX is a dyadic commutative distributive `-monoid, and f and g are
elements of M , we have

dMint(f, g) = sup
x∈X
|f(x)− g(x)|.

Lemma 5.44. For every dyadic commutative distributive `-monoid M , the function
dMint is finite-valued.
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Proof. Let x, y ∈ M . By Axiom DM3, there exists α ∈ D>0 such that (−α)M 6 x 6
αM and (−α)M 6 y 6 αM . Then, we have

y + (−2α)M 6 αM + (−2α)M = (−α)M 6 x 6 αM = (−α)M + (2α)M 6 y + (2α)M .

Thus, dMint(x) 6 2α.

Proposition 5.45. Every subdirectly irreducible commutative distributive `-monoid
is totally ordered.

Proof. This is a corollary of [Repnitzkii, 1984, Lemma 1.4], but already in [Merlier,
1971, Corollary 2] it is proved that any commutative distributive `-monoid is a sub-
direct product of totally ordered ones, and it is asserted, in Remark 3 of the same
paper, that this was an unpublished result by L. Fuchs.

Corollary 5.46. All subdirectly irreducible dyadic commutative distributive `-monoids
are totally ordered.

Proof. This is an immediate consequence of Proposition 5.45, since the constants do
not play any role in subdirect irreducibility.

Lemma 5.47. Let M be a non-trivial dyadic commutative distributive `-monoid. For
all α, β ∈ D, we have

αM = βM ⇔ α = β; (5.5)
αM 6 βM ⇔ α 6 β. (5.6)

Proof. Let us first prove eq. (5.5). Clearly, if α = β, then αM = βM . For the converse
direction, let us suppose αM = βM and suppose, by way of contradiction, that we
have α 6= β. Without loss of generality, we may suppose α < β. Set t := β−α. Then,
t > 0. We have

0M = αM + (−α)M = βM + (−α)M = (β − α)M = tM .

For every s ∈ D>0, there exists n ∈ N such that s 6 nt; then, we have

0M 6 sM 6 ntM = n0M = 0M .

Hence, for every s ∈ D>0, we have sM = 0. Analogously, we have tM = 0 for every
t ∈ D with t 6 0, as well. Thus, for every t ∈ D, we have tM = 0. Let x ∈ M .
By Axiom DM3, there exist α, β ∈ D such that αM 6 x 6 βM . Then, we have
0M = αM 6 x 6 βM = 0M , which implies x = 0M . Therefore, every element of
M equals 0M . This contradicts the hypothesis of non-triviality of M . We have thus
proved eq. (5.5).

By Axiom DM1, if α 6 β, then αM 6 βM . For the converse direction, let us
suppose αM 6 βM , and suppose, by way of contradiction, that α > β. Then, we
would have αM > βM . Thus, we would have αM = βM . Therefore, by eq. (5.5), we
have α = β: a contradiction.
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Notation 5.48. For an element x of a dyadic commutative distributive `-monoid M
we set

Ix :=
{
t ∈ D | tM 6 x

}
;

Sx :=
{
t ∈ D | tM > x

}
;

essinf x := sup Ix;
esssupx := inf Sx.

When essinf x = esssupx, we let essx denote this number.

Lemma 5.49. Given a totally ordered non-trivial dyadic commutative distributive
`-monoid M , the values essinf x and esssupx are finite and coinciding.

Proof. Since every element is bounded from above and below by some dyadic rational
(Axiom DM3 in Definition 5.40), the sets Ix and Sx are non-empty. SinceM is totally
ordered, Ix∪Sx = D. SinceM is non-trivial, the intersection of Ix and Sx has at most
an element, by Lemma 5.47. Therefore, the values essinf x and esssupx are finite and
coinciding.

Lemma 5.50. Given a non-trivial dyadic commutative distributive `-monoid M , for
each t ∈ D we have ess(tM) = t.

Proof. By Lemma 5.47, sinceM is non-trivial, we have ItM = D∩(∞, t], and therefore
essinf tM = t. Analogously for esssup.

Proposition 5.51. Given a totally ordered non-trivial dyadic commutative distribu-
tive `-monoid M , there exists a unique homomorphism from M to R, namely x 7→
essx.

Proof. By Lemma 5.49, for every x ∈M the values essinf x and esssupx are finite and
coinciding. Hence, the function ess : M → R; x 7→ essx is well defined. Let us prove
that this function is a homomorphism. The function ess preserves every constant
symbol in D by Lemma 5.50. Let x, y ∈ M and let ⊗ denote any operation among
{+,∨,∧}. Let α ∈ Ix (i.e. αM 6 x) and β ∈ Iy (i.e. βM 6 y). Then, by monotonicity
of⊗, we have αM⊗βM 6 x⊗y. Since αM⊗βM = (α⊗β)M , we then have Ix⊗Iy ⊆ Ix⊗y.
Therefore, sup(Ix ⊗ Iy) 6 sup(Ix⊗y). Since ⊗ : R2 → R is continuous, we have, for
every non-empty U ⊆ R and V ⊆ R, that sup(U ⊗W ) = (supU)⊗ (supW ). By the
axiom of order unit (Axiom M3), the set Ix is non-empty. Therefore,

essx⊗ ess y = sup Ix ⊗ sup Iy = sup(Ix ⊗ Iy) 6 sup(Ix⊗y) = ess(x⊗ y).

Replacing, in the proof above, the set Ix with Sx, the symbol sup with inf and reversing
the inequalities, one obtains that the opposite inequality essx ⊗ ess y > ess(x ⊗ y)
holds.

Uniqueness follows from the fact that every homomorphism preserves dyadic ra-
tionals and is order-preserving.

Lemma 5.52. Let M and N be dyadic commutative distributive `-monoids, and let
ϕ : M → N be a homomorphism. Then, for all x, y ∈M we have

dMint(x, y) > dNint(ϕ(x), ϕ(y)).
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Proof. The proof is straightforward.

Lemma 5.53. For all x and y in a totally ordered non-trivial dyadic commutative
distributive `-monoid, we have dint(x, y) = |essx− ess y|.

Proof. Let M be a totally ordered non-trivial dyadic commutative distributive `-
monoid, and let x, y ∈ M . It is easy to see that, given a homomorphism ϕ : A → B
between dyadic commutative distributive `-monoids, and given a, b ∈ A, we have
dAint(a, b) > dBint(ϕ(a), ϕ(b)). By Proposition 5.51, the function ess : M → R is a
homomorphism, and therefore

dMint(x, y)
Lemma 5.52
> dR

int(essx, ess y) Remark 5.42= |essx− ess y|.

Let us prove the opposite inequality. Since dMint is a pseudometric, we can apply
the triangle inequality to obtain

dMint(x, y) 6 dMint

(
x, (essx)M

)
+ dMint

(
(essx)M , (ess y)M

)
+ dMint

(
(ess y)M , y

)
. (5.7)

It is easily seen that we have

dMint

(
x, (essx)M

)
= 0,

dMint

(
(essx)M , (ess y)M

)
= |essx− ess y|,

and
dMint

(
(ess y)M , y

)
= 0.

Therefore, the right-hand side of eq. (5.7) equals |essx − ess y|, and we obtain the
desired inequality.

Theorem 5.54. For every dyadic commutative distributive `-monoid M , we have

dMint = dMhom.

Proof. Let I be the set of congruences θ onM such thatM/θ is subdirectly irreducible.
Let ι : M → ∏

θ∈IM/θ be the canonical homomorphism. By Birkhoff’s subdirect
representation theorem, ι is injective. For each θ ∈ I, let πθ : M → M/θ denote the
quotient map. Since ι is injective, for all x, y ∈M we have

dMint(x, y) = sup
θ∈I

dM/θ
int (πθ(x), πθ(y)). (5.8)

For every θ ∈ I, the algebra M/θ is subdirectly irreducible; hence M/θ is totally
ordered (Corollary 5.46) and non-trivial. By Lemma 5.53, for every θ ∈ I we have

dM/θ
int (πθ(x), πθ(y)) = |essπθ(x)− ess πθ(y)|. (5.9)

Hence, by eqs. (5.8) and (5.9), we have

dMint(x, y) = sup
θ∈I
|ess πθ(x)− essπθ(y)|. (5.10)



108 Chapter 5. Ordered Yosida duality

By Proposition 5.51, for every θ ∈ I, the function ess : M/θ → R is a morphism of
dyadic commutative distributive `-monoids. Hence, from eq. (5.10) we deduce

dMint(x, y) 6 sup
f∈hom(M,R)

|f(x)− f(y)|. (5.11)

For every homomorphism f : M → R and all x, y ∈M , we have

dMint(x, y)
Lemma 5.52
> dR

int(f(x), f(y)) Remark 5.42= |f(x)− f(y)|;

thus, the opposite inequality of eq. (5.11) holds.

Definition 5.55. An algebra M in the signature {+,∨,∧} ∪D is Archimedean if M
is isomorphic to a subalgebra of a power of R with obviously defined operations. The
following are two other conditions which are easily seen to be equivalent.

1. The canonical homomorphism M → Rhom(M,R) is injective.

2. For all x, y ∈ A with x 6= y there exists a homomorphism f : M → R such that
f(x) 6= f(y).

Theorem 5.56. A dyadic commutative distributive `-monoid A is Archimedean if,
and only if, for all distinct x, y ∈ A we have dint(x, y) 6= 0.

Proof. By Theorem 5.54 and Lemma 5.32.

Theorem 5.57. An algebra M in the signature {+,∨,∧} ∪ D is isomorphic to the
algebra C6(X,R) of real-valued order-preserving continuous functions on X for some
compact ordered space X if, and only if, M is a dyadic commutative distributive `-
monoid that satisfies dMint(x, y) = 0 ⇒ x = y (so that dMint is a metric), and which is
Cauchy complete with respect to dMint.

Proof. By Theorems 5.38 and 5.54.

Theorem 5.58 (Ordered Yosida duality). The category CompOrd of compact or-
dered spaces is dually equivalent to the category of dyadic commutative distributive
`-monoids M which satisfy dMint(x, y) = 0 ⇒ x = y (so that dMint is a metric), and
which are Cauchy complete with respect to dMint.

Proof. By Theorems 5.39 and 5.54.

5.6 Conclusions
We obtained an analogue of Yosida duality, where compact Hausdorff spaces are
replaced by compact ordered spaces. In the next chapter, we will obtain an explicit
axiomatisation of a variety dual to CompOrd. The results in the present chapter should
provide a useful intuitive ground to grasp the ideas behind that axiomatisation.



Chapter 6

Equational axiomatisation

6.1 Introduction
In Chapter 2 we proved that the opposite of the category of compact ordered spaces
is equivalent to a variety of algebras. To obtain a description of one such variety,
we defined the signature ΣOC consisting of all order-preserving continuous functions
from powers of [0, 1] to [0, 1] itself. Every element of this signature has an obvious
interpretation on the set [0, 1]—namely, itself—and so [0, 1] is a ΣOC-algebra in an
obvious way. The class

S P
(〈

[0, 1]; ΣOC
〉)

was then shown to be a variety which is dually equivalent to the category of compact
ordered spaces.

The aim of the present chapter is to provide an explicit equational axiomatisation
of CompOrdop: in Definition 6.27 we describe the variety MVMlim

dyad consisting of what
we call limit dyadic MV-monoidal algebras, and in Theorem 6.39 we prove that this
variety is in fact dually equivalent to the category of compact ordered spaces.

The primitive operations of MVMlim
dyad are ⊕, �, ∨, ∧, all dyadic rationals in [0, 1],

and the operation of countably infinite arity λ. The finitary operations have a canon-
ical interpretation on [0, 1]:

x⊕ y := min{x+ y, 1},
x� y := max{x+ y − 1, 0},
x ∨ y := max{x, y},
x ∧ y := min{x, y},

t ∈ D ∩ [0, 1] := the element t.

