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Abstract

This manuscript is dedicated to the analysis of the application of stochastic bandits to the
recommender systems domain. Here a learning agent sequentially recommends one item
from a catalog of available alternatives. Consequently, the environment returns a reward
that is a noisy observation of the rating associated to the suggested item. The peculiarity of
the bandit setting is that no information is given about not recommended products, and the
collected rewards are the only information available to the learning agent. By relying on them
the learner adapts his strategy towards reaching its learning objective, that is, maximizing the
cumulative reward collected over all the interactions.

In this dissertation we cover the investigation of two main research directions: the devel-
opment of efficient learning algorithms and the introduction of a more realistic learning
setting. In addressing the former objective we propose two approaches to speedup the
learning process. The first solution aims to reduce the computational costs associated to the
learning procedure, while the second’s goal is to boost the learning phase by relying on data
corresponding to terminated recommendation sessions. Regarding the latter research line, we
propose a novel setting representing use-cases that do not fit in the standard bandit model.



Estratto

Questo manoscritto ¢ dedicato all’analisi dell’applicazione dei banditi stocastici ai sistemi di
raccomandazione. Qui un apprenditore raccomanda in maniera sequenziale un oggetto es-
tratto da un catalogo contenente varie alternative. Di conseguenza, I’ambiente restituisce una
ricompensa definita come un’osservazione rumorosa della valutazione attribuita all’oggetto
suggerito. La particolarita dell’ambiente bandits ¢ che non si ha alcuna informazione relativa
agli oggetti non raccomandati, e le ricompense raccolte sono le uniche informazioni disponi-
bili all’apprenditore. Facendo affidamento su di esse, I’apprenditore adatta la sua strategia col
fine di soddisfare la propria funzione obiettivo, ovvero la massimizzazione della ricompensa
cumulativa raccolta su tutte le interazioni. In questa dissertazione trattiamo 1’indagine di
due direzioni di ricerca principali: lo sviluppo di algoritmi di apprendimento efficienti e
I’introduzione di un ambiente di apprendimento piu realistico. Nell’affrontare il primo
obiettivo proponiamo due approcci per accelerare il processo di apprendimento. La prima
soluzione mira a ridurre i1 costi computazionali associati alla procedura di apprendimento,
mentre I’obiettivo della seconda proposta ¢ quello di potenziare la fase di apprendimento
facendo affidamento sui dati corrispondenti alle sessioni di raccomandazione precedenti.
Infine, proponiamo e analizziamo un nuovo modello di apprendimento che rappresenta casi
d’uso non inclusi nel modello classico dei banditi stocastici.
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Chapter 1

Introduction

Overview of the Studied Problems. This manuscript is dedicated to the theoretical anal-
ysis of efficient and effective solutions to the sequential recommendation problem. With
the wide-spreading of the World-Wide-Web, people around the world are spending more
and more time surfing the internet and looking for new and personalized content. This
process produces large amount of data regarding the users (such as location, date, gender,
age etc.) and at the same time provides feedback to the services providers regarding their
recommendations. The high frequency of interactions has caused traditional batch recom-
mendation systems to be unsuitable to this highly-interactive scenario. Indeed, the considered
recommendation problem becomes how to leverage past feedback and user side information,
to decide what to (quickly) recommend to get the customer satisfied. Formally, we represent
the user as a stochastic agent who samples item ratings from a stochastic function which is
parameterized by the recommended products and represents the customer preferences. The
learner’s objective is to maximize the cumulative reward collected during the whole user
navigation by matching his interests. In order to achieve this goal at each new choice the
learner can only rely on the information collected during the past interactions. This lack of
information arises a trade-off, at each new choice the learner can either exploit its estimates
and take what he thinks to be the best available recommendation, or explore potentially
suboptimal products in order to acquire more information on the customer (environment).

Theoretical Settings. Multi-armed bandits are the most used way to formalize the de-
scribed learning problem and to analyze the trade-off between following an optimality
criteria and gaining more information on the environment. Throughot this dissertation we
will focus on two well known bandit settings: the stochastic bandit and the stochastic linear
bandit frameworks. In the former case we assume the available items (arms) are adimensional
and their ratings (value) are sampled from unknown distributions which they are associated
to. In the latter scenario, we assume the arms to be d-dimensional vectors representing
their features and their value are given by a (unknown) linear regression of the arm features
representing the user preference. In both cases, the learning objective is to learn the customer
tastes while minimizing the regret incurred by making recommendation which do not match
his interests. In Chapter 2 we formally define the stochastic bandit and the linear stochastic
bandit settings along with their most popular learning algorithms.

9



Contributions In this dissertation we tackle three main complexities in the literature of
the sequential recommendation problem that suggest that standard bandit algorithms are not
an optimal solution to the considered problem.

Firstly, the biggest limitation affecting both standard (adimensional) and linear stochastic
bandits is that ratings are assumed to be invariant to the provided recommendations. Indeed,
if we consider the ideal case where the learning agent knows the user preference beforehand,
than it would be natural to let it always recommend the most liked product. Even if this may
be a winning strategy in the short term, it overlooks the user’s preferences which in fact are
not static. For instance, the user may get bored of receiving the same recommendation over
and over. Starting from these motivations, in Chapter 3 we introduce a novel non-stationary
bandit setting. There, the payoff of an arm is not static anymore and grows with the time since
the arm was last played. We also show that the optimal policy do no stick recommending the
best arm but rather varies its recommendations following unknown combinatorial patterns.
Moving to the stochastic linear bandit setting, firstly we observe that while their most popular
algorithm exhibit good theoretical and empirical performances, they require potentially high
time to update their model after each interaction. In Chapter 4 our objective is to propose an
alternative learning scheme that significantly reduces the update time while preserving good
quality recommendations. The second fragility suffered by existing linear bandit algorithms
is the curse-of-dimensionality. With the increasing of the number of arms features (d),
existing models may require many explorative interactions that can let the user quit his
navigation session. In Chapter 5 we propose an approach to speedup the learning process
that takes advantage on terminated navigation sessions to acquire information about the user
and then reducing the number of explorative interactions.

Outline
The remainder of this manuscript is organized as follows:

e In Chapter 2 we introduce some preliminary notations, definitions and the existing
core results in the stochastic bandits literature.

e In Chapter 3 we formalize a novel nonstationary stochastic bandit setting and propose
a suitable learning strategy. This work has been published as Cella and Cesa-Bianchi
[2020] and benefit from the supervision of Nicold Cesa-Bianchi.

e In Chapter 4 we investigate the adoption of a sketching technique to speedup the update
time of linear bandit policies. This chapter refers to a joint work with Ilja Kuzborskij
and Nicolo Cesa-Bianchi which has been published as Kuzborskij et al. [2019].

e Finally, in Chapter 5 we investigate two transfer learning strategies applied to linear
bandit tasks. This problem has been published as Cella et al. [2020] and was a joint
work with Alessandro Lazaric and Massimiliano Pontil.

e The manuscript ends with Chapter 6. There, we provide closing remarks and propose
candidate future research directions.

10



Chapter 2

Notation and Preliminaries

In this chapter we introduce the adopted notation and the state of the art approaches for
both the stochastic and the linear stochastic bandits. We present here the main concepts and
proof techniques that we will recall in the next chapters. We begin by formally defining
the stochastic bandit setting and presenting the upper confidence bound principle that was
formally analyzed in Auer et al. [2002]. We will then formalize the linear bandit setting and
present two state of the art learning algorithms: OFUL [Abbasi-Yadkori et al., 2011] and
Thompson Sampling [Abeille and Lazaric, 2017].

2.1 Stochastic Bandits

Multi-armed bandits is a very powerful interactive framework for algorithms that make
decisions over time and under uncertainty [Lattimore and Szepesvari, 2018, Auer et al.,
2002, Cesa-Bianchi and Lugosi, 2006, Siegmund, 2003, Robbins, 1952, Cesa-Bianchi, 2016,
Bubeck et al., 2012]. The name comes from the slot machines that can be found in a casino.
There we have many slot machines (a.k.a. one-armed bandits) and the gambler would like to
play the most profitable one, that is the one yielding the higher monetary reward if played.

2.1.1 Setting Formalization

We start by considering the stochastic bandit setting that was first formalized in Robbins
[1952]. Here, an algorithms sequentially interacts with an environemnt for 7" rounds. In
eachroundt¢ € [T] =1,...,T, the environment provides a decision set L = {z1,..., 23}
consisting of K possible actions (a.k.a. arms) to choose from. The learner picks one of
the available arm X; € I and then the environment samples a reward Y; € R from a fixed
but unknown distribution associated with the pulled arm X; with mean px,. The generated
reward will be the only feedback provided to the learning agent at round ¢ and we call
this a bandit feedback. As in the casino the objective of the gambler is to collect as much
reward as possible thorugh its sequence of interactions, here the objective of the learner
is to maximize the cumulative reward collected during the 7" rounds. In achieving this
objective the learner can only rely on the collected feedbacks. This arises a natural trade-oft:

11



Algorithm 1 The UCBI1 Algorithm.

