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CHAPTER 1

Introduction

This thesis is concerned with the study of qualitative properties of solutions of the
minimal surface equation

(1) div

(
Du√

1 + |Du|2

)
= 0

and of a class of related prescribed mean curvature equations

(2) div

(
Du√

1 + |Du|2

)
= f(x, u,

√
1 + |Du|2)

on complete Riemannian manifolds (M,σ). In particular, we derive global gradient bounds
for non-negative (more generally, lower bounded) solutions of such equations under global
uniform Ricci lower bounds on M , and we obtain Liouville-type theorems and other rigid-
ity results on Riemannian manifolds with non-negative Ricci curvature. Results presented
here have been obtained in collaboration with Marco Magliaro, Luciano Mari and Marco
Rigoli, and in large part they appear in [11] and [12].

We recall some fundamental results on global solution of equation (1) on Euclidean
spaces M = Rm. In 1915, Bernstein [5] proved that the only solutions of (1) defined
on the whole Euclidean plane R2 (entire solutions) are affine functions. His proof, later
perfected by Hopf, [27] and Mickle, [39], was highly non-trivial and strongly relied on
the geometric properties of R2. Since then, many authors investigated the validity of the
analogue of Bernstein’s result for higher dimensional Euclidean spaces Rm, m ≥ 3. By
the late 60s, the following sharp form of Bernstein theorem had been extablished:

Entire solutions of (1) on Rm are affine if and only if m ≤ 7

through the works of Fleming, [24] (new proof for m = 2), De Giorgi, [13] (m = 3),
Almgren, [2] (m = 4), Simons, [49] (m ≤ 7) and Bombieri, De Giorgi, Giusti, [7] (coun-
terexamples for m ≥ 8). A wide variety of further counterexamples was given later by
Simon, [50].

Further rigidity results have been obtained for solutions of (1) in Rm under additional
a priori assumptions on u. For all dimensions m ≥ 2, Bombieri, De Giorgi and Miranda,
[8], obtained a local gradient estimate for minimal graphs u : Br(0) ⊆ Rm → R,

(3) |Du(0)| ≤ C1 exp

(
C2
u(0)− infBr u

r

)
with constants Ci = Ci(m), i = 1, 2, thus extending previous results due to Finn, [23]
and Jenkins, Serrin, [30, 51], for m = 2. A Liouville theorem for equation (1) was then
at hand:

Entire positive solutions of (1) on Rm are constant (for every m ≥ 2).

Estimate (3) also implies that entire solutions of (1) with negative (or positive) part of at
most linear growth have bounded gradient. Moser, [43], had previously established that
entire solutions of (1) in Rm with bounded gradient are affine functions for every m ≥ 2.
This result is known as Moser’s Bernstein theorem. The combination of these results then
yielded:

3



4 1. INTRODUCTION

Entire solutions of (1) on Rm with at most linear growth on one side
are affine functions.

Moser’s Bernstein theorem has been sharpened in subsequent years by Bombieri and
Giusti, [9], and by Farina, [17], [18], who succeeded in proving that an entire solution
of (1) on Rm, m ≥ 8, is an affine function if and only if it has m − 7 partial derivatives
bounded on one side (not necessarily the same).

The original proof of (3) relied on integral estimates and Sobolev inequalities on
minimal graphs due to Miranda, [40], [41], and based on isoperimetric inequalities for
minimal currents in Rm+1 introduced by Federer and Fleming, [22]. A simplified proof
was later given by Trudinger, [54], and his technique allowed him ([55]) to obtain local
gradient estimates of the form (3) also for solutions of the prescribed mean curvature
equation

(4) div

(
Du√

1 + |Du|2

)
= mH(x)

on Rm, with constants C1 and C2 depending on the C1 norm of H ∈ C1(Rm). Later,
Korevaar, [31], [32], [34], gave another proof of a (non-sharp) local gradient estimate for
solutions of (4) using only elementary tools, namely, the finite maximum principle for
C2 functions. His technique also proved effective ([33]) in establishing a priori gradient
estimates for solutions of equations of prescribed mean curvatures of higher orders.

In recent years, several authors have investigated the possible validity of similar rigid-
ity and regularity results for solutions of equations (1) and (4) on Riemannian manifolds
(M,σ), where D, | · | and div are interpreted as gradient, vector norm and divergence
associated to the Riemannian metric σ. We recall some of them while presenting the
original contributions of this work.

Let (M,σ) be a complete, noncompact Riemannian manifold of dimension m ≥ 2
with Ricci curvature satisfying Ric ≥ −(m − 1)κ2 for some κ ≥ 0. We show that entire,
non-negative solutions u : M → R+

0 of (1) satisfy the global gradient bound

(5)
√

1 + |Du|2 ≤ e
√
m−1κu in M.

As a consequence, for κ = 0 we deduce the following Liouville-type theorem:

On complete Riemannian manifolds with Ric ≥ 0 entire positive solu-
tions of (1) are constant,

thus extending the aforementioned theorem of Bombieri, De Giorgi, Miranda for M =
Rm. The same Liouville-type theorem has been also proved very recently by Ding, [14],
with completely different techniques. A previous result in this direction was obtained
by Rosenberg, Schulze, Spruck, [46], under the additional assumption that the sectional
curvatures of M are uniformly bounded from below by a negative constant. The gradient
estimate (5) is inspired by the one obtained by Yau, [56],

|Du| ≤ (m− 1)κu

for positive harmonic functions u on complete manifolds with Ric ≥ −(m− 1)κ2.
Our proof of (5) combines Yau’s method for global gradient estimates with the ideas

introduced by Korevaar. Yau’s and Korevaar’s methods are both based on applications of
some form of the maximum principle to elliptic equations satisfied by suitable functions of
u and |Du|. In particular, Korevaar’s idea is to apply the finite maximum principle to the

Jacobi equation satisfied by 1/
√

1 + |Du|2, which involves the Laplace-Beltrami operator
∆g associated to the graph metric g = σ + du2. In case of non-compact manifolds, a
preliminary localization is required, and this is usually done via cutoff functions obtained
from the distance function r from a fixed point o ∈ M . To have a suitable control on
second partial derivatives of r, and then on ∆gr, assumptions on sectional curvatures of M
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are needed. Description of this construction is given in Section 3.2. In this work, we obtain
the estimate (5) using as starting point, instead of r, a proper function ψ : M → [1,+∞)
satisfying ∆gψ ≤ ψ, whose existence is obtained via a potential theory result due to Mari
and D. Valtorta, [38], combined with an estimate on volume growth of geodesic balls in
the metric g that is obtained via a calibration argument developed by Trudinger, [54].
This allows to suppress assumptions on sectional curvatures of M and to only assume
Ric ≥ −(m− 1)κ2.

We show the validity of gradient bounds of exponential type√
1 + |Du|2 ≤ AeCu

also for non-negative solutions of a class of equations of the form (2) with constants A ≥ 1,
C ≥ 0 depending on m, κ and on quantitative bounds on |f | and its partial derivatives.
The class of nonlinearities f = f(x, y, w) that we consider is comprehensive of expressions
of the form

f(x, u,
√

1 + |Du|2) = f1(x, u) +
f2(x, u)√
1 + |Du|2

with f1, f2 ∈ C1(M × R+
0 ) such that |fi|, |Dxfi| ≤ C0, ∂yf1 ≥ 0, ∂yf2 ≥ −C0 for some

global constant C0 ≥ 0.
Our estimate can be localized on (not necessarily bounded) domains Ω ⊆ M . More

precisely, if M is a complete Riemannian manifold, Ω ⊆M is an open set and u ≥ 0 is a
solution of (2) in Ω, then we prove

(6) sup
Ω

√
1 + |Du|2
eCu

≤ max

{
A, lim sup

x→∂Ω

√
1 + |Du(x)|2
eCu(x)

}
under the assumption that Ric ≥ −(m − 1)κ2 in Ω and additional requirements on M ,
and possibly on ∂Ω or u|∂Ω. In particular, the conclusion follows by assuming one of the
following conditions:

(RΩ) for some o ∈M and α ≥ 0 it holds Ric ≥ −α2(1 + r2), where r(x) = distσ(o, x)
is the distance function from o in M and either

a) u ∈ C0(Ω) and u|∂Ω is constant, or
b) ∂Ω is locally Lipschitz and

lim inf
r→+∞

log
(
Hm−1(Br(o) ∩ ∂Ω)

)
r2

< +∞

where Hm−1 is (m− 1)-dimensional Hausdorff measure, or
c) u ∈ C0(Ω), ∂Ω is locally Lipschitz and for some u0 ∈ R

lim inf
r→+∞

log

∫
(∂Ω)∩Br

min{r, |u− u0|}dHm−1

r2
< +∞;

(K) for some o ∈ M the sectional curvature K of M satisfies K ≥ −G(r) for some
continuous, non-decreasing, strictly positive function G : R+

0 → R+ such that

1/
√
G 6∈ L1(+∞).

Thanks to (6) and an original integral formula inspired by a similar one due to Farina
and Valdinoci, [21], and later generalized by Farina, Mari, Valdinoci, [19], we also obtain
the following rigidity result: Let Ω ⊆ M be a parabolic smooth domain of a complete
Riemannian manifold M , let u ∈ C3(Ω) ∩ C2(Ω) be a solution of the overdetermined
problem

(7)

div

(
Du√

1 + |Du|2

)
= f1(u) +

f2(u)√
1 + |Du|2

in Ω,

u, ∂νu locally constant on ∂Ω
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for two functions f1, f2 ∈ C1(R) with f ′1 ≥ 0 and assume that M satisfies (RΩ) or (K) and
that Ric ≥ 0 in Ω. If supΩ |u| < +∞, sup∂Ω |Du| < +∞ and (Du,X) > 0 in Ω for some
Killing field X ∈ X(Ω), then Ω is isometric to a product I × N , with I ⊆ R an interval
and N a complete manifold with RicN ≥ 0, and u only depends on the I-variable. If f1

and f2 are constant and supΩ |X| < +∞, then the conclusion follows by only assuming
(Du,X) ≥ 0, 6≡ 0 on ∂Ω, and if f2 is a non-negative constant then it is enough to require
infΩ u > −∞. This happens, in particular, if the differential equation in (7) is the minimal
surface equation or the constant mean curvature equation.

This result is comparable to others obtained by several authors for overdetermined
problems for semilinear equations ∆u = f(u), in both cases M = Rm (see for instance
[20], [21] and references therein) and M a Riemannian manifold with Ric ≥ 0 ([19]). To
the best of our knowledge, our result for the differential equation in (7) is new even in
cases M = R2,R3.

Our gradient estimate technique also allows to obtain the following generalization of
the second aforementioned result of Bombieri, De Giorgi, Miranda: Let M be a complete
Riemannian manifold with Ric ≥ 0 and sectional curvature satisfying K ≥ −α(1 + r)−2

for some constant α ≥ 0, with r(x) = distσ(o, x) the distance function from an origin
o ∈M , and let u be a solution of

div

(
Du√

1 + |Du|2

)
= 0 in M.

If u−(x) = O(r(x)) as r(x) → +∞, then |Du| is bounded in M . If u−(x) = o(r(x))
as r(x) → +∞, then u is constant. This extends a recent result by Ding, Jost, Xin,
[15], where the same conclusion is reached with different techniques and more restrictive
hypotheses, namely, a two-sided control |K| ≤ α(1+r)−2 and an Euclidean volume growth
condition

lim
r→+∞

|Br(o)|
rm

> 0,

where m = dimM .



CHAPTER 2

Preliminaries

1. Notation

Let (M,σ) be a Riemannian manifold of dimension m. The metric σ will also be de-
noted with ( , ). We let | · |, D, div and ∆ denote the vector norm, Levi-Civita connection,
divergence and Laplace-Beltrami operator associated to σ. Let Ω ⊆M be an open subset
and u : Ω → R a twice differentiable function. The graph of u over M is the embedded
C2 hypersurface Σ of M × R defined by

Σ = Σu,Ω = {(x, u(x)) ∈M × R : x ∈ Ω}.

The graph map Γ = Γu,Ω : Ω → Σ : x 7→ (x, u(x)) is a C2 diffeomorphism. Its inverse is
the restriction π|Σ of the canonical projection π : M × R→M .

The product manifold M×R is given the Riemannian metric σ̄ = σ+dy⊗dy, where y
is the canonical coordinate on the R factor. The ambient metric σ̄ induces a Riemannian
metric g on Σ by restriction to TΣ⊗ TΣ, that is, by setting g(X,Y ) = σ̄(X,Y ) for every
X,Y ∈ TpΣ, p ∈ Σ. As a result, the inclusion map (Σ, g) ↪→ (M × R, σ̄) is an isometric
embedding. The resulting pullback metric on Ω via Γ is

Γ∗g = σ + du⊗ du.

The manifold (Ω,Γ∗g) is isometric to (Σ, g). We let ‖·‖, ∇, div g and ∆g denote the vector
norm, Levi-Civita connection, divergence and Laplace-Beltrami operator associated to the
metric g. In the following, if not otherwise stated we will regard ‖ · ‖, ∇, div g and ∆g as
acting on functions, vectors or tensor fields defined on Ω, that is, we will almost exclusively
work on the manifold (Ω, g) := (Ω,Γ∗g) obtained by pulling back on Ω the graph metric
g, instead of directly working on (Σ, g).

Let {xi} be a local coordinate system on Ω. We write

σ = σij dxi ⊗ dxj , g ≡ Γ∗g = gij dxi ⊗ dxj .

For any function ϕ ∈ C1(Ω) we also write

dϕ = ϕi dxi, Dϕ = ϕi
∂

∂xi

so we have that σij and gij are related by

(8) gij = σij + uiuj for 1 ≤ i, j ≤ m.

Let σij be the coefficients of the inverse matrix (σij)
−1, uniquely determined by

σikσkj = δij for 1 ≤ i, j ≤ m

with δ the Kronecker symbol. Then the coefficients of dϕ and Dϕ are related by

ϕi = σijϕj and ϕi = σijϕ
j for 1 ≤ i ≤ m.

Similarly, we let gij be the coefficients of (gij)
−1, determined by the condition gikgkj = δij .

A direct computation shows that

gij = σij − uiuj

W 2
for 1 ≤ i, j ≤ m

7



8 2. PRELIMINARIES

where
W =

√
1 + |Du|2.

For every ϕ ∈ C1(Ω) we denote by ∇ϕ its gradient with respect to g, uniquely determined
by the condition 〈∇ϕ, · 〉 = dϕ. In local coordinates we have

∇ϕ = gijϕj
∂

∂xi

and by writing down

gijϕj = σijϕj −
uiujϕj
W 2

we deduce the intrinsic identity

∇ϕ = Dϕ− (Du,Dϕ)

W 2
Du.

In particular, for ϕ = u we get

gijuj =
ui

W 2
, that is, ∇u =

Du

W 2
.

In general, we have validity of the chain of inequalities

(9)
|Dϕ|2

W 2
≤ ‖∇ϕ‖2 ≤ |Dϕ|2 for every ϕ ∈ C1(Ω).

We denote by γkij , Γkij the Christoffel symbols for the metrics σ, g, respectively, asso-

ciated to local coordinates {xi}. They are uniquely determined by conditions

D ∂

∂xi

∂

∂xj
= γkij

∂

∂xk
and ∇ ∂

∂xi

∂

∂xj
= Γkij

∂

∂xk
for 1 ≤ i, j ≤ m

and may be computed as

(10) γkij =
1

2
σkt
(
∂σti
∂xj

+
∂σtj
∂xi

− ∂σij
∂xt

)
, Γkij =

1

2
gkt
(
∂gti
∂xj

+
∂gtj
∂xi
− ∂gij
∂xt

)
.

In particular,

(11) γkij = γkji, Γkij = Γkji for 1 ≤ i, j, k ≤ m.
The covariant derivative Dα of a 1-form α is defined as the (0, 2) tensor field given by

(Dα)(X,Y ) = X(α(Y ))− α(DXY )

for every couple of vector fields X,Y . In particular, for 1-forms dxi we obtain

D∂xi
dxj = −γjikdxk.

More generally, the covariant derivative DT of a tensor field T of type (p, q), p, q ≥ 0 is
the (p, q + 1) tensor field given by

(DT )(X,X1, . . . , Xq, α
1, . . . , αp) = X(T (X1, . . . , Xq, α

1, . . . , αp))

−X

(
q∑
i=1

T (. . . , DXXi, . . . , α
1, . . . , αp)

)

−X

 p∑
j=1

T (X1, . . . , Xq, . . . , DXα
j , . . . )


for every choice of vector fields X,X1, . . . , Xq and 1-forms α1, . . . , αp. If T is expressed
in local coordinates as

T = T
i1...ip

j1...jq
dxj1 ⊗ · · · ⊗ dxjq ⊗ ∂xi1 ⊗ · · · ⊗ ∂xip

then we will write

DT = T
i1...ip

j1...jqk
dxk ⊗ dxj1 ⊗ · · · ⊗ dxjq ⊗ ∂xi1 ⊗ · · · ⊗ ∂xip ,
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where the coefficients in the above expression are given by

T
i1...ip

j1...jqk
=

∂

∂xk
T
i1...ip

j1...jq
−

q∑
s=1

T
i1...ip

j1...js−1ljs+1...jq
γljsk

+

p∑
t=1

T
i1...it−1lit+1...ip

j1...jq
γitlk.

Covariant derivatives of 1-forms and tensor fields with respect to the connection ∇ are
defined similarly, so that we have

(∇α)(X,Y ) = X(α(Y ))− α(∇XY ),

(∇T )(X,X1, . . . , Xq, α
1, . . . , αp) = X(T (X1, . . . , Xq, α

1, . . . , αp))

−X

(
q∑
i=1

T (. . . ,∇XXi, . . . , α
1, . . . , αp)

)

−X

 p∑
j=1

T (X1, . . . , Xq, . . . ,∇Xαj , . . . )


for 1-forms α, α1, . . . , αp, vector fields X,Y, Y1, . . . , Yq and (p, q)-type tensor field T . To
avoid confusion with notation adopted for DT , in local coordinates the components of a
covariant derivative ∇T will bear a semicolon ; as a separator between indices originally
pertaining to T and the new lower index, that is, we will write

∇T = T
i1...ip

j1...jq ;k
dxk ⊗ dxj1 ⊗ · · · ⊗ dxjq ⊗ ∂xi1 ⊗ · · · ⊗ ∂xip ,

with

T
i1...ip

j1...jq ;k
=

∂

∂xk
T
i1...ip

j1...jq
−

q∑
s=1

T
i1...ip

j1...js−1ljs+1...jq
Γljsk

+

p∑
t=1

T
i1...it−1lit+1...ip

j1...jq
Γitlk.

For every ϕ ∈ C2(Ω) the Hessians of ϕ with respect to the metrics σ and g are defined
as the covariant derivatives of dϕ with respect to connections D and ∇, respectively. We
denote them as

Hessσ(ϕ) = Ddϕ, Hessg(ϕ) = ∇dϕ.

In local coordinates, we write

Hessσ(ϕ) = ϕijdx
j ⊗ dxi, Hessg(ϕ) = ϕi;jdx

j ⊗ dxi,

with

ϕij =
∂ϕi
∂xj
− ϕkγkij ≡

∂2ϕ

∂xi∂xj
− ∂ϕ

∂xk
γkij , ϕi;j =

∂2ϕ

∂xi∂xj
− ∂ϕ

∂xk
Γkij .

From the Schwarz lemma we have ∂2ϕ
∂xi∂xj = ∂2ϕ

∂xj∂xi , hence from (11)

ϕij = ϕji, ϕi;j = ϕj;i

and we can write as well

Hessσ(ϕ) = ϕijdx
i ⊗ dxj , Hessg(ϕ) = ϕi;jdx

i ⊗ dxj .
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We use (10) to derive a relation between γkij and Γkij . Substituting (8) and using the
Schwarz lemma we obtain

∂gti
∂xj

+
∂gtj
∂xi
− ∂gij
∂xt

=
∂σti
∂xj

+
∂2u

∂xt∂xj
∂u

∂xi
+
∂u

∂xt
∂2u

∂xi∂xj

+
∂σtj
∂xi

+
∂2u

∂xt∂xi
∂u

∂xj
+
∂u

∂xt
∂2u

∂xj∂xi

− ∂σij
∂xt

− ∂2u

∂xi∂xt
∂u

∂xj
− ∂u

∂xi
∂2u

∂xj∂xt

=
∂σti
∂xj

+
∂σtj
∂xi

− ∂σij
∂xt

+ 2ut
∂2u

∂xi∂xj

and then

Γkij =
1

2
gkt
(
∂σti
∂xj

+
∂σtj
∂xi

− ∂σij
∂xt

+ 2ut
∂2u

∂xi∂xj

)
=

1

2

(
σkt − ukut

W 2

)(
∂σti
∂xj

+
∂σtj
∂xi

− ∂σij
∂xt

)
+ gktut

∂2u

∂xi∂xj

=
1

2
σkt
(
∂σti
∂xj

+
∂σtj
∂xi

− ∂σij
∂xt

)
− 1

2

uk

W 2
ulσ

lt

(
∂σti
∂xj

+
∂σtj
∂xi

− ∂σij
∂xt

)
+

uk

W 2

∂2u

∂xi∂xj

= γkij +
uk

W 2

(
∂2u

∂xi∂xj
− ulγlij

)
.

Observing that ∂2u
∂xi∂xj − ulγ

l
ij = uij are the coefficients of Hessσ(u), we get

(12) Γkij = γkij +
ukuij
W 2

.

Hence, for every ϕ ∈ C2(M) we have

(13) ϕi;j = ϕij + ϕk(γkij − Γkij) = ϕij −
ϕku

k

W 2
uij

and in particular

(14) ui;j =
uij
W 2

.

The upward normal vector field to Σ in M ×R is given at any point (x, u(x)) ∈ Σ by

n(x,u(x)) =
∂y −Du(x)√
1 + |Du(x)|2

.

Shortly, we write

(15) n =
∂y −Du
W

.

Let D̄ denote the Levi-Civita connection of (M ×R, σ̄). The second fundamental form II
of the isometric immersion (Σ, g) ↪→ (M × R, σ̄) is the tensor field II : TΣ⊗ TΣ→ T⊥Σ
defined by

II(X,Y ) = D̄XY −∇XY
for any couple of vector fields X,Y ∈ (Σ). The trace of II with respect to the metric
g is the non-normalized mean curvature vector mH = Trg(II), and the unique function
H : Σ→ R such that

H = Hn

is the mean curvature (function) of Σ in the direction of n.
A local frame for TΣ is given by the collection of vector fields

Ei =
∂

∂xi
+ ui∂y for 1 ≤ i ≤ m
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obtained by pulling back to Σ the local frame {∂xi}1≤i≤m for Ω via the diffeomorphism
π|Σ : Σ→ Ω. The local coframe {ωi} dual to {Ei} is given by

ωi = dxi + uidy for 1 ≤ i ≤ m

and is similarly obtained by pulling back the coframe {dxi}. Since π : (Σ, g) → (Ω, g) is
an isometry and its differential maps the local frame {Ei} to {∂xi}, we have

g(Ei, Ej) = gij , g = gij ω
i ⊗ ωj , ∇EiEj = ΓkijEk.

