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CHAPTER 1

Introduction

This thesis is concerned with the study of qualitative properties of solutions of the
minimal surface equation

. Du B
(1) div <m> =0

and of a class of related prescribed mean curvature equations

(2) div <D“) = f(z,u,/1+ [Duf?)
Vit DeE

on complete Riemannian manifolds (M, o). In particular, we derive global gradient bounds
for non-negative (more generally, lower bounded) solutions of such equations under global
uniform Ricci lower bounds on M, and we obtain Liouville-type theorems and other rigid-
ity results on Riemannian manifolds with non-negative Ricci curvature. Results presented
here have been obtained in collaboration with Marco Magliaro, Luciano Mari and Marco
Rigoli, and in large part they appear in [11] and [12].

We recall some fundamental results on global solution of equation (1) on Euclidean
spaces M = R™. In 1915, Bernstein [5] proved that the only solutions of (1) defined
on the whole Euclidean plane R? (entire solutions) are affine functions. His proof, later
perfected by Hopf, [27] and Mickle, [39], was highly non-trivial and strongly relied on
the geometric properties of R?. Since then, many authors investigated the validity of the
analogue of Bernstein’s result for higher dimensional Euclidean spaces R™, m > 3. By
the late 60s, the following sharp form of Bernstein theorem had been extablished:

Entire solutions of (1) on R™ are affine if and only if m <7

through the works of Fleming, [24] (new proof for m = 2), De Giorgi, [13] (m = 3),
Almgren, [2] (m = 4), Simons, [49] (m < 7) and Bombieri, De Giorgi, Giusti, [7] (coun-
terexamples for m > 8). A wide variety of further counterexamples was given later by
Simon, [50].

Further rigidity results have been obtained for solutions of (1) in R™ under additional
a priori assumptions on u. For all dimensions m > 2, Bombieri, De Giorgi and Miranda,
[8], obtained a local gradient estimate for minimal graphs u : B,.(0) C R™ — R,

(3) |Du(0)] < Cy exp <cu<0>fBU)

with constants C; = C;(m), ¢ = 1,2, thus extending previous results due to Finn, [23]
and Jenkins, Serrin, [30, 51], for m = 2. A Liouville theorem for equation (1) was then
at hand:

Entire positive solutions of (1) on R™ are constant (for every m > 2).
Estimate (3) also implies that entire solutions of (1) with negative (or positive) part of at
most linear growth have bounded gradient. Moser, [43], had previously established that
entire solutions of (1) in R™ with bounded gradient are affine functions for every m > 2.

This result is known as Moser’s Bernstein theorem. The combination of these results then
yielded:
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Entire solutions of (1) on R™ with at most linear growth on one side
are affine functions.

Moser’s Bernstein theorem has been sharpened in subsequent years by Bombieri and
Giusti, [9], and by Farina, [17], [18], who succeeded in proving that an entire solution
of (1) on R™, m > 8, is an affine function if and only if it has m — 7 partial derivatives
bounded on one side (not necessarily the same).

The original proof of (3) relied on integral estimates and Sobolev inequalities on
minimal graphs due to Miranda, [40], [41], and based on isoperimetric inequalities for
minimal currents in R™*! introduced by Federer and Fleming, [22]. A simplified proof
was later given by Trudinger, [54], and his technique allowed him ([55]) to obtain local
gradient estimates of the form (3) also for solutions of the prescribed mean curvature
equation

(4) div (Du) =mH(x)

Vit DT
on R™, with constants C; and Cy depending on the C! norm of H € C'(R™). Later,
Korevaar, [31], [32], [34], gave another proof of a (non-sharp) local gradient estimate for
solutions of (4) using only elementary tools, namely, the finite maximum principle for
C? functions. His technique also proved effective ([33]) in establishing a priori gradient
estimates for solutions of equations of prescribed mean curvatures of higher orders.

In recent years, several authors have investigated the possible validity of similar rigid-
ity and regularity results for solutions of equations (1) and (4) on Riemannian manifolds
(M, o), where D, | - | and div are interpreted as gradient, vector norm and divergence
associated to the Riemannian metric . We recall some of them while presenting the
original contributions of this work.

Let (M,0) be a complete, noncompact Riemannian manifold of dimension m > 2
with Ricci curvature satisfying Ric > —(m — 1)x2 for some x > 0. We show that entire,
non-negative solutions u : M — Rg of (1) satisfy the global gradient bound

(5) V14 |Du2 <evm=teein M.

As a consequence, for kK = 0 we deduce the following Liouville-type theorem:

On complete Riemannian manifolds with Ric > 0 entire positive solu-
tions of (1) are constant,

thus extending the aforementioned theorem of Bombieri, De Giorgi, Miranda for M =
R™. The same Liouville-type theorem has been also proved very recently by Ding, [14],
with completely different techniques. A previous result in this direction was obtained
by Rosenberg, Schulze, Spruck, [46], under the additional assumption that the sectional
curvatures of M are uniformly bounded from below by a negative constant. The gradient
estimate (5) is inspired by the one obtained by Yau, [56],

|Du| < (m — 1)ku

for positive harmonic functions u on complete manifolds with Ric > —(m — 1)x2.

Our proof of (5) combines Yau’s method for global gradient estimates with the ideas
introduced by Korevaar. Yau’s and Korevaar’s methods are both based on applications of
some form of the maximum principle to elliptic equations satisfied by suitable functions of
uw and |Dul. In particular, Korevaar’s idea is to apply the finite maximum principle to the
Jacobi equation satisfied by 1/4/1 + | Du|?, which involves the Laplace-Beltrami operator
A, associated to the graph metric ¢ = o + du®. In case of non-compact manifolds, a
preliminary localization is required, and this is usually done via cutoff functions obtained
from the distance function r from a fixed point o € M. To have a suitable control on
second partial derivatives of r, and then on A,r, assumptions on sectional curvatures of M
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ut

are needed. Description of this construction is given in Section 3.2. In this work, we obtain
the estimate (5) using as starting point, instead of r, a proper function ¢ : M — [1, +00)
satisfying Ayt < 1), whose existence is obtained via a potential theory result due to Mari
and D. Valtorta, [38], combined with an estimate on volume growth of geodesic balls in
the metric g that is obtained via a calibration argument developed by Trudinger, [54].
This allows to suppress assumptions on sectional curvatures of M and to only assume
Ric > —(m — 1)k2.
We show the validity of gradient bounds of exponential type

/14 |Dul? < AeC

also for non-negative solutions of a class of equations of the form (2) with constants A > 1,
C > 0 depending on m, x and on quantitative bounds on |f| and its partial derivatives.
The class of nonlinearities f = f(z,y,w) that we consider is comprehensive of expressions

of the form
T,U
flz,u, /14 |Dul?) = fi(z,u) + L
v/ 1+ |Dul?
with f1, fo € C*(M x R{) such that |fi], | Dy fi| < Co, Oyfi > 0, 0yfs > —Cy for some
global constant Cy > 0.
Our estimate can be localized on (not necessarily bounded) domains  C M. More
precisely, if M is a complete Riemannian manifold, 2 C M is an open set and u > 0 is a
solution of (2) in Q, then we prove

/14 |Dul?
(6) sup+|u|§max{

o A, limsup
[9) &

z—00Q

1+ |Du(z)|? }

eCu(z)

under the assumption that Ric > —(m — 1)x? in Q and additional requirements on M,
and possibly on 9Q or u|sq. In particular, the conclusion follows by assuming one of the
following conditions:
(RQ) for some 0 € M and « > 0 it holds Ric > —a?(1 + r?), where r(z) = dist, (o, z)
is the distance function from o in M and either
a) u € C°(Q) and ujpq is constant, or
b) 99 is locally Lipschitz and

m—1
T log (K™~ (B, (0) N 0%Y))

r—+00 7’2

< 400

where ’;"-[:"‘_1 is (m — 1)-dimensional Hausdorff measure, or
c) u € C%Q), 09 is locally Lipschitz and for some ug € R

log min{r, |u — ug|} dH™ "
. (8)NB..
lim inf 3
r—+400 r
(K) for some o € M the sectional curvature K of M satisfies K > —G(r) for some
continuous, non-decreasing, strictly positive function G : Rar — RT such that
1/VG ¢ L' (+0).

Thanks to (6) and an original integral formula inspired by a similar one due to Farina
and Valdinoci, [21], and later generalized by Farina, Mari, Valdinoci, [19], we also obtain
the following rigidity result: Let €2 C M be a parabolic smooth domain of a complete
Riemannian manifold M, let u € C3(Q) N C?(2) be a solution of the overdetermined

problem
v <Du> - fl(u) + A in Q,

< +00;

(7) Vv 1+ |Dul? V' 1+ |Dul?

u, Oy u locally constant on 0f2
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for two functions f1, fo € C*(R) with f{ > 0 and assume that M satisfies (R2) or (K) and
that Ric > 0 in Q. If supq |u| < +00, supyq |Du| < +o00 and (Du, X) > 0 in Q for some
Killing field X € X(9), then Q is isometric to a product I x N, with I C R an interval
and N a complete manifold with Ricy > 0, and w only depends on the I-variable. If f;
and fy are constant and supg, |X| < 400, then the conclusion follows by only assuming
(Du, X) >0, # 0 on 99, and if fo is a non-negative constant then it is enough to require
infou > —oo. This happens, in particular, if the differential equation in (7) is the minimal
surface equation or the constant mean curvature equation.

This result is comparable to others obtained by several authors for overdetermined
problems for semilinear equations Au = f(u), in both cases M = R™ (see for instance
[20], [21] and references therein) and M a Riemannian manifold with Ric > 0 ([19]). To
the best of our knowledge, our result for the differential equation in (7) is new even in
cases M = R? R3.

Our gradient estimate technique also allows to obtain the following generalization of
the second aforementioned result of Bombieri, De Giorgi, Miranda: Let M be a complete
Riemannian manifold with Ric > 0 and sectional curvature satisfying K > —a(1 + r)72
for some constant o > 0, with r(z) = dist,(0,x) the distance function from an origin
0 € M, and let u be a solution of

v <D“> —0 in M
Vi
If u_(z) = O(r(x)) as r(x) = +oo, then |Du| is bounded in M. If u_(x) = o(r(z))
as r(x) — +oo, then w is constant. This extends a recent result by Ding, Jost, Xin,
[15], where the same conclusion is reached with different techniques and more restrictive
hypotheses, namely, a two-sided control | K| < a(1+7)~2 and an Euclidean volume growth

condition B
lim M > 0,

r—+oco M

where m = dim M.



CHAPTER 2

Preliminaries

1. Notation

Let (M, o) be a Riemannian manifold of dimension m. The metric o will also be de-
noted with (, ). Welet |-|, D, div and A denote the vector norm, Levi-Civita connection,
divergence and Laplace-Beltrami operator associated to o. Let 2 C M be an open subset
and u : Q — R a twice differentiable function. The graph of u over M is the embedded
C? hypersurface ¥ of M x R defined by

Y=%u0={(z,u(z)) e M xR:z € Q}.

The graph map ' =T 0 : @ = X : 2+ (z,u(z)) is a C? diffeomorphism. Its inverse is
the restriction 7y, of the canonical projection m: M x R — M.

The product manifold M x R is given the Riemannian metric 6 = o0 +dy®dy, where y
is the canonical coordinate on the R factor. The ambient metric & induces a Riemannian
metric g on ¥ by restriction to TS ® T'Y, that is, by setting g(X,Y) = 5(X,Y) for every
X, Y €eT,X, pe . As a result, the inclusion map (X, g) — (M x R, ) is an isometric
embedding. The resulting pullback metric on  via I" is

I'g =0+ du® du.

The manifold (2, T*g) is isometric to (X, g). Welet ||-||, V, div 4 and A, denote the vector
norm, Levi-Civita connection, divergence and Laplace-Beltrami operator associated to the
metric ¢g. In the following, if not otherwise stated we will regard || - ||, V, div, and A, as
acting on functions, vectors or tensor fields defined on €2, that is, we will almost exclusively
work on the manifold (Q,g) := (©,I'*g) obtained by pulling back on Q the graph metric
g, instead of directly working on (%, g).

Let {z'} be a local coordinate system on 2. We write

azaz-jdxi@dxj, gEl"*g:gijdxi@dxj.

For any function ¢ € C1(Q) we also write

dp=p;ida’,  Dp=¢' —
ot

so we have that o;; and g;; are related by
(8) Gij = Oij + uiu, for 1 <i,57 <m.

Let ¢ be the coefficients of the inverse matrix (Jij)*l, uniquely determined by

kakaéj» for 1<i,j<m

ol
with ¢ the Kronecker symbol. Then the coefficients of dp and D¢ are related by
Q= aijapj and ¢; = O‘ijﬁpj for 1 <i<m.
Similarly, we let g™ be the coefficients of (gl-j)’l, determined by the condition g”“gkj = 5;
A direct computation shows that
uiu?

gz‘j:o—”‘—wz for 1 <i,j<m
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where
W =+/1+ |Dul?

For every ¢ € C1(Q2) we denote by Vi its gradient with respect to g, uniquely determined
by the condition (V¢, -} = de. In local coordinates we have

9
— 4.
Vo =g"¢; By

and by writing down

ij ij u'u! pj

9705 =070 — 5

we deduce the intrinsic identity
(Du, Dy)
Vo =Dp— TDU.
In particular, for ¢ = u we get
g g D
g7u; = %, that is, Vu = WZ
In general, we have validity of the chain of inequalities
9 | Dgl* < ||IVy|l? < |Dg|? for every ¢ € C*(Q).
W2

We denote by vfj, Ffj the Christoffel symbols for the metrics o, g, respectively, asso-
ciated to local coordinates {z'}. They are uniquely determined by conditions

0 v 0 0 g O
oo = Yija 2 o = Lo 5
027 O] ox ozt Jxd Or
and may be computed as

(10) 4k = %a’“ (a"” + dou aa”) . ThH=

D and v for 1<i,5<m

oxI ozt Oxt

oI oz’ Ozt

k| 1 Kt <agti n Ogt; 59@') ’
i =5
In particular,
(11) V=, Th=TF  for 1<ijk<m.
The covariant derivative Do of a 1-form « is defined as the (0,2) tensor field given by
(Da)(X,Y) = X(a(Y)) — a(DxY)
for every couple of vector fields X, Y. In particular, for 1-forms dz* we obtain
Damidxj = —’ygkda:k.
More generally, the covariant derivative DT of a tensor field T of type (p,q), p,q > 0 is
the (p,q + 1) tensor field given by

(DT)(X, X1,..., X4, ' .. af) = X(T(Xy,..., Xq 0t ... aP))

1

for every choice of vector fields X, Xi,..., X, and 1-forms o",...,oP. If T is expressed

in local coordinates as
T — Ti1.<.ipj1qudle Q- ® dqu ® 8zi1 R ® awip
then we will write

_ i1...0p
Dr=T Jr---dqk

de* @ de’ @ - @ dadt ® 0y, @ -+ @ i,
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where the coefficients in the above expression are given by

q
11...0p _ 11 ... 0p _ Z 11...0p l'
T Ji--Jgk T 8ka Ji---Jq T jl"'jsflljs#»l'“jqujsk

s=1

p
i1 ie—1lie 1 ip i
+ZT J'1~--jq’y”f'
t=1

Covariant derivatives of 1-forms and tensor fields with respect to the connection V are
defined similarly, so that we have

(Va)(X,Y) = X(a(Y)) — a(VxY),
(VT)(X, X1,..., Xy 0t ..., aP) = X(T(Xy,..., X0, ...,af))

p
' (ZT(Xl,...7Xq,...7VXaj7...)

for 1-forms a,al, ..., a?, vector fields X,Y,Y1,...,Y, and (p, ¢)-type tensor field T. To
avoid confusion with notation adopted for DT, in local coordinates the components of a
covariant derivative VI will bear a semicolon ; as a separator between indices originally
pertaining to T and the new lower index, that is, we will write

VI =T""" daf @da? @ @ dalt @0, @ @ 0,0,
with
0

q
il...ip _ il...ip _ il...ip l
T Ji---dask aka J1---Jq ZT j1~»-js—1ljs+1»--qu—‘ﬂsk
s=1

p
Z‘l...itfllip#l...ip it
+3°T o Tk
t=1

For every ¢ € C%(Q) the Hessians of ¢ with respect to the metrics o and g are defined
as the covariant derivatives of dp with respect to connections D and V, respectively. We
denote them as

Hess, () = Dde, Hessg (@) = Vde.
In local coordinates, we write
Hess, () = pi;da? @ da’, Hess, (¢) = ¢;.jda? @ da’,

with
9 v 0% de 4 9% o
vii = Oz PRYii = Gripei  gak 1 L Y YR P

2o B
From the Schwarz lemma we have 557~ = 5752, hence from (11)

Pij = Pjis Pisi = Pjii
and we can write as well

Hess, () = pi;da’ @ da?, Hess,(¢) = ¢;.jda’ @ da.
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We use (10) to derive a relation between V,kj and I‘fj. Substituting (8) and using the
Schwarz lemma we obtain

g N 991 B 99ij _ 00y N 0%u  Ou N Ou 9%u
Oxd  Oxt Oxt Oxd  Oxtdxi Oxt Ozt Ox'Oxi
doyj 0%u Ou N Ou 9%u
Oxrt  Oxtdxt dxd = Ozt OxI Ozt
00 0%u  Ou ou  0%*u

Oxt  Ox'Oxt Oxd  Oxt OxiOxt

+

5‘0ti 8atj (90'”' 82u
= - = — 2 —
OxJ + oxt oxt + ut oxtoxI
and then
1 Ooy; 0o O0oys 0%u
I = —gM - J Yy
Y2 (8363 ox'  Oat o 0z O

R uFut oy Ooyj  Ooyj Kt 92u
=3 (U w2 J\ow T ow T axt ) T Moriow
o la-kt (8@1- ath 802-j) 1 ’LLk It (80” ﬁotj aJij) Uk 82u

2 oI oxi  Oxt ) iﬁula W2 9zidxi

e uF 0%u }
=%t 573 — W5 ) -

oxI ozt Oxt

W2 \ Ozi0zI

Observing that % - ul'yéj = u;; are the coefficients of Hess, (u), we get

k
U Us 5
(12) IF =95+ WQJ .
Hence, for every ¢ € C?(M) we have
k
. PrU
(13) isi = i+ or(vl —T) = pij — Ty Wi
and in particular
(7
The upward normal vector field to ¥ in M x R is given at any point (x,u(z)) € X by
9y — Du(x)

e = D
Shortly, we write
0y —Du
o

Let D denote the Levi-Civita connection of (M x R, ). The second fundamental form II
of the isometric immersion (¥, g) < (M x R, &) is the tensor field II : TY @ TS — T+%
defined by

(15) n

I(X,Y)=DxY —VxY
for any couple of vector fields X,Y € (X). The trace of II with respect to the metric
g is the non-normalized mean curvature vector mH = Tr,(II), and the unique function
H : ¥ — R such that
H=Hn
is the mean curvature (function) of ¥ in the direction of n.
A local frame for T'Y is given by the collection of vector fields

