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The calculation of electroweak corrections to processes with jets in the final state involves contributions 
of low-virtuality photons leading to jets in the final state via the singular splitting γ ∗ → qq̄. These 
singularities can be absorbed into a photon-to-jet “fragmentation function”, better called “conversion 
function”, since the physical final state is any hadronic activity rather than an identified hadron. Using 
unitarity and a dispersion relation, we relate this γ ∗ → qq̄ conversion contribution to an integral 
over the imaginary part of the hadronic vacuum polarization and thus to the experimentally known 
quantity �α

(5)

had(M2
Z). Therefore no unknown non-perturbative contribution remains that has to be taken 

from experiment. We also describe practical procedures following subtraction and phase-space-slicing 
approaches for isolating and cancelling the γ ∗ → qq̄ singularities against the photon-to-jet conversion 
function. The production of Z+jet at the LHC is considered as an example, where the photon-to-jet 
conversion is part of a correction of the order α2/αs relative to the leading-order cross section.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The experimental precision for scattering processes at the LHC 
and future colliders requires the inclusion of electroweak (EW) cor-
rections in theoretical predictions. The mixing of EW and QCD cor-
rections gives rise to additional complications. Since in general the 
leading-order (LO) matrix elements receive contributions of differ-
ent orders in the strong and electromagnetic coupling constants, a 
complete tower of NLO corrections appears, as, e.g., discussed for 
several LHC processes in Refs. [1–5]. Moreover, the EW corrections 
to hadron collider processes involve contributions from the pho-
ton content of the proton, which should be calculated with photon 
parton distribution functions (PDFs) based on the LUXqed recipe 
of Refs. [6,7]. The photon PDF absorbs infrared singularities asso-
ciated with virtual photons coupling to initial-state particles. The 
corresponding singularities related to final-state particles can be 
treated by using fragmentation functions [8]. These are required, in 
particular, in processes involving photons and/or jets in the final 
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state, as, e.g., discussed in Refs. [9,10] for W + jet/γ production at 
the LHC and for jet production in e+e− annihilation in Ref. [11].1

Beside their direct production, jets can be initiated by EW 
mechanisms, in particular via splittings of EW gauge bosons V →
f f̄ ′ . For the massive gauge bosons V = W, Z those additional jets 
mostly result from resonant W/Z bosons, i.e. from process classes 
that are not directly related to the “mother process” ab → C + jet
(where C is any multi-particle final state) and can be treated sep-
arately in a fully perturbative manner. On the other hand, most 
mechanisms for gluonic jet production, ab → C + g, have a di-
rect counterpart in photon production, ab → C + γ , which in turn 
leads to jet production via possible splittings γ ∗ → qq̄ one order 
higher in perturbation theory. If the resulting quark- or antiquark-
initiated jets are very close, i.e. nearly collinear, they are merged 
to one jet by the jet algorithm, so that the resulting event topol-
ogy contributes to ab → C + jet. This contribution is infrared sin-
gular in the collinear limit and develops non-perturbative parts, 

1 Alternatively, final-state photons and jets may be isolated by geometrical cuts 
that are designed to attribute infrared-singular contributions to the jets, such as 
so-called Frixione isolation [12].
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since the integration over the virtuality of the intermediate pho-
ton reaches down to the mass scale of the light hadrons (pions 
etc.) which is of the order of �QCD. By virtue of the KLN the-
orem [13] this singularity resulting from real EW corrections to 
ab → C + jet could be cancelled by adding the virtual EW cor-
rections to ab → C + γ production, similar to the infrared-safe 
combination of real and virtual QCD corrections in the overlap 
region of one- and two-jet production. In experimental analyses, 
however, the photon production process is often separated from 
the corresponding jet production process. Hence, the collinear sin-
gularity from the low-virtuality limit in the γ ∗ → qq̄ splitting and 
its accompanying non-perturbative contribution do not cancel in 
cross-section predictions. Proceeding as in the similar case of iden-
tified hadron production, we absorb the singularity and the non-
perturbative contribution into a “fragmentation function” Dγ →jet , 
which is rather called conversion function in the following, because 
a jet is not an identified hadron.

