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Abstract: We calculate the complete-NLO predictions for tt̄W± and tt̄tt̄ production in

proton-proton collisions at 13 and 100 TeV. All the non-vanishing contributions of O(αisα
j)

with i+j = 3, 4 for tt̄W± and i+j = 4, 5 for tt̄tt̄ are evaluated without any approximation.

For tt̄W± we find that, due to the presence of tW → tW scattering, at 13(100) TeV the

O(αsα
3) contribution is about 12(70)% of the LO, i.e., it is larger than the so-called

NLO EW corrections (the O(α2
sα

2) terms) and has opposite sign. In the case of tt̄tt̄

production, large contributions from electroweak tt → tt scattering are already present

at LO in the O(α3
sα) and O(α2

sα
2) terms. For the same reason we find that both NLO

terms of O(α4
sα), i.e., the NLO EW corrections, and O(α3

sα
2) are large (±15% of the

LO) and their relative contributions strongly depend on the values of the renormalisation

and factorisation scales. However, large accidental cancellations are present (away from

the threshold region) between these two contributions. Moreover, the NLO corrections

strongly depend on the kinematics and are particularly large at the threshold, where even

the relative contribution from O(α2
sα

3) terms amounts to tens of percents.
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1 Introduction

Precise predictions for Standard-Model (SM) processes at high-energy colliders are an es-

sential ingredient for a correct and reliable comparison between experimental data and

theories describing the fundamental interactions of Nature. At the LHC and future col-

liders, the capability of performing further consistency checks for the SM as well as the

possibility of identifying beyond-the-Standard-Model (BSM) effects critically depend on

the size of the theory uncertainties.

At high-energies, SM calculations can be performed in a perturbative approach. Thus,

the precision of the prediction for a generic observable can be successively improved by

taking into account higher-order effects. In particular, the so-called fixed-order calculations

consist in the perturbative expansion in powers of the two SM parameters αs and α. The

former parametrises strong interactions and its value is roughly 0.1 at the TeV scale or at

the typical energy scales involved at the LHC. The latter parametrises electroweak (EW)

interactions and its value is roughly 0.01. On the other hand, EW interactions also depend

on the mass of the W and Z bosons (or alternatively on any other three independent

parameters for the EW gauge sector) and the masses of the fermions and the Higgs boson.

Typically, the leading-order (LO) contribution for a specific process is given by the first

non-vanishing terms of O(αisα
j), i.e., those with the smallest value for i+ j and the largest

value of i. For this reason, “LO prediction” in general refers to this level of accuracy,

which is not sufficiently precise for almost all processes at the LHC. The calculation of

next-to-LO (NLO) predictions in QCD, which consists in the inclusion of O(αi+1
s αj) terms,

can be performed automatically and with publicly available tools [1–13] for most of the

processes. Recently, also NLO EW corrections, which consist of O(αisα
j+1) terms, have

been calculated via (semi-)automated tools [5–7, 11, 14–21] for a large variety of processes.

Being α < αs, NLO EW corrections are typically smaller than NLO QCD corrections

at the inclusive level, but they can be considerably enhanced at the differential level due
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to different kinds of effects such as weak Sudakov enhancements or collinear photon final-

state-radiation (FSR) in sufficiently exclusive observables. Thus, they have to be taken

into account for a reliable comparison to data. For many production processes at the LHC,

also next-to-NLO (NNLO) QCD corrections, the O(αi+2
s αj) contributions, are essential and

indeed many calculations have appeared in the recent years (see, e.g., ref. [22] and references

therein). Even the next-to-NNLO (N3LO) QCD calculation for the Higgs production cross

section is now available [23, 24].

