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Abstract 
Lobato and Robinson (1998) develop semiparametric tests for the null hypothesis 
that a series is weakly autocorrelated, or I(0), about a constant level, against 
fractionally integrated alternatives. These tests have the advantage that the user is 
not required to specify a parametric model for any weak autocorrelation present in 
the series. We extend this approach in two distinct ways. First we show that it can be 

generalised to allow for testing of the null hypothesis that a series is ( )I   for any δ 

lying in the usual stationary and invertible region of the parameter space. The second 
extension is the more substantive and addresses the well known issue in the 
literature that long memory and level breaks can be mistaken for one another, with 
unmodelled level breaks rendering fractional integration tests highly unreliable. To 
deal with this inference problem we extend the Lobato and Robinson (1998) approach 
to allow for the possibility of changes in level at unknown points in the series. We 
show that the resulting statistics have standard limiting null distributions, and that 
the tests based on these statistics attain the same asymptotic local power functions 
as infeasible tests based on the unobserved errors, and hence there is no loss in 
asymptotic local power from allowing for level breaks, even where none is present. 
We report results from a Monte Carlo study into the finite-sample behaviour of our 
proposed tests, as well as several empirical examples. 

Keywords: Fractional integration; level breaks; Lagrange multiplier testing 

principle; spurious long memory; local Whittle likelihood; conditional 

heteroskedasticity. 

JEL Classification: C22 
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1 Introduction 

It is well known that if not accounted for, level shifts in a weakly autocorrelated 

(or short memory) process, denoted I(0), can induce features in the 

autocorrelation function and the periodogram of a time series that can be 

mistaken as evidence of long memory; see, inter alia, Diebold and Inoue 

(2001), Gourieroux and Jasiak (2001), Granger and Hyung (2004), Mikosch 

and Stărică (2004), Qu (2011), and Iacone, Leybourne, and Taylor (2019). To 

avoid the possibility of spurious inference being made about the memory 

properties of a time series, it is therefore important to develop tests on the 

fractional integration (memory) parameter of a time series which are robust to 

level shifts. As a consequence, Iacone et al. (2019) generalise the parametric 

Lagrange Multiplier [LM] time domain based fractional integration tests of 

Tanaka (1999) and Nielsen (2004) to allow for the possibility of a single break 

in the deterministic trend function at an unknown point in the sample. These 

tests are equivalent to analogous extensions of the frequency domain tests of 

Robinson (1994) to allow for breaks in the deterministic trend function. Iacone 

et al. (2019) show that this approach delivers an LM test which, regardless of 

whether a break occurs or not, is a locally most powerful test and has a 2

1  

limiting null distribution. 

However, a significant practical disadvantage of the tests of Iacone et 

al. (2019) is that, like the tests of Robinson (1994), Tanaka (1999) and 

Nielsen (2004) from which they are derived, they are based on fitting a full 

parametric model to the data. Crucially, the short run component of this model 

must be correctly specified under the null hypothesis for the resulting test to 

be correctly asymptotically sized. This requirement is clearly problematic in 

practice, and is likely to be further complicated in the case where level breaks 

are present as this would likely interfere with any preliminary model selection 

stage used to specify the form used for the short memory component. It 

therefore seems worth developing long memory tests analogous to those of 

Iacone et al. (2019) but which do not require the user to specify a parametric 

model for the short memory component of the series. 
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Our contribution in this paper is therefore to develop semiparametric 

analogues of the parametric tests of Iacone et al. (2019). We will base our 

approach on an extension of the semiparametric frequency domain based 

fractional integration tests of Lobato and Robinson (1998). This approach is 

based on the use of a low frequency approximation provided by the local 

Whittle [LW] likelihood, which obviates the need to explicitly model any short 

range dependence present in the data. To account for the possibility of level 

breaks, the Lobato and Robinson (1998)-type statistics we propose are 

constructed from data which have been de-trended allowing for the possibility 

of level breaks, the locations of which are estimated by a standard residual 

sum of squares estimator applied to the levels data. The tests proposed in 

Lobato and Robinson (1998), again based on the LM testing principle, are 

specifically designed for testing the null hypothesis that a time series is I(0). 

We show that, as conjectured in Lobato and Robinson (1998, p. 478), their 

approach can be generalised to provide a valid test for the null hypothesis that 

the series is integrated of order δ, for any δ lying in the stationary and 

invertible region of the parameter space ( 0.5 0.5   ). It is also possible to 

test orders of integration outside the stationary and invertible region using 

data transformations. For example, the null hypothesis of an autoregressive 

unit root can be obtained by testing for the null hypothesis of short memory in 

the first differences of the series; as such this is then a test in the levels data 

for a unit root allowing for the possibility of trend breaks. Because the tests 

are based on the LM testing principle, no preliminary estimation of the 

memory parameter is required. 

Our focus on the Lobato and Robinson (1998) testing approach is due, at 

least in part, to results in Shao and Wu (2007a) who show that the standard 

Lobato and Robinson (1998) tests are, for a suitable choice of the bandwidth 

parameter m used in the local Whittle loss function, considerably more 

powerful than other semiparametric tests for testing the null of I(0) against the 

alternative of fractional integration that are available in the literature. In 

particular, they show that tests based on the rescaled range and rescaled 

variance statistics and tests based on the well-known KPSS statistic of 
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Kwiatkowski, Phillips, Schmidt and Shin (1992) have power against local 

alternatives of order 1(ln( ))T  , where T denotes the sample size. On the other 

hand, the Lobato and Robinson (1998) tests have power against local 

alternatives of order 1/2m , where the bandwidth parameter m is typically of 

the type m T  for some 0 4 / 5  . Moreover, these other approaches 

have only been developed to test the null hypothesis of I(0) against the 

alternative of fractional integration, whereas we wish to maintain the flexibility 

to test a more general ( )I   null hypothesis. Busetti and Harvey (2001, 2003) 

develop extensions of the KPSS test that allow for a single level break at an 

unknown point in the sample, although their approach is based on the 

assumption that a level break is known to occur. 

We establish that, regardless of whether level breaks occur or not, the large 

sample properties of the tests we propose are identical to those which obtain 

for the standard Lobato and Robinson (1998) tests for δ = 0 in the case where 

no level breaks occur. In particular, our proposed LM-type test has a 2

1  

limiting null distribution and the corresponding t-type test a N(0, 1) limiting null 

distribution, regardless of the value of δ being tested under the null 

hypothesis, and each attains the same asymptotic local power function as the 

corresponding infeasible test based on the unobserved errors. Moreover, 

these asymptotic local power functions do not alter between the break and no 

break cases and so there is no loss in asymptotic local power from allowing 

for level breaks, even where no breaks are present. Although based on 

different and hence not directly comparable models, these large sample 

properties contrast with those of most popular unit root tests, such as that of 

Dickey and Fuller (1979), and stationarity tests, such as that of KPSS. In 

particular, the limiting null distributions of unit root and stationarity test 

statistics tend to be non-standard and depend on the functional form of the 

fitted deterministic, differing between the no break and break cases, and 

dependent on the locations of the breaks. Moreover, where breaks are fitted 

but not actually present in the data, these tests show a considerable decline in 

asymptotic local power relative to the case where no break is fitted. 
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The remainder of the paper is organised as follows. Section 2 sets out the 

fractionally integrated level break model within which we work. Section 3 

describes our tests in the infeasible case where the errors are observable. 

Our proposed semiparametric statistics for the case of unknown level breaks 

are described in Section 4, where we also establish their large sample 

properties. Section 5 summarises the results from a Monte Carlo simulation 

study into the finite sample size and power properties of our proposed tests 

and compares with the nonparameteric KPSS-type tests of Busetti and 

Harvey (2001, 2003). Illustrative empirical examples of the methods 

developed in this paper to bitcoin returns data, VIX market volatility, U.S. CPI 

inflation, and U.S. real GDP growth are considered in Section 6. Section 7 

concludes. Proofs of our main results are provided in a mathematical 

appendix. A supplementary appendix contains full details of the Monte Carlo 

design and results. 

2 The Fractionally Integrated Model with Level Breaks 

Consider the scalar time series process, yt, satisfying the data generating 

process (DGP), 

1 2 ( ) , 1, , .t t ty u t T      β DU τ  (1) 

In (1), 1 2( , )  β β  is a vector of fixed parameters and 

1( ) : ( ( ), , ( ))t t t kDU DU     DU τ  is a vector of k level break terms, where 

( )tDU   is defined for a generic argument τ as ( ) : ( ), (·)tDU t T       

denotes the usual indicator function, ·    denotes the integer part of its 

argument, and where :A B  and :B A  is used to denote that A is defined by 

B. The formulation in (1) therefore allows for up to k level breaks where 

1: ( , , )k     τ  is the vector of (unknown) putative level break fractions and 

2 2,1 2,: ( , , )k   β  the associated break magnitude parameters, such that a 

level break occurs at time i T     when 2, 0i   for 1, ,i k  . The true but 

unknown number of level breaks present, k   say, is then given by the number 

of non-zero elements of the vector 2β . The (putative) level break fractions are 

assumed to be such that [ , ] :i L U       for all 1, ,i k  , where (0,1)  is 
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compact and the quantities τL and τU are trimming parameters below and 

above which, respectively, a level break is deemed not to occur. We also 

make the standard assumption that | | 0i j       for all i j , such that 

there are at least T    observations between breaks. Note that these 

conditions imply that the number of breaks that can feasibly be calculated, 

given , ,L U   , satisfies 1 ( ) /U Lk        . 

In the context of (1) the shocks, ut, are assumed to follow a stationary and 

invertible process which is fractionally integrated of order δ, denoted  tu I  . 

For our purposes, we define fractional integration for ut as 

: ,t tu    (2) 

where ηt is a zero mean I(0) process. We define I(0) to be such that ηt has 

spectral density ( )f   with ( )f G   for some (0, )G   as 0 ; formal 

assumptions on ηt required for our large sample theory results will be delayed 

until Section 3. The assumption that ut is stationary and invertible entails that 

the long memory parameter, δ, is such that ( 0.5,0.5)   . A process satisfying 

the conditions just stated for ut is often referred to in the literature as a type I 

fractionally integrated process. 

Our interest focuses on testing the null hypothesis that ut, and hence yt, is 

0( )I   for some 0 ( 0.5,0.5)   ; that is, 0 0:H    in (1). Note that the 

extension to allow 0 0   is non-trivial, in the sense that testing 0   on yt, as 

we do in this paper, is different from testing δ = 0 on 0

ty


 , as is done for 

example in Iacone et al. (2019), since the latter process has a different 

unconditional mean thereby changing the model and its interpretation. Based 

on the familiar LM testing principle we will develop tests against two-sided 

alternatives of the form 1 0:H    (yt is not 0( )I  ) together with corresponding 

t-type tests against one-sided alternatives of the form 1 0:H    (yt is more 

persistent than an 0( )I   series) or 1 0:H    (yt is less persistent than an 

0( )I   series). 
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Next, in Section 3, we discuss the tests proposed in Lobato and Robinson 

(1998) which were developed for testing the specific null hypothesis that yt is 

short memory. These tests apply to the case where either ut in (1) is 

observable or where it is known that 2  0β  (so that no level breaks are 

present). We show that this approach can be readily extended to develop 

tests for the null hypothesis that yt is 0( )I   for some  0 0.5,0.5   . Then, in 

Section 4, we show how these tests can be generalised to allow for the 

possibility that 2  0β  in (1), such that a level shift could potentially occur in 

the data. The testing approach we outline in Section 4 does not assume 

knowledge of whether a level shift genuinely occurs; that is, we do not 

assume knowledge of whether 2  0β  or 2  0β . 