Input: number of rounds T, decision set C
1: PULL each arm once
cfort=K+1,2,...,Tdo
UPDATE arm indices according to Equation 2.2
SELECT arm z; = arg max;c ucb(7)
OBSERVE reward Y;
end for

SANS AN~

from one side he needs to explore the environment in order to acquire information on the
available arms to identify the most profitable one, from the other it has to exploit the arm
which seems to be better according to the acquired information to collect more rewards. The
learning algorithms that we will present in this dissertation find smart ways to deal with this
exploration/exploitation trade-off. The reward maximization objective of the learner can be
equivalently stated in terms of regret incurred with respect to the optimal strategy which
collects the biggest cumulative reward possible. Formally, if we denote with i* € IC the arm
whose distribution has the largest mean p* = max;— __ i; then we can define the incurred
expected regret as

.....

T T
RT) =E[Tp =S ¥| =T =3 px, 2.1
t=1 t=1

where the expectation is with respect to the randomness in the reward generation.

2.1.2 Algorithms and Results

Bandits found their first application in clinincal trials (Thompson [1933], Gittins [1979],
Villar et al. [2015]). Here the goal is to identify the most effective drug out of a finite number
of alternatives with unknown effects. In order to achieve this objective, the learning agent
can sequentially select one of the drugs and administers it to the current patient. Once it has
observed the effects induced by the drug, the learner updates its estimate hoping to do better
with the next patient. In the last decades bandit algorithm expanded their applications to
web-oriented scenarios like web search Radlinski et al. [2008], news recommendation Li
et al. [2010], music playlist construction Cella and Cesa-Bianchi [2020] and recommendation
systems (Li et al. [2011], Bresler et al. [2014], Gentile et al. [2014], Bresler et al. [2016],
Gentile et al. [2017]). All the proposed models are inspired by the breakthrough that have
been firstly introduced in Auer et al. [2002]. There, relying on the Chernoff-Hoeffding
inequality, authors developed a finite-time analysis of the UCB1 algorithm (see Algorithm 1)
which maintains arms indices defined by a high-probability upper bound on the expected
value associated to the arm. More in detail, at each round ¢ € [T'] UCBI1 associates to each
arm ¢ € K an index ucb(i) defined as

2logt
T(i,t)

uch(i) = 0; (T (i, 1)) + (2.2)

12



where T'(i,t) denotes the number of times arm 7 € X has been pulled up to round ¢ and
11;(T(i,t)) is the empirical mean computed over the T'(i,t) rewards associated to arm i.
These indices represent the largest statistically plausible true mean values associated to the
arms based on the available observations. As shown in Algorithm 1 UCB1 follows the
Optimism in the Face of Uncertainty (OFU) principle and pulls the arm with highest index.

Theorem 1. For all K > 1, the expected regret of the UCBI strategy after any number T of
rounds is upper bounded by

2
[8 3 IOET} + (1 n %) (ZAZ-) 2.3)
e\ {i*} i €K

where A; represents the suboptimality mean gap p* — ;.

Proof Sketch First, we can notice that the regret can be equivalently rewritten as

=Y AE[T(,T)]. (2.4)
ek
Therefore, our objective is to minimize the number of pulls associated to the set of suboptimal
arms {i € K : u; < p*}. According to the UCB1 algorithm, the following holds:

T
TG, T)=1+ Y X, =i}
t=K+1
T
<l+ > HXy=i,T@t—1)>1}

t=K+1

<U+ Y (TG0t = 1)) + crppe- > A (Tt — 1))+
t=K+1

+cio 1T(i*t 0, T(i,t—1) > 1}

< min Ci 1. > max U;+(s Ci
+ Z { <sl<t'u2 )+ t—1,s; = lgsgt'uz ( >+ t 1,3}
t=K+1

t—1 t—1

<l+ Z ZZH{/LZ +Cts > Hi=(s )+Ct,s}

t=K+1 s=1 s;=I

2logt

where [ is an arbitrary positive integer and ¢; ; = . In order to control the argument

Wi(si) + ci—1s; > Hir(s) + ¢i—1s we can add and subtract the optimal true mean p*, the
considered suboptimal true mean x; and the confidence bound associated to the suboptimal
arm c; ,,. We can then observe that when the previous argument is satisfied, than at least one
of the following conditions must hold:

(i) > pi + cus, (2.5)
i=(8) < " — cps (2.6)
=y < 204, (2.7)

13



Intuitively, this means that the suboptimal pull is justified either by an overestimation of the
mean associated to the suboptimal arm (Equation 2.5), or an understimation of the mean
associated to the optimal arm (Equation 2.6) or a still too large confidence bound (Equation
2.7) compared to the suboptimality gap A;. The first two cases can be directly controlled by
applying the Chernoff-Hoeffding inequality (Proposition 4 in the Appendix material) and
cause the (1 + 7;)—2) term. Finally, the last case is false up to [ = [228%7 rounds and results in

A7
the [8 Zle,c\{l A } term.

2.2 Linear Stochastic Bandits

An interesting alternative to the stochastic bandit problem is given by the linear bandits which
considers actions as a subset of R%. Here, the observed reward has an expected value which is
an unknown linear function of the action. It is simple to observe that this setting generalizes
the previous one by taking actions as the standard orthonormal basis. Before presenting
the learning setting and the algorithms we need to introduce some additional notation. Let
B(z,r) C R? be the Euclidean ball of center z and radius » > 0 and let B(r) = B(0, 7).
Given a positive definite d x d matrix A, we define the inner product (x,z) , = x' Az and
the induced norm ||x||, = — VxT Ax, for any x, z z € R, if not specified ||-|| is the Euclidean

norm. Throughout the dissertation, we write £ 2 gtodenote f = O(g).

2.2.1 Setting Formalization

We describe the linear bandit protocol in Algorithm 2. Here, at each round ¢ € [T, the
learner has to select one arm x; from a set of alternatives D, C R%. The observed reward
corresponding to the taken arm has expected value satisfying

Y, = x;/ w* + 1, (2.8)

where w* € R? is an unknown parameter and 7; is a random noise satisfying some constraints
that we will specified soon. This learning problem is particularly relevant in cases where
the number of arms is very large. The main intuition is that, given the assumed reward
structure, each pull gives information on the unknown parameter w* which indirectly, gives
information about the value of not pulled arms. It is than natural to see that here the
objective is to estimate the d-dimensional feature vector w*. Similarly to what we have done
for the simpler stochastic case, we can introduce the objective function in terms of regret
minimization. Thanks to the knowledge of the true parameter w*, at each round ¢ the optimal
policy picks the arm x} = arg max,cp, X' w*, maximizing the instantaneous reward. The
learning objective is then to maximize the cumulative reward, or equivalently, to minimize

the pseudo-regret
T
= (x; —x) W (2.9)

t=1

14



Algorithm 2 (Linear Bandit)

1: fort=1,2,...do
2 GET decision set D; C R?
3: Use current policy to SELECT action x; € D,
4: OBSERVE reward Y; € R
5
6:

UPDATE the current policy using pair (x;, Y;)
end for

We introduce some standard assumptions for the linear stochastic bandit setting. At any round
t =1,2,...,T the decision set D, C R? is finite and such that ||x||; < L for all x € D,
and for all £ > 1. The noise sequence 71,73 . .., nr is conditionally R-subgaussian for some
fixed constant £ > 0. Formally, forall¢ > 1 andall A € R, E [e’\”’f | My ,nt_l} <

exp (A?R?/2). Note that this implies E[n; | n1,...,m—1] = 0 and Var[n; | n1,..., 1] <
R?. Finally, we assume that a known upper bound S on ||w*|| is available.

2.2.2 Algorithms and Results

Both OFUL and Linear TS operate by computing a confidence ellipsoid to which w* belongs
with high probability. Let X; = [x1,...,%;]" be the ¢ x d matrix of all actions selected up to
round ¢ by an arbitrary policy for linear contextual bandits. For A > 0, define the regularized
correlation matrix of actions V; and the regularized least squares (RLS) estimate W, as

t
VI=X/X, + AL and W, = (V)Y xY. (2.10)
s=1

The following theorem [Abbasi-Yadkori et al., 2011, Theorem 2] bounds in probability
the distance, in terms of the norm ||-|,», between the optimal parameter w* and the RLS

estimate w;.

Theorem 2 (Confidence Ellipsoid). Let w; be the RLS estimate constructed by an arbitrary
policy for linear contextual bandits after t rounds of play. For any 6 € (0,1), the optimal

parameter W* belongs to the set C; = {W eR? ¢ W —Willyy < 5t(6)} with probability
at least 1 — 6, where

3,(5) :R\/dln <1+%) +2In (%) + SV, 2.11)

OFUL. The actions selected by OFUL are solutions to the following constrained optimiza-
tion problem

X = arg max max XTW
x€Dy weRd

such that  [[w — Wi1[[va | < Bi1(9) . (2.12)

15



Algorithm 3 (OFUL)
Input: 6,A >0
11 Wo=0,(V)) ' =1L
2: fort =1,2,...do
3: GET decision set D;
4: SELECT x; ¢— arg max {vAvtT_lx + Bi—1(0) ||X||(V>\)1}

x€Dy

5: OBSERVE reward Y;
6:  UPDATE (V}) ™' and W, according to (2.10)
7: end for

OFUL can be formulated as Algorithm 3. Note that x; maximizes the sum of an exploita-

tion term consisting on the expected reward estimate W, x plus an exploration term

Bi—1(0) [|x|| (va)™ that provides an upper confidence bound for the RLS estimate in the
t

direction of x. More in detail, the more the arm x € R? is correlated to the design matrix V,
the more its norm weighted by the inverse of the same matrix will be small. This means that
the more an arm has been pulled during past rounds, the more accurate will be our estimates
on it. The next theorem states an upper bound on the regret incurred by the OFUL algorithm
(see Theorem 3 of Abbasi-Yadkori et al. [2011]).