In the context of EW corrections to LHC processes the fragmen-
tation functions of quarks and gluons into photons have been used 
[9–11]. These have been introduced in Ref. [8] and measured by 
the ALEPH experiment in photon-plus-jet production at the Z pole 
[14]. Later, the issue of describing the separation of photons and 
jets in high-energy collisions via fragmentation functions and their 
connection to EW corrections was briefly outlined in Ref. [2] in the 
context of the calculation of EW NLO corrections to hadronic di-
jet production. Here, photon jets are defined as usual using the 
photon fragmentation functions Di→γ . Then, using the hadron-
parton-duality unitarity condition, hadronic jets are defined as jets 
that are not photon jets in accordance with the procedure used in 
Ref. [9].

The photon-to-jet conversion function Dγ →jet has not received 
much attention in the literature so far, since its effect, being of EW 
origin, is quite small. Counting the mother process ab → C + g as 
O(1), the contribution involving Dγ →jet is suppressed by the cou-
pling factor α2/αs. Nevertheless, this contribution might compete 
in size with next-to-next-to-leading-order (NNLO) QCD or next-
to-leading-order (NLO) EW corrections, which involve the relative 
coupling factors α2

s and α, respectively. The simplest hadronic 
processes that get contributions from Dγ →jet are photon-plus-jet 
and Z-plus-jet production. More complicated processes that require 
such contributions are dijet production, dijet production in associ-
ation with a vector boson, and vector-boson scattering (VBS). For 
the last process the contribution of Dγ →jet is actually an O(αs)

correction to the EW VBS process, while it is still of O(α2/αs)

relative to the LO contribution to vector-boson-pair + 2 jet pro-
duction via strong interactions. In Ref. [5], the NLO QCD and EW 
corrections to WZ scattering at the LHC, i.e. to the EW channel 
in pp → 3�ν + 2 jets + X , were calculated, treating the collinear 
γ ∗ → qq̄ contribution with the method described in this paper.

A lepton collider offers better possibilities to measure the 
photon-to-jet conversion function. In photon-plus-jet production 
away from the Z resonance peak both the quark-to-photon frag-
mentation function and the photon-to-jet conversion function con-
tribute at LO. At LEP this process has only been investigated on the 
Z pole, where the contribution of Dγ →jet is strongly suppressed. 
Another possibility is offered by Z-boson-plus-jet production at 
lepton colliders which receives its leading SM contribution exclu-
sively from the photon-to-jet conversion function and might be 
suited for a measurement thereof. This study could be ideally car-
ried out at some future e+e− collider with high luminosity above 
the Z resonance.

This paper is organized as follows: In Section 2 we calculate 
the contribution of low-virtuality photon transitions to fermions 
in perturbation theory. In Section 3 we use a dispersion relation 
to express the non-perturbative contribution to the photon-to-jet 
Fig. 1. Generic diagram for the γ ∗ → f f̄ splitting contribution to the cross section 
for the process ab → C + jet.

transition by the hadronic vacuum polarization. This result is used 
in Section 4 to derive an approximate result for the photon-to-jet 
conversion function. In Section 5 we provide an illustrative numer-
ical application of the photon-to-jet conversion function for Z+jet 
production at the LHC. Our conclusions are presented in Section 6.

2. Low-virtuality photon transitions γ ∗ → f f̄ —perturbative 
calculation

In perturbative calculations of scattering matrix elements, con-
tributions appear where a virtual photon splits into a fermion–
antifermion pair. If the virtuality of the photon becomes small this 
gives rise to large or singular contributions that require a dedicated 
treatment. Fig. 1 illustrates the leading-order (LO) γ ∗ → f f̄ split-
ting contribution to the cross section for the process ab → C + jet. 
The definition of the (anti)fermion and photon four-momenta p f , 
p f̄ , and k = (p f + p f̄ ) can also be found there. In the phase-space 
region of low photon virtuality k2, the contribution to the squared 
matrix element |Mab→C f f̄ (p f , p f̄ )|2 asymptotically factorizes into 
the squared matrix element |Mab→Cγ (k̃)|2 for a real photon and 
a radiator function describing the asymptotic behaviour for k2 → 0
(see, e.g., Ref. [15]). Fully differentially, spin correlations between 
the photon and the f f̄ state build up. But after averaging the split-
ting process over the azimuthal angle φ f around the collinear axis 
�k, the factorization takes the simple form