3 Tests of 0 0:H    when it is known that 2  0β  

Suppose for the purposes of this section that it is known to be the case that 

2  0β  in (1). Under this restriction we can also set 1 0   with no loss of 

generality because, as discussed in Lobato and Robinson (1998, p. 477), the 

statistics we will discuss in this paper are invariant to β1 in the case where 

2  0β . The restriction that 2  0β  is therefore equivalent to the case where β1, 

2β  and 
τ  are all known, such that ut in (1) is observable. We may therefore 

proceed as if ut were observable. We will discuss the application of the tests 

to ut, although in the context of this section they could equally be applied to yt 

because no mean-correction is required (provided the mean is constant) due 

to invariance to β1. 

For observable ut, semiparametric inference on δ based on the approximation 

of the Whittle likelihood at low frequencies was proposed by Künsch (1987) 

and analysed further in Robinson (1995b). This approach is semiparametric 

as it does not require the specification of a parametric model for ( )f   and, 

within the class of semiparametric methods, it has the advantage of being 

based on a (local) likelihood, and it is therefore considerably more efficient 

than other semiparametric estimates such as the log-periodogram regression 

of Geweke and Porter-Hudak (1983) and Robinson (1995a). 
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For a generic series at, let  
1

1
:

2

T
i t

a t

t

w a e
T


 

   denote the Fourier transform 

of at, and let    
2

:a aI w   denote the periodogram. Then, as discussed in 

Robinson (1995b), for the observable series ut, the local Whittle estimate of δ 

is obtained by minimising the loss function  R d  with respect to d, where 

     2

1 1

1 1
: ln 2 ln

m m
d

j u j j

j j

R d I d
m m

  
 

 
  

 
   (3) 

and m denotes the bandwidth, satisfying the rate condition that 

1/ / 0m m T   as T  . Recall that 
2

:j

j

T


   for integer j are the Fourier 

frequencies. Applying the LM principle to the objective function in (3) yields 

the LM-type statistic to test 0 0:H   , 

   

0

1 22

*

0 2
( ) : .m

d

R d R d
LM m

d d








    
       

 

Defining the t-type statistic 

 

 

0

0

21/2

1*

0
2 1

1

1
( ) : , where : ln ln ,

1

m

j j u j m
j

m jm

j
j u j

j

m I

t j j
m

I
m





  

 

 









 

 
    
 
  





 (4) 

the *

0( )mLM   statistic in (5) can be equivalently re-written in terms of the 

Fourier frequencies and the periodogram ordinates at those frequencies as 

 

 

0

0

2

21/2

1* * 2

0 0
2

1

( ) ( ) .
1

m

j j u j

j

m m m

j u j

j

m I

LM t

I
m





  

 

 







 

 
  
 
  




 (5) 

The null hypothesis H0 that ut is 0( )I   can then be rejected for large values of 

*

0( )mLM  , while a large positive (negative) value of *

0( )mt   would allow 

rejection against the one-sided alternative 1 0:H    ( 1 0:H   ). It will turn 
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out that standard critical values can be employed in the context of these 

decision rules. 

Lobato and Robinson (1998) analyse the special case of the * (0)mt  and 

* (0)mLM  statistics in (4) and (5), respectively, which obtain setting 0 0  , such 

that one is testing the null hypothesis of short memory, 0 : 0H   . For the 

purpose of later sections, we need to also define the Lobato and Robinson 

(1998) t- and LM-type test statistics for the hypothesis 0 0:H    applied to 

the observed data, { }ty , and which do not account for the possibility of level 

breaks; we will denote these as 0( )mt   and 0( )mLM  , respectively. These 

differ from the infeasible statistics *

0( )mt   and *

0( )mLM   for the hypothesis 

0 0:H    which are applied to the unobserved innovations, { }tu . In the 

context of this section, where it is known that 2  0β , then 0( )mt   and *

0( )mt   

coincide, as do 0( )mLM   and *

0( )mLM  . Lobato and Robinson (1998) 

establish that, under certain regularity conditions (see Assumption 1 below), 

* (0)mt  and * (0)mLM  have N(0, 1) and 2

1  limiting null distributions, respectively. 

Shao and Wu (2007a) subsequently demonstrate that under local alternatives 

of the form 1/2:cH cm  , where c is a constant (such that Hc reduces to 

0 : 0H    when c = 0), * (0) (2 ,1)
d

mt N c  and, hence,  * 2 2

1(0) 4
d

mLM c , where 

 2 2

1 4c  denotes a non-central 2

1  distribution with non-centrality parameter 

24c . 

Before progressing to consider the case where ut is not observable, that is 

where it is not known for sure that 2  0β  in (1), we first show that the 

properties established for the * (0)mLM  and * (0)mt  statistics in Lobato and 

Robinson (1998) and Shao and Wu (2007a) carry over to the general case of 

the *

0( )mLM   statistic in (5) and corresponding *

0( )mt   statistic in (4) for testing 

0 0:H    for any 0 ( 0.5,0.5)   . To do so we first introduce sufficient 

conditions for establishing these large sample justifications. We will discuss 

two sets of possible assumptions under which our large sample results obtain. 

The first set, given in Assumption 1, coincides with the conditions adopted by 

Robinson (1995b). The second set, given in Assumption 2, coincides with 

those employed by Shao and Wu (2007a). 
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Assumption 1. 

(i) 
0

:t j t j

j

  






  and t  is a martingale difference sequence with 

 1| 0t tE    ,      2 3 4

1 1 3 1 4| 1, | , |t t t t t tE E E             , a.s., 

where t  is the σ-field of events generated by ,s s t  . 

(ii) The weights ψj are such that 2

0

j

j






  . 

(iii) The spectral density of ηt, ( )f  , is twice boundedly differentiable in a 

neighbourhood of λ = 0 and satisfies, as 0  , that 2( ) (1 ( ))f G O    

and 1ln ( ) ( )f O 






 for some (0, )G  . 

(iv) The bandwidth, m, is such that 
5 2

4

1 (ln )
0

m m

m T
   as T  . 

Remark 3.1. The conditions on ηt detailed in Assumption 1 coincide with those 

given in Robinson (1995b) and are slightly stronger than those in Lobato and 

Robinson (1998). A full discussion of these conditions is given in Robinson 

(1995b, pp. 1634 and 1641) and Lobato and Robinson (1998, p. 478). 

Assumption 1 includes all stationary and invertible finite-order ARMA models 

for ηt. Assumption 1 allows for non-linearity via the martingale difference 

assumption on the innovations, but is otherwise linear. Notice also that 

Assumption 1 requires ( )f   to be smooth only around λ = 0 and so does not 

rule out long memory behaviour at frequencies other than λ = 0 (although this 

needs to be strengthened in Assumption 3 to obtain results for our feasible 

tests). 

The assumption of conditional homoskedasticity imposed by part (i) of 

Assumption 1 may be considered unacceptable for many data applications, in 

particular those involving financial data. Shao and Wu (2007a,b) show that 

this can be weakened to allow for a wide class of stationary, causal non-linear 

processes. To that end, suppose that 

1( , , ),t t tF     (6) 
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where t  are independent and identically distributed (IID) random variables 

and F is a measurable function such that ηt is well defined as a stationary, 

causal, ergodic process. For a random variable ξ and p > 0, write p   if 

1/|| : ( (| | ))p p

p E    . Let { },t t Z   , be an IID copy of { }t , 1( , , )t t t   , 

1 0: ( , )k 

 , 
0 1( , , , )k tF      and ( ) ||q k k qk    . 

Assumption 2. For ηt and F defined as in (6) and for some q > 4: 

(i) q

t   and 
1 2 3

1 2 3

0

, ,

( , , , )k k k

k k k

cum       , where (·)cum  denotes the joint 

cumulant of the arguments. 

(ii) 
1

( )q

k

k k




  . 

(iii) The spectral density of ηt, ( )f  , satisfies 2( ) (1 ( ))f G O    as 

0   for some (0, )G  . 

(iv) The bandwidth, m, is such that 
3

2/3

(ln )
0

T m

m T
   as T  . 

Remark 3.2. Assumption 2 includes a number of widely used nonlinear time 

series models for ηt such as bilinear models, threshold models, GARCH and 

ARMA-GARCH models; see Shao and Wu (2007a, p. 254) and Shao and Wu 

(2007b) and the references therein for further discussion of this assumption 

and further examples of classes of nonlinear processes which satisfy it. While 

Assumption 2 weakens, inter alia, the conditional homoskedasticity restriction 

of Assumption 1, this comes at the cost of a stronger assumption on the 

bandwidth, that is restricted to be such that 2/3( )m o T . Moreover, as 

discussed in Shao and Wu (2007b, Remark 3.1), Assumption 2(ii) implies 

continuous differentiability of ( )f   for all frequencies, whereas, as discussed 

in Remark 3.1 and Robinson (1995b), Assumption 1 only imposes conditions 

on ( )f   in a local-to-zero band. There is therefore a clear trade-off between 

the conditions imposed on ηt by Assumptions 1 and 2. 
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In Theorem 1 we now derive the large sample properties of the *

0( )mLM   and 

*

0( )mt   statistics, obtained for the case where it is known that 2  0β  in (1). To 

facilitate discussion of asymptotic local power, we consider the local 

alternative 1/2

0:cH cm    . 

Theorem 1. Let yt be generated according to (1) with 2  0β , and let either 

Assumption 1 or Assumption 2 hold on ηt. Then, for any 0 ( 0.5,0.5)   , under 

1/2

0:cH cm    : 

(i) * 2 2

0 1( ) (4 )
d

mLM c  ; and 

(ii) *

0( ) (2 ,1)
d

mt N c  . 

Remark 3.3. Theorem 1 shows that the results obtained for the limiting null 

distributions of the * (0)mLM  and * (0)mt  statistics in Lobato and Robinson 

(1998) apply more generally to the *

0( )mLM   and *

0( )mt   statistics for testing 

the null hypothesis that ut is 0( )I   for any δ0 in the usual stationary and 

invertible region. Theorem 1 also shows that tests based on the *

0( )mLM   and 

*

0( )mt   statistics posses the same local power functions as tests based on the 

* (0)mLM  and * (0)mt  statistics. Moreover, these results hold regardless of 

whether ut is conditionally homoskedastic or conditionally heteroskedastic 

(satisfying Assumption 2). Finally, note that the result in Theorem 1 was 

anticipated without proof by Marinucci and Robinson (2001, Section 4), at 

least under H0 and Assumption 1. 

