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Abstract
This manuscript is dedicated to the analysis of the application of stochastic bandits to the
recommender systems domain. Here a learning agent sequentially recommends one item
from a catalog of available alternatives. Consequently, the environment returns a reward
that is a noisy observation of the rating associated to the suggested item. The peculiarity of
the bandit setting is that no information is given about not recommended products, and the
collected rewards are the only information available to the learning agent. By relying on them
the learner adapts his strategy towards reaching its learning objective, that is, maximizing the
cumulative reward collected over all the interactions.
In this dissertation we cover the investigation of two main research directions: the devel-
opment of efficient learning algorithms and the introduction of a more realistic learning
setting. In addressing the former objective we propose two approaches to speedup the
learning process. The first solution aims to reduce the computational costs associated to the
learning procedure, while the second’s goal is to boost the learning phase by relying on data
corresponding to terminated recommendation sessions. Regarding the latter research line, we
propose a novel setting representing use-cases that do not fit in the standard bandit model.
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Estratto
Questo manoscritto è dedicato all’analisi dell’applicazione dei banditi stocastici ai sistemi di
raccomandazione. Qui un apprenditore raccomanda in maniera sequenziale un oggetto es-
tratto da un catalogo contenente varie alternative. Di conseguenza, l’ambiente restituisce una
ricompensa definita come un’osservazione rumorosa della valutazione attribuita all’oggetto
suggerito. La particolarità dell’ambiente bandits è che non si ha alcuna informazione relativa
agli oggetti non raccomandati, e le ricompense raccolte sono le uniche informazioni disponi-
bili all’apprenditore. Facendo affidamento su di esse, l’apprenditore adatta la sua strategia col
fine di soddisfare la propria funzione obiettivo, ovvero la massimizzazione della ricompensa
cumulativa raccolta su tutte le interazioni. In questa dissertazione trattiamo l’indagine di
due direzioni di ricerca principali: lo sviluppo di algoritmi di apprendimento efficienti e
l’introduzione di un ambiente di apprendimento più realistico. Nell’affrontare il primo
obiettivo proponiamo due approcci per accelerare il processo di apprendimento. La prima
soluzione mira a ridurre i costi computazionali associati alla procedura di apprendimento,
mentre l’obiettivo della seconda proposta è quello di potenziare la fase di apprendimento
facendo affidamento sui dati corrispondenti alle sessioni di raccomandazione precedenti.
Infine, proponiamo e analizziamo un nuovo modello di apprendimento che rappresenta casi
d’uso non inclusi nel modello classico dei banditi stocastici.
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Chapter 1

Introduction

Overview of the Studied Problems. This manuscript is dedicated to the theoretical anal-
ysis of efficient and effective solutions to the sequential recommendation problem. With
the wide-spreading of the World-Wide-Web, people around the world are spending more
and more time surfing the internet and looking for new and personalized content. This
process produces large amount of data regarding the users (such as location, date, gender,
age etc.) and at the same time provides feedback to the services providers regarding their
recommendations. The high frequency of interactions has caused traditional batch recom-
mendation systems to be unsuitable to this highly-interactive scenario. Indeed, the considered
recommendation problem becomes how to leverage past feedback and user side information,
to decide what to (quickly) recommend to get the customer satisfied. Formally, we represent
the user as a stochastic agent who samples item ratings from a stochastic function which is
parameterized by the recommended products and represents the customer preferences. The
learner’s objective is to maximize the cumulative reward collected during the whole user
navigation by matching his interests. In order to achieve this goal at each new choice the
learner can only rely on the information collected during the past interactions. This lack of
information arises a trade-off, at each new choice the learner can either exploit its estimates
and take what he thinks to be the best available recommendation, or explore potentially
suboptimal products in order to acquire more information on the customer (environment).

Theoretical Settings. Multi-armed bandits are the most used way to formalize the de-
scribed learning problem and to analyze the trade-off between following an optimality
criteria and gaining more information on the environment. Throughot this dissertation we
will focus on two well known bandit settings: the stochastic bandit and the stochastic linear
bandit frameworks. In the former case we assume the available items (arms) are adimensional
and their ratings (value) are sampled from unknown distributions which they are associated
to. In the latter scenario, we assume the arms to be d-dimensional vectors representing
their features and their value are given by a (unknown) linear regression of the arm features
representing the user preference. In both cases, the learning objective is to learn the customer
tastes while minimizing the regret incurred by making recommendation which do not match
his interests. In Chapter 2 we formally define the stochastic bandit and the linear stochastic
bandit settings along with their most popular learning algorithms.
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Contributions In this dissertation we tackle three main complexities in the literature of
the sequential recommendation problem that suggest that standard bandit algorithms are not
an optimal solution to the considered problem.
Firstly, the biggest limitation affecting both standard (adimensional) and linear stochastic
bandits is that ratings are assumed to be invariant to the provided recommendations. Indeed,
if we consider the ideal case where the learning agent knows the user preference beforehand,
than it would be natural to let it always recommend the most liked product. Even if this may
be a winning strategy in the short term, it overlooks the user’s preferences which in fact are
not static. For instance, the user may get bored of receiving the same recommendation over
and over. Starting from these motivations, in Chapter 3 we introduce a novel non-stationary
bandit setting. There, the payoff of an arm is not static anymore and grows with the time since
the arm was last played. We also show that the optimal policy do no stick recommending the
best arm but rather varies its recommendations following unknown combinatorial patterns.
Moving to the stochastic linear bandit setting, firstly we observe that while their most popular
algorithm exhibit good theoretical and empirical performances, they require potentially high
time to update their model after each interaction. In Chapter 4 our objective is to propose an
alternative learning scheme that significantly reduces the update time while preserving good
quality recommendations. The second fragility suffered by existing linear bandit algorithms
is the curse-of-dimensionality. With the increasing of the number of arms features (d),
existing models may require many explorative interactions that can let the user quit his
navigation session. In Chapter 5 we propose an approach to speedup the learning process
that takes advantage on terminated navigation sessions to acquire information about the user
and then reducing the number of explorative interactions.

Outline
The remainder of this manuscript is organized as follows:

• In Chapter 2 we introduce some preliminary notations, definitions and the existing
core results in the stochastic bandits literature.

• In Chapter 3 we formalize a novel nonstationary stochastic bandit setting and propose
a suitable learning strategy. This work has been published as Cella and Cesa-Bianchi
[2020] and benefit from the supervision of Nicolò Cesa-Bianchi.

• In Chapter 4 we investigate the adoption of a sketching technique to speedup the update
time of linear bandit policies. This chapter refers to a joint work with Ilja Kuzborskij
and Nicolò Cesa-Bianchi which has been published as Kuzborskij et al. [2019].

• Finally, in Chapter 5 we investigate two transfer learning strategies applied to linear
bandit tasks. This problem has been published as Cella et al. [2020] and was a joint
work with Alessandro Lazaric and Massimiliano Pontil.

• The manuscript ends with Chapter 6. There, we provide closing remarks and propose
candidate future research directions.
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Chapter 2

Notation and Preliminaries

In this chapter we introduce the adopted notation and the state of the art approaches for
both the stochastic and the linear stochastic bandits. We present here the main concepts and
proof techniques that we will recall in the next chapters. We begin by formally defining
the stochastic bandit setting and presenting the upper confidence bound principle that was
formally analyzed in Auer et al. [2002]. We will then formalize the linear bandit setting and
present two state of the art learning algorithms: OFUL [Abbasi-Yadkori et al., 2011] and
Thompson Sampling [Abeille and Lazaric, 2017].

2.1 Stochastic Bandits
Multi-armed bandits is a very powerful interactive framework for algorithms that make
decisions over time and under uncertainty [Lattimore and Szepesvári, 2018, Auer et al.,
2002, Cesa-Bianchi and Lugosi, 2006, Siegmund, 2003, Robbins, 1952, Cesa-Bianchi, 2016,
Bubeck et al., 2012]. The name comes from the slot machines that can be found in a casino.
There we have many slot machines (a.k.a. one-armed bandits) and the gambler would like to
play the most profitable one, that is the one yielding the higher monetary reward if played.

2.1.1 Setting Formalization

We start by considering the stochastic bandit setting that was first formalized in Robbins
[1952]. Here, an algorithms sequentially interacts with an environemnt for T rounds. In
each round t ∈ [T ] = 1, . . . , T , the environment provides a decision set K = {x1, . . . , xk}
consisting of K possible actions (a.k.a. arms) to choose from. The learner picks one of
the available arm Xt ∈ K and then the environment samples a reward Yt ∈ R from a fixed
but unknown distribution associated with the pulled arm Xt with mean µXt . The generated
reward will be the only feedback provided to the learning agent at round t and we call
this a bandit feedback. As in the casino the objective of the gambler is to collect as much
reward as possible thorugh its sequence of interactions, here the objective of the learner
is to maximize the cumulative reward collected during the T rounds. In achieving this
objective the learner can only rely on the collected feedbacks. This arises a natural trade-off:
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Algorithm 1 The UCB1 Algorithm.
Input: number of rounds T, decision set K

1: PULL each arm once
2: for t = K + 1, 2, . . . , T do
3: UPDATE arm indices according to Equation 2.2
4: SELECT arm xt = arg maxi∈K ucb(i)
5: OBSERVE reward Yt
6: end for

from one side he needs to explore the environment in order to acquire information on the
available arms to identify the most profitable one, from the other it has to exploit the arm
which seems to be better according to the acquired information to collect more rewards. The
learning algorithms that we will present in this dissertation find smart ways to deal with this
exploration/exploitation trade-off. The reward maximization objective of the learner can be
equivalently stated in terms of regret incurred with respect to the optimal strategy which
collects the biggest cumulative reward possible. Formally, if we denote with i∗ ∈ K the arm
whose distribution has the largest mean µ∗ = maxi=1,...,k µi then we can define the incurred
expected regret as

R(T ) = E
[
Tµ∗ −

T∑
t=1

Yt

]
= Tµ∗ −

T∑
t=1

µXt , (2.1)

where the expectation is with respect to the randomness in the reward generation.

2.1.2 Algorithms and Results
Bandits found their first application in clinincal trials (Thompson [1933], Gittins [1979],
Villar et al. [2015]). Here the goal is to identify the most effective drug out of a finite number
of alternatives with unknown effects. In order to achieve this objective, the learning agent
can sequentially select one of the drugs and administers it to the current patient. Once it has
observed the effects induced by the drug, the learner updates its estimate hoping to do better
with the next patient. In the last decades bandit algorithm expanded their applications to
web-oriented scenarios like web search Radlinski et al. [2008], news recommendation Li
et al. [2010], music playlist construction Cella and Cesa-Bianchi [2020] and recommendation
systems (Li et al. [2011], Bresler et al. [2014], Gentile et al. [2014], Bresler et al. [2016],
Gentile et al. [2017]). All the proposed models are inspired by the breakthrough that have
been firstly introduced in Auer et al. [2002]. There, relying on the Chernoff-Hoeffding
inequality, authors developed a finite-time analysis of the UCB1 algorithm (see Algorithm 1)
which maintains arms indices defined by a high-probability upper bound on the expected
value associated to the arm. More in detail, at each round t ∈ [T ] UCB1 associates to each
arm i ∈ K an index ucb(i) defined as

ucb(i) = µ̂i
(
T (i, t)

)
+

√
2 log t

T (i, t)
(2.2)

12



where T (i, t) denotes the number of times arm i ∈ K has been pulled up to round t and
µ̂i
(
T (i, t)

)
is the empirical mean computed over the T (i, t) rewards associated to arm i.

These indices represent the largest statistically plausible true mean values associated to the
arms based on the available observations. As shown in Algorithm 1 UCB1 follows the
Optimism in the Face of Uncertainty (OFU) principle and pulls the arm with highest index.

Theorem 1. For all K > 1, the expected regret of the UCB1 strategy after any number T of
rounds is upper bounded by[

8
∑

i∈K\{i∗}

log T

∆i

]
+

(
1 +

π2

3

)(∑
i∈K

∆i

)
(2.3)

where ∆i represents the suboptimality mean gap µ∗ − µi.

Proof Sketch First, we can notice that the regret can be equivalently rewritten as

R(T ) =
∑
i∈K

∆iE
[
T (i, T )

]
. (2.4)

Therefore, our objective is to minimize the number of pulls associated to the set of suboptimal
arms {i ∈ K : µi < µ∗}. According to the UCB1 algorithm, the following holds:

T (i, T ) = 1 +
T∑

t=K+1

I{Xt = i}

≤ l +
T∑

t=K+1

I{Xt = i, T (i, t− 1) ≥ l}

≤ l +
T∑

t=K+1

I{µ̂i
(
T (i, t− 1)

)
+ ct−1,T (i,t−1) ≥ µ̂i∗

(
T (i∗, t− 1)

)
+

+ ct−1,T (i∗,t−1), T (i, t− 1) ≥ l}

≤ l +
T∑

t=K+1

I
{

min
0<si<t

µ̂i(si) + ct−1,si ≥ max
l≤s≤t

µ̂i∗(s) + ct−1,s

}

≤ l +
T∑

t=K+1

t−1∑
s=1

t−1∑
si=l

I{µ̂i(si) + ct,si ≥ µ̂i∗(s) + ct,s}

where l is an arbitrary positive integer and ct,s =
√

2 log t
s

. In order to control the argument
µ̂i(si) + ct−1,si ≥ µ̂i∗(s) + ct−1,s we can add and subtract the optimal true mean µ∗, the
considered suboptimal true mean µi and the confidence bound associated to the suboptimal
arm ct,si . We can then observe that when the previous argument is satisfied, than at least one
of the following conditions must hold:

µ̂i(si) ≥ µi + ct,si (2.5)
µ̂i∗(s) ≤ µ∗ − ct,s (2.6)
µ∗ − µi ≤ 2ct,si (2.7)
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Intuitively, this means that the suboptimal pull is justified either by an overestimation of the
mean associated to the suboptimal arm (Equation 2.5), or an understimation of the mean
associated to the optimal arm (Equation 2.6) or a still too large confidence bound (Equation
2.7) compared to the suboptimality gap ∆i. The first two cases can be directly controlled by
applying the Chernoff-Hoeffding inequality (Proposition 4 in the Appendix material) and
cause the (1 + π2

3
) term. Finally, the last case is false up to l = d8 log T

∆2
i
e rounds and results in

the
[
8
∑

i∈K\{i∗}
log T
∆i

]
term.

2.2 Linear Stochastic Bandits
An interesting alternative to the stochastic bandit problem is given by the linear bandits which
considers actions as a subset of Rd. Here, the observed reward has an expected value which is
an unknown linear function of the action. It is simple to observe that this setting generalizes
the previous one by taking actions as the standard orthonormal basis. Before presenting
the learning setting and the algorithms we need to introduce some additional notation. Let
B(z, r) ⊂ Rd be the Euclidean ball of center z and radius r > 0 and let B(r) = B(0, r).
Given a positive definite d× d matrix A, we define the inner product 〈x, z〉A = x>Az and
the induced norm ‖x‖A =

√
x>Ax, for any x, z ∈ Rd, if not specified ‖·‖ is the Euclidean

norm. Throughout the dissertation, we write f Õ= g to denote f = Õ(g).

2.2.1 Setting Formalization
We describe the linear bandit protocol in Algorithm 2. Here, at each round t ∈ [T ], the
learner has to select one arm xt from a set of alternatives Dt ⊂ Rd. The observed reward
corresponding to the taken arm has expected value satisfying

Yt = x>t w? + ηt (2.8)

where w? ∈ Rd is an unknown parameter and ηt is a random noise satisfying some constraints
that we will specified soon. This learning problem is particularly relevant in cases where
the number of arms is very large. The main intuition is that, given the assumed reward
structure, each pull gives information on the unknown parameter w? which indirectly, gives
information about the value of not pulled arms. It is than natural to see that here the
objective is to estimate the d-dimensional feature vector w?. Similarly to what we have done
for the simpler stochastic case, we can introduce the objective function in terms of regret
minimization. Thanks to the knowledge of the true parameter w?, at each round t the optimal
policy picks the arm x∗t = arg maxx∈Dt x

>w∗, maximizing the instantaneous reward. The
learning objective is then to maximize the cumulative reward, or equivalently, to minimize
the pseudo-regret

R(T,w?) =
T∑
t=1

(x∗t − xt)
>w?. (2.9)

14



Algorithm 2 (Linear Bandit)
1: for t = 1, 2, . . . do
2: GET decision set Dt ⊂ Rd

3: Use current policy to SELECT action xt ∈ Dt

4: OBSERVE reward Yt ∈ R
5: UPDATE the current policy using pair (xt, Yt)
6: end for

We introduce some standard assumptions for the linear stochastic bandit setting. At any round
t = 1, 2, . . . , T the decision set Dt ⊂ Rd is finite and such that ‖x‖2 ≤ L for all x ∈ Dt

and for all t ≥ 1. The noise sequence η1, η2 . . . , ηT is conditionally R-subgaussian for some
fixed constant R ≥ 0. Formally, for all t ≥ 1 and all λ ∈ R, E

[
eληt

∣∣ η1, . . . , ηt−1

]
≤

exp (λ2R2/2). Note that this implies E[ηt | η1, . . . , ηt−1] = 0 and Var[ηt | η1, . . . , ηt−1] ≤
R2. Finally, we assume that a known upper bound S on ‖w?‖ is available.

2.2.2 Algorithms and Results
Both OFUL and Linear TS operate by computing a confidence ellipsoid to which w? belongs
with high probability. Let Xt = [x1, . . . ,xt]

> be the t× d matrix of all actions selected up to
round t by an arbitrary policy for linear contextual bandits. For λ > 0, define the regularized
correlation matrix of actions Vλ

t and the regularized least squares (RLS) estimate ŵt as

Vλ
t = X>t Xt + λI and ŵt =

(
Vλ
t

)−1
t∑

s=1

xsYs . (2.10)

The following theorem [Abbasi-Yadkori et al., 2011, Theorem 2] bounds in probability
the distance, in terms of the norm ‖·‖Vλ

t
, between the optimal parameter w? and the RLS

estimate ŵt.

Theorem 2 (Confidence Ellipsoid). Let ŵt be the RLS estimate constructed by an arbitrary
policy for linear contextual bandits after t rounds of play. For any δ ∈ (0, 1), the optimal
parameter w? belongs to the set Ct ≡

{
w ∈ Rd : ‖w − ŵt‖Vλ

t
≤ βt(δ)

}
with probability

at least 1− δ, where

βt(δ) = R

√
d ln

(
1 +

tL2

λd

)
+ 2 ln

(
1

δ

)
+ S
√
λ . (2.11)

OFUL. The actions selected by OFUL are solutions to the following constrained optimiza-
tion problem

xt = arg max
x∈Dt

max
w∈Rd

x>w

such that ‖w − ŵt−1‖Vλ
t−1
≤ βt−1(δ) . (2.12)
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Algorithm 3 (OFUL)
Input: δ, λ > 0

1: ŵ0 = 0,
(
Vλ

0

)−1
= 1

λ
I.

2: for t = 1, 2, . . . do
3: GET decision set Dt

4: SELECT xt ← arg max
x∈Dt

{
ŵ>t−1x + βt−1(δ) ‖x‖

(Vλ
t )
−1

}
5: OBSERVE reward Yt
6: UPDATE

(
Vλ
t

)−1 and ŵt according to (2.10)
7: end for

OFUL can be formulated as Algorithm 3. Note that xt maximizes the sum of an exploita-
tion term consisting on the expected reward estimate ŵ>t−1x plus an exploration term
βt−1(δ) ‖x‖

(Vλ
t )
−1 that provides an upper confidence bound for the RLS estimate in the

direction of x. More in detail, the more the arm x ∈ Rd is correlated to the design matrix V,
the more its norm weighted by the inverse of the same matrix will be small. This means that
the more an arm has been pulled during past rounds, the more accurate will be our estimates
on it. The next theorem states an upper bound on the regret incurred by the OFUL algorithm
(see Theorem 3 of Abbasi-Yadkori et al. [2011]).

Theorem 3. Assume that for all t ∈ [T ] and all x ∈ Dt,x
>w? ∈ [−1, 1]. Then, with

probability at least 1− δ, the regret incurred by OFUL satisfies:

R(T,w?) ≤ 4

√
Td log

(
1 +

TL

λd

)(
λ

1
2S +R

√
2 log(1/δ) + d log(1 + TL/(λd))

)
.

Linear TS. The linear Thompson Sampling algorithm of Agrawal and Goyal [2013] is
Bayesian in nature: the selected actions and the observed rewards are used to update a
Gaussian prior over the parameter space. Each action xt is selected by maximixing x>ŵTS

t

over x ∈ Dt, where ŵTS
t is a random vector drawn from the posterior. As shown by Abeille

and Lazaric [2017], linear TS can be equivalently defined as a randomized algorithm based
on the RLS estimate (see Algorithm 4). The random vectors Zt are drawn i.i.d. from a
suitable multivariate distribution DTS that need not be related to the posterior. In order to
prove regret bounds, it is sufficient that the law of Zt satisfies certain properties.

Definition 1 (TS-sampling distribution). A multivariate distribution DTS on Rd, absolutely
continuous w.r.t. the Lebesgue measure, is TS-sampling if it satisfies the following two
properties:
• (Anti-concentration) There exists p > 0 such that for any u with ‖u‖ = 1, P

(
u>Z ≥

1
)
≥ p.