If U ⊆ Ω is the domain of the local chart {xi}, we can extend the vector fields Ei to the
cylinder U × R by setting Ei(x, y) = ∂xi + ui(x)∂y for every (x, y) ∈ U × R. In this way,
we have D̄∂yEi = 0 for every 1 ≤ i ≤ m and then we can compute

D̄EiEj = D̄∂xi
Ej = D∂xi

∂xj +
∂uj
∂xi

∂y

= γkij∂xk +
∂uj
∂xi

∂y

= γkijEk − γkijuk∂y +
∂ui
∂xj

∂y

= γkijEk + uij∂y

for every 1 ≤ i, j ≤ m. From this we get

II(Ei, Ej) = D̄EiEj −∇EiEj = (γkij − Γkij)Ek + uij∂y

= −u
kuij
W 2

Ek + uij∂y

= uij

(
−u

k∂xk

W 2
− ukuk

W 2
∂y + ∂y

)
= uij

−Du+ ∂y
W 2

=
uij
W

n

and then we can locally express II as

(16) II = IIij ω
i ⊗ ωj ⊗ n with IIij =

uij
W
.

This yields

(17) mH = gijIIij =
gijuij
W

.

The non-parametric form of the mean curvature equation,

(18) div

(
Du√

1 + |Du|2

)
= mH

is easily deduced from (17). Indeed, setting X = Du
W and locally writing X = Xi∂xi ,

DX = Xi
jdx

j ⊗ ∂xi , dW = Widx
i, we have

Wi =
uiku

k

W
,

Xi
j =

uij
W
− uiWj

W 2
=

1

W

(
σitutj −

ujku
iuk

W 2

)
,

div (X) = δjiX
i
j =

1

W

(
σituti −

uiku
iuk

W 2

)
=

1

W

(
σij − uiuj

W 2

)
uij =

gijuij
W

= mH.
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Going back to (12), we can write

Γkij = γkij +
uk

W
IIij

and from (13) for every ϕ ∈ C2(Ω) we have

(19) ϕi;j = ϕij −
ϕku

k

W
IIij

and then

(20) ∆gϕ = gijϕi;j = gijϕij −mH
ϕku

k

W
.

For ϕ = u, a combination of (17) and (20) yields the parametric form of the mean
curvature equation,

(21) ∆gu =
mH

W
.

We denote the Riemann curvature operators associated to D and ∇ as R and ∇R,
respectively. They are tensors of type (1, 3) and their action is given by

R(X,Y )Z = DXDY Z −DYDXZ −D[X,Y ]Z,

∇R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

for all X,Y, Z ∈ X(Ω), where [·, ·] is the Lie bracket. The components of R are given by

Rijkt =
∂γijt
∂xk

+ γiskγ
s
jt −

∂γijk
∂xt

− γistγsjk.

with the convention that R(X,Y )Z = RijktX
kY tZj∂xi for every X = Xi∂xi , Y = Y i∂xi ,

Z = Zi∂xi . Similarly, the components of ∇R are given by

∇Rijkt =
∂Γijt
∂xk

+ ΓiskΓsjt −
∂Γijk
∂xt

− ΓistΓ
s
jk

with the agreement that ∇R(X,Y )Z = ∇RijktX
kY tZj∂xi .

Lemma 2.1 (Ricci’s commutation relations). Let α ∈ ω(M) be a 1-form on M and
let D2α = D(Dα) be its second covariant derivative. For every X,Y, Z ∈ X(M)

(D2α)(Y,X,Z)− (D2α)(X,Y, Z) = α(R(X,Y )Z).

With respect to a local system of coordinates {xi},
(22) αijk − αikj = αtR

t
ijk

where α = αidx
i and D2α = αijkdxk ⊗ dxj ⊗ dxi.

Proof. In local coordinates we have

Dα = αijdx
j ⊗ dxi, D2α = αijkdxk ⊗ dxj ⊗ dxi

with

αij =
∂αi
∂xj
− αsγsij ,

αijk =
∂αij
∂xk

− αsjγsik − αisγsjk.

Substituting the first identity in the RHS of the second one we get

αijk =
∂2αi
∂xk∂xj

− ∂αs
∂xk

γsij − αs
∂γsij
∂xk

− ∂αs
∂xj

γsik + αtγ
t
sjγ

s
ik − αisγsjk.

We rearrange the terms by writing

αijk =

(
∂2αi
∂xk∂xj

− αisγsjk
)
−
(
∂αs
∂xk

γsij +
∂αs
∂xj

γsik

)
− αt

(
∂γtij
∂xk

− γtsjγsik
)
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and then we get

αijk − αikj = −αt
(
∂γtij
∂xk

− γtsjγsik
)

+ αt

(
∂γtik
∂xj

− γtskγsij
)

= αt

(
∂γtik
∂xj

− γtskγsij −
∂γtij
∂xk

+ γtsjγ
s
ik

)
= αtR

t
ijk.

�

The (0, 4)-type version of R is defined by setting

R(V,Z,X, Y ) = σ(V,R(X,Y )Z)

for every X,Y, Z, V ∈ X(Ω). In local coordinates we can write

R(V,Z,X, Y ) = RijktV
iZjXkY t

where the coefficients Rijkt are given by

Rijkt = σisR
s
jkt.

For every X,Y, Z, V ∈ X(Ω) we have

R(V,Z,X, Y ) = −R(Z, V,X, Y ) = −R(V,Z, Y,X) = R(X,Y, V, Z)

and, as a consequence, the validity of the first Bianchi identity

R(V,Z,X, Y ) +R(V,X, Y, Z) +R(V, Y, Z,X) = 0.

In local coordinates, the above identities read as

Rijkt = −Rjikt = −Rijtk = Rktij ,(23)

Rijkt +Riktj +Ritjk = 0(24)

for every 1 ≤ i, j, k, t ≤ m.
For every point p ∈ M and for every couple of linearly independent tangent vectors

X,Y ∈ TpM we write X ∧ Y = span(X,Y ). The sectional curvature K(π) of any 2-plane
π ≤ TpM is defined as

K(π) =
R(X,Y,X, Y )

|X|2|Y |2 − (X,Y )2

were X,Y ∈ TpM are such that π = X ∧ Y . This definition is well posed since the value
of the quotient on the RHS is independent of the choice of the basis {X,Y } ⊆ TpM for π.

The Ricci tensor Ric is the tensor field of type (0, 2) obtained by tracing the (0, 4)-type
version of the Riemann curvature tensor with respect to its first and third arguments (or,
equivalently, with respect to the second and fourth ones): for every p ∈ M , X,Y ∈ TpM
and for any choice of an orthonormal basis {V i}1≤i≤m for (TpM,σ|TpM ) we have

Ric(X,Y ) =

m∑
i=1

R(V i, X, V i, Y ).

In local coordinates we write

Ric = Rijdx
i ⊗ dxj ,

where

Rij = σktRkitj = δtkR
k
itj .
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2. The Jacobi equation

Let (M,σ) be a Riemannian manifold, Ω ⊆ M an open domain, and let u ∈ C3(Ω),
f ∈ C1(Ω) be such that

(25) div

(
Du√

1 + |Du|2

)
= f.

Setting W =
√

1 + |Du|2, the function W−1 satisfies the differential identity

(26) ∆g
1

W
+
(
‖II‖2 + Ric(n,n)

) 1

W
+ 〈∇f,∇u〉 = 0,

where ‖II‖2 = gijgktIIikIIjt is the squared length of the second fundamental form of the

graph Σ ⊆M ×R, n is any normal vector field on Σ and Ric is the Ricci tensor of M ×R.
For constant f the resulting differential equation satisfied by W−1 is also known as Jacobi
equation. Identity (26) can be equivalently restated as

(27) ∆gW =
(
‖II‖2 + Ric(n,n) +W 〈∇f,∇u〉

)
W +

2‖∇W‖2

W
.

For every (x, y) ∈M × R and V1 ∈ TxM , V2 ∈ TyR we have the identity

Ric(V, V ) = Ric(V1, V1) for V = V1 + V2,

then from (15) we have that (27) can be further expressed as

(28) ∆gW =

(
‖II‖2 +

Ric(Du,Du)

W 2
+W 〈∇f,∇u〉

)
W +

2‖∇W‖2

W
.

We give a derivation of (28).

Proposition 2.2. Let (M,σ) be a Riemannian manifold, Ω ⊆ M an open domain,
and let u ∈ C3(Ω), f ∈ C1(Ω) be such that

(29) div

(
Du√

1 + |Du|2

)
= f.

Then the function W =
√

1 + |Du|2 satisfies

(30) ∆gW =

(
‖II‖2 +

Ric(Du,Du)

W 2
+W 〈∇f,∇u〉

)
W +

2‖∇W‖2

W
in Ω.

Proof. Let {xi} be a local coordinate system on Ω. We have

Wi =
uiku

k

W
,

Wij =
uiku

k
j

W
+
uikju

k

W
− uiku

kWj

W 2
=
uiku

k
j

W
− uiku

kujtu
t

W 3
+
uikju

k

W

= gkt
uikujt
W

+
uikju

k

W

and then

gijWij = gijgkt
uikujt
W

+ gij
uikju

k

W
.

From Ricci’s commutation relations (22) we have

gijuikju
k = gijuijku

k + gijutukRtikj ,

and from the symmetries (23) of the curvature tensor we get

gijutukRtikj = σijutukRtikj = Rktu
tuk,
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hence

gijWij = gijgkt
uikujt
W

+
Riju

iuj

W
+

1

W
gijuijku

k.

We differentiate

(31)
(
gijuij

)
k

= gijkuij + gijuijk.

We compute

gijk = σijk −
uiku

j

W 2
−
uiujk
W 2

+ 2
uiujWk

W 3

= 0− σitutku
j

W 2
− σjtutku

i

W 2
+ 2

uiujututk
W 4

= −
(
gituj + gjtui

) utk
W 2

and we use the symmetry uij = uji to write

(32) gijkuij = −2git
ujuij
W

utk
W

= −2gitWi
utk
W

.

So, we obtain

gijku
kuij = −2gitWi

utku
k

W
= −2gitWiWt

and then

gijuijku
k =

(
gijuij

)
k
uk − gijku

kuij =
(
gijuij

)
k
uk + 2gijWiWj .

This yields

gijWij = gijgkt
uikujt
W

+
Riju

iuj

W
+

(
gijuij

)
k
uk

W
+

2gijWiWj

W
.

Summing up, we obtain

∆gW = gijWij −
gijuij
W 2

Wku
k

= gijgkt
uikujt
W

+
Riju

iuj

W
+

2gijWiWj

W
+

((
gijuij

)
k

W
− gijuij

Wk

W 2

)
uk

= gijgkt
uikujt
W

+
Riju

iuj

W
+

2gijWiWj

W
+

(
gijuij
W

)
k

uk.

From (16), (17) and (18) we have IIij = W−1uij and W−1gijuij = f , then we can write

∆gW = ‖II‖2W +
Ric(Du,Du)

W
+

2‖∇W‖2

W
+ (Df,Du)

and, since Du = W 2∇u,

∆gW = ‖II‖2W +
Ric(Du,Du)

W
+

2‖∇W‖2

W
+W 2〈∇f,∇u〉.

�

Formula (28) is our starting point to derive gradient estimates for non-negative (or
lower bounded) solutions of equation (25) via the maximum principle. We outline the
main argument behind the proof that will be carried out in Chapter 4: this is essen-
tially Bernstein’s method for obtaining a priori gradient bounds for solutions of nonlinear
equations, see [4]. Let η ∈ C2(Ω) be given and set z = Wη. Then in Ω we have

∇z = W∇η + η∇W,
∆gz = W∆gη + 2〈∇W,∇η〉+ η∆gW.
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As W > 0, we can use the first identity to write

∇η =
∇z
W
− η∇W

W
and then we substitute this into the second one to obtain

∆gz = W∆gη + 2
〈∇W,∇z〉

W
+ η

(
∆gW −

2‖∇W‖2

W

)
.

Rearranging terms and using (28),

(33) ∆gz − 2
〈∇W,∇z〉

W
=

((
‖II‖2 +

Ric(Du,Du)

W 2
+W 〈∇f,∇u〉

)
η + ∆gη

)
W.

To fix ideas, let us first consider the case where η = e−Cu for some constant C ≥ 0.
Recall that we are assuming u ≥ 0, so 0 < η ≤ 1. In this setting we have

∆gη =
(
−C∆gu+ C2‖∇u‖2

)
η

and (33) yields

∆gz − 2
〈∇W,∇z〉

W
=

(
‖II‖2 +

Ric(Du,Du)

W 2
+W 〈∇f,∇u〉 − C∆gu+ C2‖∇u‖2

)
z.

If Ω is compact, then either supΩ z = sup∂Ω z or z attains its global maximum at some
point x̄ ∈ Ω. In the second case, from the maximum principle it must be ∇z = 0 and
∆gz ≤ 0 at x̄. Using z > 0, we obtain

‖II‖2 +
Ric(Du,Du)

W 2
+W 〈∇f,∇u〉 − C∆gu+ C2‖∇u‖2 ≤ 0.

Under appropriate assumptions on Ric and f we can ensure that the LHS of this inequality
is strictly positive if W exceeds some threshold A > 1. Coupling this with condition η ≤ 1
we deduce z(x̄) ≤W (x̄) ≤ A and then we obtain a global bound

(34) sup
Ω
z ≤ max

{
A, sup

∂Ω
z

}
,

that is, a gradient bound

sup
Ω

√
1 + |Du|2
eCu

≤ max

{
A, sup

∂Ω

√
1 + |Du|2
eCu

}
.

If Ω is not compact, then we rely on a localization and approximation argument to
derive the a priori bound (34). First, we assume without loss of generality that supΩ z >
sup∂Ω z, and we fix γ > 0 such that supΩ z > γ > sup∂Ω z. Then, we set Ωγ = {x ∈ Ω :

z(x) > γ}, we let ψ : Ωγ → R+
0 be a suitable continuous function with compact sublevel

sets and we set ηε,δ = e−Cu−εψ − δ for every ε, δ > 0. In this case we have

∆gηε,δ =
(
−C∆gu− ε∆gψ + ‖C∇u+ ε∇ψ‖2

)
e−Cu−εψ

and then, for the function zε,δ = Wηε,δ,

∆gzε,δ − 2
〈∇W,∇zε,δ〉

W
=

(
‖II‖2 +

Ric(Du,Du)

W 2
+W 〈∇f,∇u〉

)
zε,δ

+
(
−C∆gu− ε∆gψ + ‖C∇u+ ε∇ψ‖2

)
We−Cu−εψ.

(35)

For every ε, δ > 0 we have ηε,δ < e−Cu on Ωγ , so zε,δ < z. On the other hand, zε,δ → z
pointwise on Ωγ as (ε, δ) → (0, 0). Hence, for every sufficiently small ε, δ > 0 one has
supΩγ zε,δ > γ ≥ sup∂Ωγ zε,δ. For every ε, δ > 0 the boundary of

Ωε,δ = {x ∈ Ωγ : zε,δ > 0}
is contained in (∂Ωγ) ∪ {zε,δ ≤ 0}, so we have sup∂Ωε,δ

zε,δ ≤ γ < supΩε,δ
zε,δ. More-

over, for every ε, δ > 0 the set Ωε,δ is relatively compact in M , being a subset of
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{ψ ≤ ε−1 log(δ)}. Hence, for every sufficiently small ε, δ > 0 there exists xε,δ ∈ Ωε,δ
such that

zε,δ(xε,δ) = max
Ωε,δ

zε,δ ≡ sup
Ωγ

zε,δ

and by a diagonalization argument

lim
(ε,δ)→(0,0)

zε,δ(xε,δ) = sup
Ωγ

z ≡ sup
Ω
z.

By the maximum principle, at points xε,δ it must be ∇zε,δ = 0, ∆gzε,δ ≤ 0 and then the
RHS of (35) must be non-positive. A bit more care is needed in this case to properly
bound from below the RHS of this identity, but then we can show again that, for some
fixed threshold A > 1, for all sufficiently small ε, δ > 0 it must be W (xε,δ) ≤ A, and
then we conclude supΩ z ≤ A. In particular, in the proof of the gradient bound we will
need to suitably control the contribution of terms ε∆gψ and ε2‖∇ψ‖2 in inequality (35).
For this reason, in Chapter 3 we shall study under different assumptions the possibility
of constructing functions ψ : Ω0 → R+

0 with compact sublevel sets and with controlled

‖∇ψ‖, ∆gψ on subdomains Ω0 ⊆ Ω such that Ω0 ⊆ Ω. We will call them (good) exhaustion
functions.

3. An equation for the directional derivatives of u

Let (M,σ) be a Riemannian manifold, Ω ⊆ M an open set. We recall that a vector
field X ∈ X(Ω) is said to be a Killing vector field (with respect to the metric σ) if the Lie
derivative of the metric σ vanishes along the flow of X,

LXσ = 0

a condition that amounts to saying that, for every x ∈ Ω, the flow of X is a (local) 1-
parameter group of (local) isometries in a neighbourhood of x with respect to the metric
σ. From the properties of the Levi-Civita connection D we have

(LXσ)(Y,Z) = (DYX,Z) + (DZX,Y )

for every Y,Z ∈ X(Ω). With respect to a local system of coordinates {xi}, this amounts
to saying that

(36) Xij +Xji = 0 for 1 ≤ i, j ≤ m

where Xij are the components of the (0, 2)-type tensor field Xijdx
j ⊗ dxi metrically

equivalent to the covariant derivative DX = Xi
jdx

j ⊗ ∂xi of X = Xi∂xi (that is, Xij =

σikX
k
j for 1 ≤ i, j ≤ m).

Let X ∈ X(Ω) be a Killing vector field and let u ∈ C3(Ω) and f ∈ C1(Ω) satisfy

div

(
Du√

1 + |Du|2

)
= f.

In the next proposition we derive an expression for ∆gϕ, where ϕ = (Du,X) is the
directional derivative of u in the direction of X.

Proposition 2.3. Let u ∈ C3(Ω) satisfy

div

(
Du√

1 + |Du|2

)
= f

for some given f ∈ C1(Ω) and let X ∈ X(Ω) be a Killing vector field. Then the function
ϕ = (Du,X) satisfies

∆gϕ = W (Df,X) +
2〈∇W,∇ϕ〉

W
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or, equivalently,

W 2 div g

(
∇ϕ
W 2

)
= W (Df,X).

Proof. In local coordinates we have

ϕ = ukX
k,(37)

ϕi = ukiX
k + ukX

k
i,(38)

ϕij = ukijX
k + ukiX

k
j + ukjX

k
i + ukX

k
ij(39)

and then
gijϕij = gijukijX

k + 2gijukiX
k
j + gijukX

k
ij .

By Ricci’s commutation relations and (31) we can write

gijukij = gij (uikj − uijk) + gijuijk = gijutRtikj +
(
gijuij

)
k
− gijkuij ,

Xk
ij = σktXtij = σkt (Xtij +Xitj)− σkt (Xitj −Xijt)− σktXijt

= σkt (Xtij +Xitj)− σktXsRsitj − σktXijt,

then

gijukijX
k = gijutXkRtikj +

(
gijuij

)
k
Xk − gijkuijX

k,

gijukX
k
ij = gijut (Xtij +Xitj)− gijutXsRsitj − utgijXijt

and we obtain

gijϕij =
(
gijuij

)
k
Xk − gijkuijX

k + 2gijuikX
k
j + gijut (Xtij +Xitj)− utgijXijt.

From (32) we can write

−gijkuij = 2git
Wi

W
utk

and from (38) we also have

utkX
k = uktX

k = ϕt − ukXk
t,

hence

−gijkuijX
k = 2git

Wi

W
utkX

k = 2gij
Wi

W
ϕj − 2gij

Wi

W
ukX

k
j .

Moreover,

−2gij
Wi

W
ukX

k
j + 2gijuikX

k
j = 2gijXk

j

(
uik −

Wiuk
W

)
= 2gijXk

j

(
uik −

uitu
tuk

W 2

)
= 2gijXk

j

(
δtk −

utuk
W 2

)
uit

= 2gijσskXsjg
tlσlkuit

= 2gijgtsXsjuit

= gijgts(Xsj +Xjs)uit

where the last equality follows from the symmetries gij = gji and uij = uji. Then,

−gijkuijX
k + 2gijuikX

k
j = 2gij

Wi

W
ϕj + gijgts(Xsj +Xjs)uit

and we obtain

gijϕij =
(
gijuij

)
k
Xk + 2gij

Wi

W
ϕj

+ gijgts(Xsj +Xjs)uit + gijut (Xtij +Xitj)− utgijXijt.
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From (38) we further write

gijuij
ϕku

k

W 2
= gijuij

uktu
kXt

W 2
+ gijuij

utu
kXt

k

W 2
= gijuij

WtX
t

W
+ gijuij

Xktu
kut

W 2

and then

∆gϕ = gijϕij − gijuij
ϕku

k

W 2

=
(
gijuij

)
k
Xk − gijuij

WkX
k

W
+ 2gij

Wi

W
ϕj

+ gijgts(Xsj +Xjs)uit + gijut (Xtij +Xitj)− utgijXijt + gijuij
Xktu

kut

W 2

= W

(
gijuij
W

)
k

Xk + 2gij
Wi

W
ϕj

+ gijgts(Xsj +Xjs)uit + gijut (Xtij +Xitj)− utgijXijt + gijuij
Xktu

kut

W 2
.

From the Killing condition (36), the last four terms in the above identity cancel out and
we obtain

∆gϕ = W

(
gijuij
W

)
k

Xk + 2gij
Wi

W
ϕj = W (Df,X) + 2

〈∇W,∇ϕ〉
W

.

�

Corollary 2.4. Let u ∈ C3(Ω) satisfy

div

(
Du√

1 + |Du|2

)
= f1(u) +

f2(u)

W

for some given f1, f2 ∈ C1(R) and let X ∈ X(Ω) be a Killing vector field. Then the
function ϕ = (Du,X) satisfies

∆gϕ = (Wf ′1(u) + f ′2(u))ϕ+

〈
2∇W
W

− f2(u)∇u,∇ϕ
〉
.

Equivalently,

(40) W 2e−F2(u) div g

(
eF2(u)

W 2
∇ϕ
)

= (Wf ′1(u) + f ′2(u))ϕ

where F2 is any primitive of f2.

Proof. Let f = f1(u) +W−1f2(u). We have

Df =

(
f ′1(u) +

f ′2(u)

W

)
Du− f2(u)

W 2
DW

hence

W (Df,X) = (Wf ′1(u) + f ′2(u))ϕ− f2(u)

W
(DW,X).

In local coordinates we have

(DW,X) =
uiju

jXi

W
.

From (38) together with the Killing condition (36) we compute

uiju
jXi = uj(uijX

i + uiX
i
j)− ujuiXi

j = ujϕj − 0

and then

−f2(u)

W
(DW,X) = −f2(u)

uiϕi
W 2

= −f2(u)gijuiϕj = −f2(u)〈∇u,∇ϕ〉.

Hence, the conclusion follows from Proposition 2.3. �





CHAPTER 3

Good exhaustion functions

In this chapter we show that if u is a C2 function defined on an open domain Ω of
a complete Riemannian manifold M and if the validity of either condition (RΩ) or (K)
from the Introduction is assumed, then for every subdomain Ω0 ⊆ Ω with Ω0 ⊆ Ω there
exists a continuous function ψ : Ω0 → R+

0 , with ψ(x) → +∞ as x → ∞ in Ω0, such that
∆gψ and ‖∇ψ‖2 are suitably controlled from above in Ω0.1 This will be essential to carry
out the proof of the gradient bound in the next chapter.