4 Feasible Tests of 0 0:H    Allowing for up to k Level Breaks 

Recall that the LM- and t-type tests discussed in Section 3 are based on the 

assumption that 2  0β , such that the 0( )mLM   and 0( )mt   statistics 

calculated on the observed data { }ty  will coincide with the *

0( )mLM   and 

*

0( )mt   statistics based on the shocks, { }tu , even if 1 0   such that { }tu  are 

unobservable (because the statistics are invariant to β1). However, where 

2  0β  this is no longer the case, and we cannot proceed as if the tests were 

based on the unobservable shocks, { }tu . Moreover, where 2  0β  the 
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0( )mLM   and 0( )mt   statistics constructed from the observed data, { }ty , are 

non-similar tests and will diverge. For example, if 0 0   it can be shown that 

the (exact) rates of divergence are 2(0) ( ln( ) )m pLM O m m  and 

(0) ( ln( ))m pt O m m  under H0, so that both statistics will diverge with the 

sample size, even under the null hypothesis. As a consequence, therefore, 

the Lobato and Robinson (1998) tests will spuriously reject the null with 

probability tending to one as the sample size diverges. That is, tests based on 

0( )mLM   or 0( )mt   are uninformative if it is unknown whether 2  0β  or not. In 

this section we will therefore discuss how feasible versions of the tests 

discussed in Section 3 can be derived for the case where it is not known for 

certain whether 2  0β  or not. 

In the context of (1), the disturbances ut are not observable and so they must 

be estimated. For a generic vector of (putative) break locations, 1( , , )k   τ

, we can use ordinary least squares (OLS) estimators of the parameters β1 

and 2β  in (1). To that end, let 1 2: ( , )  β β , and let 
1: ( , , )Ty y y   , 

1( ) : (1, ( ), , ( ))t t t kx DU DU   τ , and 1( ) : ( ( ), , ( ))Tx x x  τ τ τ . Then the OLS 

estimate of β  is given by 1

1 2
( ) ( ( ), ( ) ) : ( ( ) ( )) ( )x x x y      β τ τ β τ τ τ τ . For a 

given value of τ  we then have the corresponding estimated residuals 

ˆ ( ) : ( ) ( )t tu y x τ β τ τ , with associated periodogram ˆ( ) ( )u jI 
τ

. 

Based on ˆ( ) ( )u jI 
τ

, we can then define analogues of the 0( )mLM   statistic of 

(5) and the corresponding t-type statistic *

0( )mt   in (4), for testing 0 0:H    as 

follows 

0

0

21/2

ˆ( )

1

0
2

ˆ( )

1

( )

( ; ) :
1

( )

m

j j u j

j

m m

j u j

j

m I

t

I
m





  



 







 

 
  
 
  





τ

τ

τ  (7) 

2

0 0( ; ) : ( ( ; )) .m mLM t τ τ  (8) 

If the true vector of break fractions, 
τ , were known then one would simply 

evaluate 0( ; )mLM  τ  and 0( ; )mt  τ  at τ τ . Our focus, however, is on the 

case where 
τ  is unknown and so will need to be estimated from the data. An 
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obvious candidate is the minimum residual sum of squares (RSS) estimator 

considered in Lavielle and Moulines (2000, pp. 38–39), which can be written 

as 

, , [ , ]1
| | 0

2

1

1

ˆ ˆ ˆ( , , ) : arg min ( ) ,
k L U

i ji j

T

k t

t

u
   
  

 
 
    





   τ τ  (9) 

where it is recalled that τL and τU are trimming parameters such that 

[ , ] (0,1)L U   . 

Given the RSS estimator τ  in (9), tests for 0 0:H    can then be based on 

0( ; )mLM  τ  and 
0( ; )mt  τ . For these tests to be operational, we will need to 

establish the large sample behaviour of the 
0( ; )mLM  τ  and 

0( ; )mt  τ  statistics 

under the null hypothesis, 0 0:H   , and show that unique asymptotic critical 

values (in the sense that they do not depend on any nuisance parameters) for 

the tests can be obtained from these distributions. In fact, we will be able to 

show in what follows that these statistics have the same limiting null 

distributions as were obtained for their infeasible counterparts *

0( )mLM   and 

*

0( )mt   in Theorem 1. In order to do so, however, we must impose some 

additional regularity conditions on ηt. In particular, Assumptions 1 and 2 must 

be strengthened to Assumptions 3 and 4, respectively, as follows: 

Assumption 3. Let Assumption 1 hold. Assume further that: 

(i) sup (| | )q

t
t

E     for some 1/ (1 2 )q   . 

(ii) The weights ψj are such that 
0

| |j

j

j 




  . 

(iii) For some 0 , the bandwidth, m, is such that 0
T

m
  as T  . 

Assumption 4. Let Assumption 2 hold, and define the projection operator 

1: ( | ) ( | )k k kE E      . Then we assume further that: 
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(i) q

t   and 
0

0

| | k q

k






   for some 1/ (1 2 )q   . 

(ii) For some 0 , the bandwidth, m, is such that 0
T

m
  as T  . 

Remark 4.1. Both Assumptions 3 and 4 impose the additional moment 

condition that  1/ 1 2q    moments exist. This condition is needed so that 

we can appeal to the functional central limit theorem [FCLT] for fractional 

processes for which the moment condition is necessary; see Theorem 2 of 

Johansen and Nielsen (2012). The fractional FCLT also requires that q > 2, 

but this is implied in Assumptions 1 or 2 so is not stated explicitly here. The 

condition placed on the weights ψj in Assumption 3(ii) is quite standard for the 

(fractional) FCLT and is met by all stationary and invertible finite-order ARMA 

models. This condition also implies continuity of the spectral density of ηt and 

hence rules out long memory at other frequencies, see Remarks 3.1 and 3.2. 

The condition that 
0

0 j

j






    (and a similar condition for the non-linear 

process) is again omitted because it is implied by the assumption 0 (0)f  

. The additional condition required to hold on the bandwidth in part (iv) of 

Assumptions 3 and 4 is not restrictive in practice because much larger 

bandwidths will typically be used. 

We are now in a position to state our main result in Theorem 2 which details 

the large sample behaviour of the feasible statistics 
0( ; )mLM  τ  and 

0( ; )mt  τ  

under local alternatives of the form 1/2

0:cH cm    . We will first state our 

main result and then provide some discussion around this result. We will also 

provide further insights into this result through the case of k = 1 where results 

are easier to explain. 

Theorem 2. Let yt be generated according to (1), and let either Assumption 3 

or Assumption 4 hold on ηt. Then, for any 0 ( 0.5,0.5)   , under 

1/2

0:cH cm    , and regardless of whether 2  0β  or 2  0β , it holds that 

2 2

0 1( , ) (4 )
d

mLM c τ  and 0( , ) (2 ,1)
d

mt N c τ . 
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Remark 4.2. A comparison of the results in Theorem 2 with those given 

previously in Theorem 1 yields the following immediate consequence. 

Regardless of whether any particular element 
2, , 1, ,i i k   , of 2β  in (1) is 

zero or non-zero, the tests based on 
0( ; )mLM  τ  and 

0( ; )mt  τ  attain exactly 

the same asymptotic local power functions as obtained by the infeasible tests 

based on *

0( )mLM   and *

0( )mt  , respectively. Moreover, under 0 0:H   , 

2

0 1( ; )
d

mLM  τ  and 
0( ; ) (0,1)

d

mt N τ , so that standard critical values can be 

used for both tests, again regardless of whether 2, 0i   or 2, 0, 1, ,i i k    , 

holds in (1). 

A proof of Theorem 2 is provided in the appendix. The proof strategy is to 

consider the distances between the feasible statistics 
0( ; )mLM  τ  and 

0( ; )mt  τ  with the infeasible *

0( )mLM   and *

0( )mt   statistics, respectively, in 

large samples. Inherent in doing so is to analyse the distance between ˆtu  and 

ˆ ( )tu τ , the latter given by ˆ ( )tu τ  evaluated at τ τ , and establish how this 

affects the distance between the feasible and infeasible statistics. The 

behaviour of both 
0( , )mLM  τ  and 

0( , )mt  τ  clearly depend on the large 

sample properties of the estimates τ  in (9) and ( )β τ , the latter given by ( )β τ  

evaluated at τ τ . For the properties of τ  we apply a result of Lavielle and 

Moulines (2000), and we combine this with a fractional FCLT for ut to obtain 

results for ( )β τ . 

Remark 4.3. In order to give some insight into the mechanics behind the 

proof, it is instructive to specialise our discussion to the case where k = 1. 

Accordingly, and with an obvious notation, we re-define ,τ τ , 2β , and 
2
β  as τ, 

̂ , β2, and 
2̂ , respectively. The proof proceeds by establishing that two key 

results hold under the conditions of Theorem 2. The first result is that if 2 0   

(so that no level break occurs), then *

0 0( ; ) ( ) (1)m m pt t o     and 

*

0 0( ; ) ( ) (1)m m pLM LM o    , in each case uniformly in τ. This result 

establishes that when no level break occurs, the differences between the 

statistics based on ˆtu  and ˆ ( )tu   are asymptotically negligible, and that this 

holds uniformly in τ and, hence, holds for ̂ . To prove this, we first establish 

uniformly in τ results for ˆ( )  . It is at this stage that the fractional FCLT is 
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used. We can then derive properties of the estimated residuals ˆ ( )tu   and 

analyse the distance between the Fourier transforms (and hence the 

periodograms) of ˆ ( )tu   and of ut. The second result is that if 2 0  , then 

*

0 0
ˆ( ; ) ( ) (1)m m pt t o     and *

0 0
ˆ( ; ) ( ) (1)m m pLM LM o    . That is, when 2 0  , 

such that a level break occurs, the differences between the statistics based on 

ˆ
tu  and ˆˆ ( )tu   are asymptotically negligible. In this case, we first establish the 

properties of the estimate of the break fraction, ̂ , using results from Lavielle 

and Moulines (2000). These properties allow us to bound the distance 

between ˆ ˆ( )   and ˆ( )   , and use this to analyse the distance between the 

Fourier transforms (and the periodograms) of ˆˆ ( )tu   and of ˆ ( )tu   . 

Remark 4.4. As discussed in Remark 4.3, the difference between the feasible 

and infeasible test statistics is shown to be (1)po  in Theorem 2. However, 

these remainder terms are nonetheless functions of δ0, or equivalently of δ 

because of the local asymptotic framework; see e.g. (26), (33), and (34) in 

Appendix A.2. This finite sample dependence on δ0 can also be observed in 

the Monte Carlo results; see point (v) in Section 5. 

Remark 4.5. The result in Theorem 2 shows that there is no loss in asymptotic 

local efficiency from allowing for k breaks when the true number of breaks, *k  

say, is smaller than k. However, as the simulation results in Section 5 show, 

the finite sample size and power properties of the feasible LM-type test, 

0
ˆ( ; )mLM   , deteriorate somewhat if k is chosen to be larger than *k . On the 

other hand, if k is chosen to be smaller than *k  then we know from the 

discussion at the start of Section 4 that the 0
ˆ( ; )mLM    statistic will diverge, 

even under the null hypothesis. In practical applications it would therefore 

seem sensible to select the number breaks used in constructing the 

0
ˆ( ; )mLM    statistic according to a consistent information criterion. Theorem 9 

of Lavielle and Moulines (2000, pp. 49–50) provides the conditions required 

on the penalty function such that an information criterion-based approach will 

consistently select the true number of breaks in the context of the DGP in (1) 

under the conditions of Theorem 2. Their result shows that, provided the 

maximum number of breaks allowed, k, is at least as large as the true number 
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of breaks, *k , then the commonly used Bayes information criterion [BIC] of 

Schwarz (1978) and Hannan-Quinn information criterion [HQIC] of Hannan 

and Quinn (1979) will both deliver consistent estimates of *k . We recommend 

the use of the HQIC as this is less parsimonious than the BIC, and hence 

constitutes a safer choice in practice, given the severe implications of fitting 

too few level breaks. We will illustrate the use of the BIC and HQIC in the 

empirical applications in Section 6. 

