
symmetryS S

Article

Stereoselective Synthesis of Chiral α-SCF3-β-Ketoesters
Featuring a Quaternary Stereocenter

Monica Fiorenza Boselli, Chiara Faverio, Elisabetta Massolo, Laura Raimondi, Alessandra Puglisi
and Maurizio Benaglia *

����������
�������

Citation: Boselli, M.F.; Faverio, C.;

Massolo, E.; Raimondi, L.; Puglisi, A.;

Benaglia, M. Stereoselective Synthesis

of Chiral α-SCF3-β-Ketoesters

Featuring a Quaternary Stereocenter.

Symmetry 2021, 13, 92. https://

doi.org/10.3390/sym13010092

Received: 5 December 2020

Accepted: 4 January 2021

Published: 7 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy;
monicafiorenza.boselli@unimi.it (M.F.B.); chiara.faverio@unimi.it (C.F.); elisabetta.massolo@unimi.it (E.M.);
lauramaria.raimondi@unimi.it (L.R.); alessandra.puglisi@unimi.it (A.P.)
* Correspondence: maurizio.benaglia@unimi.it; Tel.: +39-02-5031-4171; Fax: +39-02-5031-4159

Abstract: The development of new and efficient methods, reagents, and catalysts for the introduction
of fluorine atoms or fluorinated moieties in molecular scaffolds has become a topic of paramount
importance in organic synthesis. In this framework, the incorporation of the SCF3 group into organic
molecule has often led to beneficial effects on the drug’s metabolic stability and bioavailability.
Here we report our studies aimed to the stereoselective synthesis of chiral α-SCF3-β−ketoesters
featuring a tetrasubstituted stereocenter. The use of a chiral auxiliary was crucial to synthesize enan-
tiopure enamines that were reacted with N-trifluoromethylthio saccharin or phthalimide, to afford
enantioenriched α-SCF3-tetrasubstitued β-keto esters. By using a readily available, inexpensive chiral
diamine, such as trans-1,2-diaminocyclohexane, the fluorinated products could be obtained in modest
to good yields, and, after the removal of the chiral auxiliary, α-substituted- α trifluoromethylthio-
β−ketoesters were isolated with high enantioselectivity (up to 91% ee).

Keywords: asymmetric synthesis; fluorinated compounds; chiral auxiliary; stereoselectivity;
trifluoromethylthio-substituted ketones

1. Introduction

Fluorine atoms or residues are essential constitutive elements in many pharmaceu-
ticals, including very popular drugs such as Lipitor, Odanacatib, and Prozac, or fluoro-
hydrocortisone acetate [1,2]. Enhanced lipophilicity, membrane permeability, receptor-
binding selectively, and oxidative resistance are some of the attractive features that explain
the increasing request of new fluorinated chemical entities, not only in medicinal chemistry
(Figure 1) but also in agrochemicals and material chemistry [3–5].
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ticals, including very popular drugs such as Lipitor, Odanacatib, and Prozac, or fluo-
ro-hydrocortisone acetate [1–2]. Enhanced lipophilicity, membrane permeability, recep-
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chemistry (Figure 1) but also in agrochemicals and material chemistry [3–5]. 
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Figure 1. Trifluoromethylthio containing chiral drug candidates. 
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Figure 1. Trifluoromethylthio containing chiral drug candidates.

Modern organic chemists have, therefore, turned their attention to the development of
new and efficient methods, reagents, and catalysts for the introduction of a fluorine atom
or fluorinated moieties. In this context, the incorporation of the SCF3 group into organic
molecules has led often to beneficial effects on the drug’s stability and bioavailability.
Being highly lipophilic (Hansch’s hydrophobic parameter π = 1.44) and a strong electron
withdrawing group (Hammett constant: σm = 0.40 and σp = 0.50), the SCF3 group has been
employed to tune lipophilicity and modify metabolic properties in new drugs [6,7].
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Not surprisingly, many SCF3-containing molecules have been recently synthesized [8,9],
and different synthetic methods have been developed to realize the trifluoromethylth-
iolation of organic compounds, exploiting electrophilic, nucleophilic, or radical trifluo-
romethylthiolating reagents [10–12]. Alternative strategies can be used to accomplish the
stereoselective synthesis of chiral molecules featuring a trifluoromethylthio group: one pos-
sibility is to start from enantiopure, fluorine containing building blocks; alternatively, chiral
reagents or chiral catalysts may be employed to accomplish the enantioselective synthesis
of the target molecule [13–15].

Trifluoromethylthiolated carbonyl derivatives are particularly attractive for their
application in medicinal chemistry and as starting building block for the synthesis of
functionalized molecules. However, stereoselective strategies to synthetize enantioenriched
α-SCF3-substituted carbonyl compounds are still very rare [16].