From a technical point of view, NLO QCD and EW corrections are simpler than

NNLO corrections; they involve at most one loop or one additional radiated parton more

than the LO calculation. However, they are not the only perturbative orders sharing this

feature. Already starting from 2 → 2 processes with coloured and EW-charged initial-

and final-state particles, such as dijet or top-quark pair hadroproduction, additional NLO

terms appears. For these two processes, one-loop and real-emission corrections in the SM

involve also O(αsα
2) and O(α3) terms, which are neither part of the NLO QCD corrections

nor of the NLO EW ones. Moreover, Born diagrams originate also O(αsα) and O(α2)

contributions, which are typically not included in LO predictions. The sum of all these

contributions yields the prediction at “complete-NLO” accuracy.

The complete-NLO results for dijet production at the LHC have been calculated in

ref. [19] and for top-quark pair production in ref. [25], the latter also combined with NNLO

QCD corrections. Although one-loop contributions that are not part of NLO QCD and

NLO EW corrections are present for many production processes at the LHC, calculations at

this level of accuracy are rare, and those performed for dijet and top-quark pair production

represent an exception. The reason is twofold. First, being higher-order effects and α/αs ∼
0.1 these corrections are expected to be smaller than standard NLO EW ones, and indeed

they are for the case of dijet and top-quark pair production. Second, only with the recent

automation of the calculation of EW corrections the necessary effort for calculating these

additional orders has been reduced and therefore justified given their expected smallness.

Besides these reasons, in the subleading orders there can be new production mechanisms

and care has to be taken to avoid process overlap. For example, the O(α2) contribution to

dijet production contains hadronically decaying heavy vector bosons.

To our knowledge, the only other calculation where all the NLO effects beyond the NLO

QCD and NLO EW accuracy have been considered is the case of vector-boson-scattering

(VBS) for two positively charged W bosons at the LHC including leptonic decays, namely

the pp → µ+νµe
+νejj process [26]. This complete-NLO prediction includes all the terms

of O(αisα
j) with i+ j = 6, 7 and j ≥ 4, featuring both QCD-induced W+W+jj production

and electroweak W+W+ scattering. Remarkably, at variance with dijet and top-quark pair

production, the expected hierarchy of the different perturbative orders is not respected.

Indeed, with proper VBS cuts the O(α7) is by far the largest of the NLO contributions

and moreover O(α7) > O(α6αs) > O(α5α2
s) ∼ O(α4α3

s).

In this article we want to give evidence that what has been found in ref. [26], i.e.,

large contributions from supposedly subleading corrections, is not an exception due to the

particularities of this process [27] and standard VBS selection cuts, which reduce the “QCD

backgrounds”. It is rather a feature that may appear whenever the process considered
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involves the scattering of heavy particles in the SM, namely the W , Z and Higgs bosons,

but also top quarks. Indeed, although it is customary to expand in powers of α, for these

kind of processes O(α) corrections actually involve enhancements already at the coupling

level, e.g., in the interactions among the top-quark, the Higgs boson and the longitudinal

polarisations of the W and Z bosons. Thus, the O(α) ∼ 0.01 assumption is in general not

valid and the expected hierarchy among perturbative orders may be not respected even at

the inclusive level.

Here we focus on the case of the top quark and we explicitly show two different cases

in which the expected hierarchy is not respected: the tt̄W± and tt̄tt̄ production processes,

which are already part of the current physics program at the LHC [28–30]. To this purpose

we perform the calculation of the complete-NLO predictions of these two processes at

13 and 100 TeV in proton-proton collisions. All the seven O(αisα
j) contributions with

i + j = 3, 4 and j ≥ 1 for tt̄W± production and all the eleven O(αisα
j) contributions

with i+ j = 4, 5 are calculated exactly without any approximation. For both processes the

calculation has been performed in a completely automated way via an extension of the code

MadGraph5 aMC@NLO [11]. This extension has already been validated for the NLO EW

case in refs. [18, 31] and in refs. [19, 25] for the calculation of the complete-NLO corrections.

The code will soon be released and further documented in a detailed dedicated paper [32].