〈|Mab→C f f̄ (p f , p f̄ )|2〉φ f

˜k2→0 Nc, f Q 2
f e2 h f f̄ (p f , p f̄ ) |Mab→Cγ (k̃)|2, (2.1)

where

h f f̄ (p f , p f̄ ) = 2

(p f + p f̄ )
2

×
[

1 − 2

1 − ε

(
z(1 − z) − m2

f

(p f + p f̄ )
2

)]
(2.2)

and Nc, f is the colour multiplicity of fermion f , i.e. Nc,lepton = 1
and Nc,quark = 3. In this asymptotic limit, the virtuality k2 is of the 
same order as the square of the light-fermion mass m f , which is 
assumed to be much smaller than any relevant scale of the process. 
For heavy fermions, the splitting is not enhanced by a singularity 
since (p f + p f̄ )

2 > 4m2
f . In (2.2), both the deviation ε = (4 − D)/2

of the number D from the four space–time dimensions and the 
non-vanishing fermion mass m f are kept. Results in dimensional 
regularization (DR) for massless fermions or in mass regularization 
(MR) in four dimensions can be obtained upon setting m f = 0 or 
ε = 0, respectively. The energy ratio

z = p0
f
0

(2.3)

k
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controls how the photon momentum k is shared between f and 
f̄ in the collinear limit, and the modified photon momentum k̃ is 
the on-shell limit (k̃2 = 0) reached by k = p f + p f̄ for k2 → 0 in 
DR or k2 → 4m2

f in MR, where m f serves just as a regularization 
parameter.

In Ref. [15], both dipole subtraction functions and the cross-
section contributions in phase-space slicing (defined by a small cut 
�θ on the opening angle between f and f̄ ) were derived, using 
the phase-space factorization described in Sects. 5.1.1 and 5.2.1 of 
Ref. [16]. Using the same techniques, it is straightforward to derive 
the (perturbative) cross-section contribution of the low-virtuality 
phase-space region defined by the cut

4m2
f < k2 < �s (2.4)

on the f f̄ invariant mass k2, which is bounded from below by 
the mass threshold for f f̄ production. The cut parameter �s is 
smaller than any relevant energy scale Q 2 � �s of the mother 
process, but �s � 4m2

f in the case of mass regularization, where 
m f plays merely the role of a regulator. The result for the phase-
space integral of the squared matrix element is∫

k2<�s

d�C f f̄ |Mab→C f f̄ (�C f f̄ )|2 (2.5)

= Nc, f

Q 2
f α

2π

∫
d�̃Cγ |Mab→Cγ (k̃)|2

×
1∫

0

dz cut

(
p f = zk̃, p f̄ = (1 − z)k̃

)
H f f̄ (�s, z),

which is valid up to terms that are suppressed by the factor 
�s/Q 2 	 1. For DR and MR the functions H f f̄ are given by

HDR
f f̄

(�s, z) = −P f γ (z)
(4π)ε

�(1 − ε)

[
1

ε
+ ln

(
μ2

�sz(1 − z)

)]
+ 2z(1 − z), (2.6)

HMR
f f̄

(�s, z) = −P f γ (z) ln

(
m2

f

�sz(1 − z)

)
+ 2z(1 − z), (2.7)

with the γ → f f̄ splitting function

P f γ (z) = (1 − z)2 + z2 (2.8)

and μ denoting the reference mass scale of DR. The step function 
cut is equal to 1 if an event passes all cuts on the momenta p f

and p f̄ , and 0 otherwise. If the complete z range is integrated over, 
we obtain∫

k2<�s

d�C f f̄ |Mab→C f f̄ (�C f f̄ )|2

= Nc, f

Q 2
f α

2π

∫
d�̃Cγ |Mab→Cγ (k̃)|2 H f f̄ (�s), (2.9)

with

HDR
f f̄

(�s) = −2

3

(4π)ε

�(1 − ε)

[
1

ε
+ ln

(
μ2

�s

)]
− 10

9
, (2.10)

HMR
f f̄

(�s) = −2

3
ln

(
m2

f

�s

)
− 10

9
. (2.11)
As a technical remark, we note that this collinear singularity 
(which does not overlap with a soft singularity) obeys the sim-
ple correspondence (4πμ2)ε/[ε�(1 − ε)] ↔ ln(m2

f ) between the 
singular terms in DR and MR.