1. Basic definitions

Let (N,h) be a Riemannian manifold, Ω ⊆ N an open set, f : Ω → R a function.
Following [37], we recall some alternative notions of weak solutions of the differential
inequality ∆hu ≤ f .

Definition 3.1. A lower semicontinuous function u : Ω → R is a solution in Ω of
the differential inequality ∆hu ≤ f in the barrier sense if for every x̄ ∈ Ω, ε > 0 there
exist a neighbourhood U ⊆ Ω of x̄ and a function v ∈ C2(U) such that

u ≤ v in U,

u(x̄) = v(x̄),

∆hv(x̄) ≤ f(x̄) + ε.

In this case, we say that v is a support function for u at x̄.

This weakened notion of solution was first introduced by Calabi, [10], for linear uni-
formly elliptic operators of second order of the form

Lu = aijuij + biui

with bounded coefficients aij , bi. Indeed, he called such solutions weak solutions. As
originally showed by Calabi, if u is of class C2 then it satisfies ∆hu ≤ f in the barrier
sense if and only if it does so in the classical (strong) sense.

Definition 3.2. A lower semicontinuous function u : Ω → R is a viscosity solution
in Ω of ∆hu ≤ f if for every x̄ ∈ Ω, for every neighbourhood U ⊆ Ω of x̄ and for every
φ ∈ C2(U) satisfying {

φ ≤ u in U,

φ(x̄) = u(x̄)

it holds

∆hφ(x̄) ≤ f(x̄).

From the definition itself it follows that if u is a solution of ∆hu ≤ f in the barrier
sense, then it is also a viscosity solution. The converse is not true, in general. The

1Hereafter, if M0 is a subset of a manifold M and f : M0 → R is a function, we say that f(x)→ +∞
as x → ∞ in M0 if for every a ∈ R there exists a compact set K ⊆ M0 such that f(x) ≥ a for every
x ∈M0 \K.

21
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following simple example, taken from [37], shows that this may fail even for differentiable
functions: in N = Ω = R, the function

u(x) =

{
x2 sin(1/x) for x 6= 0,

0 for x = 0,

satisfies u′′(0) ≤ 0 in the viscosity sense but not in the barrier sense.

Definition 3.3. A function u ∈ H1
loc(Ω) is a weak (distributional) solution in Ω of

the differential inequality ∆hu ≤ f , with f ∈ L1
loc(Ω), if

−
∫

Ω

〈∇φ,∇u〉 ≤
∫

Ω

fφ for every 0 ≤ φ ∈ C∞c (Ω).

From a theorem due to P.-L. Lions [36] and H. Ishii [29], for continuous functions
u, f the inequality ∆hu ≤ f is satisfied in the viscosity sense if and only if it holds in the
distributional sense. In fact, Ishii’s theorem is concerned with the notion of viscosity and
distributional solutions for differential inequalities of the form Lu ≤ f on open subsets
U ⊆ Rm, where L is a linear elliptic differential operator of the form

(41) Lφ = aijφij + biφi + cφ

and aij ∈ C1,1(U), bi ∈ C0,1(U), c, f ∈ C(U), and the equivalence between viscosity and

distributional solutions is established under the assumption
√

det(aij) ∈ C1(U). In every
local smooth chart {xi} : Ω0 ⊆ Ω→ U ⊆ Rm the Laplace-Beltrami operator ∆h admits a
local expression of the form (41) with smooth coefficients. Due to the local nature of the
notions of viscosity and distributional solutions, Ishii’s theorem directly applies to ∆h.

We also recall the following global approximation theorem due to Greene-Wu (see
Corollary 1 to Theorem 3.2 in [25]), that we will need in Section 3.3.

Proposition 3.4 (Greene-Wu’s global approximation theorem). Let (N,h) be a Rie-
mannian manifold, Ω ⊆ N an open set and let η, β, g ∈ C0(Ω) be continuous functions,
with β, g > 0. If u ∈ C0(Ω) satisfies

∆hu < η in Ω

in the distributional sense (equivalently, in the viscosity sense) and if for every x ∈ Ω
there exist a neighbourhood U ⊆ Ω and a constant B ∈ (0, β(x)) such that

|u(y1)− u(y2)| ≤ B disth(y1, y2) for every y1, y2 ∈ U,

then there exists v ∈ C∞(Ω) such that
∆hv < η in Ω,

‖∇v‖ < β in Ω,

|u(x)− v(x)| < g for every x ∈ Ω.

2. Constructions via distance functions

Let (M,σ) be a connected, complete Riemannian manifold and let r(x) = distσ(o, x)
be the distance function from a fixed origin o ∈M . The function r is Lipschitz continuous
on M with Lipschitz constant 1, but in general it is not smooth on M . In fact, we can say
that r is smooth on the open set Do = M \ ({o} ∪ cut(o)), where cut(o) is the cut locus
of o in M , as defined below.

As just anticipated, r is not differentiable at o regardless of the geometry of M .
However, it is always possible to find a neighbourhood U of o such that r is smooth on
U \ {o}. In particular, the Hessian of the function r has the asymptotic behaviour

Hess(r) =
1

r
(σ − dr ⊗ dr) + o(1) as r → 0
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(see [44], p. 194) and the function r2 is of class C2 in a neighbourhood of o, with

Hess(r2) = 2σ + o(1) as r → 0.

To introduce the definition of the cut locus cut(o), let us recall the following notion:
a geodesic curve γ : [a, b]→M is said to be a segment if it is length minimizing on [a, b],
that is, if

distσ(γ(c1), γ(c2)) = |c1 − c2| for every c1, c2 ∈ [a, b].

From the Hopf-Rinow theorem, completeness of M implies that every point x ∈ M is
joined to o by at least one segment. A point x ∈M is said to be a cut-point for o if there
exists a unit speed geodesic γ : R+

0 → M , with γ(0) = o, which is a segment between o
and x but not between o and γ(r(x) + ε) for any ε > 0. The set of cut points for o is
called the cut locus of o in M .

The function r2 is smooth on M \ cut(o), and r is smooth on M \ ({o} ∪ cut(o)).
A procedure introduced by Calabi (Calabi’s trick, [10]; see also proof of Lemma 7.1.9
in [44]) allows to construct families of (smooth) support functions for r at points of
cut(o): if x0 ∈ cut(o) is given and γ : [0, r(x0)] → M is a segment joining γ(0) = o and
γ(r(x0)) = x0, then x0 is not in the cut locus of any point of γ lying between o and x0, so
for every ε ∈ (0, r(x)) the distance function rε(x) = distσ(oε, x) from oε = γ(ε) is smooth
in a neighbourhood of x0. From the triangle inequality we have

r(x) ≤ rε(x) + ε

for every x ∈ M , with equality for every x lying on γ between oε and x0. In particular,
for every sufficiently small ε > 0 the function rε + ε is smooth in a neighbourhood of x0

and satisfies {
r ≤ rε + ε in M,

r(x0) = rε(x0) + ε

so it is a support function for r at x0.
The basic tool in the analysis of this section is the following standard Hessian com-

parison theorem for the distance function from a fixed origin in a Riemannian manifold
(see for instance Theorem 2.15 in [6] and the previous remarks.)

Theorem 3.5 (Hessian comparison theorem). Let (M,σ) be a Riemannian manifold.
Having fixed an origin o ∈ M , let r(x) = distσ(o, x) be the distance function from o. Let
γ : [0, R0]→M be a segment with γ(0) = o and let G : (0, R0)→ R be such that

K(γ̇(s) ∧X) ≥ −G(s) for every s ∈ (0, R0), X⊥γ̇(s)

If φ : (0, R0)→ R satisfies {
φ′ + φ2 ≥ G on (0, R0),

φ(s) = s−1 + o(1) as s→ 0

then

Hess r(γ(s)) ≤ φ(s) (σ − dr ⊗ dr) for every s ∈ (0, R0).

From Theorem 3.5 and Calabi’s trick we deduce the next Theorem 3.6, whose proof
relies on a construction described in the proof of Lemma 2.8 of [45]. We recall that if
o ∈M is given and x ∈M \({o}∪cut(o)), the radial sectional curvature Krad(x) associated
to o is the infimum of the sectional curvatures of tangent 2-planes π ≤ TxM such that
Dr ∈ π.

Theorem 3.6. Let (M,σ) be a complete Riemannian manifold. Let r(x) be the dis-
tance function from a reference origin o ∈ M , let G ∈ C1(R+

0 ) be non-decreasing, with
G(0) = α > 0, G′(0) = 0, and such that the radial sectional curvature satisfies

Krad ≥ −G(r) on Do = M \ ({o} ∪ cut(o)).
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Also let Ω ⊆M be an open domain and u ∈ C2(Ω), f ∈ C0(Ω) be such that

div

(
Du√

1 + |Du|2

)
= f.

Then, the function ψ : M → R+
0 defined by

ψ(x) = α

(∫ r(x)

0

ds√
G(s)

)2

for every x ∈M

is C2 on M \ cut(o), satisfies

‖∇ψ‖ ≤ 2
√
ψ, ∆gψ ≤ 2

(
(m− 1)

√
αψ coth

(√
αψ
)

+
√
ψ|f |+ 1

)
on Ω \ cut(o)

and for every x̄ ∈ Ω ∩ cut(o) there exist sequences of neighbourhoods {Uk} of x̄ and
functions ψk ∈ C2(Uk) such that

ψk ≥ ψ in Uk,
ψk(x̄) = ψ(x̄),

‖∇ψk‖(x̄) ≤ 2
√
ψ(x̄),

lim supk→+∞∆gψk(x̄) ≤ 2
(

(m− 1)
√
αψ(x̄) coth

(√
αψ(x̄)

)
+
√
ψ(x̄)|f |+ 1

)
.

Proof. Set H(t) =
∫ t

0

√
G(s)ds. The function φ(t) =

√
G(t) coth(H(t)) satisfies

φ′(t) =
G′(t)

2
√
G(t)

coth(H(t))−
√
G(t)H ′(t)

sinh2(H(t))
≥ − G(t)

sinh2(H(t))

because of G′ ≥ 0 and H ′ =
√
G, so it is a solution of{
φ′ + φ2 ≥ G on R+,

φ(s) = s−1 + o(1) as s→ 0,

where the validity of the second condition can be verified from asymptotic expansions
H(t) =

√
αt + O(t3), coth(t) = t−1 + O(t),

√
G(t) =

√
α + O(t2) as t → 0. From the

Hessian comparison Theorem 3.5, at every point x ∈ Do we have

Hess r(x) ≤ φ(r(x))(σ − dr ⊗ dr)

where inequality is to be intended with respect to the partial ordering of quadratic forms.
Having fixed a local coordinate system {xi}, this yields

gijrij ≤ φ(r(x))gij(σij − rirj)

because g is a positive definite quadratic form. The quadratic form φ(r)(σ − dr ⊗ dr) is
also non-negative and we have (gij) ≤ (σij), so we can further estimate

gijrij ≤ φ(r(x))σij(σij − rirj) = (m− 1)φ(r(x))

and by (20) and the Cauchy-Schwarz inequality

(42) ∆gr ≤ (m− 1)φ(r) + |f |.

We now introduce functions

h(t) =
√
α

∫ t

0

ds√
G(s)

, ϕ(x) = h(r(x))

in order to write ψ = ϕ2. As h′ ≥ 0 and h′′ ≤ 0, we have

∆gϕ ≤ h′(r)∆gr + h′′(r)‖∇r‖2 ≤ h′(r)∆gr,

∆gψ ≤ 2ϕ∆gϕ+ 2‖∇ϕ‖2 ≤ 2h′(r)h(r)∆gr + 2h′(r)2‖∇r‖2.
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From the monotonicity of G we have
√
G(t) ≥

√
α and then we can estimate

0 ≤ h′(t) =

√
α√
G(t)

≤ 1, 0 ≤ h(t) ≤ t, H(t) ≥
√
αt ≥

√
αh(t).

From the first two inequalities together with (42) and the definition of φ we obtain

2h′(r)h(r)∆gr ≤ 2(m− 1)
√
αh(r) coth(H(r)) + 2h(r)|f |

and then we can further estimate

2h′(r)h(r)∆gr ≤ 2(m− 1)
√
αh(r) coth(

√
αh(r)) + 2h(r)|f |

since the function coth is strictly decreasing on R+. From ‖∇r‖ ≤ |Dr| = 1 we also obtain

2h′(r)2‖∇r‖2 ≤ 2, ‖∇ψ‖ = 2h(r)‖∇r‖ ≤ 2h(r)

and then the first part of the thesis follows by observing that
√
ψ = ϕ = h(r).

We prove the second statement. Let x̄ ∈ Ω∩ cut(o). Choose a segment γ : [0, r(x̄)]→
M such that γ(0) = o and γ(r(x̄)) = x̄. Fix ε ∈ (0, r(x̄)), let oε = γ(ε), rε(x) = distσ(oε, x)
and define γε : [0, rε(x̄)]→M by setting

γε(s) = γ(s+ ε) for every s ∈ [0, rε(x̄)].

The curve γε can be extended to a segment on a slightly larger interval [0, rε(x̄) + ε′], for
some ε′ > 0, and satisfies γ̇ε(s) = γ̇(s+ ε) for every 0 ≤ s ≤ rε(x̄). Then

K(γ̇ε(s) ∧X) ≥ −G(s+ ε) for every s ∈ (0, rε(x̄)), X⊥γ̇ε(s).
Since the function rε is of class C2 in a neighbourhood of x̄, we can repeat the same

reasoning as above. We set Gε(s) = G(s + ε), αε = Gε(0), Hε(t) =
∫ t

0

√
Gε(s)ds. The

function φε(t) = α−1
ε

√
Gε(s) coth(Hε(t)) satisfies{

φ′ε + φ2
ε ≥ Gε on R+,

φε(s) = s−1 +O(1) as s→ 0

and we are led to
∆grε(x̄) ≤ (m− 1)φε(rε(x̄)) + |f |.

Then, we define
ψε(x) = h(rε(x) + ε)2

where h is the same function as above. Since rε(x) + ε ≥ r(x) on M , with equality at
x̄, and h is non-decreasing, we have ψε ≥ ψ with equality at x̄. Estimating as above we
obtain

∆gψε ≤ 2h′(rε + ε)h(rε + ε)∆grε + 2h′(rε + ε)2‖∇rε‖2

≤ 2h′(rε + ε)h(rε + ε)∆grε + 2

in a neighbourhood of x̄. In particular, since rε(x̄) + ε = r(x̄), we have

∆gψε(x̄) ≤ 2h′(r(x̄))h(r(x̄))∆grε(x̄) + 2.

As ε → 0 we have φε → φ uniformly on compact subsets of R+, and rε(x̄) → r(x̄), then
φε(rε(x̄))→ φ(r(x̄)) and we obtain

lim sup
ε→0

∆gψε(x̄) ≤ 2
(

(m− 1)
√
αψ(x̄) coth

(√
αψ(x̄)

)
+
√
ψ(x̄)|f |+ 1

)
.

Moreover, for every ε > 0

‖∇ψε(x̄)‖ = 2h(r(x̄))‖∇rε‖2 ≤ 2h(r(x̄)) = 2
√
ψ(x̄).

Then, the conclusion follows by choosing ψk = ψεk for some sequence εk → 0. �

The second key result of this section, Theorem 3.10 below, is concerned with the case
of quadratic decay of the negative part of the curvature tensor. In order to prove it, we
need two computational results.
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Lemma 3.7. The function ψ(s) = s coth(s) satisfies

(43) ψ′(s) > 0, 1 < ψ(s) <
1 +
√

4s2 + 1

2
for every s > 0.

Proof. A straightforward computation yields

ψ′(s) =
sinh(s) cosh(s)− s

sinh2(s)
=

sinh(2s)− 2s

2 sinh2(s)
> 0 for s > 0.

Observing that ψ(s)→ 1 as s→ 0, this implies 1 < ψ(s) for every s > 0. In view of this,
we have equivalence

ψ(s) <
1 +
√

4s2 + 1

2
⇔ (2ψ(s)− 1)2 < 4s2 + 1 ⇔ ψ(s)2 − ψ(s) < s2.

By direct computation we have

ψ(s) + s2 − ψ(s)2 =
s sinh(s) cosh(s)− s2

sinh2(s)
= sψ′(s) > 0 for s > 0

and this concludes the proof of the claim. �

The proof of the next Lemma 3.9 relies on the following comparison theorem for
Riccati inequalities, drawn from Corollary 2.2 in [45].

Theorem 3.8 (Comparison theorem for Riccati inequalities). Let G ∈ C0(R+
0 ), let

T1, T2 > 0 and let φi ∈ AC((0, Ti)), i = 1, 2, satisfy{
φ′1 + φ2

1 ≤ G on (0, T1),

φ1(t) = t−1 +O(1) as t→ 0+,

{
φ′2 + φ2

2 ≥ G on (0, T2),

φ2(t) = t−1 +O(1) as t→ 0+.

Then T1 ≤ T2 and φ1 ≤ φ2 on (0, T1).

Lemma 3.9. Let c > 0. The asymptotic Cauchy problem

(44)

φ′(s) + φ(s)2 =
c2

1 + s2
for s ∈ R+,

φ(s) = s−1 +O(1) as s→ 0

has a global solution φ ∈ C1(R+) satisfying

φ(s) ≤ 1 +
√

4c2 + 1

2s
for every s > 0.

Proof. The Cauchy problemh′′(s) =
c2

1 + s2
h(s),

h(0) = 0, h′(0) = 1

has a global solution h ∈ C1(R+
0 )∩C2(R+) satisfying h > 0 on R+. The function φ = h′/h

is then a solution of (44). We define functions

φ0(s) = c coth(cs), φ1(s) =
c′

s
with c′ =

1 +
√

4c2 + 1

2
.

A direct computation shows that

φ′0(s) + φ0(s)2 = c2 ≥ c2

1 + s2

while φ(s) = s−1 + o(1) as s→ 0. From the comparison theorem for Riccati inequalities,
Theorem 3.8 we deduce φ ≤ φ0 on R+. Then, by (43) we have φ(1) ≤ φ0(1) = c coth(c) <
c′ = φ1(1). We compute

φ′1(s) + φ1(s)2 =
c′(c′ − 1)

s2
=
c2

s2
≥ c2

1 + s2
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and then we apply again the comparison theorem for Riccati inequalities to deduce φ ≤ φ1

on [1,+∞). From Lemma 3.7, for every 0 < s < 1 we can estimate

φ0(s) = c coth(cs) =
cs coth(cs)

s
≤ c coth(c)

s
≤ c′

s
= φ1(s)

and this, together with φ ≤ φ0, yields φ ≤ φ1 on R+. �

Theorem 3.10. Let (M,σ) be a complete Riemannian manifold. Let r(x) be the
distance function from a reference origin o ∈M and assume that

Krad ≥ −
c2

1 + r2
on Do = M \ ({o} ∪ cut(o))

for some c ≥ 0. Also let Ω, u, f be as in Theorem 3.6. Then

∆gr
2 ≤ (m− 1)

(
1 +

√
4c2 + 1

)
+ 2r|f |+ 2 on Ω \ cut(o)

and for every x̄ ∈ Ω ∩ cut(o) there exist sequences of neighbourhoods Uk of x̄ and a
functions ψk ∈ C2(Uk) such that

ψk ≥ ψ in Uk,
ψk(x̄) = ψ(x̄),

‖∇ψk‖(x̄) ≤ 2r(x̄),

lim supk→+∞∆gψk(x̄) ≤ (m− 1)
(
1 +
√

4c2 + 1
)

+ 2r(x̄)|f |+ 2.

Proof. From the Hessian comparison theorem and Lemma 3.9, and estimating as in
the proof of Theorem 3.6, we obtain

∆gr ≤
(m− 1)

(
1 +
√

4c2 + 1
)

2r
+ |f | on Ω ∩Do,

∆gr
2 = 2r∆gr + 2‖∇r‖2 ≤ (m− 1)

(
1 +
√

4c2 + 1
)

+ 2r|f |+ 2 on Ω \ cut(o).

Let x̄ ∈ Ω∩ cut(o). Choose a segment γ : [0, r(x̄)]→M such that γ(0) = o and γ(r(x̄)) =
x̄. Fix ε ∈ (0, r(x̄)), let oε = γ(ε), rε(x) = distσ(oε, x) and define γε : [0, rε(x̄)] → M by
setting

γε(s) = γ(s+ ε) for every s ∈ [0, rε(x̄)].

The curve γε can be extended to a segment on a slightly larger interval [0, rε(x̄) + ε′], for
some ε′ > 0, and satisfies γ̇ε(s) = γ̇(s+ ε) for every 0 ≤ s ≤ rε(x̄). Then

K(γ̇ε(s) ∧X) ≥ − c2

1 + (s+ ε)2
≥ − c2

1 + s2
for every s ∈ (0, rε(x̄)), X⊥γ̇ε(s).

From the Hessian comparison Theorem 3.5 and Lemma 3.9 we have

∆grε(x̄) ≤ (m− 1)
1 +
√

4c2 + 1

2rε(x̄)
+ |f |.

Setting ψε = (rε + ε)2, we have ψε ≥ r2, with equality at x̄, and

‖∇ψε‖(x̄) ≤ 2r(x̄), ∆gψε(x̄) ≤ (m− 1)
(

1 +
√

4c2 + 1
) r(x̄)

rε(x̄)
+ 2r(x̄)|f |+ 2.

The desired conclusion then follows by choosing ψk = ψεk for some sequence εk → 0. �
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3. Construction via potential theory

Let (M,σ) be a complete Riemannian manifold, Ω ⊆ M an open domain and u ∈
C2(Ω). In this section we show that if the graph Σ = {(x, u(x)) : x ∈ Ω} has bounded
mean curvature in M × R and M , ∂Ω, u|∂Ω do satisfy some mild requirements of global
geometric nature, then for any fixed base point q ∈ Ω the volume of geodesic balls Bgr (q) of
(Ω, g) (equivalently, the volume of geodesic balls of the graph (Σ, g) centered at (q, u(q)) ∈
Σ) satisfies

(45) lim inf
r→+∞

log |Bgr (q)|
r2

< +∞.

Starting from this fact, we will prove that for every subdomain Ω0 ⊆ Ω with Ω0 ⊆ Ω and
for every p ∈ Ω0, λ > 0 there exists a smooth function ψ : Ω0 → [0,+∞) satisfying

ψ(p) = 1,

ψ > 1 on Ω0 \ {p},
ψ(x)→ +∞ as distσ(p, x)→∞,
∆gψ ≤ λψ on Ω0.

This will be done by isometrically embedding Ω0 in a complete Riemannian manifold
without boundary (N,h) satisfying a volume growth condition analogous to (45) and by
showing that on such manifold, for every q ∈ N , there exists a smooth ψ0 : N → [0,+∞)
satisfying 

ψ0(q) = 1,

ψ0 > 1 on N \ {q},
ψ0(x)→ +∞ as x→∞ in N,

∆hψ0 ≤ λψ in N.

The first step in this direction is given by Lemma 3.12 below, whose proof relies on a
calibration argument due to Trudinger, [54], and on a basic inequality proved in the next
Lemma 3.11. Hereafter, for any o ∈ M , notation Br(o) will indicate Bσr (o), that is, the
geodesic ball of radius r > 0 and center o in (M,σ).