Furthermore, we interpret the infinitary operation λ in [0, 1] as

λ(x1, x2, x3, . . . ) := lim
n→∞

µn(x1, . . . , xn),

where µn is defined inductively by setting

µ1(x1) := x1,

109
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and, for n > 2,

µn(x1, . . . , xn)

:= max
{

min
{
xn, µn−1(x1, . . . , xn−1) + 1

2n−1

}
, µn−1(x1, . . . , xn−1)− 1

2n−1

}
.

The main sources of inspiration for this chapter have been [Marra and Reggio,
2017, Hofmann and Nora, 2018, Hofmann et al., 2018].

We warn the reader that the interpretation in [0, 1] of the operation of countably
infinite arity λ here differs from the interpretation of the operation δ in [Abbadini,
2019a], and we believe the axiomatisation in this chapter to be more elegant, one of
the reasons being the self-duality of λ.

Sketch of the proof

We sketch the proof of the main result of this chapter (Theorem 6.39) which shows
that CompOrd is dually equivalent to the variety MVMlim

dyad.
We make use of the sub-signature Σdy := {⊕,�,∨,∧} ∪ (D ∩ [0, 1]) of ΣOC. We

define a dyadic MV-monoidal algebra as a Σdy-algebra A which is an MV-monoidal
algebra such that, for each α, β ∈ D ∩ [0, 1], we have αA ⊕A βA = (α ⊕R β)A, and
αA�AβA = (α�Rβ)A (Definition 6.17). Using the subdirect representation theorem,
we obtain that a Σdy-algebra is isomorphic to a subalgebra of a power of [0, 1] if, and
only if, it is a dyadic MV-monoidal algebra which satisfies

∀x ∀y dint(x, y) = 0⇒ x = y

(see Notation 6.22 for the definition of dint, and Theorem 6.23 for the equivalence of
the two conditions).

We then define the variety MVMlim
dyad of limit dyadic MV-monoidal algebras (Def-

inition 6.27), in the signature Σlim
dy = Σdy ∪ {λ}, where λ : [0, 1]N+ → [0, 1] is an

order-preserving continuous function. We obtain the following results.

1. The algebra [0, 1] with standard interpretations is a limit dyadic MV-monoidal
algebra.

2. The Σdy-reduct of any limit dyadic MV-monoidal algebra is a dyadic MV-
monoidal algebra which satisfies

∀x ∀y dint(x, y) = 0⇒ x = y.

3. For every limit dyadic MV-monoidal algebra A, every Σdy-homomorphism from
A to [0, 1] is a Σlim

dy -homomorphism.

4. For every cardinal κ, the term operations of arity κ of the Σlim
dy -algebra [0, 1] are

the order-preserving continuous functions from [0, 1]κ to [0, 1].

Using these facts, we deduce that the variety MVMlim
dyad of limit dyadic MV-monoidal

algebras is term-equivalent to S P
(〈

[0, 1]; ΣOC
〉)

. Since the latter is dually equivalent
to CompOrd, we obtain that MVMlim

dyad and CompOrd are dually equivalent1.
1This result provides an alternative proof of the fact (already obtained in Theorem 2.43) that
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6.2 Primitive operations and their interpretations
In this section, we state a unit interval ordered version of the Stone-Weierstrass the-
orem and we use it to choose a convenient set of primitive operations for the variety
dual to CompOrd.

6.2.1 Unit interval ordered Stone-Weierstrass theorem
The ordered version of the Stone-Weierstrass theorem (Theorem 5.25) admits an anal-
ogous version with [0, 1] instead of R, whose proof—that we omit—could be either
obtained analogously to Theorem 5.25 or—in light of the equivalence established in
Theorem 4.74—as a consequence of it.

Theorem 6.1 (Unit interval ordered Stone-Weierstrass theorem). Let X be a compact
ordered space, let L be an order-separating set of continuous order-preserving functions
from X to [0, 1] which is closed under ⊕, �, ∨, ∧ and which contains every constant
in [0, 1]. Then, the closure of L under uniform convergence is the set of continuous
order-preserving functions from X to [0, 1].

Theorem 6.1 tells us something about sets of generating operations for the clone
of order-preserving continuous functions on [0, 1].

Lemma 6.2. Let κ be a cardinal, and let Lκ be the set of operations from [0, 1]κ to
[0, 1] that are generated by {⊕,�,∨,∧}∪ [0, 1]. Then, the set of order-preserving con-
tinuous functions from [0, 1]κ to [0, 1] coincides with the closure of Lκ under uniform
convergence.

Proof. We apply Theorem 6.1 with X = [0, 1]κ: note that X is a compact ordered
space and that Lκ is order-separating because it contains the projections, which are
easily seen to order-separate the elements of [0, 1]κ.

Lemma 6.3. Let α : [0, 1]N+ → [0, 1] be an order-preserving continuous function such
that, if L is a set of functions from a set X to [0, 1], then the closure of L under
pointwise application of α contains the closure of L under uniform limits. Let D be
a dense subset of [0, 1]. Then {⊕,�,∨,∧} ∪D ∪ {α} generates the clone on [0, 1] of
order-preserving continuous functions.

Proof. By Lemma 6.2.

In the following we will look for a function λ : [0, 1]N+ → [0, 1] that satisfies the
conditions in Lemma 6.3, so that the set {⊕,�,∧,∨}∪D∪ {λ} settles our search for
a generating set of the clone of order-preserving continuous functions on [0, 1].

Ideally, one would like to take

lim: [0, 1]N+ → [0, 1].

CompOrd is dually equivalent to a variety of algebras; in this proof, we use the fact that [0, 1] is a
regular injective regular cogenerator of CompOrd. We do not need, instead, the fact that equivalence
relations in CompOrdop are effective.
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The first thing we notice is that lim is not defined on the whole [0, 1]N+ because not
all sequences converge. That said, the next ideal thing one would like to take is a
function that maps each Cauchy sequence to its limits. However, this is not possible
because we want the function to be continuous, and every function α : [0, 1]N+ → [0, 1]
that maps each Cauchy sequence to its limit is not continuous, as it does not commute
with topological limits:

α
(

lim
n→∞

(1, . . . , 1︸ ︷︷ ︸
n times

, 0, 0, . . . )
)

= α(1, 1, 1, . . . ) = 1,

and
lim
n→∞

α(1, . . . , 1︸ ︷︷ ︸
n times

, 0, 0, . . . ) = lim
n→∞

0 = 0.

So, we look for an order-preserving continuous function λ : [0, 1]N+ → [0, 1] which
maps just ‘enough’ Cauchy sequences to their limit (and with no restriction on the
value it takes on other sequences). There does not seem to be a canonical candidate
for λ. In [Hofmann et al., 2018] a suitable operation denoted δ was described. Here
we use a slightly different function. As a further remark showing the limitations in the
choice of λ, we point out that there exists no continuous function α : [0, 1]N+ → [0, 1]
that satisfies the following identities, which would be natural for an operation which
acts as a limit.

1. α(x, x, x, . . . ) = x;

2. α(x1, x2, x3, . . . ) = α(x2, x3, x4, . . . ).
Indeed, one such function would satisfy

α(1, 1, 1, . . . ) = 1,
and, for every n,

α(1, . . . , 1︸ ︷︷ ︸
n times

, 0, 0, . . . ) = 0,

and so it would not be continuous by the previous discussion.
However, the function λ that we will describe seems to us quite a natural choice.
The idea in order to ensure continuity of λ is to define λ as the uniform limit

of a sequence of continuous functions µ̃n : [0, 1]N+ → [0, 1], where µ̃n are functions
generated by {⊕,�,∧,∨} ∪ D. The fact that the functions µ̃n are generated by
{⊕,�,∧,∨} ∪ D implies that they are order-preserving and continuous. To be sure
that (µ̃n)n converges uniformly, we will require d(µ̃n, µ̃n+1) 6 1

2n , where d is the
uniform metric. In this way, (µ̃n)n admits a uniform limit that we will denote with λ.
Then, λ is guaranteed to be continuous. Since the functions µ̃n are order-preserving,
the function λ is order-preserving, as well. Moreover, we will look for functions µ̃n
which behave very much like projections onto the n-th coordinates: this means that,
for ‘enough many sequences (xn)n’, we have µ̃n(x1, x2, x3, . . . ) = xn. In this way, for
‘enough many sequences (x1, x2, x3, . . . )’, we have

λ(x1, x2, x3, . . . ) = lim
n→∞

µ̃n(x1, x2, x3, . . . ) = lim
n→∞

xn.

Then, λ will be very much like a limit operation2.
2In fact, the symbol λ should be evocative of the word ‘limit’.
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6.2.2 Completion via 2-Cauchy sequences
The need for λ to be continuous motivated the requirement d(µ̃n, µ̃n+1) 6 1

2n . This
brings us to the following definition.
Definition 6.4. A sequence (xn)n∈N+ in a metric space (X, d) is called 2-Cauchy if,
for every n ∈ N+, we have

d(xn, xn+1) 6 1
2n .

As shown in the following results, every 2-Cauchy sequence is a Cauchy sequence,
and Cauchy completeness is equivalent to convergence of all 2-Cauchy sequences.
Lemma 6.5. Let (xn)n∈N+ be a 2-Cauchy sequence in a metric space (X, d). Then,
for every n,m ∈ N+ with n 6 m, we have

d(xn, xm) < 1
2n−1 .

Proof. By the triangle inequality, we have

d(xn, xm) 6
m−1∑
i=n

d(xi, xi+1) 6
m−1∑
i=n

1
2i <

∞∑
i=n

1
2i = 1

2n−1 .

Lemma 6.6. Every 2-Cauchy sequence in a metric space is a Cauchy sequence.

Proof. By Lemma 6.5.
Lemma 6.7. Every Cauchy sequence in a metric space admits a 2-Cauchy subse-
quence.

Proof. Let (xn)n∈N+ be a Cauchy sequence. Choose n1 so that, for k > n1, we have
d(xnj , xk) 6 1

2 , and then, iteratively, choose nj (j = 2, 3, 4, . . . ) so that nj > nj−1 and,
for every k > nj, d(xnj , xk) 6 1

2j . Then, (xnj)j∈N+ is a 2-Cauchy subsequence.
Lemma 6.8. A metric space X is Cauchy complete if, and only if, every 2-Cauchy
sequence in X converges.

Proof. By Lemma 6.6, every 2-Cauchy sequence is a Cauchy sequence. Thus, if X
is Cauchy complete, then every 2-Cauchy sequence in X converges. For the converse
implication, it is enough to notice that every Cauchy sequence in a metric space
admits a 2-Cauchy subsequence (Lemma 6.7) and that a Cauchy sequence admitting
a convergent subsequence converges.

So, ensuring convergence of 2-Cauchy sequences is enough to ensure Cauchy-
completeness.
Lemma 6.9. Let α : [0, 1]N+ → [0, 1] be a function that maps all 2-Cauchy sequences
to their limits. Let X be a set and let L be a set of functions from X to [0, 1]. Then,
every uniform limit of sequences in L belongs to the closure of L under pointwise
application of α.

Proof. Let (fn)n be a sequence in L that converges uniformly to a function f . Since
(fn)n converges, it is a Cauchy sequence. By Lemma 6.7, (fn)n admits a 2-Cauchy
subsequence (fnj)j. Then, for every x ∈ X, (fnj(x))j is a 2-Cauchy sequence, and it
converges to f(x). Thus, α((fnj(x))j) = f(x).
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6.2.3 The function of countably infinite arity λ

Let us roughly anticipate how λ : [0, 1]N+ → [0, 1] will be defined.

Input The input for λ is a sequence (xn)n∈N+ .

Step We do an intermediate step in which the sequence (xn)n is turned into a 2-
Cauchy-sequence (yn)n. This is done with as little modification as possible.
In particular, if (xn)n was already 2-Cauchy, then (yn)n = (xn)n. For every
n ∈ N+, the element yn will depend on x1, . . . , xn, i.e. y = µn(x1, . . . , xn) for
some µn : [0, 1]n → [0, 1].