The first examples of a catalytic enantioselective approach were reported indepen-
dently by Shen [17] and Rueping [18] in 2013. Both groups studied the trifluoromethylthio-
lation of indanone-derived β-keto esters catalyzed by Quinine; however, the methodology
suffers from severe substrate limitations and work only with cyclic five-membered β−keto
esters. Later, Shen published the first chiral trifluoromethylthiolating agent based on
the commercially available (1S)-(-)-N-2,10- camphorsultam scaffold. Stereoselective α-
trifluoromethylthiolation of β-keto esters, oxindoles, and benzofuranones was successfully
achieved in the presence of potassium carbonate as a catalytic base. Excellent results
in terms of yield and enantioselection were achieved, with the major disadvantage re-
lated to the use of a stoichiometric amount of enantiopure sulfenylating reagent [19]. In
2016, Wu and Sun described a reaction based on an enamine catalysis performed on dihy-
drocinnamaldehyde in the presence of Hayashi–Jorgensen’s catalyst [20]. Unfortunately,
although yields are excellent, the system presents low stereochemical efficiency. In 2018,
Wan and co-workers published a diastereo and enantioselective Cu-catalyzed tandem
1,4-addition/trifluoromethylthiolation of acyclic enones [21].

The diastereoselective trifluoromethyltiolation represents a valuable, practical, and effi-
cient alternative to catalytic enantioselective methods. Along these lines, Cahard and cowork-
ers have recently reported the diastereoselective electrophilic trifluoro-methylthiolation of
chiral oxazolidinones [22].

Following our interest in the development of novel synthetic strategies for the prepa-
ration of fluorinated carbonyl derivatives [16,23], we wish to present our studies aimed to
the stereoselective synthesis of α-SCF3-β-ketoesters featuring a quaternary stereocenter.

2. Results and Discussion

In the attempt to develop a catalytic stereoselective α-trifluoromethylthiolation of
carbonyl derivatives we decided to take advantage of recent progress in amino catalysis,
by generating the enamine intermediate in situ starting from a β-keto ester and a catalytic
amount of primary amine in the presence of a sub-stoichiometric quantity of acid. However,
despite several catalytic systems being tested, no product formation was observed, or it
was observed in very low yields only. Amino-Cinchona derivatives and several amino
alcohols, in combination with benzoic acids, acetic, triflic, trifluoroacetic acids among
others, were tested with no success.

Therefore, we turned our attention on the use of the preformed enamine, in order to
evaluate the feasibility of the approach and the reactivity of such intermediates with N-
trifluoromethylthio phthalimide (B) or saccharin (A) as sources of the electrophilic species
SCF3

+ (Scheme 1).
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products could be obtained by simple changing the quench procedure (Scheme 2, eq A). 
When N-hexyl protected enamine was reacted with N-trifluoromethylthio phthalimide B, 
β-keto ester 4 was formed using a 5M aqueous solution of hydrochloric acid, while 
β-iminoester 3a instead could be obtained in 70% yield, when a saturated aqueous solu-
tion of NH4Cl was employed. However, when the reaction was performed in the pres-
ence of N-trifluoromethylthio saccharin (A), even with mild acidic work up, only the 
β-keto ester 4 was obtained, in higher yields (74%, Scheme 2, eq B). 

Scheme 1. Synthetic strategies for α-SCF3 substituted β-imminoesters and β-ketoesters.

Different α-substituted β-keto esters 1A–F were reacted with n-hexylamine or 4-
methoxyaniline to generate enamines 2 which were reacted with N-trifluoromethylthio
phthalimide or saccharin. For the synthesis of achiral enamines 2a-i and their characteriza-
tion see the Supporting Information. In preliminary tests on N-hexyl protected enamine
of ethyl-2-methyl-3-oxobutanoate 2a as model compound, after a deep investigation of
the reaction quench conditions, it was noticed that from the same reaction two different
products could be obtained by simple changing the quench procedure (Scheme 2, eq A).
When N-hexyl protected enamine was reacted with N-trifluoromethylthio phthalimide
B, β-keto ester 4 was formed using a 5M aqueous solution of hydrochloric acid, while
β-iminoester 3a instead could be obtained in 70% yield, when a saturated aqueous solution
of NH4Cl was employed. However, when the reaction was performed in the presence of
N-trifluoromethylthio saccharin (A), even with mild acidic work up, only the β-keto ester
4 was obtained, in higher yields (74%, Scheme 2, eq B).

On the other hand, N-4-methoxyhenyl (PMP)-substituted iminoesters were found to
be more stable, and only the reaction with cerium ammonium nitrate (CAN) was allowed
to remove the aromatic ring to afford the expected β-keto ester. Since it was observed that
reaction usually afforded better yields with N-trifluoromethylthio saccharin (A), that was
selected as reagent of choice in the further studies.

In a typical experimental procedure, the enamine was dissolved in dry DCM (0.1 M)
and the trifluorometyltiolation agent (1.2 eq.) was added. The reaction was stirred at dark
at r.t. for 18 h under static nitrogen atmosphere. After the work up (see Experimental
section), the crude was purified by filtration on an aluminum oxide basic column.

