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FLA 5.6.
BACKGROUND: Sigh is a cyclic brief recruitment maneuver: previous physiologic studies
showed that its use could be an interesting addition to pressure support ventilation to
improve lung elastance, decrease regional heterogeneity, and increase release of surfactant.

RESEARCH QUESTION: Is the clinical application of sigh during pressure support ventilation
(PSV) feasible?

STUDY DESIGN AND METHODS: We conducted a multicenter noninferiority randomized clinical
trial on adult intubated patients with acute hypoxemic respiratory failure or ARDS undergoing
PSV. Patients were randomized to the no-sigh group and treated by PSV alone, or to the sigh
group, treated by PSV plus sigh (increase in airway pressure to 30 cm H2O for 3 s once per
minute) until day 28 or death or successful spontaneous breathing trial. The primary end point
of the study was feasibility, assessed as noninferiority (5% tolerance) in the proportion of
patients failing assisted ventilation. Secondary outcomes included safety, physiologic parame-
ters in the first week from randomization, 28-day mortality, and ventilator-free days.

RESULTS: Two-hundred and fifty-eight patients (31% women; median age, 65 [54-75] years)
were enrolled. In the sigh group, 23% of patients failed to remain on assisted ventilation
vs 30% in the no-sigh group (absolute difference, –7%; 95% CI, –18% to 4%; P ¼ .015 for
noninferiority). Adverse events occurred in 12% vs 13% in the sigh vs no-sigh group (P ¼
.852). Oxygenation was improved whereas tidal volume, respiratory rate, and corrected
minute ventilation were lower over the first 7 days from randomization in the sigh vs no-sigh
group. There was no significant difference in terms of mortality (16% vs 21%; P ¼ .342) and
ventilator-free days (22 [7-26] vs 22 [3-25] days; P ¼ .300) for the sigh vs no-sigh group.

INTERPRETATION: Among hypoxemic intubated ICU patients, application of sigh was feasible
and without increased risk.

TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT03201263; URL: www.clinicaltrials.gov
CHEST 2021; -(-):---
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KEY WORDS: ARDS; feasibility; pressure support; sigh; ventilation
acute hypoxemic respiratory failure;
Intensive Care Medicine; PBW = pre-
sitive end-expiratory pressure; P-SILI =
ry; PSV = pressure support ventilation;

RCT = randomized clinical trial; SBT = spontaneous breathing trial;
SpO2 = peripheral oxygen saturation
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Take-home Point

Study Question: The aim of this randomized clinical
trial was to determine the feasibility of the applica-
tion of sigh during pressure support ventilation
(PSV).
Results: The study showed that in mechanically
ventilated patients with acute hypoxemic respiratory
failure or ARDS, addition of sigh in comparison with
no sigh during PSV was feasible and safe: there was
no increase in patients failing to remain on assisted
ventilation (23% vs 30%, respectively), and there
were similar proportions of adverse events
(12% vs 13%, respectively).
Interpretation: Addition of sigh to PSV is feasible
and safe in intubated ICU patients with acute hyp-
oxemic respiratory failure or ARDS.
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Mechanical ventilation is a vital support for intubated
patients with acute hypoxemic respiratory failure
(AHRF) and ARDS.1,2 Early switch to assisted
ventilation modes carries significant benefits, including
reduced sedation and improved hemodynamics.2

Approximately 30% of invasively ventilated patients
breathe spontaneously by day 1 from intubation and, by
day 7, pressure support ventilation (PSV) is the most
widely used mode of ventilation worldwide.3

Multiple physiologic studies showed that use of sighs
could be an interesting addition to pressure support
ventilation. Sigh may improve lung function through
improved lung elastance,4 decreased regional
heterogeneity,5 increased release of active surfactant,6

and decreased effort,5 the latter being protective also for
the diaphragm. Moreover, sigh has been shown to allow
a reduction in tidal volume and respiratory rate,
reducing the ventilation load applied to the lungs.4,5,7

These studies generated the hypothesis that addition of
sigh to PSV might improve clinical outcomes of patients
with AHRF and ARDS. However, no randomized
clinical trial (RCT) on sigh addition to PSV has ever
been performed, and, before conducting a larger trial
aimed at verifying improved survival, we first conceived
a pilot RCT to verify the clinical feasibility of sigh in
comparison with standard PSV8 and to have preliminary
estimates of adverse events, loss to follow-up, outcomes,
and its variabilities. A noninferiority approach was
chosen to demonstrate that application of sigh in the
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clinical setting is as feasible as standard PSV, which is
the most widely adopted assisted ventilation mode.