Output The output (i.e. the value λ(x1, x2, x3, . . . )) is limn→∞ yn, which exists be-
cause (yn)n is a Cauchy sequence.

For each n, the function µn will be order-preserving, so that also λ is guaranteed to be
so. Moreover, we will have d(µn, µn+1) 6 1

2n , so that λ is guaranteed to be continuous.
Note that, by construction, λ will map 2-Cauchy sequences to their limit.

We first illustrate our choice of µn with an example, which shows how we turn a
sequence in [0, 1] into a 2-Cauchy sequence in [0, 1]. Consider a sequence beginning
with

x1 = 0.1, x2 = 0.5, x3 = 0, x4 = 0.3, . . . .

Let us turn this sequence into a 2-Cauchy one with as few modifications as possible:

y1 = 0.1, y2 = 0.5, y3 = 0.25, y4 = 0.3, . . . .

The first element of the original sequence, 0.1, can be left unchanged in the new
sequence: y1 := x1 = 0.1. The distance between the first and the second element of
the new sequence must be less or equal than 1

2 . Since the distance between y1 = 0.1
and x2 = 0.5 is less than 1

2 , the second element, 0.5, can be left as it is in the new
sequence: y2 := x2 = 0.5. The distance between the second and the third element of
the new sequence must be less or equal than 1

4 . Since the distance between y2 = 0.5
and x3 = 0 is strictly greater than 1

4 , we have to replace 0 with another element:
we take this new element y3 as close to x3 = 0 as possible, given the restriction
d(y2, y3) 6 0.25. Thus we take y3 := 0.25. The distance between the third and the
fourth element of the new sequence must be less or equal than 1

8 (= 0.125). Since the
distance between y3 = 0.25 and x4 = 0.3 is less than 0.125, the fourth element can be
left unchanged: y4 := x4 = 0.3.

The n-th element of the new sequence depends on the first n elements of the old
one; else said, yn = µn(x1, . . . , xn) for some function µn : [0, 1]n → [0, 1].

Notation 6.10. Inductively on n ∈ N+, we define the function µn : [0, 1]n → [0, 1] of
arity n. We set

µ1(x1) := x1,

and, for n > 2,

µn(x1, . . . , xn)

:= max
{

min
{
xn, µn−1(x1, . . . , xn−1) + 1

2n−1

}
, µn−1(x1, . . . , xn−1)− 1

2n−1

}
.
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The following three lemmas capture the main properties of the functions (µn)n.

Lemma 6.11. For every n ∈ N+, the function µn : [0, 1]n → [0, 1] is order-preserving
and continuous.

Proof. This is easily proved by induction, observing that the functions +, max, min
and all the constants are order-preserving and continuous with respect to the product
order and topology.

Lemma 6.12. For each sequence (xn)n∈N+ of elements of [0, 1], the sequence

(µn(x1, . . . , xn))n∈N+

is a 2-Cauchy sequence.

Proof. For all x, y ∈ [0, 1] and all n ∈ N+, we have

d
(
y,max

{
min

{
x, y + 1

2n−1

}
, y − 1

2n−1

})
6

1
2n−1 . (6.1)

If we set x = xn and y = µn−1(x1, . . . , xn−1) in eq. (6.1) and we apply the inductive
definition of µn, we obtain d(µn−1(x1, . . . , xn), µn(x1, . . . , xn−1)) 6 1

2n−1 .

Lemma 6.13. Given a 2-Cauchy sequence (xn)n∈N+ of elements of [0, 1], we have,
for all n ∈ N+,

µn(x1, . . . , xn) = xn.

Proof. We prove this by induction on n ∈ N+. The statement holds for n = 1 by
definition of µ1. Suppose the statement holds for n ∈ N+, and let us prove it holds
for n+ 1. By the inductive definition of µn and by the inductive hypothesis, we have

µn(x1, . . . , xn) = max
{

min
{
xn, xn−1 + 1

2n−1

}
, xn−1 −

1
2n−1

}
. (6.2)

Since (xn)n∈N+ is 2-Cauchy, we have d(x, y) 6 1
2n , i.e. xn−1 − 1

2n 6 xn 6 1
2n ; hence,

the right-hand side of eq. (6.2) coincides with xn.

Notation 6.14. Let (xn)n∈N+ be a sequence of elements of R. By Lemma 6.12,
the sequence (µn(x1, . . . , xn))n∈N+ is a 2-Cauchy sequence and thus a Cauchy se-
quence by Lemma 6.6. Since the metric space [0, 1] is complete, the Cauchy sequence
(µn(x1, . . . , xn))n∈N+ admits a limit, that we denote with λ(x1, x2, x3, . . . ). This es-
tablishes a function3

λ : [0, 1]N+ −→ [0, 1]
(x1, x2, x3, . . . ) 7−→ lim

n→∞
µn(x1, . . . , xn).

3The function λ defined here differs from the function δ from [Hofmann et al., 2018, Abbadini,
2019a]. There are two main advantages on the side of λ. The first one is elegance: the function λ is
self-dual: for every sequence (xn)n of elements of [0, 1], we have 1 − λ((1 − xn)n) = λ((xn)n). The
second advantage is that the closure under λ contains the closure under uniform limits for any set
of [0, 1]-valued functions (see Lemma 6.9).
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Proposition 6.15. The function λ : [0, 1]N
+
→ [0, 1] is order-preserving and contin-

uous (with respect to the product order and product topology).

Proof. For every n ∈ N+, we set

µ̃n : [0, 1]N
+
−→ [0, 1]

(xn)n∈N+ 7−→ µn(x1, . . . , xn).

Then, the sequence (µ̃n)n∈N+ converges uniformly to λ. By Lemma 6.11, for every
n ∈ N+, the function µn : [0, 1]n → [0, 1] is order-preserving and continuous. Moreover,
for every i ∈ N+, the projection πi : [0, 1]N+ → [0, 1] onto the i-th coordinate is order-
preserving and continuous. We have µ̃n = µn(π1, . . . , πn), which shows that µ̃n is
order-preserving and continuous. Since λ is the pointwise limit of µ̃n, λ is order-
preserving, as well. Since (µ̃n)n∈N+ uniformly converges to λ, the latter is continuous.

Lemma 6.16. The function λ : [0, 1]N+ → [0, 1] maps 2-Cauchy sequences to their
limit.

Proof. For every 2-Cauchy sequence (xn)n∈N+ in [0, 1] we have

λ(x1, x2, x3, . . . ) = lim
n→∞

µn(x1, . . . , xn) Lemma 6.13= lim
n→∞

xn.

The set of primitive operations that we use is

{⊕,�,∨,∧} ∪ (D ∩ [0, 1]) ∪ λ.

The reason why we take only dyadic rationals instead of all elements in [0, 1] is because
dyadic rationals will be useful during the study of the finite axiomatisation provided
in Chapter 7. Further, we point out that this choice has the advantage to obtain only
a countable set of primitive operations and a countable set of axioms.

6.3 Dyadic MV-monoidal algebras
Definition 6.17. A dyadic MV-monoidal algebra is an algebra A in the signature
{⊕,�,∨,∧} ∪ (D ∩ [0, 1]) (where ⊕, �, ∨ and ∧ have arity 2 and each element of
D ∩ [0, 1] has arity 0) with the following properties.

DE0. 〈A;⊕A,�A,∨A,∧A, 0A, 1A〉 is an MV-monoidal algebra (see Definition 4.15).

DE1. For all α, β ∈ D ∩ [0, 1], we have αA ⊕A βA = (α⊕R β)A.

DE2. For all α, β ∈ D ∩ [0, 1], we have αA �A βA = (α�R β)A.

We let MVMdyad denote the category of dyadic MV-monoidal algebras with homo-
morphisms.

Axioms DE1 and DE2 are (equivalent to) the positive atomic diagram of D∩ [0, 1]
(cf. e.g. [Prest, 2003, Section 3.2, p. 211] for the notion of positive atomic diagram);
we have not included axioms regarding the lattice operations, because they are a
consequence, as the following shows.
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Lemma 6.18. For every dyadic MV-monoidal algebra A and every α, β ∈ D ∩ [0, 1]
with α 6 β (as real numbers), we have αA 6A βA.

Proof. We have βA = (α⊕R (β − α))A = αA ⊕A (β − α)A > αA.

Remark 6.19. Building on the equivalence established in Theorem 4.74, it is not dif-
ficult to prove that the category of dyadic MV-monoidal algebras is equivalent to the
category of dyadic commutative distributive `-monoids. One functor maps a dyadic
commutative distributive `-monoid M to the dyadic MV-monoidal algebra Γ(M), on
which the constants are defined by restriction. The other functor maps a dyadic MV-
monoidal algebra A to the dyadic commutative distributive `-monoid Ξ(A), on which
a dyadic rational t is interpreted as follows: denoting with k the unique integer such
that t ∈ [k, k + 1), we set

tΞ(A) : Z −→ A

n 7−→


1 if n < k;
(t− k)A if n = k;
0 if n > k.

(6.3)

Example 6.20. The unit interval [0, 1] with standard interpretations is a dyadic
MV-monoidal algebra.

Definition 6.21. We say that an algebra A in the signature {⊕,�,∨,∧}∪ (D∩ [0, 1])
is Archimedean if A is isomorphic to a subalgebra of a power of [0, 1] with obviously
defined operations4.

As it was pointed out by one of the referees, the Archimedean algebras are those
algebras so that [0, 1] acts as a cogenerator. As it is explained in [Porst and Tholen,
1991], this is an essential property to obtain a natural duality.

Notation 6.22. In analogy with Notation 5.41, given a dyadic commutative distribu-
tive `-monoid A, and given x, y ∈ A, we set

dAint(x, y) := inf
{
t ∈ D ∩ [0, 1] | y � (1− t)A 6 x 6 y ⊕ tA

}
.

When A is understood, we write simply dint(x, y) for dAint(x, y).

It is clear that every algebra in the signature {⊕,�,∨,∧} ∪ (D ∩ [0, 1]) which is
Archimedean is a dyadic MV-monoidal algebra. The following theorem settles the
problem of identifying which dyadic MV-monoidal algebras are Archimedean. We
omit the proof, since—in light of Remark 6.19—it is analogous to Theorem 5.56.

Theorem 6.23. A dyadic MV-monoidal algebra A is Archimedean if, and only if, for
all distinct x, y ∈ A we have dint(x, y) 6= 0.

4The following are two other conditions which are easily seen to be equivalent.

1. The canonical homomorphism A→ [0, 1]hom(A,[0,1]) is injective.

2. For all x, y ∈ A with x 6= y there exists a homomorphism f : A→ [0, 1] such that f(x) 6= f(y).
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6.4 Equational axiomatisation
Notation 6.24. For every n ∈ N, we define a binary term τn in the language of
dyadic MV-monoidal algebras:

τn(x, y) :=
(
x ∧

(
y ⊕ 1

2n
))
∨
(
y �

(
1− 1

2n
))

.

For example, for x, y ∈ [0, 1], we have

τRn (x, y) = max
{

min
{
x, y + 1

2n
}
, y − 1

2n
}
.

Notation 6.25. Inductively on n ∈ N+, we define a term µn of arity n in the language
of dyadic MV-monoidal algebras:

µ1(x1) := x1;
µn(x1, . . . , xn) := τn−1

(
xn, µn−1(x1, . . . , xn−1)

)
=
(
xn ∧

(
µn−1(x1, . . . , xn−1)⊕ 1

2n−1

))
∨
(
µn−1(x1, . . . , xn−1)�

(
1− 1

2n−1

))
.

Remark 6.26. The interpretation of µn on the unit interval [0, 1] is precisely the func-
tion µn : [0, 1]n → [0, 1] defined inductively in Notation 6.10. Thus, the overlapping
notation should not be a source of problems.

We identify a variety of algebras which we will show to be dual to the category of
compact ordered spaces.