After a mild acidic work up, the reaction of N-PMP substituted enamines 2b–e
afforded the trifluoromethylthio substituted β-iminoesters in good isolated yields; the
methodology could also be applied to lactones (products 3b–e, Scheme 3, eq A).
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Operating with a different experimental procedure, after performing the trifluo-
romethylthiolation, the crude reaction mixture was reacted with Cerium ammonium
nitrate (CAN) to afford directly the β-keto esters 4–9 in overall yields ranging from 43 to
77% (products 4–9, Scheme 3, eq B).

Having demonstrated the chemical efficiency of the methodology, we then investigated
the use of chiral amines to generate enantiopure enamines, in the attempt to develop a
stereoselective synthesis of fluorinated products 4–9, featuring a quaternary stereocenter, by
exploiting the chiral auxiliary approach (Scheme 4). In an exploratory test, the preformed
enamine 10, obtained by the reaction of (S)-1-phenylethanamine with ethyl-2-methyl-3-
oxobutanoate, was reacted in the presence of N-trifluoromethylthio saccharin and afforded
the desired product 4 in 60% yield and modest enantiomeric excess (33% e.e.). When
N-(trifluoromethylthio) phthalimide was employed as a trifluoromethylthiolating agent,
only traces of the desired product were detectable by 19F NMR.

Using ethyl-2-methyl-3-oxobutanoate as a model substrate, other chiral amines were
investigated, including aminoesters, Cinchona derivatives, and symmetric 1,2 diamines,
such as cyclohexane-1,2-diamine, 1,2-diphenyl ethylendiamine, and 2,2′-binaphthyl di-
amine. Different enantiopure enamines 11–13 were prepared, while compounds 14 and
15 were obtained in very low yields and their reactivity could not be investigated. When
enantiopure enamines 11–13 were reacted at room temperature with N-trifluoromethylthio
saccharin, enamine 11 afforded the product in 70% yield but only 15% e.e., while with
enamine 12, product formation was not observed. The best results were obtained with the
C2-symmetric enamine 13 derived from (1S,2S)-trans-1,2-diaminocyclohexane, that gave
β-ketoester 4 in 45% yield and 91% enantioselectivity (Scheme 4). A 24 h reaction time was
found to be the best compromise to reach decent yields in a reasonable time; shorter times
gave very low yields, while for longer reaction times, decomposition of the reagents led to
the formation of byproducts and to a not significant improvement of the yield. We then
decided to use the same chiral auxiliary to investigate the application of the method to
other substrates (Scheme 5).
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While the chiral enamine of β-ketoester 1B could not be isolated as clean product
and its reactivity was not studied, the reaction of enamine 16 derived from β-ketoester 1C
featuring a benzyl group in α position afforded the expected reaction product 6, although in
poor yields and with very low enantioselectivity (33% yield, 21% e.e.). The poor reactivity
and the low enantioselection may be ascribed to the stereoelectronic hindrance of the
benzyl moiety that would probably obstruct the approach of the trifluoromethyltiolation
agent. However, with other ketoesters, featuring an alkyl group in α position, good results
were obtained and stereoselectivities higher than 80% were reached. Indeed, β-ketoesters
7–9 were obtained with modest to fair yields but high enantioselectivities, ranging from 80
to 91% e.e.

In conclusion, although the work represents only a preliminary exploration of the use
of the chiral auxiliary approach to synthetize chiral fluorinated molecules featuring quater-
nary stereocenters, it was demonstrated that by using a readily available, inexpensive chiral
diamine, such as trans-1,2-diaminocyclohexane, the fluorinated products could be obtained
in modest-to-good yields, and, after the removal of the chiral auxiliary, α-substituted- α
trifluoromethylthio-β−ketoesters were isolated with up to 91% enantioselectivity. The
determination of the absolute configuration was attempted, but it was not possible to obtain
solid products for X-ray determination. N-alkyl -imino esters produced in the reactions
with the saccharin-based reagent cannot be purified; therefore it was not possible to isolate
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the products and determine the absolute configuration. Further studies are needed to
clarify this point.
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3. Experimental

NMR spectra: 1H-NMR, 19F-NMR and 13C-NMR spectra were recorded with in-
struments at 300 MHz (Bruker Fourier 300 or AMX 300 (Bruker, Billerica, MA, USA)).
Proton chemical shifts are reported in ppm (δ) with the solvent reference relative to tetram-
ethylsilane (TMS) employed as the internal standard (CDCl3 δ = 7.26 ppm). 13C NMR
spectra were recorded operating at 75 MHz, with complete proton decoupling. Carbon
chemical shifts are reported in ppm (δ) relative to TMS with the respective solvent reso-
nance as the internal standard (CDCl3, δ = 77.0 ppm). 19F NMR spectra were recorded
operating at 282 MHz. Fluorine chemical shifts are reported in ppm (δ) relative to CF3Cl.
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HPLC: For HPLC analyses on chiral stationary phase, to determine enantiomeric
excesses, it was used an Agilent Instrument Series 1100 (Agilent, Santa Clara, CA, USA).
The specific operative conditions for each product are reported from time to time.