In the present trial, sigh was applied early after
switching to PSV in intubated patients with AHRF or
ARDS and maintained until successful weaning, death,
or day 28. The study aimed at attesting the
noninferiority of sigh, as compared with standard PSV
without sigh, in terms of failure of assisted ventilation.
chestjournal.org
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Failure was defined as the occurrence of any of the
following conditions: switch back to controlled
ventilation, use of rescue therapies for refractory
hypoxemia, and reintubation.

Secondary outcomes included comparison between the
two study arms in the incidence of adverse events,
physiologic parameters, survival, and ventilator-free
days.
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Methods
Study Design and Population

The present study was a pilot RCT conducted between December 2017
and May 2019 at the ICUs of 20 hospitals from eight countries: Italy,
Spain, United Kingdom, Germany, Slovenia, Greece, China, and Brazil.
Centers were recruited through a call to members of the Pleural
Pressure Working Group (PLUG) of the European Society of
Intensive Care Medicine (ESICM) and through publication of the
protocol on the ESICM website. The ESICM also endorsed and
funded, in part, the study. The study design and statistical analysis
plan have been published.8 This study was performed in line with
the principles of the Declaration of Helsinki. Approval was granted
by the Ethics Committee of the Fondazione IRCCS Cà Granda
Ospedale Maggiore Policlinico (international leading coordination
center, June 6, 2017, No. 318). The institutional review boards of all
centers approved the trial. The study was registered at
ClinicalTrials.gov.9 Informed consent was obtained for all individual
participants included in the study, in accordance with local
regulations. The trial enrolled patients admitted to each participating
ICU and receiving invasive ventilation for > 24 h and # 7 days,
undergoing PSV for $ 4 and # 24 h, with a PaO2/FIO2 ratio #

300 mm Hg and clinical positive end-expiratory pressure (PEEP) $
5 cm H2O. The Richmond Agitation-Sedation Scale10 value at
enrollment had to be between –2 and 0. Exclusion criteria can be
found in e-Appendix 1.

Sigh Test, Randomization, and Interventions

After enrollment, all patients underwent a 30-min test of addition of
sigh to clinical PSV to assess the prevalence of sigh responders
vs nonresponders as defined by improved oxygenation. Briefly, the
ventilator FIO2 was titrated to obtain a peripheral oxygen saturation
(SpO2) of 90% to 96%, while keeping the same clinical PEEP and
PSV levels. Sigh was then added as a pressure control phase set at
total end-inspiratory pressure of 30 cm H2O for a 3-s insufflation
time, once per minute. At the beginning and after 30 min, the SpO2/
FIO2 ratio was determined. On the basis of a previous physiologic
study, the expected prevalence of sigh responders (ie, patients
improving SpO2/FIO2 by > 1%) was estimated to be 50%.5

After completion of the sigh test, patients were randomized by a 1:1
ratio to a strategy of PSV titrated according to a predefined protocol
with addition of sigh (sigh group) or to a strategy of PSV titrated
according to the same protocol but without sigh (no-sigh group).
The local investigators randomized patients using a central,
dedicated, password-protected, web-based, automated randomization
system. The randomization sequence was generated using a
permuted blocks randomization scheme (block size of six).