5 Monte Carlo Evidence 

We begin this section by investigating how well the large sample predictions 

of Theorem 2 hold in finite samples for a DGP that has either zero or one level 

break and we accordingly set k = 1 so that the notation of Remark 4.3 applies. 

To that end, Figures 1 and 2 graph simulated finite sample power functions of 

the the feasible LM-type test, 0
ˆ( ; )mLM   , proposed in Section 4 and the 

corresponding Lobato and Robinson (1998) test, 0( )mLM  , that does not 

allow for the possibility of a level break. In the context of the 0
ˆ( ; )mLM    

statistic we set the trimming parameters to be 0.15L   and 0.85U  . Also 

graphed are the power functions of the corresponding infeasible tests, 

*

0( ; )mLM   , defined just under (8), and *

0( )mLM   defined in (5). The former 

assumes knowledge of the true break location, * , but not the innovations, ut, 

and the latter assumes knowledge of the innovations. 

The simulated data used to construct the power curves in Figures 1 and 2 

were generated according to the DGP in (1)–(2) for T = 512 and T = 1024 

setting k = 1 and with ~ (0,1)t NIID , and where β1 was set equal to zero with 

no loss of generality. All of the reported tests are for testing 0 : 0H    at the 

nominal asymptotic 5% level. The graphs depict the simulated power 

functions of the tests under the local alternative 1/2:cH cm   for a range of 

values of c and with the corresponding values of δ shown on the horizontal 

axes. Results are reported for two bandwidth choices, namely 0.65m T     and 

0.8m T    . The results in Figure 1 relate to the case considered in part (i) of 

Theorem 2 with no level break, i.e. 2 0  , while the results in Figure 2 relate 

to part (ii) of Theorem 2 for the specific case of a level break with 2 2   at 
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* 0.5  , i.e. a break equal to two standard deviations of the innovation 

process occurring midway through the sample. The simulated power curves 

were computed using 10,000 Monte Carlo replications using the RNDN function 

of Gauss 20. As a benchmark, we also include in each graph the 

corresponding asymptotic local power curves obtained directly from the non-

central 2 2

1 (4 )c  distribution, where c m . 

Consider first the results in Figure 1 for the no break case. Here, given 

knowledge that no level break was present, the best possible test to use 

among the three considered would be the basic Lobato and Robinson (1998) 

test, *

0 0( ) ( )m mLM LM  . Against positive values of δ this test has power 

closest to the asymptotic local power function and is somewhat more powerful 

than the infeasible *

0( ; )mLM    test, which in turn is more powerful than the 

feasible 0
ˆ( ; )mLM    test. These differences are, however, reduced for T = 

1024 vis-à-vis T = 512 and for 0.8m T     vis-à-vis 0.65m T    ; indeed for T = 

1024 and 0.8m T     the differences between the three tests are quite small 

with all three lying close to the asymptotic local power curve. For negative 

values of δ there are only very slight differences between the three tests. 

Overall, the large sample predictions from part (i) of Theorem 2 appear to hold 

reasonably well in finite samples, particularly so for the larger bandwidth 

considered. 

Consider next the the results in Figure 2 for the case where a level break of 

magnitude 2 2   occurs. Here the infeasible *

0( )mLM   test no longer 

coincides with the feasible Lobato and Robinson (1998) test, 0( )mLM  . In this 

case the divergence of the 0( )mLM   test is clearly seen, regardless of 

whether the null hypothesis holds or not, with the test rejecting essentially 

100% of the time even for the smaller sample size considered. The power 

functions of the infeasible *

0( ; )mLM    and feasible 0
ˆ( ; )mLM    tests 

essentially coincide regardless of the sample size or bandwidth considered, 

suggesting that *  is very accurately estimated by ̂  in this case. As with the 

results for the no break case in Figure 1, for positive values of δ the power 

curve of the feasible 0
ˆ( ; )mLM    test lies only slightly below that of the 
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infeasible *

0( )mLM   test, which in turn lies close to the asymptotic local power 

curve, with the differences between the power curves reducing as T and/or m 

is increased. For negative values of δ the power curves of the 0
ˆ( ; )mLM    and 

*

0( )mLM   tests are almost indistinguishable regardless of m or T. Again the 

large sample predictions from part (ii) of Theorem 2 would appear to hold 

reasonably well in finite samples. 

In the remainder of this section we summarise the results from an large set of 

Monte Carlo experiments designed to investigate the finite sample size and 

power properties of the semiparametric long memory tests proposed in 

Section 4. Specifically, we compare the empirical size and power properties of 

the *

0 0( ; ), ( ; )m mLM LM τ τ  and 0( )mLM   tests along with the corresponding t-

type tests, *

0 0( ; ), ( ; )m mt t τ τ  and 0( )mt  , respectively. Results are reported for 

DGPs with either zero, one or two level breaks. In the case where a maximum 

of one level break is allowed, comparison is also made with the KPSS 

stationarity test, denoted KPSS, together with the generalisations thereof 

proposed in Busetti and Harvey (2001, 2003) which allow for a level break at 

either a known or unknown location, denoted *( )KPSS   and ˆ( )KPSS  , 

respectively. The full set of results together with details of the experimental 

design can be found in the supplementary appendix. 

We considered models for { }ty  of the form given in (1) with either k = 1 or k = 

2: 

 For the k = 1 (so that up to one level break is allowed) case the DGP 

had either no level break or a level break at the sample midpoint with 

magnitude 2 {0.5,1,2}  . Results are reported related to testing 

0 : 0H   ; both where δ = 0 (empirical size) and where { 0.15,0.15}    

(empirical power). The empirical size properties of tests for 0 : 0.3H    

and 0 : 0.3H     were also explored. For the empirical size results the 

error process ηt was allowed to follow either an IID process, an AR(1) 

process or an ARCH(1) process, while for empirical power IID and 

ARCH(1) processes were considered. 
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 For the k = 2 (so that up to two level breaks are allowed) case the DGP 

had either no level break or was such that two level breaks occurred 

with the level shifting from 0 to β2 to 22  at 1/3 and 2/3, respectively, of 

the way through the sample with 2 {0.5,1,2}  . Results are again 

reported related to testing 0 : 0H   ; both where δ = 0 (empirical size) 

and where { 0.15,0.15}    (empirical power). 

All of the tests were implemented for both a range of fixed bandwidths and 

using data-driven bandwidth rules. Again we set the search set as 

[0.15,0.85]  . The principal findings of our Monte Carlo results can be 

summarised as follows, where comments (i)–(vi) relate to results in 

Tables S.1–S.18 for the single (putative) level break case, and comment (vii) 

relates to results in Tables S.19–S.24 for the double (putative) break case: 

(i) As with the findings in Lobato and Robinson (1998) our results 

demonstrate that the bandwidth m has a significant impact on the finite 

sample properties of the tests, with a clear trade-off seen between size 

and power. In particular, for a given sample size, excluding those tests 

which are non-similar (i.e., excluding the 0( )mLM   and 0( )mt   tests when 

2 0  ), we observe the following general patterns: (a) for a given pattern 

of weak dependence and a given bandwidth, m, the observed distortions 

from the nominal (asymptotic) significance level are greater the larger is m, 

and (b) empirical power against a given fixed alternative increases as the 

bandwidth, m, increases. Generally, a range of bandwidths between 

0.5m T     and 0.65m T     provides reasonable finite sample size control 

across the cases considered. 

(ii) Our results suggest that the automatic bandwidth, mLR, of Lobato and 

Robinson (1998) delivers a reasonable trade-off between finite sample 

size and power considerations, at least when the data are conditionally 

homoskedastic. In the conditionally heteroskedastic ARCH(1) case, the 

empirical size of tests based on mLR do not improve, other things equal, as 

the sample size is increased. This is perhaps not surprising given that the 

mLR bandwidth rule is not consistent with the bandwidth rate imposed on m 
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by Assumption 2, and we therefore recommend caution in using the mLR 

bandwidth rule with data which are suspected to display conditional 

heteroskedasticity. For the KPSS-type tests, the automatic bandwidth rule 

recommended in Lobato and Robinson (1998) also appears to deliver a 

reasonable size-power trade-off. 

(iii) Overall, our results suggest that it may be helpful in practice to 

consider the automatic bandwidth, mLR, together with a range of 

bandwidths between 0.5m T     and 0.65m T    . This is what we will do in 

the empirical examples in Section 6. 

(iv) As expected, where a level break occurs ( 2 0  ), the non-similar 

0 0( ), ( )m mLM t   and KPSS tests are highly unreliable displaying severe 

oversize (excepting the left-tailed 0( )mt   test which is correspondingly 

undersized), and hence spurious evidence of long memory. The observed 

size distortions seen with these tests are higher, other things equal, the 

larger is the sample size or the level break magnitude. 

(v) Although asymptotically equivalent under both the null and local 

alternatives (cf. Theorem 2), differences are observed between the finite 

sample size and power properties of the pairs of tests 0
ˆ( ; )mLM    and 

*

0( ; )mLM   , and 0
ˆ( ; )mt    and *

0( ; )mt   . The *

0( ; )mLM    and *

0( ; )mt    

tests are based on knowledge of whether a level break occurs or not 

(i.e. whether 2 0   or 2 0  ) and, where a break occurs, also knowledge 

of the level break location * , while 0
ˆ( ; )mLM    and 0

ˆ( ; )mt    do not 

assume knowledge of either. The differences between the finite sample 

properties of these pairs of tests are seen to diminish as either the sample 

size or, in the case where a level break occurs, the break magnitude 

increases; indeed, for the largest magnitude considered, 2 2  , these 

differences are largely eliminated even for the smaller of the two sample 

sizes considered. The observed differences between the empirical power 

properties of these pairs of tests are seen to be slightly larger, other things 

equal, in the case where the errors are ARCH(1) vis-à-vis the IID case. 

Moreover, the finite sample differences between the pairs of tests are 
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smallest for the tests of 0 : 0.3H     and largest for the tests of 0 : 0.3H  

; c.f. Remark 4.4. Where no level break is present, the finite sample 

differences between the 0
ˆ( ; )mLM    test and 0( )mLM   (which assume no 

level break is present) are again relatively small, other things equal, 

particularly for the larger sample size considered. This is also broadly true 

for a comparison between the 0
ˆ( ; )mt    and 0( )mt   tests, although the 

differences are larger than for the LM-type tests. Overall, the asymptotic 

theory presented in Theorem 2 appears to provide a reasonable prediction 

of the finite sample behaviour of the 0
ˆ( ; )mLM    and 0

ˆ( ; )mt    tests. 

(vi) For a given DGP, the one-sided t-tests have more power (in the correct 

tail) than the corresponding two-sided LM tests, as would be expected. 

Moreover, and consistent with both the discussion concerning theoretical 

power rates against local alternatives in Shao and Wu (2007a) and the 

simulation findings in Lobato and Robinson (1998), the KPSS-type tests 

have considerably lower power to detect departures from short memory 

than do the corresponding LM- and t-based fractional integration tests 

discussed in this paper, at least provided reasonable bandwidths m are 

chosen. 

(vii) The results for the case where two putative breaks are allowed 

for (k = 2) are qualitatively similar to the corresponding results discussed 

above for the case of a single (putative) level break. However, as might be 

expected, the patterns seen for k = 1 are somewhat magnified for k = 2. 