Lemma 3.11. Let (M,σ) be a complete Riemannian manifold, Ω ⊆M an open subset,
u ∈ C2(Ω). Let o ∈ M , p ∈ Ω, a ∈ R and set d = max{distσ(o, p), |u(p)− a|}. For every
d < R and for every Ω0 ⊆ Ω,

(46) |Ω0 ∩BgR−d(p)|g ≤
∫
AR

W dxσ ≤ |Ω0 ∩BR(o)|σ +

∫
AR

|Du|2

W
dxσ

where AR = BR(o) ∩ {x ∈ Ω0 : |u(x)− a| < R} and | · |g, | · |σ denote volume measures
induced by g and σ, respectively.

Proof. The map idΩ : Ω → Ω is distance decreasing from (Ω, g) to (Ω, σ), so we
have BgR−d(p) ⊆ BR−d(p). From triangle inequality and from the definition of d we also
have

BR−d(p) ⊆ BR−d+distσ(o,p)(o) ⊆ BR(o).

Since ‖∇u‖ < 1 in Ω, we also have BgR−d(p) ⊆ {x ∈ Ω : |u(x)− u(p)| < R− d} and again
from triangle inequality and definition of d we obtain

BR−d(p) ⊆ {x ∈ Ω : |u(x)− a| < R− d+ |u(p)− a|}
⊆ {x ∈ Ω : |u(x)− a| < R}.

The above inclusions yield Ω0 ∩BgR−d(p) ⊆ AR and then we have

|Ω0 ∩BgR−d(p)|g =

∫
Ω0∩BgR−d(p)

1 dxg =

∫
Ω0∩BgR−d(p)

W dxσ ≤
∫
AR

W dxσ.
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Observing that W = |Du|2
W + 1

W ≤
|Du|2
W + 1 and AR ⊆ Ω0 ∩BR(o) we further estimate∫

AR

W dxσ ≤
∫
AR

|Du|2

W
dxσ + |AR|σ ≤

∫
AR

|Du|2

W
dxσ + |Ω0 ∩BR(o)|σ.

�

Lemma 3.12. Let (M,σ) be a complete Riemannian manifold, Ω ⊆M an open subset,
u ∈ C2(Ω). Let o ∈ M , p ∈ Ω, a ∈ R and set d = max{distσ(o, p), |u(p) − a|}. Also
let Ω0 ⊆ Ω be a subdomain with smooth boundary and such that Ω0 ⊆ Ω. For every
d < R < R1,

|Ω0 ∩BgR−d(p)|g ≤ |Ω0 ∩BR(o)|σ +
R

R1 −R
|Ω0 ∩BR1(o) \BR(o)|σ+

+R

∫
Ω0∩BR1

(o)

|f |dxσ +

∫
(∂Ω0)∩BR1

(o)

min{R, |u− a|}dHm−1
σ

(47)

where

f = div

(
Du√

1 + |Du|2

)
.

Proof. Consider the functions uR, ψ defined by

uR =


−R if u < a−R,
u− a if a−R ≤ u ≤ a+R,

R if u > a+R,

ψ(x) =


1 if x ∈ BR(o),
R1 − r(x)

R1 −R
if x ∈ BR1

(o) \BR(o),

0 if x ∈M \BR1(o).

Note that |ψuR| = ψ|uR| ≤ |uR| = min{R, |u− a|}. The vector field

X = ψuR
Du

W
.

is defined and Lipschitz regular in a neighbourhood of Ω0 and is supported in the compact
set Ω ∩BR1

(o). Since ∂Ω0 is smooth, we can apply the divergence theorem with respect
to the Riemannian metric σ to obtain∫

Ω0

div (X) dxσ =

∫
∂Ω0

(X, ν) dHm−1
σ ,

where ν is the exterior normal to ∂Ω0. We compute the divergence of X

div (X) = ψuR div

(
Du

W

)
+ ψ

(DuR, Du)

W
+ uR

(Dψ,Du)

W

= ψuRf + ψ
|Du|2

W
1{|u−a|<R} −

uR
R1 −R

(Dr,Du)

W
1BR1

(o)\BR(o)

and then we can write∫
∂Ω0

ψuR
(Du, ν)

W
dHm−1

σ =

∫
{|u−a|<R}

ψ
|Du|2

W
dxσ +

∫
Ω0

ψuRf dxσ

− 1

R1 −R

∫
Ω0∩BR1

(o)\BR(o)

uR
(Dr,Du)

W
dxσ.
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We rearrange the terms and use Cauchy-Schwarz inequality to write∫
{|u−a|<R}

ψ
|Du|2

W
dxσ ≤

1

R1 −R

∫
Ω0∩BR1

(o)\BR(o)

|uR|
|Du|
W

dxσ

+

∫
Ω0

ψ|uR||f |dxσ +

∫
∂Ω0

ψ|uR|
|Du|
W

dHm−1
σ

Since ψ ≡ 1 on BR(o), ψ ≡ 0 on M \ BR1
(o) and 0 ≤ ψ ≤ 1 on M , using inequalities

|Du| < W and |uR| = min{R, |u− a|} ≤ R we obtain∫
AR

|Du|2

W
dxσ ≤

R

R1 −R
|Ω0 ∩BR1(o) \BR(o)|σ

+R

∫
Ω0∩BR1

(o)

|f |dxσ +

∫
(∂Ω0)∩BR1

(o)

min{R, |u− a|}dHm−1
σ

where AR = BR(o)∩ {x ∈ Ω0 : |u(x)− a| < R}. Then the desired conclusion follows from
Lemma 3.11. �

Theorem 3.13. Let (M,σ) be a complete Riemannian manifold satisfying

(48) Ric(Dr,Dr) ≥ −α2(1 + r)2 on Do = M \ ({o} ∪ cut(o))

for some α ≥ 0 and some reference origin o ∈ M , where r(x) = distσ(o, x). Let Ω ⊆ M
be an open domain and let u ∈ C2(Ω) satisfy

div

(
Du√

1 + |Du|2

)
= f

for some bounded function f : Ω → R. Assume that one of the following conditions is
satisfied:

a) Ω = M ,
b) u ∈ C0(Ω) and u|∂Ω is constant,
c) ∂Ω is locally Lipschitz and

(49) lim inf
r→+∞

logHm−1
σ ((∂Ω) ∩Br(o))

r2
< +∞,

d) u ∈ C0(Ω), ∂Ω is locally Lipschitz and for some u0 ∈ R

(50) lim inf
r→+∞

log

∫
(∂Ω)∩Br

min{r, |u− u0|}dHm−1
σ

r2
< +∞.

Then, for any p ∈ Ω

lim inf
r→+∞

log |Bgr (p)|g
r2

< +∞.

Proof. Let C > 0 be such that |f | ≤ C on Ω, and let Ω0 ⊆ Ω, a, d be as in Lemma
3.12. For almost every r > 0 the geodesic ball Br(o) has Lipschitz regular boundary and
from the coarea formula we have

lim
R1→r

|Ω0 ∩BR1
(o) \Br(o)|σ

R1 − r
= Hm−1

σ (Ω0 ∩ ∂Br(o)).

Then, by taking limits for R1 → r in (47), for almost every r > 0 we have

|Ω0 ∩Bgr−d(p)|g ≤ (1 + Cr)|Ω0 ∩Br(o)|σ + rHm−1
σ (Ω0 ∩ ∂Br(o))

+

∫
(∂Ω0)∩Br(o)

min{r, |u− a|}dHm−1
σ .

Case a). Let p = o, a = u(o), Ω0 = M . Then d = 0 and we have

(51) |Bgr (o)|g ≤ (1 + Cr)|Br(o)|σ + rHm−1
σ (∂Br(o)) .
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Case b). Let p ∈ Ω and let u0 be the constant value of u on ∂Ω. Let k ∈ N be given,
choose a regular value ak ∈ (u0, u0 + 1/k) for u and set Ωk = {x ∈ Ω : u(x) > ak}. With
the choice a = ak, Ω0 = Ωk we have u = a on ∂Ω0, so

|Ωk ∩Bgr−d(p)|g ≤ (1 + Cr)|Ωk ∩Br(o)|σ + rHm−1
σ (Ωk ∩ ∂Br(o))

The sequence {Ωk} monotonically converges from below to the set Ω+ = {x ∈ Ω : u(x) >
u0}, so we obtain

|Ω+ ∩Bgr−d(p)|g ≤ (1 + Cr)|Ω+ ∩Br(o)|σ + rHm−1
σ (Ω+ ∩ ∂Br(o)) .

A similar argument yields

|Ω− ∩Bgr−d(p)|g ≤ (1 + Cr)|Ω− ∩Br(o)|σ + rHm−1
σ (Ω− ∩ ∂Br(o))

with Ω− = {x ∈ Ω : u(x) < u0}, and then

|Ω∗ ∩Bgr−d(p)|g ≤ (1 + Cr)|Ω∗ ∩Br(o)|σ + rHm−1
σ (Ω∗ ∩ ∂Br(o))

having set Ω∗ = {x ∈ Ω : u(x) 6= u0}. From Stampacchia’s theorem (Theorem 1.56 of
[53]) we have |Du| = 0, and then W = 1, dxg = dxσ, almost everywhere on {u(x) = u0}.
Hence,

|Bgr−d(p) \ Ω∗|g = |Bgr−d(p) \ Ω∗|σ ≤ |Br(o) \ Ω∗|σ
and we conclude

(52) |Bgr−d(p)|g ≤ (1 + Cr)|Ω ∩Br(o)|σ + rHm−1
σ (Ω ∩ ∂Br(o)) .

Case c). Let p ∈ Ω, a = u(p). It is possible to find a smooth exhaustion {Ωk} of Ω,
that is, a sequence of open sets with smooth boundaries such that

Ωk ⊆ Ωk+1 ∀k ∈ N, Ω =
⋃
k∈N

Ωk,

with the additional property that

lim
k→+∞

Hm−1
σ ((∂Ωk) ∩Br(o)) = Hm−1

σ ((∂Ω) ∩Br(o)).

To justify this we refer to [48] and Theorem 5.1 in [16]: in the neighbourhood Ux̄ of any
point x̄ ∈ M it is possible to find a local chart φ : Ux̄ → V ⊆ Rm such that φ(Ux̄ ∩ Ω) =
{x ∈ V : xm > ψ(x1, . . . , xm−1)} and φ(Ux̄ ∩ ∂Ω) = {x ∈ V : xm = ψ(x1, . . . , xm−1)}
for some Lipschitz continuous function ψ : V0 → R defined on an open set V0 ⊆ Rm−1

such that V ⊆ V0 × R. By the aforementioned Theorem, there exists a sequence {ψk} of
smooth functions ψk : V0 → R such that

ψk > ψ for every k ≥ 1

ψk → ψ uniformly on V0 as k →∞,
∂xiψk → ∂xiψ in Lp(V0), for every p ≥ 1, as k →∞.

Then the sets {xm > ψk(x1, . . . , xm−1)} do approximate φ(Ux̄∩Ω) from the inside, and up
to extraction of a subsequence we can assume that they form a monotonically increasing
sequence with respect to inclusion. Integration with respect to the Hausdorff measure
induced from σ on the hypersurface φ−1({x ∈ V : xm = ψk(x1, . . . , xm−1)}) can be

represented as integration against
√
σmm + 2

∑m−1
i=1 σim∂xiψk +

∑m−1
i,j=1 σ

ij∂xiψk∂xjψk in

Rm−1, and this converges to
√
σmm + 2

∑m−1
i=1 σim∂xiψ +

∑m−1
i,j=1 σ

ij∂xiψ∂xjψ in L1(V0)

as k → ∞. In turn, integration with respect to this weight in Rm−1 represents in-
tegration with respect to Hausdorff measure induced from σ on φ−1({x ∈ V : xm =
ψk(x1, . . . , xm−1)}) = Ux̄ ∩ ∂Ω. Coupling this basic construction with a partition of unity
one obtains sets Ωk with the desired properties.
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For every k ∈ R we can estimate∫
(∂Ωk)∩Br(o)

min{r, |u− a|}dHm−1
σ ≤ rHm−1

σ ((∂Ωk) ∩Br(o))

and then, choosing Ω0 = Ωk, we have

|Ωk ∩Bgr−d(p)|g ≤ (1 + Cr)|Ωk ∩Br(o)|σ + rHm−1
σ (Ωk ∩ ∂Br(o))

+ rHm−1
σ ((∂Ωk) ∩Br(o)).

Taking limits of both sides as k → +∞ we obtain

|Bgr−d(p)|g ≤ (1 + Cr)|Ω ∩Br(o)|σ + rHm−1
σ (Ω ∩ ∂Br(o))

+ rHm−1
σ ((∂Ω) ∩Br(o)).

(53)

Case d). Let p ∈ Ω, a = u0 and let {Ωk} be again a smooth exhaustion of Ω, with
the additional property that the restriction of Hm−1

σ to ∂Ωk weakly-star converge to the
restriction of Hm−1

σ to ∂Ω as k → +∞. In other words, we are assuming that

lim
k→+∞

∫
∂Ωk

ϕdHm−1
σ =

∫
∂Ω

ϕdHm−1
σ for every ϕ ∈ C0

c (Ω).

This is possible by the same argument outlined in the proof of Case c). Then for every
k ∈ N we have, choosing Ω0 = Ωk,

|Ωk ∩Bgr−d(p)|g ≤ (1 + Cr)|Ωk ∩Br(o)|σ + rHm−1
σ (Ωk ∩ ∂Br(o))

+

∫
(∂Ωk)∩Br(o)

min{r, |u− a|}dHm−1
σ ,

and taking limits of both sides we obtain

|Bgr−d(p)|g ≤ (1 + Cr)|Ω ∩Br(o)|σ + rHm−1
σ (Ω ∩ ∂Br(o))

+

∫
(∂Ω)∩Br(o)

min{r, |u− a|} dHm−1
σ .

(54)

By assumption (48), there exist constants C1, C2 > 0 such that

|Br(o)|σ,Hm−1
σ (∂Br(o)) ≤ C1e

C2r
2

for almost every r > 0. For a proof of this statement we refer to [45], Proposition 2.11.
In cases a) or b) this fact together with (51) or (52), respectively, yields

|Bgr−d(p)|g ≤ (1 + (C + 1)r)C1e
C2r

2

for every r > 0

and then the desired conclusion follows. In cases c) or d) the same conclusion follows by
evaluating inequality (53) or (54) along an appropriate diverging sequence {rk}. �

The second step in our construction is the following doubling theorem, whose proof
essentially reproduces the one given in [11].

Theorem 3.14. Let (M1, g1) be a connected Riemannian manifold and let U1 ⊆ M1

be an open, connected set with smooth boundary such that all bounded subsets of U1 have
compact closure in M1. Then there exist a connected, complete Riemannian manifold
(M2, g2), an open subset U2 ⊆ M2 and a diffeomorphism φ : U1 → U2 with the following
properties:

(a) φ : (U1, g1)→ (U2, g2) is an isometry
(b) for every p ∈ U1 and for every r ≥ 2 distg1(p, ∂U1) + 2

|Bg2r (φ(p))|g2 ≤ 2|U1 ∩Bg14r(p)|g1 + 6.
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Proof. The boundary ∂U1 is an embedded, smooth, orientable hypersurface in M1.
Let ν be the normal exterior vector field on ∂U1. There exists a continuous function
t0 : ∂U1 → (0, 1/2) such that the normal exponential map Ψ(x, t) = expx(tν(x)) is a
diffeomorphism between the set

D = {(x, t) ∈ ∂U1 × [0, 1] : t < t0(x)} ⊆ ∂U1 × [0, 1]

and its image Ψ(D) ⊆M1. We write the pull-back metric Ψ∗g1 on D as h = dt2 + ht, so
that ht is the pull-back of the restriction of g1 to Ψ(({t}× ∂U1)∩D). In particular, h0 is
the Riemannian metric induced by g1 on ∂U1. We can further assume that t0 is such that

(i) ht(x) ≥ 1
4h0(x) for every 0 ≤ t < t0(x),

(ii)
∫
∂U1

t0(x)
√
M(x)dx ≤ 1, where

M(x) = sup
0≤t≤ 3

4 t0(x)

max

{
‖ht(x, t)‖m−1

h0(x)

(m− 1)(m−1)/2
, 1

}
.

We now construct a smooth metric h̃ on the collar C1 = ∂U1× [0, 1] so that the following
conditions are satisfied:

(55) h̃(x, t) =

{
dt2 + ht(x) ≡ h(x, t) for t ≤ 1

2 t0(x),

dt2 + h0(x) for t ≥ 1− 1
2 t0(x),

and
|C1|h̃ ≤ 3.

In order to do so, consider a smooth cutoff function ϕ : C1 → [0, 1] and a positive smooth
function η : C1 → (0, 1] satisfying

ϕ(x, t) =

{
1 if t ≤ 1

2 t0(x),

0 if t ≥ 3
4 t0(x)

and

η(x, t)

{
= 1 for t ∈ [0, 1

2 t0(x)] ∪ [1− 1
2 t0(x), 1],

≤ t0(x)2 for t ∈ [t0(x), 1− t0(x)],

then set
h̃(x, t) = η(x, t)dt2 + ϕ(x, t)ht(x) + (1− ϕ(x, t))h0(x).

From assumptions on ϕ and η we immediately have the validity of (55). From the arith-
metic mean – geometric mean inequality we have

det dt2+h0
h̃(x, t) = η(x, t) det h0

[ϕ(x, t)ht(x, t) + (1− ϕ(x, t))h0(x, t)]

≤ η(x, t)
‖ϕ(x, t)ht(x, t) + (1− ϕ(x, t))h0(x, t)‖m−1

h0

(m− 1)(m−1)/2

≤ η(x, t) max

{
‖ht(x, t)‖m−1

h0

(m− 1)(m−1)/2
, 1

}
≤ η(x, t)M(x)

and then we can write

|C1|h̃ ≤
∫
∂U1

√
M(x)

∫ 1

0

√
η(x, t) dtdx ≤ 3

∫
∂U1

√
M(x)t0(x)dx ≤ 3.

Let Ũ1 be the smooth manifold with boundary obtained by gluing U1 and C1 along
their respective boundary components ∂U1 ⊆ U1 and ∂U1 × {0} ⊆ C1. Also let g̃1 be the

Riemannian metric on Ũ1 given by

g̃1 =

{
g1 on U1,

h̃ on C1.



34 3. GOOD EXHAUSTION FUNCTIONS

Since h̃ ≡ Ψ∗g1 in the intersection of C1 with a neighbourhood of ∂U1×{0}, we have that
g̃1 is a smooth Riemannian metric. Moreover, g̃1 equals the product metric dt2 + h0(x)

in a neighbourhood of the boundary ∂Ũ1 = ∂U1 × {1} ⊆ C1, so ∂Ũ1 is totally geodesic

in Ũ1 and the vector field ∂t belongs to the kernel of the Riemann curvature operator
of Ũ1 in a neighbourhood of ∂Ũ1. By a theorem due to Mori, [42], these conditions

are sufficient to ensure that the Riemannian manifold (M2, g2) obtained by gluing (Ũ1, g̃1)

with an isometric copy of itself, say (Ũ ′1, g̃
′
1), along the common boundary ∂Ũ1 is a smooth

Riemannian manifold. (M2, g2) is said to be a double of (Ũ1, g̃1).

The isometric embedding (U1, g1) ↪→ (Ũ1, g̃1) naturally extends to an isometric em-
bedding (U1, g1) ↪→ (M2, g2). Choosing U2 as the image of U1 under such embedding and
letting φ : U1 → U2 be the resulting diffeomorphism, we have that φ : (U1, g1)→ (U2, g2)
is a Riemannian isometry. It remains to show that (M2, g2) is complete and that condition
(b) is satisfied.

We first show that (M2, g2) is complete. For i = 1, 2, let Vi = Ui be the closure
of Ui in Mi and let distMi,gi and distVi,gi be the length distances induced by gi on Mi

and Vi, respectively. Our hypotheses imply that the space (V1,distV1,g1) is complete,

and the map φ : U1 → U2 continuously extends to a bijection φ : V1 → V2 that is
a Riemannian isometry between manifolds with boundary, hence (V2,distV2,g2) is also
complete. To show that (M2,distM2,g2) is complete, we construct a proper Lipschitz

retraction F : M2 → V2. Let us denote by f : Ũ1 → Ũ ′1 the isometry between (Ũ1, g̃1)

and its copy (Ũ ′1, g̃
′
1) considered in the construction of M2. We now regard Ũ1 and Ũ ′1 as

subsets of M2. The map F0 : M2 → Ũ1 given by

F0(x) =

{
x if x ∈ Ũ1,

f−1(x) otherwise

is a retraction. Let π : C1 → ∂U1 be the canonical projection onto the first factor. Note
that π(C1) = ∂U1 can be identified with the boundary ∂V2 ≡ ∂U2 of V2 in M2. The map

F1 : Ũ1 → V2 given by

F1(x) =

{
x if x ∈ V2,

π(x) otherwise

is also a retraction, and so is the composition F = F1 ◦F0 : M2 → V2. First, observe that
F is proper: indeed, for every compact set K ⊆ V2,

F−1
1 (K) = K ∪ ((K ∩ ∂V2)× [0, 1])

is compact, being a finite union of compact sets, and so is

F−1(K) = F−1
0 (F−1

1 (K)) = F−1
1 (K) ∪ f(F−1

1 (K)).

We also claim that F is 2-Lipschitz between (M2,distM2,g2) and (V2,distV2,g2). To this
aim, let x, y ∈M2 and ε > 0. We show that distV2,g2(F (x), F (y)) < 2 distM2,g2(x, y) + 2ε.
Let γ : [0, T ]→M2 be a curve joining x and y and such that `g2(γ) < distM2,g2(x, y) + ε.
Setting C = C1∪f(C1), by the transversality theorem (Theorem 2.1 in Chapter 3 of [26])
we can assume that γ is transversal to ∂C, so in particular F ◦ γ : I → V2 is a piecewise
smooth curve joining F (x) and F (y) and there exist 0 = s0 < s1 < s2 < · · · < sk = T
such that, letting Ij = (sj , sj+1), for each 0 ≤ j ≤ k − 1

γ(Ij) ⊆ Int(C) or γ(Ij) ⊆ U2 ∪ f(U2)

and for each 0 ≤ j ≤ k − 2 the images γ(Ij), γ(Ij+1) belong to distinct components of
M2 \ ∂C. If γ(Ij) ⊆ U2 ∪ f(U2) then

`g2((F ◦ γ)|Ij ) = `g2(γ|Ij ).
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On the other hand, assume that γ(Ij) ⊆ Int(C). Because of (i) in the definition of t0,

g2 = h̃ ≥ η(y, r)2dr2 +
1

4
h0(y) on C,

so for every tangent vector V ∈ TC we have

g2(π∗V, π∗V ) = h0(π∗V, π∗V ) ≤ 4g2(V, V ),

hence
`g2((F ◦ γ)|Ij ) ≤ 2`g2(γ|Ij ).

Summarizing,

distV2,g2(F (x), F (y)) ≤ `g2(F ◦ γ) ≤ 2`g2(γ) < 2 distM2,g2(x, y) + 2ε

as claimed. To conclude that (M2, g2) is complete, let {xk} be a Cauchy sequence in
(M2,distM2,g2). Then, {F (xk)} is a Cauchy sequence in (V2,distV2,g2) and therefore con-
verges to some y ∈ V2 by the above observation. The properness of F implies that {xk}
has a limit point in M2, hence it converges.