After randomization, in the sigh group, PSV was targeted to a tidal
volume of 6 to 8 mL/kg of predicted body weight (PBW), with a
respiratory rate 20 to 35 breaths/min (bpm) and clinical PEEP. FIO2
was left as selected during the prerandomization sigh test. Sigh was
promptly added as a pressure control breath at total end-inspiratory
pressure of 30 cm H2O for 3 s delivered once per minute.
Ventilators were switched to biphasic synchronized positive airway
pressure mode (also known as synchronized intermittent mandatory
ventilation combining pressure control and PSV) with the lower
pressure level set at clinical PEEP and the higher pressure level set at
30 cm H2O with a 3-s inspiratory time. Sigh settings were left
unchanged until switch to controlled ventilation, day 28, death, or
performance of a successful spontaneous breathing trial (SBT; see
below). In the no-sigh group, after randomization, PSV was set to
obtain the same targets as above with clinical PEEP and the FIO2
selected during the prerandomization sigh test.

Then, in both groups at least every 8 h, the PSV level was adjusted to
maintain a tidal volume of 6 to 8 mL/kg PBW and respiratory rate of
20 to 35 bpm, while PEEP and FIO2 were managed to keep the SpO2 at
90% to 96%.

In both groups, switch to protective controlled ventilation was
indicated when patients fulfilled specific predefined criteria.8 Patients
switched to controlled ventilation were reassessed at least every 8 h
and switched back to the sigh or no-sigh group as soon as
predefined criteria for improvement were met.8

Patients with SpO2 $ 90% on FIO2 # 0.4 and PEEP # 5 cm H2O, no
agitation, and who were hemodynamically stable underwent an SBT.
For patients in the sigh group, the attending physician withdrew
sigh, waited 60 min, confirmed the above-mentioned criteria, and
performed the SBT; if criteria were no longer met, sigh was
reintroduced and this procedure was repeated after at least 8 h. The
SBT lasted at least 60 min with a combination of PEEP of 0 to 5 cm
H2O and PSV level of 0 to 5 cm H2O. Criteria for success vs failure
of the SBT were predefined by study protocol.8 Subjects successfully
completing the SBT were promptly extubated or, in the presence of
tracheostomy, mechanical ventilation was discontinued. Patients who
failed the SBT were switched back to the sigh or no-sigh group, and
criteria for SBT were checked again after at least 6 h. After
extubation, reintubation was performed if at least one of the criteria
predefined by the study protocol was present.8
Outcomes

The primary end point of this trial8 was to assess noninferiority of sigh
feasibility vs no sigh by comparing the number of patients in each
group experiencing at least one of the following criteria for failure of
assisted ventilation: switch to controlled ventilation for $ 24 h
(consecutive); use of rescue therapy; and reintubation within 48 h.

Secondary outcomes included the following: comparison of selected
physiologic variables during the first 7 days from randomization in
the two study groups; evaluation of the clinical safety of sigh vs no
sigh by comparing the incidence of predefined adverse events;
quantification of responders and nonresponders to the
3
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prerandomization sigh test; 28-day mortality and ventilator-free days
in the two study groups and in responders and nonresponders.

Statistical Analysis

On the basis of previous data,11 we computed that a sample size of 258
patients (with 129 patients per study arm) was sufficient to assess
feasibility of the sigh strategy (primary outcome), using a
noninferiority test with a tolerance of 5%, power of 0.8, a 0.05, and
22% and 15% as the expected rate of failure of assisted ventilation in
patients undergoing no-sigh and sigh treatment, respectively. Failure
of assisted ventilation in patients treated with sigh was compared
with patients with no sigh, using a one-tailed noninferiority test for
proportions with a 5% tolerance. In details, noninferiority of sigh
was established when failure in the sigh group was lower than failure
of no sigh plus 5%. This is the standard alternative hypothesis for
noninferiority tests.12 Thus, in this study, a P value less than .05
4 Original Research
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(type I error) for the noninferiority test would reject inferiority of
the new treatment (sigh) compared with no sigh. Survival at day 28
was analyzed using Kaplan-Meier curves, and the log-rank test was
used to test differences between curves.

Continuous variables are described by mean and SD when normally
distributed or as median and interquartile range otherwise.
Categorical variables are reported as number and proportion (%).
Statistical significance of differences between the two study groups
(sigh vs no sigh) was tested using c2 or Fisher exact test for
categorical variables, t-test for continuous normally distributed
variables, and Wilcoxon signed-rank test for nonnormally distributed
continuous variables.