6 Empirical Examples 

Throughout the empirical examples in this section, we set the trimming 

parameters equal to the same values as were used in the Monte Carlo 

experiments in Section 5, that is 0.15L   and 0.85U  . Where multiple 

breaks were estimated, we set the minimum spacing parameter λ defined in 

Section 4 to 0.10  , except for the VIX example where we set 0.05   to 

allow larger values of k. For 4k  , a complete enumeration of all possible 

break date combinations is infeasible, so the break dates are estimated by 
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numerical (integer) optimization of the RSS function using a Matlab program 

which is available in the supporting material. 

6.1 Bitcoin Returns 

We apply the semiparametric long memory tests described in this paper to the 

daily returns of Bitcoin over the period 17 September 2014 to 31 December 

2019, giving a total of T = 1932 daily observations. The data were retrieved 

from Yahoo Finance. The logarithm of the closing price of Bitcoin in USD is 

graphed in Figure 3 along with the returns series, defined as first differences 

of the (log) closing price series. A visual inspection of the data suggests the 

plausibility of changes in slope, implying changes in level at the same point in 

the returns series, with the most obvious case being at around the beginning 

of 2018. The red line on the graphs shows the fitted deterministic trend/level 

of the series allowing for two breaks, the locations of which are estimated by 

applying the RSS-based estimator discussed in Section 4 to the returns data 

setting k = 2. The estimated break dates are 24 March 2017 and 

16 December 2017. 

Evidence of long memory in returns would of course be in strong violation of 

the efficient market hypothesis, and so it is of interest in the context of the 

Bitcoin return data to test 0 : 0H    against the alternative 1 : 0H   . We do 

so using both the test based on the (0)mt  statistic of Lobato and Robinson 

(1998), which does not allow for a level break, and the analogues of this test 

based on the ˆ(0; )mt   and (0; )mt τ  statistics allowing for the presence of either 

one or two level breaks, respectively, in each case occurring at unknown 

points in the sample. Following the recommendations from our Monte Carlo 

study we computed the statistics for a range of values of the bandwidth 

parameter, m, lying between 0.5 43T     and 0.65 137T    , inclusive, as well as 

for the automatic bandwidth rule, mLR of Lobato and Robinson (1998) with the 

value that this takes reported in parentheses below the outcome of the 

statistics. The results are summarised in Table 1. Here, and also in Tables 4 

and 5, the superscripts *, ** and *** denote outcomes which are statistically 

significant at the 10%, 5% and 1% level, respectively, while the superscripts 
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HQ  and BIC  indicate the number of breaks chosen by the HQIC and BIC, 

respectively; cf. Remark 4.5. 

Using Lobato and Robinson’s (0)mt  test we can reject H0 at the 10% level 

when using the data-dependent bandwidth rule, mLR, and for all but the 

smallest and largest of the other bandwidths considered. The null can also be 

rejected at the 5% level for m = 75 and m = 93. On balance we surmise from 

the results for the standard Lobato and Robinson test that the short memory 

null hypothesis is rejected in favour of long memory in the Bitcoin returns 

data. On the other hand, for the test based on ˆ(0; )mt  , which fits a level break 

to the data, the evidence against the null hypothesis is considerably weaker 

and, in particular, H0 can only be rejected at the 10% level for bandwidths 

{75,93, }LRm m . Allowing for two breaks, which is the number chosen by our 

preferred HQIC, no choice of bandwidth results in a rejection at even the 10% 

level for the (0; )mt τ  test. This suggests that the finding of long memory in 

Bitcoin returns by the Lobato and Robinson (1998) test is likely attributable to 

the presence of at least one level break in the returns data. 

6.2 VIX Market Volatility 

In the next example we consider market volatility, measured by VIX, using 

daily data from 1 January 2000 to 31 December 2019 for a total of T = 5031 

observations. The data were downloaded from Yahoo Finance and are 

graphed in Figure 4. The red step function on the graph shows the fitted 

deterministic level of the series allowing for 10 level breaks. 

It has been argued by several authors that long memory in volatility is an 

important stylized fact; see e.g. Andersen et al. (2001) and references therein. 

Furthermore, long memory in volatility is relevant in asset pricing. For 

example, Baillie et al. (1996) use asset pricing as motivation for their 

FIGARCH model, and Christensen and Nielsen (2007) discuss implications of 

long memory in volatilty in the context of stock pricing. Other authors, 

however, suggest volatility might be a short memory process with the 

statistical evidence for long memory disappearing once level shifts in the data 

are accounted for; see, among others, Granger and Hyung (2004). 
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To investigate this further, we test the short memory null hypothesis 0 : 0H    

against the long memory alternative 1 : 0H    in the VIX data. We report the 

outcomes of the (0)mt  statistic, the ˆ(0; )mt   statistic which allows for the 

presence of up to one level break, and the (0; )mt τ  statistic which allows for up 

k level breaks and do this for each of 2, ,10k   . We again computed these 

statistics for a range of values of the bandwidth parameter, m, between 

0.5 70T     and 0.65 254T    , inclusive, together with the automatic bandwidth 

rule, mLR. The results are summarised in Table 2. Following Andersen et 

al. (2001), we also conducted the analysis using logarithmically transformed 

VIX data, and the results were nearly identical to those reported in Table 2. 

It is seen from the results in Table 2 that the short memory null hypothesis is 

easily rejected at the 1% significance level for all of the bandwidths 

considered, other than mLR, regardless of how many level breaks we fit to the 

data. The tests based on mLR provide weaker evidence of long memory in the 

VIX data where 5 or more levels breaks are fitted; for example the HQIC 

selects 10 breaks and here the (0; )mt τ  test is only able to reject at the 10% 

level when using mLR. In conclusion, though, the results of these tests strongly 

suggest that long memory is a feature of the VIX data, and that this would not 

appear to be spurious long memory due to unmodelled level breaks. 

Table 3 repeats the analysis of Table 2, but testing null hypothesis 0 : 0.4H    

against the two-sided alternative 1 : 0.4H   . The value 0.4   is very 

commonly found to characterize volatility data in empirical work, 

e.g. Andersen et al. (2001) and Christensen and Nielsen (2007), and thus 

seems like a natural null hypothesis. For bandwidths 125m  , including mLR, 

the null hypothesis is rejected at the 1% level regardless of the number of 

breaks allowed for. However, for 108m   the evidence against the null 

hypothesis becomes weaker. Using the number of breaks selected by either 

HQIC or BIC, the null cannot be rejected at the 10% level for any 100m  , but 

can be rejected for larger m. On balance, unless a relatively small bandwidth 

is used, we conclude that the VIX is more persistent than an (0.4)I  series 
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(because rejection is in the right tail). The latter finding is in line with some 

recent empirical work; e.g. Frederiksen, Nielsen and Nielsen (2012). 

6.3 U.S. CPI Inflation 

We next consider U.S. CPI inflation, defined as the first differences of the 

logarithm of the price index. Specifically, we used the series CPIAUCSL from 

the FRED database, which is the CPI for all items, Urban consumers, 

seasonally adjusted, base year 1984. We used monthly observations 

spanning January 1970 to December 2019, for T = 599 observations on the 

first differences. The log-CPI data along with the inflation data, the latter 

multiplied by 1200 to return a measure that is compatible with the commonly 

reported inflation rate, are both plotted in Figure 5. U.S. inflation is widely 

argued to have gone through several different policy regimes over the sample 

period considered here, most notably the Great Inflation period of the 1970s, 

the subsequent Volcker-Greenspan era of inflation rate targeting by the 

U.S. Federal Reserve starting in the early 1980s, and the response to the 

financial crisis of 2008. Figure 5 is indeed suggestive of the possibility of 

several level breaks in the inflation data. The red step line on the graphs 

again shows the fitted deterministic trend/level of the series allowing for up to 

four breaks. The estimated break dates are August 1977, July 1982, January 

1991, and July 2008, broadly consistent with the regimes discussed above. 

We again test the short memory null hypothesis, 0 : 0H   , against the 

alternative of (positive) long memory in the U.S. inflation data. We consider 

both the test based on the (0)mt  statistic of Lobato and Robinson (1998), and 

the corresponding tests based on the ˆ(0; )mt   and (0; )mt τ  statistics allowing 

for the presence of up to 1, ,4k    level breaks, in each case at unknown 

points in the sample. The results are reported in Table 4 again for a range of 

values of the bandwidth parameter, m, lying between 0.5 24T     and 

0.65 63T    , inclusive, and the data-dependent bandwidth rule, mLR. 

Lobato and Robinson’s (0)mt  test overwhelmingly rejects short memory at any 

conventional significance level for all of the bandwidths considered. Allowing 
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for the presence of level breaks considerably reduces the magnitude of the 

test statistics. The test outcomes are generally still strongly significant when 

allowing for one or two level breaks, but when three level breaks are allowed 

for (the number chosen by BIC), the null cannot be rejected at the 5% level for 

bandwidths up to m = 40. When allowing for four level breaks (the number 

chosen by HQIC) only the tests based on bandwidths of m = 50 and m = 63 

are significant at the 5% level. Consequently, while the standard Lobato and 

Robinson (1998) test presents very strong evidence in favour of long memory 

in the U.S. inflation rate, tests which allows for different policy regimes within 

the sample period are more suggestive that U.S. inflation is a short memory 

series. 

6.4 Real U.S. GDP Growth Rate 

Finally we consider U.S. GDP growth rates obtained as the first difference of 

the logarithm of real U.S. quarterly GDP (seasonally adjusted) over the period 

1947Q1 to 2019Q4 obtained from the FRED database (series GDPC1), for a 

total of T = 292 quarterly observations. The data for U.S. (log) GDP and the 

GDP growth rates are both graphed in Figure 6. The red line on the graphs 

again shows the fitted deterministic trend/level of the series allowing for up to 

three breaks. The estimated break dates are 1973Q2, 1982Q3 and 2000Q2, 

broadly consistent with the first oil crisis, changes in the Fed policy (discussed 

in the context of the U.S. CPI data in Section 6.3) and the end of the dot-com 

bubble. 

In particular we will test the null hypothesis that growth rates are short 

memory, 0 : 0H   , such that the log-level of GDP follows an I(1) process, 

against the alternative of negative long memory (antipersistence) in growth 

rates, 1 : 0H   , such that the log-level of GDP is less persistent than an I(1) 

process. As in the previous examples, we consider the test of Lobato and 

Robinson (1998) based on the (0)mt  statistic, and the corresponding tests 

based on the ˆ(0; )mt   and (0; )mt τ  statistics allowing for up to k = 1, 2, 3 level 

breaks, in each case at unknown points in the sample. The results are 

reported in Table 5, again for a range of values of the bandwidth parameter, 
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m, lying between 0.5 17T     and 0.65 40T    , inclusive, and the data-

dependent bandwidth rule, mLR. 

With only a few exceptions, the tests reported are unable to reject the null 

hypothesis that GDP growth rates are short memory against 1 : 0H    at 

conventional significance levels. The results from these tests do not therefore 

appear to support the conjecture of Perron (1989) that U.S. GDP is I(0) about 

a broken linear trend, particularly when recalling that our test is of the null 

hypothesis that U.S. GDP is I(1) around a broken trend. 