Complete-NLO corrections involve large contributions for both the tt̄W± and tt̄tt̄ pro-

duction processes, but very different structures underlie the two calculations. Indeed, while

large EW effects in tt̄W± production originate from the tW → tW scattering, which ap-

pears only via NLO corrections, in tt̄tt̄ production large EW effects are already present at

LO, due to the electroweak tt→ tt scattering.

It has been noted in ref. [33] that EW pp → tt̄W±j production involves tW → tW

scattering via the gq → tt̄W±q′ channel. Even though ref. [33] focusses on BSM physics in

tW → tW scattering, this contribution is sizeable already in the SM and is part of the NLO

contributions of O(αsα
3) to the inclusive tt̄W± production. It is not part of the NLO EW

corrections, which are of O(α2
sα

2) and have already been calculated in ref. [18]. However,

while in the case of pp → tt̄W±j production the final-state jet must be reconstructed,

this is not necessary for the inclusive pp → tt̄W± process. In fact, we will argue that the

tW → tW scattering component can be enhanced over the irreducible background from

inclusive tt̄W± production by applying a central jet veto.

Recently it was suggested that tt̄tt̄ production can be used as a probe of the top-quark

Yukawa coupling (yt), as discussed in the tree-level analysis presented in ref. [34]. Perform-

ing an expansion in power of yt one finds that O(y2
t ) and O(y4

t ) contributions to tt̄tt̄ pro-

duction are not much smaller than purely-QCD induced terms (and in general non-Yukawa

induced contributions) and therefore tt̄tt̄ production is quite sensitive to the value of the top

Yukawa coupling. Expanding the LO prediction in powers of α, the O(y2
t ) and O(y4

t ) terms

are fully included in the O(α3
sα) and O(α2

sα
2) terms. These perturbative orders are even

larger than their Yukawa-induced components, and they also feature large cancellations at

the inclusive level. It is therefore interesting to compute NLO corrections to all these terms,

since we expect them to be large as well. Indeed, we find that they are much larger than

the values expected from a naive αs and α power counting. On the other hand, even larger

cancellations are present among NLO terms, although not over the whole phase space.
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The structure of the paper is the following. In section 2 we describe the calculations

and we introduce a more suitable notation for referring to the various O(αisα
j) contribu-

tions. In section 3 we provide numerical results at the inclusive and differential levels for

complete-NLO predictions for proton-proton collisions at 13 and 100 TeV. We discuss in

detail the impact of the individual O(αisα
j) contributions. The common input parame-

ters are described in section 3.1, while pp → tt̄W± and pp → tt̄tt̄ results are described in

sections 3.2 and 3.3, respectively. Conclusions are given in section 4.

2 Calculation framework for tt̄W± and tt̄tt̄ production at complete-NLO

Performing an expansion in powers of αs and α, a generic observable for the processes

pp→ tt̄W±(+X) and pp→ tt̄tt̄(+X) can be expressed as

Σtt̄W±
(αs, α) =

∑
m+n≥2

αms α
n+1Σtt̄W±

m+n+1,n , (2.1)

Σtt̄tt̄(αs, α) =
∑

m+n≥4

αms α
nΣtt̄tt̄

m+n,n , (2.2)

respectively, where m and n are positive integer numbers and we have used the notation

introduced in refs. [11, 17]. For tt̄W± production, LO contributions consist of Σtt̄W±
m+n+1,n

terms with m + n = 2 and are induced by tree-level diagrams only. NLO corrections are

given by the terms with m + n = 3 and are induced by the interference of diagrams from

the all the possible Born-level and one-loop amplitudes as well all the possible interfer-

ences among tree-level diagrams involving one additional quark, gluon or photon emission.

Analogously, for tt̄tt̄ production, LO contributions consist of Σtt̄tt̄
m+n,n terms with m+n = 4

and NLO corrections are given by the terms with m + n = 5. In this work we calculate

all the perturbative orders entering at the complete-NLO accuracy, i.e., m + n = 2, 3 for

Σtt̄W±
(αs, α) and m+ n = 4, 5 for Σtt̄tt̄(αs, α).