We next observe that for every x, y ∈ U2

distM1,g1(φ−1(x), φ−1(y)) ≤ distV1,g1(φ−1(x), φ−1(y))

= distV2,g2(x, y)

≤ 2 distM2,g2(x, y)

≤ 2 distV2,g2(x, y),

(56)

where the first inequality is obvious since (M1, g1) contains more curves joining φ−1(x)
and φ−1(y) than (V1, g1) does, the last inequality follows by similar reason, and the middle
inequality is a consequence of 2-Lipschitzianity of F , together with F|V2

= idV2
.

To conclude, let p ∈ U1 and r ≥ 2distM1,g1(p, ∂U1) + 2 be given. Let q = φ(p) ∈ U2

and let q′ = f(q) be the copy of q in f(U2), let R = distM2,g2(q, q′) and let Bg1r (p),
Bg2r (q) be the geodesic balls centered at p and q in (M1, g1) and (M2, g2), respectively.
By construction,

R ≤ 2distM1,g1(p, ∂U1) + 2 ≤ r
and thus

|Bg2r (q)|g2 = |Bg2r (q) ∩ U2|g2 + |Bg2r (q) ∩ C|g2 + |Bg2r (q) ∩ f(U2)|g2
≤ |Bg2r (q) ∩ U2|g2 + 2|C1|g2 + |Bg2r+R(q′) ∩ f(U2)|g2
≤ 2|Bg2r+R(q) ∩ U2|g2 + 6

≤ 2|Bg22r(q) ∩ U2|g2 + 6.

From (56) we have φ−1(Bg22r(q) ∩ U2) ⊆ Bg14r(p) ∩ U1, thus we conclude

|Bg2r (q)|g2 ≤ 2|Bg14r(p) ∩ U1|g1 + 6

as required.
�

The third step is represented by Proposition 3.16 and Theorem 3.17 below, whose
proofs reproduce the ones given in [11]. The proof of Proposition 3.16 is essentially a
particular case of a more general construction developed by Mari and Valtorta, [38]. The
following lemma, which we draw from Theorem 4.1 in [3], will be needed in it.

Lemma 3.15. Let (N,h) be a Riemannian manifold, Ω ⊆ N a relatively compact open
set, 0 ≤ λ ∈ L∞loc(Ω) a given function. If u, v ∈ H1

loc(Ω) do satisfy
∆v ≤ λv in Ω,

∆u ≥ λu in Ω,

u ≤ v on ∂Ω



36 3. GOOD EXHAUSTION FUNCTIONS

then u ≤ v on Ω.

Proposition 3.16. Let (N,h) be a complete Riemannian manifold whose geodesic
balls centered at some origin o ∈ N satisfy

(57) lim inf
r→+∞

log |Bhr (o)|h
r2

< +∞.

Then for any q ∈ N and λ > 0 there exists ψ0 ∈ C∞(N) satisfying

(58)


ψ0(q) = 1,

ψ0 > 1 on N \ {q},
ψ0(x)→ +∞ as x→∞ in N,

∆hψ0 ≤ λψ0 on N.

Proof. Let ε > 0 be small enough so that the geodesic ball B3ε(q) ⊆ N has compact
closure and the exponential map expq : B3ε(0TN ) → B3ε(q) is a diffeomorphism. Then
BR(q) has smooth boundary for every 0 < R < 3ε and the distance function from q is
smooth in B3ε(q) \ {q}. Let {Ωk} be a smooth exhaustion of N , that is, a sequence of
relatively compact open subsets with the property that

Ωk ⊆ Ωk+1 for every k ≥ 1,
⋃
k∈N

Ωk = N.

Without loss of generality, we assume that Bε(q) ⊆ Ω1. For every k ∈ N let uk be the
solution of the Dirichlet problem

∆uk = λuk in Ωk \Bε(q),
uk = 0 on ∂Bε(q),

uk = 1 on ∂Ωk.

We have 0 ≤ uk ≤ 1 on Ωk \ Bε(q) by Lemma 3.15 applied with couples of functions
(u, v) = (0, uk) and (u, v) = (uk, 1). The extension vk : N \Bε(q)→ [0, 1] of uk obtained
by setting vk ≡ 1 on N \Ωk is Lipschitz continuous and satisfies ∆vk ≤ λvk in the barrier

sense on N \Bε(q), and strongly on N \ (Bε(q) ∩ ∂Ωk).
From Lemma 3.15 we have that the sequence {vk} is monotone decreasing and then it

converges pointwise to some function v : N \Bε(q)→ [0, 1]. By standard elliptic estimates
and a diagonalization argument, up to extraction of a subsequence we have vk → v also in
the C2 topology on each compact subset of N \Bε(q), and v is a solution of the exterior
Dirichlet problem {

∆v = λv in N \Bε(q),
v = 0 on ∂Bε(q).

From assumption (57), the manifold (N,h) satisfies the weak maximum principle in the
sense of Pigola-Rigoli-Setti, see for instance Theorem 4.1 in [1], and it must be v ≤ 0. In
particular, v ≡ 0. Then {vk} is a sequence of non-negative functions converging to 0 in
the C2 topology on each compact subset of N \Bε(q). For every j ≥ 1 we can find kj ≥ 1
such that ‖vkj‖C2(Ωj\Bε(q)) ≤ 2−j . Without loss of generality, we can assume that the
sequence {kj}j is strictly increasing. The series

+∞∑
j=1

vkj

converges uniformly on compact subsets of N \Bε(q) to some function w : N \Bε(q)→ R+
0 .

For every j ≥ 1 we have vki = 1 on N \Ωi ⊇ N \Ωj for 1 ≤ i ≤ j, so w ≥ j on N \Ωj . As
{Ωj} is an exhaustion for N , it follows that w(x)→ +∞ as x→∞. Since each function

vkj is smooth on N \ {∂Ωk ∪Bε(q)} and the sets ∂Ωkj are pairwise disjoint, the function
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w satisfies ∆w ≤ λw in the barrier sense (and then also in the viscosity and distributional

sense) on N \Bε(q), and strongly on N \ (Bε(q) ∪
⋃
k≥1 ∂Ωk).

Let a > 0 be given. The function w1 = w + a satisfies ∆w1 ≤ λw = λw1 − λa <
λw1 − λa/2. By Greene-Wu approximation Theorem 3.4 we can find a smooth function

w̄ : N \Bε(q)→ R such that |w1 − w̄| < a/2 and ∆w̄ < λw1 − λa/2. Then, in particular,
we have 

∆w̄ ≤ λw̄ in N \Bε(q),
w̄ > a/2 in N \Bε(q),
w̄(x)→ +∞ as x→∞.

Let φ : N → [0, 1] be a smooth function such that φ ≡ 1 on B2ε(q) and φ ≡ 0 on
N \B3ε(q), then set z = (1 + r2)ψ + (1− ψ)(1 + w̄), with r(x) = disth(q, x) the distance
function from q. The function z is smooth and positive on N and satisfies

∆z ≤ C on B3ε(q),

∆z ≤ λz on N \B3ε(q),

z(q) = 1,

z > 1 on N \ {q},
z(x)→ +∞ as x→∞,

and then the function

ψ0 =
z + C/λ

1 + C/λ

satisfies all requirements in the statement. �

Theorem 3.17. Let (M,σ) be a connected, complete Riemannian manifold satisfying

Ric(Dr,Dr) ≥ −α2(1 + r)2 on Do = M \ ({o} ∪ cut(o))

for some κ ≥ 0, where r(x) = distσ(o, x) is the distance function from a fixed origin
o ∈M . Let Ω ⊆M be an open domain, let u ∈ C2(Ω) satisfy

div

(
Du√

1 + |Du|2

)
= f

for some bounded function f : Ω → R, and assume that one of conditions a), b), c), d)
in Theorem 3.13 holds. Then, for every open subset Ω0 ⊆ Ω with smooth boundary and
such that Ω0 ⊆ Ω and for every p ∈ Ω0, λ > 0 there exists a smooth function ψ : Ω0 → R
satisfying

(59)


ψ(p) = 0,

ψ > 0 on Ω0 \ {p},
ψ(x)→ +∞ as x→∞ in Ω0,

∆gψ + ‖∇ψ‖2 ≤ λ on Ω0.

Proof. By Theorem 3.13, the geodesic balls with center at p in the Riemannian
manifold (Ω, g) satisfy the volume growth condition

lim inf
r→+∞

log |Ω0 ∩Bgr (p)|g
r2

< +∞

and by Theorem 3.14 there exists an isometric embedding φ : (Ω0, g)→ (N,h) of Ω as an
open subset of a complete Riemannian manifold (N,h) whose geodesic balls centered at
q = φ(p) satisfy

lim inf
r→+∞

log |Bhr (q)|h
r2

< +∞.
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Moreover, the embedding φ extends up to the boundary to a diffeomorphism φ̄ : Ω0 →
φ(Ω0) ⊆ N . By Proposition 3.16 there exists ψ0 ∈ C∞(N) satisfying conditions (58).
Then the function ψ1 = ψ0 ◦ φ̄ ∈ C∞(Ω0) satisfies

ψ1(p) = 1,

ψ1 > 1 in Ω0 \ {p},
ψ1(x)→ +∞ as x→∞ in Ω0,

∆hψ1 ≤ λψ1 in Ω0.

and therefore ψ = logψ1 satisfies (59). �



CHAPTER 4

Global gradient bounds

1. Lower bounded solutions of the prescribed mean curvature equation

Let (M,σ) be a complete Riemannian manifold. In this section we consider a class of
prescribed mean curvature equations of the form

(60) div

(
Du√

1 + |Du|2

)
= f(x, u,

√
1 + |Du|2)

and we derive global gradient bounds for solutions u of (60) defined on open domains
Ω ⊆M (possibly with Ω = M) and satisfying u∗ = infΩ u > −∞.

If Ω = M and the Ricci curvature of M satisfies Ric ≥ −(m − 1)κ2 for some κ ≥ 0,
where m = dimM , then we prove that a lower bounded solution u ∈ C3(M) of (60)
satisfies √

1 + |Du|2 ≤ A0e
C0(u−u∗) on M

for some constants A0 > 1, C0 > 0 only depending on m, κ and on quantitative bounds on
f and its gradient. In case Ω 6= M , if Ric ≥ −(m− 1)κ2 in Ω then for the same constants
A0, C0 we can show that√

1 + |Du|2
eC0(u−u∗)

≤ max

{
A0, lim sup

x→∂Ω

√
1 + |Du(x)|2
eC0(u(x)−u∗)

}
on Ω

under additional global assumptions on the geometry of M and, possibly, on ∂Ω and
u|∂Ω. In particular, we reach the desired conclusion under each of the following sets of
hypotheses:

(RΩ) For some origin o ∈M , the Ricci curvature of M satisfies

Ric(Dr,Dr) ≥ −α2(1 + r)2 on Do = M \ ({o} ∪ cut(o))

for some constant α ≥ 0, where r(x) = distσ(o, x) is the distance function from
o ∈M and either

a) Ω = M ,
b) u ∈ C0(Ω) and u|∂Ω is constant,
c) ∂Ω is locally Lipschitz regular and

lim inf
r→+∞

log
(
Hm−1
σ (Bσr (o) ∩ ∂Ω)

)
r2

< +∞

where Hm−1
σ is the (m − 1)-dimensional Hausdorff measure induced by σ,

or
d) u ∈ C0(Ω), ∂Ω is locally Lipschitz regular and

lim inf
r→+∞

log
∫
Bσr (o)∩∂Ω

min{r, |u− u0|}dHm−1
σ

r2
< +∞

for some fixed constant u0 ∈ R.
(K) For some origin o ∈M , the radial sectional curvature of M satisfies

Krad ≥ −G(r) on Do

39
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for some positive, continuous, non-decreasing G : R+
0 → R+ such that

lim
r→+∞

∫ r

0

ds√
G(s)

= +∞.

Each of the assumptions above provides sufficient conditions for the existence of appro-
priate exhaustion functions. In particular:

i) if (M,σ) is complete and satisfies Ric ≥ −(m−1)κ2 and the graph of u ∈ C2(M)
has bounded mean curvature, then from Theorem 3.17 for every p ∈M and λ > 0
there exists ψ ∈ C∞(M) satisfying

ψ(p) = 0,

ψ ≥ 0 on M,

ψ(x)→ +∞ as x→∞ in M,

∆gψ + ‖∇ψ‖2 ≤ λ on M

ii) if (RΩ) is satisfied, Ω 6= M and the graph of u ∈ C2(Ω) has bounded mean
curvature, then, from Theorem 3.17 and the validity of either b), c), or d), for
every open subset Ω0 ⊆ Ω with Ω0 ⊆ Ω and for every p ∈ Ω0, λ > 0 there exists
ψ ∈ C∞(Ω0) such that

ψ(p) = 0,

ψ ≥ 0 on Ω0,

ψ(x)→ +∞ as r(x)→ +∞, x ∈ Ω0,

∆gψ + ‖∇ψ‖2 ≤ λ on Ω0

iii) if (K) is satisfied and the mean curvature of the graph of u ∈ C2(Ω) is bounded
in absolute value by C0 ≥ 0, then, up to further assuming G ∈ C1(R+

0 ) and
G′(0) = 0, by Theorem 3.6 the function ψ ∈ C2(M \ cut(o)) ∩ Lip(M) defined
by

ψ(x) =

(√
G(0)

∫ r(x)

0

ds√
G(s)

)2

satisfies

ψ(o) = 0,

ψ ≥ 0 on M,

ψ(x)→ +∞ as r(x)→∞,
∆gψ ≤ 2

(
(m− 1)

√
G(0)ψ coth

(√
G(0)ψ

)
+ C0

√
ψ + 1

)
on Ω,

‖∇ψ‖2 ≤ 4ψ on Ω

where the last two inequalities hold strongly on Ω\cut(o) and in the barrier sense
on Ω. More precisely, for every point x0 ∈ Ω ∩ cut(o) we can find a sequence of
open neighbourhoods Un ⊆ Ω of x0 and a sequence of functions ψn ∈ C2(Un)
satisfying

ψn ≥ ψ on Un, ψn(x0) = ψ(x0)

and

∆gψn ≤ 2
(

(m− 1)
√
G(0)ψ coth

(√
G(0)ψ

)
+ C0

√
ψ + 1

)
+

1

n
,

‖∇ψn‖2 ≤ 4ψ

at x0.
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Remark 4.1. We observe that in case iii) it is not restrictive to assume G ∈ C1(R+
0 )

and G′(0) = 0. Indeed, if G : R+
0 → R+ is continuous and non-decreasing then it is

possible to find G1 ∈ C1(R+
0 ) satisfying G′1 ≥ 0 on R+

0 , G ≤ G1 ≤ G + 1 on R+
0 and

G′1(0) = 0, and for such a function we still have

Krad ≥ −G1(r),

∫ +∞

0

ds√
G1(s)

= +∞.

Theorem 4.2. Let (M,σ) be a complete Riemannian manifold, Ω ⊆ M an open
domain, I ⊆ R an interval. Let E = Ω× I × [1,+∞) and let f ∈ C1(E) satisfy

(61) sup
E
|f | < +∞, |Dxf | ≤ C1,

∂f

∂y
≥ −C2

w
, −C3

w2
≤ ∂f

∂w
≤ C4

w2

for some constants C1, C2, C3, C4 ≥ 0, where (x, y, w) denotes the generic point of E. Let
u : Ω→ I, u ∈ C3(Ω), be a solution of equation

div

(
Du√

1 + |Du|2

)
= f(x, u,

√
1 + |Du|2) in Ω.

Suppose that u∗ = infΩ u > −∞ and that

Ric ≥ −(m− 1)κ2 in Ω

for some constant κ ≥ 0, where m = dimM . Also assume that either condition (RΩ) or
(K) is satisfied. Then there exist C0 > C3, A0 > 1, only depending on m,κ,C1, C2, C3,
such that

(62) sup
Ω

W

eC0(u−u∗)
≤ max

{
A0, lim sup

x→∂Ω

W (x)

eC0(u(x)−u∗)

}
.

In particular, (62) holds provided

(63) C2
0 − C0C3 > (m− 1)κ2 + C1 + C2,

(64) inf
(x,y,w)∈Ω×I×[A0,+∞)

(
f(x, y, w)2

m
− C0f(x, y, w)

w
+ C5

w2 − 1

w2
− C1

√
w2 − 1

w

)
> 0

for some auxiliary parameter C5 satisfying

(65) C1 < C5 < C2
0 − C0C3 − (m− 1)κ2 − C2.

Remark 4.3. A class of nonlinearities f = f(x, y, w) satisfying (61) is given by
functions of the form

f(x, y, w) = f1(x, y) +
f2(x, y)

w
with f1, f2 ∈ C1(Ω× I) such that

sup
E
|f1| < +∞, −C4 ≤ f2 ≤ C3, |Dxf1|+ |Dxf2| ≤ C1,

∂f1

∂y
≥ 0,

∂f2

∂y
≥ −C2.

Proof of Theorem 4.2. We divide the proof in two parts. In the first part, we
assume the validity of condition (RΩ) and we prove that (62) holds whenever C0 > C3,
A0 > 1 satisfy (63), (64) for some auxiliary C5 as in (65). In the second part, we assume
the validity of condition (K) and we point out the minor modifications needed to repeat
the same argument developed in the first part.

Part 1. Assume the validity of (RΩ). Let C0 > C3 and C5 > C1 satisfy (63) and
(65), then let A0 > 1 be such that (64) is satisfied. Observe that such A0 indeed exists,
as the term in brackets in (64) is larger than or equal to

−C0 sup |f |
w

+ C5
w2 − 1

w2
− C1

√
w2 − 1

w
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and this quantity has a positive limit C5 −C1 > 0 as w → +∞. Then, let δ0 > 0 be such
that

(66)
f(x, y, w)2

m
− C0f(x, y, w)

w
+ C5

w2 − 1

w2
− C1

√
w2 − 1

w
> δ0C0 sup |f |

for every (x, y, w) ∈ Ω× I × [A0,+∞), and also let τ ∈ (0, 1) be small enough so that

(67) C2
0 − C3C0 − 2τ

(
C0 +

max{C3, C4}
2

)2

− (m− 1)κ2 − C2 > C5.

Let z0 = We−C0v, with v = u − infΩ u. We suppose, by contradiction, that (62) is
not satisfied. Then there exists γ > 0 such that

sup
Ω
z0 > γ > max

{
A0, lim sup

x→∂Ω
z0(x)

}
and by Sard’s theorem we can assume that γ is a regular value for z0. Then the set
Ωγ = {x ∈ Ω : z0(x) > γ} has smooth boundary and Ωγ ⊆ Ω. From Theorem 3.17, there

exists a smooth function ψ : Ωγ → R+
0 satisfying

(68)

{
ψ(x)→ +∞ as x→∞ in Ωγ ,

∆gψ + ‖∇ψ‖2 ≤ 1 in Ωγ .

For any ε > 0, δ > 0 consider functions ηε,δ = e−C0v−εψ − δ, zε,δ = Wηε,δ. For every
ε, δ > 0 we have ηε,δ < e−C0v and then zε,δ < z0, so in particular

(69) sup
∂Ωγ

zε,δ ≤ sup
∂Ωγ

z0 = γ.

On the other hand, for (ε, δ) → (0, 0) we have ηε,δ → e−C0v, zε,δ → z0 pointwise on Ωγ .
So, for every sufficiently small ε, δ > 0 we have

(70) sup
Ωγ

zε,δ > γ.

Fix ε, δ > 0 small enough so that (70) is satisfied together with

(71)
1− τ
τ

ε ≤ 1, ε ≤ τ
(
C0 +

max{C3, C4}
2

)2
A2

0 − 1

A2
0

, δ < δ0,

then set η = ηε,δ, z = zε,δ.

The function v is non-negative, so η ≤ e−εψ − δ. In particular, {x ∈ Ωγ : η(x) ≥ 0}
is a subset of {x ∈ Ωγ : ψ(x) ≤ ε−1 log(1/δ)}, and the latter is a compact set because of
the first condition in (68). By continuity, z attains a global maximum on this set at some
point x̄. Since z < 0 whenever η < 0 and since (70) implies that z is positive somewhere
in Ωγ , we infer that z(x̄) is in fact the (positive) global maximum of z on Ωγ . Moreover,
from (70) we have z(x̄) > γ and then x̄ ∈ Ωγ due to (69). As x̄ is an interior maximum
point for z, from the maximum principle we have

(72) ∇z(x̄) = 0, ∆gz(x̄) ≤ 0.

From (35) we have that z satisfies the differential equation

∆gz −
2〈∇W,∇z〉

W
=
(
‖II‖2 + Ric(n,n) +W 〈∇f,∇u〉

)
Wη +W∆gη

=
(
‖II‖2 + Ric(n,n) +W 〈∇f,∇u〉

)
z+

+
(
−C0∆gv − ε∆gψ + ‖C0∇v + ε∇ψ‖2

)
W (η + δ).
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At points where η > 0 we can rewrite

∆gz −
2〈∇W,∇z〉

W
=
(
‖II‖2 + Ric(n,n) +W 〈∇f,∇u〉

)
z+

+

(
1 +

δ

η

)(
−C0∆gv − ε∆gψ + ‖C0∇v + ε∇ψ‖2

)
z

and then, from identities ∇v = ∇u, ∆gv = ∆gu = W−1f and estimates

‖II‖2 ≥ Trg(II)
2

m
=
f2

m
,

Ric(n,n) =
Ric(Du,Du)

W 2
≥ −(m− 1)κ2 |Du|2

W 2

we can further rewrite

∆gz −
2〈∇W,∇z〉

W
≥
(
f2

m
− (m− 1)κ2 |Du|2

W 2
+W 〈∇f,∇u〉

)
z+

+

(
1 +

δ

η

)(
−C0f

W
− ε∆gψ + ‖C0∇u+ ε∇ψ‖2

)
z.

Since z(x̄) > 0, from this inequality and (72) we deduce

0 ≥ f2

m
− (m− 1)κ2 |Du|2

W 2
+W 〈∇f,∇u〉+

+

(
1 +

δ

η

)(
−C0f

W
− ε∆gψ + ‖C0∇u+ ε∇ψ‖2

)
at x̄,

that is, after some rearrangements and recalling that ηW = z,

δC0f

z
≥ f2

m
− C0f

W
− (m− 1)κ2 |Du|2

W 2
+W 〈∇f,∇u〉+

+

(
1 +

δ

η

)(
−ε∆gψ + ‖C0∇u+ ε∇ψ‖2

)
.

(73)

We now proceed to estimate the RHS of (73) from below. We start from the term
W 〈∇f,∇u〉. In local coordinates {xi} around x̄ we have

df =

(
∂f

∂xi
+
∂f

∂y
ui +

∂f

∂w
Wi

)
dxi =: fidx

i

and then

〈∇u,∇f〉 = gij
(
∂f

∂xi
+
∂f

∂y
ui +

∂f

∂w
Wi

)
uj .

By gijuj = W−2σijuj and from (61) we can estimate

gij
∂f

∂xi
uj =

1

W 2
σij

∂f

∂xi
uj ≥ −

|Dxf ||Du|
W 2

≥ −C1
|Du|
W 2

,

gij
∂f

∂y
uiuj =

∂f

∂y

|Du|2

W 2
≥ −C2|Du|2

W 3
.