Definition 6.27. A limit dyadic MV-monoidal algebra is an algebra A in the language
{⊕,�,∨,∧}∪ (D∩ [0, 1])∪ {λ}—where ⊕, �, ∨ and ∧ have arity 2, every element of
D∩ [0, 1] has arity 0, and λ has countably infinite arity—with the following properties.

LDE0. The ({⊕,�,∨,∧}∪ (D∩ [0, 1]))-reduct of A is a dyadic MV-monoidal algebra
(see Definition 6.17).

LDE1. λ(x, x, x, . . . ) = x.

LDE2. λ
(
τ0(x, y), τ1(x, y), τ2(x, y), . . .

)
= y. (See Notation 6.24 for the definition of

τn.)

LDE3. For every n ∈ N+ we have

µn(x1, . . . , xn)�
(

1− 1
2n−1

)
6 λ(x1, x2, x3, . . . ) 6 µn(x1, . . . , xn)⊕ 1

2n−1 .

(See Notation 6.25 for the definition of µn.)

Axioms LDE1 and LDE2 guarantee (given Axiom LDE0) that the algebra is
Archimedean (see Proposition 6.33 below); Axiom LDE3 forces λ(x1, x2, x3, . . . ) to
be the limit of (µn(x1, . . . , xn))n∈N+ (see Lemma 6.34 below).
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Lemma 6.28. The unit interval [0, 1], with standard interpretations of the operation
symbols, is a limit dyadic MV-monoidal algebra.

Proof. As already observed in Example 6.20, the unit interval [0, 1] is a dyadic MV-
monoidal algebra, so Axiom LDE0 holds.

The sequence (x, x, x, . . . ) is 2-Cauchy, and its limit is x; thus λ(x, x, x, . . . ) = x.
Thus, Axiom LDE1 holds.

Let us prove Axiom LDE2.
Claim 6.29. For all x, y ∈ [0, 1], the sequence (τ0(x, y), τ1(x, y), τ2(x, y), . . . ) is 2-
Cauchy.

Proof of Claim. Let n ∈ N+. If x ∈
[
y − 1

2n , y + 1
2n
]
, then x = τn−1(x, y) = τn(x, y).

Thus, in this case, we have

d
(
τn−1(x, y), τn(x, y)

)
= d(x, x) = 0 6 1

2n−1 .

If x > y + 1
2n , then both τn−1(x, y) and τn(x, y) belong to

[
y + 1

2n , y + 1
2n−1

]
, and

therefore d(τn−1(x, y), τn(x, y)) 6 1
2n−1 . Analogously if x 6 y − 1

2n . �

Claim 6.30. For all x, y ∈ [0, 1], the sequence (τ0(x, y), τ1(x, y), τ2(x, y), . . . ) converges
to y.

Proof of Claim. The sequence (τ0(x, y), τ1(x, y), τ2(x, y), . . . ) is bounded from below
by

(
y − 1

20 , y − 1
21 , y − 1

22 , . . .
)
and from above by

(
y + 1

20 , y + 1
21 , x+ 1

22 , . . .
)
, and

both these two sequences converge to y. Thus, (τ0(x, y), τ1(x, y), τ2(x, y), . . . ) con-
verges to y. �

For all x, y ∈ [0, 1], by Claim 6.29, the sequence (τ0(x, y), τ1(x, y), τ2(x, y), . . . )
is 2-Cauchy; thus, by Lemma 6.16, λ(τ0(x, y), τ1(x, y), τ2(x, y), . . . ) is the limit of
the sequence (τ0(x, y), τ1(x, y), τ2(x, y), . . . ), which, by Claim 6.30, is y. Hence, Ax-
iom LDE2 holds.

Let us prove Axiom LDE3. By Lemma 6.12, the sequence (µn(x1, . . . , xn))n∈N+ is
a 2-Cauchy sequence. By Lemma 6.5, for every n,m ∈ N+ with n 6 m, we have

d
(
µn(x1, . . . , xn), µm(x1, . . . , xm)

)
<

1
2n−1 .

Fixing n and letting m tend to ∞, we obtain

d(µn(x1, . . . , xn), λ(x1, x2, x3, . . . )) = d
(
µn(x1, . . . , xn), lim

m→∞
µm(x1, . . . , xm)

)
6

1
2n−1 .

Lemma 6.31. Let A be a dyadic MV-monoidal algebra, let x, y ∈ A, and suppuse
dint(x, y) = 0. Then, for all n ∈ N, we have τn(x, y) = x.

Proof. If dint(x, y) = 0, then, for every n ∈ N, we have x �
(
1− 1

2n
)
6 y 6 x ⊕ 1

2n ,
which implies τn(x, y) = x.
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Lemma 6.32. Let A be a dyadic MV-monoidal algebra, and suppose that there exists
a function α : AN+ → A such that, for all x, y ∈ A, the following conditions hold.

1. α(x, x, x, . . . ) = x.

2. α
(
τ0(x, y), τ1(x, y), τ2(x, y), . . .

)
= y.

Then, A is Archimedean.

Proof. Let x, y ∈ A be such that dint(x, y) = 0. Then

x = α(x, x, x, . . . ) (item 1)
= α

(
τ0(x, y), τ1(x, y), τ2(x, y), . . .

)
(Lemma 6.31)

= y. (item 2)

By Theorem 6.23, this implies that A is Archimedean.

Proposition 6.33. The ({⊕,�,∨,∧} ∪ (D ∩ [0, 1]))-reduct of any limit dyadic MV-
monoidal algebra is Archimedean.

Proof. As proved in Lemma 6.32, this follows from Axioms LDE1 and LDE2.

Lemma 6.34. Every function from a limit dyadic MV-monoidal algebra to [0, 1] which
preserves every operation symbol in {⊕,�,∨,∧} ∪ D preserves also λ.

Proof. Let A be a limit dyadic MV-monoidal algebra, and let f : A → [0, 1] be a
function that preserves every operation symbol in {⊕,�,∨,∧}∪D. Let (x1, x2, x3, . . . )
be a sequence of elements of A. By Axiom LDE3, for every n ∈ N+, we have

µn(x1, . . . , xn)�
(

1− 1
2n−1

)
6 λ(x1, x2, x3, . . . ) 6 µn(x1, . . . , xn)⊕ 1

2n−1 .

Since f preserves every operation symbol in {⊕,�,∨,∧}∪D we have, for every n ∈ N+,

µn(f(x1), . . . , f(xn))�
(

1− 1
2n−1

)
6 f(λ(x1, x2, x3, . . . ))

6 µn(f(x1), . . . , f(xn))⊕ 1
2n−1 .

It follows that, for every n ∈ N+, we have

|f(λ(x1, x2, x3, . . . ))− µn(f(x1), . . . , f(xn))| 6 1
2n .

It follows that

f(λ(x1, x2, x3, . . . )) = lim
n→∞

µn(f(x1), . . . , f(xn)) = λ(f(x1, x2, x3, . . . )).

Proposition 6.35. We have

MVMlim
dyad = S P([0, 1]).
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Proof. Let us first prove that every limit dyadic MV-monoidal algebra A is isomorphic
to a subalgebra of a power of the algebra [0, 1]. By Proposition 6.33, the reduct to the
signature {⊕,�,∨,∧} ∪ (D ∩ [0, 1]) of A is isomorphic to a subalgebra of [0, 1]κ, for
some cardinal κ. Let ι : A ↪→ [0, 1]κ denote the corresponding inclusion. We claim that
ι preserves also λ. By Lemma 6.34, every function from A to [0, 1] which preserves
every operation symbol in {⊕,�,∨,∧}∪D preserves also λ. Thus, given any i ∈ κ, the
composite A ι

↪−→ [0, 1]κ πi−→ [0, 1]—where πi denotes the i-th projection—preserves λ.
Therefore, ι preserves λ, settling our claim, and thus A is isomorphic to a subalgebra
of a power of the algebra [0, 1].

The converse implication is guaranteed by the following facts.

1. The algebra [0, 1] in the signature {⊕,�,∨,∧}∪ (D∩ [0, 1])∪{λ} with standard
interpretation of the operation symbols is a limit dyadic MV-monoidal algebra
by Lemma 6.28.

2. The class of algebras MVMlim
dyad is a variety, and so it is closed under products

and subalgebras.

Lemma 6.36. For every cardinal κ, the set of interpretations of the term operations
of the algebra [0, 1] in the signature {⊕,�,∨,∧} ∪ (D ∩ [0, 1]) ∪ {λ} is the set of
order-preserving continuous functions from [0, 1]κ to [0, 1].

Proof. Let κ be a cardinal, and let Lκ be the set of term operations of [0, 1] of arity κ.
We now apply Theorem 6.1, with X = [0, 1]κ: note that X is a compact ordered space
and that Lκ is order-separating because it contains the projections, which are easily
seen to order-separate the elements of [0, 1]κ. Therefore, the set of order-preserving
continuous functions from [0, 1]κ to [0, 1] coincides with the closure of Lκ under uniform
convergence. By Lemma 6.9, using the fact that Lκ is closed under λ, we obtain that
the closure of Lκ under uniform convergence is Lκ itself.

Remark 6.37. Let F and G be signatures, and let A and B be algebras in signatures
F and G with the same underlying set. Suppose the clone on A equals the clone of
B. Then, the quasivarieties ISP(A) and ISP(B) are term-equivalent.

Let OC denote the class of ΣOC-algebras which are (isomorphic to) a subalgebra
of a power of the ΣOC-algebra [0, 1] with standard interpretation of the operation
symbols, i.e.

OC := S P
(〈

[0, 1]; ΣOC
〉)
.

Theorem 6.38. The classes OC and MVMlim
dyad are term-equivalent varieties.

Proof. By Proposition 6.35, the class MVMlim
dyad consists of the algebras in the sig-

nature {⊕,�,∨,∧} ∪ (D ∩ [0, 1]) ∪ {λ} which are isomorphic to a subalgebra of a
power of [0, 1]. By definition of OC, the class OC consists of the ΣOC-algebras which
are isomorphic to a subalgebra of a power of [0, 1]. The clone of term operations
of the ΣOC-algebra [0, 1] consists of the order-preserving continuous functions. By
Lemma 6.36, the interpretations of the term operations of the algebra [0, 1] in the
signature {⊕,�,∨,∧} ∪ (D ∩ [0, 1]) ∪ {λ} are the order-preserving continuous func-
tions. By Remark 6.37, the class OC is term-equivalent to MVMlim

dyad. Since the class
MVMlim

dyad is a variety of algebras, also the class OC is a variety of algebras.
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Theorem 6.39. The category CompOrd of compact ordered spaces is dually equivalent
to the variety MVMlim

dyad of limit dyadic MV-monoidal algebras (see Definition 6.27).

Proof. By Theorem 6.38, the varieties MVMlim
dyad and OC are term-equivalent. By

Theorem 2.14, the categories CompOrd and OC are dually equivalent.

We describe two contravariant functors which witness the equivalence in Theo-
rem 6.39. One contravariant functor is

C6(−, [0, 1]) : CompOrd→ MVMlim
dyad.

In the opposite direction, we have the contravariant functor

hom(−, [0, 1]) : MVMlim
dyad → CompOrd,

defined as follows. Given a limit dyadic MV-monoidal algebra A, we let hom(A, [0, 1])
denote the set of ({⊕,�,∨,∧}∪(D∩ [0, 1])∪{λ})-homomorphisms from A to [0, 1], or
equivalently (by Lemma 6.34), the set of ({⊕,�,∨,∧}∪ (D∩ [0, 1]))-homomorphisms
from A to [0, 1]. We equip hom(A, [0, 1]) with the initial order and the initial topology
with respect to the structured source of evaluation maps

(evx : hom(A, [0, 1])→ [0, 1])x∈A,

or, equivalently, the induced topology and order with respect to the inclusion

hom(A, [0, 1]) ⊆ [0, 1]A,

or, equivalently, as follows. For f, g ∈ hom(A, [0, 1]) we set f 6 g if, and only if,
for all x ∈ X, we have f(x) 6 g(x). Furthermore, we endow hom(A, [0, 1]) with the
smallest topology that contains, for every element x ∈ A and every open subset O of
[0, 1], the set {f ∈ hom(A, [0, 1]) | f(x) ∈ O}.