Similarly to ref. [19], we introduce a more user-friendly notation for referring to the

different Σtt̄W±
m+n+1,n and Σtt̄tt̄

m+n,n quantities. At LO accuracy, we can denote the tt̄W± and

tt̄tt̄ observables as Σtt̄W±
LO and Σtt̄tt̄

LO and further redefine the perturbative orders entering

these two quantities as

Σtt̄W±
LO (αs, α) = α2

sαΣtt̄W±
3,0 + αsαΣtt̄W±

3,1 + α2Σtt̄W±
3,2

≡ ΣLO1 + ΣLO2 + ΣLO3 , (2.3)

Σtt̄tt̄
LO(αs, α) = α4

sΣ
tt̄tt̄
4,0 + α3

sαΣtt̄tt̄
4,1 + α2

sα
2Σtt̄tt̄

4,2 + α3
sαΣtt̄tt̄

4,3 + α4Σtt̄tt̄
4,4

≡ ΣLO1 + ΣLO2 + ΣLO3 + ΣLO4 + ΣLO5 . (2.4)

In a similar fashion the NLO corrections and their single perturbative orders can be defined

as

Σtt̄W±
NLO (αs, α) = α3

sαΣtt̄W±
4,0 + α2

sα
2Σtt̄W±

4,1 + αsα
3Σtt̄W±

4,2 + α4Σtt̄W±
4,3

≡ ΣNLO1 + ΣNLO2 + ΣNLO3 + ΣNLO4 , (2.5)

Σtt̄tt̄
NLO(αs, α) = α5

sΣ
tt̄tt̄
5,0 + α4

sα
1Σtt̄tt̄

5,1 + α3
sα

2Σtt̄tt̄
5,2 + α2

sα
3Σtt̄tt̄

5,3 + α1
sα

4Σtt̄tt̄
5,4 + α5Σtt̄tt̄

5,5

≡ ΣNLO1 + ΣNLO2 + ΣNLO3 + ΣNLO4 + ΣNLO5 + ΣNLO6 . (2.6)
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q̄

W±qÕ

t̄

t

1

q̄

W±

Z/“

qÕ

t̄

t

2

Figure 1. Representative diagrams for the Born q̄q′ → tt̄W± amplitude. The left diagram is of

O(αsα
1/2), the right one is of O(α3/2).

q̄

W±

q̄Õ

t̄

t

3

t̄

t

W±

H

q̄ q̄Õ

4

Figure 2. Representative diagrams for the q̄g → tt̄W±q̄′ real-emission amplitudes. The left

diagram is of O(α
3/2
s α1/2) and leads to log2(p2T (tt̄)/m2

W ) terms in the NLO1 contribution. The

right one is of O(α
1/2
s α3/2), involves the tW → tW scattering and contributes to the NLO3.

In the following we will use the symbols Σ(N)LOi
or interchangeably their shortened aliases

(N)LOi for referring to the different perturbative orders. Clearly the Σ(N)LOi
terms in

tt̄W± production, eqs. (2.3) and (2.5), and in tt̄tt̄ production, eqs. (2.4) and (2.6), are

different quantities. One should bear in mind that, usually, with the term “LO” one refers

only to LO1, which here we will also denote as LOQCD, while an observable at NLO QCD

accuracy is ΣLO1 + ΣNLO1 , which we will also denote as LOQCD + NLOQCD. The so-called

NLO EW corrections which are of O(α) w.r.t. the LO1, are the ΣNLO2 terms, so we will also

denote it as NLOEW. Since in this article we will use the (N)LOi notation, the term “LO”

will refer to the sum of all the LOi contributions rather than LO1 alone. The prediction

at complete-NLO accuracy, which is the sum of all the LOi and NLOi terms, will be also

denoted as “LO + NLO”.