To test differences in time trends of physiologic and clinical parameters
between the two study groups we used generalized estimating equation
models to account for repeated measures.
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Results

Patients

One thousand and sixty-four intubated ICU patients
undergoing PSV were screened. A total of 806 were not
enrolled, of whom 726 (90%) met at least one of the
exclusion criteria and 80 (10%) were eligible but could
not be enrolled for various reasons (Fig 1). Two hundred
and fifty-eight patients completed the sigh test and were
subsequently randomized, 129 to the sigh group and 129
to the no-sigh group. None of the patients withdrew
consent after randomization. Sigh was applied for 4 (2-
9) days in the sigh group. Follow-up until day 28 was
complete for all patients. Data for 258 subjects (129 in
each group) were considered for the primary intention-
to-treat analysis (Fig 1).

Three patients in the sigh group and two patients in the
PSV group were not included in the per-protocol
analysis because of switch to the other study arm, due to
adverse event, discomfort, and hypoxemia; 126 patients
in the sigh group and 127 in the no-sigh group were kept
for the per-protocol analysis.

Baseline characteristics were well balanced between the
two study groups (Table 1). Men represented 67% (87
patients) and 71% (92 patients) in the sigh group and in
the no-sigh group, respectively. The mean age of
patients was 63 � 15 years, with no significant difference
between groups. The prevalence of comorbidities and
general severity at admission were comparable (Table 1).
The prevalence of the diagnosis of ARDS was 46% in the
sigh group and 53% in the no-sigh group, with
nonsignificant difference (Table 1).

Outcomes

Twenty-eight days after randomization, 30 patients
(23%) in the sigh group vs 39 (30%) in the no-sigh
group (Table 2) experienced at least one criterion for
failure of assisted ventilation. The sigh treatment group
was therefore noninferior to the no-sigh treatment
group in terms of failure of assisted ventilation (absolute
difference, –7%; 95% CI, –18% to 4%; P ¼ .015 for
noninferiority test) (Fig 2). Specific reasons for failure of
assisted ventilation and type of rescue treatment are
shown in Table 2. Per-protocol analysis showed similar
results with 29 patients (23%) failing to remain on
assisted ventilation in the sigh group vs 37 (29%) in the
no-sigh group (absolute difference, –6%; 95% CI,
–17% to 5%; P ¼ .022 for noninferiority test).

Adverse events (ie, hemodynamic instability,
arrhythmias, and barotrauma) did not differ between the
two study groups (16 patients [12%] in the sigh group
vs 17 patients [13%] in the no-sigh group; P ¼ .852).
Types of adverse events are described in Table 2.

Twenty-one patients (16%) died by day 28 in the sigh
group vs 27 patients (21%) in the no-sigh group (P ¼
.337) (Table 2). Survival was analyzed by Kaplan-Meier
curves (Fig 3) (P ¼ .342 by log-rank test). Ventilator-free
days on day 28 were 22 (7-26) days in the sigh group
and 22 (3-25) in the no-sigh group (P ¼ .300) (Table 2).
The number of patients failing an SBT was 23 (18%) in
the sigh group and 21 (16%) in the no-sigh group (P ¼
.741). The number of SBTs failed was 1 (1-2) per patient
for both groups, with no significant difference.

Outcomes in Responders and Nonresponders

Sigh responders, defined as patients in whom the SpO2/
FIO2 ratio increased by > 1% during the sigh
prerandomization test, numbered 156 (60%): 73 (47%)
in the sigh group and 83 (53%) in the no-sigh group.
Thus, nonresponders numbered 102: 56 (55%) in the
sigh group and 46 (45%) in the no-sigh group. Baseline
demographics and clinical characteristics did not differ
[ -#- CHE ST - 2 0 2 1 ]
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Assessed for eligibility (N = 1,064)