• (Concentration) There exist c, c′ > 0 such that for all δ ∈ (0, 1),

P

(
‖Z‖ ≤

√
cd ln

(
c′d

δ

))
≥ 1− δ .
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Algorithm 4 Linear TS

Input: δ, λ > 0,m ∈ {1, . . . , d− 1}, DTS (sampling distribution)
1: ŵ0 = 0,

(
Vλ

0

)−1
= 1

λ
Id×d, δ

′ = δ/(4T )
2: for t = 1, 2, . . . do
3: GET decision set Dt

4: SAMPLE Zt ∼ DTS

5: SELECT xt ← arg max
x∈Dt

x>
(
ŵt−1 + β̃t(δ

′)
(
Vλ
t

)− 1
2 Zt

)
6: OBSERVE reward Yt
7: UPDATE

(
Vλ
t

)− 1
2 and ŵt using Equation (2.10)

8: end for

Similarly to OFUL, linear TS uses the notion of confidence ellipsoid. However, due to the
properties of the sampling distribution DTS, the ellipsoid used by linear TS is larger by a
factor of order

√
d than the ellipsoid used by OFUL. This causes an extra factor of

√
d in the

regret bound, whose result is formally presented in the next theorem.

Theorem 4. Under the same assumptions holding for Theorem 3, with probability at least
1− δ, the regret of linear TS satisfies

R(T,w?) ≤
[
βT (δ′) + γT (δ′)(1 +

4

p
)
]√

2Td log
(
1 +

T

λ

)
+

4γT (δ′)

p

√
8T

λ
log

4

δ
(2.13)

where γ(δ) = β(δ)
√
cd log(c′c/δ) and δ′ = δ

4T
.

Note that both OFUL and linear TS need to maintain
(
Vλ
t

)−1
(

or
(
Vλ
t

)− 1
2

)
, which requires

time O
(
d2
)

to update.
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Chapter 3

Stochastic Bandits with
Delay-Dependent Payoffs

We dedicate this chapter to the analysis of a non-stationary stochastic bandit problem. The
introduced setting is motivated by recommendation problems in music streaming platforms
and in education. Here, the expected reward of an arm depends on the number of rounds
that have passed since the arm was last pulled. We begin by proving that finding an optimal
policy is NP-hard even when all model parameters are known. Then, we introduce a
class of ranking policies provably approximating, to within a constant factor, the expected
reward of the optimal policy. We show an algorithm whose regret with respect to the best
ranking policy is bounded by Õ

(√
kT
)
, where k is the number of arms and T is time. Our

algorithm uses only O
(
k ln lnT ) switches, which helps when switching between policies is

costly. As constructing the class of learning policies requires ordering the arms according
to their expectations, we also bound the number of pulls required to do so. Finally, we run
experiments to compare our algorithm against UCB on different problem instances.

3.1 Introduction

As introduced in Section 2.1, in the simplest stochastic bandit framework Lai and Robbins
[1985] rewards are realizations of i.i.d. draws from fixed and unknown distributions associated
to each arm. In that setting the optimal policy is to consistently recommend the arm with
the highest reward expectation. On the other hand, in scenarios like song recommendation,
users may grow tired of listening to the same music genre over and over. Here, playlists
typically consists of different music genres interleaved according to certain patterns. This is
naturally formalized as a nonstationary bandit setting, where the payoff of an arm grows with
the time since the arm was last played. In this case policies consistently recommending the
same arm are seldom optimal. E-learning applications, where arms corresponds to questions
that students have to answer, are other natural examples of the same phenomenon, as asking
again immediately the same question that the student has just answered is not very effective.
In the remaining of the chapter we introduce a simple nonstationary stochastic bandit model,
B2DEP, in which the expected reward µi(τ) of an arm i is a bounded nondecreasing function
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of the number τ of rounds that have passed since the arm was last selected by the policy.
More specifically, we assume each arm i has an unknown baseline payoff expectation µi
(equal to the expected payoff when the arm is pulled for the first time) and an unknown delay
parameter di > 0. If the arm was pulled recently (that is, 1 ≤ τ ≤ di), then the expected
payoff may be smaller that its baseline value: µi(τ) ≤ µi. Vice versa, if τ > di, then µi(τ) is
guaranteed to match the baseline value µi. In the song recommendation example, the delays
di model the extent to which listening to a song of genre i affects how much a user is willing
to listen to more songs of that same genre.
Since τ can be viewed as a notion of state for arm i, our model can be compared to
nonstationary models, such as rested bandits Gittins [1979] and restless bandits Whittle
[1988] —see also Tekin and Liu [2012]. In restless bandits the reward distribution of an
arm changes irrespective of the policy being used, whereas in rested bandits the distribution
changes only when the arm is selected by the policy. Our setting is neither rested nor restless,
as our reward distributions change differently according to whether the arm is selected by the
policy or not.
Optimal strategies for restless bandits are notoriously hard to compute, or even approximate
—see, e.g., Guha et al. [2010]. In Section 3.4 we make a reduction to the Periodic Maintenance
Scheduling Problem Bar-Noy et al. [2002] to prove that the optimization problem of finding
an optimal periodic policy in our setting is NP-Hard. In order to circumvent the hardness of
computing the optimal periodic policy, in Section 3.5 we identify a simple class of periodic
policies that are efficiently learnable, and whose expected reward is provably to within a
constant factor of that of the optimal policy. Our approximating class is pretty natural: it
contains all ranking policies that cycle over the r best arms (where r is the parameter to
optimize) according to the unknown ordering based on the arms’ baseline payoff expectations.
Note that a top-r ranking policy pulls each of the first r arms with a delay exactly equal to r.
As it turns out, learning the best ranking policy can be formulated in terms of minimizing
the standard notion of regret. This is unlike the problem of learning the best periodic policy,
which instead requires minimizing the harder notion of policy regret Arora et al. [2012].
Consider the task of learning the best ranking policy. In our music streaming example, a
ranking policy is a playlist for the user. As changing the playlist streamed to the user may
be costly in practice, we also introduce a switching cost for selecting a different ranking
policy. Controlling the number of switches could also have a good effect in our nonstationary
setting, when the expected reward of a ranking policy may depend on which other ranking
polices were played earlier. The learning agent should ensure that a ranking policy is played
many times consecutively (i.e., infrequent switches), so that estimates are calibrated (i.e.,
computed in the same context of past plays).
A standard bandit strategy like UCB Auer et al. [2002], which guarantees a regret of
O
(√

kT lnT
)

irrespective of the size of the suboptimality gaps between the expected reward
of the optimal ranking policy and that of the other policies, performs a number of switches
growing with the squared inverse of these gaps. In Section 3.6 we show how to learn the best
ranking policy using a simple variant of a learning algorithm based on action elimination
proposed in Cesa-Bianchi et al. [2013a]. Similarly to UCB, this algorithm has a distribution-
free regret bounded by

√
kT . However, a bound O

(
k ln lnT

)
on the number of switches is

also guaranteed irrespective of the size of the gaps.
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In Section 3.7 we turn to the problem of constructing the class of ranking policies, which
amounts to learning the ordering of the arms according to their baseline payoff expectations
µ1, . . . , µk. Assuming µ1 > · · · > µk, this can be reduced to the problem of learning the
ordering of reward expectations in a standard stochastic bandit with i.i.d. rewards. We show
that this is possible with a number of pulls bounded by

∑
i 1/∆

2
i (ignoring logarithmic

factors), where ∆i is the smallest gap between µi−1 − µi and µi − µi−1. Note that this bound
is not significantly improvable, because 1

/
∆2
i samples of each arm i are needed to verify

that µi−1 < µi < µi+1.
Finally, in Section 3.8 we describe experiments comparing our low-switch algorithm against
UCB in both large-gap and in small-gap settings.

3.2 Related works
Our setting is a variant of the model introduced by Kleinberg and Immorlica [2018]. In that
work, µi(τ) are concave, nondecreasing functions satisfying µi(τ) ≤ µi(τ − 1) + 1. Note
that this setting and ours are incomparable. Indeed, unlike Kleinberg and Immorlica [2018]
we assume a specific parametric form for the functions µi(·), which are nondecreasing and
bounded by 1. On the other hand, we do not assume concavity, which plays a key role in
their analysis.
Pike-Burke and Grunewalder [2018] consider a setting in which the expected reward functions
µi(·) are sampled from a Gaussian Process with known kernel. The main result is a bound
of order

√
kT on the Bayesian d-step lookahead regret, where d is a user-defined parameter.

This notion of regret is defined by dividing time in length-d blocks, and then summing the
regret in each block against the greedy algorithm optimizing the next d pulls given the agent’s
current configuration of delays (i.e., how long ago each arm was last pulled). Similarly
to Pike-Burke and Grunewalder [2018], we also compete against a greedy block strategy.
However, in our case the block length is unknown, and the greedy strategy is not defined in
terms of the agent’s delay configuration.
A special case of our model is investigated in the very recent work by Basu et al. [2019].
Unlike B2DEP, they assume µi(τ) = 0 for all τ ≤ di and complete knowledge of the delays
di. In fact, they even assume that every arm i cannot be selected in the next di time steps
after a pull. Their main result is a regret bound for a variant of UCB competing against the
greedy policy. They also show NP-hardness of finding the optimal policy through a reduction
similar to ours. It is not clear how their learning approach could be extended to prove results
in our more general setting, where µi(τ) could be positive even when τ ≤ di and the delays
di are unknown.
A different approach to nonstationary bandits in recommender systems considers expected
reward functions that depend on the number of times the arm was played so far (Levine et al.
[2017], Cortes et al. [2017], Bouneffouf and Féraud [2016], Heidari et al. [2016], Seznec
et al. [2019], Warlop et al. [2018]). These cases correspond to a rested bandit model, where
each arm’s expected reward can only change when the arm is played.
The fact that we learn ranking strategies is reminiscent of stochastic combinatorial semi-
bandits Kveton et al. [2015b], where the number of arms in the schedule is a parameter
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of the learning problem. In particular, similarly to (Radlinski et al. [2008], Kveton et al.
[2015a], Katariya et al. [2016]) our strategies learn rankings of the actions, but unlike those
approaches in our case the optimal number of elements in the ranking must be learned too.

3.3 The B2DEP setting
As presented in Section 2.1, in the classical stochastic multi-armed bandit model, at each
round t = 1, 2, . . . the agent pulls an arm from K = {1, . . . , k} and receives the associated
payoff, which is a [0, 1]-valued random variable independently drawn from the (fixed but
unknown) probability distribution associated with the pulled arm. The payoff is the only
feedback revealed to the agent at each round. The agent’s goal is to maximize the expected
cumulative payoff over any number of rounds.
In the B2DEP (Bandits with DElay DEpendend Payoff) variant introduced here, at each round
t ∈ [T ], the learner picks an arm Xt ∈ K and observes the realization Yt of a reward random
variable whose (conditional) expectation µXt(τ) is an increasing function of τ , the number
of rounds since the last time arm Xt ∈ K has been pulled. Specifically, for any i ∈ K and
t ∈ [T ], let us define by Ft the σ-algebra generated by the past history of pulls and observed
reward random variables X1, Y1, . . . , Xt−1, Yt−1. Given a time horizon T , a learning policy
π is a function that maps at each round t ∈ [T ] the observed history X1, Y1 . . . , Xt−1, Yt−1 to
the next action Xt ∈ K. For any i ∈ K, t ∈ [T ] we can then define

µi,t = EFt [Yt] = (1− f(τ)I {0 < τ ≤ di})µi (3.1)

where µi is the unknown baseline reward expectation for arm i, f : N→ [0, 1] is an unknown
nonincreasing function, and τ is the number of rounds that have passed since that arm was last
pulled (conventionally, τ = 0 means that an arm is pulled for the first time). From now on our
interest will focus on the expected value µi,t = µi(τ) associated to an arm-delay pair, where
the dependency on t is fully captured by the τ random variable. When f is identically zero,
B2DEP reduces to the standard stochastic bandit model with payoff expectations µ1, . . . , µk.
The unknown arm-dependent delay parameters di > 0 control the number of rounds after
which the arm’s expected payoff is guaranteed to return to its baseline value µi.
Let gt(π) be the payoff collected by policy π at round t. Given an instance of B2DEP, the
optimal policy π∗ maximizes, over all policies π, the long term expected average payoff

lim
T→∞

GT (π)

T
where GT (π) = E

[
T∑
t=1

gt(π)

]
.

Note that, the payoff conditional expectations at any time step t can be computed given the
current (not random) delay vector τ(t) =

(
τ1(t), . . . , τk(t)

)
, where each integer 0 ≤ τi(t) ≤

di counts how many rounds have passed since i ∈ K was last pulled (setting τi(t) = 0 if i
was never pulled or if it was last pulled more than di steps ago). Hence, any delay-based
policy —e.g., any deterministic function of the current delay vector— is eventually periodic,
meaning that π

(
τ(t)

)
= π

(
τ(t+ P )

)
for all t0 ≤ t ≤ T , where P is the period and t0 is the

length of the transient.
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Consider the greedy policy πgreedy defined as follows: At each round t, πgreedy pulls the arm
i ∈ K with the highest expected reward according to current delays

πgreedy

(
τ(t)

)
= arg max

i∈K
µi
(
τi(t)

)
(3.2)

where τi(t) = 0 if i was never pulled before. It is easy to see that πgreedy is not always
optimal. For example consider the following instance of B2DEP with k = 2: f(τ) = 1

2

for all τ , µ1 = 1, µ2 = 1
2
− ε, d1 = d2 = 1. Then πgreedy always pulls arm 1 and achieves

Gt(πgreedy) = 1 + T−1
2

, whereas GT (π∗) = 1 + T−1
2

(
3
2
− ε
)

where π∗ alternates between
arm 1 and arm 2. Hence GT (πgreedy) ≤ 2

3
GT (π∗).

In the next section we show that the problem of finding the optimal periodic policy for
B2DEP is intractable.

3.4 Hardness results
We show that the optimization problem of finding an optimal policy for B2DEP is NP-hard,
even when all the instance parameters are known. Our proof relies on the NP-completeness
of the Periodic Maintenance Scheduling Problem (PMSP) shown by Bar-Noy et al. [2002].
Although a very similar result can also be proven using the reduction of Basu et al. [2019],
introduced for a special case of our B2DEP setting, we give our proof for completeness.
A maintenance schedule on nmachines {1, . . . , n} is any infinite sequence over {0, 1, . . . , n},
where 0 indicates that no machine is scheduled for service at that time. An instance of the
PMSP decision problem is given by integer service intervals `1, . . . , `n such that

∑n
i=1

1
`i
≤ 1.

The question is whether there exists a maintenance schedule such that the consecutive service
times of each machine i are exactly `i times apart. The following result holds (proof in the
supplementary material).

Theorem 5. It is NP-hard to decide whether an instance of B2DEP has a periodic policy π
achieving

lim
T→∞

GT (π)

T
≥

k∑
i=1

µi
di + 1

.

3.5 Approximating the optimal policy
In order circumvent the computational problem of finding the best periodic policy, we
introduce a simple class ΠK of periodic ranking policies whose best element πghost has a
cumulative expected payoff not too far from that of π∗. Without loss of generality, assume
that µ1 > · · · > µk. Let ΠK ≡ {πm : m ∈ K}, where each policy πm cycles over the arm
sequence 1, . . . ,m fixing the random variable τ to be equal to m. For a fixed rank m, the
expected average reward g(m) of policy πm is defined by

g(m) =
1

m

m∑
j=1

µj(m) .
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Since πghost maximizes g(m) over m ∈ K, we have πghost ≡ πr? where

r? ∈ arg max
m=1,...,k

1

m

m∑
j=1

µj(m) (3.3)

We now study the expected approximation error incurred by introducing policy πghost. Specif-
ically, we can bound GT (πghost) in terms of GT (π∗) as follows.

Theorem 6.
GT (πghost) ≥

(
1− f(r0)

)
GT (π∗) +O(1)

where r0 is the largest arm index r such that

µi > max
j=1,...,i−1

µj(i− j) i = 2, . . . , r

and r0 = 1 if µ2 ≤ µ1(1).

The definition of r0 is better understood in the context of the more intuitive delay-based
policy πgreedy. Note indeed that r0 + 1 is the first round in which πgreedy prefers to pull one
of the arms that were played in the first r0 rounds rather than the next arm r0 + 1.

Proof. Since r? maximizes (3.3),

GT (πghost) =
T

r?

r?∑
i=1

µi(r
?) +O(1)

≥ T

r0

r0∑
i=1

µi(r0) +O(1)

≥ T

r0

r0∑
i=1

(
1− f(r0)

)
µi +O(1)

where the O(1) term takes into account that r? may not divide T , and the fact that in the first
r? rounds the expected reward is µ1 + · · ·+ µr? instead of µ1(r?) + · · ·+ µr?(r

?). Now split
the T time steps in blocks of length r0. Because r0 is —by definition— the largest expected
reward any policy can achieve in r0 consecutive steps, the expected reward of π∗ in any of
these blocks is at most µ1 + · · ·+ µr0 . Therefore

GT (π∗) ≤ T

r0

r0∑
i=1

µi +O(1)

where, as before, the O(1) term takes into account that r0 may not divide T . This concludes
the proof.

The proof of Theorem 6 actually shows that both r? and r0 achieve the claimed approximation.
However, by definition GT (πghost) is bigger than the total reward of the policy that cycles
over 1, . . . , r0. Also, learning πghost is relatively easy, as we show in Section 3.6.
It is easy to see that g(m) is not monotone due to the presence of the coefficients di. For
example, consider the B2DEP instance defined by k = 3, µ1 = 1, µ2 = 2

3
, µ3 = 1

2
,

d1 = d2 = d3 = 2, and f(τ) = 2−τ . Then g(2) < g(1) < g(3).
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Algorithm 5 (πlow)
Input: Policy set ΠK, confidence δ ∈ (0, 1), horizon T

1: Let A1 ≡ K be the initial set of active policies
2: repeat . s indexes the stage number
3: for m ∈ As do
4: SELECT πm for Ts/

(
m|As|

)
+ 1 times

5: UPDATE ĝs(m) discarding the first play
6: end for
7: Let m̂s = arg max

m∈As
ĝs(m̂s)

8: UPDATE As+1 = {m ∈ As : ĝs(m) ≥ ĝs(m̂s)− 2Cs}
9: until overall number of pulls exceeds T

3.6 Learning the ghost policy

In this section we deal with the problem of learning r? assuming the correct ordering 1, . . . , k
of the arms (such that µ1 > · · · > µk) is known. In the next section, we consider the problem
of learning this ordering.
Our search space is the set of ranking policies ΠK ≡ {πm : m ∈ K}, where each policy πm
cycles over the arm sequence 1, . . . ,m. Note that, by definition, πghost ≡ πr? . The average
reward g(m) of policy πm is defined by g(m) =

(
µ1(m) + · · · + µm(m)

)/
m. Note that

every time the learning algorithm chooses to play a different policy πm ∈ ΠK, an extra cost is
incurred due to the need of calibrating the estimates for g(m). In fact, if we played a policy
different from πm in the previous round, the reward expectation associated with the play of
πm in the current round is potentially different from g(m). This is due to the fact that we
cannot guarantee that each arm in the schedule used by πm was pulled exactly m steps earlier.
This implies that we need to play each newly selected policy more than once, as the first play
cannot be used to reliably estimate g(m).
We now introduce the policy πlow (Algorithm 5), a simple variant of a learning algorithm
based on action elimination proposed in Cesa-Bianchi et al. [2013a]. This policy has a regret
bound similar to UCB while guaranteeing a bound O

(
k ln lnT

)
on the number of switches,

irrespective of the size of the gaps. In Section 3.8 we compare πlowwith UCB.
In each stage s, algorithm πlow plays each policy πm in the active set As for Ts/

(
m|As|

)
+ 1

times, where Ts = T 1−2−s . Then, the algorithm computes the sample average reward ĝs(m)
based on these plays, excluding the first one because of calibration (lines 3–6). After that, the
empirically best policy is selected (7). Finally, the active set is recomputed (line 8) excluding
all policies whose sample average reward is significantly smaller than that of the empirically
best policy. The quantity Cs is derived from a standard Chernoff-Hoeffding bound (see
Proposition 4 in the Appendix material) and is equal to

√
k

2Ts
ln 2kS

δ
where

S = min

{
j ∈ N :

j∑
s=1

(
|As|+ Ts

)
≥ T

}
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implying S = O
(

ln lnT
)
. The terms |As| account for the extra calibration pull each time

we switch to a new policy in ΠK. We can prove the following bound on the regret of πlow

with respect to πghost.

Theorem 7. When run on an instance of B2DEP with parameters δ and T , with probability
at least 1− δ Algorithm 5 guarantees

GT (πghost)−GT (πlow)

= O

(
k2 ln lnT +

√
kT

(
ln
k

δ
+ ln ln lnT

))
(3.4)

with probability at least 1− δ.

Note that this bound is distribution-free. That is, it does not depend on the gaps g(r?)− g(m)
(which in general could be arbitrarily small). The rate

√
T , as opposed to the lnT rate of

distribution-dependent bounds, cannot be improved upon in general Bubeck et al. [2012].

Proof. The proof is an adaptation of [Cesa-Bianchi et al., 2013a, Theorem 6]. Note that
AS ⊆ · · · ⊆ A1 by construction. Also, our choice of Cs and Chernoff-Hoeffding bound
(Proposition 4 in the Appendix material) implies that

max
m∈As

∣∣ĝs(m)− g(m)
∣∣ ≤ Cs (3.5)

simultaneously for all s = 1, . . . , S with probability at least 1 − δ. To see this, note that
in every stage s the estimates ĝs(m) are computed using Ts/

(
m|As|

)
plays. Since a play

of πm consists of m ≤ k pulls, we have that each g(m) is estimated using Ts/|As| ≥ Ts/k
realizations of a sequence of random variables whose expectations have average exactly
equal to g(m).
We now claim that, with probability at least 1− δ, r? ∈

⋂S
s=1As and 0 ≤ ĝs(m̂s)− ĝs(r?) ≤

2Cs for all s = 1, . . . , S.
We prove the claim by induction on s = 1, . . . , S. We first show that the base case s = 1
holds with probability at least 1− δ/S. Then we show that if the claim holds for s− 1, then
it holds for s with probability at least 1− δ/S over all random events in stage s. Therefore,
using a union bound over s = 1, . . . , S we get that the claim holds simultaneously for all s
with probability at least 1− δ.
For the base case s = 1 note that r? ∈ A1 by definition, and thus 0 ≤ ĝ1(m̂1)− ĝ1(r?) holds.
Moreover: ĝ1(m̂1) − g(m̂1) ≤ C1, g(r?) − ĝ1(r?) ≤ C1, and g(m̂1) − g(r?) ≤ 0, where
the two first inequalities hold with probability at least 1− δ because of (3.5). This implies
0 ≤ ĝ1(m̂1)− ĝ1(r?) ≤ 2C1 as required. We now prove the claim for s > 1. The inductive
assumption
r? ∈ As−1 and 0 ≤ ĝs−1(m̂s−1)− ĝs−1(r?) ≤ 2Cs−1

directly implies that r? ∈ As. Thus we have 0 ≤ ĝs(m̂s)− ĝs(r?), because m̂s maximizes ĝs
over a set that contains r?. The rest of the proof of the claim closely follows that of the base
case s = 1.