Mass spectra: Mass spectra and accurate mass analysis were carried out on a VG
AUTOSPEC- M246 spectrometer (double-focusing magnetic sector instrument with EBE ge-
ometry) equipped with EI source or with LCQ Fleet ion trap mass spectrometer, ESI source,
with acquisition in positive ionization mode in the mass range 50–2000 m/z.

TLC: Reactions and chromatographic purifications were monitored by analytical thin-
layer chromatography (TLC) using silica gel 60 F254 pre-coated glass plates (0.25 mm
thickness) and visualized using UV light, vanillin, or KMnO4.

Chromatographic purification: Purification of the products was performed by column
chromatography with flash technique (according to the Still method) using as stationary
phase silica gel 230–400 mesh (SIGMA ALDRICH) or Aluminium oxide, neutral, Brock-
mann I 50–200 µm 60A previously deactivated with 6% of H2O.

3.1. Materials

Dry solvents were purchased and stored under nitrogen over molecular sieves (bottles
with crown caps).

Commercial grade reagents and solvents were used without further purifications.
Ethyl 2-methylacetoacetate (CAS 609-14-3), Ethyl 2-acetyl-3-phenylpropionate (CAS 620-
79-1), Ethyl 2-oxocyclopentanecarboxylate (CAS 611-10-9), and Ethyl cyclohexanone-2-
carboxylate (CAS 1655-07-8) were purchased by Sigma Aldrich and they were used without
further purifications. AgSCF3 (CAS 811-68-7) was purchased by TCI and it was used
without further purifications.

3.2. Preparation of Chiral Enamines

The β-keto ester (2.8 mmol, 2.2 eq) was dissolved in 12 mL of toluene (0.24 M)
and (1S,2S)-1,2-trans-diaminocyclohexane (1.3 mmol, 1 eq) and p-toluensulfonic acid
(0.13 mmol, 0.1 eq) were added. The reaction mixture was stirred at reflux (110 ◦C) with
Dean-Stark apparatus equipped with molecular sieves for 48 h. After this time, the reaction
mixture was filtered over a plug of celite and washed with AcOEt, then the solvent was
evaporated and the crude was purified by filtration on a silica gel flash column deactivated
with trimethylamine (Figure 2).
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Prepared according to the general procedure. The crude mixture was purified by
column chromatography on silica gel (Hex-EtOAc 8:2+ 2% di NEt3) to afford the desired
product as a pale-yellow oil in 37% yield.
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125.14, 90.51, 58.64, 58.03, 33.59, 32.67, 24.71, 15.37, 14.46 ppm. MS (ESI+) C32H42N2O4:
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product as a pale yellow oil in 88% yield. 
1H-NMR (300 MHz, CDCl3): δ 8.99 (d, J = 9.4 Hz, 2H), 4.05 (qq, J = 10.7, 7.1 Hz, 4H), 3.07 
(m, 2H), 2.38–1.62 (m, 16H), 1.53–1.38 (m, 6H), 1.31 (m 4H), 1.20 (t, J = 7.1 Hz, 6H) ppm. 
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Prepared according to the general procedure. The crude mixture was purified by
column chromatography on silica gel (Hex-EtOAc 8:2+ 2% di NEt3) to afford the desired
product as a yellow solid in 16% yield.
1H-NMR (300 MHz, CDCl3): δ 7.96 (d, J = 9.3 Hz, 2H), 7.56–7.38 (m, 8H), 7.34 (bs, 2H),
4.22 (t, J = 8.0 Hz, 4H), 2.91–2.72 (m, 2H), 2.56 (td, J = 7.6, 2.5 Hz, 4H), 1.76 (d, J = 13.6 Hz,
2H), 1.49 (d, J = 9.4 Hz, 2H), 1.15 (m, 4H), 0.90 (m, 4H) ppm. 13C NMR (75 MHz, CDCl3):
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δ 174.27, 159.38, 134.52, 129.16, 127.74, 87.39, 65.72, 58.07, 34.46, 26.92, 24.31 ppm. MS (EI+)
C28H30N2O4Na: 481.2109 (Calc. 481.2103).

3.2.4. Diethyl 2,2′-((1S,2S)-Cyclohexane-1,2-diylbis(azanediyl))bis(cyclopent-1-enecarboxylate) 18
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Prepared according to the general procedure. The crude mixture was purified by
column chromatography on silica gel (Hex-EtOAc 9:1+ 2% di NEt3) to afford the desired
product as a pale yellow oil in 53% yield.
1H-NMR (300 MHz, CDCl3): δ 7.39 (d, J = 5.9 Hz, 2H), 4.18–3.97 (m, 4H), 2.87 (bs, 2H),
2.52 (dt, J = 15.3, 7.5 Hz, 2H), 2.42–2.26 (m, 6H), 2.05–1.93 (m, 2H), 1.80–1.53 (m, 6H),
1.26 (d, J = 1.5 Hz, 4H), 1.22 (td, J = 7.1, 2.7 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3):
δ 168.76, 164.79, 92.77, 60.43, 58.32, 33.36, 32.37, 28.82, 24.85, 21.14, 14.75 ppm. MS (ESI+)
C22H34N2O4Na: 413.2414 (Calc. 413.2416).
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Prepared according to the general procedure. The crude mixture was purified by 