6.5 Conclusions
We finally obtained an equational axiomatisation of the dual of the category of com-
pact ordered spaces. One final question arises, to which our next chapter will be
devoted: Does there exist a finite equational axiomatisation of CompOrdop?



Chapter 7

Finite equational axiomatisation

7.1 Introduction
In the previous chapter we obtained an explicit equational axiomatisation of the dual
of CompOrd. In this chapter we take a further step by providing a finite equational
axiomatisation, meaning that we use only finitely many function symbols and finitely
many equational axioms to present the variety. To the best of the author’s knowledge,
the existence of such a finite axiomatisation is a new result.

Recall that in Chapter 6 we obtained an equational axiomatisation of CompOrdop

in the signature consisting of ⊕, �, ∨, ∧, all dyadic rationals in [0, 1] and λ. Since we
now want only finitely many primitive operations, we cannot include in the signature
all the dyadic rationals in [0, 1]. So, we replace them with the constants 0 and 1,
together with the unary operation h of division by 2, and (for the sake of elegance)
its ‘dual’ operation j defined on [0, 1] by x 7→ 1 − (1 − h(x)) = 1

2 + x
2 . The primitive

operations are then ⊕, �, ∨, ∧, 0, 1, h, j, and λ.

7.2 Term-equivalent alternatives for algebras with
dyadic constants

The algebras of the following section—called 2-divisible MV-monoidal algebras—have
a dyadic MV-monoidal algebra as a reduct: this will allow us to use the results of
the previous chapter. The fact that a 2-divisible MV-monoidal algebra has a dyadic
MV-monoidal algebra as a reduct is easier to observe if we introduce a term-equivalent
alternative for dyadic MV-monoidal algebras: instead of all the constants in D∩ [0, 1],
we consider only the constants in { 1

2n | n ∈ N}∪{1− 1
2n | n ∈ N}. To help the intuition,

we first obtain a term-equivalence for dyadic commutative distributive `-monoids.

Term-equivalent alternative for dyadic commutative distributive `-monoids

Definition 7.1 (Term-equivalent alternative to Definition 5.40). A dyadic commuta-
tive distributive `-monoid is an algebra M in the signature

{+,∨,∧, 0} ∪
{ 1

2n | n ∈ N
}
∪
{
− 1

2n | n ∈ N
}

123



124 Chapter 7. Finite equational axiomatisation

(where the operations +, ∨ and ∧ have arity 2, and the element 0 and every element
of
{

1
2n | n ∈ N

}
∪
{
− 1

2n | n ∈ N
}
have arity 0) with the following properties.

DM’0. 〈M ; +,∨,∧, 0〉 is a commutative distributive `-monoid (see Definition 4.7).

DM’1. For all n ∈ N+, 1
2n + 1

2n = 1
2n−1 .

DM’2. For all n ∈ N+,
(
− 1

2n
)

+
(
− 1

2n
)

= − 1
2n−1 .

DM’3. For all n ∈ N, − 1
2n + 1

2n = 0.

DM’4. For all n ∈ N, − 1
2n 6 0 6 1

2n .

DM’5. For all x ∈M , there exists n ∈ N such that n(−1) 6 x 6 n1.

We claim that the classes of algebras described in Definitions 7.1 and 4.7 under the
common name of ‘dyadic commutative distributive `-monoids’ are term-equivalent.

Indeed, we first note that items DM’0 to DM’5 holds for every dyadic commutative
distributive `-monoid. For the opposite direction, if M satisfies items DM’1 to DM’5,
then, for every k ∈ N+ and n ∈ N, we denote with k

2n the element

1
2n + · · ·+ 1

2n︸ ︷︷ ︸
k times

,

and we denote with − k
2n the element(

− 1
2n
)

+ · · ·+
(
− 1

2n
)

︸ ︷︷ ︸
k times

.

In this way, to every dyadic rational is associated an element of M ; this association
is well given for the following reason: if a strictly positive dyadic rational is both
equal to k

2n and k′

2n′ for k, k
′ ∈ N+ and n, n′ ∈ N, then the elements 1

2n + · · ·+ 1
2n︸ ︷︷ ︸

k times

and

1
2n′ + · · ·+ 1

2n′︸ ︷︷ ︸
k′ times

are the same by item DM’1; an analogous statement holds for strictly

negative dyadic rationals, using item DM’2. Axiom DM1 holds by item DM’4, using
the monotonicity of +. Axiom DM2 holds by item DM’4. Axiom DM3 holds by
item DM’5.

The two classes of algebras are then term-equivalent.

Term-equivalent alternative for dyadic MV-monoidal algebras

Definition 7.2 (Term-equivalent alternative to Definition 6.17). An algebra A in the
signature {⊕,�,∨,∧} ∪ {dn | n ∈ N} ∪ {un | n ∈ N}, where ⊕, �, ∨ and ∧ have
arity 2 and each dn and un has arity 0, is a dyadic MV-monoidal algebra provided it
satisfies the following properties.
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DE’0. 〈A;⊕,�,∨,∧, u0, d0〉 is an MV-monoidal algebra (see Definition 4.15).

DE’1. For every n ∈ N+, dn⊕ dn = dn−1.

DE’2. For every n ∈ N+, un� un = un−1.

DE’3. For every n ∈ N+, dn� dn = 0.

DE’4. For every n ∈ N+, un⊕ un = 1.

DE’5. For every n ∈ N, dn⊕ un = 1.

DE’6. For every n ∈ N, dn� un = 0.

The conjunction of Axioms DE’1 and DE’3 is equivalent (given Axiom DE’0) to
dn + dn = dn−1 in the enveloping unital commutative distributive `-monoid of A,
and—loosely speaking—it corresponds to item DM’1 in Definition 7.1. Analogously,
the conjunction of Axioms DE’2 and DE’4 is equivalent to un + un−1 = un−1, and it
corresponds to item DM’2 in Definition 7.1. Axioms DE’5 and DE’6 are equivalent
to dn + un = 1 and correspond to item DM’3.

We show that the classes of algebras described in Definitions 7.2 and 6.17 are
term-equivalent. First, we observe that items DM’1 to DM’5 hold for every dyadic
MV-monoidal algebra in the sense of Definition 6.17, with dn = 1

2n and un = 1− 1
2n .

For the converse direction, we make use of the following result.

Lemma 7.3. Let A be a dyadic MV-monoidal algebra in the sense of Definition 7.2.
Then, for every n ∈ N, and every k ∈ {0, . . . , 2n}, we have

dn⊕ · · · ⊕ dn︸ ︷︷ ︸
k times

= un� · · · � un︸ ︷︷ ︸
2n−k times

Proof. By Theorem 4.74, it is enough to show that, in the unital commutative dis-
tributive `-monoid that envelops A, we have

dn + · · ·+ dn︸ ︷︷ ︸
k times

= un + · · ·+ un︸ ︷︷ ︸
2n−k times

−(2n − k − 1) (7.1)

To prove eq. (7.1), it is enough to add the +-invertible element dn + · · ·+ dn︸ ︷︷ ︸
2n−k times

on both

sides.

So, suppose that A satisfies items DM’1 to DM’5. Then, for every n ∈ N and
k ∈ {0, . . . , 2n}, we let k

2n denote the element dn⊕ · · · ⊕ dn︸ ︷︷ ︸
k times

, or equivalently the element

un� · · · � un︸ ︷︷ ︸
2n−k times

. In this way, to every dyadic rational is associated an element of A; it

is not difficult to see that this association is well given.
The two classes of algebras are then term-isomorphic.
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7.3 MV-monoidal algebras with division by 2
Definition 7.4. A 2-divisible MV-monoidal algebra 〈A;⊕,�,∨,∧, 0, 1, h, j〉 (arities 2,
2, 2, 2, 0, 1, 1) is an algebra with the following properties.

TE0. 〈A;⊕,�,∨,∧, 0, 1〉 is an MV-monoidal algebra (see Definition 4.15).

TE1. j(x) = h(1)⊕ h(x).

TE2. h(x) = j(0)� j(x).

TE3. h(x)⊕ h(x) = x.

TE4. j(x)� j(x) = x.

TE5. h(h(x)⊕ h(y)) = h(h(x))⊕ h(h(y)).

TE6. j(j(x)� j(y)) = j(j(x))� j(j(y)).

The axioms have been chosen so that, for every 2-divisible MV-monoidal algebra
A, (the appropiate reduct of) A is a dyadic MV-monoidal algebra (Lemma 7.13) and
every function f : A → [0, 1] that preserves the operations of dyadic MV-monoidal
algebras preserves also h and j (Lemma 7.14). This is enough for our purposes.
Remark 7.5. To give an intuition about the axioms, we state (without a proof) that
the category of 2-divisible MV-monoidal algebras is equivalent to the category of
what we might call unital 2-divisible commutative distributive `-monoids, i.e. algebras
〈M ; +,∨,∧, 0, 1,−1, ·2〉 (arities 2, 2, 2, 0, 0, 0, 1) with the following properties (we
write x

2 for ·2(x)).

1. 〈M ; +,∨,∧, 0, 1,−1〉 is a unital commutative distributive `-monoid.

2. If x > 0, then x
2 > 0.

3. If x 6 0, then x
2 6 0.

4. x
2 + x

2 = x.

5. x
2 + y

2 = x+y
2 .

One functor maps a unital 2-divisible commutative distributive `-monoid M to the
MV-monoidal algebra Γ(M) on which the interpretation of h is x

2 , and the interpre-
tation of j is 1

2 + x
2 . The functor in the opposite direction maps an MV-monoidal

algebra A to the unital 2-divisible commutative distributive `-monoid Ξ(A), on which
the interpretation of ·2 is as follows: for x ∈ Ξ(A) and k ∈ Z, we set

x
2 (k) = h

(
x(2k)

)
⊕ h

(
x(2k + 1)

)
,

or, equivalently,
x
2 (k) = j

(
x(2k)

)
� j
(
x(2k + 1)

)
.
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Lemma 7.6. For every element x in a 2-divisible MV-monoidal algebra, we have
h(x)� h(x) = 0 and j(x)⊕ j(x) = 1.

Proof. We have

h(x)� h(x) = j(0)� j(x)� j(0)� j(x) (Axiom TE2)
= j(0)� j(0)� j(x)� j(x)
= 0� x (Axiom TE4)
= 0, (Lemma 4.21)

and, dually, j(x)⊕ j(x) = 1.

Remark 7.7. By Axiom TE3 and Lemma 7.6, we have h(x) + h(x) = x. Analogously,
we have j(x) + j(x)− 1 = x.

Lemma 7.8. In a 2-divisible MV-monoidal algebra we have h(0) = 0 and j(1) = 1.

Proof. By Axiom TE3, we have h(0) ⊕ h(0) = 0. Thus, by Lemma 4.23, h(0) 6 0,
which implies, by Lemma 4.20, h(0) = 0. Dually, j(1) = 1.

Lemma 7.9. In every dyadic MV-monoidal algebra we have h(1) = j(0).

Proof. We have

j(0) Axiom TE1= h(1)⊕ h(0) Lemma 7.8= h(1)⊕ 0 = h(1).

We use the convention h0(x) = j0(x) = x.

Lemma 7.10. For every n ∈ N+ and every x in a 2-divisible MV-monoidal algebra
we have

jn(x) = h1(1)⊕ h2(1)⊕ h3(1)⊕ · · · ⊕ hn(1)⊕ hn(x) (7.2)
and

hn(x) = j1(0)� j2(0)� j3(0)� · · · � jn(0)� jn(x). (7.3)

Proof. We prove eq. (7.2) by induction on n. The case n = 1 reads as j(x) = h(1)⊕
h(x), which is just Axiom TE1. Let us suppose that eq. (7.2) holds for a fixed n ∈ N,
and let us prove that it holds for n+ 1. We have

jn+1(0) = jn
(

j(x)
)

= h1(1)⊕ h2(1)⊕ h3(1)⊕ · · · ⊕ hn(1)⊕ hn
(

j(x)
)

(ind. hyp.)