26



We now return to the proof of the theorem. For any s = 1, . . . , S and for anym ∈ As we have

g(r?)− g(m) ≤ g(r?)− ĝs−1(m) + Cs−1 by (3.5)
≤ g(r?)− ĝs−1(m̂s−1) + 3Cs−1

by definition of As−1, since m ∈ As ⊆ As−1

≤ g(r?)− ĝs−1(r?) + 3Cs−1

since m̂s−1 maximizes ĝs−1 in As−1

≤ 4Cs−1 by (3.5)

holds with probability at least 1− δ/S. Hence, recalling that the number of switches between
two different policies in ΠK is deterministically bounded by kS, the regret of the player can
be bounded as follows,

GT (πghost)−GT (πlow)

= k2S +
S∑
s=1

Ts
|As|

∑
m∈As

(
g(r?)− g(m)

)
= k2S + T1 +

S∑
s=2

Ts
|As|

∑
m∈As

(
g(r?)− g(m)

)

≤ k2S + T1 +
S∑
i=2

4Ts

√
k

2Ts−1

ln
2kS

δ

= k2S + T1 + 4

√
k ln

2kS

δ

S∑
s=2

Ts√
Ts−1

where the k2S term accounts for the regret suffered in the kS plays where we switched
between two policies in ΠK and paid maximum regret due to calibration for at most k
steps (as each policy in ΠK is implemented with at most k pulls). Now, since T1 =

√
T ,

Ts/
√
Ts−1 =

√
T and S = O

(
ln lnT

)
, we obtain that with probability at least 1 − δ the

regret is at most of order k2 ln lnT +
√
T +

√
kT
(
ln k

δ
+ ln ln lnT

)
as desired.

3.7 Learning the ordering of the arms
In this section we show how to recover, with high probability, the correct ordering µ1 >
· · · > µk of the arms. Initially, we ignore the problem of calibration, and focus on the task of
learning the arm ordering when each pulls of arm i returns a sample from the true baseline
reward distribution with expectation µi.
BanditRanker (Algorithm 6) is an action elimination procedure. The arms in the set
Ar of active arms are sampled once each (line 3), and their average rewards are kept
sorted in decreasing order (line 4). We use µ̂i,r to denote the sample average of rewards
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Algorithm 6 (BanditRanker)
Input: Confidence δ ∈ (0, 1)
Output: A permutation [1], . . . , [k] of K.

1: Let A1 ≡ K be the initial set of active arms
2: repeat . r indexes the round number
3: SAMPLE once all arms in Ar . sampling round
4: SORT the empirical means µ̂[1],r ≥ · · · ≥ µ̂[n],r

5: for i = 1 to |A| do
6: if µ̂[i],r + 2εr < min

j∈K+
[i],r

µ̂j,r then

7: if µ̂[i],r − 2εr > max
j∈K−

[i],r

µ̂[s],r then

8: REMOVE [i] from Ar
9: RANK before [i] all arms in K+

[i],r

10: RANK after [i] all arms in K−[i],r
11: end if
12: end if
13: end for
14: until |At| ≤ 1

obtained from arm i after r sampling rounds, and define the indexing [1], . . . , [k] be such that
µ̂[1],r ≥ · · · ≥ µ̂[k],r, where ties are broken according to the original arm indexing.
When the confidence interval around the average reward of an arm [i] is not overlapping
anymore with the confidence intervals of the other arms (lines 6–7), [i] is removed from
Ar and not sampled anymore (line 8). Moreover, the set K+

[i],r of all arms [b] ∈ Ar such
that µ̂[b],r ≥ µ̂[i],r (if any) is ranked before [i] (line 9). Similarly, the set let K−[i],r of all arms
[s] ∈ Ar such that µ̂[s],r ≤ µ̂[i],r (if any) is ranked after [i] (line 10). The algorithm ends
when all arms are removed (line 14).
The parameter εr determining the confidence interval after r sampling rounds is defined by

εr =

√
1

2r
ln

2kr(r + 1)

δ
. (3.6)

The sequence of removed arms can be stored in a binary tree whose root is the first removed
arm and whose left (resp., right) leaf contain all arms whose average reward was bigger
(resp., smaller) when the first arm was removed. When a new arm is removed, the leaf to
which it belongs is split using the same logic that we used for the root. Eventually, all nodes
contain a single arm and the in-order traversal of the tree provides the desired ordering.
We introduce the following quantity, measuring the suboptimality gaps between arm that are
adjacent in the correct ordering,

∆i =


∆1,2 if i = 1

min
{

∆i−1,i,∆i,i+1

}
if 1 < i < k

∆k−1,k if i = k
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where ∆i,j = µi − µj .
We are now ready to state and prove the main result of this section.

Theorem 8. If Algorithm 6 is run with parameter δ on a k-armed stochastic bandit problem,
the correct ordering µ1 > · · · > µk of the arms is returned with probability at least 1− δ
after a number of pulls of order

k−1∑
i=1

1

∆2
i

ln
1

δ∆i

. (3.7)

Note that, up to logarithmic factors, the bound stated in Theorem 8 is of the same order as
the sample used by an ideal procedure that knows ∆1, . . . ,∆k and uses the optimal order
1
/

∆2
i of samples to determine the position of each arm i in the correct ordering.

Proof. The proof is an adaptation of Even-Dar et al. [2006, Theorem 8]. Using Chernoff-
Hoeffding bounds (see Proposition 4 in the Appendix), the choice of εr ensures that

Pr
(
∃ r ≥ 1 ∃i ∈ K

∣∣µ̂i,r − µi∣∣ > εr

)
≤ 2k

∑
r≥1

e−2ε2t r

≤ δ . (3.8)

If an action [i] is eliminated after r sampling rounds, then it must be that µ̂[b],r − 2εr >
µ̂[i],r > µ̂[s],r + 2εr for all [b] ∈ K+

[i],r and all [s] ∈ K−[i],r. Condition (3.8) then ensures that,
with probability at least 1 − δ, µ[b] > µ[i] > µ[s] for all such b and s. This implies that the
current ordering of µ[j],r for j ∈ Ar is correct with respect to [i]. Since εr → 0, every action
is eventually eliminated. Therefore, with probability at least 1− δ the sequence of eliminated
arms i and their corresponding sets K+

[i],r,K
−
[i],r provide the correct arm ordering.

We now proceed to bounding the number of samples. Under condition (3.8), for all b < i < s,

∆b,i − 2εr =
(
µb − εr

)
−
(
µi + εr

)
≤ µ̂b,r − µ̂i,r .

Therefore, if µ̂b,r − µ̂i,r ≤ 2εr, then ∆b,i ≤ 4εr. Recalling the definition (3.6) of εr and
solving by r = r(b, i) we get

r(b, i) = O

(
1

∆2
b,i

ln
1

δ∆b,i

)
.

Thus, after r(b, i) sampling rounds, µ̂b,r(b,i)− µ̂i,r(b,i) > 2εr(b,i) with probability at least 1− δ.
Similarly, after r(i, s) sampling rounds, µ̂i,r(i,s) − µ̂s,r(i,s) > 2εr(i,s) with probability at least
1− δ.
This further implies that after Ni = O

(
1

∆2
i

ln 1
δ∆i

)
many sampling rounds, action i is

eliminated and not sampled any more.
Re-define the indexing [1], . . . , [k] so that ∆[1] > · · · > ∆[k]. Hence N[1] < · · · < N[k] by
definition. We now compute a bound on the overall number of pulls based on our bound on
the number of sampling rounds. With probability at least 1− δ, we have that: kN[1] pulls are
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needed to eliminate arm [1], (k − 1)
(
N[2] −N[1]

)
pulls are needed to eliminate arm [2], and

so on. Hence, the total number of pulls needed to eliminate all arms is

k−2∑
i=0

(k − i)
(
N[i+1] −N[i]

)
= kN[k−1] −

k−2∑
i=0

i
(
N[i+1] −N[i]

)
= kN[k−1] − (k − 1)N[k−1] +

k−2∑
i=0

N[i+1]

= N[k−1] +
k−1∑
i=1

N[i]

with probability at least 1− δ where we set conventionally N[0] = 0.

In order to apply BanditRanker to an instance of B2DEP, we assume that an upper bound
d0 > maxi di be available in advance to the algorithm. This ensures that µi(d0) = µi for
all i ∈ K. In each sampling round r, we partition the arms in Ar in groups of size d0 and
make 2d0 pulls for each group by cycling twice over the arms in an arbitrary order. Then,
the first d0 pulls in each group are discarded, while the last d0 pulls are used to estimate
the expectations µi (when d0 does not divide |Ar| we can add to Ar arms that were already
removed, or arms from previous groups, just for the purpose of calibrating). The sample size
bound (3.7) remains of the same order (because the extra pulls only add a factor of two).
We could have used a naive approach that continuously pulls all arms until no overlaps
occur. This approach would pull each arm 1/(mini∈[k] ∆i)

2 times requiring than much more
samples compared to (3.7).
Finally, notice that a symmetric argument would hold in case the delay upper bound d0

would not be available. Indeed, the same logic holds considering d0 = 1, that represents the
minimum delay for which all arms incurs the same relative discount 1− f(d0). It should be
easy to observe that this would require many more samples as gaps ∆i would be smaller.

3.8 Experiments
In this section we present an empirical evaluation of our policy πlow in a synthetic environment
with Bernoulli rewards. In order to study the impact the switching cost on ranking policies
when the suboptimality gap is small, we also define a setting in which there are two distinct
ranking policies that are both optimal —see Figure 3.1.
We plot regrets against the policy πghost. Our policy πlow is run without any specific tuning
(other than the knowledge of the horizon T ) and with δ set to 0.1 in all experiments. The
benchmark πucb consists of running UCB1 (summarized in Algorithm 1 in Section 2.1)
—with the same scaling factor as in the original article by Auer et al. [2002]— over the class
ΠK of ranking policies, where calibration is addressed by rolling out twice each ranking
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πm πn

µ1→m(m) + µm+1→n(m+ n)

µ1→m(n)

µ1→m(m) µ1→n(n)

Figure 3.1: Transitions between policies πm and πn assuming n > m, where the notation
µm→n(d) stands for µm(d) + · · · + µn(d). The expected reward obtaining by switching
between policies is different from the one obtained by cycling over the same policy.

policy selected by UCB1 and using only the second roll-out to compute reward estimates.

Since both πlow and πghost are run over ΠK, we implicitly assume that BanditRanker
successfully ranked the arms in a preliminary stage.

Figure 3.2: Comparing regrets of πlow and πucb against πghost with 7 arms and baseline
expectations 0, 1/3, 2/3, 4/5, 13/15, 14/15, 1 and f(τ) = (0.999)τ . A unit cost is charged
for switching between ranking policies. Curves are averages of 5 runs each using a different
sample of delays d1, . . . , d7 uniformly drawn from {1, . . . , 6}. We plot expectations of
sampled arms rather than realized rewards.

Figure 3.2 shows that when the gap between the best and the second best ranking policy is not
too small (0.1 on average in these experiments), then πucb is competitive against πlow even in
the presence of unit switching costs. This happens because, in order to minimize the number
of switches, πlow samples a suboptimal policy more frequently than πucb. Although this
oversampling does not affect the distribution-free regret bound of πlow, it hurts performance
unless the suboptimality gap is small enough to cause the switching costs to prevail, a case
which is addressed next. Note also that πlow eventually stops exploration because all policies
but one have been eliminated, while πucb keeps on exploring, albeit at a logarithmic rate.
In the second experiment we consider two arms with µ1 = 1, f(1) = 0.3, f(2) = 0.25,
d1 = d2 = 2, and µ2 chosen so that g(1) = g(2) to simulate a vanishing suboptimality gap
between π1 and π2. Figure 3.3 (upper part) shows that πlow performs better than πucb due
to its low switch regime. On the other hand, Figure 3.3 (lower part) shows that when the
switching cost is zero, switching between two good policies becomes more advantageous
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Figure 3.3: Comparing regrets of πlow and πucb against πghost with 2 arms such that g(1) =
g(2) with unit cost charged for switching between the two policies (upper part) and without
any cost for switching (lower part).

than using a single good policy, and the regret of both πucb and πlow becomes negative (in
this case πucb, which has no control over the number of switches, outperforms πlow). The
reason for this advantage is explained by Fact 1 below (proof in the supplementary material),
see also Figure 3.1.

Fact 1. If an instance of B2DEP admits two optimal ranking policies, then consistently
switching between these two policies achieves an average expected reward higher than
sticking to either one.

To summarize, the experiments confirm that, in the presence of switching costs, πlow works
better than πucb only when the suboptimalty gap is very small. The advantage of πlow over
πucb is however reduced by the fact that switching between two good policies is better than
consistently playing either one of the two (Fact 1). Note also that πlow stops exploring
because T is known. This preliminary knowledge can be dispensed with using a doubling
trick, or some more sophisticated method. Also, it would be interesting to design a method
that achieves the best between the performance of πucb and πlow, according to the size of the
suboptimality gap.

3.9 Conclusions
Motivated by music recommendation in streaming platforms, we introduced a new stochastic
bandit model with nonstationary reward distributions. To cope with the NP-hardness of
learning the optimal policy caused by nonstationarity, we introduced a restricted class of
ranking policies approximating the optimal performance. We then proved sample and regret
bounds on the problem of learning the best ranking policy in this class. One of the main
problems left open by our work is that of deriving more practical learning algorithms, able to
simultaneously learn the ranking of the arms and the best cutoff value r?, while minimizing
their regret with respect to the best ranking policy.
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3.10 Proofs

3.10.1 Proof of the Hardness Result (Theorem 5)
Proof. Given an instance `1, . . . , `n of PMSP, we construct a B2DEP instance with |K| =
n+ 1 arms such that di = `i − 1 and µi = 1 for all i = 1, . . . , n, µn+1 = 0, and f ≡ 1. The
long-term average reward for a periodic policy in this setting is

n∑
i=1

1

Ni

Ni∑
j=1

I {ti,j > di}
ti,j

where Ni is the number of times the policy plays arm i in a period and ti,j is the number of
time steps between when arm i was played for the j-th time in the cycle and the last time it
was played (in the same cycle or in the previous cycle, excluding the transient). Clearly, if
the PMSP instance has a feasible schedule, then we can design a bandit policy that replicates
that schedule (playing arm n + 1 at all time steps where no machines are scheduled for
maintenance). The long-term average reward of this policy is at most

∑n
i=1

1
di+1

. Moreover,
if we have a periodic bandit policy with long-term average reward exactly equal to

∑n
i=1

1
di+1

,
this means that each arm i = 1, . . . , n is eventually played after exactly di + 1 = `i rounds.
Indeed, the only way to have

1

Ni

Ni∑
n=1

I {ti,j > di}
ti,j

≥ 1

di + 1

is by setting ti,j = di + 1 for all j = 1, . . . , Ni.

3.10.2 Proof of the Swtiching Result (Fact 1)
Proof. We use the following notation: µm→n(d), where n > m, stands for µm(d) + · · · +
µn(d). Consider two optimal ranking policies πm and πn with n > m. Then g(m) =
g(n), where g(n) = 1

n
µ1→n(n) and similarly for g(m). The expected total reward of

playing πm after πn is µ1→m(n), and the expected total reward of playing πn after πm is
µ1→m(m) + µm+1→n(m+ n). We want to prove

µ1→m(n) + µ1→m(m) + µm+1→n(m+ n)

m+ n
≥ µ1→m(m)

m
.

Rearranging gives µ1→m(n)+µm+1→n(m+n) ≥ n
m
µ1→m(m). Since 1

n
µ1→n(n) = 1

m
µ1→m(m),

we have
µ1→m(n) + µm+1→n(m+ n) ≥ µ1→n(n) .

Observing that µ1→n(n) = µ1→m(n) + µm+1→n(n), the above is equivalent to

µm+1→n(m+ n) ≥ µm+1→n(n)

which is always true since in our model expected rewards are non-decreasing with delays.

33



34



Chapter 4

Efficient Linear Bandits through Matrix
Sketching

We dedicate this chapter to the design of efficient strategies for the linear bandit learning
problem. We consider the popular OFUL and Thompson Sampling algorithms that have been
presented in Section 2.2 of Chapter 2. As it was highlighted, they both share an update time
of order O(d2), which could be potentially expensive when dealing with arms represented
by a large number of features d. We show how they can be made efficient using Frequent
Directions, a deterministic online sketching technique. More precisely, we show that a
sketch of size m allows a O(md) update time for both algorithms. This computational
speedup is accompanied by regret bounds of order (1 + εm)3/2d

√
T for OFUL and of order(

(1 + εm)d
)3/2√

T for Thompson Sampling, where εm is bounded by the sum of the tail
eigenvalues not covered by the sketch. In particular, when the selected contexts span a
subspace of dimension at most m, our algorithms have a regret bound matching that of
their slower, non-sketched counterparts. Experiments on real-world datasets corroborate our
theoretical results.

4.1 Introduction
We consider two of the most popular algorithms for stochastic linear bandits: OFUL Abbasi-
Yadkori et al. [2011] and linear Thompson Sampling Agrawal and Goyal [2013] (linear TS
for short). As we shown in Section 2.2, while exhibiting good theoretical and empirical
performances, both algorithms require Ω

(
d2
)

time to update their model after each round.
In this Chapter we investigate whether it is possible to significantly reduce this update time
while ensuring that the regret remains nicely bounded.
The quadratic dependence on d is due to the computation of the inverse correlation matrix
of past actions (a cubic dependence is avoided because each new inverse is a rank-one
perturbation of the previous inverse). The occurrence of this matrix is caused by the linear
nature of rewards: to compute their decisions, both algorithms essentially solve a regularized
least squares problem at every round. In order to improve the running time, we sketch the
correlation matrix using a specific technique —Frequent Directions, Ghashami et al. [2016]—
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that works well in a sequential learning setting. While matrix sketching is a well-known
approach Woodruff [2014], to the best of our knowledge this is the first work that applies
sketching to linear contextual bandits while providing rigorous performance guarantees.
With a constant sketch size of m, a rank-one update of the correlation matrix takes only time
O(md), which is linear in d for a constant sketch size. However, this speed-up comes at a
price, as sketching reduces the matrix rank causing a loss of information which —in turn—
affects the least squares estimates used by the algorithms. Our main technical contribution
shows that when OFUL and linear TS are run with a sketched correlation matrix, their regret
blows up by a factor which is controlled by the spectral decay of the correlation matrix of
selected actions. More precisely, we show that the sketched variant of OFUL, called SOFUL,
achieves a regret bounded by

R(T,w?)
Õ
=
(
1 + εm

) 3
2

(
m+ d ln

(
1 + εm

))√
T (4.1)

where m is the sketch size and εm is upper bounded by the spectral tail (sum of the last
d−m+ 1 eigenvalues) of the correlation matrix for all T rounds. In the special case when
the selected actions span a number of dimensions equal or smaller than the sketch size,
then εm = 0 implying a regret of order m

√
T . Thus, we have a regret bound matching

that of the slower, non-sketched counterpart.1 When the correlation matrix has rank larger
than the sketch size, the regret of SOFUL remains small to the extent the spectral tail of
the matrix grows slowly with T . In the worst case of a spectrum with heavy tails, SOFUL
may incur linear regret. In this respect, sketching is only justified when the computational
cost of running OFUL cannot be afforded. Similarly, we prove that the efficient sketched
formulation of linear TS enjoys a regret bound of order

R(T,w?)
Õ
=
(
m+ d ln(1 + εm

))(
1 + εm

) 3
2
√
dT . (4.2)

Once again, for εm = 0 our bound is of order m
√
dT , which matches the regret bound for

linear TS. When the rank of the correlation matrix is larger than the sketch size, the bound
for linear TS behaves similarly to the bound for SOFUL.
Finally, we show a problem-dependent regret bound for SOFUL. This bound, which exhibits
a logarithmic dependence on T , depends on the smallest gap ∆ between the expected reward
of the best and the second best action across the T rounds,

R(T,w?)
Õ
=

1

∆

(
1 + εm

)3
(
m+ d ln

(
1 + εm

))2

(lnT )2 . (4.3)

When εm(T ) = 0 this bound is of order m2

∆
(lnT )2 which matches the corresponding bound

for OFUL. Experiments on six real-world datasets support our theoretical results.