7 Conclusions 

We have developed semiparametric tests, based on the Lagrange multiplier 

testing principle, for the fractional order of integration of a univariate time 

series which may be subject to the presence of level breaks. This is of 

significant practical importance as it is well known that long memory and level 

breaks can be mistaken for one another, with unmodelled level breaks 

rendering standard fractional integration tests highly unreliable. Our approach 

generalises the tests for the null hypothesis of weak dependence (I(0)) 

developed in Lobato and Robinson (1998). These tests are based on the local 

Whittle approach, and therefore do not require the user to specify a 

parametric model for any weak autocorrelation present in the data, which is a 

considerable practical advantage where the confounding effects of long 

memory and level breaks are present. We also show how, as conjectured in 

Lobato and Robinson (1998, p. 478), their testing approach can be 

generalised to develop tests of the null hypothesis that a series is ( )I   for any 

δ lying in the usual stationary and invertible region of the parameter space, 

not just δ = 0. In spite of these generalisations, our tests are shown to attain 

the same standard asymptotic null distributions and asymptotic local power 

functions as the corresponding tests in Lobato and Robinson (1998); hence, 

there is no loss of asymptotic local power from allowing for level breaks, even 

where no level breaks are present. Monte Carlo simulations suggest that the 

tests perform well and that the predictions from the asymptotic theory appear 

to hold reasonably well in finite samples. The practical relevance of our 
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proposed tests was highlighted with a number of empirical examples relating 

to macroeconomics and finance. 
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Appendix A Mathematical Proofs 

In this appendix we provide proofs of Theorems 1 and 2. 

A.1 Proof of Theorem 1 

We use the notation 1/2:c cm  , so that, under Hc, we have 0 c    . 

Consider first the proof under Assumption 1. We re-write *

0( )mt   in (4) as 

21/2 1 2

1*

0
21 1 2

1

( )

( ) .

( )

c

c

m

j j u j

j

m m

j u j

j

m G j I

t

m G j I





  



 

 



 










 (10) 

The numerator of *

0( )mt   in (10) is 

 2 21/2 1 2 1/2 1 2
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m m

j j j u j j j u j j

j j

m G I m j G I I
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 

    

 (11) 

1/2

1

2 ( )
m

j j

j

m I  


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21/2
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m

j j
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  



   (13) 
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Letting ( )jI   denote the periodogram of t , (4.8) of Robinson (1995b) shows 

that, for r m , 

 1/3 2/3 3 2 1/2 1/4

2
1

( )
2 ( ) (ln( )) .

r
u j

j p

j j

I
I O r r r T r T

G



 



 




 
    

 
  (14) 

Then, letting 
2

: c

j jb j
 

  and proceeding as in Robinson (1995b) it follows that 

the remainder term (11) is (1)po . This involves using summation by parts, 

(14), and the bound 1

1| | ( )j jb b O j  , which follows by elementary 

calculations. From (4.11) of Robinson (1995b) it follows directly that (12) 

converges in distribution to N(0, 1). 

Next, by a Taylor series expansion and by definition of δc, 

2 21/2 2 1 21 2 (ln ) 2 (ln )c mvtj cm j c m j j
       for | | | |mvt c  , so that (13) is 

21 2 3/2 2

1 1
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Writing 1

1

ln ln
m

j

k

j m k 



   , the first term of (15) is 

1 2 1 1

1 1 1

2 2 ( ) 2 ln 2 ( ).
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j j j j
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Noting that 1 2 1 2

1 1

2 2 ( ( )) 2 2
m m

j j j

j j

cm E I cm c    

 

   , the first term converges 

in probability to 2c by a law of large numbers. Using the result for (12) and the 

fact that 1

1

ln (ln )
m

k

m k O m



 , the second term is 1/2( ln ) (1)p pO m m o  . Next, 

the expectation of the absolute value of the second term of (15) is 

 2| | 2| |3/2 2 1/2 3
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(ln ) (ln ) (1),c c

m
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O m j j O m m m o
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 
  

where the last equality follows because 1/2 lnm m , which implies 

2| | 2| |/ ln 2| |c c m cm m e

  . This shows that the second term of (15) converges to 

zero in L1-norm and hence in probability. 
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The denominator of *

0( )mt   in (10) may be analyzed in the same way to 

establish the result that 21 2

1

2 ( )c

m

j u j p

j

m j I G
  



 . The claim of Theorem 1 

under Assumption 1 follows by combining these results. 

Next, we prove the theorem under Assumption 2. Instead of the bound (14) 

from (4.8) of Robinson (1995b), we let 0( )
( ) : (1 ) ci

T e
    

   and use 

Lemma 4 of Shao and Wu (2007a), where it is shown that, under 

Assumption 2, 

 1/4 1/2 1/2 1/4

2
1

( ) ( )
(ln ) .

| ( ) | ( ) ( )

r
u j j

p

j T j j j

I I
O r r r T

f f

 

   





 
   

 
  (16) 

Denoting 0( ) : (1 )i

j e
  

   and ( ) : (1 ) ci

c j e
  

  , so that 

( ) ( ) ( )T j j c j      , the (scaled negative) numerator of *

0( )mt   in (4) is 

02 21 1 2

1 1

21 2 1 2 2 2 2

1

2 2 1 1/2

1

( ) ( )

| ( ) | ( ) | ( ) | ( ) | ( ) | | ( ) | ( )

| ( ) | | ( ) | ( ) ( ) ( ),

c

c

m m

j j u j j j j u j

j j

m

j j c j j c j j T j T j j u j

j

m

j c j T j j u j p

j

G I G I

G f f I

f I o m

  

 

      

             

      

 

 

   



 







 

 





 (17) 

where the last equality follows by using bounds for the low-frequency 

approximation of the ratio of ( )jf   to G, see Assumption 2(iii), and of 

2| ( ) |T j   to 2

j

  as in Robinson (1995b). 

For the leading term in (17), we let 2: | ( ) |j j c jb     (with slight abuse of 

notation), and re-write it as 

 2 1 1

1

| ( ) | ( ) ( ) ( ) ( )
m

j T j j u j j j

j

b f I f I       



  (18) 

1

1

( ) ( ).
m

j j j

j

b f I 



  (19) 
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As in the analysis of (11) it holds that (18) is (1)po  using (16). The term (19) is 

asymptotically normal as shown in Shao and Wu (2007a). As in the previous 

case, the same arguments also give 1 2

1

2 ( )
m

j u j p

j

m I G  



 , and the claim of 

Theorem 1 under Assumption 2 follows combining these results. 

A.2 Proof of Theorem 2 

Let ( ; )W d  denote a type I fractional Brownian motion; that is, with 

2 2( 1/2)( ( ; ) ) dE W s d s  , and ( ;0)W s  a standard Brownian motion. Also let 

( )
( ) :

( 1)

A d
d

d
 

 
, where 

1/2

2

0

1
( ) : ((1 ) )

1 2

d dA d s s ds


 
       . Then we have 

the following result. 

Lemma 1. Under Hc and either Assumption 3 or Assumption 4, 

0(1/2 ) 1/2

0 0

1

( )(2 (0)) ( ; )

T

t

t

T u f W



     
  

 



  as a càdlàg process indexed by   . 

Proof of Lemma 1. Given that 0 1/ 2  , for m large enough there is 1/ 2    

such that 0   and   . Using a mean value theorem expansion, 

0 0

0

1/2

1/2 2 2 1/2

( )( ln )

1/ 2( ) ( ln ) 1/ ( !)( ) ( ln ) ,mvt

t t t t

k k

t t

u cm

cm k cm

 

 

  

 

  

  

       

       
 (20) 

where 0 0| | | |mvt       and k is an integer to be chosen. 

From the fractional FCLT, the first term on the right-hand side of (20) satisfies 

0 0(1/2 ) 1/2

0 0

1

( )(2 (0)) ( ; )

T

t

t

T f W



       
  

  



   

in the Skorohod metric; see, e.g., Hosoya (2005) and Wu and Shao (2006). 

Moreover, because the jumps in the partial sums take place at fixed points in 

time, and the limit ( ; )W    is a.s. continuous, the weak convergence also 

takes place in the uniform metric. 

By the same argument, including a slowly varying function, it follows that 
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0 0(1/2 )

1

1
( ln ) (1),

ln( )

T

t p

t

T O
T



  
  

  



     

and hence 0 0(1/2 )1/2

1

( ln ) (1);

T

t p

t

cm T o



  
  

  



     in both cases uniformly in τ. 

The k – 2 remaining terms in the expansion of 
t

  in (20) can be analyzed 

the same way. 

For the last term on the right-hand side of (20), notice that 

22 2

2 2

(( ln ) ) |1 | (ln |1 |) ( )

|1 | (ln |1 |) ( ) ,

mvt mvtk i i k

t

i i k

E e e f d

e e f d


  




  



  

 

 







     

    




 

where we recall that ( )f   is the spectral density of ηt, which is bounded, 

uniformly in λ, under either Assumption 3 or Assumption 4. Then, by the 

Cauchy-Schwarz inequality, 

1/2

2 1/2

1 1

( ln ) (( ln ) ) ( ),mvt mvt

T T
k k

t t p

t t

T O T



  
  

 

 

 
         

   

and note that this is uniform in τ. So, upon choosing k finite but sufficiently 

large, 0(1/2 ) /2 0kT m T
     by Assumption 3(iv) or Assumption 4(iv), and 

consequently 

0

1/2
(1/2 )

1

( )
(ln ) (1).

!
mvt

Tk
k

t p

t

cm
T o

k



  
   

  



    

Combining these arguments we obtain the desired result. □ 

An important consequence of Lemma 1 is that Assumption H1( ) of Lavielle 

and Moulines (2000) holds with 01 2 2     under the conditions of 

Lemma 1. In what follows, results for stochastic functionals of τ are to be 

considered as uniform in τ, unless otherwise specified. We omit the the 

reference to uniformity in τ for brevity. 
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We divide the remainder of the proof into three parts for readability. Recall 

that k   is the true number of breaks, i.e. the number of non-zero elements of 

2β . 

A.2.1 Proof of Theorem 2 When 0k k   

In this case 2, 0i   for all 1, ,i k  . To lighten the notation, we give the proof 

for the case with k = 1 and 0k  ; see also the notation in Remark 4.3. The 

proof for the general case is the same, but with vectors and matrices 

replacing scalar quantities. Thus, we prove that, when 

*

2 0 00, ( ; ) ( ) (1)m m pt t o       uniformly in τ. It is sufficient to show that 

0 02 21/2 1/2

ˆ( )

1 1

( ) ( ) (1),
m m

j j u j j j u j p

j j

m I m I o
 

      

 

    (21) 

0 02 21 1

ˆ( )

1 1

( ) ( ) (1).
m m

j u j j u j p

j j

m I m I o
 

    

 

    (22) 

We give only the proof of (21). The proof of (22) is almost identical leaving out 

the factor νj and noting the different normalization. 