The result of this section can be used to include the low-
virtuality region in a full phase-space integration perturbatively 
as in any phase-space slicing approach. Then, the analytical de-
pendence of the low-virtuality contribution (2.9) on the small cut 
parameter �s is cancelled by the implicit dependence of the re-
maining phase-space integral on �s, which emerges in the numer-
ical integration, which can be performed for ε = 0 and m f = 0.

3. Low-virtuality photon transitions γ ∗ → f f̄ —calculation via 
dispersion relation

The result of the previous section cannot be used directly to 
evaluate the low-virtuality contribution to the ab → C f f̄ cross sec-
tion if f corresponds to quarks. For low virtualities the hadronic 
contributions cannot be calculated within perturbation theory as 
signalled by the logarithmic quark-mass dependence in MR. The 
low-virtuality contribution to the integral 

∫
d�C f f̄ |Mab→C f f̄ |2

can, however, be evaluated via a dispersion relation and eventu-
ally related to the running electromagnetic coupling α(Q 2), which 
is known from low-energy data on e+e− → f f̄ , including in par-
ticular the case where the f f̄ states refer to hadrons.

The starting point of this procedure is to rewrite the asymptotic 
formula for the squared matrix element in the form

〈|Mab→C f f̄ (p f , p f̄ )|2〉φ f

˜k2→0 |Mab→Cγ (k̃)|2 × 〈|Mγ ∗→ f f̄ (k
2)|2〉

(k2)2
, (3.1)

where the azimuthal average on the l.h.s. can be traded for a pho-
ton spin sum and average in |Mab→Cγ |2 and 〈|Mγ ∗→ f f̄ |2〉 on 
the r.h.s., respectively. Note that the spin-averaged squared matrix 
element 〈|Mγ ∗→ f f̄ |2〉 depends only on the virtuality k2 and on 
the splitting variable z, but not on the full momenta p f and p f̄
anymore. Taking into account a phase-space factorization over the 
virtuality k2, we get∫

k2<�s

d�C f f̄ |Mab→C f f̄ (p f , p f̄ )|2

˜k2→0

∫
d�̃Cγ |Mab→Cγ (k̃)|2 × F f (�s) (3.2)

with

F f (�s) =
∫

k2<�s

dk2

2π(k2)2

∫
d� f f̄ 〈|Mγ ∗→ f f̄ (k

2)|2〉. (3.3)

The phase-space integral over the squared γ ∗ → f f̄ off-shell ma-
trix element is related to the imaginary part of the transverse part 
of the photon self-energy, �γγ

T, f (k
2), via well-known cut equations,∫

d� f f̄ 〈|Mγ ∗→ f f̄ (k
2)|2〉 = 2 Im{�γγ

T, f (k
2)}, (3.4)

where the subscript f in �
γγ
T, f indicates that only cuts through 

“ f -loops” (intermediate states involving the fermion flavour f ) are 
taken into account. Thus, we get

F f (�s) = 1

π

∫
′

ds′ Im{�γγ
T, f (s′)}
s′2 . (3.5)
s <�s
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Since �γγ
T, f (s)/s is an analytic function in the complex s plane apart 

from the positive real axis, real and imaginary parts are related by 
the dispersion relation

Re{�γγ
T, f (s)} − s�′γ γ

T, f (0)

s2
= 1

π
Re

∞∫
4m2

π

ds′ Im{�γγ
T, f (s′)}

s′2(s′ − s − i0)
, (3.6)

where �′γ γ
T, f (0) = d�

γγ
T, f (s)/ds|s=0 is a real quantity. Note that we 

have used �γγ
T, f (0) = 0 because of electromagnetic gauge invari-

ance and the fact that Im{�γγ
T, f (s)} vanishes for s values below the 

lightest hadronic threshold (s < 4m2
π , mπ = pion mass) because of 

causality. The running electromagnetic coupling

α(s) = α(0)