We now turn to the description of the structures underlying the calculation of tt̄W±

and tt̄tt̄ predictions at complete-NLO accuracy. We start with tt̄W± production, which is

in turn composed by tt̄W+ and tt̄W− production, and then we move to tt̄tt̄ production.

In tt̄W+(tt̄W−)production, tree-level diagrams originate only from ud̄(ūd) initial states

(u and d denote generic up- and down-type quarks), where a W+(W−) is radiated from

the u(d) quark and the tt̄ pair is produced either via a gluon or a photon/Z boson (see

figure 1). The former class of diagrams leads to the LO1 via squared amplitude, the latter

to LO3. The interference between these two classes of diagrams is absent due to colour,

thus LO2 is analytically zero. Conversely, all the NLOi contributions are non-vanishing.

– 5 –
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t

t̄

t̄

t

1

t

t̄

t

t̄

H

2

Figure 3. Representative diagrams for the Born gg → tt̄tt̄ amplitude. The left diagram is of

O(α2
s), the right one is of O(αsα). Both diagrams involve tt→ tt scattering contributions.

The NLO1 is in general large, it has been calculated in refs. [10, 35–37] and studied in

detail in ref. [38], where giant K-factors for the pT (tt̄) distribution have been found. Large

QCD corrections are induced also by the opening of the gq → tt̄W±q′ channels, which de-

pend on the gluon luminosity and are therefore enhanced for high-energy proton-proton col-

lisions. Moreover, the pT (tt̄) distribution receives an additional log2(p2
T (tt̄)/m2

W ) enhance-

ment in the qg initial-state subprocess (see left diagram in figure 2 and ref. [38] for a detailed

discussion). Also, the impact of soft-gluon emissions is non-negligible and their resummed

contribution has been calculated in refs. [39–41] up to next-to-next-to-leading-logarithmic

accuracy. The NLO2 has been calculated for the first time in ref. [18] and further phe-

nomenological studies have been provided in ref. [42]. In a boosted regime, due to Sudakov

logarithms, the NLO2 contribution can be as large as the NLO QCD scale uncertainty.

The NLO3 and NLO4 contributions are calculated for the first time here. In particular,

the NLO3 contribution is expected to be sizeable since it contains gq → tt̄W±q′ real-

emission channels that involve EW tW → tW scattering (see right diagram in figure 2),

which as pointed out in ref. [33] can be quite large. Moreover, as in the case of NLO1,

due to the initial-state gluon this channel becomes even larger by increasing the energy of

proton-proton collisions.1 The tW → tW scattering is present also in the NLO4 via the

γq → tt̄W±q′, however in this case its contribution is suppressed by a factor α/αs and

especially by the smaller luminosity of the photon. In addition to the real radiation of

quarks, also the qq̄′ → tt̄W±g and qq̄′ → tt̄W±γ processes contribute to the NLO3 and

NLO4, respectively. Concerning virtual corrections, the NLO4 receives contributions only

from one-loop amplitudes of O(α5/2), interfering with O(α3/2) Born diagrams. Instead,

the NLO3 receives contributions both from O(α5/2) and O(αsα
3/2) one-loop amplitudes

interfering with O(αsα
1/2) and O(α3/2) Born diagrams, respectively. Clearly, due to the

different charges, NLOi terms are different for the tt̄W+ and tt̄W− case, however, since we

did not find large qualitative differences at the numerical level, we provide only inclusive

results for tt̄W± production.

1In tt̄Z(tt̄H) production the NLO3 contributions feature tH → tH(tZ → tZ) scattering in gq →
tt̄Zq(gq → tt̄Hq) real-emission channels. However, at variance with tt̄W± production, the gg initial state

is available at LOQCD. Thus, the qg luminosity is not giving an enhancement and the relative impact from

NLO3 is smaller than in tt̄W± production.
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t
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t
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Figure 4. Representative diagrams for the one-loop gg → tt̄tt̄ amplitude. The left diagram is of

O(α3
s), the central one is of O(α2

sα) and the right one is of O(αsα
2). The interferences of these

diagrams with those shown in figure 3 lead to contributions to NLO1, NLO2, NLO3 and NLO4.