= h1(1)⊕ h2(1)⊕ h3(1)⊕ · · · ⊕ hn(1)⊕ hn
(

h(1)⊕ h(x)
)

(Axiom TE1)
= h1(1)⊕ h2(1)⊕ h3(1)⊕ · · · ⊕ hn(1)⊕ hn+1(1)⊕ hn+1(x). (Axiom TE5)

Dually we have eq. (7.3).

Lemma 7.11. In a 2-divisible MV-monoidal algebra, for every n ∈ N+, we have

hn(x)⊕ hn(x) = hn−1(x),

and
jn(x)� jn(x) = jn−1(x).
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Proof. The first equation holds by Axiom TE3, and the second equation is dual.

Lemma 7.12. In a 2-divisible MV-monoidal algebra, for every n ∈ N we have

hn(1)⊕ jn(0) = 1

and
hn(1)� jn(0) = 0.

Proof. We have

hn(1)⊕ jn(0) = hn(1)⊕
(

hn(1)⊕ hn−1(1)⊕ · · · ⊕ h1(1)⊕ hn(0)
)

(Lemma 7.10)
= hn(1)⊕ hn(1)⊕ hn−1(1)⊕ · · · ⊕ h1(1). (Lemma 7.8)

By Lemma 7.11, we have

hn(1)⊕ hn(1) = hn−1(x),
hn−1(1)⊕ hn−1(1) = hn−2(x),

...
h1(1)⊕ h1(1) = 1.

Hence,
hn(1)⊕ hn(1)⊕ hn−1(1)⊕ · · · ⊕ h1(1) = 1.

So, hn(1)⊕ jn(0) = 1. Dually, hn(1)� jn(0) = 0.

Lemma 7.13. Every 2-divisible MV-monoidal algebra has a reduct which is a dyadic
MV-monoidal algebra (in the sense of Definition 7.2), obtained by setting, for each
n ∈ N, dn := hn(1) and un := jn(0).

Proof. By convention, we have d0 = h0(1) = 1 and u0 = jn(0) = 0. Axiom DE’0
holds because, by Axiom TE0, 〈A;⊕,�,∨,∧, u0, d0〉 is an MV-monoidal algebra. Ax-
iom DE’1 holds because, by Lemma 7.11, for every n ∈ N+ we have

dn⊕ dn = hn(1)⊕ hn(1) = hn−1 = dn−1 .

Axiom DE’2 is dual. For every n ∈ N+, we have

dn = hn(1)
Lemma 7.11
6 h(1) Lemma 7.9= j(0).

Hence, we have
dn� dn 6 j(0)� j(0) Axiom TE4= 0.

Hence, by Lemma 4.20, we have dn� dn = 0. Thus, Axiom DE’3 holds. Dually,
Axiom DE’1 holds. Axiom DE’5 holds because, by Lemma 7.12, for every n ∈ N+,
we have dn⊕ un = hn(1)⊕ jn(0). Dually, Axiom DE’6 holds.

Lemma 7.14. Let A be a 2-divisible MV-monoidal algebra, and let f : A → [0, 1] be
a function that preserves ⊕, �, 0 and 1. Then f preserves also h and j.

Proof. For every x ∈ A we have h(x)⊕h(x) = x (by Axiom TE3) and h(x)�h(x) = 0
(by Lemma 7.6). Since f preserves ⊕, �, and 0, we have f(h(x)) ⊕ f(h(x)) = f(x)
and f(h(x))� f(h(x)) = 0. Therefore f(h(x)) = f(x)

2 = h(f(x)). Dually for j.
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7.4 Finite equational axiomatisation
By Lemma 7.13, every 2-divisible MV-monoidal algebra has a reduct which is a dyadic
MV-monoidal algebra. Therefore, we inherit the notation for the binary term τn and
the n-ary term µn. In the language of 2-divisible MV-monoidal algebras, these terms
can be expressed as follows.

Notation 7.15. For every n ∈ N, we define a binary term τn in the language of
2-divisible MV-monoidal algebras:

τn(x, y) :=
(
x ∧ (y ⊕ hn(1))

)
∨
(
y � jn(0)

)
.

Notation 7.16. Inductively on n ∈ N+, we define a term µn of arity n in the language
of 2-divisible MV-monoidal algebras:

µ1(x1) := x1;
µn(x1, . . . , xn) := τn−1

(
xn, µn−1(x1, . . . , xn−1)

)
=
(
xn ∧ (µn−1(x1, . . . , xn−1)⊕ hn(1))

)
∨
(
µn−1(x1, . . . , xn−1)� jn(0)

)
.

Definition 7.17. A limit 2-divisible MV-monoidal algebra 〈A;⊕,�,∨,∧, 0, 1, h, j, λ〉
(arities 2, 2, 2, 2, 0, 0, 1, 1, ω) is an algebra with the following properties.

LTE0. The algebra 〈A;⊕,�,∨,∧, 0, 1, h, j〉 is a 2-divisible MV-monoidal algebra (see
Definition 7.4).

LTE1. λ(x, x, x, . . . ) = x.

LTE2. λ
(
τ0(x, y), τ1(x, y), τ2(x, y), . . .

)
= y.

LTE3. λ(x1, x2, x3, . . . ) = λ(µ1(x1), µ2(x1, x2), µ3(x1, x2, x3), . . . ).

LTE4. µ2(x1, x2)� j(0) 6 λ(x1, x2, x3, . . . ) 6 µ2(x1, x2)⊕ h(1).

LTE5. λ(x1, x2, x3, . . . )⊕ λ(x1, x2, x3, . . . )
= λ

(
µ2(x1, x2)⊕ µ2(x1, x2), µ3(x1, x2, x3)⊕ µ3(x1, x2, x3), . . .

)
.

LTE6. λ(x1, x2, x3, . . . )� λ(x1, x2, x3, . . . )
= λ

(
µ2(x1, x2)� µ2(x1, x2), µ3(x1, x2, x3)� µ3(x1, x2, x3), . . .

)
.

We let MVMlim
1
2

denote the category of limit 2-divisible MV-monoidal algebras with
homomorphisms.

Definition 7.18. A 2-Cauchy sequence in a dyadic MV-monoidal algebra A is a
sequence (xn)n∈N+ in A such that, for every n ∈ N+, we have

xn �
(

1− 1
2n
)
6 xn+1 6 xn ⊕

1
2n .

Lemma 7.19. Let (x1, x2, x3, . . . ) be a sequence in a dyadic MV-monoidal algebra.
Then (µ1(x1), µ2(x1, x2), µ3(x1, x2, x3), . . . ) is a 2-Cauchy sequence.
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Proof. Immediate from the definition of µn.

Lemma 7.20. Let (x1, x2, x3, . . . ) be a 2-Cauchy sequence in a dyadic MV-monoidal
algebra. Then, for every n ∈ N+, we have µn(x1, . . . , xn) = xn.

Proof. Immediate from the definition of µn.

Lemma 7.21. Let A be an MV-monoidal algebra, and let x, y, z, w ∈ A. Then

(x� y)⊕ (z � w) > (x⊕ z)� y � w.

Proof. Recall, from Lemma 4.24, that for all a, b, c ∈ A we have a�(b⊕c) 6 (a�b)⊕c.
Therefore we have (x� y)⊕ (z � w) > ((x� y)⊕ z)� w. Using again Lemma 4.24,
we have ((x� y)⊕ z)� w > (x⊕ z)� y � w.

Lemma 7.22. Given a 2-Cauchy sequence (xn)n∈N+ in a dyadic MV-monoidal alge-
bra, the sequences (xn+1 ⊕ xn+1)n∈N+ and (xn+1 � xn+1)n∈N+ are 2-Cauchy.

Proof. Let k ∈ N+. Since (xn)n∈N+ is 2-Cauchy, we have

xk+1 �
(

1− 1
2k+1

)
6 xk+2 6 xk+1 ⊕

1
2k+1 .

Therefore we have

xk+2 ⊕ xk+2 >
(
xk+1 �

(
1− 1

2k+1

))
⊕
(
xk+1 �

(
1− 1

2k+1

))
> (xk+1 ⊕ xk+1)�

((
1− 1

2k+1

)
�
(

1− 1
2k+1

))
(Lemma 7.21)

= (xk+1 ⊕ xk+1)�
(

1− 1
2k
)
.

Moreover, we have

xk+2 ⊕ xk+2 6
(
xk+1 ⊕

1
2k+1

)
⊕
(
xk+1 ⊕

1
2k+1

)
= (xk+2 ⊕ xk+2)⊕ 1

2k .

It follows that (xn+1⊕xn+1)n∈N+ is a 2-Cauchy sequence. Dually for (xn+1�xn+1)n∈N+ .

The reason why Axioms LTE4 to LTE6 are written in the way they are written
is to make it clear that they are equational. However, this presentation is not the
clearest one. So, we point out that these axioms, are equivalent, given Axioms LTE0
and LTE3, to the following statements.

LTE4’. If (xn)n∈N+ is a 2-Cauchy sequence, then

x2 � j(0) 6 λ(x1, x2, x3, . . . ) 6 x2 ⊕ h(1).

LTE5’. If (xn)n∈N+ is a 2-Cauchy sequence, then

λ(x1, x2, x3, . . . )⊕ λ(x1, x2, x3, . . . ) = λ(x2 ⊕ x2, x3 ⊕ x3, x4 ⊕ x4, . . . ).
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LTE6’. If (xn)n∈N+ is a 2-Cauchy sequence, then

λ(x1, x2, x3, . . . )� λ(x1, x2, x3, . . . ) = λ(x2 � x2, x3 � x3, x4 � x4, . . . ).

Lemma 7.23. The algebra [0, 1] with obvious interpretation of the operation symbols
is a limit 2-divisible MV-monoidal algebra.

Proof. The fact that [0, 1] satisfies Axioms LTE0 to LTE2 is proved in Lemma 6.28.
Axiom LTE3 holds by the definition of λ, together with Lemmas 6.12 and 6.13. Ax-
iom LTE4 is the case n = 2 of Axiom LDE3 in Definition 6.27, which was proved in
Lemma 6.28 to hold in [0, 1]. Let us now prove item LTE5’. Let (x1, x2, x3, . . . ) be a
2-Cauchy sequence. By Lemma 7.22, the sequence (x2 ⊕ x2, x3 ⊕ x3, x4 ⊕ x4, . . . ) is
2-Cauchy. By Lemma 6.16, we have λ(x1, x2, x3, . . . ) = limn→∞ xn and

λ(x2 � x2, x3 � x3, x4 � x4, . . . ) = lim
n→∞

xn ⊕ xn,

and this last number, by continuity of ⊕ : [0, 1]2 → [0, 1], coincides with(
lim
n→∞

xn

)
⊕
(

lim
n→∞

xn

)
.

So, both λ(x1, x2, x3, . . . ) ⊕ λ(x1, x2, x3, . . . ) and λ(x2 ⊕ x2, x3 ⊕ x3, x4 ⊕ x4, . . . ) co-
incide with (limn→∞ xn) ⊕ (limn→∞ xn). This proves item LTE5’. Analogously for
item LTE6’.

Proposition 7.24. The ({⊕,�,∨,∧} ∪ (D ∩ [0, 1]))-reduct of any limit 2-divisible
MV-monoidal algebra is Archimedean.

Proof. As proved in Lemma 6.32, this follows from Axioms LTE1 and LTE2.