Theorem 3. Assume that for all t € [T| and all x € Dy, x"w* € [—1,1]. Then, with
probability at least 1 — 0, the regret incurred by OFUL satisfies:

R(T,w*) < 4\/Tdbg (1 + %) (Aés + R\/21og(1/6) + dlog(1 + TL/(Ad))).

Linear TS. The linear Thompson Sampling algorithm of Agrawal and Goyal [2013] is
Bayesian in nature: the selected actions and the observed rewards are used to update a
Gaussian prior over the parameter space. Each action x; is selected by maximixing x ' w]®
over X € D, where w;* is a random vector drawn from the posterior. As shown by Abeille
and Lazaric [2017], linear TS can be equivalently defined as a randomized algorithm based
on the RLS estimate (see Algorithm 4). The random vectors Z; are drawn i.i.d. from a
suitable multivariate distribution D™ that need not be related to the posterior. In order to
prove regret bounds, it is sufficient that the law of Z, satisfies certain properties.

Definition 1 (TS-sampling distribution). A multivariate distribution D™ on RY, absolutely
continuous w.r.t. the Lebesgue measure, is TS-sampling if it satisfies the following two
properties:
e (Anti-concentration) There exists p > 0 such that for any u with |[u|| = 1, P(u'Z >
1) > p.
e (Concentration) There exist ¢, > 0 such that for all 6 € (0, 1),

P (||ZH < y/cdIn (%)) >1-90.

16



Algorithm 4 Linear TS
Input: 6,A > 0,m € {1,...,d — 1}, D™ (sampling distribution)
11 Wo =0, (V)) ' = LLueq, 8 = 6/(4T)
2: fort =1,2,...do
3: GET decision set Dy
4 SAMPLE Z, ~ D'
5 SELECT x; < argmaxx (vAvt_l + B}((S’) (V;\)fé Zt>

xEDy

6: OBSERVE rewarfl Y,
7: UPDATE (V?)_i and w; using Equation (2.10)
8: end for

Similarly to OFUL, linear TS uses the notion of confidence ellipsoid. However, due to the
properties of the sampling distribution D™, the ellipsoid used by linear TS is larger by a
factor of order v/d than the ellipsoid used by OFUL. This causes an extra factor of v/d in the
regret bound, whose result is formally presented in the next theorem.

Theorem 4. Under the same assumptions holding for Theorem 3, with probability at least
1 — 0, the regret of linear TS satisfies

R(T,w*) < [Br(&") +~r(8")(1 + %)] \/ 2Tdlog (1 + %) 1 2@ \/ ? 1og§ (2.13)
where v(6) = B(0)+/cdlog(c'c/§) and &' = .

Note that both OFUL and linear TS need to maintain (V;) ™" <or (V)™
time O(d?) to update.

N

> , which requires

17
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Chapter 3

Stochastic Bandits with
Delay-Dependent Payoffs

We dedicate this chapter to the analysis of a non-stationary stochastic bandit problem. The
introduced setting is motivated by recommendation problems in music streaming platforms
and in education. Here, the expected reward of an arm depends on the number of rounds
that have passed since the arm was last pulled. We begin by proving that finding an optimal
policy is NP-hard even when all model parameters are known. Then, we introduce a
class of ranking policies provably approximating, to within a constant factor, the expected
reward of the optimal policy. We show an algorithm whose regret with respect to the best
ranking policy is bounded by O (\/ﬁ ) , where £ is the number of arms and 7 is time. Our
algorithm uses only O (k InIn T") switches, which helps when switching between policies is
costly. As constructing the class of learning policies requires ordering the arms according
to their expectations, we also bound the number of pulls required to do so. Finally, we run
experiments to compare our algorithm against UCB on different problem instances.

3.1 Introduction

As introduced in Section 2.1, in the simplest stochastic bandit framework Lai and Robbins
[1985] rewards are realizations of i.i.d. draws from fixed and unknown distributions associated
to each arm. In that setting the optimal policy is to consistently recommend the arm with
the highest reward expectation. On the other hand, in scenarios like song recommendation,
users may grow tired of listening to the same music genre over and over. Here, playlists
typically consists of different music genres interleaved according to certain patterns. This is
naturally formalized as a nonstationary bandit setting, where the payoff of an arm grows with
the time since the arm was last played. In this case policies consistently recommending the
same arm are seldom optimal. E-learning applications, where arms corresponds to questions
that students have to answer, are other natural examples of the same phenomenon, as asking
again immediately the same question that the student has just answered is not very effective.
In the remaining of the chapter we introduce a simple nonstationary stochastic bandit model,
B2DEP, in which the expected reward ;(7) of an arm i is a bounded nondecreasing function
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of the number 7 of rounds that have passed since the arm was last selected by the policy.
More specifically, we assume each arm 7 has an unknown baseline payoff expectation p;
(equal to the expected payoff when the arm is pulled for the first time) and an unknown delay
parameter d; > 0. If the arm was pulled recently (that is, 1 < 7 < d;), then the expected
payoff may be smaller that its baseline value: 1;(7) < p;. Vice versa, if 7 > d;, then yu;(7) is
guaranteed to match the baseline value y;. In the song recommendation example, the delays
d; model the extent to which listening to a song of genre ¢ affects how much a user is willing
to listen to more songs of that same genre.

Since 7 can be viewed as a notion of state for arm ¢, our model can be compared to
nonstationary models, such as rested bandits Gittins [1979] and restless bandits Whittle
[1988] —see also Tekin and Liu [2012]. In restless bandits the reward distribution of an
arm changes irrespective of the policy being used, whereas in rested bandits the distribution
changes only when the arm is selected by the policy. Our setting is neither rested nor restless,
as our reward distributions change differently according to whether the arm is selected by the
policy or not.

Optimal strategies for restless bandits are notoriously hard to compute, or even approximate
—see, e.g., Guha et al. [2010]. In Section 3.4 we make a reduction to the Periodic Maintenance
Scheduling Problem Bar-Noy et al. [2002] to prove that the optimization problem of finding
an optimal periodic policy in our setting is NP-Hard. In order to circumvent the hardness of
computing the optimal periodic policy, in Section 3.5 we identify a simple class of periodic
policies that are efficiently learnable, and whose expected reward is provably to within a
constant factor of that of the optimal policy. Our approximating class is pretty natural: it
contains all ranking policies that cycle over the r best arms (where 7 is the parameter to
optimize) according to the unknown ordering based on the arms’ baseline payoff expectations.
Note that a top-r ranking policy pulls each of the first  arms with a delay exactly equal to 7.
As it turns out, learning the best ranking policy can be formulated in terms of minimizing
the standard notion of regret. This is unlike the problem of learning the best periodic policy,
which instead requires minimizing the harder notion of policy regret Arora et al. [2012].
Consider the task of learning the best ranking policy. In our music streaming example, a
ranking policy is a playlist for the user. As changing the playlist streamed to the user may
be costly in practice, we also introduce a switching cost for selecting a different ranking
policy. Controlling the number of switches could also have a good effect in our nonstationary
setting, when the expected reward of a ranking policy may depend on which other ranking
polices were played earlier. The learning agent should ensure that a ranking policy is played
many times consecutively (i.e., infrequent switches), so that estimates are calibrated (i.e.,
computed in the same context of past plays).

A standard bandit strategy like UCB Auer et al. [2002], which guarantees a regret of
@ (\/ KT InT ) irrespective of the size of the suboptimality gaps between the expected reward
of the optimal ranking policy and that of the other policies, performs a number of switches
growing with the squared inverse of these gaps. In Section 3.6 we show how to learn the best
ranking policy using a simple variant of a learning algorithm based on action elimination
proposed in Cesa-Bianchi et al. [2013a]. Similarly to UCB, this algorithm has a distribution-
free regret bounded by v/AT. However, a bound O (k: Inln T) on the number of switches is
also guaranteed irrespective of the size of the gaps.
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In Section 3.7 we turn to the problem of constructing the class of ranking policies, which
amounts to learning the ordering of the arms according to their baseline payoff expectations
W1y, [, Assuming pq > --- > g, this can be reduced to the problem of learning the
ordering of reward expectations in a standard stochastic bandit with i.i.d. rewards. We show
that this is possible with a number of pulls bounded by Y, 1/A? (ignoring logarithmic
factors), where A, is the smallest gap between j; 1 — y; and j1; — p1;_1. Note that this bound
is not significantly improvable, because 1 / A? samples of each arm i are needed to verify
that ;1 < p; < iy

Finally, in Section 3.8 we describe experiments comparing our low-switch algorithm against
UCB in both large-gap and in small-gap settings.