Additional related work. For an introduction to contextual bandits, we refer the reader to
the recent monograph of Lattimore and Szepesvári [2018]. The idea of applying sketching

1The regret bound of OFUL in Abbasi-Yadkori et al. [2011, Theorem 3] is stated as O(d
√
T ), however, it

can be improved for low-rank problems by using the “log-det” formulation of the confidence ellipsoid.
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techniques to linear contextual bandits was also investigated by Yu et al. [2017], where they
used random projections to preliminarly draw a random m-dimensional subspace which is
then used in every round of play. However, the per-step computation time of their algorithm
is cubic in m rather than quadratic like ours. Morover, random projection introduces an
additive error ε in the instantaneous regret which becomes of order m−1/2 for any value
of the confidence parameter δ bounded away from 1. A different notion of compression
in contextual bandits is explored by Jun et al. [2017], where they use hashing algorithms
to obtain a computation time sublinear in the number K of actions. An application of
sketching (including Frequent Directions) to speed up 2nd order algorithms for online
learning is studied by Luo et al. [2016], in a RKHS setting by Calandriello et al. [2017], and
in stochastic optimization by Gonen et al. [2016].

4.2 Sketching the correlation matrix
The idea of sketching is to maintain an approximation of Xt, denoted by St ∈ Rm×d,
where m � d is a small constant called the sketch size. If we choose m such that S>t St
approximates X>t Xt well, we could use S>t St + λI in place of Vλ

t . In the following we use
the notation Ṽt = S>t St + λI to denote the sketched regularized correlation matrix. The
RLS estimate based upon it is denoted by

w̃t = Ṽ−1
t

t∑
s=1

xsYs . (4.4)

A trivial replacement of Vλ with Ṽ does not yield an efficient algorithm. On the other hand,
using the Woodbury identity we may write

Ṽ−1
t =

1

λ

(
Id×d − S>t HtSt

)
where Ht =

(
StS

>
t + λIm×m

)−1. Here matrix-vector multiplications involving St require
time O(md), while matrix-matrix multiplications involving Ht require time O(m2). So, as
long as St and Ht can be efficiently maintained, we obtain an algorithm for linear stochastic
bandits where Ṽ−1

t can be updated in time O(md + m2). Next, we focus on a concrete
sketching algorithm that ensures efficient updates of St and Ht.

Frequent Directions. Frequent Directions (FD) Ghashami et al. [2016] is a deterministic
sketching algorithm that maintains a matrix St whose last row is invariably 0. On each round,
we insert x>t into the last row of St−1, perform an eigendecomposition S>t−1St−1 + xtx

>
t =

Ut Σt U
>
t , and then set St =

(
Σt − ρtIm×m

) 1
2 Ut, where ρt is the smallest eigenvalue of

S>t St. Observe that the rows of St form an orthogonal basis, and therefore Ht is a diagonal
matrix which can be updated and stored efficiently. Now, the only step in question is an
eigendecomposition, which can also be done in time O(md) —see [Ghashami et al., 2016,
Section 3.2]. Hence, the total update time per round is O(md). The updates of matrices St
and Ht are summarized in Algorithm 7.
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Algorithm 7 (FD Sketching)

Input: St−1 ∈ Rm×d,xt ∈ Rd, λ > 0
1: Compute eigendecomposition U>diag{ρ1, . . . , ρm}U = S>t−1St−1 + xtx

>
t

2: St ← diag{
√
ρ1 − ρm, . . . ,

√
ρm−1 − ρm, 0}U

3: Ht ← diag
{

1
ρ1−ρm+λ

, . . . , 1
λ

}
Output: St,Ht

It is not hard to see that FD sketching sequentially identifies the top-m eigenvectors of the
matrix VT = X>TXT . Thus, whenever we use a sketched estimate, we lose a part of the
spectrum tail. This loss is captured by the following notion of spectral error,

εm = min
k=0,...,m−1

λd−k + λd−k+1 + · · ·+ λd
λ(m− k)

(4.5)

where λ1 ≥ . . . ≥ λd are the eigenvalues of the correlation matrix VT (Vλ
T with λ = 0).

Note that εm ≤ (λm + · · · + λd)/λ. For matrices with low rank or light-tailed spectra we
expect this spectral error to be small. In the following, we use m̃ to denote the quantity
m+ d ln(1 + εm) which occurs often in our bounds involving sketching. Note that m̃ ≥ m
and m̃→ m as the spectral error vanishes.
Since the matrix Vλ

t is used to compute both the RLS estimate ŵt and the norm ‖·‖Vλ
t
, the

sketching of Vλ
t clearly affects the confidence ellipsoid. The next theorem quantifies how

much the confidence ellipsoid must be blown up in order to compensate for the sketching
error. Let ρt be the smallest eigenvalue of the FD-sketched correlation matrix S>t St and let
ρ̄t = ρ1 + · · ·+ ρt. The following proposition due to Ghashami et al. [2016] (see the proof
of Thm. 3.1, bound on ∆) relates ρ̄t to εm (Equation 4.5).

Proposition 1. For any t = 0, . . . , T , any λ > 0, and any sketch size m = 1, . . . , d, it holds
that ρ̄t/λ ≤ εm.

A key lemma in the analysis of regret is the following sketched version of [Abbasi-Yadkori
et al., 2011, Lemma 11], which bounds the sum of the ridge leverage scores. Although
sketching introduces the spectral error εm, it also improves the dependence on the dimension
from d to m whenever εm is sufficiently small.

Lemma 1 (Sketched leverage scores).

T∑
t=1

min
{

1, ‖xt‖2
Ṽ−1
t−1

}
≤ 2 (1 + εm)

(
m̃+m ln

(
1 +

TL2

mλ

))
. (4.6)

We can now state the main result of this section.

Theorem 9 (Sketched confidence ellipsoid). Let w̃t be the RLS estimate constructed by an
arbitrary policy for linear contextual bandits after t rounds of play. For any δ ∈ (0, 1),
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the optimal parameter w? belongs to the set C̃t ≡
{

w ∈ Rd : ‖w − w̃t‖Ṽt
≤ β̃t(δ)

}
with

probability at least 1− δ, where

β̃t(δ) = R

√
m ln

(
1 +

tL2

mλ

)
+ 2 ln

1

δ
+ d ln

(
1 +

ρ̄t
λ

)
·
√

1 +
ρ̄t
λ

+ S
√
λ
(

1 +
ρ̄t
λ

)
(4.7)

Õ
= R

√
m̃ (1 + εm) + S

√
λ (1 + εm) . (4.8)

Note that (4.8) is larger than its non-sketched counterpart (2.11) due to the factors 1 + εm.
However, when the spectral error εm vanishes, β̃t(δ) becomes of order R

√
m+ S

√
λ, which

improves upon (2.11) since we replace the dependence on the ambient space dimension
d with the dependence on the sketch size m. In the following, we use the abbreviation
Mλ = max

{
1, 1/
√
λ
}

.

4.3 Sketched OFUL
Equipped with the sketched confidence ellipsoid and the sketched RLS estimate, we can
now introduce SOFUL (Algorithm 8), the sketched version of OFUL. SOFUL enjoys the

Algorithm 8 (SOFUL)

Input: δ, λ > 0,m ∈ {1, . . . , d− 1}
1: w̃0 = 0, Ṽ−1

0 = 1
λ
Id×d,S0 = 0m×d

2: for t = 1, 2, . . . do
3: GET decision set Dt

4: SELECT xt ← arg max
x∈Dt

{
w̃>t−1x + β̃t−1(δ) ‖x‖Ṽ−1

t−1

}
5: OBSERVE reward Yt
6: UPDATE St,Ht using Alg. 7 given St−1,xt
7: UPDATE Ṽ−1

t ← 1
λ

(
Id×d − S>t HtSt

)
8: UPDATE w̃t using (4.4)
9: end for

following regret bound, characterized in terms of the spectral error.

Theorem 10. The regret of SOFUL with FD-sketching of size m w.h.p. satisfies

R(T,w?)
Õ
= Mλ

(
1 + εm

) 3
2 m̃
(
R + S

√
λ
)√

T .

Similarly to Abbasi-Yadkori et al. [2011], we also prove a distribution dependent regret bound
for SOFUL. This bound is polylogarithmic in time and depends on the smallest difference ∆
between the rewards of the best and the second best action in the decision sets,

∆ = min
t=1,...,T

max
x∈Dt\{x?t }

(x?t − x)>w? .
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Theorem 11. The regret of SOFUL with FD-sketching of size m w.h.p. satisfies

R(T,w?)
Õ
= Mλ (1 + εm)3 m̃2

(
R2 + S2λ

) (lnT )2

∆
.

Proofs of the regret bounds appear in the supplementary material (Section 4.5.2).

4.4 Sketched linear TS
In this section we introduce a variant of linear TS (Algorithm 4) based on FD-sketching.
Similarly to SOFUL, sketched linear TS (see Algorithm 9) uses the FD-sketched approxima-
tion Ṽt−1 of the correlation matrix Vt−1 in order to select the action xt. Note that, in this

Algorithm 9 (Sketched linear TS)

Input: δ, λ > 0,m ∈ {1, . . . , d− 1}, DTS (TS-sampling distribution)
1: w̃0 = 0, Ṽ−1

0 = 1
λ
Id×d,S0 = 0m×d, δ

′ = δ/(4T )
2: for t = 1, 2, . . . do
3: GET decision set Dt

4: SAMPLE Zt ∼ DTS

5: SELECT xt ← arg max
x∈Dt

x>
(
w̃t−1 + β̃t(δ

′)Ṽ
− 1

2
t−1Zt

)
6: OBSERVE reward Yt
7: UPDATE St,Ht using Algorithm 7 given St−1, Xt

8: UPDATE Ṽ−1
t ← 1

λ

(
Id×d − S>t HtSt

)
9: UPDATE w̃t using (4.4)

10: end for

case, we need both Ṽ−1
t−1 and Ṽ

− 1
2

t−1 to compute xt. Using the generalized Woodbury identity
(Corollary 1 in Section 4.5.1 for proofs), we can write

Ṽ
− 1

2
t = S

′>
t

(
S′tS

′>
t

)−1
(
λ

2
I + S′tS

′>
t

)− 1
2

S′t

where

S′t =

(
Σt +

(
λ

2
− ρt

)
Im×m

) 1
2

Ut .

Note that Ṽ
− 1

2
t can still be computed in time O

(
md + m2

)
because S′tS

′>
t is a diagonal

matrix.
The confidence ellipsoid stated in Theorem 9 applies to any contextual bandit policy, and so
also to the w̃t constructed by sketched linear TS. However, as shown by Abeille and Lazaric
[2017], the analysis needs a confidence ellipsoid larger by a factor equal to the bound on ‖Z‖
appearing in the concentration property of the TS-sampling distribution. More precisely, the
TS-confidence ellipsoid is defined by

C̃TS
t ≡

{
w ∈ Rd : ‖w − w̃t‖Ṽt

≤ γ̃t
(
δ/(4T )

)}
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where

γ̃t(δ) = β̃t(δ)

√
cd ln

(
c′d

δ

)
. (4.9)

The quantity β̃t(δ) is defined in (4.7) and c, c′ are the concentration constants of the TS-
sampling distribution (Definition 1). We are now ready to prove a bound on the regret of
linear TS with FD-sketching.

Theorem 12. The regret of FD-sketched linear TS, run with sketch size m w.h.p. satisfies

R(T,w?)
Õ
= Mλ (1 + εm)

3
2 m̃

(
R + S

√
λ
)√

dT .

The proof of Theorem 12 closely follows the analysis of Abeille and Lazaric [2017] with
some key modifications due to the sketching operations. For completeness, we include the
proof in Section 4.5.3.

4.5 Proofs

4.5.1 Linear algebra and sketching tools
We start by introducting a basic relationship between the correlation matrix of actions X>s Xs

and its FD-sketched estimate S>t St with sketch size m ≤ d. Recall that ρt is the smallest
eigenvalue of S>t St for t = 1, . . . , T and ρ̄t = ρ1 + · · ·+ρt. Recall also that Ṽ = S>t St +λI.

Proposition 2. Let Ss be the matrix computed by FD-sketching at time step s = 1, . . . , t
(where S0 = 0). Then Vs = X>s Xs = S>s Ss + ρ̄sI .

Proof. By construction, S>s−1Ss−1 + xsx
>
s = UsΣsU

>
s where Ss = (Σs − ρsIm×m)

1
2 Us.

Thus,

S>s Ss = UsΣsU
>
s − ρsI = S>s−1Ss−1 + xsx

>
s − ρsI

Summing both sides of the above over s = 1, . . . , t we get

S>t St =
t∑

s=1

xsx
>
s −

t∑
s=1

ρsI

which implies the desired result.

In the following lemma, we show a sketch-specific version of the determinant-trace inequality
(Lemma 17). When the spectral error is small, the right-hand side of the inequality depends
on the sketch size m rather than the ambient dimension d.

Lemma 2.
ln

(
det(Vλ

t )

det(λI)

)
≤ d ln

(
1 +

ρ̄

λ

)
+m ln

(
1 +

tL2

mλ

)
.
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Proof. Let λ̃1, λ̃2, . . . , λ̃d ≥ 0 be the eigenvalues of S>t St. We start by looking at the ratio of
determinants. Using Proposition 2 we can write

det(Vλ
t )

det(λI)
=

det
(
S>s Ss + ρ̄sI + λI

)
det(λI)

=
d∏
i=1

(
λ̃i
λ

+ 1 +
ρ̄

λ

)

=
(

1 +
ρ̄

λ

)d−m m∏
i=1

(
λ̃i
λ

+ 1 +
ρ̄

λ

)
(4.10)

since λ̃m+1 = · · · = λ̃d = 0 because S>t St has rank at most m. Using the AM-GM inequality
(Lemma 16 in the Appendix), the product in (4.10) can be bounded as

m∏
i=1

(
λ̃i
λ

+ 1 +
ρ̄

λ

)
≤

(
1 +

ρ̄

λ
+

1

mλ

m∑
i=1

λ̃i

)m

=

(
1 +

ρ̄

λ
+

tr(S>t St)

mλ

)m
≤
(

1 +
ρ̄

λ
+
tL2

mλ

)m
(4.11)

where the last inequality holds because

tr(S>t St) = tr
(
Ṽt − λI

)
≤ tr

(
Vλ
t − λI

)
(by Proposition 2)

=
t∑

s=1

tr(xsx
>
s ) ≤ tL2 . (by definition of Vt)

Finally, substituting (4.11) into (4.10) and taking logs on both sides gives

ln

(
det(Vλ

t )

det(λI)

)
≤ (d−m) ln

(
1 +

ρ̄

λ

)
+m ln

(
1 +

ρ̄

λ
+
tL2

mλ

)
= d ln

(
1 +

ρ̄

λ

)
+m ln

(
1 +

tL2

mλ

1 + ρ̄
λ

)

≤ d ln
(

1 +
ρ̄

λ

)
+m ln

(
1 +

tL2

mλ

)
concluding the proof.

We start with the proof of a simple lemma that is used in the definition of OFUL (see
Algorithm 3).

Lemma 3. For any positive definite d × d matrix A, for any w0,x ∈ Rd and c > 0, the
solution of

max
w∈Rd

w>x

s.t. ‖w −w0‖A ≤ c

has value w>0 x + c ‖x‖A−1 .
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Proof. Let u = A
1
2 (w −w0) so that w = A−

1
2 u + w0. Then the optimization problem can

be equivalently rewritten as

max
w∈Rd

u>A−
1
2 x + w>0 x

s.t. ‖u‖ ≤ c

Then the solution is clearly u = cA−
1
2 x
/
‖x‖A−1 , which achieves the claimed value.

Our regret analyses follow Abbasi-Yadkori et al. [2011], Abeille and Lazaric [2017] and
related works. However, due to the sketching of the correlation matrix, some key components
of the proofs now depend on the spectral error (4.5). In Section 4.5.1, we present tools
specific to the analysis of linear bandits with FD-sketching. These tools are used to bound
the instantaneous regret

(
x? − xt

)>
w? in terms of the norm ‖w? − w̃t‖Ṽt−1

and the ridge
leverage scores

∑T
t=1 ‖xt‖2

Ṽ−1
t−1

. Armed with these results, we then prove our regret bounds
in Sections 4.5.2 and 4.5.3.
Next, we recall some standard tools from the analysis of linear bandits. All results in
Section 7.2 are by Abbasi-Yadkori et al. [2011]. The next lemma is similar to Abbasi-Yadkori
et al. [2011, Lemma 11]. However, now the statement depends on the sketched matrix Ṽt−1

instead of Vλ
t−1. Although we pay in terms of the spectral error εm, we also improve the

dependence on the dimension from d to m whenever εm is sufficiently small.

Lemma 4 (Sketched leverage scores).
T∑
t=1

min
{

1, ‖xt‖2
Ṽ−1
t−1

}
≤ 2 (1 + εm)

(
d ln (1 + εm) +m ln

(
1 +

TL2

mλ

))
. (4.12)

Proof. Throughout the proof, unless stated explicitly, we drop the subscripts containing t.
Therefore, V = Vλ

t−1, Ṽ = Ṽt−1, x = xt, and ρ̄ = ρ̄t−1. Now suppose that (λ̃i + λ, ũi) is
an i-th eigenpair of Ṽ. Then, Proposition 2 implies that a corresponding eigenpair of V is
(λ̃i + λ+ ρ̄, ũi). Using this fact we have that

‖x‖2
V−1 = x>ṼṼ−1V−1x

= x>

(
d∑
i=1

ũiũ
>
i

1

λ̃i + λ

λ̃i + λ

λ̃i + λ+ ρ̄

)
x

≥ λ

λ+ ρ̄
x>

(
d∑
i=1

ũiũ
>
i

1

λ̃i + λ

)
x =

λ

λ+ ρ̄
‖x‖2

Ṽ−1 .

Furthermore, this implies that

min

{
1,

λ

λ+ ρ̄
‖x‖2

Ṽ−1

}
≤ min

{
1, ‖x‖2

V−1

}
=⇒ min

{
1 +

ρ̄

λ
, ‖x‖2

Ṽ−1

}
≤
(

1 +
ρ̄

λ

)
min

{
1, ‖x‖2

V−1

}
(multiply both sides by 1 + ρ̄

λ
)

=⇒ min
{

1, ‖x‖2
Ṽ−1

}
≤
(

1 +
ρ̄

λ

)
min

{
1, ‖x‖2

V−1

}
.
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Finally, combining the above with Lemma 18, equation (7.3), and using the fact that ρ̄t−1 ≤
ρ̄T , we obtain

T∑
t=1

min
{

1, ‖xt‖2
Ṽ−1
t−1

}
≤ 2

(
1 +

ρ̄T
λ

)
ln

(
det(Vλ

T )

det(λI)

)
≤ 2

(
1 +

ρ̄T
λ

)(
d ln

(
1 +

ρ̄T
λ

)
+m ln

(
1 +

TL2

mλ

))
(by Lemma 2)

≤ 2 (1 + εm)

(
d ln (1 + εm) +m ln

(
1 +

TL2

mλ

))
where the last inequality follows from Proposition 1.

Now we prove Theorem 9, characterizing the confidence ellipsoid generated by the sketched
estimate.

Theorem 9 (Sketched confidence ellipsoid – restated). For any δ ∈ (0, 1), the optimal
parameter w? belongs to the set

C̃t ≡
{

w ∈ Rd : ‖w − w̃t‖Ṽt
≤ β̃t(δ)

}
with probability at least 1− δ, where

β̃t(δ) = R

√
m ln

(
1 +

tL2

mλ

)
+ 2 ln

(
1

δ

)
+ d ln

(
1 +

ρ̄t
λ

)√
1 +

ρ̄t
λ

+ S
√
λ
(

1 +
ρ̄t
λ

)
Õ
= R

√
(m+ d ln(1 + εm)) (1 + εm) + S

√
λ (1 + εm) .

Proof. Throughout the proof we frequently use Proposition 2, implying X>t Xt = S>t St +
ρ̄tI. For brevity, in the following we drop subscripts containing t in matrices. Let ηt =
(η1, η2 . . . , ηt), and by definition of the sketched estimate we have that

w̃t =
(
S>t St + λI

)−1
X>t (Xtw

? + ηt)

=
(
S>t St + λI

)−1
X>t ηt +

(
S>t St + λI

)−1
X>t Xtw

?

=
(
S>t St + λI

)−1
X>t ηt

+
(
S>t St + λI

)−1 (
X>t Xt + (λ− ρ̄t)I

)
w? − (λ− ρ̄t)

(
S>t St + λI

)−1
w?

=
(
S>t St + λI

)−1
X>t ηt + w? − (λ− ρ̄t)

(
S>t St + λI

)−1
w?

= Ṽ−1
t X>t ηt + w? − (λ− ρ̄t)Ṽ−1

t w? . (4.13)
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Then, by (4.13), for any x ∈ Rd we have that

x>
(
w̃t −w?

)
= x>Ṽ−1

t X>t ηt − (λ− ρ̄t)x>Ṽ−1
t w? (4.14)

≤
∥∥x>Ṽ−1

t

∥∥
Vλ
t
‖X>t ηt‖(Vλ

t )−1 − (λ− ρ̄t) 〈x,w?〉Ṽ−1
t

(by Cauchy-Schwartz)

≤
∥∥x>Ṽ−1

t

∥∥
Vλ
t
‖X>t ηt‖(Vλ

t )−1 + |λ+ ρ̄t|
∣∣〈x,w?〉Ṽ−1

t

∣∣
(by the triangle inequality.)

We now choose x = Ṽt(w̃t − w?) and proceed by bounding terms in the above. By the
choice of x, we have that x>

(
w̃t−w?

)
= ‖w̃t−w?‖2

Ṽt
,
∥∥x>Ṽ−1

t

∥∥
Vλ
t

= ‖w̃t−w?‖Vλ
t

and

〈x,w?〉Ṽ−1
t

= (w̃t −w?)>w? ≤ ‖w̃t −w?‖2 ‖w?‖2 (by Cauchy-Schwartz)

≤ ‖w̃t −w?‖2 S .

Finally, by Lemma 19, for any δ > 0, with probability at least 1− δ,

‖X>ηt‖(Vλ
t )−1 ≤

√
Bt(δ) ∀t ≥ 0 .