Recalling that ∇z = 0 at x̄, we have

dW = −W
η

dη = W

(
1 +

δ

η

)
(C0du+ εdψ)

and thus

gij
∂f

∂w
Wiuj = W

∂f

∂w

(
1 +

δ

η

)
〈∇u,C0∇u+ ε∇ψ〉.

Summing up, at x̄ we have

W 〈∇u,∇f〉 ≥ −C1
|Du|
W
− C2

|Du|2

W 2
+W 2 ∂f

∂w

(
1 +

δ

η

)
〈∇u,C0∇u+ ε∇ψ〉
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and then from (73) we obtain

δC0f

z
≥ f2

m
− δC0f

W
− (m− 1)κ2 |Du|2

W 2
− C1

|Du|
W
− C2

|Du|2

W 2
+

+

(
1 +

δ

η

)(
−ε∆gψ + ‖C0∇u+ ε∇ψ‖2 +W 2 ∂f

∂w
〈∇u,C0∇u+ ε∇ψ〉

)
.

(74)

We now turn our attention to the last pair of brackets. Direct computation and an
application of Cauchy-Schwarz’s and Young’s inequalities yield

‖ε∇ψ + C0∇u‖2 +W 2 ∂f

∂w
〈∇u,C0∇u+ ε∇ψ〉 =

= ε2‖∇ψ‖2 +

(
C2

0 + C0W
2 ∂f

∂w

)
‖∇u‖2 +

(
2C0 +W 2 ∂f

∂w

)
ε〈∇u,∇ψ〉

≥ ε2‖∇ψ‖2 +

(
C2

0 + C0W
2 ∂f

∂w

)
‖∇u‖2 − τ

(
C0 +

W 2

2

∂f

∂w

)2

‖∇u‖2 − 1

τ
ε2‖∇ψ‖2.

From (61) we have

C2
0 + C0W

2 ∂f

∂w
≥ C2

0 − C0C3,

(
C0 +

W 2

2

∂f

∂w

)2

≤
(
C0 +

max{C3, C4}
2

)2

,

then

‖ε∇ψ + C0∇u‖2 +W 2 ∂f

∂w
〈∇u,C0∇u+ ε∇ψ〉 ≥

≥

(
C2

0 − C0C3 − τ
(
C0 +

max{C3, C4}
2

)2
)
‖∇u‖2 − 1− τ

τ
ε2‖∇ψ‖2

and therefore

−ε∆gψ + ‖C0∇u+ ε∇ψ‖2 +W 2 ∂f

∂w
〈∇u,C0∇u+ ε∇ψ〉 ≥

≥

(
C2

0 − C0C3 − τ
(
C0 +

max{C3, C4}
2

)2
)
‖∇u‖2 − ε

(
∆gψ +

1− τ
τ

ε‖∇ψ‖2
)
.

From the second condition in (68) and the first two conditions in (71), we can estimate

ε

(
∆gψ +

1− τ
τ

ε‖∇ψ‖2
)
≤ ε

(
∆gψ + ‖∇ψ‖2

)
≤ ε ≤ τ

(
C0 +

max{C3, C4}
2

)2
A2

0 − 1

A2
0

.

Now recall that z(x̄) > γ > A0. Since η ≤ 1, this implies W (x̄) > A0, that is,

‖∇u‖2 =
|Du|2

W 2
=
W 2 − 1

W 2
≥ A2

0 − 1

A2
0

at x̄.

Then we can estimate

ε

(
∆gψ +

1− τ
τ

ε‖∇ψ‖2
)
≤ τ

(
C0 +

max{C3, C4}
2

)2

‖∇u‖2

and consequently

−ε∆gψ + ‖C0∇u+ ε∇ψ‖2 +W 2 ∂f

∂w
〈∇u,C0∇u+ ε∇ψ〉 ≥

≥

(
C2

0 − C0C3 − 2τ

(
C0 +

max{C3, C4}
2

)2
)
|Du|2

W 2

>
(
C5 + (m− 1)κ2 + C2

) |Du|2
W 2
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where we have also used (67). Since the last term of this chain of inequalities is positive,
we further have(

1 +
δ

η

)(
−ε∆gψ + ‖C0∇u+ ε∇ψ‖2 +W 2 ∂f

∂w
〈∇u,C0∇u+ ε∇ψ〉

)
>

>
(
C5 + (m− 1)κ2 + C2

) |Du|2
W 2

.

Substituting this into (74) we obtain

(75)
δC0f

z
>
f2

m
− C0f

W
+ C5

|Du|2

W 2
− C1

|Du|
W

at x̄.

Since z(x̄) > A0 > 1, from the third inequality in (71) we have

(76)
δC0f

z
≤ δC0 sup |f | ≤ δ0C0 sup |f | at x̄.

Since W (x̄) ≥ z(x̄) > A0 and |Du| =
√
W 2 − 1, from (66) we also have

(77)
f2

m
− C0f

W
+ C5

|Du|2

W 2
− C1

|Du|
W

> δ0C0 sup |f | at x̄

and comparing (75), (76) and (77) we obtain the desired contradiction.
Part 2. We assume the validity of (K). We repeat verbatim the initial section of Part

1, up to the definition of set Ωγ . In particular, we let δ0 and τ be as in (66) and (67).
From Theorem 3.6 we have the existence of a function ψ : M → R+

0 satisfying

(78)


ψ(x)→ +∞ as r(x)→∞,
∆gψ ≤ 2

(
(m− 1)

√
αψ coth

(√
αψ
)

+
√
ψ supE |f |+ 1

)
on Ωγ ,

‖∇ψ‖ ≤ 2
√
ψ on Ωγ

in the barrier sense, for some α > 0. For every t > 0, let

ε(t) = t−3/4,

δ(t) = e−t
1/4

,

Q(t) = 2ε(t)

(
(m− 1)

√
αt coth(

√
αt) +

√
t sup
E
|f |+ 1

)
+ 4

1− τ
τ

ε(t)2t.

As t→ +∞ we have

coth(
√
αt)→ 1, ε(t)

√
t→ 0, δ(t)→ 0

so there exists T0 > 0 such that

Q(t) < τ

(
C0 +

max{C3, C4}
2

)2
A2

0 − 1

A2
0

, δ(t) < δ0

for every t > T0.
For every t > 0 let us also set

ηt = e−C0v−ε(t)ψ − δ(t), zt = Wηt, Ωγ,t = {x ∈ Ωγ : ψ(x) < t}.

We have zt ≤ z0 in Ωγ and zt → z0 pointwise as t→ +∞. Then, for every t > 0

sup
∂Ωγ

zt ≤ γ

and there exists t > T0 such that

sup
Ωγ

zt > γ.

Since γ > 0, in fact one has

sup
Ωγ

zt = sup
{zt>0}

zt = sup
{ηt>0}

zt
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and since ηt ≤ e−ε(t)ψ − δ(t) = e−t
−3/4ψ − e−t1/4 we have {ηt > 0} ⊆ {ψ < t} = Ωγ,t. The

closure Ωγ,t is compact by the properness of ψ, so there exists a point x̄ ∈ Ωγ,t such that

zt(x̄) = max
Ωγ,t

zt = sup
Ωγ

zt > γ.

In particular, x̄ ∈ Ωγ,t. Let k ∈ N be such that

(79) Q(t) +
1

k
< τ

(
C0 +

max{C3, C4}
2

)2
A2

0 − 1

A2
0

.

Since ψ satisfies (78) in the barrier sense, there exist a neighbourhood U ⊆ Ωγ,t of x̄ and
a function ψk ∈ C2(U) satisfying

(80)


ψk ≥ ψ in U,

ψk(x̄) = ψ(x̄),

ε(t)∆gψk(x̄) +
1− τ
τ

ε(t)2‖∇ψk(x̄)‖2 < Q(t) +
1

k
.

Fix ε = ε(t), δ = δ(t). The function z = e−C0v−εψk − δ satisfies

z ≤ zt ≤ zt(x̄) = z(x̄) in U

so x̄ is an interior maximum point for z in U . The function z is of class C2(U), so from
the maximum principle we have

∇z(x̄) = 0, ∆gz(x̄) ≤ 0.

Also observe that ψk satisfies

ε∆gψk(x̄) +
1− τ
τ

ε2‖∇ψk(x̄)‖2 < τ

(
C0 +

max{C3, C4}
2

)2
A2

0 − 1

A2
0

as a consequence of (79) and (80). From this point on, the argument proceeds exactly as
in Part 1. �

2. Liouville theorems and other consequences

In this section we derive some consequences from the general gradient bound given in
Theorem 4.2. Let us recall the definition of conditions (RΩ) and (K).

(RΩ) For some origin o ∈M , the Ricci curvature of M satisfies

Ric(Dr,Dr) ≥ −α2(1 + r2) on Do = M \ ({o} ∪ cut(o))

for some α ≥ 0, where r(x) = distσ(o, x) is the distance function from o ∈ M ,
and, given Ω ⊆ M and u ∈ C2(Ω), one of conditions a), b), c), d) of Theorem
3.13 is satisfied.

(K) For some origin o ∈M , the radial sectional curvature of M satisfies

Krad ≥ −G(r) on Do

for some continuous, non-decreasing G : R+
0 → R+ such that 1/

√
G 6∈ L1(+∞).

2.1. Bounded solutions have bounded gradient. The first, more immediate
consequence of Theorem 4.2 is that bounded entire solutions of equation (60), with f as in
(61), have bounded gradient, and bounded solutions defined on proper subdomains Ω (M
have bounded gradient in Ω if their gradient is uniformly bounded in a neighbourhood of
∂Ω.
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Corollary 4.4. Let (M,σ) be a complete Riemannian manifold, Ω ⊆ M an open
domain, I ⊆ R an interval. Let E = Ω× I × [1,+∞) and let f ∈ C1(E) satisfy

sup
E
|f | < +∞, |Dxf | ≤ C1,

∂f

∂y
≥ −C2

w
, −C3

w2
≤ ∂f

∂w
≤ C4

w2

for some constants C1, C2, C3, C4 ≥ 0. Let u : Ω→ I, u ∈ C3(Ω), be a solution of equation

div

(
Du√

1 + |Du|2

)
= f(x, u,

√
1 + |Du|2) in Ω

and suppose that either (RΩ) or (K) holds. If

sup
Ω
|u| < +∞, lim sup

x→∂Ω
|Du(x)| < +∞

and

Ric ≥ −(m− 1)κ2 in Ω

for some constant κ ≥ 0, then

sup
Ω
|Du| < +∞.

To illustrate other consequences of Theorem 4.2, we need to establish a preliminary
lemma. Roughly speaking, our aim is to precise under which conditions we will be able
to let C0 ↘ C in the estimate (62), with C ≥ C3 satisfying

C2 − CC3 = (m− 1)κ2 + C1 + C2,

while keeping A0 uniformly bounded.

Lemma 4.5. Let C1, C2, C3,K ≥ 0 be real numbers and let C ≥ C3 satisfy

(81) C2 − CC3 = K + C1 + C2.

i) If C1 = 0 then there exists ε0 > 0 with the following property: for every ε ∈ (0, ε0)
there exist C0 ∈ (C,C + ε) and A0 ∈ (1, 1 + ε) such that

inf
s≤0,w≥A0

(
s2

m
− C0s

w
+ C5

w2 − 1

w2

)
> 0

for every 0 < C5 < C2
0 − C0C3 −K − C2.

ii) If C1 = C2 = C3 = K = 0 then there exist ε0 > 0 and A ≥ 1 with the following
property: for every ε ∈ (0, ε0) there exist C0 ∈ (0, ε) and C5 ∈ (C2

0/2, C
2
0 ) such

that

inf
s≥0,w≥A

(
s2

m
− C0s

w
+ C5

w2 − 1

w2

)
> 0.

iii) Let 0 < H0 ≤ H1 < +∞. Then there exist ε0 > 0 and A ≥ 1 with the following
property: for every ε ∈ (0, ε0) there exists C0 ∈ (C,C + ε) such that

inf
H0≤|s|≤H1,w≥A

(
s2

m
− C0s

w
+ C5

w2 − 1

w2
− C1

√
w2 − 1

w

)
> 0

for every C1 < C5 < C2
0 − C0C3 −K − C2.

Proof. Statement i) follows from the observation that, for any C0 > 0, C5 > 0,
A0 > 1 and for every s ≤ 0, w ≥ A0

s2

m
− C0s

w
+ C5

w2 − 1

w2
≥ C5

w2 − 1

w2
≥ C5

A2
0 − 1

A2
0

> 0.
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ii) Let A >
√

1 + m
2 . For every C0 > 0, C5 > C2

0/2 and for every s ≥ 0, w ≥ A we
have

s2

m
− C0s

w
+ C5

w2 − 1

w2
≥ s2

m
− C0s

w
+
C2

0

2

w2 − 1

w2

= m

(
s

m
− C0

2w

)2

− mC2
0

4w2
+
C2

0

2

w2 − 1

w2

≥ −mC
2
0

4A2
+
C2

0

2

A2 − 1

A2
=

C2
0

2A2

(
A2 − 1− m

2

)
> 0

iii) Let ε0 > 0. There exists A ≥ 1 such that

H2
0

m
− (C + ε0)H1

A
+ C1

(√
A2 − 1

A
− 1

)
> 0.

For every C0 ∈ (C,C + ε0) and H0 ≤ |s| ≤ H1, w ≥ A we can estimate

s2

m
− C0s

w
≥ H2

0

m
− C0H1

A
≥ H2

0

m
− (C + ε0)H1

A

and for every C5 ≥ C1, w ≥ A

C5
w2 − 1

w2
− C1

√
w2 − 1

w
= (C5 − C1)

w2 − 1

w2
+ C1

(
w2 − 1

w2
−
√
w2 − 1

w

)

= (C5 − C1)
w2 − 1

w2
+ C1

√
w2 − 1

w

(√
w2 − 1

w
− 1

)

≥ C1

(√
w2 − 1

w
− 1

)
≥ C1

(√
A2 − 1

A
− 1

)
.

where inequalities follow from observation that
√
A2 − 1/A ≤

√
w2 − 1/w < 1. Then,

inf
H0≤|s|≤H1,w≥A0

(
s2

m
− C0s

w
+ C5

w2 − 1

w2
− C1

√
w2 − 1

w

)
≥

≥ H2
0

m
− (C + ε0)H1

A
+ C1

(√
A2 − 1

A
− 1

)
> 0.

�

2.2. Lower bounded solutions with bounded gradient.

Corollary 4.6. Let (M,σ) be a complete Riemannian manifold, Ω ⊆ M an open
set, I ⊆ R be an interval and let f ∈ C1(I × [1,+∞)) satisfy

−Λ ≤ f ≤ Λ,
∂f

∂y
≥ 0, 0 ≤ ∂f

∂w
≤ Λ

w2

for some constant Λ ≥ 0. Let u : Ω→ I, u ∈ C3(Ω) be a solution of equation

div

(
Du√

1 + |Du|2

)
= f(u,

√
1 + |Du|2) in Ω.

Suppose that u∗ = infΩ u > −∞ and that Ric ≥ 0 in Ω. If Ω 6= M , then also assume that
either (RΩ) or (K) is satisfied and that lim supx→∂Ω |Du(x)| < +∞. Then

sup
Ω
|Du| < +∞.
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Proof. Set C1 = C2 = C3 = K = 0 and C4 = Λ. By statements i) and ii) in
Lemma 4.5, there exist A ≥ 1 and ε0 > 0 such that, for every C0 ∈ (0, ε0) and for every
C5 ∈ (C2

0/2, C
2
0 ),

inf
s∈R,w≥A

(
s2

m
− C0s

w
+ C5

w2 − 1

w2

)
> 0.

Then, for A0 = A and for every sufficiently small C0 > 0, conditions (63) and (64) in
Theorem 4.2 are satisfied for some auxiliary parameter C5 satisfying (65) and we deduce

W

eC0(u−u∗)
≤ max

{
A, lim sup

x→∂Ω

W (x)

eC0(u(x)−u∗)

}
.

Since C0(u− u∗) ≥ 0, we further obtain

W

eC0(u−u∗)
≤ max

{
A, lim sup

x→∂Ω
W (x)

}
.

The LHS of this inequality converges pointwise to W on Ω as C0 → 0, so we get

sup
Ω
W ≤ max

{
A, lim sup

x→∂Ω
W (x)

}
,

that is,

sup
Ω
|Du| ≤ max

{√
A2 − 1, lim sup

x→∂Ω
|Du(x)|

}
and then the desired conclusion follows. �

2.3. Liouville theorems.

Corollary 4.7. Let (M,σ) be a complete, connected Riemannian manifold with
Ric ≥ 0. Let I ⊆ R be an interval and f ∈ C1(I × [1,+∞)) satisfy

−Λ ≤ f ≤ 0,
∂f

∂y
≥ 0, 0 ≤ ∂f

∂w
≤ Λ

w2

for some constant Λ ≥ 0. Let u : M → I, u ∈ C3(M) be a solution of equation

div

(
Du√

1 + |Du|2

)
= f(u,

√
1 + |Du|2) in M.

If u∗ = infM u > −∞, then u is constant.

In particular,

Theorem 4.8. Let (M,σ) be a complete, connected Riemannian manifold with Ric ≥
0. If u ≥ 0 is a solution of

div

(
Du√

1 + |Du|2

)
= 0 in M

then u is constant.

Proof of Corollary 4.7. Set C1 = C2 = C3 = K = 0 and C4 = Λ. By statement
i) in Lemma 4.5, for every ε > 0 we can find 0 < C0 = C0(ε) < ε and 1 < A0 < 1 + ε such
that

inf
s≤0,w≥A0

(
s2

m
− C0s

w
+ C5

w2 − 1

w2

)
> 0

for every 0 < C5 < C0. From Theorem 4.2 we get

W ≤ (1 + ε)eC0(ε)(u−u∗) on M.

The RHS of this inequality tends to 1 pointwise on M as ε→ 0, so we get W ≤ 1 on M ,
that is, W ≡ 1. Equivalently, |Du| ≡ 0 on M , and then we conclude that u is constant
by connectedness of M . �
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2.4. Minimal and CMC graphs.

Corollary 4.9. Let (M,σ) be a complete Riemannian manifold, Ω ⊆ M an open
set and let 0 ≤ u ∈ C3(Ω) be a solution of equation

div

(
Du√

1 + |Du|2

)
= mH in Ω

for some constant H ∈ R. Suppose that Ric ≥ −(m − 1)κ2 in Ω for some κ ≥ 0. If
Ω 6= M , then also assume that either (RΩ) or (K) is satisfied. Then

(82) sup
Ω

√
1 + |Du|2

e
√
m−1κu

≤ max

{
A, lim sup

x→∂Ω

√
1 + |Du(x)|2

e
√
m−1κu(x)

}
for some A ≥ 1 only depending on m, H, κ. In particular, if H ≤ 0 then (82) holds with
A = 1.

Proof. Let C1 = C2 = C3 = C4 = 0 and K = (m− 1)κ2. Then C =
√
m− 1κ from

formula (81). From either i) or ii) in Lemma 4.5 we have that for some A ≥ 1 (with A = 1
in case H ≤ 0) and for every sufficiently small ε > 0 there exist C < C0 = C0(ε) < C + ε
and A < A0 < A+ ε such that

inf
s≤0,w≥A0

(
s2

m
− C0s

w
+ C5

w2 − 1

w2

)
> 0

for every 0 < C5 < C2
0 − C2. From Theorem 4.2 we get√

1 + |Du|2
eC0(ε)u

≤ max

{
A+ ε, lim sup

x→∂Ω

√
1 + |Du(x)|2
eC0(ε)u(x)

}
in Ω.

Since C0(ε)u ≥ Cu =
√
m− 1κu, we can bound√

1 + |Du|2
eC0(ε)u

≤ max

{
A+ ε, lim sup

x→∂Ω

√
1 + |Du(x)|2

e
√
m−1κu(x)

}
in Ω

and by letting ε→ 0 we obtain the desired conclusion. �

3. Minimal graphic functions with negative part of linear growth

In this section we adapt the argument of the proof of Theorem 4.2 to obtain a global
gradient bound for minimal graphic functions, that is, solutions of the minimal surface
equation

(83) div

(
Du√

1 + |Du|2

)
= 0,

on complete Riemannian manifolds with Ric ≥ 0 and satisfying a quadratic decay condi-
tion on the negative part of the curvature tensor. In particular, we will obtain that on
such manifolds a solution of (83) satisfying a one-sided linear growth bound has globally
bounded gradient.

Theorem 4.10. Let (M,σ) be a complete Riemannian manifold of dimension m ≥ 2,
let r(x) = distσ(o, x) be the distance function from a reference origin o ∈ M and assume
that the radial sectional curvature Krad satisfies

Krad ≥ −
γ2

1 + r2
on Do = M \ ({o} ∪ cut(o))
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for some γ ≥ 0. Then, for every a > 0 it is possible to find C1,γ(a), C2,γ(a) > 1, with
Ci,γ(a) → 1 as a → 0 for i = 1, 2, such that the following is true: if Ω ⊆ M is an open
set where Ric ≥ 0 and u is a solution in Ω of the equation

div

(
Du√

1 + |Du|2

)
= 0.

satisfying u(x) ≥ −ar(x) for every x ∈ Ω, then

(84) W ≤ C1,γ(a) max

{
C2,γ(a), lim sup

x→∂Ω
W (x)

}
on Ω.

Proof. We will show that inequality (84) holds true for

C1,γ(a) =
1− e−C1

e−aqC1 − e−C1
, C2,γ(a) =

√
1 + L

provided L, C1, q are positive numbers satisfying conditions

(85)
1− τ
1 + L

(
q2L− 4

τ

)
C1 > (m− 1)

(
1 +

√
4γ2 + 1

)
+ 2, q < 1/a

together with some parameter τ ∈ (0, 1). We remark that for every γ ≥ 0, a > 0 it is
possible to find L, C1, q, τ satisfying these requirements. Indeed, for any fixed 0 < τ < 1
and 0 < q < 1/a we can choose L large enough so that q2L > 4/τ , and then C1 large
enough so that the first inequality is verified. Moreover, for 0 < a < 1 conditions (85) are
satisfied, for instance, by

τ =
1

2
, q =

1√
a
, L = 10a, C1 = (2 + 10a)

(
(m− 1)

(
1 +

√
4γ2 + 1

)
+ 2
)

and the resulting values of Ci,γ(a), i = 1, 2, do converge to 1 as a→ 0.
Let L, C1, q and τ be given satisfying the above requirements. Let R > 0 and set

C =
qC1

R
, ε =

C1

R2
, uR = u+ aR, ηR = e−CuR−εr

2

− e−C1 , zR = WηR.

We denote by BR = BσR(o) the geodesic ball of (M,σ) of radius R centered at o. Note

that on Ω ∩BR we have uR ≥ a(R− r) ≥ 0 and then ηR ≤ e−εr
2 − e−C1 . In particular

(86) ηR ≤ 1− e−C1 on Ω ∩BR, ηR ≤ 0 on Ω ∩ ∂BR.
We will show that

zR ≤ (1− e−C1) max

{√
1 + L, lim sup

x→∂Ω
W (x)

}
on Ω ∩BR.