Excluded (n = 806)
• Not meeting inclusion criteria (n = 726)
   - PaO2/FiO2 ≤ 100 or > 300 mm Hg (n = 229)
   - history of severe COPD or fibrosis (n = 100)
   - neuro-muscular or CNS disorder (n = 98)
   - PaCO2 > 60 mm Hg (n = 46)
   - cardiac failure or fluid overload (n = 44)
   - cardiovascular instability (n = 43)
   - ventilation ≤ 24 h or > 7 days (n = 42),
   - PSV since > 24 h (n = 40)
   - PEEP ≥ 15 cmH2O (n = 34)
   - arterial pH < 7.30 (n = 21)
   - active air leak from the lungs (n = 9)
   - suspect of elevated intracranial pressure (n = 7)
   - moribund status (n = 7)
   - extra-corporeal life support (n = 6)
• Eligible but not enrolled (n = 76)
   - Decision of physician (n = 36)
   - Not approached for informed consent (n = 22)
   - Did not provide informed consent (n = 18)
• Other reasons (n = 4)

Sigh test for 30 minutes (n = 258)

Randomized (n = 258)

Allocated to Sigh (n = 129)
- Received allocated intervention (n = 129)

Lost to follow-up (n = 0)
Discontinued intervention (n = 0)

Analyzed in primary analysis (n = 129)
- Excluded from primary analysis (n = 0)
Analyzed in per-protocol analysis (n = 126)
- Excluded from per protocol analysis due
  to switch to the other study arm (n = 3)

Allocated to No Sigh (n = 129)
- Received allocated intervention (n = 129)

Lost to follow-up (n = 0)
Discontinued intervention (n = 0)

Analyzed in primary analysis (n = 129)
- Excluded from primary analysis (n = 0)
Analyzed in per-protocol analysis (n = 127)
- Excluded from per protocol analysis due
  to switch to the other study arm (n = 2)
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Figure 1 – Flow of patients in the trial Q14. PEEP ¼ positive end-expiratory pressure; PSV ¼ pressure support ventilation.
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between the study groups both for responders and
nonresponders (e-Table 1, e-Table 2). In responders,
mortality was 16% (n ¼ 12) in the sigh group
vs 13% (n ¼ 11) in the no-sigh group (P ¼ .575). In
nonresponders, mortality was 16% (n ¼ 9) in the sigh
group vs 35% (n ¼ 16) in the no-sigh group (P ¼ .029).
Ventilator-free days did not differ in responders enrolled
in the sigh vs no-sigh group (21 [5-26] vs 23 [15-25]
days; P ¼ .380). Ventilator-free days were significantly
chestjournal.org
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higher in nonresponders treated with sigh vs no sigh (23
[9-26] vs 10 [0-24] days; P ¼ .006).

Physiology

Over the first 7 days from randomization, the PEEP
level and set FIO2 did not differ between groups. The
PaO2/FIO2 ratio was significantly higher whereas the
respiratory rate, tidal volume, and corrected minute
ventilation (ie, the minute ventilation multiplied by
5
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TABLE 1 ] Baseline Characteristics Q16

Sigh
(n ¼ 129)

No Sigh
(n ¼ 129) P Valuea Q17

Demographics

Men, No. (%) 87 (67) 92 (71) .499

Age, mean (SD), y 63 (17) 63 (14) .676

Height, median (Q1, Q3), cm 170 (165, 178) 170 (160, 176) .298

Predicted body weight, median
(Q1, Q3), kg

80 (67, 90) 78 (65, 86) .432

BMI, median (Q1, Q3), kg/m2 26.1 (23.4, 31.0) 26.2 (23.5, 29.7) .967

Comorbidities, No. (%)

Chronic cardiovascular disease 66 (51) 79 (61) .103

Chronic pulmonary disease 19 (15) 27 (21) .193

Diabetes 26 (20) 28 (22) .735

Chronic renal disease 14 (11) 24 (19) .079

Cancer 13 (10) 18 (14) .338

No. of comorbidities, No. (%)

0 40 (34) 32 (25) .199

1 48 (37) 44 (35)

2 23 (18) 31 (24)

$ 3 14 (11) 21 (16)