column chromatography on silica gel (Hex-EtOAc 97:3+ 2% di NEt3) to afford the desired 
product as a pale yellow oil in 88% yield. 
1H-NMR (300 MHz, CDCl3): δ 8.99 (d, J = 9.4 Hz, 2H), 4.05 (qq, J = 10.7, 7.1 Hz, 4H), 3.07 
(m, 2H), 2.38–1.62 (m, 16H), 1.53–1.38 (m, 6H), 1.31 (m 4H), 1.20 (t, J = 7.1 Hz, 6H) ppm. 
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Prepared according to the general procedure. The crude mixture was purified by
column chromatography on silica gel (Hex-EtOAc 97:3+ 2% di NEt3) to afford the desired
product as a pale yellow oil in 88% yield.
1H-NMR (300 MHz, CDCl3): δ 8.99 (d, J = 9.4 Hz, 2H), 4.05 (qq, J = 10.7, 7.1 Hz, 4H), 3.07
(m, 2H), 2.38–1.62 (m, 16H), 1.53–1.38 (m, 6H), 1.31 (m 4H), 1.20 (t, J = 7.1 Hz, 6H) ppm.
13C NMR (75 MHz, CDCl3): δ 171.07, 159.62, 89.24, 58.49, 57.34, 33.58, 26.55, 25.04, 23.92,
22.49, 22.32, 14.67 ppm. MS (ESI+) C24H38N2O4Na: 441.2731 (Calc. 441.2729).

3.3. General Procedure for of α-SCF3 Substituted β-Imino Esters

The achiral enamine (0.14 mmol, 1 eq) was dissolved in 1.4 mL of dry CH2Cl2 (0.1 M)
and the trifluorometyltiolation agent (0.16 mmol, 1.2 eq) was added. The reaction was
stirred at dark at r.t. for 18 h under static nitrogen atmosphere. After this time, the reaction
mixture was quenched with 2 mL × 2 of NH4Cl and extracted with 2 mL × 2 of CH2Cl2:
the combined organic layers were dried over Na2SO4 and concentrated under vacuum.
The crude was purified by filtration on a basic aluminum oxide flash column (Brockmann I
50–200 µm 58Å, Figure 3).
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64.57, 63.01, 55.62, 23.51, 16.08, 14.04 ppm. 19F NMR (282 MHz, CDCl3): δ −37.28 ppm.
MS (ESI+) C15H18NO3F3S: 349.096590 (Calc. Mass 349.095950).

3.3.2. Methyl 3-((4-Methoxyphenyl)imino)-2-methyl-3-phenyl-2-((trifluoromethyl)thio)propanoate 3c

Symmetry 2021, 13, x FOR PEER REVIEW 11 of 16 
 

 

3.3. General Procedure for of α-SCF3 Substituted β-Imino Esters 
The achiral enamine (0.14 mmol, 1 eq) was dissolved in 1.4 mL of dry CH2Cl2 (0.1 M) 

and the trifluorometyltiolation agent (0.16 mmol, 1.2 eq) was added. The reaction was 
stirred at dark at r.t. for 18 h under static nitrogen atmosphere. After this time, the reac-
tion mixture was quenched with 2 mL × 2 of NH4Cl and extracted with 2 mL × 2 of 
CH2Cl2: the combined organic layers were dried over Na2SO4 and concentrated under 
vacuum. The crude was purified by filtration on a basic aluminum oxide flash column 
(Brockmann I 50–200 μm 58+, Figure 3). 

R1
R2

NH
R'

OR3

O

R1

N
R'

OR3

O

R2 SCF3

N
X

O

O

SCF3

A: X= S=O
B: X= C

CH2Cl2, r.t.

dark

 
Figure 3. Synthesis of imino esters. 
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Prepared according to the general procedure. The crude mixture was purified by 
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3.3.2. Methyl 
3-((4-Methoxyphenyl)imino)-2-methyl-3-phenyl-2-((trifluoromethyl)thio)propanoate 3c 

 
Prepared according to the general procedure. The crude mixture was purified by 

column chromatography a basic aluminum oxide flash column (Brockmann I 50–200 μm 
58+) (Hexane-CH2Cl2-Et2O 80:15:5) afford the desired product as a colorless oil in 78% 
yield. 
1H NMR (300 MHz, CDCl3) δ 7.43–7.19 (m, 2H), 7.09–6.95 (m, 2H), 6.65 (d, J = 1.4 Hz, 5H), 
3.81 (s, 3H), 3.71 (s, 3H), 2.00 (s, 3H) ppm. 13C NMR (75 MHz, CDCl3) δ 170.42, 166.10, 
156.97, 141.01, 133.82, 130.73 (q, J = 309.8 Hz), 129.34, 128.64, 128.35, 122.89, 113.82, 64.55, 
55.40, 53.55, 23.91 ppm. 19F NMR (282 MHz, CDCl3) δ −37.68 ppm. MS (ESI+) 
C19H18NO3F3S: 397.095520 (Calc. Mass 397.095950). 