0
Ei:@—&—uﬁy for 1<i<m
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obtained by pulling back to ¥ the local frame {9, }1<i<m for Q via the diffeomorphism
Ty : ¥ — Q. The local coframe {w'} dual to {E;} is given by

wizdxi—i—uidy for 1<i<m
and is similarly obtained by pulling back the coframe {dz'}. Since 7 : (%,g) = (Q,9) is
an isometry and its differential maps the local frame {E;} to {0, }, we have
9(Ei, Ej) = gijs g=gijw ®@w, Vi, E; =T} By

If U C Q is the domain of the local chart {z'}, we can extend the vector fields E; to the
cylinder U x R by setting E;(z,y) = 0, + ui(z)0y for every (z,y) € U x R. In this way,
we have Day E; =0 for every 1 < ¢ < m and then we can compute

an

—0,

ozt Y

8uj

ozt Y

DEiEj = Daxi Ej = Daﬂ. Ogi +

= ’}/Zazk +
Ou;
P

k k
= B — %-jukay + 927 %

J
= 'szjEk =+ uijay
for every 1 < ,7 < m. From this we get

W(E;, Ej) = Dg, Ej — Vi, Ej = (v — T By +uy50,

k
U " Usq
= — WQJ Ey + u;;0y
k k
u O utug
—Du + 9,
W2
Wig
w
and then we can locally express II as
(16) =10 ®w ®n  with II; = ”WJ
This yields
ij 9" uij
(17) mH = g'l;; = 73

The non-parametric form of the mean curvature equation,

. Du _
(18) div <\/m> =mH

is easily deduced from (17). Indeed, setting X = % and locally writing X = X%0,,
DX = X%da? ® Oyi, AW = W;da", we have
k
Ui U
Wi = )
w
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Going back to (12), we can write
k
k kU
U5 =5 + WIIZ']’
and from (13) for every ¢ € C?(£2) we have

k
(19) Pij = Pij — Lﬁ;‘ I
and then
(20) Agp =g 05 =97 pij —mH SDI]C; '

For ¢ = wu, a combination of (17) and (20) yields the parametric form of the mean
curvature equation,
mH
21 Aju=——.
(21) L
We denote the Riemann curvature operators associated to D and V as R and VR,
respectively. They are tensors of type (1,3) and their action is given by
R(X,Y)Z = DxDyZ — DyDxZ — Dix y|Z,
VR(X,Y)Z =VxVyZ —VyVxZ—-VixyZ
for all X,Y,Z € X(2), where [, ] is the Lie bracket. The components of R are given by
i 0 i s Vi i s
Rl = 5% 9% — 55 — Vet Uik
with the convention that R(X,Y)Z = R’ , X*Y*Z10,: for every X = X'0,:, Y = Y'0y,
Z = Z'0,:. Similarly, the components of VR are given by

. ore, . or, ,
szjkt = 37;1@ + g5 — ijt =TI

with the agreement that VR(X,Y)Z = VRijkthYthaxi.
LEMMA 2.1 (Ricci’s commutation relations). Let o € w(M) be a 1-form on M and
let D2ac = D(Daq) be its second covariant derivative. For every X,Y,Z € X(M)
(D?a)(Y, X, Z) — (D?a)(X,Y, Z) = a(R(X,Y)Z).
With respect to a local system of coordinates {x'},
(22) aijr — gy = R
where o = a;dz’ and D?*a = aijkdxk ® de? ® dzt.
PRrROOF. In local coordinates we have
Da = aijdxj ® dzt, D?a = ozijkdxk ®da’ @ da’
with

Qi = e Oés’Yfp
Oy
Qi = %lkj - Cij’Yfk - Oév;s?’;k-
Substituting the first identity in the RHS of the second one we get
0%q; das O Oas

s t s s
Qijk = 77— — 27V — & ot ouYe Vi — Qs Yig-
3 axkax] 8:17’“ 71] B 6$k Oxd Yik ,YS‘]fY’L]C ZS’YJIC

We rearrange the terms by writing

— 82ai 8 8065 s aOés s afyfj t .8
ik =\ Gakaar ~ ) T\ Gak 1 ¥ g Tk ) T Gk T ik




1. NOTATION 13

and then we get
oL, o?
Qijk — Qg = — 0 (ax”,ﬁ - 7§ﬂfk> + ooy (axz]k - 7§k%‘sj>

N t 87% ¢
o (83:3 — YekVij — Ok + Vi Vik

t
= atR ijk-

The (0, 4)-type version of R is defined by setting
RV, Z,X)Y)=0(V,R(X,Y)Z)
for every X, Y, Z,V € X(Q). In local coordinates we can write
R(V,Z,X.Y) = Ry V' ZI X*Y"!
where the coefficients R;j1; are given by
Rijit = 0is R
For every X,Y, Z,V € X(2) we have
R(V,Z.X,Y) = ~R(Z,V.X,Y) = —R(V.2,Y,X) = R(X, Y.V, Z)
and, as a consequence, the validity of the first Bianchi identity
RV, Z, X, Y)+ R(V,X,Y,Z)+ R(V,Y, Z, X) = 0.
In local coordinates, the above identities read as
(23) Rijie = —Rjie = —Rijer = Riijs
(24) Rijkt + Riktj + Ritjr =0

for every 1 < 4,5, k,t <m.

For every point p € M and for every couple of linearly independent tangent vectors
X, Y € T,M we write X AY = span(X,Y’). The sectional curvature K (m) of any 2-plane
m < T,M is defined as

R(X,Y,X,)Y)

CXPYE - (XY)?
were X,Y € T,M are such that m = X A'Y. This definition is well posed since the value
of the quotient on the RHS is independent of the choice of the basis {X,Y} C T,M for =.

The Ricci tensor Ric is the tensor field of type (0, 2) obtained by tracing the (0, 4)-type
version of the Riemann curvature tensor with respect to its first and third arguments (or,
equivalently, with respect to the second and fourth ones): for every p € M, X, Y € T,M
and for any choice of an orthonormal basis {V'}1<;<y, for (T,M, o|r, ) we have

K(m)

Ric(X,Y) = ZR(W,X, ViLY).
i=1
In local coordinates we write
Ric = R;;dz" @ da?,
where

kt t pk
Rij =0 Rkitj = 5kR itj
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2. The Jacobi equation

Let (M, o) be a Riemannian manifold, Q@ C M an open domain, and let u € C3(Q),
f € C1(Q) be such that

. Du B
(25) div (W) =

Setting W = /1 + |Dul?, the function W~1 satisfies the differential identity
1 — 1
(26) Ay + (I + Ric(n,m)) o + (Vf, V) =0,

where ||II||? = g% g*'11,;,11}; is the squared length of the second fundamental form of the
graph ¥ C M x R, n is any normal vector field on ¥ and Ric is the Ricci tensor of M x R.
For constant f the resulting differential equation satisfied by W~! is also known as Jacobi
equation. Identity (26) can be equivalently restated as

2[vw|?
T
For every (z,y) € M x R and Vi € T, M, V5 € TyR we have the identity

Ric(V,V) =Ric(V4, Vi)  for V =V; + Va,

(27) AW = (|| + Ric(n,n) + W(Vf, Vu)) W +

then from (15) we have that (27) can be further expressed as

Ric(Du, Du)

2[VWP?
W2 '

(28) AW = <|H|2 + T

+W(VY, vu>> W+

We give a derivation of (28).

PROPOSITION 2.2. Let (M,o) be a Riemannian manifold, Q C M an open domain,
and let u € C3(Q), f € CH(Q) be such that

Du
29 div | —= | = f.
(29) <\/1+|Du2) f
Then the function W = /1 + |Dul|? satisfies

Ric(Du, D 2[[VIV||?
30) A, = (P + BLELY Ly igr gy Y w o AVVIE g
w2 w
PROOF. Let {z'} be a local coordinate system on 2. We have
k
Ui U
Wi = TTir
W
W — uikukj N Wi u” B wput W, ukuk] 3 wiguFugut N Wi u”
YW W w2 W w3 w
k
Rt UikUjt | WikjU
U Tw TTw

and then
W, — i kot WikUjt i ij Wikj U .
9 Wi =979 —y; o
From Ricci’s commutation relations (22) we have

g Iuiiu® = g9uipu® + g utub Ry,
and from the symmetries (23) of the curvature tensor we get

ij. t, k ij. t, k t. k
g7 uu" Ry = o u'u” Ryjpj = Rypu'u”,



2. THE JACOBI EQUATION 15

hence P
gijWij = gijgkt ngjt Ri];;/ v %g”uzjkuk.
We differentiate
(31) (gijuij)k = g”}cuij + gYuij.
We compute
ij i uhd il utud Wy

9% = 9 W2_W2+ W3

) j ) i i Gat
Uztutku _thutku n uwruI utugg

:0—

W2 W2 Wi
it j jt, i Utk
=— (9" +¢"u') 375

and we use the symmetry u;; = uj; to write

i Cwlugs )
(32) guis = =29" = g = 20 Wi
So, we obtain
ij ok, ity Wikt _ it
g putug; = —2g9"W; = —2¢"W; W,

w
and then

gijuijkuk = (gijuij)k ub — g”}cukuij = (gijuij)k uf + 2gijWZ-Wj.
This yields

ijgkt Uik Ujt i Rjutv? (g”uij)k u 29" W;W;

g i W W W W
Summing up, we obtain
B T
AgW = gl]Wij — gW;] Wkuk
i ot WikUj Rijjutv!  2g9W; W, 9" ui; i W
:gz]gkt 1[1}/]t + z]vV + g Wz J + (( M;J)k _g”uijWZ uk
_ ij Kt Uik Ut Rijuiuj QQijWin gijuij k
g7’g W + W + W + W ku .

From (16), (17) and (18) we have II;; = W~'u;; and W~!g"%u;; = f, then we can write
Ric(Du, Du) n 2[[VW |2

_ 2
AW = 2w + =2 =+ (Df, Du)
and, since Du = W?2Vu,
ic(Du, Du) 2 2
AW = 2w + BePu D) 2ANWIE oG r Gy,

w w
O

Formula (28) is our starting point to derive gradient estimates for non-negative (or
lower bounded) solutions of equation (25) via the maximum principle. We outline the
main argument behind the proof that will be carried out in Chapter 4: this is essen-
tially Bernstein’s method for obtaining a priori gradient bounds for solutions of nonlinear
equations, see [4]. Let n € C?(£2) be given and set z = Wn. Then in Q we have

Vi =WV + VW,
Agz = WA+ 2(VW, V) + nA W.
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As W > 0, we can use the first identity to write

S N 14
"mw T Tw
and then we substitute this into the second one to obtain
(VW,Vz) 2[ VW3
Agz:WAgn—i—QT +n AW — “—w )

Rearranging terms and using (28),

VW, Vz Ric(Du, Du
(33)  Agz— 2% — <<||H||2 + %

To fix ideas, let us first consider the case where n = e~ %" for some constant C' > 0.
Recall that we are assuming u > 0, so 0 < < 1. In this setting we have

Agn = (—CAgu+ C?|Vul*)n

+ W(V{, Vu)) n+ Agn) w.

and (33) yields

(VIW,Vz) 5 Ric(Du, Du)

If Q is compact, then either supg, 2 = supyq, 2 or z attains its global maximum at some

point Z € Q. In the second case, from the maximum principle it must be Vz = 0 and

Agyz <0 at z. Using 2z > 0, we obtain

Ric(Du, Du)
W2

Under appropriate assumptions on Ric and f we can ensure that the LHS of this inequality

is strictly positive if W exceeds some threshold A > 1. Coupling this with condition n <1
we deduce z(Z) < W(Z) < A and then we obtain a global bound

+W(Vf,Vu) — CAju+ C’Q|Vu2) z.

(1112 + +W(Vf,Vu) — CAyu+ C?||Vul? < 0.

(34) sup z < max {A, sup z} ,
Q 99

that is, a gradient bound

v/ 1+ |Dul? v/ 1+ |Dul?
sup+|u|<max{A,sup+|u}.

Q eCu 29 eCu

If Q is not compact, then we rely on a localization and approximation argument to
derive the a priori bound (34). First, we assume without loss of generality that supg z >
Supyq z, and we fix v > 0 such that supg z > v > supyq 2. Then, we set Q, = {x € Q:
z(z) > v}, we let 1 : Q, — R be a suitable continuous function with compact sublevel
sets and we set 7. 5 = e~ “¥=¥ — § for every £, > 0. In this case we have

Agnes = (—CAgu —eAgp+ ||CVu + va”2) o~ Cu—ev
and then, for the function z. 5 = W, s,
VW, Vze s Ric(Du, Du
Erel — (o + G2
+ (~CAgu — eAg + |CVu + eVy||?) WeCusv,

A925,6 -2

(35) W + W(V{, Vu>) Zes

For every €,0 > 0 we have n. 5 < e~ on 4, 50 2. 5 < z. On the other hand, 2.5 — z
pointwise on €, as (¢,0) — (0,0). Hence, for every sufficiently small €,6 > 0 one has
SUPg. Ze,5 > Y 2 SUPgq. Ze,5- For every e, 6 > 0 the boundary of

Qo5 = {z € 97’7 1Ze,s > 0}

is contained in (09,) U {2.s < 0}, so we have supyq_, 25 < 7 < supq_, zc,5. More-
over, for every £,0 > 0 the set (). is relatively compact in M, being a subset of
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{tp < e711og(d)}. Hence, for every sufficiently small £, > 0 there exists 7.5 € Q.5
such that
Ze5(Te5) = max z. 5 = SUP 2.5
e,6 ~
and by a diagonalization argument

lim 2z s5(xe5) =supz = supz.
Q

(,6)—(0,0) -

By the maximum principle, at points z. s it must be Vz. s = 0, Ayz. 5 < 0 and then the
RHS of (35) must be non-positive. A bit more care is needed in this case to properly
bound from below the RHS of this identity, but then we can show again that, for some
fixed threshold A > 1, for all sufficiently small £,§ > 0 it must be W(z.5) < A, and
then we conclude supg z < A. In particular, in the proof of the gradient bound we will
need to suitably control the contribution of terms eA ¢ and €%(|Vy||? in inequality (35).
For this reason, in Chapter 3 we shall study under different assumptions the possibility
of constructing functions ¢ : Qy — Rar with compact sublevel sets and with controlled
V4], Aytp on subdomains 2 C Q such that Qg C . We will call them (good) exhaustion
functions.

3. An equation for the directional derivatives of u

Let (M, o) be a Riemannian manifold,  C M an open set. We recall that a vector
field X € X(9) is said to be a Killing vector field (with respect to the metric o) if the Lie
derivative of the metric o vanishes along the flow of X,

ﬂxUZO

a condition that amounts to saying that, for every x € €, the flow of X is a (local) 1-
parameter group of (local) isometries in a neighbourhood of x with respect to the metric
0. From the properties of the Levi-Civita connection D we have

(Lxo)(Y,Z)=(DyX,Z)+ (DzX,Y)
for every Y, Z € X(£2). With respect to a local system of coordinates {z*}, this amounts
to saying that
where X;; are the components of the (0,2)-type tensor field X;;dz? ® da’ metrically
equivalent to the covariant derivative DX = Xijdxj ® 0, of X = X0, (that is, X;; =
aikX@v for 1 <4,5 <m).
Let X € X(Q) be a Killing vector field and let u € C3(Q) and f € C*(Q) satisfy

D
div | ———e | = f
V14 |Dul?
In the next proposition we derive an expression for Agp, where ¢ = (Du, X) is the
directional derivative of u in the direction of X.

PROPOSITION 2.3. Let u € C3(Q) satisfy

Du
Vv _— =
/14 |Dul?
for some given f € C1(Q) and let X € X(Q) be a Killing vector field. Then the function
¢ = (Du, X) satisfies
2(VW, V)

Agp = W(Df, X) + =
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or, equivalently,

W2div, ({Z/‘i) = W(Df, X).
PRrOOF. In local coordinates we have
(37) © = up X",
(38) 0 = up X* + up X%,
(39) Yij = ukink —|—ukiX’§» —|—uij’§ +ukX’§j
and then

97 ¢ij = g% uri; X* + 297 up X5 + gUup X5

By Ricci’s commutation relations and (31) we can write

ij _ i ij — il gt ij ij
97 urij = 9" (wing — wijn) + 9" wijr = 970 Ruarj + (9 uiz), — 9" wig
k kt kot kt kt
X' = 0" Xyj = 0" (Xuig + Xitg) — 0™ (Xig — Xije) — 07" Xije
kot kt yrs kt
= 0" (Xpij + Xigg) — 0" X Ry — 0" Xiju,

then
gijukink = gijuthRtikj + (gijuij)k Xk - gi]guin’“,
gijukaij = g"u" (Xpij + Xig) — 970" X Ryjyy — u' g™ Xy
and we obtain
g = (gijuij)k Xk - gij}cuink + 2g”uikX’§» + g ut (Xpij + Xigg) — u' 9" Xiju.
From (32) we can write
—g" iy = 2git%utk
and from (38) we also have

k k k
U X = Upe X" = @y —up X7,

hence W . W
_gleuink = QQithUthk = 2gijWZg0j - 2gileukX’;-.
Moreover,
i Wi k ij k ij vk Wiug,
_29JWU1¢X]- + 29" ui X = 297 X5 | uir — W
ij uipu'ug
— 2" x* (uik -t )
ij uluy,
=2g JX];- ((52 — VV2) Uit
=297 0" X ;9" ouua

= 29" 9" Xgjui
= gijgts(ij + Xjs Juit
where the last equality follows from the symmetries ¢* = ¢7¢ and u;; = uj;. Then,
—g%ui X* + 20w X5 = 207 5205 + 979" (Xoj + X uia
and we obtain
G (i) XF 20 Wi
g pij = (g Uzg)k + 29 W‘P]
+ 979" (Xaj + Xj)ui + g7 u" (Xpij + Xigj) — u'g" Xije.
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From (38) we further write

k kot kit ¢ k, t
L PR L uppu” X o uput XY . W X L Xputu
97 ui; 72 = gVu; e + 9wy, o = gVu; o + g”uijw
and then
k
J g, KU
Bgp = g"¢i; — 9" uij s
’ OWRXE LW
= (9"7uis), X* = g uij = + 20" 50
ij ts ij. t ij ij Xpeuhu'
+ 979" (Xsj + Xjs)uie + g7 u" (Xtij + Xirj) —u'9” Xije + g Uij
g uij k i Wi
—w X 429 g
( W . + 29 W‘PJ
. y - L XpuFut
+ 979" (Xoj + Xjs)uie + g7 u’ (Xuij + Xieg) — u'g” Xije + 9”%’;‘#-

From the Killing condition (36), the last four terms in the above identity cancel out and
we obtain
gijuij k id W, <V W, V(p>
Agjp=W|Z—=| X*+2¢" —¢p;, =W (Df,X)+2———"+.
g ( W )k +29" 570 (Df, X)+ W

COROLLARY 2.4. Let u € C3(Q) satisfy

Du B fa(u)
v <m> = fi(u) + W

for some given f1,fo € CH(R) and let X € X(Q) be a Killing vector field. Then the
function ¢ = (Du, X) satisfies

2VW
Bgp = (WA + ) e + (5 = wT0 Vo).
Equivalently,
2 —Fa(u) q: eFQ(u) / ’
(40) W div, (ST ) = (WA () + () ¢

where Fy is any primitive of fs.
PROOF. Let f = fi(u) + W1 fa(u). We have
f5(u) fa(u)
hence
— (W / fa(u)
W(Df,X) = (Wfi(u) + f>(u)) ¢ — == (DW, X).
In local coordinates we have i
Wil X
DW,X) =" "
(DW, X) = "0
From (38) together with the Killing condition (36) we compute
wijud X' = uf (u; X+ uZXZ) - ujuiXij =ulp; —0
and then

7%(1314/, X) = afm)% = —fa(u)g7uip; = — fa(u)(Vu, Vi).