The left-hand side of (4.14) can now upper bounded as

‖w̃t −w?‖2
Ṽt
≤
√
Bt(δ)‖w̃t −w?‖Vλ

t
+ S(λ+ ρ̄t)‖w̃t −w?‖2

=⇒ ‖w̃t −w?‖Ṽt
≤
√
Bt(δ)

‖w̃t −w?‖Vλ
t

‖w̃t −w?‖Ṽt

+ S(λ+ ρ̄t)
‖w̃t −w?‖2

‖w̃t −w?‖Ṽt

. (4.15)

Now we handle the ratios of norms in the right-hand side of (4.15). First,

‖w̃t −w?‖Vλ
t

‖w̃t −w?‖Ṽt

=

√√√√‖w̃t −w?‖2
Ṽt

+ ρ̄t‖w̃t −w?‖2
2

‖w̃t −w?‖2
Ṽt

=

√
1 + ρ̄t

‖w̃t −w?‖2
2

‖w̃t −w?‖2
Ṽt

≤
√

1 +
ρ̄t
λ

since ‖w̃t −w?‖2
Ṽt
≥ λ‖w̃t −w?‖2

2 and, using the same reasoning,

‖w̃t −w?‖2

‖w̃t −w?‖Ṽt

≤ 1√
λ
.

Substituting these into (4.15) gives

‖w̃t −w?‖Ṽt
≤
√
Bt(δ)

(
1 +

ρ̄t
λ

)
+ S
√
λ
(

1 +
ρ̄t
λ

)
.
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Now we provide a deterministic bound on Bt(δ). Using Lemma 2 we have

√
Bt(δ) = R

√
2 ln

(
1

δ
det
(
Vλ
t

) 1
2 det (λI)−

1
2

)

≤ R

√
d ln

(
1 +

ρ̄t
λ

)
+m ln

(
1 +

tL2

mλ

)
+ 2 ln

(
1

δ

)
.

This proves the first statement (4.7). Finally, (4.8) follows by Proposition 1.

We close this section by computing a closed form for Ṽ
− 1

2
t , the square root of the inverse

of the sketched correlation matrix. This is used by sketched linear TS for selecting actions.
We make use of the generalized Woodbury matrix identity (see Lemma 15) to prove the
following:

Corollary 1. For λ > 0, let

S′t =

(
Σt +

(
λ

2
− ρt

)
Im×m

) 1
2

Ut .

Then

Ṽ
− 1

2
t = S

′>
t

(
S′tS

′>
t

)−1
(
λ

2
I + S′tS

′>
t

)− 1
2

S′t .

Proof. We apply Lemma 15 with f(Ṽ) = Ṽ
− 1

2
t . However, since StS

>
t is singular by design,

we apply the theorem with B set the non-singular proxy matrix S′t, A set to S
′>
t , and α set to

λ/2. Thus Ṽt = S
′>
t S′t + λ

2
Id×d and

(
S
′>
t S′t +

λ

2
Id×d

)− 1
2

=

√
2

λ
Im×m + S

′>
t

(
S′tS

′>
t

)−1
((

λ

2
Im×m + S′tS

′>
t

)− 1
2

−
√

2

λ
Im×m

)
S′t

= S
′>
t

(
S′tS

′>
t

)−1
(
λ

2
Im×m + S′tS

′>
t

)− 1
2

S′t (4.16)

where (4.16) follows since S
′>
t

(
S′tS

′>
t

)−1
S′t = Im×m.

4.5.2 Proof of the regret bound for SOFUL (Theorem 10)

We start with a preliminary lemma.

Lemma 5. For any δ > 0, the instantaneous regret of SOFUL satisfies

(x?t − xt)
>w? ≤ 2β̃t−1(δ)‖xt‖Ṽ−1

t−1
t = 1, . . . , T .
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Proof. Let w̃SO
t−1 be the FD-sketched RLS estimate of OFUL (Algorithm 8). Recall that the

optimal action at time t is x?t = arg maxx∈Dt x
>w?, whereas(

xt, w̃
SO
t−1

)
= arg max

(x,w)∈Dt×C̃t−1

x>w .

We use these facts to bound the instantaneous regret,(
x?t − xt

)>
w? ≤ x>t w̃SO

t−1 − x>t w?

= x>t
(
w̃SO
t−1 −w?

)
= x>t

(
w̃SO
t−1 − w̃t−1

)
+ x>t (w̃t−1 −w?)

≤ ‖xt‖Ṽ−1
t−1

(
‖w̃SO

t−1 − w̃t−1‖Ṽt−1
+ ‖w̃t−1 −w?‖Ṽt−1

)
(by Cauchy-Schwartz)

≤ 2β̃t−1(δ)‖xt‖Ṽ−1
t−1

(by Theorem 9)

concluding the proof.

Now we are ready to prove the regret bound.

Proof of Theorem 10. Bounding the regret using Lemma 5 gives

R(T,w?) =
T∑
t=1

(x?t − xt)
>w?

≤ 2
T∑
t=1

min
{
LS, β̃t−1(δ)‖xt‖Ṽ−1

t−1

}
(since max

t=1,...,T
max
x∈Dt
|x>w?| ≤ LS by Cauchy-Schwartz)

≤ 2
T∑
t=1

β̃t−1(δ) min

{
L√
λ
, ‖xt‖Ṽ−1

t−1

}
(since min

t=0,...,T−1
min
δ∈[0,1]

β̃t(δ) ≥ S
√
λ)

≤ 2

(
max

t=0,...,T−1
β̃t(δ)

) T∑
t=1

min

{
L√
λ
, ‖xt‖Ṽ−1

t−1

}

≤ 2 max

{
1,

L√
λ

}(
max

t=0,...,T−1
β̃t(δ)

) T∑
t=1

min
{

1, ‖xt‖Ṽ−1
t−1

}

≤ 2 max

{
1,

L√
λ

}(
max

t=0,...,T−1
β̃t(δ)

)√√√√T

T∑
t=1

min
{

1, ‖xt‖2
Ṽ−1
t−1

}
.

(by Cauchy-Schwartz)

Now we finish by further bounding the terms in the above. In particular, we bound β̃t(δ)
by (4.8)

max
t=0,...,T−1

β̃t(δ)
Õ
= R

√(
m+ d ln(1 + εm)

)
(1 + εm) + S

√
λ (1 + εm)
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while the bound on the summation term uses Lemma 4,√√√√ T∑
t=1

min
{

1, ‖Xt‖2
Ṽ−1
t−1

}
Õ
=
√

(1 + εm)
(
d ln (1 + εm) +m

)
.

Then, using Mλ = max
{

1, L√
λ

}
and m̃ = m+ d ln(1 + εm),

R(T,w?)
Õ
= Mλ

√
T
(
R
√
m̃ (1 + εm) + S

√
λ (1 + εm)

)√
m̃ (1 + εm)

Õ
= Mλ

√
T
(
Rm̃ (1 + εm) + S

√
λ (1 + εm)

3
2

√
m̃
)

Õ
= Mλ (1 + εm)

3
2 m̃

(
R + S

√
λ
)√

T

which completes the proof.

Proof of Theorem 11. Recall that

∆ ≤ min
t=1,...,T

(x?t − xt)
>w? .

Similarly to the proof of Theorem 10, we use Lemma 5 to bound the instantaneous regret.
However, we first use the gap assumption to bound the regret in terms of the sum of squared
instantaneous regrets,

R(T,w?) =
T∑
t=1

(x?t − xt)
>w?

≤ 1

∆

T∑
t=1

(
(x?t − xt)

>w?
)2

≤ 2

∆

T∑
t=1

min
{

2L2S2, β̃t−1(δ)2‖xt‖2
Ṽ−1
t−1

}
(4.17)

≤ 2

∆

(
max

t=0,...,T−1
β̃t(δ)

2

) T∑
t=1

min

{
2L2

λ
, ‖xt‖2

Ṽ−1
t−1

}
(4.18)

≤ 2

∆
max

{
1,

2L2

λ

}(
max

t=0,...,T−1
β̃t(δ)

2

) T∑
t=1

min
{

1, ‖xt‖2
Ṽ−1
t−1

}
(4.19)

where (4.18) holds because mint minδ β̃t(δ)
2 ≥ S2λ. Inequality (4.17) holds because(

(x?t − xt)
>w?

)2

≤ 2(x?>t w?)2 + 2(x>t w?)2

≤ 4L2S2 (by Cauchy-Schwartz)

and because of Lemma 5.
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We now finish bounding the regret by further bounding the individual terms in (4.19). In
particular, we use (4.8) to bound β̃t(δ) as follows

max
t=0,...,T−1

β̃t(δ)
2 Õ= R2

(√(
m+ d ln(1 + εm)

)
(1 + εm) + S

√
λ (1 + εm)

)2

Õ
= R2

(
m+ d ln(1 + εm)

)
(1 + εm) + S2λ (1 + εm)2 .

Lemma 4 gives
T∑
t=1

min
{

1, ‖Xt‖2
Ṽ−1
t−1

}
Õ
= (1 + εm)

(
m ln(T ) + d ln (1 + εm)

)
.

Then, using again Mλ = max
{

1, L√
λ

}
and m̃ = m+ d ln(1 + εm),

R(T,w?)
Õ
=
M2

λ

∆

(
R2m̃ (1 + εm) + S2λ (1 + εm)2) (1 + εm) m̃

Õ
=
M2

λ

∆

(
m̃R2 + S2λ

)
(1 + εm)3 m̃

Õ
=
M2

λ

∆

(
R2 + S2λ

)
(1 + εm)3 m̃2

concluding the proof.

4.5.3 Proof of the regret bound for Sketched Linear TS (Theorem 12)
Here w̃TS

t−1 is used to denote the FD-sketched RLS estimate of linear TS (Algorithm 9). As
in Abeille and Lazaric [2017], we split the regret as follows

R(T,w?) =
T∑
t=1

(
x?t − xt

)>
w? =

T∑
t=1

(
x?>t w? − x>t w̃TS

t−1

)
+

T∑
t=1

(
x>t w̃TS

t−1 − x>t w?
)

=
T∑
t=1

(
Jt(w

?)− Jt(w̃TS
t−1)
)

+
T∑
t=1

(
x>t w̃TS

t−1 − x>t w?
)

(4.20)

where
Jt(w) = max

x∈Dt
x>w

is an “optimistic” reward function. Most of the proof is concerned with bounding the first
term in (4.20). The second term is instead obtained in way similar to the analysis of OFUL.
Fix any δ ∈ (0, 1), let δ′ = δ

4T
, and introduce events

Ẽt ≡
{
‖w̃s −w?‖ ≤ β̃s(δ

′), s = 1, . . . , t
}

ẼTS
t ≡

{
‖w̃TS

s − w̃s‖ ≤ γ̃s(δ
′), s = 1, . . . , t

}
and Et ≡ Ẽt ∩ ẼTS

t . Observe that, by definition,

ẼT ⊂ · · · ⊂ Ẽ1 and ẼTS
T ⊂ · · · ⊂ ẼTS

1 (4.21)

We also use the following lower bound on the probability of ET .
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Lemma 6. P (ET ) ≥ 1− δ

2
.

Proof. The proof is identical to the proof of Abeille and Lazaric [2017, Lemma 1], the only
difference being that we use the confidence ellipsoid defined in Theorem 9.

We study the regret when ET occurs,

I{ET}R(T,w?) =
T∑
t=1

I{ET}
(
Jt(w

?)− Jt(w̃TS
t−1)
)

+
T∑
t=1

I{ET}
(
x>t w̃TS

t−1 − x>t w?
)

≤
T∑
t=1

I{Et−1}
(
Jt(w

?)− Jt(w̃TS
t−1)
)

+
T∑
t=1

I{Et−1}
(
x>t w̃TS

t−1 − x>t w?
)

(using (4.21))

=
T∑
t=1

rTS
t +

T∑
t=1

rRLS
t (4.22)

where we introduced the notation

rTS
t = I{Et−1}

(
Jt(w

?)− Jt(w̃TS
t−1)
)

and rRLS
t = I{Et−1}

(
x>t w̃TS

t−1 − x>t w?
)
.

First we focus on rTS
t , and get that

rTS
t =

(
Jt(w

?)− Jt(w̃TS
t−1)
)
I{Et−1}

≤

(
Jt(w

?)− inf
w∈C̃TS

t−1

Jt(w)

)
I{Et−1} (because Et−1 implies w̃TS

t−1 ∈ C̃TS
t−1)

≤

(
Jt(w

?)− inf
w∈C̃TS

t−1

Jt(w)

)
I
{
Ẽt−1

}
. (using (4.21))

Consider the following set of “optimistic” coefficients w such that Jt(w?) ≤ Jt(w) and,
moreover, w belongs to the sketched TS confidence ellipsoid,

W OPT-TS
t ≡

{
w ∈ Rd : Jt(w

?) ≤ Jt(w)
}
∩ C̃TS

t .

Then, for w̃TS ∈ W OPT-TS
t−1

rTS
t ≤

(
Jt(w̃

TS)− inf
w∈C̃TS

t−1

Jt(w)

)
I
{
Ẽt−1

}
. (4.23)

We now use Abeille and Lazaric [2017, Proposition 3 and Lemma 2] (restated below here for
convenience) to argue about the convexity of J and relate its gradient to the chosen action.

Proposition 3. For any finite set D of actions x such that ‖x‖ ≤ 1, maxx∈D x>w is convex
on Rd. Moreover, it is continuous with continuous first derivatives (except for a zero-measure
set w.r.t. the Lebesgue measure).
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Lemma 7. For any w ∈ Rd, we have

∇
(

max
x∈D

x>w
)

= arg max
x∈D

x>w

(except for a zero-measure w.r.t. the Lebesgue measure).

Relying on the two results above, we can proceed as follows. Introduce J
/L
t (w) =

Jt(w)/L = maxx∈Dt(x/L)>w. Then by Proposition 3, J/Lt (w) is convex for w ∈ Rd

since ‖x/L‖ ≤ 1. Then, by letting x?(w̃TS) = ∇Jt(w̃TS), for any w̃TS ∈ W OPT-TS
t−1 we have

Jt(w̃
TS)− inf

w∈C̃TS
t−1

Jt(w) = L

(
J
/L
t (w̃TS)− inf

w∈C̃TS
t−1

J
/L
t (w)

)
≤ L sup

w∈C̃TS
t−1

{
∇J/Lt (w̃TS)> (w̃TS −w)

}
= L sup

w∈C̃TS
t−1

{(
x?(w̃TS)

L

)>
(w̃TS −w)

}
≤ ‖x?(w̃TS)‖Ṽ−1

t−1
sup

w∈C̃TS
t−1

‖w̃TS −w‖Ṽt−1
(by Cauchy-Schwartz)

≤ 2γ̃t−1(δ′)‖x?(w̃TS)‖Ṽ−1
t−1

where the last inequality holds for all w̃TS ∈ C̃TS
t−1 and by the triangle inequality. Substituting

this into (4.23), and taking expectation with respect to w̃TS yields

rTS
t ≤ 2γ̃t−1(δ′)E

[
‖x?(w̃TS)‖Ṽ−1

t−1
I
{
Ẽt−1

} ∣∣∣ w̃TS ∈ W OPT-TS
t−1 , Ft−1

]
. (4.24)

where we useFt to denote the σ-algebra generated by the random variables η1,Z1, . . . , ηt−1,Zt−1.
Now we further upper bound rTS

t while bounding the probability of event w̃TS ∈ W OPT-TS
t−1

occurring in (4.24). This is done in the following lemma, whose proof (omitted here) is
identical to the proof of [Abeille and Lazaric, 2017, Lemma 3], where ellipsoids are replaced
by their sketched counterparts.

Lemma 8. Assume thatDTS is a TS-sampling distribution with anti-concentration parameter
p. Then, for Z ∼ DTS we have that

P
(
w̃TS ∈ W OPT-TS

t−1

∣∣∣ Ẽt−1,Ft−1

)
≥ p

2
t = 1, . . . , T .

We now proceed with the main argument of the proof. Using g(w̃TS) = ‖x?(w̃TS)‖Ṽ−1
t−1

,

E
[
g(w̃TS)

∣∣∣ Ẽt−1,Ft−1

]
≥ E

[
g(w̃TS)I

{
w̃TS ∈ W OPT-TS

t−1

} ∣∣∣ Ẽt−1,Ft−1

]
= E

[
g(w̃TS)

∣∣∣ w̃TS ∈ W OPT-TS
t−1 , Ẽt−1,Ft−1

]
P
(
w̃TS ∈ W OPT-TS

t−1

∣∣∣ Ẽt−1,Ft−1

)
≥ E

[
g(w̃TS)

∣∣∣ w̃TS ∈ W OPT-TS
t−1 , Ẽt−1,Ft−1

] p
2

(by Lemma 8.)
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The above combined with (4.24) implies that

rTS
t ≤ 2γ̃t−1(δ′)E

[
g(w̃TS)I

{
Ẽt−1

} ∣∣∣ w̃TS ∈ W OPT-TS
t−1 ,Ft−1

]
= 2γ̃t−1(δ′)E

[
g(w̃TS)

∣∣∣ w̃TS ∈ W OPT-TS
t−1 , Ẽt−1,Ft−1

]
P
(
Ẽt−1

)
≤ 4

p
γ̃t−1(δ′)E

[
g(w̃TS)

∣∣∣ Ẽt−1,Ft−1

]
. (4.25)

Finally, summing (4.25) over time we get

T∑
t=1

rTS
t ≤

4

p

(
max
t=0,...,T

{γ̃t(δ′)}
) T∑

t=1

E
[
‖x?(w̃TS)‖Ṽ−1

t−1

∣∣∣ Ft−1

]
.

Note that we can already bound γ̃t using (4.9). However, we cannot bound the expectation
right away, so we rewrite the above as follows

T∑
t=1

rTS
t ≤

4

p

(
max
t=0,...,T

{γ̃t(δ′)}
)( T∑

t=1

‖Xt‖Ṽ−1
t−1

+MT

)
(4.26)

where we introduce the martingale

MT =
T∑
t=1

(
E
[
‖x?(w̃TS)‖Ṽ−1

t−1

∣∣∣ Ft−1

]
− ‖Xt‖Ṽ−1

t−1

)
.

Next, we use the Azuma-Hoeffding (see Proposition 5 in the Appendix) inequality to upper-
bound MT . Now verify that for any t = 1, . . . , T ,

Mt −Mt−1 = E
[
‖x?(w̃TS)‖Ṽ−1

t−1

∣∣∣ Ft−1

]
− ‖Xt‖Ṽ−1

t−1
≤ 2L√

λ
.

Thus, by the Azuma-Hoeffding inequality, with probability at least 1− δ/2 we have

MT ≤

√
4LT

λ
ln

(
4

δ

)
. (4.27)

Now we focus our attention on the remaining term:

T∑
t=1

‖Xt‖Ṽ−1
t−1
≤

T∑
t=1

min

{
L√
λ
, ‖Xt‖Ṽ−1

t−1

}

≤ max

{
1,

L√
λ

} T∑
t=1

min
{

1, ‖Xt‖Ṽ−1
t−1

}

≤ max

{
1,

L√
λ

}√√√√T
T∑
t=1

min
{

1, ‖Xt‖2
Ṽ−1
t−1

}
(by Cauchy-Schwartz)

Õ
= max

{
1,

1√
λ

}√
(1 + εm) (d ln(1 + εm) +m)T (4.28)
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where the last step is due to Lemma 4.
For brevity denote m̃ = m+ d ln(1 + εm). Now, we substitute into (4.26) the bound (4.27)
on MT , the bound (4.28), and the bound (4.9) on γ̃t. This gives
T∑
t=1

rTS
t
Õ
=
√
d
(
R
√
m̃ (1 + εm) + S

√
λ · (1 + εm)

)(
max

{
1,

1√
λ

}√
(1 + εm)m̃T +

√
T

λ

)
Õ
= max

{
1,

1√
λ

}
m̃ (1 + εm)

3
2

(
R + S

√
λ
)√

dT (4.29)

which holds with high probability (due to Azuma-Hoeffding inequality).
Now we bound the remaining RLS term of the regret. In particular,

T∑
t=1

rRLS
t =

T∑
t=1

I{Et−1}
(
X>t w̃TS

t−1 −X>t w?
)

=
T∑
t=1

I{Et−1}
(
X>t w̃TS

t−1 −X>t w̃t−1

)
+

T∑
t=1

I{Et−1}
(
X>t w̃t−1 −X>t w?

)
≤

T∑
t=1

I{Et−1} ‖Xt‖Ṽt−1
‖w̃TS

t−1 − w̃t−1‖Ṽ−1
t−1

+
T∑
t=1

I{Et−1} ‖Xt‖Ṽt−1
‖w̃t−1 −w?‖Ṽ−1

t−1
(by Cauchy-Schwartz)

≤
T∑
t=1

‖Xt‖Ṽt−1
γ̃t−1(δ′) (by definition of event ẼTS

t−1)

+
T∑
t=1

‖Xt‖Ṽt−1
β̃t−1(δ′) (by definition of event Ẽt−1)

Õ
= max

{
1,

1√
λ

}√
m̃(1 + εm)T (using (4.28))

· d
(
R
√
m̃ (1 + εm) + S

√
λ · (1 + εm)

)
(using Theorem 9 to bound β̃ and (4.9) to bound γ̃)

Õ
= max

{
1,

1√
λ

}(
Rm̃ (1 + εm) + S

√
λ
√
m̃ (1 + εm)

3
2

)√
dT

Õ
= max

{
1,

1√
λ

}
m̃ (1 + εm)

3
2

(
R + S

√
λ
)√

dT . (4.30)

Hence, combining (4.22), (4.29), and (4.30) gives, with high probability,

I{ET}RT =
T∑
t=1

rTS
t +

T∑
t=1

rRLS
t

Õ
= max

{
1,

1√
λ

}
m̃ (1 + εm)

3
2

(
R + S

√
λ
)√

dT

The proof is concluded by observing that Lemma 6 proves that ET also holds with high
probability.
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4.6 Experiments

In this section we present experiments on six publicly available classification datasets.