We now turn to the case of tt̄tt̄ production, whose calculation involves a much higher

level of complexity. While the NLO1 contribution have already been calculated in refs. [11,

43] and studied in detail in ref. [38], all the other (N)LOi contributions are calculated for

the first time here.

The gg → tt̄tt̄ Born amplitude contains only O(α2
s) and O(αsα) diagrams, while

the qq̄ → tt̄tt̄ Born amplitude contains also O(α2) diagrams. Thus the gg initial state

contributes to LOi with i ≤ 3 and the qq̄ initial states contribute to all the LOi. Also

the γg and γγ initial states are available at the Born level; they contributes to LOi with

respectively i ≥ 2 and i ≥ 3. However, their contributions are suppressed by the size of the

photon parton distribution function (PDF). Representative gg → tt̄tt̄ Born diagrams are

shown in figure 3. As already mentioned in the introduction, LO2 and LO3 are larger than

the values naively expected from αs and α power counting, i.e., LO2 � (α/αs) × LOQCD

and LO3 � (α/αs)
2×LOQCD. Thus, NLO2, NLO3 and also NLO4 are expected to be non-

negligible, especially NLO2, NLO3 because they involve “QCD corrections”2 to LO2 and

LO3 contributions, respectively. As discussed in ref. [38], the tt̄tt̄ production cross-section

is mainly given by the gg initial state, for this reason we expect LO4, (N)LO5 and NLO6 to

be negligible. Representative gg → tt̄tt̄ one-loop diagrams are shown in figure 4. Although

suppressed by the photon luminosity, also the γg and γγ initial states contribute to NLOi

with i ≥ 2 and i ≥ 3 respectively,

Note that, for both the pp → tt̄W± and pp → tt̄tt̄ processes, we do not include the

(finite) contributions from the real-emission of heavy particles (W±, Z and H bosons and

top quarks), sometimes called the “heavy-boson-radiation (HBR) contributions”. Although

they can be formally considered as part of the inclusive predictions at complete-NLO

accuracy, these finite contributions are typically small and generally lead to very different

collider signatures.3

Eqs. (2.5) and (2.6) define the NLO corrections in an additive approach. Another

possibility would be applying the corrections multiplicatively, which is not uncommon

2As discussed in ref. [17], this classification of terms entering at a given order is not well defined;

some diagrams can be viewed both as a “QCD correction” and an “EW correction” to different tree-level

diagrams. Nevertheless, this intuitive classification is useful for understanding the underlying structure of

such calculations. For this reason we use these expressions within quotation marks.
3HBR contributions to NLO2 in tt̄W± production have been provided in ref. [18].
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when combining NLO QCD and NLO EW corrections. The difference between the two

approaches only enters at the NNLO-level and is formally beyond the accuracy of our

calculations. The typical example where the multiplicative approach is well-motivated is

when the NLO1 corrections are dominated by soft-QCD physics, and the NLO2 corrections

by large EW Sudakov logarithms. Since these two corrections almost completely factorise,

it can be expected that the mixed NNLO O(αsα) corrections to LO1 are dominated by the

product of the O(αs) and O(α) corrections, i.e., the NLO1 and NLO2 contributions. Hence,

in this case, the dominant contribution to the mixed NNLO corrections can be taken into

account by simply combining NLO corrections in the multiplicative approach. However,

for tt̄W± production, the NLO1 terms are dominated by hard radiation, as we argued

above. Therefore, even though the NLO2 is dominated by large Sudakov logarithms, the

multiplicative approach leads to uncontrolled NNLO terms. Moreover, due to the opening

of the tW → tW scattering, the same would apply also for a multiplicative combination

with the NLO3. A similar argument is present for tt̄tt̄ production: for i ≤ 3, the NLOi terms

are dominated by “QCD corrections” on top of the LOi terms. Since the various LOi have

clearly different underlying structures due to the possibility of EW tt→ tt scattering, also in

this case there is no reason for believing that their NLO corrections factorise at NNLO and

therefore that mixed NNLO corrections are dominated by products of NLOi corrections.