Without loss of generality, we can assume that ΩR = {x ∈ Ω ∩ BR : zR(x) > 0} is
non-empty. By compactness of ΩR, there exists a sequence {xn} ⊆ ΩR satisfying

lim
n→+∞

zR(xn) = sup
Ω∩BR

zR > 0 and xn → x̄

for some x̄ ∈ ΩR.
Suppose that x̄ ∈ ∂(Ω ∩BR). We have inclusion

∂(Ω ∩BR) ⊆
(
Ω ∩ ∂BR

)
∪
(
BR ∩ ∂Ω

)
≡ (Ω ∩ ∂BR) ∪

(
BR ∩ ∂Ω

)
where equivalence follows by observing that

(
Ω ∩ ∂BR

)
\(Ω ∩ ∂BR) = ∂Ω∩∂BR is already

contained in BR∩∂Ω. It must be x̄ ∈ ∂Ω. If this were not the case, then we would have x̄ ∈
Ω∩∂BR. From continuity of zR in Ω it would then be zR(x̄) > 0 and, therefore, ηR(x̄) > 0,
contradicting the above observation that ηR ≤ 0 on Ω∩∂BR. Having established x̄ ∈ ∂Ω,
we infer

sup
Ω∩BR

zR = lim
n→+∞

zR(xn) ≤ (1− e−C1) lim sup
n→+∞

W (xn) ≤ (1− e−C1) lim sup
x→∂Ω

W (x),
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where the first inequality follows from (86).
Suppose now that x̄ ∈ Ω ∩BR. Then zR(x̄) > 0 by continuity of zR in Ω. If x̄ ∈ Do,

then zR is of class C2 and by the maximum principle must satisfy ∇zR = 0, ∆gzR ≤ 0 at
x̄. Since Ric ≥ 0 on Ω and zR > 0 at x̄, from (35) we have

∆gzR ≥
(
−ε∆gr

2 + ‖ε∇r2 + C∇u‖2
)
We−CuR−εr

2

and then it must be

(87) −ε∆gr
2 + ‖ε∇r2 + C∇u‖2 ≤ 0

at x̄. From Theorem 3.10 we have

−ε∆gr
2 ≥ −C1

R2

(
(m− 1)

(
1 +

√
4γ2 + 1

)
+ 2
)

and from (9), together with Young’s inequality, we can estimate

‖ε∇r2 + C∇u‖2 ≥ |εDr
2 + CDu|2

W 2
≥ 1

W 2

(
(1− τ)C2|Du|2 +

(
1− 1

τ

)
ε2|Dr2|2

)
.

We use 1− τ > 0, r ≤ R and the definitions of C and ε to further write

‖ε∇r2 + C∇u‖2 ≥ 1− τ
W 2

(
C2|Du|2 − 4ε2R2

τ

)
=

1− τ
W 2

C2
1

R2

(
q2|Du|2 − 4

τ

)
.

We can now conclude that |Du(x̄)|2 ≤ L, since otherwise we would get

‖ε∇r2 + C∇u‖2 ≥ 1− τ
1 + L

C2
1

R2

(
q2L− 4

τ

)
and then, from (85),

−ε∆gr
2 + ‖ε∇r2 + C∇u‖2 ≥

≥ C1

R2

(
1− τ
1 + L

(
q2L− 4

τ

)
C1 − (m− 1)

(
1 +

√
4γ2 + 1

)
− 2

)
> 0,

contradicting (87). From |Du(x̄)|2 ≤ L we obtain

sup
Ω∩BR

zR = zR(x̄) ≤ (1− e−C1)
√

1 + L.

If x̄ ∈ Ω∩ cut(o) then zR may not be of class C2 in a neighbourhood of x̄ and we can not
directly apply the above argument. However, r2 satisfies conditions

∆gr
2 ≤ (m− 1)

(
1 +

√
4γ2 + 1

)
+ 2, |Dr2|2 ≤ 4r2

in the barrier sense on Ω. In particular, by Theorem 3.10, in a neighbourhood of x̄ we
can find a smooth support function ψ for r2 at x̄ satisfying

∆gψ <
1− τ
1 + L

(
q2L− 4

τ

)
C1, |Dψ|2 ≤ 4r(x̄)2

and then we can repeat the above argument with ψ in place of r2, as outlined in the proof
of Part 2 of Theorem 4.2.

Summing up, we have shown that for every R > 0

zR ≤ (1− e−C1) max

{√
1 + L, lim sup

x→∂Ω
W (x)

}
on Ω ∩BR.

As R→ +∞ we have ηR → e−aqC1 − e−C1 pointwise on Ω, so we conclude that

(e−aqC1 − e−C1)W ≤ (1− e−C1) max

{√
1 + L, lim sup

x→∂Ω
W (x)

}
on Ω.

�
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Corollary 4.11. Let (M,σ) be a complete Riemannian manifold with Ric ≥ 0. Let
r(x) = distσ(o, x) be the distance function from a reference origin o ∈M and assume that
the radial sectional curvature Krad satisfies

Krad ≥ −
γ2

1 + r2
on Do = M \ ({o} ∪ cut(o))

for some γ ≥ 0. If u is a solution in M of equation

div

(
Du√

1 + |Du|2

)
= 0

then

i) if u−(x) = O(r(x)) then u has bounded gradient,
ii) if u−(x) = o(r(x)) then u is constant.

Corollary 4.12. Let (M,σ) be a complete Riemannian manifold, let r(x) = distσ(o, x)
be the distance function from a reference origin o ∈M and assume that the radial sectional
curvature Krad satisfies

Krad ≥ −
γ2

1 + r2
on Do = M \ ({o} ∪ cut(o))

for some γ ≥ 0. Let Ω ⊆M be an open set where Ric ≥ 0 and let u be a solution in Ω of
the equation

div

(
Du√

1 + |Du|2

)
= 0

satisfying
Λ := lim sup

x→∂Ω
|Du(x)| < +∞.

Then

i) if u−(x) = O(r(x)) then u has bounded gradient,
ii) if u−(x) = o(r(x)) then |Du| ≤ Λ on Ω.





CHAPTER 5

Applications to splitting theorems

1. Splitting for solutions of overdetermined problems

Let (M,σ) be a complete Riemannian manifold and Ω ⊆ M an open subset with
smooth boundary and exterior normal ν. In this section we prove splitting results for
solutions of overdetermined Dirichlet problems of the form

(88)

div

(
Du√

1 + |Du|2

)
= f1(u) +

f2(u)√
1 + |Du|2

in Ω

u, ∂νu locally constant on ∂Ω

under assumption that Ric ≥ 0 in Ω, that either condition (RΩ) or (K) is satisfied and
that Ω is a parabolic domain, in the sense that we are going to precise right now. First,
let us recall that a Riemannian manifold with boundary (N,h) is said to be parabolic if
its Neumann Laplacian is parabolic, that is, if every (weak) solution v ∈ C(N)∩H1

loc(N)
of

(89)


∆hv ≥ 0 in intN,

∂νv ≤ 0 on ∂N,

supN v < +∞
is constant, where ν is the exterior normal of ∂N in N and v is said be a weak solution
of (89) if ∫

N

h(∇hv,∇hφ) dxh ≤ 0 for every 0 ≤ φ ∈ C∞c (N).

Definition 5.1. Let (M,σ) be a complete Riemannian manifold without boundary.
An open, connected subset Ω ⊆M with smooth boundary is said to be a parabolic domain
if (Ω, σ) is a parabolic manifold with boundary.

From [28] we have the following characterization: a Riemannian manifold with bound-
ary (N,h) is parabolic if and only if each compact subset K ⊆ N with non-empty interior
has zero capacity, where the capacity cap(K) is defined as

cap(K) = inf

{∫
N

|∇hφ|2h dxh : φ ∈ Lipc(N), φ ≥ 1 on K

}
.

The above definition and characterization can be extended to weighted Laplace operators:
if (N,h) is a Riemannian manifold with boundary and f ∈ C1(N), we define the weighted
Laplace-Beltrami operator ∆h,f by

∆h,fφ := ef div h(e−f∇hφ) ≡ ∆hφ− h(∇hf,∇hφ)

for every φ ∈ C2(N). The operator ∆h,f is symmetric with respect to the weighted
volume measure e−fdxh and we say that it is parabolic on N if every (weak) solution
v ∈ C(N) ∩H1

loc(N) of

(90)


∆h,fv ≥ 0 in intN,

∂νv ≤ 0 on ∂N,

supN v < +∞
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is constant, where in this case v is said be a weak solution of (90) if∫
N

h(∇hv,∇hφ) e−fdxh ≤ 0 for every 0 ≤ φ ∈ C∞c (N).

The proof of Theorem 1.5 in [28] extends verbatim to showing that ∆h,f is parabolic on
(N,h) if and only if for every compact set K ⊆ N with non-empty interior the weighted
capacity

capf (K) = inf

{∫
N

|∇hφ|2h e−fdxh : φ ∈ Lipc(N), φ ≥ 1 on K

}
.

is zero.
The proof of the splitting Theorem 5.5 relies on a weighted geometric Poincaré in-

equality for solutions of (88) that are strictly monotone in the direction of some Killing
vector field X ∈ X(Ω). This inequality is inspired by an analogous one for monotone
solutions of semilinear equations ∆u = f(u) first introduced by Farina and Valdinoci in
[21] in Euclidean space, and later extended to the context of Riemannian manifolds by
Farina, Mari, Valdinoci, [19]. The key feature is that the support of the test function in
the Poincaré inequality is allowed to intersect the boundary ∂Ω. This is made possible by
cancellations in integration, first observed in [21], due to the identity (91) below, which
is a consequence of the overdetermined condition in (88).

Lemma 5.2. Let (M,σ) be a Riemannian manifold and Ω ⊆ M an open subset with
C1 boundary. Let u ∈ C2(Ω), X ∈ X(Ω) be a Killing field. If u and ∂νu are locally
constant on ∂Ω, then the function v = (Du,X) satisfies

(91) 〈vW∇W − |Du|2∇v, ν〉 = 0 on ∂Ω

for any vector ν normal to ∂Ω.

Proof. On ∂Ω we have Du = (∂νu)ν because u is locally constant. With respect to
a local coordinate system {xi} we write

WWi =
(
|Du|2/2

)
i

= uiju
j , vi = uijX

j +Xiju
j

and then

ui(vWWi − |Du|2vi) = vuiju
iuj − |Du|2uijuiXj − |Du|2Xiju

iuj .

Since |Du| = |∂νu| is constant along ∂Ω, we have (D|Du|2, Y ) = 2uiju
iY j = 0 for every

vector field Y = Y jej orthogonal to ν. In particular, this is true for Y = vDu−|Du|2X =
(Du,X)Du− |Du|2X, with components Y j = vuj − |Du|2Xj , hence

ui(vWWi − |Du|2vi) = vuiju
iY j − |Du|2Xiju

iuj = −|Du|2Xiju
iuj = 0

having used the Killing condition Xij +Xji = 0. So, we have

(vWDW − |Du|2Dv,Du) = 0

or, equivalently,
〈vW∇W − |Du|2∇v,∇u〉 = 0.

In case Du 6= 0, from Du = (∂νu)ν and ∇u = W−2Du we conclude

(vWDW − |Du|2Dv, ν) = 〈vW∇W − |Du|2∇v, ν〉 = 0.

In case Du = 0 the same conclusion simply follows from v = 0 = |Du|. �

Before stating and proving the next result, let us fix some notation. If Ω is an open
set and u ∈ C2(Ω), then for every x ∈ Ω where du 6= 0 the level set Σx = {y ∈ Ω :
u(y) = u(x)} is an embedded regular hypersurface in a neighbourhood of x. We let A be
its second fundamental form in (Ω, g) and for any φ ∈ C1(Ω) we let

∇>φ = ∇φ−
〈
∇φ, ∇u
‖∇u‖

〉
∇u
‖∇u‖
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be the tangential gradient of φ on Σx, that is, the orthogonal projection of ∇φ onto the
tangent subspace to Σx. Then, along Σx, the remainder in the classical Kato inequality
is made explicit by the following inequality from [52],

(92) ‖Hessg(u)‖2 − ‖∇‖∇u‖‖2 = ‖∇>‖∇u‖‖2 + ‖∇u‖2‖A‖2.

Note that φ = ‖∇u‖ is C1 in the set {du 6= 0}. Moreover, by (14) and (16) we have

‖Hessg(u)‖2 =
‖II‖2

W 2

and then

(93) ‖II‖2 −W 2‖∇‖∇u‖‖2 = W 2
(
‖∇>‖∇u‖‖2 + ‖∇u‖2‖A‖2

)
.

Theorem 5.3. Let (M,σ) be a Riemannian manifold and Ω ⊆ M an open subset
with C1 boundary. Let f1, f2 ∈ C1(R) be given functions and let u ∈ C3(Ω) ∩ C2(Ω) be a
solution of

div

(
Du√

1 + |Du|2

)
= f1(u) +

f2(u)√
1 + |Du|2

in Ω

with u and ∂νu locally constant on ∂Ω. If X ∈ X(Ω) is a Killing vector field and v =
(Du,X) > 0 in Ω, then∫

Ω

eF2(u)

(
W 2

(
‖∇>‖∇u‖‖2 + ‖∇u‖2‖A‖2

)
+

Ric(Du,Du)

W 2

)
ϕ2dxg =

=

∫
Ω

eF2(u)‖∇u‖2‖∇ϕ‖2dxg −
∫

Ω

eF2(u) v
2

W 2

∥∥∥∥∇ϕ|Du|v

∥∥∥∥2

dxg

for every ϕ ∈ Lipc(Ω), where F ′2 = f2.

Proof. Consider the vector fields

Y = ϕ2eF2(u)∇W
W

, Z = ϕ2|Du|2eF2(u) ∇v
W 2v

and compute

div Y = ϕ2W div

(
eF2(u)∇W

W 2

)
+ eF2(u)

(
ϕ2 ‖∇W‖2

W 2
+
〈∇ϕ2,∇W 〉

W

)
,

div Z = ϕ2 |Du|2

v
div

(
eF2(u) ∇v

W 2

)
− eF2(u)

(
ϕ2 |Du|2

W 2

‖∇v‖2

v2
− 〈∇(ϕ2|Du|2),∇v〉

W 2v

)
.

We recall the differential identity

(94) φ2 ‖∇v‖2

v2
− 〈∇φ

2,∇v〉
v

= v2

∥∥∥∥∇φv
∥∥∥∥2

− ‖∇φ‖2

which can be easily deduced dividing both sides of

φ2‖∇v‖2 − v〈∇φ2,∇v〉 = ‖φ∇v − v∇φ‖2 − v2‖∇φ‖2

by v2. We apply (94) with the choice φ = ϕ|Du| to get

div Z = ϕ2 |Du|2

v
div

(
eF2(u) ∇v

W 2

)
− eF2(u)

(
v2

W 2

∥∥∥∥∇ϕ|Du|v

∥∥∥∥2

− ‖∇(ϕ|Du|)‖2

W 2

)
.

From the previous Lemma we have 〈Y − Z, ν〉 = 0 on ∂Ω, hence an application of the
divergence theorem yields ∫

Ω

(div Y − div Z) dxg = 0
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and we obtain∫
Ω

ϕ2

(
W div

(
eF2(u)∇W

W 2

)
− |Du|

2

v
div

(
eF2(u) ∇v

W 2

))
=

=

∫
Ω

eF2(u)

W 2

(
‖∇(ϕ|Du|)‖2 − ϕ2‖∇W‖2 − 〈∇ϕ2,W∇W 〉 − v2

∥∥∥∥∇ϕ|Du|v

∥∥∥∥2
)
.

From (28) and (40) we have

W div

(
eF2(u)∇W

W 2

)
= eF2(u)

(
‖II‖2 +

Ric(Du,Du)

W 2
+ (Wf ′1(u) + f ′2(u))‖∇u‖2

)
,

|Du|2

v
div

(
eF2(u) ∇v

W 2

)
= eF2(u) (Wf ′1(u) + f ′2(u)) ‖∇u‖2,

and by direct computation (note that |Du|, ‖∇u‖ are positive C2 functions in Ω, because
of u ∈ C3(Ω) and since du 6= 0 in Ω as a consequence of condition (Du,X) > 0)

‖∇(ϕ|Du|)‖2 − ϕ2‖∇W‖2 − 〈∇ϕ2,W∇W 〉 =

= ‖|Du|∇ϕ+ ϕ∇|Du|‖2 − ϕ2‖∇W‖2 − 2〈ϕ∇ϕ, |Du|∇|Du|〉
= |Du|2‖∇ϕ‖2 + ϕ2‖∇|Du|‖2 − ϕ2‖∇W‖2

= |Du|2‖∇ϕ‖2 + ϕ2
(
‖∇
√
W 2 − 1‖2 − ‖∇W‖2

)
= |Du|2‖∇ϕ‖2 + ϕ2

((
W√

W 2 − 1

)2

− 1

)
‖∇W‖2

= |Du|2‖∇ϕ‖2 + ϕ2 ‖∇W‖2

|Du|2

= |Du|2‖∇ϕ‖2 + ϕ2W 4‖∇‖∇u‖‖2

where the last equality follows from the identity

∇W
|Du|

= W 2∇‖∇u‖,

which in turn can be checked by direct computation

∇‖∇u‖ = ∇|Du|
W

=
∇|Du|
W

− |Du|∇W
W 2

=
∇W
|Du|

− |Du|∇W
W 2

=
(W 2 − |Du|2)∇W

|Du|W 2
=
∇W
|Du|W 2

where in the middle equality we have used the identity ∇|Du|W = ∇W
|Du| , that is, ∇|Du|2 =

∇W 2, whose validity follows from the very definition W 2 = 1 + |Du|2. Hence,∫
Ω

eF2(u)

(
‖II‖2 −W 2‖∇‖∇u‖‖2 +

Ric(Du,Du)

W 2

)
=

=

∫
Ω

eF2(u)‖∇u‖2‖∇ϕ‖2 −
∫

Ω

eF2(u) v
2

W 2

∥∥∥∥∇ϕ|Du|v

∥∥∥∥2

and by (93) we reach the desired conclusion. �

Theorem 5.4. Let (M,σ) be a Riemannian manifold and Ω ⊆ M an open subset
with C1 boundary. Let f1, f2 ∈ C1(R) be given functions and let u ∈ C3(Ω) ∩ C2(Ω) be a
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solution of

div

(
Du√

1 + |Du|2

)
= f1(u) +

f2(u)√
1 + |Du|2

in Ω

with u and ∂νu locally constant on ∂Ω. If X ∈ X(Ω) is a Killing vector field and v =
(Du,X) > 0 in Ω, then∫

Ω

eF2(u)

(
W 2

(
‖∇>‖∇u‖‖2 + ‖∇u‖2‖A‖2

)
+

Ric(Du,Du)

W 2

)
ϕ2dxg ≤

≤
∫

Ω

eF2(u)‖∇u‖2‖∇ϕ‖2dxg −
∫

Ω

eF2(u) v
2

W 2

∥∥∥∥∇ϕ|Du|v

∥∥∥∥2

dxg

for every ϕ ∈ Lipc(Ω), where F ′2 = f2.

Proof. Let ε > 0 and set

Y = ϕ2eF2(u)∇W
W

, vε = v + ε, Zε = ϕ2|Du|2eF2(u) ∇vε
W 2vε

.

Observing that ∇vε = ∇v, from the divergence theorem and Lemma 5.2 we have∫
Ω

div (Y − Zε)dxg =

∫
∂Ω

ϕ2eF2(u)

〈
∇W
W
− |Du|

2

W 2

∇v
vε
, ν

〉
dHm−1

g

=

∫
∂Ω

ϕ2eF2(u)

(
1− v

vε

)
〈∇W, ν〉
W

dHm−1
g

=

∫
∂Ω

ϕ2eF2(u) ε

vε

〈∇W, ν〉
W

dHm−1
g .

Repeating the computations in proof of Theorem 5.3 we obtain∫
Ω

div (Y − Zε)dxg =

=

∫
Ω

eF2(u)

[(
‖II‖2 −W 2‖∇‖∇u‖‖2 +

Ric(Du,Du)

W 2

)
ϕ2 − ‖∇u‖2‖∇ϕ‖2

]
dxg

+

∫
Ω

eF2(u) (Wf ′1(u) + f ′2(u)) ‖∇u‖2 ε
vε
ϕ2dxg +

∫
Ω

eF2(u)

W 2
v2
ε

∥∥∥∥∇ϕ|Du|vε

∥∥∥∥2

dxg.

Shortly, we write∫
Ω

eF2(u)

(
‖II‖2 −W 2‖∇‖∇u‖‖2 +

Ric(Du,Du)

W 2

)
ϕ2dxg + I1(ε) + I2(ε) = I3(ε)

with

I1(ε) =

∫
Ω

eF2(u)

W 2
v2
ε

∥∥∥∥∇ϕ|Du|vε

∥∥∥∥2

dxg,

I2(ε) =

∫
Ω

eF2(u) (Wf ′1(u) + f ′2(u)) ‖∇u‖2 ε
vε
ϕ2dxg,

I3(ε) =

∫
Ω

eF2(u)‖∇u‖2‖∇ϕ‖2dxg +

∫
∂Ω

ϕ2eF2(u) ε

vε

〈∇W, ν〉
W

dHm−1
g .

From Fatou’s lemma we have

lim inf
ε→0+

I1(ε) ≥
∫

Ω

lim
ε→0+

(
v2
ε

eF2(u)

W 2

∥∥∥∥∇ϕ|Du|vε

∥∥∥∥2
)

dxg =

∫
Ω

eF2(u)

W 2
v2

∥∥∥∥∇ϕ|Du|v

∥∥∥∥2

dxg.
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Since 0 < ε/vε < 1 for every ε > 0, by applying Lebesgue’s dominated convergence
theorem with dominating function eF2(u)|Wf ′1(u) + f ′2(u)|‖∇u‖2ϕ2 we obtain

lim
ε→0+

I2(ε) =

∫
Ω

lim
ε→0+

(
eF2(u) (Wf ′1(u) + f ′2(u)) ‖∇u‖2 ε

vε
ϕ2

)
dxg = 0,

and by similar arguments we also have

lim
ε→0+

I3(ε) =

∫
Ω

eF2(u)‖∇u‖2‖∇ϕ‖2dxg.

Then, the conclusion follows. �

We are now in position to prove

Theorem 5.5. Let (M,σ) be a complete Riemannian manifold with Ric ≥ 0 and
let Ω ⊆ M be a parabolic domain with smooth boundary. Let f1, f2 ∈ C1(R) be given
functions, with f ′1 ≥ 0. Let u ∈ C3(Ω) ∩ C2(Ω) be a solution of

div

(
Du√

1 + |Du|2

)
= f1(u) +

f2(u)√
1 + |Du|2

in Ω

satisfying 
u, ∂νu locally constant on ∂Ω,

supΩ |u| < +∞,
sup∂Ω |Du| < +∞,
(Du,X) > 0 in Ω

for some Killing vector field X ∈ X(Ω), and assume that either condition (RΩ) or (K)
is satisfied. Then Ω is isometric to the Riemannian product of an open interval I ⊆ R
and a complete manifold N with RicN ≥ 0, the function u only depends on the I-variable,
and (X, ∂t) is constant in Ω, where ∂t is the unit tangent vector of the family of curves
I × {ξ}, ξ ∈ N .

Proof. From Corollary 4.4 we have that supΩW < +∞. Then (Ω, g) is quasi-
isometric to (Ω, σ) and therefore (Ω, g) is a parabolic manifold with boundary. Moreover,
since u is bounded we have that eF2(u) is bounded for any primitive F2 for f2 on R.