3.3.3. Ethyl 2-Benzyl-3-((4-methoxyphenyl)imino)-2-((trifluoromethyl)thio)butanoate 3d 

Prepared according to the general procedure. The crude mixture was purified by col-
umn chromatography a basic aluminum oxide flash column (Brockmann I 50–200 µm 58Å;)
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166.10, 156.97, 141.01, 133.82, 130.73 (q, J = 309.8 Hz), 129.34, 128.64, 128.35, 122.89, 113.82,
64.55, 55.40, 53.55, 23.91 ppm. 19F NMR (282 MHz, CDCl3) δ −37.68 ppm. MS (ESI+)
C19H18NO3F3S: 397.095520 (Calc. Mass 397.095950).

3.3.3. Ethyl 2-Benzyl-3-((4-methoxyphenyl)imino)-2-((trifluoromethyl)thio)butanoate 3d

Symmetry 2021, 13, x FOR PEER REVIEW 12 of 16 
 

 

 
Prepared according to the general procedure. The crude mixture was purified by 

column chromatography a basic aluminum oxide flash column (Brockmann I 50–200 μm 
58+) (Hexane-CH2Cl2 8:2) to afford the desired product as a colorless oil in 61% yield. 
1H NMR (300 MHz, CDCl3) δ 7.41–7.14 (m, 5H), 6.84 (d, J = 8.8 Hz, 2H), 6.49 (d, J = 8.8 Hz, 
2H), 4.27 (q, J = 7.2 Hz, 2H), 3,79 (s, 3H), 3.79 (d, J = 14.8 Hz, 1H), 3.69 (d, J = 15.1 Hz, 1H), 
1.89 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H) ppm. 13C NMR (75 MHz, CDCl3) δ 169.24, 165.04, 
156.54, 142.46, 135.17, 130.91, 130.44 (q, J = 309.6 Hz) 128.18, 127.47, 120.09, 114.40, 69.55, 
63.06, 55.57, 39.88, 17.38, 13.97 ppm. 19F NMR (282 MHz, CDCl3) δ −37.04 ppm. MS (ESI+) 
C21H22NO3F3S: 425.126790 (Calc. Mass 425.127250). 

3.3.4. 
(E)-3-(((4-Methoxyphenyl)imino)(phenyl)methyl)-3-((trifluoromethyl)thio)dihydrofuran-2(3H)-o
ne 3e 

Ph
N

O

O

F3CS

PMP
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= −36.87 (s, 3F) ppm. MS (ESI+) C19H16NO3F3SH: 396.0877 (Calc. Mass 396.0881). 
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3H), 1.82 (s, 3H), 1.70–1.53 (m, 2H), 1.41–1.21 (m, 9H), 0.94–0.83 (m, 3H) ppm. 13C NMR 
(75 MHz, CDCl3) δ 170.68, 163.34, 130.91 (q, J = 309.1 Hz), 65.06, 62.65, 51.61, 31.76, 30.14, 
29.84, 27.16, 23.28, 22.75, 14.18, 13.98 ppm. 19F NMR (282 MHz, CDCl3) δ −37.77 ppm. MS 
(ESI+) C12H19NOF3S: 282.113910 (Calc. Mass 282.113946). 
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The achiral enamine (0.14 mmol, 1 eq) was dissolved in 1.4 mL of dry CH2Cl2 (0.1 M) 

and the trifluorometyltiolation agent (0.16 mmol, 1.2 eq) was added. The reaction was 
stirred at dark at r.t. for 18 h under static nitrogen atmosphere. After this time, the reac-

Prepared according to the general procedure. The crude mixture was purified by
column chromatography a basic aluminum oxide flash column (Brockmann I 50–200 µm
58Å) (Hexane-CH2Cl2 8:2) to afford the desired product as a colorless oil in 61% yield.
1H NMR (300 MHz, CDCl3) δ 7.41–7.14 (m, 5H), 6.84 (d, J = 8.8 Hz, 2H), 6.49 (d, J = 8.8 Hz, 2H),
4.27 (q, J = 7.2 Hz, 2H), 3,79 (s, 3H), 3.79 (d, J = 14.8 Hz, 1H), 3.69 (d, J = 15.1 Hz, 1H), 1.89
(s, 3H), 1.30 (t, J = 7.1 Hz, 3H) ppm. 13C NMR (75 MHz, CDCl3) δ 169.24, 165.04, 156.54,
142.46, 135.17, 130.91, 130.44 (q, J = 309.6 Hz) 128.18, 127.47, 120.09, 114.40, 69.55, 63.06,
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55.57, 39.88, 17.38, 13.97 ppm. 19F NMR (282 MHz, CDCl3) δ −37.04 ppm. MS (ESI+)
C21H22NO3F3S: 425.126790 (Calc. Mass 425.127250).