Setup. The idea of our experimental setup is similar to the one described by Cesa-Bianchi
et al. [2013b]. Namely, we convert a K-class classification problem into a contextual bandit
problem as follows: given a dataset of labeled instances (x, y) ∈ Rd × {1, . . . , K}, we
partition it into K subsets according to the class labels. Then we create K sequences by
drawing a random permutation of each subset. At each step t the decision set Dt is obtained
by picking the t-th instance from each one of these K sequences. Finally, rewards are
determined by choosing a class y ∈ {1, . . . , K} and then consistently assigning reward 1 to
all instances labeled with y and reward 0 to all remaining instances.

Datasets. We perform experiments on six publicly available datasets for multiclass classi-
fication from the openml repository Vanschoren et al. [2013] —dataset IDs 1461, 23, 32,
182, 22, and 44, see the table below here for details.

Dataset Examples Features Classes
Bank 45k 17 2
SatImage 6k 37 6
Spam 4k 58 2
Pendigits 11k 17 10
MFeat 2k 48 10
CMC 1.4k 10 3

Baselines. The hyperparameters β (confidence ellipsoid radius) and λ (RLS regulariza-
tion parameter) are selected on a validation set of size 100 via grid search on (β, λ) ∈
{1, 102, 103, 104} × {10−2, 10−1, 1} for OFUL, and {1, 102, 103} × {10−2, 10−1, 1, 102} for
linear TS.

Results We observe that on three datasets, Figure 4.1, sketched algorithms indeed do not
suffer a substantial drop in performance when compared to the non-sketched ones, even
when the sketch size amounts to 60% of the context space dimension. This demonstrates
that sketching successfully captures relevant subspace information relatively to the goal of
maximizing reward.
Because the FD-sketching procedure considered in this paper is essentially performing online
PCA, it is natural to ask how our sketched algorithms would compare to their non-sketched
version run on the best m-dimensional subspace (computed by running PCA on the entire
dataset). In Figure 4.2, we compare SOFUL and sketched linear TS to their non-sketched
versions. In particular, we keep 60%, 40%, and 20% of the top principal components, and
notice that, like in Figure 4.1, there are cases with little or no loss in performance.
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Figure 4.1: Comparison of SOFUL to OFUL on six real-world datasets and for different
sketch sizes. Note that, in some cases, a sketch size equal to 80% and even 60% of the
context space dimension does not significantly affect the perfomance.

0 200 400 600 800 1000
Rounds

0

200

400

600

800

1000

Cu
m

ul
at

iv
e 

Re
wa

rd

Bank (45k examples, 17 features, 2 classes)
TS
Sketched (80% top dim.)
Sketched (60% top dim.)
Sketched (40% top dim.)
Sketched (20% top dim.)

0 100 200 300 400 500 600
Rounds

0

100

200

300

400

500

Cu
m

ul
at

iv
e 

Re
wa

rd

SatImage (6k examples, 37 features, 6 classes)
TS
Sketched (80% top dim.)
Sketched (60% top dim.)
Sketched (40% top dim.)
Sketched (20% top dim.)

0 50 100 150 200 250 300
Rounds

0

50

100

150

200

Cu
m

ul
at

iv
e 

Re
wa

rd

Spam (4k examples, 58 features, 2 classes)
TS
Sketched (80% top dim.)
Sketched (60% top dim.)
Sketched (40% top dim.)
Sketched (20% top dim.)

0 50 100 150 200 250 300
Rounds

0

25

50

75

100

125

150

175

200

Cu
m

ul
at

iv
e 

Re
wa

rd

CMC (1.4k examples, 10 features, 3 classes)
TS
Sketched (80% top dim.)
Sketched (60% top dim.)
Sketched (40% top dim.)

0 25 50 75 100 125 150 175 200
Rounds

0

25

50

75

100

125

150

175

200

Cu
m

ul
at

iv
e 

Re
wa

rd

MFeat (2k examples, 48 features, 10 classes)
TS
Sketched (80% top dim.)
Sketched (60% top dim.)
Sketched (40% top dim.)
Sketched (20% top dim.)

0 200 400 600 800 1000
Rounds

0

200

400

600

800

1000

Cu
m

ul
at

iv
e 

Re
wa

rd

Pendigits (11k examples, 17 features, 10 classes)
TS
Sketched (80% top dim.)
Sketched (60% top dim.)
Sketched (40% top dim.)

Figure 4.1: Comparison of sketched linear TS to linear TS on six real-world datasets and for
different sketch sizes. Note that, in some cases, a sketch size equal to 80% and even 60% of
the context space dimension does not significantly affect the perfomance.
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Figure 4.2: Comparison of OFUL run on the best m-dimensional subspace against SO-
FUL run with sketch size m. Rows show m as a fraction of the context space dimension:
60%, 40%, 20% (for the first three datasets), while columns correspond to different datasets.
Note that, in some cases (with sketch size m of size at least 60%), SOFUL performs as well
as if the best m-dimensional subspace had been known in hindsight.
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Figure 4.3: Comparison of linear TS run on the best m-dimensional subspace against
sketched linear TS run with sketch size m. Rows show m as a fraction of the context space
dimension: 60%, 40%, 20% (for the first three datasets), while rows correspond to different
datasets. Note that, in some cases (with sketch size m of size at least 60%), sketched linear
TS performs as well as if the best m-dimensional subspace had been known in hindsight.
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4.7 Conclusions
We tackle the efficiency of two well-known stochastic linear bandit algorithms: OFUL
and Thompson Sampling. Adopting Frequent Directions, a deterministic online sketching
technique, we show that a sketch of size m allows a O(md) update time for both algorithms,
as opposed to Ω(d2) required by their non-sketched versions in general (where d is the
dimension of context vectors). A more general analysis to not predefined sketch sizes have
been lately proposed in Calandriello et al. [2019], Chen et al. [2020].
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Chapter 5

Meta-learning with Stochastic Linear
Bandits

Abstract

In Chapter 4 we have focused on obtaining efficient linear bandit agents. Here, we investigate
meta-learning procedures aiming to speedup the learning phase by taking advantage of
tasks similarity. The goal is to select a learning algorithm which works well on average
over a class of bandits tasks, that are sampled from a task-distribution. Inspired by recent
work on learning-to-learn linear regression, we consider a class of bandit algorithms that
implement a regularized version of the OFUL algorithm introduced in Section 2.2. The
introduced regularization is defined as a square euclidean distance to a bias vector. We first
study the benefit of the biased OFUL algorithm in terms of regret minimization. We then
propose two strategies to estimate the bias within the learning-to-learn setting. We show both
theoretically and experimentally, that when the number of tasks grows and the variance of
the task-distribution is small, our strategies have a significant advantage over learning the
tasks in isolation.

5.1 Introdution

As we were in Chapter 4, we are concerned with linear bandits (Abbasi-Yadkori et al. [2011],
Chu et al. [2011], Auer [2003]). Our study builds upon the OFUL algorithm introduced
in Section 2.2, which in turned improved the theoretical analysis initially investigated in
(Chu et al. [2011], Auer [2003]). Nonetheless, it may still require a long exploration in
order to estimate well the unknown linear regression vector. An appealing approach to
solve this bottleneck is to leverage already completed tasks by transferring the previously
collected experience to speedup the learning process. This framework finds its most common
application in the recommendation system domain, where we wish to recommend contents
to a new user by matching his preference. Our objective is to rely on past interactions
corresponding to navigation of different users to speedup the learning process.
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Previous Work. During the past decade, there have been numerous theoretical investigation
of transfer learning, with a particular attention to the problems of multi-task (MTL) (Ando
and Zhang [2005], Maurer and Pontil [2013], Maurer et al. [2013, 2016], Cavallanti et al.
[2010]) and learning-to-learn (LTL) or meta-learning (Baxter [2000], Alquier et al. [2017],
Denevi et al. [2018a,b, 2019], Pentina and Urner [2016]). The main difference between
these two settings is that MTL aims to solve the problem of learning well on a prescribed
set of tasks (the learned model is tested on the same tasks used during training), whereas
LTL studies the problem of selecting a learning algorithm that works well on tasks from
a common environment (i.e. sampled from a prescribe distribution), relying on already
completed tasks from the same environment (Pentina and Urner [2016], Balcan et al. [2019],
Denevi et al. [2018a, 2019]). In either case the base tasks considered have always been
supervised learning ones. Recently, the MTL setting has been extended to a class of bandit
tasks, with encouraging empirically and theoretically (Azar et al. [2013], Calandriello et al.
[2014], Zhang and Bareinboim [2017], Deshmukh et al. [2017], Liu et al. [2018]), as well
as the case where tasks belong to a (social) graph, a setting that is usually referred to as
collaborative linear bandit (Cesa-Bianchi et al. [2013b], Soare et al. [2014], Gentile et al.
[2014, 2017]). Differently from these works, the principal goal of this paper is to investigate
the adoption of the meta-learning framework, which has been successfully considered within
the supervised setting setting, to the setting of linear stochastic bandits.
Contributions. Our contribution is threefold. First, we introduce in Section 5.3 a variant
of the OFUL algorithm in which the regularization term is modified by introducing a bias
vector, analyzing the impact of the bias in terms of regret minimization. Second, and more
importantly, in Sections 5.4 and 5.5 we propose two alternative approaches to estimate the
bias, within the meta-learning setting. We establish theoretical results on the regret of these
methods, highlighting that, when the task-distribution has a small variance and the number
of tasks grows, adopting the proposed meta-learning methods lead a substantial benefit in
comparison to using the standard OFUL algorithm. Finally, in Section 5.7 we compare
experimentally the proposed methods with respect to the standard OFUL algorithm on both
synthetic and real data.

5.2 LTL with Linear Stochastic Bandits.
We assume that each learning task w ∈ Rd representing a linear bandit, is sampled from a task-
distribution ρ of bounded support in Rd. The objective is to design a meta-learning algorithm
which is well suited to the environment. Specifically, we assume to receive a sequence of tasks
w1, . . . ,wN , . . . which are independently sampled from the task-distribution (environment) ρ.
Due to the interactive nature of the bandit setting, we do not have any prior information related
to a new task; we collect information about it along the interaction with the environment.
After completing the j-th task, we store the whole interaction in a dataset Zj which is formed
by T entries (xj,t, yj,t)

T
t=1. Clearly, the dataset entries are not i.i.d sampled from a given

distribution, but each dataset Zj corresponds to the recording of the learning policy in terms
of the arm xj,t picked from the decision set Djt and its corresponding reward yj,t while facing
the task specified by the unknown vector wj . Starting from these datasets, we wish to design
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an algorithm A which suffers a low regret on a new task wN+1 ∼ ρ. This can be stated into
requiring that A trained over N datasets has small transfer-regret:

R(T, ρ) = Ew∼ρ

[
E
[
R(T,w)

]]
where the inner expectation is with respect to rewards realizations due to their noisy compo-
nents.

5.3 Biased Regularized OFUL
We now introduce BIAS-OFUL, a biased version of OFUL, which is instrumental for our
meta-learning setting. Although not feasible, the proposed algorithm it serves as a basis
to study the theoretical properties of meta-learning with stochastic linear bandit tasks. In
Section 5.7 we will present a more practical version of it.

Regularized Confidence Sets The idea of following a bias in a specific family of learning
algorithms is not new in the LTL literature (Denevi et al. [2018a, 2019, 2018b]). Inspired by
Denevi et al. [2019] we modify the regularization in the computation of the confidence set
centroid ŵλ

t , where the regularization is now defined as a square euclidean distance to the
bias parameter h ∈ Rd. Given a fixed vector h, at each round t ∈ [T ] BIAS-OFUL estimates
the regularized centroid of the confidence ellipsoid as

ŵh
t = arg min

w

∥∥X>t w −Yt

∥∥2

2
+ λ ‖w − h‖2

2

whose solution is given by

ŵh
t =

(
Vλ
t

)−1
X>t (Yt −Xth) + h. (5.1)

This result follows directly from the standard ridge-regression by using the substitution
v = w − h.
As we have mentioned in the previous section, at each round t OFUL keeps also updated
a confidence interval Ct (see Theorem 2) centered in ŵλ

t which contains w∗ with high
probability. We now derive a confidence set for the biased regularized estimate ŵh

t , assuming
that we have access to an oracle to compute the distance ‖h−w∗‖2. This seems quite
restrictive, however later in the paper we will show how levering similar related tasks we can
exploit this bound to take advantage of the bias version of OFUL, without having to know
the above distance a-priori.

Theorem 13. Assuming ‖h‖2 ≤ S, ‖w∗‖2 ≤ S and ‖x‖2 ≤ L ∀ x ∈ ∪ts=1Ds, then for any
δ > 0, with probability at least 1− δ, ∀t ≥ 0, w∗ lies in the set

Cht (δ) =

{
w ∈ Rd :

∥∥ŵh
t −w

∥∥
Vλ
t
≤ λ

1
2 ‖h−w∗‖2+

√√√√2 log

(
det
(
Vλ
t

)1/2

det (λI)1/2 δ

)
= βh

t (δ)

}
.

(5.2)
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The proof can be found in the appendix material. We will now study the impact of the bias h
in terms of regret.

5.3.1 Regret Analysis with Fixed Bias

Given the confidence set defined in Theorem 13 and the optimism principle translated into
selecting the next arm according to Equation 2.12, we can analyze the expected pseudo-regret
(see Eq. (2.9) for its formal definition) depending on the value of h.

Lemma 9. (REG-OFUL Expected Regret) Under the same assumptions of Theorem 13, if in
addition, for all t and all x ∈ Dt, x>w∗ ∈ [−1, 1], and considering λ ≥ 1, we have:

R(T,w∗) = E [R(T,w∗)]

≤ C

√
Td log

(
1 +

TL

λd

)(
λ

1
2 ‖w∗ − h‖2 +R

√
d log(T + T 2L/(λd))

)

where the expectation is respect to the reward generation and C > 0 is a constant factor.

We now analyze the regret for two different values of h. In particular we wish to highlight
how setting a good bias can speedup the process of learning with respect to using the standard
OFUL approach Algorithm [Abbasi-Yadkori et al., 2011].

Corollary 2. Under the conditions of Lemma 9, the following bounds on the expected regret
of BIAS-OFUL holds:

(i) Independent Task Learning (ITL), given by setting h = 0 satisfies the following
expected regret bound

R(T,w∗) ≤ C

√
Td log

(
1 +

TL

λd

)(
λ

1
2S +R

√
d log(T + T 2L/(λd))

)

which is of order O(d
√
T ) for any λ ≥ 1.

(ii) The Oracle, given by setting h = w∗satisfies

R(T,w∗) ≤ C

√
Td log

(
1 +

TL

λd

)(
R
√
d log(T + T 2L/(λd))

)
which is 0 as λ→∞.

The proofs can be found in the supplementary material. The main intuition is that, as long as
we can set h = w∗, the bigger the regularization parameter λ is, the more the Oracle policy
tends to select the arm only based on w∗, thereby becoming equivalent to the optimal policy.
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5.3.2 Transfer Regret Analysis with Fixed Bias
Following the above analysis for the single task case, we now study the impact of the bias
in the transfer regret bound. To this end, we introduce the variance and the mean absolute
distance of a bias vector h relative to the environment of task,

Varh = Ew∼ρ
[
‖w − h‖2

2

]
, Marh = Ew∼ρ

[
‖w − h‖2

]
and we observe that w = Ew∼ρw = arg minh∈Rd Varh and m = arg minh∈Rd Marh. With
this in hand, we can now analyze how the transfer regret can be upper bounded as a function
of the introduced terms.

Lemma 10. (Transfer Regret Bound) Under the same conditions in Theorem 13 and Lemma
9, the expected transfer regret of BIAS-OFUL can be upper bounded as:

R(T, ρ) ≤ C

√
Tdλ log

(
1 +

TL

λd

)
Marh +RCd

√
T log

(
T +

T 2L

λd

)
log

(
1 +

TL

λd

)

≤ C

√
Tdλ log

(
1 +

TL

λd

)
Varh +RCd

√
T log

(
T +

T 2L

λd

)
log

(
1 +

TL

λd

)
Proof. The first statement is the expectation with respect to the task-distribution ρ applied to
Lemma 9, while the second follows by applying Jensen’s inequality.

We can now replicate what we have done in Corollary 2 and consider the transfer regret
bound for two different values of the hyper-parameter h. The main difference is that here,
there is not an a-priori correct value for h as it depends on the task-distribution ρ.

Corollary 3. Under the same assumptions in Theorem 13 and Lemma 9, and setting λ =
1

TVarh
, the following bounds on the transfer regret hold

(i) Independent Task Learning (ITL), given by setting the bias hypeparameter h equal to
0, satisfies

R(T, ρ) ≤

[
1 +

√
Td log

(
T +

T 3LVar0
d

)]
C

√
d log

(
1 +

T 2LVar0
d

)

(ii) The Oracle, given by setting the bias hyperparameter h equal to the mean task w,
satisfies

R(T, ρ) ≤

[
1 +

√
Td log

(
T +

T 3LVarw
d

)]
C

√
d log

(
1 +

T 2LVarw
d

)
.

Proof. These results directly follow from Lemma 10. We have picked λ = 1
TVarh

in order to
highlight the multiplicative term log(1 + Varh) which tends to zero according to the variance
Varh of the task-distribution ρ.
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Algorithm 10 Within Task Algorithm: BIAS-OFUL

Input: λ > 0, ĥ0 ∈ Rd

1: ŵh
0 = ĥ0,V

−1
0 = 1

λ
I.

2: for t = 1 to T do
3: GET decision set Dt

4: SELECT xt ∈ Dt with bias h = ĥλj,t
5: OBSERVE reward yt
6: UPDATE Vt = Vt−1 + xtx

>
t

7: UPDATE ĥλj,t according to the meta-algorithm
8: UPDATE ŵh

t using Equation 5.1
9: end for

Algorithm 11 Meta-Algorithm: Estimating ĥλ

1: for j = 1 to N do
2: SAMPLE new task wj ∼ ρ

3: SET ĥλj,0
4: RUN Algorithm 10 with parameter ĥλj,0
5: end for

Therefore, running BIAS-OFUL with bias h equal to w brings a substantial benefit with
respect to the unbiased case when the second moment of the task-distribution ρ is much
bigger than its variance. Specifically, we introduce the following assumption.

Assumption 1. (Low Biased Variance)

Varw = Ew∼ρ ‖w −w‖2
2 � Ew∼ρ ‖w‖2

2 = Var0. (5.3)

Notice also that the choice λ = 1/(TVarh), implies that, as Varw tends to 0, the regret upper
bound of the oracle case tends to zero too reflecting the result of Corollary 2. More in general,
we can state that when the environment (i.e. the task-distribution ρ) satisfies Assumption 1,
leveraging on tasks similarity would gives a substantial benefit compared to learning each
task separately. Since in practice the mean task parameter w is unknown, in the following
sections we propose two alternative approaches to estimate w.

5.4 A High Variance Solution
In this section, we present our first meta-learning method. We begin by introducing some
additional notation. We let xh

j,t be the arm pulled by the BIAS-OFUL algorithm (Algorithm
10) at round t-th of the j-th task. We denote by Vj,T =

∑T
s=1 xh

j,sx
h>
j,s the design matrix

computed with the T arms picked during the j-th task. For each terminated task j ∈ [N ] we
also define bj,T = X>j,TYj,T . Finally, we introduce the mean estimation error

εN,t(ρ) =
∥∥∥w − ĥλN,t

∥∥∥2

2
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which is the error of our estimate ĥλN,t with respect to the true mean task w, at round t of the
N + 1-th task.

5.4.1 Averaging the Estimated Task Parameters
An intuitive solution to bound the estimation error εN,t is to simply average of the esti-
mated task parameters ŵλ

j computed according to Equation 2.10 on the dataset Zj without
considering any bias.

ĥλN,t =
1

NT + t

(
N∑
j=1

T ŵλ
j,T + tŵλ

N+1,t

)
. (5.4)

By adopting this approach, we have the following bound on the transfer regret.

Theorem 14. (Transfer Regret Bound). Let the assumptions of Lemma 10 hold and let ĥλN,t
be defined as in Equation (5.4). Then, it hold that

R(T, ρ) ≤ dC

√√√√√√√T log

1 +

T 2L

(
Varw + εN,T (ρ)

)
d


where the mean estimation error can be bound as√

εN,T (ρ) ≤ Hρ(N + 1,w) + max
j=1,...,N

βλj
(
1/T

)
λ

1/2
min(Vλ

j,T )
.

Here, βλj
(

1
T

)
refers to the confidence interval computed with OFUL (see Theorem 2) and

Hρ(N + 1,w) =
∥∥w − hN,t

∥∥
2

with hN,t+1 = 1
NT+t

(∑N
j=1 Twj + twN+1

)
.

Proof. We follow the reasoning in Corollary 3, this time setting h = ĥλN,T , and then observe
that √

εN,T (ρ) =
∥∥∥w − ĥλN,T

∥∥∥
2
≤
∥∥w − hN,T

∥∥
2

+
∥∥∥hN,T − ĥλN,T

∥∥∥
2

= Hρ(N + 1,w) +
∥∥∥hN,T − ĥλN,T

∥∥∥
2

≤ Hρ(N + 1,w) + max
1≤j≤N+1

∥∥wj − ŵλ
j,T

∥∥
2

≤ Hρ(N + 1,w) + max
1≤j≤N+1

∥∥wj − ŵλ
j,T

∥∥
Vλ
j,T

λ
1/2
min(Vλ

j,T )

≤ Hρ(N + 1,w) + max
1≤j≤N+1

βλj
(
1/T

)
λ

1/2
min(Vλ

j,T )
.
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The term Hρ(N + 1,w) denotes the estimation error of the empirical mean computed from
the N + 1 tasks vectors (wj)

N+1
j=1 , relative to the true mean w. Since the wj are independent

random d-dimensional vectors drawn from ρ we can apply the following vectorial version of
the Bennett’s inequality Smale and Zhou [see, e.g., 2007, Lemma 2].