3.2 Related works

Our setting is a variant of the model introduced by Kleinberg and Immorlica [2018]. In that
work, p;(7) are concave, nondecreasing functions satisfying 1;(7) < p;(7 — 1) 4+ 1. Note
that this setting and ours are incomparable. Indeed, unlike Kleinberg and Immorlica [2018]
we assume a specific parametric form for the functions y;(-), which are nondecreasing and
bounded by 1. On the other hand, we do not assume concavity, which plays a key role in
their analysis.

Pike-Burke and Grunewalder [2018] consider a setting in which the expected reward functions
1;(+) are sampled from a Gaussian Process with known kernel. The main result is a bound
of order vkT on the Bayesian d-step lookahead regret, where d is a user-defined parameter.
This notion of regret is defined by dividing time in length-d blocks, and then summing the
regret in each block against the greedy algorithm optimizing the next d pulls given the agent’s
current configuration of delays (i.e., how long ago each arm was last pulled). Similarly
to Pike-Burke and Grunewalder [2018], we also compete against a greedy block strategy.
However, in our case the block length is unknown, and the greedy strategy is not defined in
terms of the agent’s delay configuration.

A special case of our model is investigated in the very recent work by Basu et al. [2019].
Unlike B2DEP, they assume y;(7) = 0 for all 7 < d; and complete knowledge of the delays
d;. In fact, they even assume that every arm ¢ cannot be selected in the next d; time steps
after a pull. Their main result is a regret bound for a variant of UCB competing against the
greedy policy. They also show NP-hardness of finding the optimal policy through a reduction
similar to ours. It is not clear how their learning approach could be extended to prove results
in our more general setting, where 1;(7) could be positive even when 7 < d; and the delays
d; are unknown.

A different approach to nonstationary bandits in recommender systems considers expected
reward functions that depend on the number of times the arm was played so far (Levine et al.
[2017], Cortes et al. [2017], Bouneffouf and Féraud [2016], Heidari et al. [2016], Seznec
et al. [2019], Warlop et al. [2018]). These cases correspond to a rested bandit model, where
each arm’s expected reward can only change when the arm is played.

The fact that we learn ranking strategies is reminiscent of stochastic combinatorial semi-
bandits Kveton et al. [2015b], where the number of arms in the schedule is a parameter
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of the learning problem. In particular, similarly to (Radlinski et al. [2008], Kveton et al.
[2015a], Katariya et al. [2016]) our strategies learn rankings of the actions, but unlike those
approaches in our case the optimal number of elements in the ranking must be learned too.

3.3 The B2DEP setting

As presented in Section 2.1, in the classical stochastic multi-armed bandit model, at each
round ¢t = 1,2, ... the agent pulls an arm from I = {1,..., k} and receives the associated
payoff, which is a [0, 1]-valued random variable independently drawn from the (fixed but
unknown) probability distribution associated with the pulled arm. The payoff is the only
feedback revealed to the agent at each round. The agent’s goal is to maximize the expected
cumulative payoff over any number of rounds.

In the B2DEP (Bandits with DElay DEpendend Payoff) variant introduced here, at each round
t € [T, the learner picks an arm X; € K and observes the realization Y; of a reward random
variable whose (conditional) expectation /.y, (7) is an increasing function of 7, the number
of rounds since the last time arm X; € K has been pulled. Specifically, for any i € K and
t € [T, let us define by F; the o-algebra generated by the past history of pulls and observed
reward random variables X, Y7, ..., X;_1,Y; 1. Given a time horizon 7', a learning policy
7 is a function that maps at each round ¢ € [T] the observed history X;, Y] ..., X;1,Y; ;1 to
the next action X; € K. For any i € K, t € [T'] we can then define

s = Ex Y] = (1 f(7)I{0 < 7 < di}) G.1)

where ; is the unknown baseline reward expectation for arm 4, f : N — [0, 1] is an unknown
nonincreasing function, and 7 is the number of rounds that have passed since that arm was last
pulled (conventionally, 7 = 0 means that an arm is pulled for the first time). From now on our
interest will focus on the expected value 1; ; = p1;(7) associated to an arm-delay pair, where
the dependency on ¢ is fully captured by the 7 random variable. When f is identically zero,
B2DEP reduces to the standard stochastic bandit model with payoff expectations i1, . . ., .
The unknown arm-dependent delay parameters d; > 0 control the number of rounds after
which the arm’s expected payoff is guaranteed to return to its baseline value ;.

Let g;(7) be the payoff collected by policy 7 at round ¢. Given an instance of B2DEP, the
optimal policy 7* maximizes, over all policies 7, the long term expected average payoff

> gt(ﬂ)] :

t=1

lim —GT(W)

T—o0

where Gr(m) =E

Note that, the payoff conditional expectations at any time step ¢ can be computed given the
current (not random) delay vector 7(t) = (71(t), ..., 7(t)), where each integer 0 < 7,(t) <
d; counts how many rounds have passed since i € K was last pulled (setting 7;(t) = 0if 4
was never pulled or if it was last pulled more than d; steps ago). Hence, any delay-based
policy —e.g., any deterministic function of the current delay vector— is eventually periodic,
meaning that 7(7(t)) = 7 (7 (¢t + P)) forall t, < ¢ < T, where P is the period and ¢, is the
length of the transient.
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Consider the greedy policy Tgreeqy defined as follows: At each round ¢, Tgpecdy pulls the arm
1 € K with the highest expected reward according to current delays

Tgreedy (T(t)) = arger}élax 1bi (Tl(t)) (3.2)

where 7;(t) = 0 if ¢ was never pulled before. It is easy to see that Tyeedy iS DOt always
optimal. For example consider the following instance of B2DEP with k = 2: f(7) = 1
forall 7, uy = 1, o = % —¢&,d; = dy = 1. Then T ceqy always pulls arm 1 and achieves
Gi(Tgreeay) = 1 + I3+, whereas Gp(7*) = 1 + 52 (2 — ¢) where 7* alternates between
arm 1 and arm 2. Hence G (Tgreedy) < %GT<7T*).

In the next section we show that the problem of finding the optimal periodic policy for

B2DEP is intractable.

3.4 Hardness results

We show that the optimization problem of finding an optimal policy for B2DEP is NP-hard,
even when all the instance parameters are known. Our proof relies on the NP-completeness
of the Periodic Maintenance Scheduling Problem (PMSP) shown by Bar-Noy et al. [2002].
Although a very similar result can also be proven using the reduction of Basu et al. [2019],
introduced for a special case of our B2DEP setting, we give our proof for completeness.

A maintenance schedule on n machines {1, ..., n} is any infinite sequence over {0, 1, ..., n},
where 0 indicates that no machine is scheduled for service at that time. An instance of the
PMSP decision problem is given by integer service intervals /1, . . ., ¢, such that ) ", él <1
The question is whether there exists a maintenance schedule such that the consecutive service
times of each machine ¢ are exactly ¢; times apart. The following result holds (proof in the
supplementary material).

Theorem 5. It is NP-hard to decide whether an instance of B2DEP has a periodic policy
achieving

. GT(W) . i
> .
e = z; di +1

3.5 Approximating the optimal policy

In order circumvent the computational problem of finding the best periodic policy, we
introduce a simple class I of periodic ranking policies whose best element 7y, has a
cumulative expected payoff not too far from that of 7*. Without loss of generality, assume
that yy > -+ > py. Let Il = {m,, : m € K}, where each policy 7, cycles over the arm
sequence 1, ..., m fixing the random variable 7 to be equal to m. For a fixed rank m, the
expected average reward g(m) of policy 7, is defined by

om) = 3" pylm)
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Since Typ0st Maximizes g(m) over m € K, we have Tgposy = 7+ Where

1 m
r* € arg max — (m (3.3)
mgl,...,k m jzll’bj( )

We now study the expected approximation error incurred by introducing policy mghost. Specif-
ically, we can bound G (Tghost) in terms of G (7*) as follows.

Theorem 6.
Gr(Tghost) = (1 — f(r0))Gr(r*) 4+ O(1)

where 1 is the largest arm index r such that

pi > max (i —=j) =27

goee

and o = 1if iy < pa(1).

The definition of 7y is better understood in the context of the more intuitive delay-based
policy Tgreedy- Note indeed that ro + 1 is the first round in which 7g,ecqy prefers to pull one
of the arms that were played in the first ry rounds rather than the next arm ry + 1.