3.3.4. (E)-3-(((4-Methoxyphenyl)imino)(phenyl)methyl)-3-((trifluoromethyl)thio)dihydrofuran-
2(3H)-one 3e
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3H), 1.82 (s, 3H), 1.70–1.53 (m, 2H), 1.41–1.21 (m, 9H), 0.94–0.83 (m, 3H) ppm. 13C NMR 
(75 MHz, CDCl3) δ 170.68, 163.34, 130.91 (q, J = 309.1 Hz), 65.06, 62.65, 51.61, 31.76, 30.14, 
29.84, 27.16, 23.28, 22.75, 14.18, 13.98 ppm. 19F NMR (282 MHz, CDCl3) δ −37.77 ppm. MS 
(ESI+) C12H19NOF3S: 282.113910 (Calc. Mass 282.113946). 
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Prepared according to the general procedure. The crude mixture was purified by
column chromatography a basic aluminum oxide flash column (Brockmann I 50–200 µm
58Å) (Hexane-CH2Cl2 8:2) to afford the desired product as a colorless oil in 86% yield.
1H NMR (300 MHz, CDCl3) δ = 7.30 (m, 3H), 7.13 (m, 2H), 6.62 (m, 4H), 4.48 (td, 1H,
J = 8.9Hz, J = 3.3Hz), 4.21 (m, 1H), 3.70 (s, 3H), 3.50 (m, 1H), 3.00 (m, 1H) ppm. 13C NMR
(75 MHz, CDCl3) δ = 172.30, 162.59, 157.00, 140.87, 133.24, 131.03 (q, J = 309.6 Hz), 129.43,
128.72, 128.50, 122.75, 113.76, 66.88, 63.03, 55.28, 34.71 ppm. 19F NMR (282 MHz, CDCl3) δ
= −36.87 (s, 3F) ppm. MS (ESI+) C19H16NO3F3SH: 396.0877 (Calc. Mass 396.0881).
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Prepared according to the general procedure using the N-SCF3 phthalimide as triflu-
orometyltiolation agent. The crude mixture was purified by column chromatography a
basic aluminum oxide flash column (Brockmann I 50–200 µm 58Å) (Pentane-CH2Cl2 8:2)
to afford the desired product as a colorless oil in 70% yield.
1H NMR (300 MHz, CDCl3) δ 4.24 (q, J = 7.1 Hz, 2H), 3.30 (td, J = 7.4, 2.1 Hz, 2H), 1.86 (s,
3H), 1.82 (s, 3H), 1.70–1.53 (m, 2H), 1.41–1.21 (m, 9H), 0.94–0.83 (m, 3H) ppm. 13C NMR
(75 MHz, CDCl3) δ 170.68, 163.34, 130.91 (q, J = 309.1 Hz), 65.06, 62.65, 51.61, 31.76, 30.14,
29.84, 27.16, 23.28, 22.75, 14.18, 13.98 ppm. 19F NMR (282 MHz, CDCl3) δ −37.77 ppm. MS
(ESI+) C12H19NOF3S: 282.113910 (Calc. Mass 282.113946).

3.4. General Non Enantioselective Procedure for α-SCF3 SUBSTITUTED β-Ketoesters

The achiral enamine (0.14 mmol, 1 eq) was dissolved in 1.4 mL of dry CH2Cl2 (0.1 M)
and the trifluorometyltiolation agent (0.16 mmol, 1.2 eq) was added. The reaction was
stirred at dark at r.t. for 18 h under static nitrogen atmosphere. After this time, the reaction
mixture was quenched with 2 mL × 2 of H2O and extracted with 2 mL × 2 of CH2Cl2:
the combined organic layers were dried over Na2SO4 and concentrated under vacuum.
The crude was dissolved in 5.4 mL of acetonitrile (0.025 M), a solution of CAN (4.2 mmol,
3 eq) in 1.5 mL of H2O was added at 0 ◦C, and the stirring was continued at 0 ◦C for
4 h. Then, after this time, the reaction mixture was quenched with 5 mL of H2O and
extracted with 5 mL of CH2Cl2: the combined organic layers were dried over Na2SO4 and
concentrated under vacuum. The crude was purified by filtration on silica gel flash column
(Figure 4).
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1H-NMR (300 MHz, CDCl3): δ 4.31 (q, J = 7.1 Hz, 2H), 2.35 (s, 3H), 1.90 (s, 3H), 1.33 (t, J = 
7.1 Hz, 3H) ppm. 13C NMR (75 MHz, CDCl3): δ 198.17, 167.99, 129.58 (q, J = 308.6 Hz), 
65.76, 63.41, 24.89, 21.52, 13.75 ppm. 19F NMR (282 MHz, CDCl3) δ −36.75 ppm. MS 
(ESI+) C8H11O3F3SNa: 267.0283 (Calc. Mass 267.0279). 
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3.5. General Enantioselective Procedure for Chiral α-SCF3 Substituted β-Ketoesters