Hence, the conclusion follows from Proposition 2.3. (]






CHAPTER 3

Good exhaustion functions

In this chapter we show that if u is a C? function defined on an open domain € of
a complete Riemannian manifold M and if the validity of either condition (R) or (K)
from the Introduction is assumed, then for every subdomain €y C Q with Qg C Q there
exists a continuous function v : Qy — Ry, with ¥(z) — +o0 as z — oo in g, such that
Ayt and [|[V9||? are suitably controlled from above in €." This will be essential to carry
out the proof of the gradient bound in the next chapter.

1. Basic definitions

Let (N, h) be a Riemannian manifold, @ C N an open set, f : @ — R a function.
Following [37], we recall some alternative notions of weak solutions of the differential
inequality Apu < f.

DEFINITION 3.1. A lower semicontinuous function u : 2 — R is a solution in Q of
the differential inequality Apu < f in the barrier sense if for every & € Q, € > 0 there
exist a neighbourhood U C Q of T and a function v € C*(U) such that

u < v in U,
u(z) = v(T),
Apv(Z) < f(Z) + €.

In this case, we say that v is a support function for v at .

This weakened notion of solution was first introduced by Calabi, [10], for linear uni-
formly elliptic operators of second order of the form
Lu= aijuij + bu,

with bounded coefficients a*, b*. Indeed, he called such solutions weak solutions. As
originally showed by Calabi, if u is of class C? then it satisfies Apu < f in the barrier
sense if and only if it does so in the classical (strong) sense.

DEFINITION 3.2. A lower semicontinuous function u : Q — R is a viscosity solution
in Q of Apu < f if for every T € Q, for every neighbourhood U C Q of T and for every
¢ € C?(U) satisfying

{¢<u in U,

it holds
Apd(z) < f(T).

From the definition itself it follows that if w is a solution of Apu < f in the barrier
sense, then it is also a viscosity solution. The converse is not true, in general. The

lHereafter, if My is a subset of a manifold M and f : Mg — R is a function, we say that f(z) — 400
as ¢ — oo in My if for every a € R there exists a compact set K C Mg such that f(z) > a for every
T € M() \ K.

21
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following simple example, taken from [37], shows that this may fail even for differentiable
functions: in N = Q = R, the function

() = 2?sin(1/z) for x # 0,
0 for x =0,

satisfies ”(0) < 0 in the viscosity sense but not in the barrier sense.

DEFINITION 3.3. A function v € H{ _(Q) is a weak (distributional) solution in Q of

the differential inequality Apu < f, with f € L (), if

loc
—/(ng, Vu) < / fo for every 0 < ¢ € C°(Q).
Q Q

From a theorem due to P.-L. Lions [36] and H. Ishii [29], for continuous functions
u, f the inequality Apu < f is satisfied in the viscosity sense if and only if it holds in the
distributional sense. In fact, Ishii’s theorem is concerned with the notion of viscosity and
distributional solutions for differential inequalities of the form Lu < f on open subsets
U C R™, where L is a linear elliptic differential operator of the form

(41) Lo =a"¢ij + b + co

and o € CH1(U), b* € CO1(U), ¢, f € C(U), and the equivalence between viscosity and
distributional solutions is established under the assumption /det(a*’) € C1(U). In every
local smooth chart {z'} : Q5 C Q — U C R™ the Laplace-Beltrami operator Aj, admits a
local expression of the form (41) with smooth coefficients. Due to the local nature of the
notions of viscosity and distributional solutions, Ishii’s theorem directly applies to Ay,.

We also recall the following global approximation theorem due to Greene-Wu (see
Corollary 1 to Theorem 3.2 in [25]), that we will need in Section 3.3.

PROPOSITION 3.4 (Greene-Wu'’s global approximation theorem). Let (N, h) be a Rie-
mannian manifold, @ C N an open set and let 0, 3,9 € C°(Q) be continuous functions,
with 8,9 > 0. If u € C°(Q) satisfies

Apu < in Q)

in the distributional sense (equivalently, in the viscosity sense) and if for every x € €
there exist a neighbourhood U C 2 and a constant B € (0, 5(x)) such that

lu(yr) — u(y2)| < Bdists(y1,y2) for every yi,y2 € U,
then there exists v € C*°(Q)) such that

Apv <7 n €,
V]| < B in €,
lu(z) —v(z)| <g for every x € Q.

2. Constructions via distance functions

Let (M, o) be a connected, complete Riemannian manifold and let r(x) = dist, (0, z)
be the distance function from a fixed origin o € M. The function r is Lipschitz continuous
on M with Lipschitz constant 1, but in general it is not smooth on M. In fact, we can say
that 7 is smooth on the open set D, = M \ ({0} U cut(0)), where cut(o) is the cut locus
of o in M, as defined below.

As just anticipated, r is not differentiable at o regardless of the geometry of M.
However, it is always possible to find a neighbourhood U of o such that r is smooth on
U\ {o}. In particular, the Hessian of the function r has the asymptotic behaviour

1
Hess(r) = —(oc —dr ®dr) + o(1) as r —0
r
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(see [44], p. 194) and the function 72 is of class C? in a neighbourhood of o, with
Hess(r?) = 20 +o(1) as r — 0.

To introduce the definition of the cut locus cut(o), let us recall the following notion:
a geodesic curve v : [a,b] — M is said to be a segment if it is length minimizing on [a, b],
that is, if

disty (v(e1),v(c2)) = |e1 — cof for every ci,co € [a,b].

From the Hopf-Rinow theorem, completeness of M implies that every point x € M is
joined to o by at least one segment. A point x € M is said to be a cut-point for o if there
exists a unit speed geodesic v : Rj — M, with v(0) = o, which is a segment between o
and x but not between o and y(r(x) + €) for any € > 0. The set of cut points for o is
called the cut locus of o0 in M.

The function 72 is smooth on M \ cut(o), and r is smooth on M \ ({o} U cut(0)).
A procedure introduced by Calabi (Calabi’s trick, [10]; see also proof of Lemma 7.1.9
in [44]) allows to construct families of (smooth) support functions for r at points of
cut(o): if xg € cut(o) is given and v : [0,7(xg)] — M is a segment joining v(0) = o and
v(r(zo)) = o, then zq is not in the cut locus of any point of 7 lying between o and g, so
for every € € (0,r(x)) the distance function r.(z) = dist, (0., z) from o, = ~(e) is smooth
in a neighbourhood of zy. From the triangle inequality we have

r(z) <r.(zx)+e

for every x € M, with equality for every x lying on v between o, and xy. In particular,
for every sufficiently small € > 0 the function r. + € is smooth in a neighbourhood of x
and satisfies

r<r.+e in M,

r(zo) =re(xo) + ¢
so it is a support function for r at xg.

The basic tool in the analysis of this section is the following standard Hessian com-

parison theorem for the distance function from a fixed origin in a Riemannian manifold
(see for instance Theorem 2.15 in [6] and the previous remarks.)

THEOREM 3.5 (Hessian comparison theorem). Let (M, o) be a Riemannian manifold.
Having fixed an origin o € M, let r(x) = disty (0, z) be the distance function from o. Let
v : 10, Ro] = M be a segment with v(0) = o and let G : (0, Ry) — R be such that

K((s) ANX) > —G(s) for every s € (0,Rg), XLA(s)
If ¢ : (0, Ry) — R satisfies
¢/ + ¢2 2 G on (05 RO)a
d(s)=s"1t+o0(l) as s—0
then
Hessr((s)) < ¢(s) (o — dr @ dr) for every s € (0, Ry).

From Theorem 3.5 and Calabi’s trick we deduce the next Theorem 3.6, whose proof
relies on a construction described in the proof of Lemma 2.8 of [45]. We recall that if
0 € M is given and x € M\ ({o}Ucut(0)), the radial sectional curvature K;,q () associated
to o is the infimum of the sectional curvatures of tangent 2-planes m < T, M such that
Dr em.

THEOREM 3.6. Let (M, o) be a complete Riemannian manifold. Let r(xz) be the dis-
tance function from a reference origin o € M, let G € C*(RY) be non-decreasing, with
G(0) = a >0, G'(0) =0, and such that the radial sectional curvature satisfies

Kiaa > —G(1) on D, =M\ ({o} Ucut(o)).



24 3. GOOD EXHAUSTION FUNCTIONS

Also let Q@ C M be an open domain and u € C*(Q), f € C°(Q) be such that

div [ 2% ) _¢
V1+[Dul?2)

Then, the function v : M — RS‘ defined by

") ds ?
Y(x) =« ( ; m) for every x € M

is C% on M \ cut(o), satisfies

VY| <24, Ay <2 ((m —1)\/ay coth (@) + VOl f|+ 1) on 2\ cut(o)

and for every T € Q N cut(o) there exist sequences of neighbourhoods {Uy} of T and
functions 1y, € C%(Uy) such that

Ve > in Uy,

z) =1(z),

) < \/1#(@),
2((m—-1)

Vi (
V(2
limsupy o0 A2 Vab(@) coth (Vau(@) + V@IS +1).
PROOF. Set H(t \/ s)ds. The function ¢(t) = /G(t) coth(H (t)) satisfies
o G(1) CWVGHH'(H) . G)
PO =3 Tom A sinhz(H(t)) = b2 (H (D)
because of G’ > 0 and H' = /G, so it is a solution of
{¢’+¢22G on RY,

3]

d(s)=s"1+o0(l) as s—0,

where the validity of the second condition can be verified from asymptotic expansions

H(t) = at + O(t?), coth(t) =t~ + O(t), /G(t) = vVa+ O(t?) as t — 0. From the

Hessian comparison Theorem 3.5, at every point = € D, we have
Hessr(z) < ¢(r(z)) (o —dr @ dr)

where inequality is to be intended with respect to the partial ordering of quadratic forms.
Having fixed a local coordinate system {x'}, this yields

g’ TZJ < ¢(r(z))g’ (UU riTj)

because g is a positive definite quadratic form. The quadratic form ¢(r)(c — dr ® dr) is
also non-negative and we have (¢"7) < (%), so we can further estimate

97ri; < ¢(r(x))o (o3 — riry) = (m — 1)¢(r(z))
and by (20) and the Cauchy-Schwarz inequality

(42) Agr < (m—=1)o(r) + [f].

We now introduce functions
t o ds
\/&/ e o(x) = h(r(z
Ve (z) = h(r(z))

in order to write ) = ©?. As b’ > 0 and " < 0, we have
Agp < N (r)Agr + B (r)|Vr||> < B/ (r)Agr,
Ay < 2000 + 2| Vl* < 20/ (r)h(r)Agr + 21/ (r)?||Vr||.
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From the monotonicity of G we have \/G(t) > \/a and then we can estimate

0<h(t) = \/‘é% <1, 0 < h(t) <t, H(t) > vat > /ah(t).
From the first two inequalities together with (42) and the definition of ¢ we obtain
21/ (r)h(r)Agr < 2(m — 1)y/ah(r) coth(H (r)) + 2h(r)| f]
and then we can further estimate
21 (r)h(r)Agr < 2(m — 1)y/ah(r) coth(v/ah(r)) + 2h(r)|f]|
since the function coth is strictly decreasing on R*. From ||Vr| < |Dr| = 1 we also obtain
R (r)?|Vrl? <2, (IVY] = 2h(r)[[Vr]| < 2h(r)

and then the first part of the thesis follows by observing that /4 = ¢ = h(r).

We prove the second statement. Let Z € QN cut(o). Choose a segment v : [0,7(Z)] —
M such that v(0) = oand v(r(Z)) = Z. Fixe € (0,7(Z)), let 0. = v(g), r-(x) = disty(0¢, x)
and define 7. : [0,7:(Z)] — M by setting

Ye(s) =v(s+¢) for every s € [0,r.(Z)].

The curve 7. can be extended to a segment on a slightly larger interval [0, r.(Z) 4 £'], for
some &’ > 0, and satisfies 4. (s) = ¥(s + ¢) for every 0 < s < r.(Z). Then

KA:(s)ANX) > —-G(s+¢) for every s € (0,7:(%)), X L4 (s).

Since the function r. is of class C? in a nelghbourhood of T, we can repeat the same

reasoning as above. We set G.(s) = G(s +¢), a. = G¢( fo /G:(s)ds. The
function ¢.(t) = aZt\/Ge(s) coth(H,(t)) satisfies

PL+¢2 > Ge on R,

de(s)=s14+0(1) as s—0

and we are led to
Agre(Z) < (m — 1)de(re(2)) + [f]-
Then, we define
Ve(w) = h(re(z) + )
where h is the same function as above. Since r.(z) + ¢ > r(xz) on M, with equality at
Z, and h is non-decreasing, we have ¢, > ¢ with equality at . Estimating as above we
obtain

Aghe <20 (2 + e)h(re + ) Agre + 21 (1o + )2 V.||
< 2R/ (re + €)h(re + €)Agre + 2
in a neighbourhood of Z. In particular, since r.(Z) + ¢ = r(Z), we have
Agthe(z) < 20 (r(2))h(r(2)) Agre(2) + 2.

As e = 0 we have ¢. — ¢ uniformly on compact subsets of RT, and r.(Z) — r(Z), then
¢ (re(Z)) = &(r(Z)) and we obtain

hmsup Agthe(Z) < 2 (( — 1)v/ap(Z) coth (\/m) + V(@) f] + 1) .

Moreover, for every € > 0

V(@) = 2h(r(2))[|Vre||* < 2h(r(7)) = 2V/%
Then, the conclusion follows by choosing ¥ = ., for some sequence £ — 0. O
The second key result of this section, Theorem 3.10 below, is concerned with the case

of quadratic decay of the negative part of the curvature tensor. In order to prove it, we
need two computational results.
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LEMMA 3.7. The function 1(s) = scoth(s) satisfies

1442 +1
(43) Pis) >0, 1<y(s) < —
PROOF. A straightforward computation yields
W(s) = sinh(s? co2sh(s) -5 _ Sinh@s)Q— 2s 50 for 5 0.
sinh*(s) 2sinh?(s)
Observing that ¥(s) — 1 as s — 0, this implies 1 < ¢(s) for every s > 0. In view of this,
we have equivalence

1+V4s2+1
vis) <
By direct computation we have

P(s) +5° —(s)? =

for every s > 0.

(2h(s) —1)2 <48’ +1 & P(s)> —(s) < %
ssinh(s) cosh(s) — s?
sinh?(s)

and this concludes the proof of the claim. O

=s'(s)>0  for s>0

The proof of the next Lemma 3.9 relies on the following comparison theorem for
Riccati inequalities, drawn from Corollary 2.2 in [45].

THEOREM 3.8 (Comparison theorem for Riccati inequalities). Let G € CO(R{), let
T, T > 0 and let ¢; € AC((0,T3)), i = 1,2, satisfy

¢/1 + Qﬁ S G on (O,Tl)a ¢/2 + Q% 2 G on (OaTQ)a
o(t)=t"1+0() ast—0F, Pa(t) =t~ 1 +0(1) ast— 0.
Then Th < Ty and ¢1 < ¢ on (0,17).

LEMMA 3.9. Let ¢ > 0. The asymptotic Cauchy problem
2

’ 2 _ € +
(44) ¢(S)+¢(S) _1+S2 fOTSER 9
#(s) =s"1+0(1) as s =0
has a global solution ¢ € C*(R™) satisfying
1+ v4c? +1
o(s) < % for every s > 0.

PRrROOF. The Cauchy problem
2

W' (s) = Togh(s)
h(0) =0, '(0) =1

has a global solution h € C1(R{)NC?(R*) satisfying A > 0 on R*. The function ¢ = h’/h
is then a solution of (44). We define functions

! 1++v4c2 +1
¢o(s) = ccoth(cs), b1(8) = ¢ with ¢ = %
s

A direct computation shows that
2

Gh(s) +00(s)’ = > 7

while ¢(s) = s7! + 0(1) as s — 0. From the comparison theorem for Riccati inequalities,
Theorem 3.8 we deduce ¢ < ¢ on RT. Then, by (43) we have ¢(1) < ¢o(1) = ccoth(c) <
' = ¢1(1). We compute

d(d—1) 2 c?

¢'1(5)+¢1(5)2:T: 2 1152

Claw‘ Q
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and then we apply again the comparison theorem for Riccati inequalities to deduce ¢ < ¢
n [1,400). From Lemma 3.7, for every 0 < s < 1 we can estimate

th th /
bo(s) = ccoth(cs) cs coth(cs) < ccoth(c) < ¢ 61(5)
s s s
and this, together with ¢ < ¢y, yields ¢ < ¢, on RT. O

THEOREM 3.10. Let (M,o) be a complete Riemannian manifold. Let r(x) be the
distance function from a reference origin o € M and assume that

2
Krad > —

2 on D, =M\ ({o} Ucut(o))

for some ¢ > 0. Also let 2, u, f be as in Theorem 3.6. Then
Agr? < ( (1+\/402 )+2r|f|+2 on Q\ cut(o)

and for every T € Q N cut(o) there exist sequences of neighbourhoods Uy of T and a
functions vy, € C?(Uy) such that

Vi 2P in U,
Vr(T) = ¥(x),
IVipr||(7) < 2r(z),
limsupy,_, oo Ag¥(Z) < (m —1) (1 + V42 + 1) + 2r(2)| f| + 2.

PROOF. From the Hessian comparison theorem and Lemma 3.9, and estimating as in
the proof of Theorem 3.6, we obtain

(m—1)(14+V4c® +1)
2r
Agr? =2rAgr +2|Vr|2 < (m —1) (1 + V42 + 1) + 2r|f| + 2 on Q\ cut(o).

Agr < +|f] on QN D,,

Let z € QNcut(o). Choose a segment « : [0,7(Z)] — M such that v(0) = o and v(r(Z)) =
Z. Fix e € (0,7(Z)), let 0. = (), r-(z) = dist, (0, x) and define 7. : [0,7:(Z)] — M by
setting
Ye(s) =v(s+¢€) for every s € [0,7:(Z)].
The curve 7, can be extended to a segment on a slightly larger interval [0, r.(Z) 4 &'], for
some &’ > 0, and satisfies 4. (s) = 4(s + ¢) for every 0 < s < r.(Z). Then
c? 2
>
14+ (s4+¢)? =~ 1+s2

K(H:(s) N X) > — for every s € (0,7:(Z)), X L5:(s).