Proof. Since r* maximizes (3.3),

GT(T‘-ghost> = Z,uz(r*) + O(l)

r =1
T &
> —» pi(ro) +O(1)
o =1
T &
> . (1= f(ro))ps + O(1)

where the O(1) term takes into account that v* may not divide 7', and the fact that in the first
r* rounds the expected reward is 1y + - - - + g, instead of g1 (r*) 4 - - - + g« (r*). Now split
the 7' time steps in blocks of length 7. Because 7y is —by definition— the largest expected
reward any policy can achieve in ry consecutive steps, the expected reward of 7* in any of
these blocks is at most p1 + - - - + pi,,,. Therefore

T <«
Gr(m*) < o Z,Mi + O(1)
0 =1

where, as before, the O(1) term takes into account that ry may not divide 7". This concludes
the proof. [

The proof of Theorem 6 actually shows that both 7* and r achieve the claimed approximation.
However, by definition G'r(mgnost) is bigger than the total reward of the policy that cycles
over 1,...,rg. Also, learning 7y, 18 relatively easy, as we show in Section 3.6.

It is easy to see that g(m) is not monotone due to the presence of the coefficients d;. For
example, consider the B2DEP instance defined by £ = 3, y3 = 1, uo = % s = %
dy =dy =d3=2,and f(7) =277. Then g(2) < g(1) < g(3).
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Algorithm 5 (7m,,)

Input: Policy set IIx, confidence ¢ € (0, 1), horizon T
1: Let A; = K be the initial set of active policies
2: repeat > s indexes the stage number
3: for m € A, do

4: SELECT ,, for T,/ (m|A,|) + 1 times
5: UPDATE g,(m) discarding the first play
6: end for

7: Let my = arg max g,(my)

meAs
8: UPDATE A1 = {m € A, : gs(m) > gs(ms) — 2Cs}
9: until overall number of pulls exceeds T’

3.6 Learning the ghost policy

In this section we deal with the problem of learning r* assuming the correct ordering 1, ..., k
of the arms (such that p; > --- > ) is known. In the next section, we consider the problem
of learning this ordering.

Our search space is the set of ranking policies Il = {7, : m € K}, where each policy 7,
cycles over the arm sequence 1, . .., m. Note that, by definition, mgp,ss = 7. The average
reward g(m) of policy 7, is defined by g(m) = (p1(m) + - -+ + p,(m)) /m. Note that
every time the learning algorithm chooses to play a different policy 7, € Ik, an extra cost is
incurred due to the need of calibrating the estimates for g(m). In fact, if we played a policy
different from 7, in the previous round, the reward expectation associated with the play of
T in the current round is potentially different from g(m). This is due to the fact that we
cannot guarantee that each arm in the schedule used by 7, was pulled exactly m steps earlier.
This implies that we need to play each newly selected policy more than once, as the first play
cannot be used to reliably estimate g(m).

We now introduce the policy 7., (Algorithm 5), a simple variant of a learning algorithm
based on action elimination proposed in Cesa-Bianchi et al. [2013a]. This policy has a regret
bound similar to UCB while guaranteeing a bound O (k: Inln T) on the number of switches,
irrespective of the size of the gaps. In Section 3.8 we compare 7., with UCB.

In each stage s, algorithm 7, plays each policy 7, in the active set A for T/ (m].As ]) +1
times, where T, = T ~2"". Then, the algorithm computes the sample average reward g, (m)
based on these plays, excluding the first one because of calibration (lines 3-6). After that, the
empirically best policy is selected (7). Finally, the active set is recomputed (line 8) excluding
all policies whose sample average reward is significantly smaller than that of the empirically

best policy. The quantity C is derived from a standard Chernoff-Hoeffding bound (see

2kS

Proposition 4 in the Appendix material) and is equal to 4/ % In where

5

J
S:min{jEN : Z(|AS|+T5) ZT}

s=1
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implying S = O ( InlnT ) The terms |.A,| account for the extra calibration pull each time
we switch to a new policy in IIx. We can prove the following bound on the regret of .y,
with respect to Tgpost -

Theorem 7. When run on an instance of B2DEP with parameters § and T, with probability
at least 1 — & Algorithm 5 guarantees

GT (Wghost ) - G(T (Wlow )

:O<k21nlnT+\/kT <ln§+lnlnlnT>> (3.4)

with probability at least 1 — .

Note that this bound is distribution-free. That is, it does not depend on the gaps g(r*) — g(m)
(which in general could be arbitrarily small). The rate v/7’, as opposed to the In 7" rate of
distribution-dependent bounds, cannot be improved upon in general Bubeck et al. [2012].

Proof. The proof is an adaptation of [Cesa-Bianchi et al., 2013a, Theorem 6]. Note that
Ag C -+ C A; by construction. Also, our choice of C and Chernoff-Hoeffding bound
(Proposition 4 in the Appendix material) implies that

max|g, (m) — g(m)| < C, (3.5)
simultaneously for all s = 1,...,.S with probability at least 1 — §. To see this, note that
in every stage s the estimates g;(m) are computed using T/ (m|AS|) plays. Since a play
of m,, consists of m < k pulls, we have that each g(m) is estimated using T /| As| > T/k
realizations of a sequence of random variables whose expectations have average exactly
equal to g(m).

We now claim that, with probability at least 1 — 4, r* € ﬂle Asand 0 < gs(ms) —gs(r*) <
20 foralls=1,...,5.

We prove the claim by induction on s = 1,...,.S. We first show that the base case s = 1
holds with probability at least 1 — §/.S. Then we show that if the claim holds for s — 1, then
it holds for s with probability at least 1 — /.S over all random events in stage s. Therefore,
using a union bound over s = 1,...,S we get that the claim holds simultaneously for all s
with probability at least 1 — 9.

For the base case s = 1 note that 7* € A; by definition, and thus 0 < g;(m;) — g1 (r*) holds.
Moreover: gi (1) — g(m1) < C1, g(r*) — gi(r*) < Ci, and g(m) — g(r*) < 0, where
the two first inequalities hold with probability at least 1 — ¢ because of (3.5). This implies
0 < gi(my) — g1(r*) < 2C) as required. We now prove the claim for s > 1. The inductive
assumption

r* S As—l and 0 S /g\s—l(ms—l) - /g\s—l(r*) S 205—1

directly implies that r* € A,. Thus we have 0 < g,(m,) — gs(r*), because m, maximizes g
over a set that contains r*. The rest of the proof of the claim closely follows that of the base
case s = 1.
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We now return to the proof of the theorem. Forany s = 1, ..., .S and for any m € A, we have

9(r*) —g(m) < g(r*) — Go—1(m) + Cs—1 by (3.5)
< g(r*) = Ge—1(Ms—1) + 3Cs_1
by definition of A,_q, sincem € A, C A,_;
< g(r*) = Gsr(r*) +3Cs
since m,_; maximizes g,_; in A,_;

<4C;-1 by (3.5)

holds with probability at least 1 — ¢ /S. Hence, recalling that the number of switches between
two different policies in [Ix is deterministically bounded by k.S, the regret of the player can
be bounded as follows,

GT<7Tghost) - GT(WIOW)

—k2s+zw > (960") = 9(m))

meAs
= K2S+ T + Z N > (907 = g(m)
meAs
<KS+T, +Z4T 2; ln¥
s—1

2kS
= k2SS + T, +4/kIn
L4y Z Tl

where the k%S term accounts for the regret suffered in the kS plays where we switched
between two policies in IIx and paid maximum regret due to calibration for at most k
steps (as each policy in I is implemented with at most k pulls). Now, since T} = /7,
T,/v/Te-1 = VT and S = O(InInT), we obtain that with probability at least 1 — & the

regret is at most of order A2 InlnT + /T + \/ kT (In% 4+ InlnInT) as desired. O

3.7 Learning the ordering of the arms

In this section we show how to recover, with high probability, the correct ordering p; >
- > . of the arms. Initially, we ignore the problem of calibration, and focus on the task of

learning the arm ordering when each pulls of arm 7 returns a sample from the true baseline

reward distribution with expectation ;.

BanditRanker (Algorithm 6) is an action elimination procedure. The arms in the set

A, of active arms are sampled once each (line 3), and their average rewards are kept

sorted in decreasing order (line 4). We use /i;, to denote the sample average of rewards
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Algorithm 6 (BanditRanker)
Input: Confidence ¢ € (0, 1)

Output: A permutation [1], ..., [£] of K.
1: Let A; = K be the initial set of active arms
2: repeat > r indexes the round number
3: SAMPLE once all arms in A, > sampling round
4: SORT the empirical means iy, > -+ > [ifn],r
5: for i = 1to|.A| do
6: if ﬁ[i],r‘ + 257“ < min ﬁj,’/’ then
jeIC[J;M
7: if ﬁ[i]ﬂn — 2e, > max ﬁ[s]ﬂn then
IEK )
8: REMOVE [i] from A,
: RANK before [i] all arms in K},
10: RANK after [i] all arms in K |
11: end if
12: end if
13: end for
14: until |At| < 1
obtained from arm ¢ after  sampling rounds, and define the indexing [1], ..., [k] be such that

fpgr = -+ > g, Where ties are broken according to the original arm indexing.

When the confidence interval around the average reward of an arm [¢] is not overlapping
anymore with the confidence intervals of the other arms (lines 6-7), [i] is removed from
A, and not sampled anymore (line 8). Moreover, the set ’C[t’],'r of all arms [b] € A, such
that fiy » > Jif;),» (if any) is ranked before [i] (line 9). Similarly, the set let Ky, of all arms
[s] € A, such that fi), < iy, (if any) is ranked after [i] (line 10). The algorithm ends
when all arms are removed (line 14).