1 − �α(s)
, �α(s) =

∑
f

�α f (s), (3.7)

comes into play via its relation to the real part of �γγ
T, f (see, e.g., 

Ref. [17]),

�α f (s) = �
′γ γ
T, f (0) − Re{�γγ

T, f (s)}
s

. (3.8)

Note that up to this point all arguments hold to any order (only the 
identification of contributions by a flavour f would deserve clarifi-
cation beyond NLO). In the following we restrict the analysis, how-
ever, to NLO contributions in the self-energy, which corresponds to 
the LO splitting contribution. The quantity �αhad = ∑

q �αq is ex-
tracted [17,18] (see also references therein) from low-energy data 
on the ratio R = σ(e+e− → hadrons)/σ (e+e− → μ+μ−) and will 
be used to evaluate Fhad(�s) = ∑

q Fq(�s). To this end, we choose 
s = M2

Z � �s, for which �αhad(s) is quoted in the literature, 
and split the dispersion integral of (3.6) into a non-perturbative 
(4m2

π < s′ < �s) and a perturbative part (�s < s′ < ∞),

�α f (M2
Z) = − M2

Z

π

�s∫
4m2

π

ds′ Im{�γγ
T, f (s′)}

s′2(s′ − M2
Z)

− M2
Z

π
Re

∞∫
�s

ds′ Im{�γγ
T, f (s′)}

s′2(s′ − M2
Z − i0)

= 1

π

�s∫
4m2

π

ds′ Im{�γγ
T, f (s′)}
s′2 − Nc, f

Q 2
f α

3π
ln

(
�s

M2
Z

)
+ . . . ,

(3.9)

where the non-perturbative part is accurate up to power correc-
tions of O(M2

had/M2
Z) with hadron masses Mhad

<∼5 GeV and the 
perturbative part up to two-loop corrections. Thus, we get for 
Q 2 � �s � 4m2

f the approximation

F f (�s) = �α f (M2
Z) + Nc, f

Q 2
f α

3π
ln

(
�s

M2
Z

)
. (3.10)

Summing over the light quarks (u, d, s, c, b), this yields the 
hadronic contribution

Fhad(�s) = �α
(5)

had(M2
Z) +

∑
q

Q 2
q α

π
ln

(
�s

M2
Z

)
, (3.11)

where the superscript in �α
(5)

had(M2
Z) refers to five active light 

quark flavours. This is certainly sufficient to evaluate the O(α2/αs)
corrections induced by the transitions γ ∗ → hadrons at low pho-
ton virtualities to any jet production cross section at the LHC. 
A recent fit to data [18] gives the result

�α
(5)

had(M2
Z) = (276.11 ± 1.11) × 10−4. (3.12)

To make contact with the fully perturbative calculation of the 
previous section, we recall the perturbative NLO expression for 
�α f (s) in MR,

�α f (s) = Nc, f

Q 2
f α

3π

[
ln

(
|s|
m2

f

)
− 5

3

]
, (3.13)

which leads to the perturbative result for F f (�s),

F pert,MR
f (�s) = Nc, f

Q 2
f α

3π

[
ln

(
�s

m2
f

)
− 5

3

]

= Nc, f

Q 2
f α

2π
HMR

f f̄
(�s), (3.14)

in agreement with the result (2.11) of the previous section. The 
corresponding result in DR obviously reads

F pert,DR
f (�s) = Nc, f

Q 2
f α

3π

[
(4π)ε

�(1 − ε)

(
−1

ε
+ ln

(
�s

μ2

))
− 5

3

]
= Nc, f

Q 2
f α

2π
HDR

f f̄
(�s). (3.15)

We conclude this section by a side comment on the cancella-
tion of the considered singularities as a consequence of the KLN 
theorem if photons are considered democratically [8] as possible 
initiators of jets just like any QCD parton. In this case, the cross 
section for ab → C + γ becomes part of the ab → C + jet cross 
section. Adding the contribution from the γ ∗ → f f̄ splitting to 
the NLO EW cross section for ab → C + γ , adds the contribu-
tion �α(Q 2) to the relative EW corrections to this process, where 
Q 2 is some high scale typical for the process (such as M2