From the Hessian comparison Theorem 3.5 and Lemma 3.9 we have

1++vV4ce2 +1
2r.(z)

Setting 1. = (1. + €)2, we have 1. > r?, with equality at Z, and

Agre(@) < (m 1) £

IVeell(@) < 20(@), Agve(@) < (m—1) (1+ Va2 +1 ) (@)If]+2

The desired conclusion then follows by choosing 1, = v, for some sequence e, — 0. O
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3. Construction via potential theory

Let (M, o) be a complete Riemannian manifold, Q2 C M an open domain and u €
C?(2). In this section we show that if the graph ¥ = {(z,u(z)) : € Q} has bounded
mean curvature in M x R and M, 99, ujpq do satisfy some mild requirements of global
geometric nature, then for any fixed base point ¢ € 2 the volume of geodesic balls BY(q) of
(€, g) (equivalently, the volume of geodesic balls of the graph (X, g) centered at (¢, u(q)) €
Y) satisfies

log | B2
(45) lim inf log |57 (q)]| 3 (@) < 4o00.
r—-+00 r

Starting from this fact, we will prove that for every subdomain €2y C €2 with Qo C Q and
for every p € g, A > 0 there exists a smooth function ¢ : Qg — [0, +00) satisfying

v(p) =1,

Y >1 on 90\ {p},

Y(z) = +oo  as disty(p,z) = o0,
Agh <M\ on Q.

This will be done by isometrically embedding 2y in a complete Riemannian manifold
without boundary (N, h) satisfying a volume growth condition analogous to (45) and by
showing that on such manifold, for every ¢ € N, there exists a smooth g : N — [0, +00)
satisfying

Yolq) =1,

o > 1 on N\ {q},

Yo(x) = +00 as x — oo in N,

Aptpg < Xy in N.

The first step in this direction is given by Lemma 3.12 below, whose proof relies on a
calibration argument due to Trudinger, [54], and on a basic inequality proved in the next
Lemma 3.11. Hereafter, for any o € M, notation B, (o) will indicate BZ (o), that is, the
geodesic ball of radius r > 0 and center o in (M, o).

LEMMA 3.11. Let (M, o) be a complete Riemannian manifold, @ C M an open subset,
ue€ C?(Q). Letoe M, peQ, a€R and set d = max{dist, (0,p), |u(p) — a|}. For every
d < R and for every 2y C €,

D 2
(46) 0N By )y < | Wdz, < \QOmBR(o)|,,+/ Dul o,
AR AR
where Ap = Br(o)N{zx € Qo : |u(x) —a| < R} and | - |4, | - | denote volume measures

induced by g and o, respectively.

PROOF. The map idg : @ —  is distance decreasing from (€2, g) to (£,0), so we
have BY_,(p) € Br—q(p). From triangle inequality and from the definition of d we also
have

Br_a(p) € Br—d+dist, (o,p)(0) € Br(0).
Since |Vul| < 1 in Q, we also have B%_,(p) C {z € Q: Ju(z) — u(p)| < R — d} and again
from triangle inequality and definition of d we obtain
Br-a(p) C{x € Q: |u(x) —a| < R—d+ [u(p) — al}
C{z e |u(z) —a|l < R}
The above inclusions yield Qo N B%_,(p) € Agr and then we have
|QODB%_d(p)\g:/ 1d;vg:/ Wdz, < W dz,.
QOOB?{,d(p) AR

QOOB%,d(p)
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Observing that W = ‘DVI;F + % < lDV;‘Q + 1 and Ar C Q¢ N Br(o) we further estimate
Dul? Dul?
W dz, < / Dl 4+ 1 Agl, < / DU 4+ 19 A Br(o)]o.

O

LEMMA 3.12. Let (M, o) be a complete Riemannian manifold, & C M an open subset,
ue C?Q). Letoe M, peQ, acR and set d = max{dist,(o,p), |u(p) — a|}. Also

let Qo C Q be a subdomain with smooth boundary and such that Qg C Q. For every
d< R < Ry,

R
1900 B7_a®)ly < 120 0 Br(0)ls + =519 N Br, (0) \ Br(o)lo+

(47)
+R/ |f|dxg+/ min{R, [u — a|} dH™
QOQBRl (0) (690)QBR1 (O)

where

D
f=div [ ——e ).
1+ |Dul?
PRrOOF. Consider the functions ug, 1 defined by
—-R ifu<a-—R,
ugp=<u—a ifa—R<u<a+ R,
R if u>a+ R,

1 if x € BR(O),
Ry —r(z) .
=94 —7 if B B
¥(x) Ri—R if « € Bg, (o) \ Br(o),
0 if # € M\ Bg,(0).
Note that |[Ypur| = Y|ur| < |ur| = min{R, |u — a|}. The vector field
Du

is defined and Lipschitz regular in a neighbourhood of € and is supported in the compact
set 2N Bg, (0). Since 9 is smooth, we can apply the divergence theorem with respect
to the Riemannian metric o to obtain

/ div (X)dz, = / (X,v)dH" !,
Qg 8QO

where v is the exterior normal to 0. We compute the divergence of X

(DUR,DU)+U (Dvau)
W B

div (X) = Yur div (?{;) +

| Du? ur (Dr,Du)
=upf +¢ W 1{|u—a\<R}_R1_R W LB (0\Br(0)

and then we can write

(Du,v) . | Dul?
YuR dH " = / ) dz, + Yugrfdr,
Q0 2 {lu—a|<R} 2 Qo

1 (Dr, Du)
uRiw

_ dz,.
Ri = R JoynBn, (0)\Br(0)
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We rearrange the terms and use Cauchy-Schwarz inequality to write
/ Dup | L

2 dz, < ug| =

{lu—a|<R} w Ry —R Q0NBr, (0)\Br(o) w

Du _
+ [ tunliarg+ [ olun ot ang
Qo Q9

Since ¥ = 1 on Bg(0), ¥ = 0 on M \ Bg,(0) and 0 < ¢ < 1 on M, using inequalities
|Du| < W and |ugr| = min{R, |u — a|} < R we obtain

| Du|? R
dz, < 0 NB Br(0)|,
[ e < 0 B\ Bito)

dx,

+R |f|dx[,—|—/ min{R, |u — af} dHm~!
QoNBRr, (0) (0Q0)NBR, (0)

where Ap = Br(o)N{z € Qo : |u(x) —a| < R}. Then the desired conclusion follows from
Lemma 3.11. g

THEOREM 3.13. Let (M, o) be a complete Riemannian manifold satisfying
(48) Ric(Dr, Dr) > —a?(1 +r)? on D, =M\ ({o} Ucut(o))

for some a > 0 and some reference origin o € M, where r(z) = dist, (0, z). Let @ C M
be an open domain and let u € C*(Q) satisfy

v (D) iy
1+ |Dul?
for some bounded function f : Q — R. Assume that one of the following conditions is
satisfied:
a) =M,
b) u e C'(Q) and upgq is constant,
c) 09 is locally Lipschitz and

log Mg~ ((0Q) N B, (0))

(49) lim inf

< +00,
r—+00 r

d) u e C%Q), 0 is locally Lipschitz and for some ug € R

log/ min{r, |[u — ug|} dHT
(50) lim inf — 2208

r—-+00 7“2
Then, for any p €

< +o00.

g
lim inf log |Br (p)|‘7

r—+00 r2

PROOF. Let C' > 0 be such that |f| < C on Q, and let Qp C Q, a, d be as in Lemma
3.12. For almost every r > 0 the geodesic ball B,.(0) has Lipschitz regular boundary and
from the coarea formula we have

190 By, (0) \ B.(o)]
Ri—r Rl - T

Then, by taking limits for Ry — r in (47), for almost every r > 0 we have
1Q N B?_,(p)ly < (1+Cr)|Q0 N B(0)|s +rHI ™ (R NOB,(0))

+ / min{r, |u — a|} dH™ 1.
(690)NBx(0)

Case a). Let p =0, a = u(0), Qo = M. Then d = 0 and we have
(51) 1BY(0)ly < (1+C7)|Br(0)lo + rH7 ™" (0B,(0)) -

< +00.

7 =H" Qo N IB,(0)).
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Case b). Let p € Q and let ug be the constant value of u on 9. Let k € N be given,
choose a regular value ay € (ug,ug + 1/k) for u and set Q, = {z € Q : u(x) > ar}. With
the choice a = ag, Qo = Q we have u = a on 9, so

Q% N B?_,(p)]g < (14 Cr)|Q% N B(0)|o + 7HT ™ (2% N OB, (0))

The sequence {2} monotonically converges from below to the set QO = {x € Q: u(x) >
up }, so we obtain

1+ N B?_,(p)ly < (1+Cr) Qs N B (0)|s +THT (21 NOB,(0)).
A similar argument yields
1Q-NB?_,(p)ly < (1+Cr)|Q- N B (0)|, +rHT (2 NOB.(0))
with Q- = {z € Q: u(z) < up}, and then
1. N BI_,(p)]g < (1+Cr)|[% N B(0)]o + rHE ™ (2 N OB,(0))

having set Q. = {z € Q : u(x) # uo}. From Stampacchia’s theorem (Theorem 1.56 of
[53]) we have |Du| =0, and then W =1, dzy = dz,, almost everywhere on {u(z) = up}.
Hence,

|BI_q(0) \ Qulg = [BL_4(0) \ Qulo < |Br(0) \ Qulo
and we conclude

(52) |BY_,(0)]g < (1+C7)|2N B(0)|, +rHI ™ (2N IB,(0)).

Case c). Let p € Q, a = u(p). It is possible to find a smooth exhaustion {4} of Q,
that is, a sequence of open sets with smooth boundaries such that

QU C QU VEEN, Q=[] ,
keN

with the additional property that
lim H™1((0%) N B(0)) = H™ 1 ((09) N B,.(0)).

k—+o00

To justify this we refer to [48] and Theorem 5.1 in [16]: in the neighbourhood Uz of any
point & € M it is possible to find a local chart ¢ : Uz — V C R™ such that ¢(Uz N Q) =
{xeViam >, 2™} and ¢(Uz NON) = {x € V : 2™ = (at,... 2™ 1)}
for some Lipschitz continuous function 7 : V; — R defined on an open set V; C R™!
such that V' C V x R. By the aforementioned Theorem, there exists a sequence {ty} of
smooth functions ¥ : V) — R such that

Y > for every k>1
Y — ¢  uniformly on Vj as k — oo,
Opithi, = Ozep  in LP(Vp), for every p>1, as k — co.
Then the sets {z™ > ¢ (x!,..., 2™ 1)} do approximate ¢(UzNQ) from the inside, and up
to extraction of a subsequence we can assume that they form a monotonically increasing

sequence with respect to inclusion. Integration with respect to the Hausdorfl measure
induced from o on the hypersurface ¢~ ({x € V : 2™ = ¢p(z!,...,2™"1)}) can be

represented as integration against \/O'mm +2 27;1 oM iy, + Z;nj;ll 00 ppOyithy in

R™~1 and this converges to \/O'mm +23 M gim ) + ij;ll 090,10, in LY (Vp)
as k — oo. In turn, integration with respect to this weight in R™~! represents in-
tegration with respect to Hausdorff measure induced from o on ¢~ '({x € V : 2™ =
(2t ..., 2™ )} = Uz N 9. Coupling this basic construction with a partition of unity
one obtains sets 2 with the desired properties.
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For every k € R we can estimate
/ min{r, [u — al} AT~ < rHPL((0%) 1 B, (0))
(8Qk)ﬁBT(0)

and then, choosing 2y = Q, we have
1 N B?_,(p)|g < (1+ C7)|Q N Br(0)|s +1THT ™ (2 N OB, (0))
+ 1My ((0Q%) N By (0)).
Taking limits of both sides as k — +00 we obtain
(53) |B?_,(0)|g < (1 +C7)|Q2N B,(0)|s + rHT (2N OB, (0))
+rH?H(09Q) N B(0)).

Case d). Let p € Q, a = ug and let {2} be again a smooth exhaustion of 2, with
the additional property that the restriction of H7~! to 9Q; weakly-star converge to the
restriction of H™ ™! to 9 as k — +oo. In other words, we are assuming that

lim edHT ! = / @dHI ! for every ¢ € C2(Q).
k=00 Jaq, 19)

This is possible by the same argument outlined in the proof of Case ¢). Then for every
k € N we have, choosing Q¢ = Q,

0% N B )y < (14 CP)I0% 1 By(o)], + M2 (0 M OB.(0)
+ / min{r, |u— al} dH
(8Qk)va'(o)

and taking limits of both sides we obtain

1BY_4(0)]g < (1+Cr)|QN By (0)]y +rHy ™ (2N 0B,(0))

54
(54) + / min{r, |u — a|} dH™ 1.
(8Q)N B, (0)

By assumption (48), there exist constants C7,Co > 0 such that
[Br(0)l, Hy ™ (051 (0)) < Cae®”

for almost every r > 0. For a proof of this statement we refer to [45], Proposition 2.11.
In cases a) or b) this fact together with (51) or (52), respectively, yields

|B]_4(0)lg < A+ (C+ 1)r)Cye>r for every r >0

and then the desired conclusion follows. In cases c) or d) the same conclusion follows by
evaluating inequality (53) or (54) along an appropriate diverging sequence {rj}. O

The second step in our construction is the following doubling theorem, whose proof
essentially reproduces the one given in [11].

THEOREM 3.14. Let (M1, ¢1) be a connected Riemannian manifold and let Uy C My
be an open, connected set with smooth boundary such that all bounded subsets of U1 have
compact closure in My. Then there exist a connected, complete Riemannian manifold
(Ms, g2), an open subset Uy C My and a diffeomorphism ¢ : Uy — Uy with the following
properties:

(a) ¢: (U1,91) = (Ua,g2) is an isometry
(b) for every p € Uy and for every r > 2dist,, (p, 0Uy) + 2

B2 (¢(P))lg, < 21Us N B (p)lg, + 6
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PROOF. The boundary dU; is an embedded, smooth, orientable hypersurface in M;.
Let v be the normal exterior vector field on OU;. There exists a continuous function
to : OU; — (0,1/2) such that the normal exponential map ¥(z,t) = exp,(tv(z)) is a
diffeomorphism between the set
D = {(x,t) € OU; x [0,1] : t < to(x)} C OU; x [0,1]

and its image (D) C M;. We write the pull-back metric ¥*g; on D as h = dt? + hy, so
that h; is the pull-back of the restriction of g1 to ¥(({t} x OU1) ND). In particular, hg is
the Riemannian metric induced by g; on QU;. We can further assume that ¢g is such that

(i) he(z) > Lho(x) for every 0 <t < to(z),
(il) [y, to(x)y/M(z)dz < 1, where

e (e, )17
M(m): sup max{(ml)(ml)/z,l .

0<t<3t(x)
We now construct a smooth metric i on the collar C; = dU; x [0,1] so that the following
conditions are satisfied:

. dt? + hy(z) = h(z,t) for t < it

(55) (e, t) = {4+ hul@) = hla, ) for ¢ < gto(@),

dt? + ho(z) for t > 1 — 5to(x),
and

Cal, < 3.

In order to do so, consider a smooth cutoff function ¢ : C; — [0, 1] and a positive smooth
function n : C1 — (0, 1] satisfying

1 if t < Lto(x),
so(m):{ _50()
4

0 if t> 3to(x)
and
w)l= 1 for t € [0, 2to(2)] U [1 — 1to(2), 1],
TEUN < to(@)? for t € [to(z), 1 — to(2)],
then set

iL(x,t) = n(z, t)dt? + oz, t)hy(z) + (1 — @(z,t))ho(z).
From assumptions on ¢ and 7 we immediately have the validity of (55). From the arith-
metic mean — geometric mean inequality we have

det dt2+hoh(]"7t) = 77(37775) det ho [Qﬁ(l',t)ht(l',t) + (1 - 50($7t))h0(x’t)]

x,t)hs(z, — o(z,t))ho(x, t)||™ 1
< (. )||90( t)he( t()gfll)(zfl)/t;) olz, )l

h ,t m—1
Sﬁ(:ﬂ,t)max{” (@ Dl 1}

(m _ 1)(m—1)/2’

<z, t)M(z)

and then we can write

|Chlj < /@U \/M(ac)/O Vil t)dtde <3 [ /M(z)to(x)dz < 3.

oUy

Let U be the smooth manifold with boundary obtained by gluing U and C; along
their respective bounda{y components OU; C Uy and 9U; x {0} C C;. Also let g1 be the
Riemannian metric on U; given by

__Jg on Uy,
= h on Cj.
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Since h = U*g; in the intersection of C; with a neighbourhood of dU; x {0}, we have that
g1 is a smooth Riemannian metric. Moreover, §; equals the product metric dt? + ho(z)
in a neighbourhood of the boundary U, = dU; x {1} C (4, so AU, is totally geodesic
in U; and the vector field 8, belongs to the kernel of the Riemann curvature operator
of U in a neighbourhood of dU;. By a theorem due to Mori, [42], these conditions
are sufficient to ensure that the Riemannian manifold (M, g2) obtained by gluing (Uy, §1)
with an isometric copy of itself, say (f] 1,d1), along the common boundary AU, is a smooth
Riemannian manifold. (Ma,g2) is said to be a double of (Uhgl).

The isometric embedding (U1, g1) < (ﬁl, g1) naturally extends to an isometric em-
bedding (U1, g1) < (Ma, g2). Choosing Us as the image of U; under such embedding and
letting ¢ : Uy — Us be the resulting diffeomorphism, we have that ¢ : (U1, g1) — (Uz, g2)
is a Riemannian isometry. It remains to show that (M, g2) is complete and that condition
(b) is satisfied.

We first show that (Ma, go) is complete. For i = 1,2, let V; = U; be the closure
of U; in M; and let disty, g, and disty, 4, be the length distances induced by g; on M;
and V;, respectively. Our hypotheses imply that the space (Vi,disty, 4,) is complete,
and the map ¢ : U, — U, continuously extends to a bijection ¢ : Vi — Vi that is
a Riemannian isometry between manifolds with boundary, hence (V2,disty, q,) is also
complete. To show that (Mo,distas, g,) is complete, we construct a proper Lipschitz
retraction F : My — V5. Let us denote by f : U, — f]{ the isometry between (ﬁl,gl)
and its copy (U}, §,) considered in the construction of My. We now regard U; and U as
subsets of My. The map Fy: My — Uy given by

Fo(z) = T ifxeﬁl,
BT Y (=)  otherwise

is a retraction. Let 7 : Cy — OU; be the canonical projection onto the first factor. Note
that 7(C7) = 0U; can be identified with the boundary 0V, = 9Us of Vo in My. The map

Fy : Uy — V5 given by
x if z eV,
Fl(x):{ ’

m(x) otherwise

is also a retraction, and so is the composition F' = F} o Fy : My — V5. First, observe that
F is proper: indeed, for every compact set K C Vs,

FYK)=KU((KnNodVy) x [0,1])
is compact, being a finite union of compact sets, and so is
FTHE) = Fy H(FTH(K)) = FUH(E) U f(FTH(K)).