By Theorem 1.5 in [28], from the parabolicity of (Ω, g) we have existence of a sequence
{ϕn} ⊆ Lipc(Ω) satisfying

ϕn → 1 in W 1,∞
loc (Ω),

∫
Ω

‖∇ϕn‖2dxg → 0

as n→ +∞. From Theorem 5.4 and condition Ric ≥ 0, for every n ≥ 0 we have inequality∫
Ω

eF2(u)W 2
(
‖∇>‖∇u‖‖2 + ‖∇u‖2‖A‖2

)
ϕ2
ndxg +

∫
Ω

eF2(u) v
2

W 2

∥∥∥∥∇ϕn|Du|v

∥∥∥∥2

dxg ≤

≤
∫

Ω

eF2(u)‖∇u‖2‖∇ϕn‖2dxg.

By Cauchy-Schwarz and Young’s inequalities we can estimate∥∥∥∥∇ϕn|Du|v

∥∥∥∥2

= ϕ2
n

∥∥∥∥∇|Du|v
∥∥∥∥2

+
|Du|2

v2
‖∇ϕn‖2 + 2

〈
ϕn∇

|Du|
v

,
|Du|
v
∇ϕn

〉
≥
(

1− 1

2

)
ϕ2
n

∥∥∥∥∇|Du|v
∥∥∥∥2

+ (1− 2)
|Du|2

v2
‖∇ϕn‖2
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and then we get∫
Ω

eF2(u)W 2
(
‖∇>‖∇u‖‖2 + ‖∇u‖2‖A‖2

)
ϕ2
ndxg +

1

2

∫
Ω

eF2(u) v
2

W 2

∥∥∥∥∇|Du|v
∥∥∥∥2

ϕ2
ndxg ≤

≤ 2

∫
Ω

eF2(u)‖∇u‖2‖∇ϕn‖2dxg,

having used |Du|2/W 2 = ‖∇u‖2. Since eF2(u) is bounded, the RHS of this inequality
tends to 0 as n→ +∞. Then, by Fatou’s lemma we obtain

(95) ‖∇>‖∇u‖‖2 + ‖∇u‖2‖A‖2 ≡ 0, ∇|Du|
v
≡ 0 in Ω.

This is the starting point for the proof of the splitting. We reproduce the argument
given in [12], which in turn follows the line of the one in [19]. From v > 0 we deduce that
Du 6= 0 on Ω, so the vector field Y = ∇u/‖∇u‖ is well defined on Ω and level sets of u are
regular embedded hypersurfaces in Ω. For x ∈ Ω, let {Vi}1≤i≤m be a local g-orthonormal
frame for TΩ in a neighbourhood of x, with Vm = Y . Then {Vi}1≤i≤m−1 is a local frame
for the tangent subspace of the hypersurface {u = u(x)}. We have

〈∇‖∇u‖, Vi〉 = Hessg(u)(Y, Vi), A(Vi, Vj) =
Hessg(u)(Vi, Vj)

‖∇u‖

for 1 ≤ i, j ≤ m− 1, with A the second fundamental form of {u = u(x)} in (Ω, g). From
these identities we deduce that the only nonzero component of Hessg(u) is the one in the
direction of du⊗ du. Since Hessσ(u) = W 2 Hessg(u) by (14), we infer

(96) Hessσ(u) = Hessσ(u)

(
Du

|Du|
,
Du

|Du|

)
du

|Du|
⊗ du

|Du|
in Ω.

From this identity we deduce that |Du| is locally constant on level sets of u, that integral
curves of Du/|Du| are geodesics in M and that level sets of u are totally geodesic in Ω
with respect to both metrics σ and g. Since u is locally constant on ∂Ω, in the limit we
obtain that each connected component of ∂Ω is a totally geodesic hypersurface in (M,σ).

Since ∂Ω has at most countably many connected components and u is constant on
each of them, the set B = u(∂Ω) ⊆ R consists of at most countably many points. As
u is non-constant in Ω, we can find b ∈ u(Ω) \ B. Let N be a connected component of
the level set {u = b} ⊆ Ω. By the implicit function theorem, N is a properly embedded
hypersurface in M and is a manifold without boundary, complete with respect to the
metric σN induced from σ. We denote with Φ(t, x) the flow of Du/|Du| starting from N ,
defined on the connected set

D ⊆ R×N, D = {(t, x) : x ∈ N, t ∈ (t1(x), t2(x))}

where, for every x ∈ N , t1(x) ∈ [−∞, 0) and t2(x) ∈ (0,+∞] are the extrema of the largest
open interval Ix = (t1(x), t2(x)) such that for every t ∈ Ix the point Φ(t, x) is well defined
and belongs to Ω. If t1(x) > −∞ (respectively, t2(x) < +∞) then the curve t 7→ Φ(t, x)
converges to a point of ∂Ω as t ↘ t1(x) (resp., t ↗ t2(x)) which we shall denote as
x∗ = Φ(t1(x)+, x) (resp., x∗ = Φ(t2(x)−, x)). The function t1 is upper semi-continuous
on N , that is, for every x ∈ N we have

lim sup
n→+∞

t1(xn) ≤ t1(x)

for every sequence {xn} ⊆ N converging to x: otherwise, we could find t ∈ (t1(x), 0] and a
sequence {xn} converging to x such that t1(xn)→ t, yielding ∂Ω 3 (xn)∗ → Φ(t, x) ∈ Ω,
absurd. Similarly, the function t2 is lower semi-continuous on N . Hence, D is open in
R×N .
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From (96) we deduce(
DV

Du

|Du|
, Z

)
= 0 for every V,Z ∈ TxΩ, x ∈ Ω

thus Du/|Du| is a parallel vector field. Then the induced metric on D by Φ is the product
metric dt2 +σN . Let c0 > 0 be the constant value of |Du| on N and let β be the maximal
solution of the Cauchy problemy

′(s) =

(
f1(s) +

f2(s)√
1 + y(s)2

)
(1 + y(s)2)3/2

y(s)
,

y(b) = c0.

Since u is strictly increasing along the curves t 7→ Φ(t, x) and |Du| is locally constant
on level sets of u, for every x ∈ Ω there exists a neighbourhood Ux ⊆ Ω and a C2 real
function βx such that

|Du| = βx(u) on Ux.

As Du/|Du| is parallel, on Ux we have

f1(u) +
f2(u)√

1 + βx(u)2
= div

(
Du√

1 + |Du|2

)
= div

(
|Du|√

1 + |Du|2
Du

|Du|

)

= DDu/|Du|
|Du|√

1 + |Du|2
= βx(u)

(
βx√

1 + β2
x

)′
(u)

=
βx(u)β′x(u)

(1 + βx(u)2)3/2

that is, βx is a solution of the Cauchy problemy
′(s) =

(
f1(s) +

f2(s)√
1 + y(s)2

)
(1 + y(s)2)3/2

y(s)
,

y(u(x)) = |Du(x)|.

Without loss of generality, we can assume that βx is the maximal solution of this problem.
For points x ∈ N , this yields βx = β by uniqueness. Hence, for every x1, x2 ∈ Φ(D)
belonging to the same curve t 7→ Φ(t, x), x ∈ N , it must be βx1

= βx2
. Therefore, βx = β

for every x ∈ Φ(D), that is,

|Du| = β(u) on Φ(D).

We claim that Φ(D) = Ω. The map Φ is a diffeomorphism and D is open in R ×N ,
so Φ(D) is open in Ω. We check that Φ(D) is also closed in Ω, thus deducing Φ(D) = Ω
by connectedness of Ω.

First, we show that t1 and t2 are constant on N . We prove this for t1, the proof for
t2 being analogous. Set

ρ(s) =

∫ s

b

dτ

β(τ)
for every s ∈ u(Ω).

Note that by integrating d
dtu(Φ) = |Du|(Φ) = β(u(Φ)) we get

t =

∫ u(Φ(t,x))

b

dτ

β(τ)
= ρ(u(Φ(t, x))) for every (t, x) ∈ D.

We show that t1 is lower semi-continuous on N . Suppose, by contradiction, that for some
x ∈ N and for some sequence {xn} ⊆ N converging to x we have

lim
n→+∞

t1(xn) < t1(x).
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Fix t̄ such that

lim
n→+∞

t1(xn) < t̄ < t1(x), t̄ 6∈ B = u(∂Ω).

Then, {Φ(t̄, xn)} ⊆ Ω converges to a point x̄ ∈ ∂Ω. Along this sequence, u has the
constant value ρ−1(t̄), so by continuity it must be u(x̄) = ρ−1(t̄). But ρ−1(t̄) 6∈ u(∂Ω)
and we have reached a contradiction. Since we had already shown that t1 is upper semi-
continuous, we conclude that t1 is continuous on N . For every x ∈ N we either have
t1(x) = −∞ or t1(x) ∈ (−∞, 0). In the second case, the endpoint x∗ = limt→t1(x)+ Φ(t, x)
belongs to ∂Ω and by continuity t1(x) = ρ(u(x∗)). So, t1(N) ⊆ ρ(B) ∪ {−∞}. Since this
set consists of at most countably many elements, it contains no open intervals. As t1 is
continuous on the connected set N , we conclude that t1 is constant.

Let T1 ∈ [−∞, 0) and T2 ∈ (0,+∞] be the constant values of t1 and t2 on N , so that

D = (T1, T2)×N.

For every t̄ ∈ (T1, T2), the image Nt̄ = Φ({t̄} ×N) ⊆ Ω is a connected open subset of the
embedded submanifold {u = ρ−1(t̄)} ⊆ Ω. The restriction Φ|{t̄}×N : {t̄} × N → Nt̄ is a
local Riemannian isometry and {t̄}×N is complete, so Φ|{t̄}×N is a Riemannian covering
map and therefore Nt̄ is also complete with respect to the intrinsic geodesic distance, that
we shall denote by dt̄ (see [44], Lemma 5.6.4 and Proposition 5.6.3).

We prove that Φ(D) is closed in Ω. Let {pn} ⊆ Φ(D) be a given sequence converging
to some point p̄ ∈ Ω. We have to show that p̄ ∈ Φ(D). Set t̄ = ρ(u(p̄)). For every n we can
find (tn, xn) ∈ D such that pn = Φ(tn, xn). By continuity, tn = ρ(u(pn)) → ρ(u(p̄)) = t̄,
hence T1 ≤ t̄ ≤ T2. Both inequalities are strict, otherwise either {(xn)∗} = {Φ(T+

1 , xn)}
or {(xn)∗} = {Φ(T−2 , xn))} would be a sequence of points of ∂Ω converging to p̄ ∈ Ω,
absurd. Setting qn = Φ(t̄, xn) for every n, we have that {qn} is a sequence of points of Nt̄
converging to p̄ in M , since dσ(pn, qn) ≤ |t̄− tn| → 0. Hence, {qn} is a Cauchy sequence
in M . By completeness of M , any two points qn, qn′ are joined by a minimizing geodesic
arc in M . Since (Nt̄, dt̄) is complete and totally geodesic, every geodesic in M joining two
points of Nt̄ must lie in Nt̄. So, {qn} is a Cauchy sequence in Nt̄ and therefore converges
to some point q̄ ∈ Nt̄. Since Nt̄ is embedded in M , q̄ = p̄ and we conclude p̄ ∈ Nt̄ ⊆ Φ(D),
as desired. This shows that Φ(D) is closed in Ω.

As already stated, since Φ(D) is non-empty and both open and closed in the connected
set Ω, we have Φ(D) = Ω. Thus, Φ realizes an isometry between Ω and the product
manifold

(T1, T2)×N.
Furthermore, u only depends on the variable t because

u(Φ(t, x)) = ρ−1(t) for every (t, x) ∈ (T1, T2)×N.

The second identity in (95) implies

v = cW‖∇u‖ on Ω

for some constant c > 0. Since v = (X,Du) and W‖∇u‖ = |Du|, this identity rewrites as
(X,Du) = c|Du|, that is,

(X, ∂t) = c.

�

For particular choices of f1, f2, the conclusion of Theorem 5.5 can be reached un-
der weakened assumptions. In Theorem 5.6 we show that if f1, f2 are non-positive and
non-decreasing, then boundedness of u can be relaxed to one-sided boundedness (more
precisely, infΩ u > −∞). In Theorem 5.7 we show that if f1 and f2 are constant then the
monotonicity condition (Du,X) > 0 of u in the direction of the Killing field X can be
a-priori deduced from the request that (Du,X) ≥ 0, 6≡ 0 on ∂Ω, under assumption that
|X| is bounded in Ω.
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Theorem 5.6. Let (M,σ) be a complete Riemannian manifold with Ric ≥ 0 and
let Ω ⊆ M be a parabolic domain with smooth boundary. Let f1, f2 ∈ C1(R) be given
functions, with fi ≤ 0, f ′i ≥ 0 for i = 1, 2. Let u ∈ C3(Ω) ∩ C2(Ω) be a solution of

div

(
Du√

1 + |Du|2

)
= f1(u) +

f2(u)√
1 + |Du|2

in Ω

satisfying 
u, ∂νu locally constant on ∂Ω,

infΩ u > −∞,
sup∂Ω |Du| < +∞,
(Du,X) > 0 in Ω

for some Killing vector field X ∈ X(Ω) and assume that (RΩ) or (K) holds true. Then Ω
and u split as in Theorem 5.5.

Proof. If fi ≤ 0 and f ′i ≥ 0 then we have −∞ < fi(u∗) ≤ fi(u) ≤ 0 for i = 1, 2.
Setting I = [u∗,+∞), the function f : I × [1,+∞) given by

f(y, w) = f1(y) +
f2(y)

w

satisfies

−Λ ≤ f(y, w) ≤ 0,
∂f

∂y
(y, w) ≥ 0, 0 ≤ ∂f

∂w
(y, w) ≡ −f2(y)

w2
≤ Λ

w2

for every (y, w) ∈ I × [1,+∞), with Λ = |f1(u∗)|+ |f2(u∗)|. Then, from Corollary 4.6 we
obtain that supΩ |Du| < +∞ under the sole assumption that infΩ u > −∞. Then, (Ω, g)
is parabolic. Moreover, for any primitive F2 of f2 we have F2(u) ≤ F2(u∗) < +∞ due
to f2 ≤ 0, so eF2(u) is bounded on Ω. Having established these facts, one can repeat the
proof of Theorem 5.5. �

Theorem 5.7. Let (M,σ) be a complete Riemannian manifold with Ric ≥ 0 and let
Ω ⊆M a parabolic domain with smooth boundary. Let u ∈ C3(Ω) ∩ C2(Ω) satisfy

div

(
Du√

1 + |Du|2

)
= H1 +

H2√
1 + |Du|2

in Ω

for some constants H1, H2 ∈ R. Assume that (RΩ) or (K) is satisfied and that
u, ∂νu locally constant on ∂Ω,

sup∂Ω |Du| < +∞,
(Du,X) ≥ 0, 6≡ 0 on ∂Ω

for some Killing vector field X ∈ X(Ω) with supΩ |X| < +∞. If either

(i) sup
Ω
|u| < +∞ or (ii)

{
infΩ u > −∞,
H2 ≤ 0,

then Ω and u split as in Theorem 5.5.

Proof. If (i) is satisfied, then we have supΩW < +∞ as already observed in the
proof of Theorem 5.5. If (ii) is satisfied, then the function f : R× [1,+∞)→ R given by

f(y, w) = H1 +
H2

w

satisfies

−|H1| − |H2| ≤ f ≤ |H1|+ |H2|,
∂f

∂y
= 0,

∂f

∂w
= −H2

w2
=
|H2|
w2

,
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so the conditions in Corollary 4.6 are satisfied for Λ = |H1|+ |H2| and, again, we deduce
supΩW < +∞. In both cases, (Ω, g) is a parabolic manifold with boundary.

Let f1, f2 be the constant functions on R given by fi ≡ Hi for i = 1, 2. A primitive
F2 for f2 is the function F2(t) = H2t. If (i) is satisfied, then eF2(u) = eH2u is bounded in
Ω. If (ii) is satisfied, then eF2(u) = eH2u ≤ eH2u∗ < +∞ is again bounded in Ω. So, in
both cases we have supΩ e

F2(u) < +∞.
The function v = (Du,X) is bounded on Ω as a consequence of Cauchy-Schwarz

inequality

|v| ≤ |Du||X| ≤
(

sup
Ω
|Du|

)(
sup

Ω
|X|
)
< +∞

and satisfies

W 2e−F2(u) div g

(
eF2(u) ∇v

W 2

)
= 0

by (40). The weight eF2(u)/W 2 is bounded in Ω, so the weighted operator

L φ = W 2e−F2(u) div g

(
eF2(u)∇φ

W 2

)
is parabolic on Ω due to parabolicity of ∆g and the characterization of parabolicity recalled
at the beginning of the section. Hence, the bounded, L -harmonic function v must satisfy

inf
Ω
v = inf

∂Ω
v ≥ 0, sup

Ω
v = sup

∂Ω
v > 0.

If infΩ v > 0, then v > 0 in Ω. If infΩ v = 0, then v is not constant in Ω and, by the
strong maximum principle, it cannot attain the value 0 = infΩ v in Ω. So again it must
be v > 0, that is,

(Du,X) > 0 in Ω.

Having obtained supΩW < +∞, supΩ e
F2(u) < +∞ and (Du,X) > 0 in Ω, from this

point on we can repeat again the argument in the proof of Theorem 5.5. �

2. Splitting on parabolic manifolds

In this section we prove a splitting theorem for parabolic, complete Riemannian mani-
folds with non-negative Ricci curvature and negative part of the sectional curvature decay-
ing quadratically, in presence of non-constant, entire minimal graphic functions of linear
growth. The proof of Theorem 5.8 parallels that of Li’s splitting theorem for complete,
parabolic manifolds of non-negative Ricci curvature supporting non-constant harmonic
functions of linear growth, [35].

Theorem 5.8. Let (M,σ) be a complete parabolic Riemannian manifold with Ric ≥ 0
and with sectional curvature satisfying

K ≥ − γ2

1 + r2

for some γ ≥ 0, where r(x) = distσ(o, x) is the distance from a fixed origin o ∈ M . If
there exists a non-constant solution u of equation

div

(
Du√

1 + |Du|2

)
= 0

satisfying u(x) ≥ −ar(x) for some constant a > 0, then M is isometric to the Riemannian
product R×N for some complete and parabolic manifold N , with RicN ≥ 0, and u is an
affine function of the R-coordinate.
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Proof. From Theorem 4.10, u has bounded gradient on M . As a consequence, the
identity map is a quasi-isometry between the Riemannian manifolds (M,σ) and (M, g),
and so the operator ∆g is parabolic on M . We have

∆g
1

W
= −

(
‖II‖2 +

Ric(Du,Du)

W 2

)
1

W
≤ 0,

that is, 1/W is a bounded ∆g-superharmonic function and as such it must be constant.
This fact, coupled with the Jacobi equation itself and with inequalities 1/W > 0, ‖II‖ ≥ 0,
Ric ≥ 0, leads to the conclusion ‖II‖ ≡ 0 and Ric(Du,Du) ≡ 0. Since W is constant, so is
|Du|. Since u is assumed to be non-constant, we have |Du| ≡ c0 for some positive constant
c0 > 0. From this fact and II ≡ 0 it is possible to show that M splits isometrically as a
product R×N , with N a complete parabolic manifold with RicN ≥ 0 and u only depending
on the R-coordinate (and then necessarily being an affine function of it). Indeed, by (16)
we have that II ≡ 0 is equivalent to Hessσ(u) ≡ 0, so the validity of identity (96) is
established and then one can repeat the argument of the proof of Theorem 5.5. �

As a consequence of Theorem 5.8 we also have the following

Theorem 5.9. Let (M0, σ0) be a complete parabolic Riemannian manifold with non-
negative sectional curvatures and let (M,σ) = (R ×M0,dt

2 + σ0) with t the canonical
coordinate on R. If u is a solution in M of the equation

div

(
Du√

1 + |Du|2

)
= 0

satisfying u(x) ≥ −ar(x) for some constant a > 0, with r(x) = distσ(o, x) the distance
from a reference origin o ∈M , then either

i) u is an affine function of t ∈ R, where (t, ξ) denotes the generic point of M =
R×M0, or

ii) M0 = R×N0 for some complete and parabolic manifold N0 with RicN0
≥ 0 and

u is an affine function of (t, s) ∈ R2, where (t, s, ζ) denotes the generic point of
M = R2 ×N0.

Proof. The product manifold (M,σ) has non-negative sectional curvature and from
Theorem 4.10 we deduce that u has bounded gradient on M . Then the weighted Laplacian
L = ∆g,2 logW defined by

Lψ = W 2 div g

(
∇ψ
W 2

)
= ∆gψ −

2〈∇W,∇ψ〉
W

is a uniformly elliptic differential operator in divergence form with bounded weight, with
respect to the Riemannian metric of non-negative Ricci curvature σ. By a result of Saloff-
Coste ([47], Theorem 7.4), this operator then satisfies a Liouville property: the only
bounded solutions of equation Lψ = 0 on M are constant functions.

The manifold M carries a global parallel vector field ∂t, whose integral curves are
the lines R × {ξ}, ξ ∈ M0. In particular, ∂t is a Killing vector field and the function
v = ∂tu ≡ (Du, ∂t) is a solution of L v = 0 on M . From Cauchy-Schwarz’s inequality we
have |v| ≤ |Du|, hence v is bounded on M and must be constant.

Let c0 be the constant value of ∂tu. The reference origin o ∈ M can be expressed as
o = (t0, ξ0) for some t0 ∈ R, ξ0 ∈ M0. We define u0(ξ) = u(t0, ξ) for every ξ ∈ M0. For
every (t, ξ) we can write

u(t, ξ) = u0(ξ)+c0(t−t0), Du(t, ξ) = D0u0(ξ)+c0∂t, W (t, ξ) =
√

1 + c20 + |D0u0(ξ)|20
with D0, | · |0 the connection and vector norm of M0, respectively. From the isometric
splitting R×M0 = M we have the following expression for the function r,

r(t, ξ) =
√
|t− t0|2 + r0(ξ)2,
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where r0(ξ) = distσ0
(ξ0, ξ) is the distance from ξ0 in M0, and then we deduce that

u0(ξ) ≥ −ar0(ξ)

for every ξ ∈M0. From D∂t = 0 and ∂tW = 0 we get

div

(
Du√

1 + |Du|2

)
= div 0

(
D0u0√

1 + c20 + |D0u0|20

)
with div 0 the divergence of M0. Setting u1 = u0/

√
1 + c20, we can rewrite

D0u0√
1 + c20 + |D0u0|20

=
D0u1√

1 + |D0u1|20
and then we conclude that u1 is a solution in M0 of

div 0

(
D0u1√

1 + |D0u1|20

)
= 0

satisfying u1(ξ) ≥ −ar0(ξ)/
√

1 + c20. If u1 is constant then we have conclusion i), oth-
erwise from Theorem 5.8 we deduce that M0 splits as described in ii) and that u1 is an
affine function of the variable s, say u1(s, ζ) = c1s + c2, c1, c2 ∈ R, where (s, ζ) denotes
the generic point in the product R×N0. This yields the expression

u(t, s, ζ) = c0t+ c1

√
1 + c20s+ c2

√
1 + c20

completing the proof of ii). �
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