Recent medical history

In-hospital days, median (Q1, Q3) 5 (3, 8) 5 (3, 8) .785

ICU days, median (Q1, Q3) 3 (2, 5) 3 (2, 5) .513

Intubation days, median (Q1, Q3) 3 (2, 5) 3 (2, 4) .358

SAPS II, median (Q1, Q3) 42 (32, 55) 42 (32, 56) .796

SOFA, median (Q1, Q3) 7 (5, 10) 7.5 (5, 9) .857

RASS, No. (%)

–2 64 (50) 72 (56) .588

–1 27 (21) 25 (19)

0 38 (29) 32 (25)

Diagnosis of sepsis, No. (%)

Sepsis 43 (33) 39 (30) .144

Septic shock 20 (15) 35 (27)

No sepsis 60 (47) 51 (40)

Not specified 6 (5) 4 (3)

Etiology

Pneumonia, No. (%) 79 (61) 75 (58) .612

Aspiration of gastric content, No. (%) 15 (12) 11 (9) .408

Vasculitis, No. (%) 1 (1) 1 (1) 1.000

Nonpulmonary sepsis, No. (%) 20 (16) 24 (19) .508

Trauma, No. (%) 8 (6) 6 (5) .583

Pancreatitis, No. (%) 4 (3) 4 (3) 1.000

Burns, No. (%) 1 (1) 1 (1) 1.000

TRALI, No. (%) 3 (2) 4 (3) .702

Other, No. (%) 15 (12) 16 (12) .848

(Continued)
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Q10

TABLE 1 ] (Continued)

Sigh
(n ¼ 129)

No Sigh
(n ¼ 129) P Valuea Q17

Pulmonary infiltrates, No. (%)

None 28 (22) 22 (17) .427

Unilateral 42 (33) 38 (30)

Bilateral (ARDS diagnosis) 59 (46) 69 (53)

PEEP, median (Q1, Q3), cm H2O 10 (8, 12) 10 (8, 11) .487

PSV, median (Q1, Q3), cm H2O 10 (8, 12) 10 (8, 12) .967

RR, median (Q1, Q3), bpm 18 (10, 30) 18 (15, 23) .445

pH, mean (SD) 7.43 (0.05) 7.43 (0.06) .510

PaO2/FIO2, median (Q1, Q3), mm Hg 222 (192, 252) 228 (187, 251) .991

PaCO2, median (Q1, Q3), mm Hg 44 (38, 49) 43 (39, 47) .695

Continuous data are reported as median (Q1, Q3) or mean (SD). Categorical data are reported as No. (%). bpm ¼ breaths/min; PEEP ¼ positive end-
expiratory pressure; PSV ¼ pressure support ventilation; RASS ¼ Richmond Agitation-Sedation Scale; RR ¼ respiratory rate; SAPS ¼ Simplified Acute
Physiology Score; SOFA ¼ Sequential Organ Failure Assessment; TRALI ¼ transfusion-related acute lung injury.
aTests for differences between PSV plus sigh vs PSV: t-test or Wilcoxon, c2, or Fisher, as appropriate.
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actual PaCO2 divided by 40 mm Hg, with lower values
indicating higher efficiency to clear CO2 by the
respiratory system) were all significantly lower in the
sigh group (e-Table 3, e-Fig 1). The tidal volume
delivered by sigh in the first 7 days from
randomization remained stable and approximately
15 mL/kg PBW (e-Fig 2). PaCO2 and pH, Richmond
Agitation-Sedation Scale score, and Sequential Organ
Failure Assessment score were similar (e-Table 3,
e-Fig 1).
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Discussion
This randomized clinical trial showed the feasibility of
adding sigh to PSV: the rate of failure of assisted
Failure Rate difference (%)

(Sigh - No Sigh)

100–20 –10–15 –5 5

Figure 2 – Treatment difference for failure of assisted ventilation be-
tween study groups. Dot and error bars indicate absolute value and two-
sided 95% CIs, respectively. The maximum tolerance accepted in this
noninferiority randomized clinical trial was 5% (light blue dotted line).
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ventilation was noninferior to conventional PSV.
Secondary outcomes indicated the safety of sigh with a
similar rate of adverse events, and comparable mortality
and number of ventilator-free days. Moreover, improved
physiology was confirmed in the first week from
randomization by addition of sigh.