We also claim that F' is 2-Lipschitz between (M, distar, g,) and (Va,disty, g,). To this
aim, let z,y € My and € > 0. We show that disty, g, (F(z), F(y)) < 2dista,,g, (z,y) + 2¢.
Let v : [0,T] — M be a curve joining = and y and such that £,, (y) < distag, g, (x,y) + €.
Setting C' = C1 U f(C1), by the transversality theorem (Theorem 2.1 in Chapter 3 of [26])
we can assume that « is transversal to dC, so in particular F'o~ : I — V5 is a piecewise
smooth curve joining F'(x) and F(y) and there exist 0 = so < $1 < s2 < -+- < s =T
such that, letting I; = (sj,5j41), foreach 0 < j <k -1

v(I;) CInt(C)  or  ~(I;) C Uz U f(Uz)

and for each 0 < j < k — 2 the images v(I;), v(I;+1) belong to distinct components of
M2 \ oC. If ’}/(Ij) Q U2 @] f(UQ) then

692((F o '7)\Ij) = 692 (’Y\Ij)'
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On the other hand, assume that v(I;) C Int(C). Because of (i) in the definition of to,
~ 1
g =B = n(y, P07 + tholy) o €,
so for every tangent vector V € T'C we have
QQ(W*M 7T*V) B ho(ﬂ-*‘/y W*V) S 492(‘/7 V)7
hence
592((F o ,-Y)llj) < 24, ('YIIJ-)'
Summarizing,
dists, g, (F(2), F(y)) < Lo, (F o) < 2Ly, (7) < 2dista, g, (7, y) + 22

as claimed. To conclude that (Ms,gs) is complete, let {zx} be a Cauchy sequence in
(Ms, distar, g,). Then, {F(zy)} is a Cauchy sequence in (V5,disty, 4,) and therefore con-
verges to some y € V5 by the above observation. The properness of F implies that {zy}
has a limit point in M5, hence it converges.

We next observe that for every x,y € U,

distar, g, (¢~ (2), 7 (y)) < distvy 4, (67 (2), 67 ()
= disty, g, (z,y)
< 2distas,, g, (2, y)
< 2disty, g, (2, ),

(56)

where the first inequality is obvious since (Mj,g;) contains more curves joining ¢~ !(x)
and ¢~ (y) than (V1, g1) does, the last inequality follows by similar reason, and the middle
inequality is a consequence of 2-Lipschitzianity of F, together with Fjy, = idy,.

To conclude, let p € Uy and r > 2disty, 4, (p, OU1) + 2 be given. Let g = ¢(p) € Us
and let ¢ = f(q) be the copy of ¢ in f(Usa), let R = distas, 4,(¢,¢") and let BI'(p),
B92(q) be the geodesic balls centered at p and ¢ in (M1, g1) and (Ma, g2), respectively.
By construction,

R < 2distpg, 4, (p,0U1) +2 <

and thus
1B (q)lg. = |B7*(q) N Valg, + |BP(q) N Clg, + B (q) N f(U2)lg
<[Bf(q) N Uz|g, +2|C1lg, + |ij_R(q’) N f(Uz)lg,
<2|BYi g(q) NUslg, +6
< 2|B3}(q) N U2|g, + 6.
From (56) we have ¢~1(B32(q) N Uz) C BiL(p) N Uy, thus we conclude
1B (q)lg. < 2|Bi(p) N Utlg, +6

as required.
O

The third step is represented by Proposition 3.16 and Theorem 3.17 below, whose
proofs reproduce the ones given in [11]. The proof of Proposition 3.16 is essentially a
particular case of a more general construction developed by Mari and Valtorta, [38]. The
following lemma, which we draw from Theorem 4.1 in [3], will be needed in it.

LEMMA 3.15. Let (N, h) be a Riemannian manifold, Q C N a relatively compact open
set, 0 < X € L2 (Q) a given function. If u,v € HL () do satisfy
Av < X in Q,
Au > A u  in €,
u <o on 0f)
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then u < v on €.

PROPOSITION 3.16. Let (N,h) be a complete Riemannian manifold whose geodesic
balls centered at some origin o € N satisfy

log | B!
(57) liminf 2815 Oy
r—+00 r
Then for any ¢ € N and X > 0 there exists g € C°(N) satisfying
1/J0(Q) = 17
o > 1 on N\ {q¢},

(58) .
Po(x) = +00 as ¥ — oo in N,

Aptpo < AMpo  on N.

PROOF. Let € > 0 be small enough so that the geodesic ball Bs.(¢q) € N has compact
closure and the exponential map exp, : Bs.(0rn) — Bs:(q) is a diffeomorphism. Then
Bpr(q) has smooth boundary for every 0 < R < 3e and the distance function from ¢ is
smooth in Bs.(q) \ {¢}. Let {2k} be a smooth exhaustion of N, that is, a sequence of
relatively compact open subsets with the property that

Qr € Qpyq forevery k> 1, U Q. = N.
keN

Without loss of generality, we assume that B.(q) C Q. For every k € N let uj be the
solution of the Dirichlet problem

Auy = duy, in Q \ Be(q),
U = 0 on aBg(q)7
up = 1 on 0.

We have 0 < uj, < 1 on Q \ B:(¢) by Lemma 3.15 applied with couples of functions
(u,v) = (0,ug) and (u,v) = (ug,1). The extension vy : N \ B:(q) — [0, 1] of uj obtained
by setting vy, =1 on N \STk is Lipschitz continuous and satisfies Avg < Avg in the barrier

sense on NV \ B.(q), and strongly on N \ (B:(q) N 02).

From Lemma 3.15 we have that the sequence {v;} is monotone decreasing and then it
converges pointwise to some function v : N\ B.(¢) — [0, 1]. By standard elliptic estimates
and a diagonalization argument, up to extraction of a subsequence we have vy — v also in
the C? topology on each compact subset of N\ B.(g), and v is a solution of the exterior
Dirichlet problem

v=20 on 9B.(q).

From assumption (57), the manifold (V, h) satisfies the weak maximum principle in the
sense of Pigola-Rigoli-Setti, see for instance Theorem 4.1 in [1], and it must be v < 0. In
particular, v = 0. Then {v;} is a sequence of non-negative functions converging to 0 in
the C? topology on each compact subset of N\ B.(g). For every j > 1 we can find k; > 1
such that [ug, [lc20,\B.(q) < 277. Without loss of generality, we can assume that the
sequence {k;}; is strictly increasing. The series

+oo
Z Uk;
j=1
converges uniformly on compact subsets of N'\ B<(g) to some function w : N\ B.(q) — R

For every j > 1 we have vg, =1on N\Q; D N\Q; for1 <i<j,sow>jonN\Q,. As
{Q;} is an exhaustion for NV, it follows that w(z) — 400 as x — co. Since each function

{Av =Xv in N\ B.(g),

vk, is smooth on N\ {90, U B:(q)} and the sets 02, are pairwise disjoint, the function
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w satisfies Aw < Aw in the barrier sense (and then also in the viscosity and distributional
sense) on N \ B.(g), and strongly on N \ (B.(q) U U,.>, 9Q%).

Let a > 0 be given. The function w; = w + a satisfies Aw; < Aw = dw; — Aa <
Awy — Aa/2. By Greene-Wu approximation Theorem 3.4 we can find a smooth function
W : N\ Be(¢) — R such that |w; — @] < a/2 and Aw < Aw; — Aa/2. Then, in particular,
we have

Aw < \w in N\ B:(q),
w > a2 in N\ Be(q),
w(x) = 400 as x — 0.

Let ¢ : N — [0,1] be a smooth function such that ¢ = 1 on Bs.(q) and ¢ = 0 on
N\ Bs.(q), then set z = (1 4+ 72)y + (1 — )(1 + w), with r(x) = dist; (g, ¥) the distance
function from ¢. The function z is smooth and positive on N and satisfies

Az<C on Bs.(q),

Az < Az on N\ Bs:(q),
z(q) =1,

z>1 on N\ {q},
z(x) = +o00  as x — 00,

and then the function
Do = z+C/\
°T14+C/A

satisfies all requirements in the statement. O
THEOREM 3.17. Let (M, o) be a connected, complete Riemannian manifold satisfying
Ric(Dr, Dr) > —a?(1 +r)? on D, =M\ ({o} Ucut(o))

for some Kk > 0, where r(x) = dist,(0,x) is the distance function from a fized origin
0€ M. Let Q C M be an open domain, let u € C?(Q) satisfy

Du
V| — | =f
/14 |Dul?
for some bounded function f : Q — R, and assume that one of conditions a), b), ¢), d)
in Theorem 3.13 holds. Then, for every open subset Qo C Q with smooth boundary and

such that Qo C Q and for every p € Qo, A > 0 there exists a smooth function ¢ : Qg — R
satisfying

b(p) =0, -
Y(x) = +oo as x — oo in Qo,

A+ |[VY|I2 <X on Q.

PrOOF. By Theorem 3.13, the geodesic balls with center at p in the Riemannian
manifold (€2, g) satisfy the volume growth condition

log |Q2g N BY
r——4o00 r

< +00

and by Theorem 3.14 there exists an isometric embedding ¢ : (20, 9) — (N, h) of Q as an
open subset of a complete Riemannian manifold (N, h) whose geodesic balls centered at
q = ¢(p) satisfy
log | B!
i g 108 Br (@)l

3 < +00.
r—-4o00 r



38 3. GOOD EXHAUSTION FUNCTIONS

Moreover, the embedding ¢ extends up to the boundary to a diffeomorphism ¢ : Qy —
#(€29) € N. By Proposition 3.16 there exists ¢9 € C°°(N) satisfying conditions (58).
Then the function ¥ = 1y o ¢ € C*° () satisfies

Yi(p) =1,

P >1 in Q0 \ {p},
YP1(r) = 400 as ¥ — oo in Qg,
Appr < My in Q.

and therefore 1) = log vy satisfies (59). O




CHAPTER 4

Global gradient bounds

1. Lower bounded solutions of the prescribed mean curvature equation

Let (M, o) be a complete Riemannian manifold. In this section we consider a class of
prescribed mean curvature equations of the form

(60) div <D“> — f(@u, /T ¥ |DuP)
V14 |Dul?
and we derive global gradient bounds for solutions u of (60) defined on open domains
Q C M (possibly with Q = M) and satisfying u, = infgu > —cc.
If @ = M and the Ricci curvature of M satisfies Ric > —(m — 1),%2 for some k > 0,
where m = dim M, then we prove that a lower bounded solution u € C3(M) of (60)

satisfies

V1 + [Duf? < AgeColv—us) on M
for some constants Ag > 1, Cy > 0 only depending on m, x and on quantitative bounds on
f and its gradient. In case 2 # M, if Ric > —(m — 1)x? in 2 then for the same constants
Ap, Cy we can show that

1 Dul? 1 D 2
VI+[DupP Smax{Ao,hmsupHW} 0

eCo(u—uy) Y eCo(u(r)—u.)

under additional global assumptions on the geometry of M and, possibly, on 9 and
ujpo- In particular, we reach the desired conclusion under each of the following sets of
hypotheses:

(RQY) For some origin o € M, the Ricci curvature of M satisfies
Ric(Dr, Dr) > —a?(1 +r)? on D, =M\ ({o} Ucut(o))

for some constant « > 0, where r(z) = dist, (0, x) is the distance function from
0 € M and either

a) Q =M,

b) u € C'(Q) and ujpq is constant,

¢) 0Q is locally Lipschitz regular and

. dog (HI1(BZ(0) N 0Q2))
lim inf 5
r—+00 r

< +00

where H™ 1 is the (m — 1)-dimensional Hausdorff measure induced by o,
or
d) u € C%Q), 99 is locally Lipschitz regular and

- log fB”(o)ﬁBQ min{r, |u — ug|}dH? !
lim inf -

r—+400 7'2

< 400

for some fixed constant ug € R.
(K) For some origin o € M, the radial sectional curvature of M satisfies

Kiaa > —G(1) on D,

39
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for some positive, continuous, non-decreasing G : Rar — RT such that

) / "o ds
lim = +o00.
r—+oo Jq G(S)
Each of the assumptions above provides sufficient conditions for the existence of appro-
priate exhaustion functions. In particular:
i) if (M, o) is complete and satisfies Ric > —(m—1)x? and the graph of u € C?(M)
has bounded mean curvature, then from Theorem 3.17 for every p € M and A > 0
there exists ¢ € C°°(M) satisfying

¥(p) =0,
P >0 on M,
P(x) = +oo as ¢ — oo in M,

Agp+[VY> <A on M

ii) if (RQY) is satisfied, Q # M and the graph of u € C?(2) has bounded mean
curvature, then, from Theorem 3.17 and the validity of either b), ¢), or d), for
every open subset 0y C Q with Qy C Q and for every p € Qg, A > 0 there exists
1 € C>(Qp) such that

¥(p) =0,
>0 on Qo,
Y(x) = +oo as 7(z) — +oo, x € Q,

Ag +[[VY[? <X on O

iii) if (K) is satisfied and the mean curvature of the graph of u € C?(f) is bounded
in absolute value by Cy > 0, then, up to further assuming G € C*(R{) and
G'(0) = 0, by Theorem 3.6 the function v € C?(M \ cut(o)) N Lip(M) defined

by
r@) s ?

V() = <\/G<o> / m)
satisfies
Y(0) =0,
>0 on M,
Y(z) = 400 as r(x) — oo,
Ayt <2 ((m = 1)/G(0)p coth (VGO)) + Cov/F+1) on ©,
[VY|* < 44 on Q

where the last two inequalities hold strongly on 2\ cut(o) and in the barrier sense
on . More precisely, for every point z¢ € 2 N cut(o) we can find a sequence of
open neighbourhoods U,, C € of 2y and a sequence of functions v,, € C%(U,,)

satisfying
wn > ¢ on Un7 ’(/)n(x()) = ¢(x0)
and
Agthp, <2 ((m —1)\/G(0)¢ coth (\/W) + Co/Y + 1) + %’
IVipn? < 44

at xg.
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REMARK 4.1. We observe that in case iii) it is not restrictive to assume G € C1(Ry)
and G'(0) = 0. Indeed, if G : R — R* is continuous and non-decreasing then it is
possible to find G1 € CH(RY) satisfying Gy > 0 on Ry, G < G; < G +1 on R} and
G’ (0) =0, and for such a function we still have

oo ds B
o VGi(s)

THEOREM 4.2. Let (M,o0) be a complete Riemannian manifold, & C M an open
domain, I C R an interval. Let E = Q x I x [1,4+00) and let f € C1(E) satisfy

of C; G < of < Cy

61 D.fl<c,, SL>_=2 <9 -
(61) S§NH<+KM |D.f| < Cy 9 > o =S5, S

Kiag > —Gi(r), —+00.

for some constants Cy,Cs,C3,Cy > 0, where (x,y,w) denotes the generic point of E. Let
u:Q— I, uc C3*Q), be a solution of equation

D
div | ——— | = f(z,u, /I + [Du?)  in Q.
V14 |Dul?

Suppose that u, = infg u > —oo and that
Ric > —(m — 1)x? in Q

for some constant k > 0, where m = dim M. Also assume that either condition (RSY) or
(K) is satisfied. Then there exist Cy > Cs, Ag > 1, only depending on m,k,C1,Cs, Cs,
such that

(62 bgpeaﬂWﬂu>SlnaX{Angg§g>d%@mm-mJ}~

In particular, (62) holds provided

(63) C2 — CyCs > (m — 1)K? + C1 + Cy

2 2 _ 2 _
o0 . (ﬂ%%w)<%ﬂa%w>+Qyj 1clvf1>>0

z,y,w)EQXI X [Ag,+00 m w w2 w
(z,y,w) ,

for some auziliary parameter Cs satisfying
(65) CL < Cs < Cg — CoC5 — (m — 1)%2 — (.

REMARK 4.3. A class of nonlinearities f = f(z,y,w) satisfying (61) is given by
functions of the form

z,
Fayw) = fi(a,y) + 20D
with f1, f2 € CY(Q x I) such that
df1 dfa
sup |fi| < 400, —Cy < fo<Cs, [Dyfi|+|Dypf2] <C1, —=— 20, —=2>—Ch.
E dy Oy

PrROOF OF THEOREM 4.2. We divide the proof in two parts. In the first part, we
assume the validity of condition (R€2) and we prove that (62) holds whenever Cy > Cs,
Ap > 1 satisfy (63), (64) for some auxiliary Cs as in (65). In the second part, we assume
the validity of condition (K) and we point out the minor modifications needed to repeat
the same argument developed in the first part.

Part 1. Assume the validity of (R2). Let Cp > C3 and Cs > C; satisfy (63) and
(65), then let Ag > 1 be such that (64) is satisfied. Observe that such A indeed exists,
as the term in brackets in (64) is larger than or equal to

—C, 21 21
OSU-p|f|+Csw - _Cl w
w w
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and this quantity has a positive limit C5 — Cy > 0 as w — +o00. Then, let 69 > 0 be such
that

w? —1 vw? -1
— Cl © > (5000 sup|f|

2 C
(66) f(xava) _ Of(xava) +CS -
m w w
for every (z,y,w) €  x I x [Ag,+00), and also let 7 € (0,1) be small enough so that

2
W) —(m —1)k? = Cy > Cs.

(67) Cg —(C3Cy — 271 (Co +
Let zp = We™ %", with v = u — infqu. We suppose, by contradiction, that (62) is
not satisfied. Then there exists v > 0 such that

sup zg > 1y > max {AO, lim sup zo(x)}
Q rz—00N

and by Sard’s theorem we can assume that v is a regular value for 29. Then the set
Q, ={z € Q: z(x) > v} has smooth boundary and €2, C Q. From Theorem 3.17, there
exists a smooth function 1 : Q, — R{ satisfying

(68) {w(x) — +o0 as  — 00 in Q,,

Mg+ IV <1 in Q.

For any ¢ > 0, § > 0 consider functions 7. s = e~Cov—e¥ _ g, Ze,s = Wnes. For every

€,6 > 0 we have 7. 5 < e~%" and then Ze,s < 2o, S0 in particular
(69) Sup ze,5 < sup zp = 7.
Q. 9,

On the other hand, for (g,d) — (0,0) we have 7. 5 — e~ Cov Ze,s — 2o pointwise on Qiﬂf
So, for every sufficiently small £,§ > 0 we have

(70) sup ze,5 > -
Q,

Fix €, > 0 small enough so that (70) is satisfied together with

1—17

(71) 4 < do,

T

max{03,04}>2 A(Q) -1

<1 < C
e <1, €_T(o+ 5 A% ,

then set n =15, 2 = 2:5.