Z). Since 
�α(Q 2) involves perturbatively ill-defined mass logarithms of the 
light quarks, the EW input parameter scheme should be chosen in 
such a way that those quark-mass logarithms cancel in the EW cor-
rection. If the electromagnetic coupling factor α originating from 
the outgoing on-shell photon is taken as the fine-structure con-
stant α(0) (α(0) scheme), the quark-mass logarithms in the charge 
renormalization constant and in the photon wave-function renor-
malization constant cancel, so that the additional logarithms in 
�α(Q 2) stemming from the photon conversion would remain. If, 
however, the respective factor α is effectively taken at some high 
scale, as, e.g., in the α(M2

Z) or Gμ schemes [19–21], the �α(Q 2)

contribution from the photon conversion cancels. In other words, 
adding the γ ∗ → f f̄ splitting contribution to the EW correction 
to the process ab → C + γ effectively replaces the coupling fac-
tor α(0) for the emitted photon by α(Q 2) for some high scale like 
Q 2 = M2

Z .

4. The photon-to-jet conversion function Dγ →jet

The common treatment of singular splitting processes as-
sociated with the final state, in which perturbative and non-
perturbative contributions to cross sections arise, makes use of 
the concept of fragmentation functions. In the case of the splitting 
γ ∗ → qq̄ at low photon virtualities, this means that the NLO cross 
section for ab → Cqq̄ receives a perturbative (pert) contribution, as 
calculated above, and a conversion (conv) contribution,
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∑
q

dσab→Cqq̄(k
2 < �s) =

∑
q

dσ
pert
ab→Cqq̄(k

2 < �s) + dσ conv
ab→C+jet,

(4.1)

where

dσ
pert
ab→Cqq̄(k

2 < �s) = dσ LO
ab→Cγ F pert

q (�s),

dσ conv
ab→C+jet = dσ LO

ab→Cγ

1∫
0

dz Dbare
γ →jet(z), (4.2)

and F pert
q refers to F DR

q (3.15) or F MR
q (3.14) for f = q. Here 

Dbare
γ →jet(z) is the “bare” γ → jet conversion function, which de-

pends on the variable z describing the fraction of the photon mo-
mentum k̃ transferred to one of the jets (pjet = zk̃). The bare con-
version function contains singular contributions so that the sum 
in (4.1) is non-singular. Extracting the singular contribution from 
Dbare

γ →jet(z) at some factorization scale μF requires a “factorization 
scheme”, for which we take the MS scheme following common 
practice,

Dbare,DR
γ →jet (z) = Dγ →jet(z,μF)

+
∑

q

Nc,q
Q 2

q α

2π

1

ε

(
4πμ2

μ2
F

)ε
1

�(1 − ε)
P f γ (z),

(4.3)

Dbare,MR
γ →jet (z) = Dγ →jet(z,μF) +

∑
q

Nc,q
Q 2

q α

2π
ln

(
m2

q

μ2
F

)
P f γ (z).

(4.4)

In DR, it is just the 1/ε pole with the usual prefactors that is sub-
tracted; in MR we have adjusted the finite contributions accompa-
nying the singular part (∝ α lnmq) to define the same “renormal-
ized conversion function” Dγ →jet(z, μF) as in DR. To get a handle 
on the non-perturbative contributions to Dγ →jet(z, μF), it would 
be desirable to exploit empirical information. This would, how-
ever, require an extremely accurate differential measurement of 
a jet production cross section (with low jet invariant mass) and 
of its corresponding prompt-photon counterpart, i.e. experimen-
tal information that is not available at present. We can, however, 
make use of the results of the previous section to at least get non-
perturbative information on Dγ →jet(z, μF) for the case where the 
full z range is integrated over. Comparison of (3.2) with (4.1)–(4.2)
leads to the identification

Fhad(�s) =
∑

q

F pert
q (�s) +

1∫
0

dz Dbare
γ →jet(z). (4.5)