Lemma 11. Let w1, . . . ,wN be N independent random vectors with values in Rd sampled
from the task-distribution ρ. Assuming that ∀j ∈ [N ] : ‖wj‖ ≤ S, then for any 0 < δ < 1, it
holds, with probability at least 1− δ

H(N,w) ≤ 2 log(2/δ) S

N
+

√
2 log(2/δ) Var0

N
.

The above lemma says that the error Hρ(N,w) goes to zero as N grows to infinity. Therefore
the estimation error εN,t(ρ) is dominated by the “variance” term max1≤j≤N β

λ
j

(
1/T

)
λ
−1/2
min (Vλ

j,T ),
associated with the worst past task. By relying on linear regression results Lai and Wei
[1982] we have that λmin(Vj) ≥ log T . Moreover, as λmin(Vλ

j ) ≥ λ+λmin(Vj), we observe
an increasing sensitivity of the incurred variance to the λ parameter for small value of T .
Finally, according to our choice of λ = 1/TVarĥλ , the suffered variance increases with the
variance of our estimator. The latter in turns increases with the variance of the distribution ρ,
which corresponds to the case in which Assumption 1 tends to be violated.

5.5 A High Bias Solution
In this section we will present an alternative estimator of the true mean w, which is inspired
by the existing multi-task bandit literature (Gentile et al. [2014, 2017], Soare et al. [2014]).
This estimator exploits together all the samples associated to the past tasks Z1, . . . , ZN , with
the aim of reducing the variance. This is unlike the previous estimator which separately
considers the ridge-regression estimates ŵ1, . . . , ŵN in Equation 5.4. As we will see, this
approach will reduce the variance but it will introduce an extra-bias. Before presenting this
second approach we require some more notation. We let ṼN,t =

∑N
j=1 VN,T + VN+1,t the

global design matrix containing the design matrices associated to past tasks V1,T , . . . ,VN,T

and the current design matrix VN+1,t. Analogously b̃N,t =
∑N

j=1 bj,T + bN+1,t refers to
global counterpart of bj,t. We denote with |A| = sup{‖Ax‖ : x ∈ Rd, ‖x‖ = 1} the norm
of matrix A induced by the norm ‖·‖, which if no specified is the Euclidean norm. Finally,
we denote with σmax(A) the biggest singular value associated with matrix A.

5.5.1 Global Ridge Regression
In order to reduce the variance, our second approach estimates, at each round t of the new
sampled task N + 1, the mean task w as a global ridge regression computed over all the
available samples as

ĥλN,t =
(
Ṽλ
N,t−1

)−1

b̃N,t−1. (5.5)

Our next result provides a bound on the transfer regret of this proposed strategy. The proof is
presented in Section 5.6.4 of the appendix.
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Theorem 15. (Transfer Regret Bound). Let the assumptions of Lemma 10 hold and let ĥλN,t
be defined as in Equation (5.5). Then, the following upper bound holds

R(T, ρ) ≤ dC

√√√√√√√T log

1 +

T 2L

(
Varw + εN,t(ρ)

)
d


where the mean estimation error can be bound as√

εN,T (ρ) ≤ S

λ+νmin

+ 2(N+1) max
1≤j≤N+1

H̃(N+1,wj)

+R

√
2

λ+νmin

log

(
T

(
1 +

NTL2

λd

))
+Hρ(N+1,w)

and defined νmin = λmin(ṼN,T ) and we introduced

H̃(N,wj) = Hρ(j,wj)σmax

(
Vj,T Ṽ−1

N,T

)
which is a weighted form of the estimation error Hρ(j,wj) towards the current task vector
wj , where the weights are defined in terms of tasks misalignment σmax

(
Vj,T Ṽ−1

N,T

)
.

The previous variance term
βλj (1/T )

λmin(Vλ
j,T )

has been now replaced by βλ(1/NT )
λ+νmin

. It should be easy

to observe that νmin ≥ N
d
λmin(Vj) ∀j ∈ [N ] which leads a reduction of factor d/N to the

variance, which goes to zero as N goes to infinity. This gain does not come for free, in
fact this approach introduces a potentially high bias: 2(N + 1) maxj=1,...,N+1 H̃(N + 1,wj)

which increases with the tasks misalignment σmax

(
Vj,T Ṽ−1

N,T

)
.

5.5.2 Tasks Misalignment
We now analyze the tasks misalignment factors appearing in Theorem 15, namely, the
quanitities σmax

(
Vj,tṼ

−1
N,t

)
and H̃(N,wj). For this purpose, we consider two opposite

environments of tasks.
In the first case we assume that all the tasks parameters are equal to each other and far from
the zero d-dimensional vector. This scenario, which corresponds to put all the mass of the
task-distribution ρ on a single task parameter w, is clearly in agreement with Assumption
1. We expect this to be the most favorable scenario, since after completing a task, we face
exactly the same task again and again. In this case, independently on the covariance matrices,
whose construction also depends on the decision sets available in the different tasks, it is
simple to observe that we are not suffering any bias, that is, H̃(N,wj) = 0 for every
j ∈ [N ] as all the task parameters are equal to each other.
The second environment is characterized by a task distribution ρ that is unform on finitely
many orthogonal tasks. For instance, this is the scenario when ρ is uniform distributed
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over the standard basis vectors {(S, 0, . . . , 0), . . . , (0, . . . , 0, S)} ∈ Rd. Differently from
the previous scenario, here after completing a task we will probably face an orthogonal
task. It should be quite natural to see that this is the most unfavorable case and to expect
to not have transfer learning between tasks. This is confirmed by the regret bound due to
the misalignment expressed by the covariance matrices σmax

(
Vj,tṼ

−1
N,t

)
. Indeed, since we

can have at most d misaligned arms, we have the following upper bound d
N

to the term
σmax

(
Vj,tṼ

−1
N,t

)
. Based on these observations we can conclude that the bigger the cardinality

of the set of basis induced by the distribution ρ, the larger the number of completed tasks
required to have a proper transfer. We will now focus on an intermediate case satisfying
Assumption 1. In order to control the term σmax

(
Vj,tṼ

−1
N,t

)
and to give the possibility to

generate aligned matrices when dealing with similar tasks, we introduce an additional mild
assumption:

Assumption 2. (Shared Induced Basis) The decision sets are shared among all the tasks and
tasks sampled according to Assumption 1 induces that the covariance matrices generated by
running the BIAS-OFUL algorithm (Algorithm 10) share the same basis:

Vi = PΣiP
∗, ∀i ∈ [N ]. (5.6)

This assumption is quite mild as it just states that similar tasks share the same pulled arms
with no restrictions on the pulling frequency. This is the case when the decision set is fixed
among different rounds and tasks, that is, Dj,t = D ∀j ∈ [N ] and ∀t ∈ [T ], and consists of
d orthogonal arms. If Assumption 2 is satisfied, then we can obtain the following bound:
σmax

(
Vj,tṼ

−1
N,t

)
≤ 1. Furthermore, if we denote by M the number of tasks necessary to

achieve a stationary behavior of the BIAS-OFUL policy in terms of covariance matrices,
then σmax

(
Vj,tṼ

−1
N,t

)
≤ 1/(N −M).

5.5.3 Smallest Global Eigenvalue

It only remains to analyze the term νmin. We observe that it satisfies the lower bound

νmin = λmin

(
N+1∑
j=1

Vj,T

)
≥

N+1∑
j=1

λmin(Vj,T ) ≥ (N + 1) log T

where in the last step we have relied on linear regression result from Lai and Wei [1982]
which shows that the condition O(λmin) = log(λmax) is required to guarantee asymptotic
consistency, necessary to have sublinear anytime regret. Since minj∈[N ] λmax(Vj) = O(T ),
this condition implies that minj∈[N ] λmin(Vj) ≥ log T .
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5.6 Proofs

5.6.1 Biased Confidence Set Definition (Theorem 13)
Proof. Starting from the biased-regularized estimation of Equation 5.1,

ŵh
t =

(
Vλ
t

)−1
X>t (Yt −Xth) + h =

(
Vλ
t

)−1
X>t (Xtw

∗ + ηt −Xth) + h

=
(
Vλ
t

)−1
X>t Xtw

∗ +
(
Vλ
t

)−1
X>t ηt −

(
Vλ
t

)−1
X>t Xth + h

Given this construction we can obtain the following equalities:

ŵh
t −w∗ =

(
Vλ
t

)−1
Xtηt + h−

(
Vλ
t

)−1
X>t Xth− λ

(
Vλ
t

)−1
w∗

=
(
Vλ
t

)−1
Xtηt +

(
λ
(
Vλ
t

)−1 )(
h−w∗

)
Then, for any x ∈ Rd the following holds:

x>
(
ŵh
t −w∗

)
= 〈x,Xtηt〉(Vλ

t )
−1 + λ〈x,h〉

(Vλ
t )
−1 − λ〈x,w∗〉

(Vλ
t )
−1

≤ ‖x‖
(Vλ

t )
−1

(
‖Xtηt‖(Vλ

t )
−1 + λ‖h−w∗‖

(Vλ
t )
−1

)
where in the last step we have applied Cauchy-Schwarz inequality. Plugging in x = Vλ

t (ŵh
t −

w∗) we obtain:

‖ŵh
t −w∗‖2

Vλ
t
≤ ‖ŵh

t −w∗‖Vλ
t

(
‖Xtηt‖(Vλ

t )
−1 + λ‖h−w∗‖

(Vλ
t )
−1

)
finally by dividing both sides by

∥∥ŵh
t −w∗

∥∥
Vλ
t

we obtain:∥∥ŵh
t −w∗

∥∥
Vλ
t
≤ ‖Xtηt‖(Vλ

t )
−1 + λ ‖h−w∗‖

(Vλ
t )
−1 .

Finally we bound the noisy term ‖Xtηt‖(Vλ
t )
−1 by leveraging on Theorem 1 Abbasi-Yadkori

et al. [2011], obtaining:

∥∥ŵh
t −w∗

∥∥
Vλ
t
≤ R

√
2 log

(
det
(
Vλ
t

)1/2

det(λI)1/2δ

)
+ λ

1
2 ‖h−w∗‖2 = βh

t (δ) (5.7)

where we have used the fact that: ‖h−w∗‖2

(Vλ
t )
−1 ≤ 1

λmin(Vλ
t )
‖h−w∗‖2

2 ≤
1
λ
‖h−w∗‖2

2.

5.6.2 Regret Analysis with Fixed Bias (Lemma 9)
Proof. We start by analysing the instantaneous regret as follows:

rt = 〈w∗,x∗t 〉 − 〈w∗,xh
t 〉 = 〈w∗,x∗t 〉 − 〈w̃h

t ,x
h
t 〉+ 〈w̃h

t ,x
h
t 〉 − 〈w∗,xh

t 〉
≤ 〈w̃h

t ,xt〉 − 〈w∗,xh
t 〉 = 〈ŵh

t−1 −w∗,xh
t 〉+ 〈w̃h

t − ŵh
t−1,x

h
t 〉

≤
∥∥ŵh

t−1 −w∗
∥∥
Vλ
t−1

∥∥xh
t

∥∥
Vλ
t−1

+
∥∥w̃h

t − ŵh
t−1

∥∥
Vλ
t−1

∥∥xh
t

∥∥
Vλ
t−1
≤ 2βh

t−1(δ)
∥∥xh

t

∥∥
Vλ
t−1
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where in the first inequality we have leveraged on the fact that
(
w̃h
t ,xt

)
is optimistic and in

the last the ellipsoid bound specified in Equation 5.7. The bound of the cumulative regret
follows from the bound Abbasi-Yadkori et al. [2011], hence with probability at least 1− δ,
for all T ≥ 0:

R(T,w∗) ≤

√√√√T

T∑
t=1

rt2 ≤ 4
√
T log

(
det
(
Vλ
t

) )
− log

(
det(λI)

)
βh
T (δ)

≤ 4

√
Td log

(
1 +

TL

λd

)(
λ

1
2 ‖w∗ − h‖2 +R

√
2 log(1/δ) + d log

(
1 + TL/(λd)

))

where the last two steps follow from Lemma 11 of Abbasi-Yadkori et al. [2011] and the
definition of βh(δ) (Equation 5.7). The stated result is derived analogously to Corollary 19.3
of Lattimore and Szepesvári [2018] considering δ = 1

T
.

5.6.3 Right Bias Value (Corollary 2)

Proof. We start by considering the oracle scenario which is given by h = w∗.

lim
λ→∞

[
C

√
Td log

(
1 +

TL

λd

)(
R
√
d log(T + T 2L/(λd))

)]

= C
√
Td log(1)

(
R
√
d log(T + T 2L/(λd))

)
= 0

As far as the independent task learning scenario concerns, the following holds:

lim
λ→∞

C

√
Td log

(
1 +

TL

λd

)(
λ

1
2S +R

√
d log(T + T 2L/(λd))

)
= lim

ε→0
C
√
Td log

(
1 + ε

)(
S

√
TL

εd
+R

√
d log(T + T 2L/(λd))

)

= lim
ε→0

C

[
ST

√
Ld

d

log
(
1 + ε

)
ε

+Rd
√
T log

(
1 + ε

)
log(T + T 2L/(λd))

]

= lim
ε→0

C

[
ST
√
L+Rd

√
T log

(
1 + ε

)
log(T + T 2L/(λd))

)]
= CTS

√
L

where we have used the substitution ε = TL
λd

and the fact that limε→0
log(1+ε)

ε
→ 1.
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5.6.4 Global Ridge Regression Transfer Regret Bound (Theorem 15)
We start by presenting two Lemmas which are necessary to obtain the final bound. Firstly,
we need to introduce an additional variable:

h
′
N,t+1 =

(
ṼN,t

)−1
(

N∑
j=1

Vj,Twj + VN+1,twN+1

)

We will then split the analysis by studying separately the estimation error ĥλN,t+1 − h
′
N,t+1

(Lemma 12) and the estimation bias h
′
N,t+1 − hN,t+1 (Lemma 13).

Lemma 12. The following rewriting holds:

ĥλN,t+1−h
′
N,t+1 =

(
Ṽλ
N,t

)−1
(

N∑
j=1

T∑
s=1

xj,sηj,s +
t∑

s=1

xN+1,sηN+1,s

)
− λ

(
Ṽλ
N,t

)−1

h
′
N,t+1

Proof.

ĥλN,t+1 =
(
Ṽλ
N,t

)−1

b̃N,t =
(
Ṽλ
N,t

)−1
(

N∑
j=1

T∑
s=1

xj,syj,s +
t∑

s=1

xN+1,syN+1,s

)

=
(
Ṽλ
N,t

)−1
(

N∑
j=1

T∑
s=1

xj,s
(
x>j,swj + ηj,s

)
+

t∑
s=1

xN+1,s

(
x>N+1,swN+1 + ηN+1,s

))

=
(
Ṽλ
N,t

)−1
(

N∑
j=1

T∑
s=1

xj,sηj,s+

+
t∑

s=1

xN+1,sηN+1,s

)
+
(
Ṽλ
N,t

)−1
(

N∑
j=1

T∑
s=1

xj,sx
>
j,swj +

t∑
s=1

xsx
>
N+1,swN+1

)

=
(
Ṽλ
N,t

)−1
(

N∑
j=1

T∑
s=1

xj,sηj,s +
t∑

s=1

xN+1,sηN+1,s

)
+

+
(
Ṽλ
N,t

)−1

ṼN,t

(
ṼN,t

)−1
(

N∑
j=1

Vj,Twj + VN+1,twN+1

)

=
(
Ṽλ
N,t

)−1
(

N∑
j=1

T∑
s=1

xj,sηj,s +
t∑

s=1

xN+1,sηN+1,s

)
+
(
Ṽλ
N,t

)−1

ṼN,th
′
N,t+1+

+ λ
(
Ṽλ
N,t

)−1 [
h
′
N,t+1 − h

′
N,t+1

]
=
(
Ṽλ
N,t

)−1
(

N∑
j=1

T∑
s=1

xj,sηj,s +
t∑

s=1

xN+1,sηN+1,s

)
+ h

′
N,t+1 − λ

(
Ṽλ
N,t

)−1

h
′
N,t+1

which gives the claimed result.
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Lemma 13. According to what we have done in Section 5.4, we use:

hN,t+1 =
1

NT + t

(
N∑
j=1

Twj + twN+1

)
.

Differently from h
′
N,t this definition is a weighted average of the vectors of the N completed

tasks. Hence, we have:∥∥∥w − h
′
N,t

∥∥∥ ≤ 1

NT + t

N∑
j=1

[ ∥∥w − hN,t
∥∥+ (NT + t)

∥∥hN,t − hN,t
∥∥′ ]

= Hρ(N + 1,w) +
∥∥∥hN,t − h

′
N,t

∥∥∥
where we have denoted with Hρ(N + 1,w) according to what we have done in Section 5.4.

We can now focus on the term
∥∥∥h′N,t − hN,t

∥∥∥ which can be equivalently rewritten as follows:

∥∥∥h′N,t+1 − hN,t+1

∥∥∥ =

∥∥∥∥∥(ṼN,t

)−1
N∑
j−1

(Vj,Twj + VN+1,twN+1)− hN,t

∥∥∥∥∥
≤

N∑
j=1

∣∣∣Ṽ−1
N,tVj,T

∣∣∣ ∥∥wj − hN,t
∥∥+

∣∣∣Ṽ−1
N,tVN+1,t

∣∣∣ ∥∥wN+1 − hN,t
∥∥

≤
N∑
j=1

Hρ(N + 1,wj)
∣∣∣Ṽ−1

N,tVj,T

∣∣∣+Hρ(N + 1,w)
∣∣∣Ṽ−1

N,tVt

∣∣∣
=

N∑
j=1

Hρ(N + 1,wj)σmax

(
Vj,tṼ

−1
N,t

)
+Hρ(N + 1,wN+1)σmax

(
Vj,tṼ

−1
N,t

)

≤ (N + 1) max
j=1,...,N+1

(
Hρ(N + 1,wj)σmax

(
Vj,tṼ

−1
N,t

))
= (N + 1) max

j=1,...,N+1
H̃(N + 1,wj)

We have used the fact that the matrix norm of a given matrix A induced by the Euclidean
norm corresponds to the spectral norm, which is the largest singular value of the matrix
σmax(A) .

We can now bound the transfer regret bound incurred by the second approach.

Proof. We start the analysis from the result of Lemma 10:

R(T, ρ) ≤ d

√√√√√√√T log

1 +

T 2L

(
Ew∼ρ

[
‖w − h‖2

2

])
d
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we can then set the hyperparameter h = ĥλN,T and focusing on the first term in brackets we
obtain: √√√√Ew∼ρ

[∥∥∥w − ĥλN,T

∥∥∥2

2

]
≤
√

Varw +
√
εN,t(ρ)

According to Lemma 13 the following rewriting holds:√
εN,t(ρ) ≤ Hρ(N + 1,w) + (N + 1) max

j=1,...,N+1
H̃(N + 1, j) +

∥∥∥h′N,T − ĥλN,T

∥∥∥
2

It remains only to apply Lemma 12 which gives:∥∥∥h′N,T − ĥλN,T

∥∥∥
2

=

∥∥∥∥∥(Ṽλ
N,T

)−1
(

N∑
j=1

T∑
s=1

xj,sηj,s +
T∑
s=1

xsηs

)∥∥∥∥∥
2

+

∥∥∥∥λ(Ṽλ
N,T

)−1

h
′
N,T

∥∥∥∥
2

≤

∥∥∥∥∥
N∑
j=1

T∑
s=1

xj,sηj,s +
T∑
s=1

xsηs

∥∥∥∥∥
(Ṽλ

N,T )
−2

+ λ
∥∥∥h′N,T∥∥∥

(Ṽλ
N,T )

−2

≤ 1

λ
1
2
min(Ṽλ

N,T )

∥∥∥∥∥
N∑
j=1

T∑
s=1

xj,sηj,s +
T∑
s=1

xsηs

∥∥∥∥∥
(Ṽλ

N,T )
−1

+
1

λmin(Ṽλ
N,T )

∥∥∥h′N,T∥∥∥
2

≤ 1

λ
1
2
min(Ṽλ

N,T )
R

√
2 log

(
T +

(NT + T )TL2

λd

)
+

∥∥hN,T∥∥2

λmin(Ṽλ
N,T )

+
∥∥∥h′N,T − hN,T

∥∥∥
2

≤ 1

λ
1
2
min(Ṽλ

N,T )
R

√
2 log

(
T +

(NT + T )TL2

λd

)
+

S

λmin(Ṽλ
N,T )

+
∥∥∥h′N,T − hN,T

∥∥∥
2

≤ 1

λ
1
2
min(Ṽλ

N,T )
R

√
2 log

(
T +

(NT + T )TL2

λd

)
+

S

λmin(Ṽλ
N,T )

+ (N + 1) max
j=1,...,N+1

H̃(N + 1, j)

where in the last inequality we have applied once more Lemma 13. We can now introduce
νmin = λmin

(
ṼN,T

)
as the minimum eigenvalue of the global covariance matrix without

regularization which gives the following bound:
1

λmin(Ṽλ
N,T )

≤ 1

λ+ νmin

putting everything together gives the claimed result:√
εN,T (ρ) ≤ Hρ(N + 1,w) + 2(N + 1) max

j=1,...,N+1
H̃(N + 1,wj)+

+
1

(λ+ νmin)
1
2

R

√
2 log

(
T +

(NT + T )TL2

λd

)
+

S

λ+ νmin
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5.7 Experiments
In this section we test the real effectiveness of the proposed approaches. The theoretical
results stated that the method presented in Section 5.4 does not introduce any bias but it may
incur an additional variance according to the variance of the task-distribution Varρ. On the
contrary, the solution proposed in Section 5.5 which massively uses all the observed samples
together, reduces the variance (at least) by a factor d/N , at the price of an extra bias term.
As it was mentioned in Section 5.3, the parameter w∗ associated to each single task is
unknown, therefore we cannot compute the gap ‖ĥλ −w∗‖2 defining the term βh

t (1/T ). The
main issue is that according to Algorithm 3, in order to pick the next arm, it seems that
the algorithm needs to compute its exact value. However, we can simply split the norm
and rely on the assumption that ‖w∗‖ ≤ S, so to remove the dependency on w∗. Indeed,
it is important to emphasize that the real knowledge transfer happens in terms of wh, see
Equation 5.1. This can be noticed by observing that the gap

∥∥∥ĥλ −w∗
∥∥∥ equally affects all

the available arms.