The function v is non-negative, so n < e~¥ — §. In particular, {z € Q, : n(z) > 0}
is a subset of {z € Q, : ¥(z) < e~ log(1/8)}, and the latter is a compact set because of
the first condition in (68). By continuity, z attains a global maximum on this set at some
point Z. Since z < 0 whenever < 0 and since (70) implies that z is positive somewhere
in O, we infer that 2(Z) is in fact the (positive) global maximum of z on Q.. Moreover,
from (70) we have z(Z) > v and then z € Q, due to (69). As Z is an interior maximum
point for z, from the maximum principle we have

(72) Vz(z) =0, Agz(z) <0.
From (35) we have that z satisfies the differential equation

2(VW,V =
Agz — % = (JIIL||* + Ric(n, n) + W{Vf,Vu)) Wn+ WAn
= (||11]|* 4 Ric(n,n) + W(Vf,Vu)) 2 +

+ (=Colgv — eAgth + [ CoVo + eV ||*) W (n + 4).
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At points where 17 > 0 we can rewrite
2(VW,Vz)

A _
92 w

= (||11]? + Ric(n, n) + W(V f, Vu)) z +
5
" (1 i n) (—Colgv — eAgth + [|CoVv + eV |?) 2

and then, from identities Vv = Vu, Ajv = Aju = W~1f and estimates

2 2
2 > elZ S
m m
— Ric(Du, Du Du|?
Ric(n,n) = % > —(m — 1)K? | W2|
we can further rewrite
2TW,V2) _ [ f ,|Duf?
_ Y A
Agz W > (m (m—1)k 2 + W{(V [, Vu)
J Cof
+ (1 + 77) <_W - EAg¢ + ||OQVU + 6V¢|2) z
Since z(z) > 0, from this inequality and (72) we deduce
2 5 |Du
0> i (m = D)x |W2‘ WV, V) +
] C
; (1 ; n) (—I;/f N ||C’0Vu+avw||2> at 7.

that is, after some rearrangements and recalling that nW = z,

6Cof _ f?2 Cof o |Dul?
>4 29
z —m %% (m—1)x W2

* (1 ’ i) (~eAgt + [ CoVu +Vy|2) .

+W(VF, Vu) +
(73)

We now proceed to estimate the RHS of (73) from below. We start from the term
W(V f,Vu). In local coordinates {z’} around Z we have

df = (af afﬁﬁ )dxi::fidxi

Ay dw
and then Y of
_ i 9 9w,
<VU,Vf> ) <a Z+8y z+a WZ>U‘]'
By ¢g¥u; = W26"u; and from (61) we can estimate
of 1 0f 1D fl1Dul o _ o [Pyl
9 = g 2 2 g
i Of of | Dul? Ca|Dul?
ToUU; = S > - -
oy "7 oy W2 w3

Recalling that Vz = 0 at z, we have

dW = _%dn =W (1 + f]) (Codu 4 edy))

and thus o of
g B —W;u j:VV8 ( 77) (Vu, CoVu + eV).
Summing up, at £ we have
|Du| | Dul? of
W(Vu,Vf)>—-C ~ Gy + W2 L 5 (Vu, CoVu + Vi)
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and then from (73) we obtain
0Cof _ f* _6Cof 2| Dul? | Dul | Du/?
Ea ~1 — _
2 W —(m—-1)k e 4 W Cs T2 +

(74) o

m
5
+ (1 + n) (—5A9¢ +[|CoVu + eV + W2 5 (Vu, CoVu + 6V¢>>

We now turn our attention to the last pair of brackets. Direct computation and an
application of Cauchy-Schwarz’s and Young’s inequalities yield

leVah 4+ CoVu||* + WZ%Wu, CoVu + V) =
_ 22 2 2 zg 2 2%
=e?||Vy|® + | C§ + CoW o [Vul|® + (2Co + W s e(Vu, Vi)

o1 o5
> pwule + (6 + w2 ) ot -+ (s W20 e - Loty

From (61) we have
2 2
G+ Cow? gf > C§ — CoCs, (Co + I/I; gf> < (C’o + W) 7

then
of
ow

2
]_ _
> (o& oGy -7 (co + ““‘{20}) ) IVl = 22wy

eV 4+ CoVu||* + W2 ——(Vu, CoVu + eVip) >

and therefore

—eA P+ |CoVu + eVa||* + WQ(%(vu, CoVu +eVy) >
2
> <c§ CoCs - (Co ¥ I“{CC}) ) |7u)? —s( 0

2

)

From the second condition in (68) and the first two conditions in (71), we can estimate

( g¢+ maX{03,04}>2A%—1.

2 A?
Now recall that z(Z) > v > Ag. Since n < 1, this implies W(Z) > Ay, that is,

|Dul> W2 -1 S A -1
w2 o w2 T A2

e|vw||2) (Mgt + [VE2) e < (co i

at .

IVull* =

Then we can estimate

€ <Agw+ !

and consequently

Cs.C 1\ 2
Tenwn?) y(owma’({ o 4}) IVl

of

—eA g + |CoVu + eVap||2 + W2 o

(Vu, CoVu + Vi) >
max{C3,Cy} > 2) | Du?

> (Cg — CoC3 — 21 (Co + B W2

|Duf?

> (Cs5 4 (m — 1)K + C) e
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where we have also used (67). Since the last term of this chain of inequalities is positive,
we further have

(1 + i) (—aAgw + |CoVu + eV + W2%<Vu7 CoVu + ew>) >

Dul?
> (Cs 4+ (m — 1)K* + Cs) |W2| :
Substituting this into (74) we obtain
3Cof _ f*  Cof | Dul? |Dul ~
(75) > >E*W‘|’Cs W2 *Clw at

Since 2z(Z) > Ag > 1, from the third inequality in (71) we have

5
(76) CZOf < 0Cysup | f| < dpCosup | f| at T.
Since W (Z) > 2(z) > Ao and |Du| = vW? — 1, from (66) we also have
2 Cof | Du/? |Dul _
(77) E_W—i—cf) 2 —01W>60008up|f| at T

and comparing (75), (76) and (77) we obtain the desired contradiction.

Part 2. We assume the validity of (K). We repeat verbatim the initial section of Part
1, up to the definition of set Q.. In particular, we let do and 7 be as in (66) and (67).
From Theorem 3.6 we have the existence of a function 1 : M — R{ satisfying

P(x) = +o0 as r(x) — oo,
(78) Ay <2 ((m — 1)y/ay coth (Varp) + Vsupg [f| +1) on Q.,
V[l < 2v/4 on €,
in the barrier sense, for some a > 0. For every t > 0, let
e(t) =73/,
5(t) = e,
Q(t) = 2¢(t) <(m — 1)Vatcoth(vat) + Vtsup |f| + 1) +4 ; Te(t)?t.
E
As t — 400 we have
coth(vVat) — 1, e(t)Vt — 0, o(t) =0
so there exists Ty > 0 such that
Cs,Cy}\> A2 —1
Qt) <7 (00 - mmax{ ' 4}) e 0 <
0

for every t > Ty.
For every t > 0 let us also set

ne = e~ CovTEDY _5(1), 2zt = W, Qe ={r €, ¢Y(z) <t}

We have z; < zg in Qiﬂ, and z; — zg pointwise as ¢ — +o0o0. Then, for every ¢t > 0

sup z¢ <y
¥
and there exists t > T such that
sup z¢ > 7.
o,
Since v > 0, in fact one has
SUp z; = SuUp 2z = Sup 2

Q. {z:>0} {n:>0}
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and since 1, < e~V —§(t) = et ""Y — =" we have {n; > 0} C {¢ < t} = Q. The
closure €2, ; is compact by the properness of 9, so there exists a point z € €1, ; such that

24(Z) = max z; = sup z¢ > 7.
Qe Q,

In particular, z € Q. Let k € N be such that

1 242
(79) Q)+ - <7 (Co+ max{Cs, Ca} )" Ag -
% 2 A2

Since 1 satisfies (78) in the barrier sense, there exist a neighbourhood U C 2 ; of Z and
a function 1y, € C?(U) satisfying

d)k Z w in Ua
(80) Vi (Z) = ¥(2), ) .
e(t)Agr(T) + @ IVeR@I* < Q) + -

Fix ¢ = £(t), 6 = §(t). The function z = e~Cov=¢¥k — § satisfies

I

-7

~

2< 2 <2z(Z)=2Z) inU

so 7 is an interior maximum point for z in U. The function z is of class C?(U), so from
the maximum principle we have

Vz(z) =0, Agz(Z) <0.
Also observe that v satisfies

1—71

eAgi () +

T

max{Cs, C4})2 A2 -1

EQHV’L/J;C(CE)||2 <T (Co + 5 A%

as a consequence of (79) and (80). From this point on, the argument proceeds exactly as
in Part 1. O

2. Liouville theorems and other consequences
In this section we derive some consequences from the general gradient bound given in
Theorem 4.2. Let us recall the definition of conditions (RQ2) and (K).
(RQY) For some origin o € M, the Ricci curvature of M satisfies

Ric(Dr, Dr) > —a?(1 +r?) on D, =M\ ({o} Ucut(o))

for some a > 0, where r(z) = dist, (0, z) is the distance function from o € M,
and, given Q C M and u € C?(f), one of conditions a), b), ¢), d) of Theorem
3.13 is satisfied.

(K) For some origin o € M, the radial sectional curvature of M satisfies

Kiaa > —G(1) on D,

for some continuous, non-decreasing G : R — R such that 1/v/G ¢ L'(+00).

2.1. Bounded solutions have bounded gradient. The first, more immediate
consequence of Theorem 4.2 is that bounded entire solutions of equation (60), with f as in
(61), have bounded gradient, and bounded solutions defined on proper subdomains Q C M

have bounded gradient in 2 if their gradient is uniformly bounded in a neighbourhood of
o9.



2. LIOUVILLE THEOREMS AND OTHER CONSEQUENCES 47
COROLLARY 4.4. Let (M,o) be a complete Riemannian manifold, Q@ C M an open
domain, I C R an interval. Let E = Q x I x [1,4+00) and let f € C1(E) satisfy

0 C C 0 C
suplf| < +oo, |Dofl<Cy, U5 & G 0F G
E dy w w2 T Jw T w?

for some constants C1,Co,C3,Cy > 0. Letu: Q — I, u € C3(), be a solution of equation
Du .
V| — | = f(z,u,/1+ |Dul?) in Q
V14 |Dul?
and suppose that either (RQY) or (K) holds. If

sup |u| < 400, lim sup |Du(x)| < 400
Q z—00Q

and
Ric > —(m — 1)x? in Q
for some constant k > 0, then

sup | Du| < +o0.
Q

To illustrate other consequences of Theorem 4.2, we need to establish a preliminary
lemma. Roughly speaking, our aim is to precise under which conditions we will be able
to let Cy N\, C in the estimate (62), with C' > Cj satisfying

C%?—CC3 = (m—1)k>+C1 + Cy,
while keeping Ag uniformly bounded.
LEMMA 4.5. Let C1,Cy,C5, K > 0 be real numbers and let C > Cs satisfy
(81) C?*-CC3=K +C; + Cs.

i) IfCy = 0 then there exists g > 0 with the following property: for everye € (0,eq)
there exist Cy € (C,C +¢) and Ag € (1,1 + ) such that

2 C 2 1
inf (8—()S+C5w 3 )>0
s<0,w>A0 \' M w w
for every 0 < Cs5 < C2 — CyC5 — K — Cs.
ii) If C1 = Cy = C5 = K =0 then there exist e > 0 and A > 1 with the following
property: for every e € (0,e¢) there exist Co € (0,€) and C5 € (C¢/2,C3) such

that
2 G 21
s>0,w>A \m w w

iii) Let 0 < Hy < Hy < 400. Then there exist g > 0 and A > 1 with the following
property: for every e € (0,eq) there exists Cy € (C,C + €) such that

2 2_1 2 _ 1
inf (SC’OS+05M -4 v >>0

Ho<|s|<H;,w>A \ m w w? w

for every C; < Cs < C2 — CyC3 — K — Cs.

PROOF. Statement i) follows from the observation that, for any Cy > 0, C5 > 0,
Ap > 1 and for every s < 0, w > Ag

2 C 21 21 AZ —1
_7084‘05“} >C5w > Csx 0

> 0.
w2 w? Ag

S
m
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ii) Let A > /T4 2. For every Co > 0, C5 > C3/2 and for every s > 0, w > A we
have

8 Cos  owi—1 s Cos, Cgw'—1
m w w? m w 2 w?
s O\’ mCg  C2w? -1
=m| — - — _ —0
m 2w 4w? 2 w?

mCg C2A?—-1 C? ( 9 m
- o S0 (g2 —) 0

S Tuaz T Az T oaar 2)”
iii) Let €9 > 0. There exists A > 1 such that

2 7
H (et | o (VAT |\
m A A

For every Cy € (C,C +¢p) and Hy < |s| < Hy, w > A we can estimate

82 C()S > Hi(% . C()Hl > Hfg . (C+€0)H1

m w T om A m A
and for every C5 > C, w > A

2_1 2_1 2_1 2_1 2 _1
Csw NENEY w :(05_01)11}74‘01 <ww Vw )

w w

w
w? — 1 Vw? —1 [ Vw? -1
= (CE) - Cl) 2 Cl -1
w
Vau? =1 VAT 1
2a<“ﬂl>zq<g.
w A
where inequalities follow from observation that vV A% — 1/A < vw? — 1/w < 1. Then,
2 C | 2-1
int (8—08+c5“’ _ —01w> >
Ho<|s|<Hipw>Ao \ M W w w

2 2 _
>%_wf?m+q<w1l_ﬁ>&
m

2.2. Lower bounded solutions with bounded gradient.

COROLLARY 4.6. Let (M, o) be a complete Riemannian manifold, Q@ C M an open
set, I C R be an interval and let f € C1(I x [1,+00)) satisfy

Oy 2

for some constant A > 0. Let u:Q — I, u € C3(Q) be a solution of equation

D
v <\/1_|_’|U7Du|2> = f(u, \ 1 =+ |DU|2) mn Q

Suppose that u, = infou > —oo and that Ric > 0 in Q. If Q £ M, then also assume that
either (RQY) or (K) is satisfied and that limsup,_,5q |Du(z)| < +00. Then

sup |Du| < +o0.
Q
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PROOF. Set C; = Cy = C3 = K = 0 and Cy = A. By statements i) and ii) in
Lemma 4.5, there exist A > 1 and g9 > 0 such that, for every Cy € (0,&0) and for every

C5 € (03/2,03),
2 2 _ 1
inf ( _ s +05“’2> > 0.
seER,wW>A \M w w
Then, for Ay = A and for every sufficiently small Cy > 0, conditions (63) and (64) in
Theorem 4.2 are satisfied for some auxiliary parameter C5 satisfying (65) and we deduce

w

. W(x)
Columny = max {Av fim sup ec<<>—>} -

Since Cy(u — us) > 0, we further obtain

w

~Cotu—u) < max {A, lim sup W(:v)} .

z— 00
The LHS of this inequality converges pointwise to W on 2 as Cy — 0, so we get

sup W < max {A, lim sup W(x)} ,
Q

— 00
that is,
sup | Du| < max {\/ A? — 1, limsup Du(w)|}
Q 209
and then the desired conclusion follows. O

2.3. Liouville theorems.

COROLLARY 4.7. Let (M,o0) be a complete, connected Riemannian manifold with
Ric > 0. Let I CR be an interval and f € C'(I x [1,+00)) satisfy

of of A
AL < —_— > < =< —
As/<0, ay_o’ 0_8w_w2

for some constant A > 0. Let w: M — I, u € C3(M) be a solution of equation

D
diV <\/1_|_TL7DU)|2> = f(u, \/ 1 =+ |DU|2) mn M

If u, = infp; u > —o0, then u is constant.
In particular,

THEOREM 4.8. Let (M, o) be a complete, connected Riemannian manifold with Ric >
0. If u > 0 is a solution of

D
v i—2 =0 inM
V14 |Dul?
then u s constant.

PROOF OF COROLLARY 4.7. Set C;y = (Cy = (C3 = K =0 and Cy, = A. By statement
i) in Lemma 4.5, for every € > 0 we can find 0 < Cy = Cy(e) < e and 1 < Ay < 1+4¢€ such

that ) )
C 1
inf (S—OS+C5“’ )>0
w

s<0,w>A0 \' M w

for every 0 < C5 < Cy. From Theorem 4.2 we get
W < (1 4 g)eCo@)luus) on M.

The RHS of this inequality tends to 1 pointwise on M as e — 0, so we get W <1 on M,
that is, W = 1. Equivalently, |Du| = 0 on M, and then we conclude that u is constant
by connectedness of M. O
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2.4. Minimal and CMC graphs.

COROLLARY 4.9. Let (M, o) be a complete Riemannian manifold, Q@ C M an open
set and let 0 < u € C3(Q) be a solution of equation

v L =mH mn
v/ 1+ [Dul?

for some constant H € R. Suppose that Ric > —(m — 1)x2 in Q for some k > 0. If
QO # M, then also assume that either (RQY) or (K) is satisfied. Then

1+ |Dul? 1+|D 2
(82) sup + [ Dyl <max{A, limsup—Hu(x)}

Q evVm—1lrku — RS evm—Iru(z)

for some A > 1 only depending on m, H, k. In particular, if H <0 then (82) holds with
A=1.

PROOF. Let C;} = Oy = C3 = Oy =0 and K = (m — 1)k?. Then C = v/m — 1k from
formula (81). From either i) or ii) in Lemma 4.5 we have that for some A > 1 (with A =1
in case H < 0) and for every sufficiently small £ > 0 there exist C' < Cy = Cy(e) < C +¢
and A < Ag < A + € such that

2 2
S Cos w* — 1
inf (O+C’5 S )>o
s<0,w>Ag \' M w w

for every 0 < C5 < C2 — C?. From Theorem 4.2 we get

/14 |Dul? 1+1|D 2
M §max{A+5, limsupw} in Q.

eCo(e)u D eCo(e)u(z)
Since Cy(e)u > Cu = /m — 1ku, we can bound

v/1+ |Dul? 1+1|D 2
M < Inax{A+s, 11msup+|u($)|} in Q

eCo(e)u 200 evVm—1ru(z)

and by letting ¢ — 0 we obtain the desired conclusion. O

3. Minimal graphic functions with negative part of linear growth

In this section we adapt the argument of the proof of Theorem 4.2 to obtain a global
gradient bound for minimal graphic functions, that is, solutions of the minimal surface
equation

(83) div [ 2% ) _o,
V14 [Dul?

on complete Riemannian manifolds with Ric > 0 and satisfying a quadratic decay condi-
tion on the negative part of the curvature tensor. In particular, we will obtain that on
such manifolds a solution of (83) satisfying a one-sided linear growth bound has globally
bounded gradient.

THEOREM 4.10. Let (M, o) be a complete Riemannian manifold of dimension m > 2,
let r(x) = disty (0, ) be the distance function from a reference origin o € M and assume
that the radial sectional curvature Ky.q satisfies

2

v
1+7r2

Kiaqg > — on D, = M\ ({O} U cut(o))
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for some v > 0. Then, for every a > 0 it is possible to find C1 (a),C2~(a) > 1, with
Ci~(a) = 1 asa — 0 fori=1,2, such that the following is true: if @ C M is an open
set where Ric > 0 and u is a solution in Q of the equation

. Du
div | —— | =
V14 |Dul?
satisfying uw(x) > —ar(x) for every x € Q, then

(84) W < C,,(a) max {C’gﬁ(a), lim sup W(m)} on .
z—00Q

PROOF. We will show that inequality (84) holds true for

1—e &
e—anl _ e—Cl ’

Ciy (a) =

provided L, C1, q are positive numbers satisfying conditions

(85) 1_T<q2L—i>C’1>(m—1)<1+\/472+1>+27 q<1/a

14+ L

together with some parameter 7 € (0,1). We remark that for every v > 0, a > 0 it is
possible to find L, C1, ¢, 7 satisfying these requirements. Indeed, for any fixed 0 < 7 < 1
and 0 < ¢ < 1/a we can choose L large enough so that ¢>L > 4/7, and then C large
enough so that the first inequality is verified. Moreover, for 0 < a < 1 conditions (85) are
satisfied, for instance, by

1 1
r=g a=m L=10 Ci=(2+10) ((m—l) (1+\/472+1) +2)
and the resulting values of C; ,(a), ¢ = 1,2, do converge to 1 as a — 0.