Taking the perturbative result for the conversion function either in 
DR (4.3) or MR (4.4), and using (3.11) and (3.14) or (3.15) for the 
integrated renormalized conversion function, we get

1∫
0

dz Dγ →jet(z,μF)

= �α
(5)

had(M2
Z) +

∑
q

Nc,q
Q 2

q α

3π

[
ln

(
μ2

F

M2
Z

)
+ 5

3

]
. (4.6)

Note that this z-integral of Dγ →jet is sufficient to evaluate the 
cross-section contribution dσ conv of (4.2) with (4.3) or (4.4).
ab→C+jet
The z-dependence of Dγ →jet is not provided by the approach 
employed in this paper, but would require a model for the 
hadronization of the low-virtuality photon into jets. At least we 
can make the following statement on the z-dependence of the 
conversion function,

Dγ →jet(z,μF)

= �α
(5)

had(M2
Z) +

∑
q

Nc,q
Q 2

q α

2π

[
ln

(
μ2

F

M2
Z

)
+ 5

3

]
P f γ (z)

+ g(z), (4.7)

with g(z) denoting a function that integrates to 0 = ∫ 1
0 dz g(z). To 

reproduce the correct integral over z and thus the correct cross-
section contribution, we can simply set g(z) ≡ 0,

Dγ →jet(z,μF)

= �α
(5)

had(M2
Z) +

∑
q

Nc,q
Q 2

q α

2π

[
ln

(
μ2

F

M2
Z

)
+ 5

3

]
P f γ (z), (4.8)

in which the non-perturbative z-dependence is approximated by a 
constant reproducing the correct z-integral.

An example for the use of Dγ →jet in some cross-section predic-
tion for the LHC is discussed in the next section.

5. An example: photon-to-jet conversion function 
in pp → �+�− + jet + X

In this section we focus on the application of the above formal-
ism to pp → �+�−j + X . We consider the leading-order (LO) cross 
section at order O

(
αsα

2
)
. The contributions featuring the con-

version function are part of the corresponding real radiation pro-
cess pp → �+�−jj + X at order O

(
α4

)
where all QCD partons are 

quarks. Some representative Feynman diagrams for this channel 
are shown in Fig. 2. While the two quark–quark-induced t-channel 
diagrams on the left of Fig. 2 dominate the O

(
α4

)
contributions, 

the conversion function only shows up in quark–antiquark-induced 
s-channel diagrams such as the third diagram of Fig. 2. Moreover, 
there are channels with no photon-to-quark conversion at all, as 
shown in the last diagram of Fig. 2.

The numerical study is carried out in the set-up of Ref. [22], 
where the EW corrections of order O

(
αsα

3
)

were computed. We 
first reproduce the input parameters and the event selection for 
completeness and then turn to numerical results.

The simulations are performed for the LHC at 14 TeV with the 
SM input parameters chosen as

Gμ = 1.16637 × 10−5 GeV−2, αs(MZ) = 0.1202,

MOS
W = 80.398 GeV, �OS

W = 2.141 GeV,

MOS
Z = 91.1876 GeV, �OS

Z = 2.4952 GeV. (5.1)

Leptons are considered massless.
Throughout the article, the complex-mass scheme [23] is used 

along with the Gμ scheme for α. The on-shell (OS) widths and 
masses of the W and Z bosons are converted into pole values using 
[24]

MV = MOS
V /

√
1 + (�OS

V /MOS
V )2,

�V = �OS
V /

√
1 + (�OS

V /MOS
V )2,

(5.2)

leading to the input values
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Fig. 2. Some representative Feynman diagrams for qq → �+�−qq.

Fig. 3. Differential distributions for LO [order O (
αsα

2
)
] and corrections of order O (

α4
)

from pp → �+�−jj + X at the 14 TeV LHC in the transverse momentum of the 
antilepton (left) and of the hardest jet (right). The upper panels display the absolute predictions, while the lower panels show the relative corrections of order α4 and its 
contribution from the photon conversion function.
 

MW = 80.370 . . . GeV, �W = 2.1402 . . . GeV,

MZ = 91.153 . . . GeV, �Z = 2.4943 . . . GeV. (5.3)

The MSTW2008NLO PDF set [25] is used as provided by LHAPDF 
[26], while the factorization and renormalization scales are set to 
the Z-boson mass.