The chiral enamine (0.14 mmol, 1 eq), was dissolved in 1.4 mL of dry CH2Cl2 (0.1 M)
and N-trifluoromethylthio saccharin (0.16 mmol, 1.2 eq) was added. The reaction mixture
was stirred at dark at r.t. for 18 h under static nitrogen atmosphere. After this time,
the reaction mixture was quenched with 2 mL × 2 of H2O and extracted with 2 mL × 2
of CH2Cl2: the combined organic layers were dried over Na2SO4 and concentrated under
vacuum. The crude was purified by filtration on silica gel flash column (Figure 5).
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3.5.1. Ethyl 2-Methyl-3-oxo-2-((trifluoromethyl)thio)butanoate 4 

 
Prepared according to the general procedure. The crude mixture was purified by 

column chromatography on silica gel (Hexane-CH2Cl2 7:3) to afford the desired product 
as a colorless oil in 68% yield. 
1H-NMR (300 MHz, CDCl3): δ 4.31 (q, J = 7.1 Hz, 2H), 2.35 (s, 3H), 1.90 (s, 3H), 1.33 (t, J = 
7.1 Hz, 3H) ppm. 13C NMR (75 MHz, CDCl3): δ 198.17, 167.99, 129.58 (q, J = 308.6 Hz), 
65.76, 63.41, 24.89, 21.52, 13.75 ppm. 19F NMR (282 MHz, CDCl3) δ −36.75 ppm. MS 
(ESI+) C8H11O3F3SNa: 267.0283 (Calc. Mass 267.0279). 

3.5.2. Methyl 2-Methyl-3-oxo-3-phenyl-2-((trifluoromethyl)thio)propanoate 5 

Prepared according to the general procedure. The crude mixture was purified by
column chromatography on silica gel (Hexane-CH2Cl2 7:3) to afford the desired product as
a colorless oil in 68% yield.
1H-NMR (300 MHz, CDCl3): δ 4.31 (q, J = 7.1 Hz, 2H), 2.35 (s, 3H), 1.90 (s, 3H), 1.33 (t,
J = 7.1 Hz, 3H) ppm. 13C NMR (75 MHz, CDCl3): δ 198.17, 167.99, 129.58 (q, J = 308.6
Hz), 65.76, 63.41, 24.89, 21.52, 13.75 ppm. 19F NMR (282 MHz, CDCl3) δ −36.75 ppm. MS
(ESI+) C8H11O3F3SNa: 267.0283 (Calc. Mass 267.0279).

3.5.2. Methyl 2-Methyl-3-oxo-3-phenyl-2-((trifluoromethyl)thio)propanoate 5
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Prepared according to the general procedure. The crude mixture was purified by 

column chromatography on silica gel (Hexane-AcOEt 9:1-> 8:2) to afford the desired 
product as a colorless oil in 45% yield. 
1H-NMR (300 MHz, CDCl3): δ 8.31 (d, J = 8.2 Hz, 2H), 7.75–7.53 (m, 1H), 7.47 (t, J = 7.7 Hz, 
2H), 4.55 (td, J = 8.8, 1.8 Hz, 1H), 4.41 (ddd, J = 10.1, 8.9, 5.8 Hz, 1H), 3.62 (dd, J = 13.1, 5.9 
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133.29, 130.73, 129.12 (q, J = 309.6 Hz), 128.37, 68.22, 62.08, 36.88 ppm. 19F NMR (282 MHz, 
CDCl3) δ −37.28 ppm. MS (ESI+) C12H9O3F3SNa: 313.0124 (Calc. Mass 313.0122). 

The enantiomeric excess was determined by HPLC on chiral stationary phase with 
Phenomenex Lux 3 μm Amylose-1 column, eluent Hexane/iPrOH 98-2, flow rate 0.8 
mL/min, pressure: 63 bar λ = 260 nm, τminor 1: 10.195 min, τmajor 2: 10.847 min. 

3.5.5. Ethyl 2-Oxo-1-((trifluoromethyl)thio)cyclopentanecarboxylate 8 

Prepared according to the general procedure. The crude mixture was purified by
column chromatography on silica gel (Hexane-CH2Cl2 7:3) to afford the desired product as
a colorless oil in 68% yield.
1H-NMR (300 MHz, CDCl3): δ 7.92 (d, J = 7.5 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.45 (t,
J = 7.7 Hz, 2H), 3.73 (s, 3H), 2.11 (s, 3H) ppm. 13C NMR (75 MHz, CDCl3): δ 190.76, 170.00,
133.78, 133.23, 129.70 (q, J = 308.8 Hz), 129.07, 128.79, 63.83, 53.91, 24.33 ppm. 19F NMR
(282 MHz, CDCl3) δ −36.70 ppm. MS (EI+) C12H11F3O3SH 293.0463 (Calc. Mass 293.0459).
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