The parameter ¢, determining the confidence interval after  sampling rounds is defined by

ooy L Pt

2 5 G0

The sequence of removed arms can be stored in a binary tree whose root is the first removed
arm and whose left (resp., right) leaf contain all arms whose average reward was bigger
(resp., smaller) when the first arm was removed. When a new arm is removed, the leaf to
which it belongs is split using the same logic that we used for the root. Eventually, all nodes
contain a single arm and the in-order traversal of the tree provides the desired ordering.

We introduce the following quantity, measuring the suboptimality gaps between arm that are
adjacent in the correct ordering,

ALQ le - 1
Ai = min {Ai—l,ia Ai,i—H} ifl<i<k
Ap1 ifi =k
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where Ai,j = Wi — Mj.
We are now ready to state and prove the main result of this section.

Theorem 8. If Algorithm 6 is run with parameter § on a k-armed stochastic bandit problem,
the correct ordering 1y > --- > i of the arms is returned with probability at least 1 —
after a number of pulls of order

k-1
11

S gl (3.7)
2

L2 A7 A,

Note that, up to logarithmic factors, the bound stated in Theorem 8 is of the same order as
the sample used by an ideal procedure that knows Ay, ..., A, and uses the optimal order
1 / A? of samples to determine the position of each arm i in the correct ordering.

Proof. The proof is an adaptation of Even-Dar et al. [2006, Theorem 8]. Using Chernoff-
Hoeftding bounds (see Proposition 4 in the Appendix), the choice of ¢, ensures that

Pr (El’f’ Z 14 el ‘ﬁiﬂn — MZ‘ > 81”) S 2]{726_28?T
r>1

<9J. (3.8)

If an action [4] is eliminated after » sampling rounds, then it must be that jip), — 25, >
A > Hps),r + 2¢, forall [b] € ICJZr . and all [s] € IC . Condition (3.8) then ensures that,
with probability at least 1 — 9, pup) ’> pp) > pis for all such b and s. This implies that the
current ordering of ju;) . for j € A, is correct with respect to [i]. Since ¢, — 0, every action
is eventually eliminated. Therefore, with probability at least 1 — ¢ the sequence of eliminated
arms ¢ and their corresponding sets lCm IC[Z] provide the correct arm ordering.

We now proceed to bounding the number of samples. Under condition (3.8), forall b < i < s,

Ab,i - 251“ = (/Lb - gr) - (,LL'L + 57") < ﬁb,r - ﬁi,r .

Therefore, if ji,, — j1;» < 2¢,, then A,; < 4e,. Recalling the definition (3.6) of ¢, and

solving by r = r(b, 1) we get
1 1
b,i)) =0 | —In— | .
7'( 72) (Aal néAb7@'>

Thus, after r(b, i) sampling rounds, /i, (bi) L (o, ) > 2e,(,;) With probability at least 1 — 6.
Similarly, after (i, s) sampling rounds, 7i; »(;,s) — s (i) > 2€r(i,s) With probability at least
1—09.

This further implies that after N; = O (é In ﬁ) many sampling rounds, action i is
eliminated and not sampled any more. l

Re-define the indexing [1], ..., [k] so that Ay > --- > Ap,. Hence Npyj < -+ < Ny by
definition. We now compute a bound on the overall number of pulls based on our bound on
the number of sampling rounds. With probability at least 1 — 9, we have that: kN pulls are
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needed to eliminate arm [1], (k — 1)(Npy — Njyj) pulls are needed to eliminate arm [2], and
so on. Hence, the total number of pulls needed to eliminate all arms is

E

-2

(k= 4) (N1 — Ni)

=0
k—2
= kNpeay = D i( Ny = Nig)
=0
k—2
= /{ZN[k_l] — (k? — 1)N[k_1} + Z N[Z-_,_l}
=0
k—1
= N + ) N
i=1
with probability at least 1 — § where we set conventionally Njg = 0. [l

In order to apply BanditRanker to an instance of B2DEP, we assume that an upper bound
dy > max; d; be available in advance to the algorithm. This ensures that j;(dy) = p; for
all © € K. In each sampling round r, we partition the arms in .4, in groups of size d, and
make 2d, pulls for each group by cycling twice over the arms in an arbitrary order. Then,
the first dy pulls in each group are discarded, while the last d, pulls are used to estimate
the expectations y; (when dy does not divide |.A,| we can add to A, arms that were already
removed, or arms from previous groups, just for the purpose of calibrating). The sample size
bound (3.7) remains of the same order (because the extra pulls only add a factor of two).
We could have used a naive approach that continuously pulls all arms until no overlaps
occur. This approach would pull each arm 1/(min;epy A;)? times requiring than much more
samples compared to (3.7).

Finally, notice that a symmetric argument would hold in case the delay upper bound d
would not be available. Indeed, the same logic holds considering dy = 1, that represents the
minimum delay for which all arms incurs the same relative discount 1 — f(dp). It should be
easy to observe that this would require many more samples as gaps A; would be smaller.

3.8 Experiments

In this section we present an empirical evaluation of our policy 7.y, in a synthetic environment
with Bernoulli rewards. In order to study the impact the switching cost on ranking policies
when the suboptimality gap is small, we also define a setting in which there are two distinct
ranking policies that are both optimal —see Figure 3.1.

We plot regrets against the policy mgpost. Our policy gy 1s run without any specific tuning
(other than the knowledge of the horizon 7") and with ¢ set to 0.1 in all experiments. The
benchmark 7., consists of running UCB1 (summarized in Algorithm 1 in Section 2.1)
—with the same scaling factor as in the original article by Auer et al. [2002]— over the class
ITx of ranking policies, where calibration is addressed by rolling out twice each ranking
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Figure 3.1: Transitions between policies 7, and 7, assuming n > m, where the notation
tm—sn(d) stands for g, (d) + - -+ + u,(d). The expected reward obtaining by switching
between policies is different from the one obtained by cycling over the same policy.

policy selected by UCB1 and using only the second roll-out to compute reward estimates.

Since both 7,y and mahese are run over llx, we implicitly assume that BanditRanker
successfully ranked the arms in a preliminary stage.

300

250 4

200 4

150 4

100 4

10° 10t 102 10

Figure 3.2: Comparing regrets of 7oy, and ., against mgnes With 7 arms and baseline
expectations 0, 1/3,2/3,4/5,13/15,14/15,1 and f(7) = (0.999)". A unit cost is charged
for switching between ranking policies. Curves are averages of 5 runs each using a different
sample of delays d, ..., d; uniformly drawn from {1,...,6}. We plot expectations of
sampled arms rather than realized rewards.

Figure 3.2 shows that when the gap between the best and the second best ranking policy is not
too small (0.1 on average in these experiments), then 7.}, 1S competitive against 7., €ven in
the presence of unit switching costs. This happens because, in order to minimize the number
of switches, 7., samples a suboptimal policy more frequently than 7,.,. Although this
oversampling does not affect the distribution-free regret bound of 7., it hurts performance
unless the suboptimality gap is small enough to cause the switching costs to prevail, a case
which is addressed next. Note also that m, eventually stops exploration because all policies
but one have been eliminated, while 7.}, keeps on exploring, albeit at a logarithmic rate.

In the second experiment we consider two arms with 1 = 1, f(1) = 0.3, f(2) = 0.25,
d; = dy = 2, and p, chosen so that g(1) = ¢(2) to simulate a vanishing suboptimality gap
between 7 and 7. Figure 3.3 (upper part) shows that m,, performs better than 7, due
to its low switch regime. On the other hand, Figure 3.3 (lower part) shows that when the
switching cost is zero, switching between two good policies becomes more advantageous
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Figure 3.3: Comparing regrets of ., and 7y, against mgpest With 2 arms such that g(1) =
¢(2) with unit cost charged for switching between the two policies (upper part) and without
any cost for switching (lower part).

than using a single good policy, and the regret of both 7., and m,, becomes negative (in
this case 7,.,, which has no control over the number of switches, outperforms 7, ). The
reason for this advantage is explained by Fact 1 below (proof in the supplementary material),
see also Figure 3.1.

Fact 1. If an instance of B2DEP admits two optimal ranking policies, then consistently
switching between these two policies achieves an average expected reward higher than
sticking to either one.

To summarize, the experiments confirm that, in the presence of switching costs, 7.y, works
better than 7., only when the suboptimalty gap is very small. The advantage of m,, over
Tueh 1S however reduced by the fact that switching between two good policies is better than
consistently playing either one of the two (Fact 1). Note also that m, stops exploring
because 7' is known. This preliminary knowledge can be dispensed with using a doubling
trick, or some more sophisticated method. Also, it would be interesting to design a method
that achieves the best between the performance of 7., and ., according to the size of the
suboptimality gap.

3.9 Conclusions

Motivated by music recommendation in streaming platforms, we introduced a new stochastic
bandit model with nonstationary reward distributions. To cope with the NP-hardness of
learning the optimal policy caused by nonstationarity, we introduced a restricted class of
ranking policies approximating the optimal performance. We then proved sample and regret
bounds on the problem of learning the best ranking policy in this class. One of the main
problems left open by our work is that of deriving more practical learning algorithms, able to
simultaneously learn the ranking of the arms and the best cutoff value 7*, while minimizing
their regret with respect to the best ranking policy.