Let L, C1, g and 7 be given satisfying the above requirements. Let R > 0 and set
_G G

R’ R?’
We denote by Br = B%(0) the geodesic ball of (M, o) of radius R centered at o. Note
that on QN By we have ug > a(R —r) > 0 and then ng < e — e~C1. In particular

(86) nr<1—e"% on QNBg, nr <0 on Q2NIBg.
We will show that

zr < (1-— e_cl)max{\/l + L, limsupW(x)} on QN Bg.
z—00)

0277 (a) =+V1+L

— — 2 —
ugp=u+aR, nr=e Cur—er® _ o=C1, zr = Wnpg.

C

Without loss of generality, we can assume that Qp = {z € QN Bg : zr(z) > 0} is
non-empty. By compactness of (g, there exists a sequence {x,} C Qg satisfying

lim zg(x,)= sup zg >0 and Ty — T
n—-4oo QNBr
for some Z € Qpg.
Suppose that Z € 9(Q2 N Br). We have inclusion

QN Bgr) C (QNIBR) U (BrNIN) = (2N IBR) U (BrNN)

where equivalence follows by observing that (2N dBg)\ (2N dBg) = 0QNIB is already
contained in BRNON. It must be Z € 9. If this were not the case, then we would have Z €
QNIBg. From continuity of zg in Q it would then be z(Z) > 0 and, therefore, nr(Z) > 0,
contradicting the above observation that ngr < 0 on 2N OBg. Having established z € 012,
we infer

sup zp = lim zg(z,) < (1 —e 1) limsup W (z,) < (1 — e~ ") limsup W (z),
QNBg n—+0o0 n— 400 00
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where the first inequality follows from (86).

Suppose now that Z € QN Br. Then zr(Z) > 0 by continuity of zg in Q. If Z € D,,
then zp is of class C? and by the maximum principle must satisfy Vzg =0, Ayzr <0 at
Z. Since Ric > 0 on Q and zg > 0 at Z, from (35) we have

Agzr = (—elgr® + [€Vr 4+ CVul?) WemOva=er
and then it must be
(87) —eAgr? + [|eVr? + CVul]? <0

at . From Theorem 3.10 we have
C
—eAr? > fR—; ((m —-1) (1 + /492 + 1) + 2)

and from (9), together with Young’s inequality, we can estimate

Dr?2+CDul> _ 1 1
evs? 4 Ovu)? > EPEECPUT S L <<1 _ | Duf + (1 - T) 2Dy ) .
We use 1 — 7 > 0, r < R and the definitions of C' and ¢ to further write

1—7 42 R? 1-7C? 4
2 2 > 2 2 _ — 1 2 2_ =
leVrs + CVu||® > W (C | Dl = ) W R? (q | D 7_).

We can now conclude that |Du(z)|? < L, since otherwise we would get

1—71 C? 4
2 25 Cif o, 2
leVre 4+ CVul|* > T LR (q L T>

and then, from (85),
—eAgr? + ||eVr? + CVul* >

Cl 1—17 2 4
> 2L L-2)o - 71<1 Va2 1)f2 :
_R2<1—|—L<q T)C’l (m—1)(1+4v2 + >>0
contradicting (87). From |Du(Z)|?> < L we obtain

sup zgr = 2r(Z) < (1 — e 9)V1+ L.

QNBgr

If # € QNcut(o) then 2z may not be of class C? in a neighbourhood of  and we can not
directly apply the above argument. However, 72 satisfies conditions

A< (m=1) (14 V0Z+1)+2, D <4

in the barrier sense on 2. In particular, by Theorem 3.10, in a neighbourhood of Z we
can find a smooth support function ¢ for r2 at z satisfying

L7 (qQL - 4) Cr, DY < 4r(@)?
T

A
gV < 1+ L

and then we can repeat the above argument with + in place of 72, as outlined in the proof
of Part 2 of Theorem 4.2.
Summing up, we have shown that for every R > 0

zp < (1 —e ") max {\/1 + L, limsupW(x)} on 2N Bg.
z— 00N
As R — 400 we have ng — e~ %% — ¢=C1 pointwise on €, so we conclude that

(7% — =W < (1 — e~ ") max {\/1 + L, limsup W(m)} on Q.
z—00
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COROLLARY 4.11. Let (M, o) be a complete Riemannian manifold with Ric > 0. Let
r(z) = dist,(0,x) be the distance function from a reference origin o € M and assume that
the radial sectional curvature Ky,q satisfies

2

Y
14172
for some v > 0. If u is a solution in M of equation

Krad Z -

on D, =M\ ({o} Ucut(o))

. Du
div | —— | =
<\/1+|Du|2>
then

i) if u_(z) = O(r(x)) then u has bounded gradient,
ii) if u_(x) = o(r(x)) then u is constant.

COROLLARY 4.12. Let (M, o) be a complete Riemannian manifold, let r(x) = dist, (0, x)
be the distance function from a reference origin o € M and assume that the radial sectional
curvature Ky,q satisfies

2

Kyaqa > — on D, = M\ ({o} Ucut(o))

~
14 r2
for some v > 0. Let Q C M be an open set where Ric > 0 and let u be a solution in Q of
the equation

Du
V|——1]=0
(«/1+|Du|2>

satisfying
A :=limsup |Du(z)| < +o0.
z—0Q
Then
i) ifu_(z) = O(r(x)) then u has bounded gradient,

(x
i) if u_(x) = o(r(z)) then |Du| < A on Q.






CHAPTER 5

Applications to splitting theorems

1. Splitting for solutions of overdetermined problems

Let (M,o) be a complete Riemannian manifold and @ C M an open subset with
smooth boundary and exterior normal v. In this section we prove splitting results for
solutions of overdetermined Dirichlet problems of the form

v & :fl(u)+ﬂ in O
v/1+ |Dul? /14 |Dul?

u, Oy u locally constant on 0f2

(88)

under assumption that Ric > 0 in §, that either condition (R2) or (K) is satisfied and
that Q is a parabolic domain, in the sense that we are going to precise right now. First,
let us recall that a Riemannian manifold with boundary (N, h) is said to be parabolic if
its Neumann Laplacian is parabolic, that is, if every (weak) solution v € C(N) N H _(N)
of

Apv >0 in int IV,
(89) d,v <0 on ON,

supy v < 400
is constant, where v is the exterior normal of N in N and v is said be a weak solution
of (89) if

/ h(Vpv, Vie)dz, <0 for every 0 < ¢ € C°(N).
N

DEFINITION 5.1. Let (M, o) be a complete Riemannian manifold without boundary.
An open, connected subset 2 C M with smooth boundary is said to be a parabolic domain
if (Q,0) is a parabolic manifold with boundary.

From [28] we have the following characterization: a Riemannian manifold with bound-
ary (N, h) is parabolic if and only if each compact subset K C N with non-empty interior
has zero capacity, where the capacity cap(K) is defined as

cap(K) _inf{/ |Vio|i doy : ¢ € Lip,(N), ¢ > 1 on K}.
N

The above definition and characterization can be extended to weighted Laplace operators:
if (N, h) is a Riemannian manifold with boundary and f € C*(IV), we define the weighted
Laplace-Beltrami operator Ay, ¢ by

Apyo = el div (eI Vi) = Ang — h(Vif, Viro)

for every ¢ € C?(N). The operator Ay ; is symmetric with respect to the weighted
volume measure e~/dx;, and we say that it is parabolic on N if every (weak) solution
veC(N)NHL.(N) of

Ap v >0 in int NV,
(90) 0,v <0 on IN,

supy v < +00

55
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is constant, where in this case v is said be a weak solution of (90) if
/ h(V v, Vie) e fday, <0 for every 0 < ¢ € C°(N).
N

The proof of Theorem 1.5 in [28] extends verbatim to showing that Ay, ; is parabolic on
(N, h) if and only if for every compact set K C N with non-empty interior the weighted
capacity

cap;(K) = inf{/ |Viol2 e fdaxy, : ¢ € Lip,(N), ¢ > 1 on K}.
N

is zero.

The proof of the splitting Theorem 5.5 relies on a weighted geometric Poincaré in-
equality for solutions of (88) that are strictly monotone in the direction of some Killing
vector field X € X(Q). This inequality is inspired by an analogous one for monotone
solutions of semilinear equations Au = f(u) first introduced by Farina and Valdinoci in
[21] in Euclidean space, and later extended to the context of Riemannian manifolds by
Farina, Mari, Valdinoci, [19]. The key feature is that the support of the test function in
the Poincaré inequality is allowed to intersect the boundary 9. This is made possible by
cancellations in integration, first observed in [21], due to the identity (91) below, which
is a consequence of the overdetermined condition in (88).

LEMMA 5.2. Let (M,a)l)e a Riemannian manifold and Q@ C M an open subset with
C! boundary. Let u € C?*(Q), X € X(Q) be a Killing field. If u and d,u are locally
constant on 9S), then the function v = (Du, X) satisfies

(91) (VWVW — |Dul|*Vu,v) =0 on 09
for any vector v normal to 0.

PROOF. On 99 we have Du = (9, u)v because u is locally constant. With respect to
a local coordinate system {z'} we write

WWl = (\Du|2/2)2 = uijuj, V; = uinj + Xijuj
and then
u' (WWW; — |Dul?v;) = vugjuin? — |DuPugu' X9 — | Dul? Xiuta?.
Since |Du| = |8, u/ is constant along 9, we have (D|Dul?,Y) = 2u;;u’Y7 = 0 for every
vector field Y = Y7e; orthogonal to v. In particular, this is true for Y = vDu—|Dul?X =
(Du, X)Du — |Du|*X, with components Y7 = vu? — |Du|?X7, hence
u' (WWW; — |Dul?v;) = vuju'Y? — |Dul*X;u'u! = —|Dul> X;ju'e? =0

having used the Killing condition X;; + X;; = 0. So, we have

(vWDW — |Du|*Dv, Du) = 0
or, equivalently,

(WWVW — |Dul*Vv, Vu) = 0.
In case Du # 0, from Du = (9,u)v and Vu = W~2Du we conclude

(vWDW — |Dul*Dv,v) = (\WVW — |Du|*Vu,v) = 0.
In case Du = 0 the same conclusion simply follows from v = 0 = |Du]. g
Before stating and proving the next result, let us fix some notation. If €2 is an open

set and u € C?(Q2), then for every x € Q where du # 0 the level set ¥, = {y € Q :

u(y) = u(z)} is an embedded regular hypersurface in a neighbourhood of z. We let A be
its second fundamental form in (€2, g) and for any ¢ € C1(Q) we let

Vu Vu
Vre=Ve- <W” Vu|> IVl
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be the tangential gradient of ¢ on X, that is, the orthogonal projection of V¢ onto the
tangent subspace to .. Then, along ¥, the remainder in the classical Kato inequality
is made explicit by the following inequality from [52],

(92) [ Hessg (w)[|* = IV Vullll* = [V IVulI* + [IVul* ] A%
Note that ¢ = ||[Vul| is C* in the set {du # 0}. Moreover, by (14) and (16) we have
11|12
| Hess, (w2 = IS0
and then
(93) L[ = W2V Vull|* = W2 (V[ Vall|* + [Vul 2] A]%) -

THEOREM 5.3. Let (M,0) be a Riemannian manifold and Q@ C M an open subset
with C* boundary. Let f1, f2 € CY(R) be given functions and let u € C3(2) N C%(Q) be a

solution of
Du fa(u) ‘
V| —— | = iln) + ——— in
<\/1+ |Du2> filw) 1+ [Dul?
with u and 8,u locally constant on 9. If X € X(Q) is a Killing vector field and v =
(Du, X) > 0 in Q, then

“ Ric(Du, Du
e (w2 e iwali? + 17l + SRR ) s, -

D
= [ emnvupivepan, - [ e oA o,
Q Q
for every ¢ € Lip.(Q), where Fy = f5.
PRrROOF. Consider the vector fields
\VA'%4 Vv
_ 2 Fs(u 2 2 _Fs(u
Y—QD@Z()W, Z—@|DU|€2()W
and compute
2 2
|D 2 Fa(wy YV Ry (2 Dul? V]2 (V(?[Duf?), Vo)
div Z = ? div 2()W — 2 oz i .
We recall the differential identity
Vo2 (Vg% V 2
(94) ¢2|| U” < ¢ s U> :U2 V? _ ||v¢||2
v v
which can be easily deduced dividing both sides of
¢*|Vol* — v(V¢?®, V) = [[¢Vv — vVg|* — v?|| V||
by v2. We apply (94) with the choice ¢ = ¢|Du] to get
2 2
o 7= 2P (Y R | Dul [V (| Dul)|
div Z =¢ lev (e 2( )W 2(u) W2 " — e .

From the previous Lemma we have (Y — Z,v) = 0 on 0f2, hence an application of the
divergence theorem yields

/Q(div Y —div Z)dz, =0
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and we obtain

2
[ o () 2 (5

eF2(w)
= [ o (IRl — AW — 2, wew) —

¢|Dul
v

\%

From (28) and (40) we have
. (w) VW S (0 Ric(Du, Du
wa (e ) = eno (e + B v i)+ g)o?).
Du2 . m Vv u
[Duf 5, (eF2< >W2) — 200 (W (w) + f3(w)) [ Vul?,

v

and by direct computation (note that |Dul, ||Vu|| are positive C? functions in €2, because
of u € C3(2) and since du # 0 in  as a consequence of condition (Du, X) > 0)

IVl Dul)|? = @®[VW|* = (V?, WV W) =
= [|1DulVe + oV | Dul||* — ¢*|VW|* - 2oV, | Du|V|Dul)
= |Du|Vel* + ¢*| V| Dul|* — o*|[VW?

= IDuP Vel + o* (IVVW2 =112 - [V |?)

el + o (=) 1) pow
W2 —1

2 [[VWJ?
| Dul?
= |Du*|Vol* + *W*| V[ Vul||*

= |Du|Vel* + ¢

where the last equality follows from the identity
\47%4
—— = W?3V|Vul,
B el
which in turn can be checked by direct computation

|Du| _ V|Du|  |[Du|[VW

V|Vu|| =V

w w w?2
VW |Du|VW
" |Dul W?2
_ (W?—|DuP)VW YW
| Du|W?2 | Du|w2

where in the middle equality we have used the identity Vlmeu‘ = %, that is, V|Du|?> =

VW2, whose validity follows from the very definition W?2 = 1 + |Du|?. Hence,

) (u Ric(Du, Du)
e (e = w2 e + BEGLLD)
Q

2

= [ PONTuTel? - [ B
e U ) e

/Q Q 2

and by (93) we reach the desired conclusion. O

vaDUI ?

v

THEOREM 5.4. Let (M,0) be a Riemannian manifold and Q@ C M an open subset
with C' boundary. Let f1, fa € C1(R) be given functions and let u € C3(Q) N C?(Q) be a
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solution of

Y fi(u) + P 1)
V1+ |Dup? ' 1+ |Duf?

with w and O,u locally constant on 0. If X € X(Q) is a Killing vector field and v =
(Du,X) >0 in Q, then

u Ric(Du, Du)
[ e (W2 IV I9all2 + Va2l A7) + ) Pda, <

W2

D
< / e Tul?| V| *dry — / po oDy,
Q Q W2
for every ¢ € Lip,(Q), where F = fs.
PROOF. Let € > 0 and set
Y = (p2€F2(u) A4 v. = v e, 7. = (IOQ‘DUPEFQ(U)&

W )
Observing that Vv, = Vo, from the divergence theorem and Lemma 5.2 we have

|Du|2 Vo >d7—[;”1

W2vp,

/ div (Y — Z)dz, = [ ¢?ef>®
Q

S
_ o? eFa(u ( ) (V. V> H!r]n—l
€ v)

(VWY
_ 2 Fs(u) 77(1 m— 1
/dQSD € Ve w H

Repeating the computations in proof of Theorem 5.3 we obtain

div (Y — Z.)dz, =

Q
“ Ric(Du, Du
= [ er | (e - w2 vl + FEEEY) o - vl ds,

Fa(u) )

¢|Dul ||”
w2 e

\%

4 [ PO WA + ) [VulP S Pds, + [ ©
Q € Q

Ve

Shortly, we write

(u Ric(Du, Du
[ e (e = w2 egu + R ) s, + 1) + 16 = )
with
ef2 () Dul||”
Li(e) = T v? V(p|v | dxg,

Ie) = /Q P (W fi(u) + F5(w) [Vl P,

2 Fz(u)i <VVV’ V>

I — Fs(u) 2 2d / d m—l-
O R i e

From Fatou’s lemma we have

L. . 26F2(u
10> [ iy (025

e dzg.

) ‘vwlDUI
Ve

2 u 2
de, = &Uﬁ vM
g 0 v
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Since 0 < g/ve < 1 for every € > 0, by applying Lebesgue’s dominated convergence
theorem with dominating function e™2("|W f](u) + f5(u)|||Vu||?p? we obtain

lim Io(e) :/Q lim <eF2<U> (W f1(u) + fo(u)) ||Vu||25302> dz, =0,

e—0t e—0t

and by similar arguments we also have

e—0+

Jim Ig(a):/er(“)||VuH2||VLp||2da:g.
Q
Then, the conclusion follows. O

We are now in position to prove

THEOREM 5.5. Let (M,0) be a complete Riemannian manifold with Ric > 0 and
let Q C M be a parabolic domain with smooth boundary. Let fi,fo € C1(R) be given
functions, with f] > 0. Let u € C3(Q) N C?(Q) be a solution of

v _ Du = fi(u) + i {C) n Q
V1 |Duf? ! J1+|Duf?

satisfying
u, Oy U locally constant on 0,
supg |u] < +oo,
supyq [Dul < +oo,
(Du,X) >0 in Q2

for some Killing vector field X € X(Q), and assume that either condition (RQ) or (K)
is satisfied. Then Q is isometric to the Riemannian product of an open interval I C R
and a complete manifold N with Ricy > 0, the function u only depends on the I-variable,
and (X, 0¢) is constant in S, where 0y is the unit tangent vector of the family of curves

Ix{¢}, €€ N.

PROOF. From Corollary 4.4 we have that supo W < +o0o. Then (,g) is quasi-
isometric to (€2,0) and therefore (©, g) is a parabolic manifold with boundary. Moreover,
since u is bounded we have that e™2(*) is bounded for any primitive F, for f» on R.