Lemma 7.25. Let n ∈ N+ and, for each i ∈ {1, . . . , n}, let αi be either the term
operation x 7→ x ⊕ x or the term operation x 7→ x � x. Then, for every 2-Cauchy
sequence (xn)n∈N+ in a limit 2-divisible MV-monoidal algebra, we have

αn . . . α1(xn+2)� j(0) 6 αn . . . α1(λ(x1, x2, x3, . . . )) 6 αn . . . α1(xn+2)⊕ h(1).

Proof. By iterated application of Axiom LTE5 and Axiom LTE6, which is possible
by Lemma 7.22, we obtain

αn . . . α1(λ(x1, x2, x3, . . . )) = λ
(
αn . . . α1(xn+1), αn . . . α1(xn+2), αn . . . α1(xn+3), . . .

)
.

By Axiom LTE4 we have

αn . . . α1(xn+1)� j(0)
6 λ

(
αn . . . α1(xn+2), αn . . . α1(xn+2), αn . . . α1(xn+3), . . .

)
6 αn . . . α1(xn+2)⊕ h(1).

The desired statement follows.

Lemma 7.26. For every n ∈ N+, the following two conditions are equivalent for a
function f : [0, 1]→ [0, 1].
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1. There exists an n-tuple (α1, . . . , αn) of functions from [0, 1] to [0, 1] belonging to
{x 7→ x⊕ x, x 7→ x� x} such that f = αn ◦ · · · ◦ α1.

2. There exists k ∈ {0, . . . , 2n − 1} such that f is the linear interpolant of (0, 0),
( k

2n , 0), (k+1
2n , 1), (1, 1), i.e., for every x ∈ [0, 1], we have

f(x) =


0 if x ∈ [0, k2n ];
2nx− k if x ∈ [ k2n ,

k+1
2n ];

1 if x ∈ [k+1
2n , 1].

(See fig. 7.1 for a plot of f for n = 2 and k ∈ {0, 1, 2, 3}.)

Proof. This can be proved by induction on n.

0 0.25 0.5 0.75 1
0

1

k = 0
0 0.25 0.5 0.75 1

0

1

k = 1
0 0.25 0.5 0.75 1

0

1

k = 2
0 0.25 0.5 0.75 1

0

1

k = 3

Figure 7.1: The plot of the function f of item 2 in Lemma 7.26 for n = 2 and
k ∈ {0, 1, 2, 3}.

Lemma 7.27. Let a, b ∈ [0, 1], let n ∈ N+ and suppose that, for every n-tuple of
functions α1, . . . , αn : [0, 1]→ [0, 1] belonging to {x 7→ x⊕ x, x 7→ x� x}, we have

|αn . . . α1(a)− αn . . . α1(b)| < 1.

Then |a− b| < 1
2n−1 .

Proof. We proceed by contraposition: suppose |a − b| > 1
2n−1 . Then, there exists

k ∈ {0, . . . , 2n − 1} such that
{
k

2n ,
k+1
2n
}
⊆ [a, b]. Consider the function

f : [0, 1] −→ [0, 1]

x 7−→


0 if x ∈ [0, k2n ]
2nx− k if x ∈ [ k2n ,

k+1
2n ]

1 if x ∈ [k+1
2n , 1]

By Lemma 7.26, there exists an n-tuple (α1, . . . , αn) of functions from [0, 1] to [0, 1]
belonging to {x 7→ x⊕ x, x 7→ x� x} such that f = αn ◦ · · · ◦ α1. Hence we have

|αn . . . α1(a)− αn . . . α1(b)| = |f(a)− f(b)| = |0− 1| = 1,

which concludes the proof.
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Lemma 7.28. Every function from a limit 2-divisible MV-monoidal algebra to [0, 1]
that preserves ⊕, �, ∨, ∧, 0, 1, h and j preserves also λ.

Proof. Let A be a limit 2-divisible MV-monoidal algebra and let f be a function from
A to [0, 1] that preserves ⊕, �, ∨, ∧, 0, 1, h and j.
Claim 7.29. for every 2-Cauchy sequence (xn)n∈N+ in A, we have f(λ(x1, x2, x3, . . . )) =
λ(f(x1), f(x2), f(x3), . . . ).

Proof of Claim. Let (xn)n∈N+ be a 2-Cauchy sequence in A. Let n ∈ N+. By
Lemma 7.25, for every n-tuple (α1, . . . , αn) of term operations in {x 7→ x ⊕ x, x 7→
x� x}, we have

αn . . . α1(xn+2)� j(0) 6 αn . . . α1(λ(x1, x2, x3, . . . )) 6 αn . . . α1(xn+2)⊕ h(1),

and thus, using the fact that f preserves ⊕, �, ∨, ∧, 0, 1, h and j, we have

αn . . . α1(f(xn+2))� 1
2 6 αn . . . α1(f(λ(x1, x2, x3, . . . ))) 6 αn . . . α1(f(xn+2))⊕ 1

2 ,

i.e.
|αn . . . α1(f(λ(x1, x2, x3, . . . )))− αn . . . α1(f(xn+2))| 6 1

2 .

Therefore, by Lemma 7.27, we have

|f(λ(x1, x2, x3, . . . ))− f(xn+2)| 6 1
2n−1 .

It follows that f(λ(x1, x2, x3, . . . )) = limn→∞ f(xn). It is easy to see that the sequence
(f(x1), f(x2), f(x3), . . . ) is 2-Cauchy. Therefore, by Lemma 6.16,

lim
n→∞

f(xn) = λ(f(x1), f(x2), f(x3), . . . ).

It follows that

f(λ(x1, x2, x3, . . . )) = λ(f(x1), f(x2), f(x3), . . . ),

settling our claim. �

Let now (xn)n∈N+ be an arbitrary 2-Cauchy sequence in A. Then, we have

f
(
λ(x1, x2, x3, . . . )

)
= f

(
λ(µ1(x1), µ2(x1, x2), µ3(x1, x2, x3), . . . )

)
(Axiom LTE3)

= λ
(
f(µ1(x1)), f(µ2(x1, x2)), f(µ3(x1, x2, x3)), . . .

)
(Claim 7.29)

= λ
(
µ1(f(x1)), µ2(f(x1), f(x2)), µ3(f(x1), f(x2), f(x3)), . . .

)
= λ

(
f(x1), f(x2), f(x3), . . .

)
.

Proposition 7.30. We have

MVMlim
1
2

= S P([0, 1]).
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Proof. We first prove MVMlim
1
2
⊆ S P([0, 1]). By Proposition 7.24, the reduct to the

signature {⊕,�,∨,∧} ∪ (D ∩ [0, 1]) of any limit 2-divisible MV-monoidal algebra is
isomorphic to a subalgebra of a power of the algebra [0, 1] with standard interpreta-
tion of the operations. Let ι : A ↪→ [0, 1]κ denote the corresponding inclusion. We
claim that ι preserves also h, j, and λ. By Lemma 7.14, every function from a limit
2-divisible MV-monoidal algebra to [0, 1] which preserves ⊕, �, ∨, ∧, 0 and 1 pre-
serves also h and j; by Lemma 7.28, it preserves also λ. Thus, given any i ∈ κ, the
composite A ι

↪−→ [0, 1]κ πi−→ [0, 1]—where πi denotes the i-th projection—preserves h, j,
and λ. Therefore, ι preserves also λ, settling our claim, and thus A is isomorphic to
a subalgebra of a power of the algebra [0, 1]. Therefore, MVMlim

1
2
⊆ S P([0, 1]).

The opposite inclusion MVMlim
1
2
⊇ S P([0, 1]) is guaranteed by the following facts.

1. The algebra [0, 1] in the signature {⊕,�,∨, 0, 1,∧, h, j, λ} with standard in-
terpretation of the operations is a limit 2-divisible MV-monoidal algebra by
Lemma 7.23.

2. The class of algebras MVMlim
1
2

is a variety, and so it is closed under products and
subalgebras.

Lemma 7.31. For every cardinal κ, the set of interpretations of the term operations
of arity κ on the algebra [0, 1] in the signature {⊕,�,∨,∧, 0, 1, h, j, λ} is the set of
order-preserving continuous functions from [0, 1]κ to [0, 1].

Proof. Let κ be a cardinal, and let Lκ be the set of interpretations on [0, 1] of the
term operations of arity κ. We now apply Theorem 6.1 with X = [0, 1]κ: note that
X is a compact ordered space and Lκ is order-separating because it contains the
projections. Therefore, the set of order-preserving continuous function from [0, 1]κ to
[0, 1] coincides with the closure of Lκ under uniform convergence. By Lemma 6.9,
using the fact that Lκ is closed under λ, we obtain that the closure of Lκ under
uniform convergence is Lκ itself.

Theorem 7.32. The classes OC and MVMlim
1
2

are term-equivalent varieties of algebras.

Proof. By Proposition 7.30, the class MVMlim
1
2

consists of the algebras in the signature
{⊕,�,∨,∧, 0, 1, h, j, λ} which are isomorphic to a subalgebra of a power of [0, 1]. By
definition of OC, the class OC consists of the ΣOC-algebras which are isomorphic to a
subalgebra of a power of [0, 1]. The clone of term operations of the ΣOC-algebra [0, 1]
consists of the order-preserving continuous functions. By Lemma 7.31, the clone of
term operations of the algebra [0, 1] in the signature {⊕,�,∨,∧, 0, 1, h, j, λ} consists
of the order-preserving continuous functions. The class MVMlim

1
2

is clearly a variety
of algebras. By Remark 6.37, the class OC is a variety which is term-equivalent to
MVMlim

1
2
.

Theorem 7.33. The category CompOrd of compact ordered spaces is dually equivalent
to the variety MVMlim

1
2

of limit 2-divisible MV-monoidal algebras (see Definition 7.17).

Proof. The category MVMlim
1
2

is isomorphic to OC by Theorem 6.38, and OC is dually
equivalent to CompOrd by Theorem 2.14.
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7.5 Conclusions
We showed that the dual of the category of compact ordered spaces admits a finite
equational axiomatisation. This concludes the main development of our work.





Chapter 8

Conclusions

We have concluded our journey into the axiomatisability of the dual of the category
of compact ordered spaces. We started by motivating compact ordered spaces as the
correct solution for X in the equation

Stone spaces : Priestley spaces = Compact Hausdorff spaces : X.

Then, we observed that Stone spaces, Priestley spaces, and compact Hausdorff spaces
all have a dual which is equivalent to a variety of (possibly infinitary) algebras, and we
raised a question, which had been left open in [Hofmann et al., 2018]: does the same
happen for compact ordered spaces? We showed that this is the case: the category
CompOrd of compact ordered spaces and order-preserving continuous maps is dually
equivalent to the variety OC—in the signature ΣOC of order-preserving continuous
functions from powers of [0, 1] to [0, 1]—consisting of the subalgebras of the powers
of the ΣOC-algebra [0, 1]. Clearly, [0, 1] could be replaced by any of its isomorphic
copies in CompOrd. We also observed that each operation in the theory of this variety
depends on at most countably many coordinates.

Moreover, we proved that the countable bound on the arities is the best possible:
CompOrd is not dually equivalent to any variety of finitary algebras.

After these results, we addressed the problem of establishing an explicit equa-
tional axiomatisation. We pushed our investigation to the point of obtaining a finite
equational axiomatisation, which established an ordered version of the main result of
[Marra and Reggio, 2017]. From a historical point of view, our choice of the primitive
operations is very natural: it is based on the lattice operations and on the addition
of real numbers, following the tradition of several dualities for compact Hausdorff
spaces [Krein and Krein, 1940, Yosida, 1941, Stone, 1941, Kakutani, 1941]. Moreover,
MV-algebras were at the base of the axiomatisation of the dual of compact Hausdorff
spaces in [Marra and Reggio, 2017], so we found it is reasonable to base our axioma-
tisation on the order-preserving term-operations of MV-algebras, which led us to the
notion of MV-monoidal algebra.