5.7.1 Experimental Results
In all the presented experiments the policy OPT knows the parameter wj associated to
task j and picks the next arm as xj,t = arg maxx∈Dj,t x

>wj . The policies AVG-OFUL
and RR-OFUL implement Algorithms 10 and 11 and estimate ĥ as per Equations 5.4 and
Equation 5.5, respectively. The Oracle policy knows the mean task parameter w and uses
it as the bias h in BIAS-OFUL (Corollary 3 (ii)). Analogously, the ITL policy consists of
BIAS-OFUL with bias set equal to 0, see Corollary 3 (i). The regularization hyper-parameter
λ was selected over a logarithmic scale. We will start by considering a pair of synthetic
experiments in which we show how the hyper-parameter λ affects the performance. We then
present experiments on two real datasets. We will denote with K the size of the decision set
D.

Synthetic Data Similarly to what was done in Denevi et al. [2019], we first generated
an environment of tasks in which running the Oracle policy is expected to outperform
the ITL approach. In agreement with Assumption 1, we sample the task vectors from a
distribution characterized by a much smaller variance than its second moment. That is, each
task parameter wj is sampled from a Gaussian distribution with mean w given by the vector
in Rd with all components equal to 1 and Varρ = 1. As far as the decision set concerns, we
first generate a random square matrix P with size d and then compute its qr factorization
P = QR, where Q is a matrix with orthonormal columns and R is an upper-triangular
matrix. We then associate to each base arm the direction associated to a column of the
matrix Q. This will guarantee having arms that are almost orthogonal each other. Finally,
at each round t ∈ [T ] the decision set Dt is initialized as a set of K random vector that are

74



Figure 5.1: Cumulative reward measured after N = 10 tasks and averaged over 10 test tasks,
with λ = 1.

Figure 5.2: Cumulative reward measured after N = 10 tasks and averaged over 10 test tasks,
with λ = 100.

first shifted towards the respective arm base direction and then normalized. Notice that by
following this generation mechanism we avoid any inductive bias between the task vectors
and the arms ones, as they are actually independent. Each task consists of T = 50 rounds,
in which we have K = 5 arms of size d = 20. In order to generate the rewards, we first
compute the inner product between the user (task) vector and the arm (input) vector, we shift
the resulting output interval [0, 1] and then add to a Gaussian noise N

(
0.5, 1

)
, to compute

the rewards. Finally, we assigned reward 1 to the arm having the maximum final reward,
0 to the others. In Figures 5.1 and 5.2, we report the results generated with λ = 1 and
λ = 100, respectively. It is easy to observe that the stronger the regularization, the more the
AVG-OFUL tends to the Oracle. Conversely, RR-OFUL get penalized with the increasing of
λ, due to its bias.

LastFM Data The first dataset we considered is extracted from the music streaming service
Last.fm Cantador et al. [2011]. It contains 1892 possible users and 17632 artists. This dataset
contains information about the artists listened by a given user, and we used this information
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Figure 5.3: Empirical Transfer regret associated with Lastfm.

to define the payoff function. We first removed from the set of items those with less than
30 ratings and then we repeat the same procedure for the users. This operation yields an
user rating matrix of size 741 x 538. Starting from this reduced matrix we derived the arms
and the users vectors by computing an SVD decomposition where we kept only the first
d = 10 features associated to the users and to the items. In order to consider tasks satisfying
Assumption 1, we randomly pick an user and compute the set of its N = 20 most similar
users according to the l2-distance between their vectors. Each task lasts T = 5 rounds and
consists of K = 5 arms. At each round t, the decision set consists of one arm whose rating
was at least equal to 4 and K − 1 arms whose ratings were at most equal to 3. The rewards
were then generated analogously to the synthetic case. The Oracle policy knows w which is
computed as the average between the N = 20 considered user vectors. In Figure 5.3 (and
Figure 5.4) we displayed the cumulative regret suffered with respect to the optimal policy,
which during each task j ∈ [N ] knows the true user parameter wj . The vertical yellow
lines indicate the end of each task. From the presented results we can observe that both
the proposed policies AVG-OFUL and RR-OFUL outperform the ITL approach, while the
Oracle policy is consistent with Corollary 3 and Assumption 1.

Movielens Here we consider the Movielens data Harper and Konstan [2015]. It contains
1M anonymous ratings of approximately 3900 movies made by 6040 users. As before we
first removed from the set of movies those with less than 500 ratings, and from the set of
users those with less than 200 rated movies. This preprocessing procedure yields an user
rating matrix of size 847 x 618. Unlike the Last.fm case, here adopting SVD to generate
the arm/user vectors seems not appropriate. Indeed, by exploring the retrieved singular
values, we could not find a subspace which provides a good approximation of the real ratings
unless we keep all the latent features. Therefore, in order to find a set of similar users we
observe better results by using the KMeans clustering algorithm over the user vectors. The
results displayed in Figure 5.4 were generated by running KMeans with C = 20 clusters
with user vectors of size d = 10. We then picked all the resulting clusters by filtering out the
clusterings with a silhouette value lower than 0.15 and for each cluster of the clustering we
have discarded those with less than 20 users. Furthermore, in order to let the tasks be simpler,
we reduced the variance of the noisy components affecting rewards to 0.1. The difficulty in
finding a valid set of similar tasks yields a high task misalignment, which is confirmed by the
fact that the best performance occur for small value of λ. Indeed, Figure 5.4 considers λ = 1.
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Figure 5.4: Empirical Transfer regret associated with Movielens.

Here the AVG-OFUL policy behaves almost equally to the ITL approach, conversely, the
task misalignment caused bad performances to the RR-OFUL policy, confirming its higher
sensitivity to task dissimilarity (see Theorem 15).

5.8 Conclusions and Future Work
In this work we studied a meta-learning framework with stochastic linear bandit tasks. We
have first introduced a novel regularized version of OFUL, where the regularization depends
on the Euclidean distance to a bias vector. We showed that setting appropriately the bias
leads a substantial improvement compared to learning each task in isolation. This observation
motivated two alternative approaches to estimate this bias: while the first one may suffer a
potentially high variance, the second might incur a strong bias.
In the future, it would be valuable to investigate the existence of unbiased estimators which
do not suffer any variance. Furthermore, while in our analysis we set λ = 1/TVarh, in
the future it would be also interesting to learn its value as part of the learning problem.
Experimentally, we observed that when Assumption 1 is satisfied, adopting the unbiased
estimator yields better results than the second one, which is biased. One more direction of
future research would be to extend other meta-learning approaches, such as those based on
feature sharing, to the banding setting. Finally, a problem which remains to be studied is the
combination of meta-learning with non-stochastic bandits.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this thesis we have investigated three aspects concerning the application of stochastic
bandits in the recommender system domain.

• In Chapter 3 we formalized a novel non-stationary stochastic setting. Here, the
expected payoff of each arm is parametrized by the delay since the time the arm was
last played. We shown that finding the optimal policy is NP-hard even when all the
parameters are known. Then, we introduced a class of ranking policies approximating
the reward of the optimal one up to a constant factor. We proposed a simple algorithm
to learn the best ranking policy. Finally, we studied the empirical performance of the
introduced solution on different synthetic problem instances.

• Then, in Chapter 4 we enhance the performance of two well known linear bandit
algorithms: OFUL and Thompson Sampling. We made them more efficient by using
Frequent Directions, a deterministic online sketching technique. We analyze the impact
of this approximation strategy in terms of regret bounds and computational costs. The
results pointed out the importance of choosing the right sketch size. Indeed, if from
one side we would like to pick a small size to reduce the time complexity, from the
other, keeping few features means incurring a big approximation error in the regret
bounds.

• Lastly, in Chapter 5, we formalized the learning-to-learn problem with linear bandit
tasks. Differently from the existing works, we considered the case where tasks arrived
sequentially and they are sampled from an unknown distribution. We design two
transfer mechanisms to take advantage of past tasks with the objective of reducing the
exploration phase. While the first solution may suffer a potentially high variance, the
second might incur a strong bias resulting in a possible negative transfer. We were able
to corroborate all the theoretical results with synthetic and real experiments.
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6.2 Future Works
Each of these problems opens the way for interesting and closely-connected investigations.
The most immediate extension regarding the adoption of sketching techniques to linear
bandits involves the investigation of adaptive algorithms that automatically learn the sketch
size based on data. This extension was actually investigated in Calandriello et al. [2019].
There, authors replaced Frequent Directions with a randomized matrix sketching technique
based on leverage score sampling which gives an accurate low-rank approximation of the
covariance matrix. Our formalization of the learning-to-learn problem with bandit tasks
leaves an important number of open problems. For instance, we are interested in analyzing
the more challenging scenario where the bandit tasks have arms whose expected reward
is a linear function of the arms images in a reproducing kernel Hilbert space. As for the
non-stationary setting, immediate extensions include the case where arms are represented by
vectors of features and their payoff is a linear regression of the mentioned vectors. Indeed, in
this case, adopting arm elimination procedures is not straightforward anymore.

80



Chapter 7

Appendix

7.1 Concentration Inequalities
Lemma 14 (Markov’s inequality). Let us consider a nonnegative random variable X which
admits E[X]. Then for any a > 0, the following result holds

P(X > a) ≤ E[X]

a
.

Proof. Since X > 0,

E[X] =

∫ ∞
0

xp(x)dx =

∫ a

0

xp(x)dx+

∫ ∞
a

xp(x)dx

≥
∫ ∞
a

xp(x)dx ≥ a

∫ ∞
a

p(x)dx = aP(X > a).

Proposition 4 (Chernoff-Hoeffding inequality). Let X1, . . . , Xn be random variables with
common range [0, 1] and such that E[Xt|x1, . . . , Xt−1] = µ. Let Sn = X1 + · · ·+Xn. Then
for all ε ≥ 0,

P (Sn ≥ nµ+ ε) ≤ exp

(
−2ε2

n

)
and

P (Sn ≤ nµ− ε) ≤ exp

(
−2ε2

n

)
Proof. By applying Lemma 14, for any a > 0,

P

[
n∑
i=1

(Xi − E[Xi]) > s

]
≤

E

[
exp

(
a
∑n

s=1(Xs − E[Xs])
)]

exp(at)

Finally, bounding the numerator using [Cesa-Bianchi and Lugosi, 2006, lemma A.1] and
minimizing the obtained bound in a we obtain the first inequality. The second one is obtained
by symmetry.
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Definition 2 (Martingale). A sequence of random variables Y1, . . . , Yn is named martingale
with respect to the sequence of random variables X1, . . . , Xn if, for every integer i > 0,

E[|Yi|] <∞
E[Yi|X1, . . . , Xi−1] = Yi−1.

When the expectation in second condition is upper bounded by Yi−1, the sequence Y1, Y2, . . .
is named supermartingale. Conversely, when we have E[Yi|X1, . . . , Xi−1] ≥ Yi−1, the
sequence Y1, Y2, . . . is called submartingale.

Proposition 5 (Azuma-Hoeffding inequality). If a supermartingale Yt corresponding to a
filtration Ft satisfies |Yt − Yt−1| ≤ ct for some constant ct for t = 1, 2, . . . , T and Y0 = 0.
Then for any t > 0,

P (YT − Y0 ≥ t) ≤ exp

(
− t2

2
∑T

s=1 c
2
s

)
.

Proof. We consider the function f(x) = exp(λx) which is convex in x for any λ ∈ R.
Relying on the convexity and considering | x

ci
| ≤ 1 we have

exp(λx) = f
(1

2

( x
ci

+ 1
)
ci +

1

2

(
1− x

ci

)
(−ci)

)
≤ 1

2

( x
ci

+ 1
)
f(ci) +

1

2

(
1− x

ci

)
f(−ci)

=
f(ci) + f(−ci)

2
+
f(ci)− f(−ci)

2
x

Furthermore, for all α

exp(α) + exp(−α)

2
=
∞∑
k=0

αk

k!
+
∞∑
k=0

(−1)kαk

k!
=
∞∑
k=0

α2k

(2k)!

≤
∞∑
k=0

(
α2

2

)k
k!

= exp
(α2

2

)
We can conclude that for every x such that |x/ci| ≤ 1, we have,

exp
(
λx
)
≤ exp

(c2
i

2

)
+

exp(λci)− exp(−λci)
2

x (7.1)

Getting back to the martingale sequence Y1, Y2, . . . , YT . For every t ≥ 0 and every λ > 0 we
have

P(YT − Y0 ≥ t) = P
(

exp
(
λ(Yn − Y0)

)
≥ exp(λt)

)
≤ exp(−λt)E

[
exp(λYT )

]
= exp(−λt)E

[
exp

(
λ

T∑
i=1

(Yi − Yi−1)
)]
.
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Using the tower property of conditional expectation and considering the filtration FT−1 we
have

E

[
exp

(
λ(YT − YT−1)

)
exp

(
λ
T−1∑
i=1

(Yi − Yi−1)
)
|FT−1

]

= exp
(
λ

T−1∑
i=1

(Yi − Yi−1)
)
E
[

exp
(
λ(YT − YT−1)

)
|FT−1

]
≤ exp

(
λ

T−1∑
i=1

(Yi − Yi−1)

)(
exp

(λ2c2
T

2

)
+

exp(λci)− exp(−λci)
2

E
[
YT − TT−1|FT−1

])
Being a martingale implies E[YT − YT−1|FT−1] = 0, which gives

E
[

exp
(
λ

T∑
i=1

(Yi − Yi−1)
)]
≤ E

[
exp

(
λ
T−1∑
i=1

(Yi − Yi−1)
)]

exp
(λ2c2

T

2

)
We can now obtain the following upper bound on P(YT − Y0 ≥ t),

exp(−λt) exp

(∑N
i=1 λ

2c2
i

2

)
.

Finally, optimizing with respect to λ we obtain

P(YT − Y0 ≥ t) ≤ exp

(
− t2

2
∑T

i=1 c
2
i

)

7.2 Tools from the analysis of linear bandits
Lemma 15 (Generalized Woodbury matrix identity ). [Higham, 2008, Theorem 1.35] Let
A ∈ Cd×m and B ∈ Cm×d, with d ≥ m, and assume that BA is nonsingular. Let f be
defined on the spectrum of αId×d + AB, and if d = m let f be defined at α. Then

f(αId×d + AB) = f(αId×d) + A(BA)−1 (f(αIm×m + BA)− f(αIm×m)) B.

Proof. By [Higham, 2008, Theorem 1.32] the given assumption on f implies that f is defined
on the spectrum of αIm×m+BA and at α. Let now g(t) = f [α+t, α] = t−1

(
f(α+t)−f(α)

)
,

then f(α + t) = f(α) + tg(t). Finally, using [Higham, 2008, Corollary 1.34],

f(α + AB) = f(α)Id×d + ABg(AB)

= f(α)Id×d + Ag(BA)B

= f(α)Id×d + A(BA)−1(f(αIm×m + BA)− f(α)Im×m)B,

as required.
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Lemma 16 (AM-GM Inequality). For any set of non-negative real numbers, the arithmetic
mean of the set is greater than or equal to the geometric mean of the set. Algebraically, this
is expressed as follows. For a set of non-negative real numbers a1, a2, . . . , an, the following
always holds:

a1 + a2 + . . .+ an
n

≥ n
√
a1a2 · · · an

Using the shorthand notation for summations and products:
n∑
i=1

ai
n
≥

n∏
i=1

a
1
n
i .

Proof. We note that the function x 7→ lnx is strictly concave. Then by Jensen’s Inequality,

ln
∑
i

λiai ≥
∑
i

λi ln ai = ln
∏
i

aλii ,

with equality if and only if all the ai are equal. Since x 7→ lnx is a strictly increasing
function, it then follows that ∑

i

λiai ≥
∏
i

aλii ,

with equality if and only if all the ai are equal, as desired.

Lemma 17 (Determinant-trace inequality). Suppose x1, . . . ,xt ∈ Rd and for any 1 ≤ s ≤ t
‖xs‖2 ≤ L. Let Vλ

t = λI +
∑t

s=1 xsx
>
s for some λ > 0. As proved in [Abbasi-Yadkori et al.,

2011, Lemma 10], the following holds

ln det
(
Vλ
t

)
≤ d ln

(
λ+

tL2

d

)
.

Proof. Let λ1, . . . , λd be the eigenvalues of the covariance matrix Vλ
t . Since by construction

Vλ
t is positive definite, its eigenvalues are positive. Furthermore, by the definition of

determinant we have det
(
Vλ
t

)
=
∏d

s=1 λs and tr
(
Vλ
t

)
=
∑d

s=1 λi. By using the AM-GM
inequality (Lemma 16) we have det

(
Vλ
t

)
≤
(
tr
(
Vλ
t

)
/d
)d. It remains only to upper bound

the trace:

tr
(
Vλ
t

)
= tr

(
λI
)

+
∑

s = 1ttr
(
xsx

>
s

)
= dλ+

t∑
s=1

‖xs‖2
2 ≤ dλ+ tL2.

Lemma 18 (Ridge leverage scores). Coherently to the notation used in Lemma 17, as proved
in [Abbasi-Yadkori et al., 2011, lemma 11], we have

T∑
t=1

min

{
1, ‖xt‖2

(Vλ
t−1)

−1

}
≤ 2 ln

(
det
(
Vλ
T

)
λI

)
. (7.2)

For λ ≥ max {1, L2}, we also have that
T∑
t=1

‖xt‖2

(Vλ
t−1)

−1 ≤ 2d ln

(
1 +

TL2

λd

)
. (7.3)
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Proof. The determinant of the regularized covariance matrix Vλ
T ca be rewritten as

det
(
Vλ
T

)
= det

(
Vλ
T−1 + xTx>T

)
= det

(
Vλ
T−1

)
det
(
I +

(
Vλ
T−1

)−1/2
xTx>T

(
Vλ
T−1

)−1/2
)

= det
(
λI
) T∏
t=1

(
1 + ‖xt‖2(

Vλ
t−1

)−1

)
(7.4)

Using log(1 + t) ≤ t we have the following bound

log
(

det
(
Vλ
T

))
≤ log det

(
λI
)

+
T∑
t=1

‖xt‖2(
Vλ
t−1

)−1 .

Furthermore, combining x ≤ 2 log(1 + x) which holds for x ∈ [0, 1] with 7.4 we obtain

T∑
t=1

min
{

1, ‖xt‖2(
Vλ
t−1

)−1

}
≤ 2

T∑
t=1

log
(

1 + ‖xt‖2(
Vλ
t−1

)−1

)
= 2 log

(det(Vλ
T )

det(λI)

)
As soon as we pick a large enough value λ > 0, we can upper bound the sum

∑T
t=1 ‖xt‖

2(
Vλ
t−1

)−1

as a function of log
(

det
(
Vλ
T

))
. Furthermore, for any t > 0 we have

‖xt‖2(
Vλ
t−1

)−1 ≤ λ−1
min

(
Vλ
T

)
‖xt‖2

2 ≤
L2

λ
.

Hence, as soon as λ > max(1, L2) we have that:

log
(det(Vλ

T )

det(λI)

)
≤

T∑
t=1

‖xt‖2(
Vλ
t

)−1 ≤ 2 log
(det(Vλ

T )

det(λI)

)
(7.5)

Lemma 19 (Self-normalized bound for vector-valued martingales). Let

St =
t∑

s=1

ηsxs t ≥ 1

where η1, η2, . . . is a conditionallyR-subgaussian real-valued stochastic process and x1,x2, . . .
is any Rd-valued stochastic process such that xt is measurable with respect to the σ-
algebra generated by η1, . . . , ηt−1. Then, for any δ > 0, with probability at least 1 − δ,
‖St‖2(

Vλ
t

)−1 ≤ Bt(δ) for all t ≥ 0, where

Bt(δ) = 2R2 ln

(
1

δ
det
(
Vλ
t

) 1
2 det (λI)−

1
2

)
. (7.6)
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Proof. The proof relies on a stopping time construction which goes back to Freedman [1975].
Defining the bad event:

ξt(δ) =

{
w ∈ Ω : ‖St‖2(

Vλ
t

)−1 > 2R2 ln

(
1

δ
det
(
Vλ
t

) 1
2 det (λI)−

1
2

)}

We want to bound the probability of occurrence of
⋃
t≥0 ξt(δ). We then define the stopping

time τ(w) = min{t ≥ 0 : w ∈ w ∈ ξt(δ)} with the convention that min ∅ =∞. Further,⋃
t≥0

ξt(δ) = {w : τ(w) <∞}

Finally, by [Abbasi-Yadkori et al., 2011, Lemma 9] the following holds

P

[⋃
t≥0

ξt(δ)

]
= P[τ <∞]

= P

[
‖St‖2(

Vλ
t

)−1 > 2R2 ln

(
1

δ
det
(
Vλ
t

) 1
2 det (λI)−

1
2

)
, τ <∞

]

≤ P

[
‖St‖2(

Vλ
t

)−1 > 2R2 ln

(
1

δ
det
(
Vλ
t

) 1
2 det (λI)−

1
2

)]
≤ δ.
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