32



3.10 Proofs

3.10.1 Proof of the Hardness Result (Theorem 5)

Proof. Given an instance (1, . . ., £,, of PMSP, we construct a B2DEP instance with || =
n+ 1 arms such thatd; = ¢; —land y; = 1 foralli =1,... n, u,.1 = 0,and f = 1. The
long-term average reward for a periodic policy in this setting is

n

1 i I {tl’ > dl}
Do
i=1 """ j=1 ©J

where N; is the number of times the policy plays arm 7 in a period and ¢; ; is the number of
time steps between when arm ¢ was played for the j-th time in the cycle and the last time it
was played (in the same cycle or in the previous cycle, excluding the transient). Clearly, if
the PMSP instance has a feasible schedule, then we can design a bandit policy that replicates
that schedule (playing arm n + 1 at all time steps where no machines are scheduled for

maintenance). The long-term average reward of this policy is at most ) ", r1+1' Moreover,

if we have a periodic bandit policy with long-term average reward exactly equal to >, ﬁ,
this means that each arm ¢ = 1, ..., n is eventually played after exactly d; + 1 = ¢; rounds.
Indeed, the only way to have

1 i H{ti’j > dl} > 1
isby setting t; ; = d; + 1forall j =1,..., N, O

3.10.2 Proof of the Swtiching Result (Fact 1)

Proof. We use the following notation: i, ., (d), where n > m, stands for y,,(d) + --- +
tn(d). Consider two optimal ranking policies 7, and 7, with n > m. Then g(m) =
g(n), where g(n) = *p1,(n) and similarly for g(m). The expected total reward of
playing 7, after m, is u1_,(n), and the expected total reward of playing 7, after 7, is
H1—sm (M) + fms1—n(m 4+ n). We want to prove

H1—>m<n) + Ml—rm(m) + ﬂm—i—l—m(m + n) > H1—m (m)

m-—+n m

Rearranging gives i1 _ym (1) +fims1—n (M+n) > 21 (m). Since £y, (n) = =i m (m),
we have

f1m (1) + fimg1sn (M +n) > 1 n(n) .

Observing that 111, (1) = p1m(n) + tmsr1-n(n), the above is equivalent to

Pn1—n (M 4+ 1) > fm1-n(1)

which is always true since in our model expected rewards are non-decreasing with delays. [
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Chapter 4

Efficient Linear Bandits through Matrix
Sketching

We dedicate this chapter to the design of efficient strategies for the linear bandit learning
problem. We consider the popular OFUL and Thompson Sampling algorithms that have been
presented in Section 2.2 of Chapter 2. As it was highlighted, they both share an update time
of order O(d?), which could be potentially expensive when dealing with arms represented
by a large number of features d. We show how they can be made efficient using Frequent
Directions, a deterministic online sketching technique. More precisely, we show that a
sketch of size m allows a O(md) update time for both algorithms. This computational
speedup is accompanied by regret bounds of order (1 + &,,)%/ 2d/T for OFUL and of order

((1 + em)d) 8/ VT for Thompson Sampling, where ¢, is bounded by the sum of the tail
eigenvalues not covered by the sketch. In particular, when the selected contexts span a
subspace of dimension at most m, our algorithms have a regret bound matching that of
their slower, non-sketched counterparts. Experiments on real-world datasets corroborate our
theoretical results.

4.1 Introduction

We consider two of the most popular algorithms for stochastic linear bandits: OFUL Abbasi-
Yadkori et al. [2011] and linear Thompson Sampling Agrawal and Goyal [2013] (linear TS
for short). As we shown in Section 2.2, while exhibiting good theoretical and empirical
performances, both algorithms require €2 (d2) time to update their model after each round.
In this Chapter we investigate whether it is possible to significantly reduce this update time
while ensuring that the regret remains nicely bounded.

The quadratic dependence on d is due to the computation of the inverse correlation matrix
of past actions (a cubic dependence is avoided because each new inverse is a rank-one
perturbation of the previous inverse). The occurrence of this matrix is caused by the linear
nature of rewards: to compute their decisions, both algorithms essentially solve a regularized
least squares problem at every round. In order to improve the running time, we sketch the
correlation matrix using a specific technique —Frequent Directions, Ghashami et al. [2016]—
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that works well in a sequential learning setting. While matrix sketching is a well-known
approach Woodruff [2014], to the best of our knowledge this is the first work that applies
sketching to linear contextual bandits while providing rigorous performance guarantees.
With a constant sketch size of m, a rank-one update of the correlation matrix takes only time
O(md), which is linear in d for a constant sketch size. However, this speed-up comes at a
price, as sketching reduces the matrix rank causing a loss of information which —in turn—
affects the least squares estimates used by the algorithms. Our main technical contribution
shows that when OFUL and linear TS are run with a sketched correlation matrix, their regret
blows up by a factor which is controlled by the spectral decay of the correlation matrix of
selected actions. More precisely, we show that the sketched variant of OFUL, called SOFUL,
achieves a regret bounded by

[|O

R(T,w*) € (1+2,)* (m+dn (1+2,) VT 4.1)
where m is the sketch size and ¢,, 1s upper bounded by the spectral tail (sum of the last
d — m + 1 eigenvalues) of the correlation matrix for all 7" rounds. In the special case when
the selected actions span a number of dimensions equal or smaller than the sketch size,
then &,, = 0 implying a regret of order m+v/T. Thus, we have a regret bound matching
that of the slower, non-sketched counterpart.! When the correlation matrix has rank larger
than the sketch size, the regret of SOFUL remains small to the extent the spectral tail of
the matrix grows slowly with 7. In the worst case of a spectrum with heavy tails, SOFUL
may incur linear regret. In this respect, sketching is only justified when the computational
cost of running OFUL cannot be afforded. Similarly, we prove that the efficient sketched
formulation of linear TS enjoys a regret bound of order

R(T,w*) £ (m+dIn(1 +2,) ) (1 +20) VAT . (4.2)

Once again, for ¢,,, = 0 our bound is of order m\/d_T, which matches the regret bound for
linear TS. When the rank of the correlation matrix is larger than the sketch size, the bound
for linear TS behaves similarly to the bound for SOFUL.

Finally, we show a problem-dependent regret bound for SOFUL. This bound, which exhibits
a logarithmic dependence on 7', depends on the smallest gap A between the expected reward
of the best and the second best action across the 7" rounds,

%(1+6m)3(m+dln(1+6m))2(lnT)2, (4.3)

[

R(T,w™)

When ¢,,,(T") = 0 this bound is of order %z(ln T)? which matches the corresponding bound
for OFUL. Experiments on six real-world datasets support our theoretical results.

Additional related work. For an introduction to contextual bandits, we refer the reader to
the recent monograph of Lattimore and Szepesvari [2018]. The idea of applying sketching

!The regret bound of OFUL in Abbasi-Yadkori et al. [2011, Theorem 3] is stated as O(d+/T'), however, it
can be improved for low-rank problems by using the “log-det” formulation of the confidence ellipsoid.
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techniques to linear contextual bandits was also investigated by Yu et al. [2017], where they
used random projections to preliminarly draw a random m-dimensional subspace which is
then used in every round of play. However, the per-step computation time of their algorithm
is cubic in m rather than quadratic like ours. Morover, random projection introduces an
additive error ¢ in the instantaneous regret which becomes of order m~'/2 for any value
of the confidence parameter § bounded away from 1. A different notion of compression
in contextual bandits is explored by Jun et al. [2017], where they use hashing algorithms
to obtain a computation time sublinear in the number K of actions. An application of
sketching (including Frequent Directions) to speed up 2nd order algorithms for online
learning is studied by Luo et al. [2016], in a RKHS setting by Calandriello et al. [2017], and
in stochastic optimization by Gonen et al. [2016].

4.2 Sketching the correlation matrix

The idea of sketching is to maintain an approximation of X,, denoted by S, € R™*¢,
where m < d is a small constant called the sketch size. If we choose m such that S;'S;
approximates X, X; well, we could use S/ S; + Al in place of V7. In the following we use
the notation \th = StT S; + Al to denote the sketched regularized correlation matrix. The
RLS estimate based upon it is denoted by

t
W=V, XY, (4.4)
s=1

A trivial replacement of V* with V does not yield an efficient algorithm. On the other hand,
using the Woodbury identity we may write

V= % (Lixa — S{ H,S,)
where H; = (S;S; + ALxm) ~'. Here matrix-vector multiplications involving S, require
time O(md), while matrix-matrix multiplications involving H, require time O(m?). So, as
long as S; and H; can be efficiently maintained, we obtain an algorithm for linear stochastic
bandits where V; ' can be updated in time O(md + m?). Next, we focus on a concrete
sketching algorithm that ensures efficient updates of S; and H;.