However, beyond the historical motivation, our choice of the generating set of
operations remains somewhat arbitrary, and we have left completely unaddressed the
problem of identifying which other choices of primitive operations give rise to an
adequate duality for CompOrd. To the best of the author’s understanding, one of the
reasons why the interval [−∞,+∞] is usually disregarded in dualities for compact

137



138 Chapter 8. Conclusions

Hausdorff spaces is because of the non-existence of a continuous extension of the
binary addition at infinity. This has lead, in the dualities available in the literature, to
either a loss of first-order definability, or the employment of truncated addition, which
carries axioms that some find unwieldy. However, in our discussion on the Stone-
Weierstrass theorem, we presented the results of M. H. Stone with special attention
to his characterisation of the topological closure of any given lattice of continuous
real functions over a compact space. This result seems to suggests that the binary
addition could be replaced, for example, by the set of affine unary functions, which,
instead, admit continuous extensions at infinity. In the ordered case, only the order-
preserving ones are to be considered. The author wonders: May a simpler description
of CompOrdop be obtained starting from the order-preserving affine unary functions
on [−∞,+∞], together with the lattice operations?

In closing, we indicate how the results in this thesis can be used to strengthen
one of the results by [Hofmann et al., 2018] about coalgebras for the Vietoris functor
on the category of compact ordered spaces. In fact, the theory of coalgebras was
one of the motivations for the algebraic study of CompOrdop in [Hofmann et al.,
2018]. It is well known that the category of modal algebras is dually equivalent to the
category of coalgebras for the Vietoris endofunctor on the category of Stone spaces;
for more details, see [Kupke et al., 2004]. A similar study based on the Vietoris
functor on the category of Priestley spaces and monotone continuous maps can be
found in [Cignoli et al., 1991, Petrovich, 1996, Bonsangue et al., 2007]. Dualities
for the Vietoris endofunctor on the category of compact Hausdorff spaces appear in
[Bezhanishvili et al., 2015a, Bezhanishvili et al., 2015b, Bezhanishvili et al., 2020].

A similar approach can be carried out for compact ordered spaces. We recall
(see e.g. [Hofmann and Nora, 2018, Section 4]) that the Vietoris functor for compact
ordered spaces V : CompOrd → CompOrd sends a compact ordered space X to the
space V (X) of all closed up-sets of X, ordered by reverse inclusion ⊇, and equipped
with the topology generated by the sets

{A ⊆ X | A closed up-set and A ∩ U 6= ∅} (U ⊆ X open down-set),
{A ⊆ X | A closed up-set and A ∩K = ∅} (K ⊆ X closed down-set).

Given a map f : X → Y in CompOrd, the functor returns the map V (f) that sends
a closed up-set A ⊆ X to the up-closure ↑f [A] of f [A]. In [Hofmann et al., 2018,
Theorem 4.2], using the fact that CompOrd is dually equivalent to an ℵ1-ary quasiva-
riety, it was proved that the category CoAlg(V ) of coalgebras for the endofunctor V
is dually equivalent to a ℵ1-ary quasivariety, as well. Such a quasivariety is described
by adding to the theory of OC (dual of CompOrd) a unary operation ♦, subject to the
axioms

1. ♦0 = 0;

2. ♦(x ∨ y) = ♦x ∨ ♦y;

3. for all t ∈ [0, 1], ♦(x� t) = ♦x� t;

4. ♦(x� y) 6 ♦x� ♦y.
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Given a coalgebra r : X → V (X), the unary operation ♦ is interpreted on C6(X, [0, 1])
by setting, for each f ∈ C6(X, [0, 1]) and each x ∈ X,

(♦f)(x) := sup
y∈r(x)

f(y).

Since items 1 to 4 are equational, using the fact that OC is a variety, we obtain that
the quasivariety CoAlg(V ) described in [Hofmann et al., 2018, Theorem 4.2] is actually
a variety. In summary, then, we have:

Theorem 8.1. The category CoAlg(V ) of coalgebras and homomorphisms for the
Vietoris functor V : CompOrd → CompOrd is dually equivalent to a variety, with
operations of at most countable arity.
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Alg Σ category of Σ-algebras and Σ-homomorphisms be-
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CH category of compact Hausdorff spaces and continu-

ous functions between them
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with a partial order and order-preserving contin-
uous functions between them

CH×Set Preo category of compact Hausdorff spaces equipped
with a preorder and order-preserving continuous
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with a closed preorder and order-preserving con-
tinuous functions between them

CompOrd category of compact ordered spaces and order-
preserving continuous functions between them

OC category of ΣOC-algebras in S P([0, 1]) and homo-
morphisms between them

`Mdyad category of dyadic commutative distributive `-
monoids and homomorphisms between them
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tween them

MVM category of MV-monoidal algebras and homomor-
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Ord category of partially ordered sets and order-
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Preo category of preordered sets and order-preserving
functions between them

Pries category of Priestley spaces and order-preserving
continuous functions between them

Set category of sets and functions between them
Stone category of Stone spaces and continuous functions

between them
Top category of topological spaces and continuous func-

tions between them
Top×Set Ord category of topological spaces equipped with a par-

tial order and order-preserving continuous functions
between them

TopOrd category of topological spaces equipped with a
closed partial order and order-preserving continu-
ous functions between them

TopPreo category of topological spaces equipped with a
closed preorder and order-preserving continuous
functions between them
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order and order-preserving continuous functions be-
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N set of nonnegative integers
N+ set of positive integers
Z set of integers
Q set of rational numbers
R set of real numbers
D set of dyadic rationals

↑A up-closure of the subset A
↓A down-closure of the subset A
↑x up-closure of {x}
↓x down-closure of {x}
C(X, Y ) set of continuous functions from X to Y
C6(X, Y ) set of order-preserving continuous functions from X

to Y
d(x, y) distance between x and y
ev evaluation homomorphism
Cop dual category of C
Aop dual algebra of A
Rop opposite relation of the binary relation R
Q(X) class of epimorphisms with domain X
Q̃(X) set of equivalence classes of epimorphisms with do-

main X
P(X) set of closed pre-orders extending the given partial

order on X

H(A) closure of A under homomorphic images
I(A) closure of A under isomorphisms
P(A) closure of A under products
S(A) closure of A under subalgebras

Γ(M) unit interval of M
Ξ(A) set of good Z-sequences in A

ΣOC signature of all order-preserving continuous func-
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149



150 List of symbols

ΣOC
6ω signature of all order-preserving continuous func-

tions from at most countable powers of [0, 1] to [0, 1]
Σdy signature {⊕,�,∨,∧} ∪ D
Σlim

dy signature {⊕,�,∨,∧} ∪ D ∪ {λ}

x⊕ y min{x+ y, 1}
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x ∨ y sup{x, y}
x ∧ y inf{x, y}
0 the element 0
1 the element 1
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2-Cauchy sequence
in a metric space, 113
in a dyadic MV-monoidal algebra,

129
ℵ1-ary, see quasivariety of algebras,

ℵ1-ary
`-, see lattice-ordered
Z-sequence, 67

good, 67

algebra, 8
dual, see dual algebra
finitary, 8
free, 10
trivial, 8

Archimedean, 108, 117

Boolean equivalence, 31
Boolean relation, 31
Boolean space, 14

category, 5
coslice, 33
finitely accessible, 48
locally small, 5
Mal’cev, 24, 39
varietal, 11

class, 1
coalgebra, 138
codomain of a source, 5
cogenerator, see object, cogenerator
colimit

directed, 48
compact ordered space, 16
compactification

Stone-Čech, 18
compatible quasiorder, 31

congruence, 26
relative, 26

continuous, see function, continuous
coproduct

preorder, 3
topology, 4

corelation
binary, 36
effective, 42
equivalence, 37
reflexive, 36
symmetric, 36
transitive, 36

corelational structure
binary, 37
effective, 42
equivalence, 38
reflexive, 38
symmetric, 38
transitive, 38

coslice, see category, coslice
cosubobject, 31

direct limit, 48
directed

colimit, see colimit, directed
partially ordered set, see partially

ordered set, directed
discrete

object, 7
preorder, 3
topology, 4

domain of a source, 5
down-set, 2
dual algebra, 61

fibre, 6
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final
morphism, 7
preorder, 2
sink, 7
topology, 4

finitely accessible, see category, finitely
accessible

finitely copresentable, see object,
finitely copresentable

first-order definable class, 50
function

continuous, 3
order-preserving, 2

functor
monadic, 10
reflector, see reflector
representable, 28
topological, 6
tripleable, 10
Vietoris, see Vietoris functor

generator, see object, generator
good

Z-sequence, 67
pair, 67

homomorphic image, 9

identity of indiscernibles, 100
implication, 10
indiscrete
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preorder, 3
topology, 4

induced
preorder, 3
topology, 4

initial
morphism, 6
preorder, 2
source, 6
topology, 4

interpretation of a function symbol, 8
isomorphic copy, 9

lattice, 55
distributive, 55

lattice preorder, 31

lattice-ordered
group
Abelian, 85
unital, 85

monoid, 57
Archimedean, 108
commutative, 57
distributive, 57
dyadic, 104
unital, 57

semigroup, 55
commutative, 56
distributive, 56

lift of a structured source, 6
locally small, see category, locally

small

Mal’cev, see category, Mal’cev
monad, 10
morphism

final, 7
initial, 6

MV-algebra, 85
MV-monoidal algebra, 60

2-divisible, 126
Archimedean, 117
dyadic, 116
limit 2-divisible, 129
limit dyadic, 118

net, 15

object
cogenerator, 27
discrete, 7
finitely copresentable, 49
finitely presentable, 48
generator, 27
indiscrete, 7
quotient, 31
regular cogenerator, 27
regular generator, 25
regular injective, 27
regular projective, 25

order
coproduct, 3
discrete, 3
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final, 2
indiscrete, 3
induced, 3
initial, 2
product, 2

order-preserving, see function,
order-preserving

order-separation, 98

pair
good, 67

partial order, 2
partially ordered set, 2

directed, 48
preorder, 2

closed, 15
coproduct, 3
discrete, 3
final, 2
indiscrete, 3
induced, 3
initial, 2
lattice, 31
product, 2

preordered set, 2
Priestley quasiorder, 31
Priestley space, 14
product

of algebras, 9
preorder, 2
topology, 4

quasiorder
compatible, 31

quasivariety of algebras, 10
ℵ1-ary, xi, 30

quotient
order, 3
topology, 4

quotient object, 31

reflective, see subcategory, full,
reflective

reflector, 5
regular cogenerator, see object, regular

cogenerator
regular generator, see object, regular

generator

regular injective, see object, regular
injective

regular projective, see object, regular
projective

relation
on a set
anti-symmetric, 1
binary, 1
equivalence, 2
reflexive, 1
symmetric, 1
transitive, 1

on an object of a category
binary, 26
effective, 26
equivalence, 26
reflexive, 26
symmetric, 26
transitive, 26

representable, see functor,
representable

separation, 97
order-, 98

sequence
2-Cauchy
in a metric space, 113
in a dyadic MV-monoidal
algebra, 129

set, 1
signature, 8
sink, 7

structured, 7
source, 5

domain of, see domain of a source
structured, 6

Stone space, 14
Stone-Čech compactification, 18
Stone-Weierstrass theorem, 96

ordered, 99
unit interval, 111

structured
sink, see sink, structured
source, see source, structured

subalgebra, 9
subcategory

full



154 Index

reflective, 5
subdirect

homomorphism, 10
product, 10
representation theorem, 10

subdirectly irreducible, 10

Thyconoff’s theorem, 5
topological space, 3

compact, 4
Hausdorff, 4

topology, 3
coproduct, 4
discrete, 4
final, 4
indiscrete, 4
induced, 4
initial, 4

product, 4
quotient, 4

triple, 10

unit
negative, 58
positive, 58

up-set, 2
Urysohn’s lemma, 20

ordered, 20

varietal, see category, varietal
variety of algebras, 10

with rank, 11
Vietoris functor

for compact Hausdorff spaces, 138
for compact ordered spaces, 138
for Priestley spaces, 138
for Stone spaces, 138
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