Sigh is commonly performed during quiet breathing by
healthy subjects; it acts mainly as negative feedback on
respiratory drive with positive functional and
psychological consequences.13 Many studies performed
0.6
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Figure 3 – Twenty-eight-day mortality in the study groups.
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TABLE 2 ] Study Outcomes Q18

Sigh
(n ¼ 129)

No Sigh
(n ¼ 129) P Valuea

Failure of assisted ventilation, No. (%), noninferiority test 30 (23) 39 (30) .015

Reasons for failure

Switch to controlled MV $ 24 h, No. (%) 15 (12) 26 (20) .061

Rescue treatment for hypoxemia, No. (%) 14 (11) 19 (15) .351

Reintubation within 48 h, No. (%) 13 (9) 12 (9) .833

Type of rescue treatment, No. (%)

Recruitment maneuver 9 (7) 14 (11) .735

PEEP $ 15 cm H2O 3(2) 2 (2)

Prone position 2(2) 3 (2)

Reasons for switch to MV, No. (%)

Support > 20 cm H2O or arterial pH < 7.3 4 (3) 8 (6) .262

PEEP $ 15 cm H2O or PaO2/FIO2 # 100 mm Hg 8 (6) 8 (6)

Hypotension or hypertension 0 (0) 1 (1)

Active cardiac ischemia or unstable arrhythmias 0 (0) 1 (1)

RASS < –3 or RASS > 2 3 (2) 5 (4)

Necessity to perform diagnostic test 0 (0) 3 (2)

Adverse events, No. (%) 16 (12) 17 (13) .852

Type of adverse event, No. (%)

Hemodynamic instability 5 (4) 6 (5) 1.00

Arrhythmias 2 (2) 2 (2)

Barotrauma 9 (7) 9 (7)

Sigh responders,b No. (%) 73 (56) 83 (64) .609

Tracheostomy, No. (%) 22 (17) 19 (15) .441

Deaths at 28 d, No. (%) 21 (16) 27 (21) .337

VFDs, median (Q1, Q3) 22 (7, 26) 22 (3, 25) .300

Length of ICU stay, median (Q1, Q3), d 7 (3, 13) 7 (5, 11) .695

Continuous data are reported as median (Q1, Q3) or mean (SD). Categorical data are reported as No. (%). MV ¼ mechanical ventilation; PEEP ¼ positive
end-expiratory pressure; PSV ¼ pressure support ventilation; RASS ¼ Richmond Agitation-Sedation Scale; VFDs ¼ ventilator-free days.
aTests for differences between sigh and no sigh: noninferiority for “failure of assisted ventilation”; c2 or Fisher for other variables.
bSpO2/FIO2 increase > 1% during the prerandomization sigh test.
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both in hypoxemic patients14,15 and in animal models of
lung injury16 showed that sigh is associated with
improved physiology. Sigh induces recruitment of the
collapsed lungs, restores surfactant production,
decreases ventilation heterogeneity, improves regional
mechanics, increases oxygenation, and modulates the
inspiratory effort.5,17 On the other hand, sigh cyclically
delivers large inspiratory volumes in patients in whom
current guidelines recommend mandatory reduction of
tidal volume.1,18 Because no study existed on the
8 Original Research
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feasibility and safety of long-term application of sigh to
hypoxemic patients, it seemed important to conceive a
large noninferiority randomized controlled trial aimed
at assessing the clinical feasibility and safety of sigh.