Frequent Directions. Frequent Directions (FD) Ghashami et al. [2016] is a deterministic
sketching algorithm that maintains a matrix S; whose last row is invariably 0. On each round,
we insert xtT into the last row of S;_;, perform an eigendecomposition sj_lst,l + xtxtT =

U, %, U/, and then set S; = (3; — piLnxm) %Ut, where p; is the smallest eigenvalue of
StT S;. Observe that the rows of S; form an orthogonal basis, and therefore H; is a diagonal
matrix which can be updated and stored efficiently. Now, the only step in question is an
eigendecomposition, which can also be done in time O(md) —see [Ghashami et al., 2016,
Section 3.2]. Hence, the total update time per round is O(md). The updates of matrices S,
and H; are summarized in Algorithm 7.

37



Algorithm 7 (FD Sketching)

Input: St—l S Rde,Xt S Rd, A>0
1: Compute eigendecomposition U diag{p1,...,pn}t U =S/ |S; 1 +x;x/
2: Sy « diag{\/p1 — pmy- -,/ Pm-1 — Pm,0} U
3: Ht — dlag{m, o ,%

Output: S;, H,

It is not hard to see that FD sketching sequentially identifies the top-m eigenvectors of the
matrix Vy = X;XT. Thus, whenever we use a sketched estimate, we lose a part of the
spectrum tail. This loss is captured by the following notion of spectral error,

Nk + Adpp1+ -+ A

Fm = nin i — k) (42)
where \; > ... > )\, are the eigenvalues of the correlation matrix V (V% with A = 0).

Note that ,,, < (A, + - -+ + Ag)/A. For matrices with low rank or light-tailed spectra we
expect this spectral error to be small. In the following, we use m to denote the quantity
m + dIn(1 + &,,) which occurs often in our bounds involving sketching. Note that m > m
and m — m as the spectral error vanishes.

Since the matrix V' is used to compute both the RLS estimate W, and the norm ||- v, the
sketching of V? clearly affects the confidence ellipsoid. The next theorem quantifies how
much the confidence ellipsoid must be blown up in order to compensate for the sketching
error. Let p; be the smallest eigenvalue of the FD-sketched correlation matrix S, S; and let
pr = p1+ - - - + ps. The following proposition due to Ghashami et al. [2016] (see the proof
of Thm. 3.1, bound on A) relates p; to €, (Equation 4.5).

Proposition 1. Foranyt =0,...,T, any A > 0, and any sketch size m = 1,...,d, it holds
that pi/\ < ey,

A key lemma in the analysis of regret is the following sketched version of [ Abbasi-Yadkori
et al.,, 2011, Lemma 11], which bounds the sum of the ridge leverage scores. Although
sketching introduces the spectral error &,,, it also improves the dependence on the dimension
from d to m whenever ¢,, is sufficiently small.

Lemma 1 (Sketched leverage scores).

d TL?
Zmin {1, ||XtH%Zf1} <2(1+enm) (ﬁl +mln (1 + m)) . (4.6)
t=1

We can now state the main result of this section.

Theorem 9 (Sketched confidence ellipsoid). Let w; be the RLS estimate constructed by an
arbitrary policy for linear contextual bandits after t rounds of play. For any § € (0,1),
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the optimal parameter w* belongs to the set C, = {W eR? : ||w— wily, < Et((s)} with
probability at least 1 — ), where

P tL? 1 Pt [+ Pt Pt

4.7)
O RV (Lt em) + SVA(L+£m) . (4.8)

Note that (4.8) is larger than its non-sketched counterpart (2.11) due to the factors 1 + &,,.
However, when the spectral error &, vanishes, (5;(0) becomes of order Rym+ S \/X, which
improves upon (2.11) since we replace the dependence on the ambient space dimension
d with the dependence on the sketch size m. In the following, we use the abbreviation

My = max{l,l/\/X}.

4.3 Sketched OFUL

Equipped with the sketched confidence ellipsoid and the sketched RLS estimate, we can
now introduce SOFUL (Algorithm 8), the sketched version of OFUL. SOFUL enjoys the

Algorithm 8 (SOFUL)
Input: 6,A >0,me{l,...,d—1}
1: \Aifg =0, \Nfal = %Idxda So = 0,14
2: fort =1,2,...do
3: GET decision set Dy
4: SELECT x; ¢ arg rgax {vatT_lx + Bi-1(0) ||X||{,t_jl}
xec Dt

5 OBSERVE reward Y;

6: UPDATE S;, H; using Alg. 7 given S;_1, x;
7 UPDATE V; ! « % (Idxd — S:HtSt)
8

9

: UPDATE w; using (4.4)
: end for

following regret bound, characterized in terms of the spectral error.

Theorem 10. The regret of SOFUL with FD-sketching of size m w.h.p. satisfies
5 3
R(T,w*) € M\(1 4 &,,) 2 (R + s\/X) VT .

Similarly to Abbasi-Yadkori et al. [2011], we also prove a distribution dependent regret bound
for SOFUL. This bound is polylogarithmic in time and depends on the smallest difference A
between the rewards of the best and the second best action in the decision sets,

) T
A= min  max (x;j—x) w*.
t=1,....,T xe D\ {x}}
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Theorem 11. The regret of SOFUL with FD-sketching of size m w.h.p. satisfies

5 InT)?
R(T,w*) £ My (1 +¢,)° m® (R* + S2)) % .

Proofs of the regret bounds appear in the supplementary material (Section 4.5.2).

4.4 Sketched linear TS

In this section we introduce a variant of linear TS (Algorithm 4) based on FD-sketching.
Similarly to SOFUL, sketched linear TS (see Algorithm 9) uses the FD-sketched approxima-
tion V;_; of the correlation matrix V;_; in order to select the action x;. Note that, in this

Algorithm 9 (Sketched linear TS)

Input: 0, > 0,m € {1,...,d— 1}, D™ (TS-sampling distribution)
2: fort =1,2,...do
3: GET decision set D,

4: SAMPLE Z; ~ D™
~ ~_1
5: SELECT x; + argmaxx ' (Vvt_l + B:(0")V, 3 Zt>
XEDt
6: OBSERVE reward Y;
7: UPDATE S;, H; using Algorithm 7 given S; 1, X;
8: UPDATE V; ! « % (Idxd — S:HtSt)

9: UPDATE w; using (4.4)
10: end for

~ ~_1
case, we need both V; !, and V, 2 to compute x,. Using the generalized Woodbury identity
(Corollary 1 in Section 4.5.1 for proofs), we can write

N

~ _ 1 ’ ’ -1 )\ ’ B
Viios(ssT) (GressT) s

1
A 2
S:f = (Et + (5 - Pt) Imxm) Ut .

Note that V, ® can still be computed in time O(md + m?) because S;S," is a diagonal
matrix.

The confidence ellipsoid stated in Theorem 9 applies to any contextual bandit policy, and so
also to the w; constructed by sketched linear TS. However, as shown by Abeille and Lazaric
[2017], the analysis needs a confidence ellipsoid larger by a factor equal to the bound on || Z||
appearing in the concentration property of the TS-sampling distribution. More precisely, the
TS-confidence ellipsoid is defined by

CP={weR!: |w—Wg, <%(6/47))}

where
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where

3.(8) = B,(8)4/ edn (%) . (4.9)

The quantity Et(é) is defined in (4.7) and ¢, ¢’ are the concentration constants of the TS-
sampling distribution (Definition 1). We are now ready to prove a bound on the regret of
linear TS with FD-sketching.

Theorem 12. The regret of FD-sketched linear TS, run with sketch size m w.h.p. satisfies
R(T,w*) € M, (1 + ) (R + Sﬁ) Vdr .

The proof of Theorem 12 closely follows the analysis of Abeille and Lazaric [2017] with
some key modifications due to the sketching operations. For completeness, we include the
proof in Section 4.5.3.

4.5 Proofs

4.5.1 Linear algebra and sketching tools

We start by introducting a basic relationship between the correlation matrix of actions X X
and its FD-sketched estimate S;r S; with sketch size m < d. Recall that p; is the smallest
eigenvalue of S| S, fort = 1,...,T and p; = p; +- - - + p;. Recall also that V = S| S; + AL

Proposition 2. Let S, be the matrix computed by FD-sketching at time step s = 1,...,1
(where Sg = 0). Then V4 = XIXS = S;,rSS + psI .

[NIE

Proof. By construction, S S, ; + x,x] = U, B, U] where S, = (X, — psLnxm)? Us.
Thus,
S/ Ss =UZ U] — pI=8S]_ S, 1 +x:x, — psl
Summing both sides of the above over s = 1, ..., ¢ we get
t t
StTSt = ZXSXST — Zpsl
s=1 s=1
which implies the desired result. ]

In the following lemma, we show a sketch-specific version of the determinant-trace inequality
(Lemma 17). When the spectral error is small, the right-hand side of the inequality depends
on the sketch size m rather than the ambient dimension d.

det(V}) p tL?
(SN g (14 2) o (14 25
n(det(AI))‘ o(1+5) +min (14

Lemma 2.
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Proof. Let Xl, Xg, e ,Xd > 0 be the eigenvalues of S, S;. We start by looking at the ratio of
determinants. Using Proposition 2 we can w