We first note that 

 
ˆ ( ) ( ) 2 ( )

2

ˆ( ) 2 ( ) ( ) 2

ˆ ˆ( ) ( ( )) ( ) ( ) ( ) ( ) ( ),

ˆ ˆ( ) ( ) ( ) ( ) 2Re ( ) ( ) ( ).

u j x j u j DU j u j

u j DU j u j DU j u j

w w w w w

I I I w w

  

  

         

        

     

   
 

The absolute value of the left-hand side of (21) is then 

 0 0

0

2 21/2 2 1/2

( ) 2 ( ) 2

1 1

21/2 2

( ) 2

1

ˆ ˆ( ) ( ) 2 Re ( ) ( ) ( )

ˆ| | ( ) ( )

m m

j j DU j j j DU j u j

j j

m

j j DU j

j

m I m w w

m I

 

 





          

    

 

 





 



 



 (23) 

 021/2

( ) 2

1

ˆ| | Re ( ) ( ) | ( ) | .
m

j j DU j u j

j

Cm w w


     



   (24) 

From Iacone (2010) we have the bound 
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1 1

( ) ( ) ( / ) ,DU jI C j T j     (25) 

and the bound 0 1/2

2
ˆ ( ) ( )pO T

  
  follows from an application of Lemma 1 to 

the regression estimate. Applying also the simple bound | | (ln )j O m  , the 

term (23) is 

 

0

0 0

0

2 1

2 2 11/2 2 1/2 1

( ) 2

1 1

2 21/2 1/2

1

ˆ| | ( ) ( ) (ln )

(ln ) (ln ) (1).

m m

j j DU j p

j j

m

p p p

j

j j
m I O m m j T

T T

O m m j O m m o



 





    



  

 

 



    
         

 
   

 

 



 

For the term (24), first note that 2 ( )j u jE I C   ; see Lemma 3 of Shao and 

Wu (2007a), the proof of which also applies under Assumption 3 or 4. Thus, 

(24) is bounded by 

 0

0

0

0 0 0

21/2

( ) 2

1

2 1/2

1/21/2 1/2

1

( 1) ( )1/2

1

ˆ| | Re ( ) ( ) | ( ) |

(ln )

(ln ) .

m

j j DU j u j

j

m

p

j

m

p

j

Cm w w

j j j
O m m j T

T T T

O m m T j





 



    

     



 

 



   





      
             

 
  

 







 

Note that, by mean value expansion, 0 0( 1/2)1 (ln ) mvtT cm T T
      , where 

0 0| | | |mvt      . Thus, for T large enough, 0 ( 1/2)| 1| (ln )T cm T T
     for any 

0  arbitrarily small. Thus, 0 1 (1)T O
 

  . The term 0j
 

 can be discussed 

in the same way. Therefore, the stochastic order of (24) is 

 0 01 max( ,0)1/2 2 1/2

1

(ln ) (ln ) ,
m

p p

j

O m m j O m m m
  



 
 

 
  (26) 

which is (1)po  recalling that 0 1/ 2  . 

A.2.2 Proof of Theorem 2 When 0k k   

In this case 2, 0i   for all 1, ,i k  . Again, we give the proof for the case with 

1k k   to lighten the notation, with the general proof being nearly identical. 
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Thus, we prove that, when *

2 0 0
ˆ0, ( ; ) ( ) (1)m m pt t o      . Because 2 0  , we 

have to account for the difference between ̂  and   . From Theorem 7 of 

Lavielle and Moulines (2000) it holds that, for any | | 1/ 2  , 

1ˆ ( ).pO T     (27) 

Proceeding as Bai (1994) and Iacone et al. (2019), we also establish that 

0 1/2

2 2
ˆ ˆ( ) ( )pO T

   
  . Notice here that the key step of the proof in Iacone et 

al. (2019) exploits the rate in (27), the Hájek-Rényi-type inequality in (8) of 

Lavielle and Moulines (2000), and the fractional FCLT. 

We now re-write 

1 2 1 2

1 2 2 2 1 2

1 1 2 2 2

ˆ ˆˆ ˆ ˆ ˆˆ ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆˆ ˆ ˆ ˆ( ( )) ( ( )) ( ) ( )( ( ) ( )),

t t t t

t t t t t

t t t t

u DU u DU

DU DU DU u DU

DU u DU DU

        

             

          



  

 

    

      

      

 

and thus, for 0j  , 

 

 
 

2 2

ˆˆ 2 2 2( ) ˆ( ) ( ( ) ( ))

2 2( )

2 2 2ˆ( ) ( ) ( )

2ˆ( ) ( )

ˆ ˆˆ ˆ( ) ( ) ( ( )) ( ) ( ) ( )

ˆ ˆ2Re ( ) ( ) ( ( ))

ˆ ˆˆ ˆ2( ( )) Re ( ) ( ) ( )

ˆ ˆ2Re ( ) ( ) ( ).

t t

t t

j u j j ju DU DU DU

j u jDU

j jDU DU DU

u j jDU DU

I I I I

w w

w w

w w

   



  

 

        

    

      

   

 



 









   

  

  

 

 

Proceeding as in Appendix A.2.1, we need to show that 

021/2 2

2 2 ( )
1

ˆ ˆ(ln ) ( ( )) ( ) (1),
m

j j pDU
j

m m I o



    





   (28) 

 021/2

2 2( )
1

ˆ ˆ(ln ) 2Re ( ) ( ) ( ( )) (1),
m

j j u j pDU
j

m m w w o



     





    (29) 

and 

021/2 2

2 ˆ( ( ) ( ))
1

ˆ ˆ(ln ) ( ) ( ) (1),
m

j j pDU DU
j

m m I o


 
   






  (30) 
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 021/2

2 2 2ˆ( ) ( ) ( )
1

ˆ ˆˆ ˆ(ln ) | ( ) | Re ( ) ( ) | ( ) | (1),
m

j j j pDU DU DU
j

m m w w o


  
        






  

 (31) 

 021/2

2ˆ( ) ( )
1

ˆ ˆ(ln ) Re ( ) ( ) | ( ) | (1).
m

j u j j pDU DU
j

m m w w o


 
    






   (32) 

The bounds in (28) and (29) follow as in the discussion of (23) and (24), 

respectively. 

Next, assuming without loss of generality that ̂   , 

1

ˆ( ( ) ( ))
ˆ

1/2

ˆ( ( ) ( ))

1
( ) ,

2

1
ˆ( ) ( ) ( ),

2

T

i

DU DU
t T

pDU DU

w e
T

w T T O T
T





 


 




  








 
 


  

 





      


 

and hence 1

ˆ( ) ( )
( ) ( )j pDU DU

I O T
 






 . Thus, since 2 2

ˆ ˆ( ) p   , (30) is of order 

 0 0 0 02 2 2 1 2 11/2 1 1/2

1

(ln ) (ln ) (1).
m

p p p

j

O m m j T T O m m T m o
        



 
  

 
  

The term (31) is, using (25), 

 

0 0 0

0 0 0 0

1/2 2 21/2 1/2 1 1/2

1

1/2 2 1 1/2 max(2 ,0)1/2 1/2 2

1

(ln ) ( )

(ln ) (ln ) ,

m

p

j

m

p p

j

O m m T j T T j T

O m m T j O m m T m

  

   

   



     



 
 
 

 
  

 





 (33) 

which is (1)po . Finally, (32) is of order 

 0 0 0 0 0 0( ) ( ) 1/2 1/21/2 1/2

1

(ln ) (ln ) (1).
m

p p p

j

O m m j T T O m m T o
               



 
  

 


 (34) 

A.2.3 Proof of Theorem 2 When 0k k   

In this case we partition the k-vectors 2 , , ,β τ τ τ , and ( )tDU τ  according to 

whether 2, 0i   or 2, 0i   for 1, ,i k  . Once more, we give the proof for the 
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case with k = 2 and 1k   to lighten the notation. We assume without loss of 

generality that 
2,1 0   and 

2,2 0  , and partition 
2 , , ,β τ τ τ , and ( )tDU τ  

accordingly. 

We write 

0 1 2 0 0 1 2 0 1 2
ˆ ˆ( ;( , ) ) ( ) ( ;( , ) ) ( ;( , ) )m m m mt t t t                 (35) 

0 1 2 0( ;( , ) ) ( ),m mt t        (36) 

and prove that each of the two terms on the right-hand side are (1)po  

uniformly in τ2. The result for (36) follows directly from the result for 0k k   

in Appendix A.2.1. 

Thus, we prove that the right-hand side of (35) is (1)po  uniformly in τ2, and to 

this end we need to take into account the estimation of τ1 and 2β . We have 

2,1 1 2,2 22
ˆ ˆ( ) ( ( ), ( ))    β τ . From Lemma 4.1 and (17) of Lavielle and Moulines 

(2000) we find that, for either j = 1 or j = 2, it holds that 1

1
ˆ ( )j pO T    ; see 

also (27). Since the labelling of the coefficients does not matter for the proof, 

we will assume without loss of generality that this property holds for j = 1. 

Then, as in Appendix A.2.2, 1

2,1 1 2,1
ˆ ˆ( ) ( )pO T     . Furthermore, as in 

Appendix A.2.1, 0 1/2

2,2 2
ˆ ( ) ( )pO T

  
  uniformly in τ2. 

With the above notation, the DGP in (1) is 

1 2,1 1( ) , 1, , .t t ty DU u t T        (37) 

Then we can write, for generic 1 2( , )  , 

1 2 1 2,1 1 1 1 2 2,1 1 1 2,2 2 2
ˆ ˆ ˆˆ ( , ) ( ) ( , ) ( ) ( ) ( ) ( ).t t t t tu DU u DU DU                  

 (38) 

Evaluating this expression at 1 1
ˆ   and 1 1   , respectively, we find that 

1 2 1 2 1 1 2 1 1 2 2,1 1 2,1 1 1

2,1 1 1 1

ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ( , ) ( , ) ( , ) ( , ) ( ( ) ( )) ( )

ˆ ˆ ˆ( )( ( ) ( )),

t t t

t t

u u DU

DU DU

              

   

   



    

 
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and consequently, for 0j  , 

 
1 2 1 2 1 1 1

1 1 2

1

2 2

ˆˆ 2,1 1 2,1 1 2,1 1( , ) ˆˆ ( , ) ( ) ( ( ) ( ))

2,1 1 2,1 1 ˆ( ) ( , )

2,1 1 2,1 1 ( ) (

ˆ ˆ ˆˆ ˆ( ) ( ) ( ( ) ( )) ( ) ( ) ( )

ˆ ˆ ˆ2( ( ) ( )) Re ( ) ( )

ˆ ˆ ˆ2( ( ) ( )) Re ( )

j j j ju u DU DU DU

j jDU u

jDU DU

I I I I

w w

w w

      

  



         

     

    

  

 











   

  

   
 

1 1

1 1 1 2

2,1 1ˆ( ) ( ))

2,1 1 ˆ ˆ( ( ) ( )) ( , )

ˆ ˆ( ) ( )

ˆ ˆ2 ( ) Re ( ) ( ) .

jDU

j jDU DU u
w w

 

   

  

   



 







 

 

Proceeding as in Appendices A.2.1 and A.2.2, we need to show that 

0

1

21/2 2

2,1 1 2,1 1 ( )
1

ˆ ˆ ˆ(ln ) ( ( ) ( )) ( ) (1),
m

j j pDU
j

m m I o



     

 



   (39) 

0

1 1

21/2 2

2,1 1 ˆ( ( ) ( ))
1

ˆ ˆ(ln ) ( ) ( ) (1),
m

j j pDU DU
j

m m I o


 
   






  (40) 

 0

1 1 2

21/2

2,1 1 2,1 1ˆ( ) ( , )
1

ˆ ˆ ˆ(ln ) 2Re ( ) ( ) ( ( ) ( )) (1),
m

j j j pDU u
j

m m w w o


  
       

 



  

 (41) 

 0

1 1 1

21/2

2,1 1 2,1 1 2,1 1ˆ( ) ( ) ( )
1

ˆ ˆ ˆˆ ˆ(ln ) | ( ) ( ) | Re ( ) ( ) | ( ) | (1),
m

j j j pDU DU DU
j

m m w w o


  
         

 




  

 (42) 

 0

1 2 1 1

21/2

2,1 1ˆˆ( , ) ( ) ( )
1

ˆ ˆ(ln ) Re ( ) ( ) | ( ) | (1).
m

j j j pu DU DU
j

m m w w o


   
     






   (43) 

By the same argument as in Appendix A.2.2, we find that 

1

2,1 1 2,1 1
ˆ ˆ ˆ( ) ( ) ( )pO T      , and the proofs for (39) and (42) are then identical 

to those of (28) and (31), respectively. The proof for (40) is identical to that of 

(30). 