The recombination of QCD partons is done with the kT-algorithm
with R = 0.5. The event selection for the numerical analysis is de-
fined as:

1. Jets are required to have transverse momentum pT larger than 
pcut

T,jet = 25 GeV. At least one of them (not necessarily the hard-
est jet) is required to have rapidity y smaller than ymax = 2.5.

2. The event must have two charged leptons of opposite sign 
with transverse momenta pT,� > 25 GeV and rapidity y� < 2.5.

3. The dilepton invariant mass is required to fulfil M�� > 50 GeV.
4. The leptons must be isolated, i.e. R�jet > 0.5 is required for all 

jets.

For the simulations, we consider only one lepton family. In 
Table 1, we report on the integrated cross section defined in the 
fiducial region specified above. The relative corrections of order 
O

(
α2/αs

)
are about half a per cent. For reference, the EW correc-

tions have been found in Ref. [22] to amount to a few per cent 
and the photon-induced contributions at order O

(
α3

)
to be at 

the level of 0.1%. The present findings are in agreement with ex-
pectations based on naive power counting of couplings combined 
with the fact that the O

(
α4

)
contributions receive some enhance-

ment owing t-channel diagrams in quark–quark channels where 
one of the quarks goes into the forward direction (see left two di-
agrams in Fig. 2). The contribution of the conversion function is 
only 0.013%. Besides the suppression of this contribution by the 
Table 1
Cross sections at LO [order αsα

2] and corrections of order α4 from the real radi-
ation process pp → �+�−jj + X at the 14 TeV LHC. The contribution δα4

conv of the 
conversion function is separately shown for a factorization scale μF = MZ. The dig-
its in parentheses indicate the integration error.

σαsα
2

[pb] σα4
[pb] δα4

[%] δα4

conv [%]

122.414(7) 0.77116(5) 0.63 0.013%

factor α2/αs there is an additional suppression due to the fact 
that it only features partonic channels with quark–antiquark ini-
tial states (see third diagram in Fig. 2).

In Fig. 3, the differential distributions in the transverse momen-
tum of the antilepton and the, according to pT ordering, hardest 
jet are presented. The corrections δα4

to the transverse momen-
tum of the antilepton increase rather smoothly from nearly 0% at 
the minimum transverse momentum of 25 GeV up to about 5% at 
1 TeV. For the transverse momentum of the hardest jet, the cor-
rections increase more strongly and reach more than 10% at 1 TeV. 
This general trend can be explained by the behaviour of the PDFs 
of the dominant channels. While the LO contributions [order αsα

2] 
are dominated by partonic channels with gluons and quarks in the 
initial state, the contributions of the order α4 involve channels 
with two valence quarks in the initial state. The decrease of the 
gluon PDFs with increasing momentum fraction x (required by in-
creasing scattering energy) causes an enhancement of the relative 
corrections. The contribution δα4

conv of the conversion function de-
fined in Eqs. (4.2) and (4.8) with μF = MZ is below 0.05% for all 
considered distributions.
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6. Conclusion

The calculation of electroweak corrections to processes with 
jets in the final state involves contributions of low-virtuality pho-
tons leading to jets in the final state. Such contributions are typi-
cally small but contain infrared singularities, calling for a practical 
prescription for their treatment. These singularities can be ab-
sorbed into the photon-to-jet conversion function, which is similar 
to a fragmentation function for identified hadrons. In this letter, we 
have used the well-known hadronic contributions to the vacuum 
polarization to derive an approximative expression for the photon-
to-jet conversion function. We have illustrated how this can be 
used in a practical calculation of electroweak corrections to Z+jet 
production at the LHC.

The effect of the photon-to-jet conversion function is typically 
small for processes at hadron colliders. Therefore, our recipe is cer-
tainly sufficient for the consistent calculation of electroweak cor-
rections to processes at the LHC and the next generation of hadron 
colliders.

A measurement of the photon-to-jet conversion function might 
be possible at future high-luminosity lepton colliders in photon-
plus-jet or Z-boson-plus-jet production above the Z-boson reso-
nance.
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