By Theorem 1.5 in [28], from the parabolicity of (€2, g) we have existence of a sequence

{en} € Lip,(§2) satisfying

loc

. 1,00 /S
o1 i WE(), /Quwnn‘zdxg -0

as n — 4o00. From Theorem 5.4 and condition Ric > 0, for every n > 0 we have inequality

V2 nl|Du 2
[P (Il + [DuPIAR) b + [ e P g, <

2

S/'31?2(")HWHQIIV%IIdeg-
Q

By Cauchy-Schwarz and Young’s inequalities we can estimate

2 2
ealDu D Dul |Dul
2 + P v 2 (w2, Py,

2
2
- rn

1
> (1— )2
_< 2)%

o1Du
v

v v2

I

Du 2 Dul?
v g )P g 2

v
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and then we get

2

D
\% % (pidfﬁg S

[ W (Tl + [ValPIAIR) eida, + 5 [ P05
Q Q

<2 [ PO, P,
Q

having used |Dul?/W? = ||Vu|?. Since e™2(*) is bounded, the RHS of this inequality
tends to 0 as n — 400. Then, by Fatou’s lemma we obtain

D
(95) IV [ Valll2 + |Vl 2 Al = o, v% =0 Q.

This is the starting point for the proof of the splitting. We reproduce the argument
given in [12], which in turn follows the line of the one in [19]. From v > 0 we deduce that
Du # 0 on , so the vector field Y = Vu/||Vu|| is well defined on 2 and level sets of u are
regular embedded hypersurfaces in 2. For = € €, let {V;}1<i<m be a local g-orthonormal
frame for T2 in a neighbourhood of z, with V,,, =Y. Then {V;}1<i<m—1 is a local frame
for the tangent subspace of the hypersurface {u = u(z)}. We have

(V||Vul|, V;) = Hess, (u)(Y, V;), A(Vi, V) = }W

for 1 <14,57 < m —1, with A the second fundamental form of {u = u(z)} in (€, g). From
these identities we deduce that the only nonzero component of Hess,(u) is the one in the
direction of du ® du. Since Hess,(u) = W2 Hess,(u) by (14), we infer

Du  Du du ® du
|Dul” |Du| ) |Du| = |Dul

(96) Hess, (u) = Hess, (u) ( in Q.
From this identity we deduce that |Du| is locally constant on level sets of u, that integral
curves of Du/|Du| are geodesics in M and that level sets of u are totally geodesic in 2
with respect to both metrics o and g. Since w is locally constant on 0f2, in the limit we
obtain that each connected component of 92 is a totally geodesic hypersurface in (M, o).
Since 0f) has at most countably many connected components and u is constant on
each of them, the set B = u(92) C R consists of at most countably many points. As
u is non-constant in Q, we can find b € u(Q) \ B. Let N be a connected component of
the level set {u = b} C Q. By the implicit function theorem, N is a properly embedded
hypersurface in M and is a manifold without boundary, complete with respect to the
metric oy induced from o. We denote with ®(¢, ) the flow of Du/|Du| starting from N,
defined on the connected set

DCRxN, D={(tz):z€N,te (ti(z) ta(x))}

where, for every € N, t1(z) € [~00,0) and t2(z) € (0, +o0] are the extrema of the largest
open interval I, = (t1(x),t2(x)) such that for every t € I, the point ®(¢,x) is well defined
and belongs to Q. If ¢;(x) > —oo (respectively, ta(x) < 400) then the curve t — ®(¢,x)
converges to a point of 9 as t N\, t1(x) (resp., t ' ta(x)) which we shall denote as
Ty = ®(t1(2)T,x) (resp., 2* = ®(t2(x)~,z)). The function ¢; is upper semi-continuous
on N, that is, for every x € N we have

limsup t1 () < 1 ()

n—+oo
for every sequence {x,,} C N converging to x: otherwise, we could find ¢ € (¢;(z),0] and a
sequence {z,} converging to x such that ti(x,) — ¢, yielding 0Q > (z,). — ®(t,z) € Q,
absurd. Similarly, the function ¢y is lower semi-continuous on N. Hence, D is open in
R x N.
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From (96) we deduce

D
DV—U,Z =0 for every V. Z € T,Q), x € Q)
| Dul
thus Du/|Du| is a parallel vector field. Then the induced metric on D by @ is the product
metric dt? 4+ o . Let ¢g > 0 be the constant value of [Du| on N and let 3 be the maximal

solution of the Cauchy problem

)

y'(s) = (fl (s) +

y(b) = co.

Since u is strictly increasing along the curves t — ®(¢,z) and |Dul is locally constant
on level sets of u, for every z € () there exists a neighbourhood U, C Q and a Cj real
function S, such that

fa(s) (1+y(s)?)3/?
1+ y(s)2 y(s)

|Du| = B (u) on U,.
As Du/|Du| is parallel, on U, we have

fi(u) + P = div (Du ) = div ( | Dyl Du >
1+ Be(u)? 1+ [Dul? 1+ |Duf? |Dul
= DDu/Du|\/1+D’|u% = Bz(u) <\/1ﬁ-iiﬁg> (u)
Bz (u)B; (u)
(14 Ba(u)?)?/2
that is, 8, is a solution of the Cauchy problem

fa(s) ) (1 +y(s)%)*

y(u(z)) = [Du(z)].

Without loss of generality, we can assume that 3, is the maximal solution of this problem.
For points € N, this yields 8, = 8 by uniqueness. Hence, for every x1,z9 € ®(D)
belonging to the same curve t — ®(¢,z), x € N, it must be 8,, = B,,. Therefore, 8, =
for every x € ®(D), that is,

|Du| = B(u) on (D).

We claim that ®(D) = . The map  is a diffeomorphism and D is open in R x N,
so ®(D) is open in Q. We check that ®(D) is also closed in €2, thus deducing ®(D) = 2
by connectedness of €.
First, we show that ¢; and to are constant on N. We prove this for 1, the proof for
to being analogous. Set
dr for every s € u(2).

~ )y B(r)

Note that by integrating Su(®) = |Dul(®) = B(u(®)) we get

p(s)

u(®(t,x))
t= /b /3(277:) = p(u(®(t,x))) for every (t,x) € D.

We show that 1 is lower semi-continuous on N. Suppose, by contradiction, that for some

x € N and for some sequence {z,,} C N converging to = we have

lim t1(z,) < t1(z).

n—-+o00
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Fix t such that
lim ti(z,) <t <ti(x), t & B =u(09Q).

n—-+oo

Then, {®(t,2,)} C Q converges to a point Z € 9. Along this sequence, u has the
constant value p~1(f), so by continuity it must be u(z) = p~1(f). But p~1(#) € u(9Q)
and we have reached a contradiction. Since we had already shown that t; is upper semi-
continuous, we conclude that t; is continuous on N. For every x € N we either have
t1(x) = —oco or t1(x) € (—00,0). In the second case, the endpoint z, = lim,_;, (5)+ ®(t, )
belongs to 02 and by continuity ¢ (z) = p(u(x.)). So, t1(N) C p(B) U {—oo}. Since this
set consists of at most countably many elements, it contains no open intervals. As t; is
continuous on the connected set N, we conclude that ¢; is constant.

Let Ty € [—00,0) and T» € (0, 400] be the constant values of ¢; and t5 on N, so that

D= (T17T2) x N.

For every t € (T1,Ty), the image Ny = ®({¢} x N) C Q is a connected open subset of the
embedded submanifold {u = p~*(#)} C Q. The restriction @54y : {t} x N = N;is a
local Riemannian isometry and {t} x N is complete, so @7} x v 1s a Riemannian covering
map and therefore N7 is also complete with respect to the intrinsic geodesic distance, that
we shall denote by di (see [44], Lemma 5.6.4 and Proposition 5.6.3).

We prove that ®(D) is closed in Q. Let {p,} C ®(D) be a given sequence converging
to some point p € 2. We have to show that p € ®(D). Set t = p(u(p)). For every n we can
find (¢, ) € D such that p, = ®(t,,z,). By continuity, t, = p(u(p,)) — p(u(p)) = t,
hence T} <t < T,. Both inequalities are strict, otherwise either {(x,).} = {®(T}", z,)}
or {(xz,)*} = {®(Ty ,x,))} would be a sequence of points of 9 converging to p € €,
absurd. Setting ¢, = ®(¢,z,,) for every n, we have that {g,} is a sequence of points of Ny
converging to p in M, since dy(pn,qn) < |t — ] — 0. Hence, {g,} is a Cauchy sequence
in M. By completeness of M, any two points ¢, ¢, are joined by a minimizing geodesic
arc in M. Since (Nz, dz) is complete and totally geodesic, every geodesic in M joining two
points of N must lie in Nz. So, {¢,} is a Cauchy sequence in Ny and therefore converges
to some point § € Nz. Since Ni is embedded in M, § = p and we conclude p € Ny C (D),
as desired. This shows that ®(D) is closed in (2.

As already stated, since ®(D) is non-empty and both open and closed in the connected
set Q, we have ®(D) = Q. Thus, ® realizes an isometry between  and the product
manifold

(Tl, Tg) x N.
Furthermore, u only depends on the variable ¢ because
uw(®(t,x)) = p~t(t) for every (t,x) € (T1,Ts) x N.
The second identity in (95) implies
v = cW||Vul| on

for some constant ¢ > 0. Since v = (X, Du) and W||Vu| = |Dul, this identity rewrites as
(X, Du) = c|Dul, that is,
(X, 8t) = C.
O

For particular choices of f1, fo, the conclusion of Theorem 5.5 can be reached un-
der weakened assumptions. In Theorem 5.6 we show that if fi, fo are non-positive and
non-decreasing, then boundedness of u can be relaxed to one-sided boundedness (more
precisely, infg u > —00). In Theorem 5.7 we show that if f; and fo are constant then the
monotonicity condition (Du,X) > 0 of u in the direction of the Killing field X can be
a-priori deduced from the request that (Du, X) > 0, #Z 0 on 91, under assumption that
| X is bounded in .
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THEOREM 5.6. Let (M,c0) be a complete Riemannian manifold with Ric > 0 and
let @ C M be a parabolic domain with smooth boundary. Let fi,fo € C1(R) be given
functions, with f; <0, fi >0 fori=1,2. Let u € C3(Q) N C%(Q) be a solution of

v & :fl(u)_i_ﬂ in Q
1+ [Du]? 1+ [Dul?

satisfying

u, Oy u locally constant on 0%,

infou > —oo,

Supyq |Du| < 400,

(Du,X) >0 in Q
for some Killing vector field X € X(Q) and assume that (RQ) or (K) holds true. Then Q
and u split as in Theorem 5.5.

Proor. If f; < 0 and f/ > 0 then we have —oo < f;(ux) < fi(u) < 0 for i = 1,2.
Setting I = [ux, +00), the function f : I x [1,+00) given by

fw) = hiy) + 22
satisfies
A< <0, Dpwzo o< gy =20 < L

for every (y,w) € I x [1,400), with A = | f1(u«)| + | f2(u«)|. Then, from Corollary 4.6 we
obtain that supg |Du| < +00 under the sole assumption that infgu > —oco. Then, (£, g)
is parabolic. Moreover, for any primitive Fy of fo we have Fy(u) < Fy(ux) < 400 due
to fo <0, so ef2(®) is bounded on Q. Having established these facts, one can repeat the
proof of Theorem 5.5. O

THEOREM 5.7. Let (M, o) be a complete Riemannian manifold with Ric > 0 and let
Q C M a parabolic domain with smooth boundary. Let u € C3(Q) N C%(Q) satisfy

V| —m—] = e in
1+ |Dup? ' /Tt [Dul?
for some constants Hy, Hy € R. Assume that (RQY) or (K) is satisfied and that

w, Opu locally constant on 0S,
suppg, [ Dl < +00,
(Du,X)>0,#20 on 09Q

for some Killing vector field X € X(Q2) with supq |X| < 4+o00. If either

infgu > —o0,

o - g
(1) bl(l)p [ul 00 or (44) {H2 <0,

then Q and u split as in Theorem 5.5.

PRrROOF. If (i) is satisfied, then we have supo W < +oo as already observed in the
proof of Theorem 5.5. If (ii) is satisfied, then the function f : R x [1,+00) — R given by

H
f(yvuj)zlil_ki2
w

satisfies
of of _ Hy _ |Hy

—|Hy| — |Hy| < f < |Hy| + |Hal, Jy =0,

ow w2 w?’
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so the conditions in Corollary 4.6 are satisfied for A = |H;| + |Hz| and, again, we deduce
supg W < +oc. In both cases, (€, g) is a parabolic manifold with boundary.

Let f1, fo be the constant functions on R given by f; = H; for ¢ = 1,2. A primitive
F, for fy is the function Fy(t) = Hot. If (i) is satisfied, then ef2(w) = ¢H2u g hounded in
Q. If (i) is satisfied, then ef2() = ef2v < eH2us < 406 is again bounded in Q. So, in
both cases we have supg ef2(*) < +o0.

The function v = (Du, X) is bounded on € as a consequence of Cauchy-Schwarz
inequality

ol < 1DulxX] < (sup|ul ) (sup 1) < o0
Q Q

and satisfies
W2eF2(w) div 4 <6F2(“)W) =0

by (40). The weight e™2(*) /I¥'2 is bounded in Q, so the weighted operator

v
jd) = er_Fz(u) dng (er(u)VV(z)
is parabolic on €2 due to parabolicity of A, and the characterization of parabolicity recalled
at the beginning of the section. Hence, the bounded, .Z-harmonic function v must satisfy
infv =infv > 0, supv = supv > 0.
Q o0 O a0
If infgv > 0, then v > 0 in Q. If infov = 0, then v is not constant in 2 and, by the

strong maximum principle, it cannot attain the value 0 = infg v in Q. So again it must
be v > 0, that is,

(Du,X) >0 in Q.

Having obtained supy W < +o00, supg €2 < +o00 and (Du, X) > 0 in Q, from this
point on we can repeat again the argument in the proof of Theorem 5.5. U

2. Splitting on parabolic manifolds

In this section we prove a splitting theorem for parabolic, complete Riemannian mani-
folds with non-negative Ricci curvature and negative part of the sectional curvature decay-
ing quadratically, in presence of non-constant, entire minimal graphic functions of linear
growth. The proof of Theorem 5.8 parallels that of Li’s splitting theorem for complete,
parabolic manifolds of non-negative Ricci curvature supporting non-constant harmonic
functions of linear growth, [35].

THEOREM 5.8. Let (M, o) be a complete parabolic Riemannian manifold with Ric > 0
and with sectional curvature satisfying
2

Y
K> —
- 1412

for some v > 0, where r(x) = dist,(0,2) is the distance from a fized origin o € M. If
there exists a mon-constant solution u of equation

Du
YA _— =
v/ 1+ |Dul?
satisfying u(x) > —ar(x) for some constant a > 0, then M is isometric to the Riemannian

product R x N for some complete and parabolic manifold N, with Ricy > 0, and u is an
affine function of the R-coordinate.
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PROOF. From Theorem 4.10, u has bounded gradient on M. As a consequence, the
identity map is a quasi-isometry between the Riemannian manifolds (M, o) and (M, g),
and so the operator A, is parabolic on M. We have

1 Ric(Du, Du 1

Aygy = = (e + BEAZEE) L <o

that is, 1/W is a bounded A j-superharmonic function and as such it must be constant.
This fact, coupled with the Jacobi equation itself and with inequalities 1/W > 0, ||1I|| > 0,
Ric > 0, leads to the conclusion ||II|| = 0 and Ric(Dwu, Du) = 0. Since W is constant, so is
| Du|. Since u is assumed to be non-constant, we have | Du| = ¢ for some positive constant
co > 0. From this fact and II = 0 it is possible to show that M splits isometrically as a
product Rx N, with N a complete parabolic manifold with Ricy > 0 and u only depending
on the R-coordinate (and then necessarily being an affine function of it). Indeed, by (16)
we have that IT = 0 is equivalent to Hess,(u) = 0, so the validity of identity (96) is
established and then one can repeat the argument of the proof of Theorem 5.5. O

As a consequence of Theorem 5.8 we also have the following

THEOREM 5.9. Let (My,00) be a complete parabolic Riemannian manifold with non-
negative sectional curvatures and let (M,o) = (R x My,dt? + o¢) with t the canonical
coordinate on R. If u is a solution in M of the equation

Du
Vv _— =
V14 [Dul?

satisfying u(x) > —ar(zx) for some constant a > 0, with r(x) = dist, (0, x) the distance
from a reference origin o € M, then either

i) w is an affine function of t € R, where (t,£) denotes the generic point of M =

R x My, or
iil) Mo =R x Ny for some complete and parabolic manifold Ny with Ricy, > 0 and

u is an affine function of (t,s) € R?, where (t,s,() denotes the generic point of
M =R2 x N,.

PrOOF. The product manifold (M, o) has non-negative sectional curvature and from
Theorem 4.10 we deduce that u has bounded gradient on M. Then the weighted Laplacian
Z = Ag210gw defined by

v 2(VW,V
Ly =W3div, <m;§) =Agp — VW Vo) W ¥)
is a uniformly elliptic differential operator in divergence form with bounded weight, with
respect to the Riemannian metric of non-negative Ricci curvature o. By a result of Saloff-
Coste ([47], Theorem 7.4), this operator then satisfies a Liouville property: the only
bounded solutions of equation £y = 0 on M are constant functions.

The manifold M carries a global parallel vector field 0y, whose integral curves are
the lines R x {¢}, £ € My. In particular, 9; is a Killing vector field and the function
v = Oyu = (Du, 0;) is a solution of Zv =0 on M. From Cauchy-Schwarz’s inequality we
have |v| < |Dul|, hence v is bounded on M and must be constant.

Let ¢o be the constant value of O;u. The reference origin o € M can be expressed as
0 = (to, &) for some tg € R, § € My. We define ug(§) = u(to, &) for every £ € My. For
every (t,€) we can write

u(t, §) = uo(§)+co(t—to), Dult,§) = Douo(§) +cod, W(t,ﬁ):\/1+08+|Douo(€)I3

with Dy, | - |o the connection and vector norm of My, respectively. From the isometric
splitting R x My = M we have the following expression for the function r,

r(t, &) = /|t — to]? + r0(€)?,
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where ro(€) = dist,, (§0,€) is the distance from &y in My, and then we deduce that

uo(§) = —arg(§)
for every £ € My. From DOy = 0 and ;W = 0 we get

. Du . Doug
div | ——— | =divy
V14 |Dul? 1+ e+ |Douol3
with div g the divergence of My. Setting uq = up/+/1 + 6(2), we can rewrite
Doug _ Douy
\/1+C(2)+|D0U0|(2) \/1+|D0’UJ1|3

and then we conclude that u is a solution in My of

div 0 & =0
\/ 1 + |D07.L1 ‘%
satisfying u1(£) > —arg(€)/y/1+ 3. If u; is constant then we have conclusion i), oth-
erwise from Theorem 5.8 we deduce that M splits as described in ii) and that u; is an
affine function of the variable s, say u;(s,{) = ¢18+ ¢, ¢1,c2 € R, where (s,() denotes
the generic point in the product R x Ny. This yields the expression

u(t,s,¢) = cot + c1y/1+ cBs+cay/1+ 3

completing the proof of ii). O
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