Finally, to prove the results in (41) and (43), we use (38) to find that, for 0j  , 

21 2 1
2,1 2,1 1 2,2 2 ( )ˆ( , ) ( )

ˆ ˆ( ) ( ) ( ( )) ( ) .j u j DUu DU
w w w w   

       

     
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Using this expression, the required result for (41) follows by identical 

arguments to those for (23), (28), and (29). Similarly, the result for (43) follows 

by identical arguments to those for (23), (31), and (32). 
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Fig. 1 Rejection frequencies, 0 0   and 2 0   
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Fig. 2 Rejection frequencies, 0 0   and 2 2   
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Fig. 3 Bitcoin daily data 9/17/2014 to 12/31/2019 
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Fig. 4 VIX daily data 1/1/2000 to 12/31/2019 
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Fig. 5 U.S. CPI monthly data Jan. 1970 to Dec. 12/2019 
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Fig. 6 U.S. GDP quarterly data 1947Q1 to 2019Q4 

 

Acc
ep

te
d 

M
an

us
cr

ipt



Table 1 Tests of 0 : 0H    versus 1 : 0H    in Bitcoin returns data 

  (0)mt   ˆ(0; )mt    (0; )mt τ  (0; )mt τ  

 m  0BICk    k = 1  2HQk   k = 3  

0.50T    43  1.19  0.80  –0.30  –0.43  

 50  1.34* 0.94  –0.21  –0.37  

0.55T    64  1.45* 1.02  –0.11  –0.31  

 75  1.99** 1.51* 0.31  0.09  

0.60T    93  2.02** 1.54* 0.33  0.10  

 100  1.38* 0.91  –0.27  –0.50  

 125  1.57* 1.08  –0.13  –0.40  

0.65T    137  1.09  0.60  –0.59  –0.86  

 mLR 1.62* 1.37* 0.13  –0.16  

  (m = 510)  (m = 510)  (m = 510)  (m = 510)  

      

Note: *, ** and *** denote outcomes which are statistically significant at the 

10%, 5% and 1% level, respectively, while HQ  and BIC  indicate the number of 

breaks chosen by the HQIC and BIC, respectively. 
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Table 2 Tests of 0 : 0H    versus 1 : 0H    in VIX volatility data 

  (0)mt   ˆ(0; )mt    (0; )mt τ   (0; )mt τ   (0; )mt τ   (0; )mt τ   

 m  k = 0  k = 1  k = 2  k = 3  k = 4  k = 5  

0.50T    70  13.39  11.35  10.46  9.86  5.63  3.38  

 75  14.39  12.27  11.35  10.65  6.34  4.03  

 100  18.98  16.51  15.26  13.91  9.27  6.70 

0.55T    108  20.44  17.86  16.50  14.96  10.25  7.57  

 125  23.43  20.63  19.14  17.42  12.33  9.44  

 150  27.52  24.40  22.57  20.32  14.96  11.85 

0.60T    166  30.08  26.79  24.75  22.30  16.67  13.44  

 175  31.49  28.10  25.90  23.29  17.60  14.27  

 200  35.40  31.76  29.38  26.52  20.48  16.91 

 225  39.17  35.30  32.72  29.62  23.25  19.45  

 250  42.75  38.65  35.93  32.60  25.90  21.88 

0.65T    254  43.30  39.17  36.40  32.98  26.25  22.21  

 mLR 10.38  8.63  8.15  7.99  4.08  2.04a 

  (m = 54)  (m = 54)  (m = 54)  (m = 54)  (m = 54)  (m = 54)  

  (0)mt   ˆ(0; )mt    (0; )mt τ   (0; )mt τ   (0; )mt τ    

 m  k = 6  k = 7  k = 8  9BICk    10HQk     

0.50T    70  3.21  3.15  2.48  2.33  2.63   

 75  3.86  3.79  3.09  2.91  3.23   

 100  6.51  6.41  5.64  5.46  5.81   

0.55T    108  7.38  7.28  6.46  6.26  6.63   

 125  9.23  9.12  8.29  8.08  8.44   

 150  11.62  11.50  10.54  10.34  10.74   

0.60T    166  13.19  13.07  12.05  11.82  12.25   

 175  14.02  13.90  12.86  12.60  13.03   
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  (0)mt   ˆ(0; )mt    (0; )mt τ   (0; )mt τ   (0; )mt τ   (0; )mt τ   

 200  16.64  16.52  15.42  15.13  15.58   

 225  19.17  19.03  17.87  17.54  18.03   

 250  21.59  21.44  20.21  19.85  20.38   

0.65T    254  21.92  21.77  20.53  20.17  20.70   

 mLR 1.89a 1.86a 1.25c 1.11c 1.40b  

  (m = 54)  (m = 54)  (m = 54)  (m = 54)  (m = 54)   

        

Note: All statistics in this table are significant at the 1% level, excepting those 

with a superscript a which are significant at the 5% level, those with a 

superscript b which are significant at the 10% level, and those with a 

superscript c which are not significant at the 10% level. Superscripts HQ  and 

BIC  indicate the number of breaks chosen by the HQIC and BIC, respectively. 
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Table 3 Tests of 0 : 0.4H    versus 1 : 0.4H    in VIX volatility data 

  (0)mt   ˆ(0; )mt    (0; )mt τ   (0; )mt τ   (0; )mt τ   (0; )mt τ   

 m  k = 0  k = 1  k = 2  k = 3  k = 4  k = 5  

0.50T    70  4.34  3.49  1.94a  0.35c  0.25c  -0.53c  

 75  4.92  4.04  2.47a  0.73c  0.71c  –0.05c 

 100  7.08  6.14  4.13  1.66b  2.00a  1.37c  

0.55T    108  7.90  6.88  4.72  1.99a  2.50a  1.86b  

 125  9.47  8.39  6.08  3.20  3.63  2.94  

 150  11.07  9.87  7.05  3.64  4.37  3.79 

0.60T    166  12.26  10.99  7.84  4.32  5.01  4.52  

 175  12.87  11.57  8.10  4.45  5.30  4.79  

 200  14.98  13.60  9.93  6.04  6.99  6.44 

 225  16.96  15.52  11.58  7.51  8.53  7.93  

 250  18.44  16.94  13.03  8.79  9.84  9.18 

0.65T    254  18.60  17.09  13.13  8.74  9.82  9.21  

 mLR 11.54  10.63  8.06  4.99  5.85  5.47  

  (m = 157)  (m = 160)  (m = 174)  (m = 183)  (m = 183)  (m = 185)  

  (0)mt   ˆ(0; )mt    (0; )mt τ   (0; )mt τ   (0; )mt τ    

 m  k = 6  k = 7  k = 8  9BICk    10HQk     

0.50T    70  –0.57c –0.65c –0.78c –0.72c –0.67c  

 75  –0.09c –0.18c –0.32c –0.29c –0.23c  

 100  1.34c  1.21c  1.10c  1.15c  1.21c   

0.55T    108  1.83b  1.71b  1.55c  1.59c  1.65b   

 125  2.91  2.79  2.72  2.76  2.75   

 150  3.75  3.64  3.45  3.55  3.56   

0.60T    166  4.48  4.37  4.16  4.19  4.22   

 175  4.76  4.66  4.46  4.43  4.45   
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  (0)mt   ˆ(0; )mt    (0; )mt τ   (0; )mt τ   (0; )mt τ   (0; )mt τ   

 200  6.41  6.32  6.13  6.07  6.08   

 225  7.90  7.78  7.62  7.49  7.50   

 250  9.15  9.03  8.83  8.68  8.76   

0.65T    254  9.17  9.06  8.87  8.72  8.77   

 mLR 5.44  5.40  5.14  5.22  5.33   

  (m = 185)  (m = 186)  (m = 185)  (m = 187)  (m = 188)   

        

Note: All statistics in this table are significant at the 1% level, excepting those 

with a superscript a which are significant at the 5% level, those with a 

superscript b which are significant at the 10% level, and those with a 

superscript c which are not significant at the 10% level. Superscripts HQ  and 

BIC  indicate the number of breaks chosen by the HQIC and BIC, respectively. 
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Table 4 Tests of 0 : 0H    versus 1 : 0H    in U.S. monthly CPI inflation data 

  (0)mt   ˆ(0; )mt    (0; )mt τ   (0; )mt τ   (0; )mt τ   (0; )mt τ   

 m  k = 0  k = 1  k = 2  3BICk    4HQk    k = 5  

0.50T    24  6.59***  2.80*** 1.56* 0.50  0.15  0.25  

 30  8.05***  3.55*** 2.18** 1.04  0.67  0.80  

0.55T    33  8.76***  4.00*** 2.57*** 1.41* 1.02  1.15  

 40  9.96***  4.32*** 2.67*** 1.50* 1.08  1.22  

0.60T    46  10.96*** 4.80*** 3.08*** 1.89** 1.44* 1.59* 

 50  11.72*** 5.22*** 3.43*** 2.22** 1.75** 1.90** 

 60  13.04*** 5.66*** 3.69*** 2.41*** 1.93** 2.08** 

0.65T    63  13.40*** 5.78*** 3.78*** 2.48*** 1.98** 2.13** 

 mLR 7.66***  4.46*** 2.99*** 2.05** 1.62* 1.77** 

  (m = 28)  (m = 41)  (m = 45)  (m = 47)  (m = 48)  (m = 48)  

        

Note: *, ** and *** denote outcomes which are statistically significant at the 

10%, 5% and 1% level, respectively, while HQ  and BIC  indicate the number of 

breaks chosen by the HQIC and BIC, respectively. 
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Table 5 Tests of 0 : 0H    versus 1 : 0H    in U.S. quarterly growth rates 

  (0)mt  ˆ(0; )mt    (0; )mt τ   (0; )mt τ   

 m  0BICk   1HQk    k = 2  k = 3  

0.50T    17  –0.12  –1.07  –1.47* –1.10  

 20  0.04  –0.90  –1.32* –0.89  

0.60T    22  0.02  –0.89  –1.30* –0.89  

 25  0.30  –0.63  –1.05  –0.66  

0.60T    30  0.19  –0.70  –1.09  –0.73  

 35  –0.52  –1.33* –1.66** –1.43* 

0.65T    40  0.02  –0.82  –1.17  –0.93  

 mLR 0.10  –0.83  –1.70** –1.47* 

  (m = 31)  (m = 32)  (m = 33)  (m = 34)  

      

Note: *, ** and *** denote outcomes which are statistically significant at the 

10%, 5% and 1% level, respectively, while HQ  and BIC  indicate the number of 

breaks chosen by the HQIC and BIC, respectively. 
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