The present trial indicates that addition of sigh to PSV
leads patients with acute hypoxemic respiratory failure
or ARDS to experience failure of assisted ventilation at a
rate similar to that of patients receiving traditional PSV.
Moreover, the numbers of adverse events were similar
[ -#- CHE ST - 2 0 2 1 ]
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and low, with only two patients per group experiencing
barotrauma; in only two patients was sigh stopped to
continue with traditional PSV; mortality and ventilator-
free days did not differ. Taken together, these results
suggest that sigh could be added to PSV without causing
any additional risk and yielding similar clinical
outcomes in patients with acute hypoxemic respiratory
failure or ARDS. Possible explanations for these findings
could be that sigh was not able to produce any clinical
benefits in comparison with PSV alone; or that the
nonsignificant difference in mortality showed in this
trial might become significant in a study performed with
the same protocol but with a larger sample size.

Reduction of mortality with sigh in the subgroup of
patients not responding in terms of oxygenation during
a 30-min sigh test performed before randomization is an
additional intriguing finding that will require
confirmation.

Assisted ventilation carries the intrinsic risk of
additional patient self-inflicted lung injury (P-SILI)19

and respiratory muscle myotrauma,20 making lung and
diaphragm protection a key clinical goal.21 Limiting the
inspiratory volume and transpulmonary pressure is the
recommended strategy for hypoxemic patients receiving
PSV to minimize the risk of P-SILI.22,23 We confirmed
that sigh improves oxygenation and decreases
respiratory rate, tidal volume, and minute ventilation
during the first week, potentially decreasing the risk of
additional P-SILI. As nonphysiologic high inspiratory
pressure and volume leading to P-SILI increase the risk
of prolonged ventilation and worse outcome,24 the
physiologic analyses from this study might help in
generating a more solid hypothesis on the clinical effects
of sigh.

Our results suggest that sigh is easy to implement and
could be seen as an alternative ventilation mode for ICU
physicians, even in resource-limited settings.25

Sigh can be delivered for longer time periods (eg, from
intubation), at a more physiologic lower rate (eg, once
every other minute), and at different inspiratory
pressures (eg, personalized based on transpulmonary
pressure) than in our study. Sigh is not a general concept
but rather a mechanical ventilation strategy with specific
settings, and variability in the delivery of sigh may alter
the results presented herein.

The present study has limitations. First, at enrollment,
the patients had been receiving mechanical ventilation
chestjournal.org
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for 3 (2-5) days Qand sigh was applied only for
approximately one-half the total number of days spent
on mechanical ventilation. We cannot say whether
application of sigh earlier and for a longer time period
might lead to increased benefits (from improved
physiology) or harm (from higher risks of cyclic
overdistension and atelectrauma). However,
application of sigh during controlled ventilation
requires specific machines and we reasoned that sigh
has specific advantages in patients undergoing assisted
ventilation (eg, modulation of effort). Second, we
delivered sigh at the same total inspiratory pressure in
all patients, which, based on predictable differences in
respiratory mechanics, could have determined variable
levels of transpulmonary pressure. Response to the
prerandomization sigh test might have been influenced
by this, too, with nonresponders receiving insufficient
volume. Personalized sigh settings based on specific
patients’ characteristics could lead to a higher number
of responders and improved outcomes. Third, the rate
of sigh in this study was one per minute, whereas
physiologic studies have suggested that a lower rate
may be more effective.5 Once again, to our knowledge,
only a few ventilators can deliver sigh during PSV
once every 2 min. Fourth, because of the nature of the
intervention, physicians and nurses attending patients
enrolled in the study could not be blinded. However,
we provided detailed protocols for changes in PSV
settings, performance of rescue therapies, spontaneous
breathing trials, extubation, and reintubation,8 which
should have limited biases in primary outcomes. Fifth,
we defined sigh responders on the basis of
improvement of the SpO2/FIO2 ratio by > 1% during
the prerandomization sigh test. This threshold could
be seen as too low to be clinically meaningful;
however, the analysis was exploratory and a higher
threshold would have yielded large imbalances in
group numbers.
Interpretation
Addition of sigh to PSV in patients with acute
hypoxemic respiratory failure or ARDS is as feasible as
traditional PSV in terms of failure of assisted ventilation,
and yields comparable adverse events, mortality, and
ventilator-free days. Results from the present trial could
inform the planning and design of larger clinical trials
aimed at verifying reduced mortality by application of
sigh.
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