Hence, for both the pp → tt̄W± and pp → tt̄tt̄ processes, not only the multiplicative

approach is not leading to improved predictions, but there are clear indications to the fact

that this approximation introduces uncontrolled terms. Thus, we use only the additive one.

Before discussing the numerical results of the complete-NLO predictions in the next

section, we would like to mention that the calculation for tt̄tt̄ production shows a remark-

ably rich structure for the NLO3 and NLO4 contributions. As already said, the qq̄ → tt̄tt̄

Born amplitude contains O(α2
s), O(αsα) and O(α2) diagrams, and for this reason, the

qq̄ → tt̄tt̄ process contributes to LO3 via both the square of its O(αsα) Born amplitude

and the interference of its O(α2
s) and O(α2) Born amplitudes. In order to have such a

double structure at the leading order, it is necessary to have at least six external particles

that are all coloured and EW interacting at the same time. Since each NLOi is given by

“QCD corrections” on top of the LOi and by “EW corrections” on top of the LOi−1, the

NLO3 and NLO4 virtual corrections to qq̄ → tt̄tt̄ extend this double structure to three

different interference (or squared) terms: two originating from LO3 and one from either

LO2 (in the case of NLO3) or LO4 (in the case of NLO4). This is the first time that a

calculation with such a triple structure for the virtual corrections has been performed.

3 Numerical results

In this section, we present numerical results for the complete-NLO predictions for the tt̄W±

and tt̄tt̄ production processes. As mentioned in the introduction, we used an extension of

the MadGraph5 aMC@NLO framework for all our numerical studies. This extension has

already been used for the calculation of complete-NLO corrections as already mentioned in

the introduction. In MadGraph5 aMC@NLO, infra-red singularities are dealt with via the

FKS method [44, 45] (automated in the module MadFKS [46, 47]). One-loop amplitudes
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are computed by dynamically switching between different kinds of techniques for integral re-

duction: the OPP [48], Laurent-series expansion [49], and tensor integral reduction [50–52].

These techniques have been automated in the module MadLoop [10], which is used for the

generation of the amplitudes and in turn exploits CutTools [53], Ninja [54, 55] and Col-

lier [56], together with an in-house implementation of the OpenLoops optimisation [5].

3.1 Input parameters

In the following we specify the common set of input parameters that are used in the

pp→ tt̄W± and pp→ tt̄tt̄ calculations. The masses of the heavy SM particles are set to

mt = 173.34 GeV , mH = 125 GeV , mW = 80.385 GeV , mZ = 91.1876 GeV ,

(3.1)

while all the other masses are set equal to zero. We employ the on-shell renormalisation

for all the masses and set all the decay widths equal to zero. The renormalisation of αs
is performed in the MS-scheme with five active flavours,4 while the EW input parameters

and the associated condition for the renormalisation of α are in the Gµ-scheme, with

Gµ = 1.16639 · 10−5 GeV−2 . (3.2)

The CKM matrix is set equal to the 3 × 3 unity matrix.

We employ dynamical definitions for the renormalisation (µr) and factorisation (µf )

scales. In particular, their common central value µc is defined as

µc =
HT

2
for tt̄W± , (3.3)

µc =
HT

4
for tt̄tt̄ , (3.4)

where

HT ≡
∑

i=1,N(+1)

mT,i , (3.5)

and mT,i ≡
√
m2
i + p2

T (i) are the transverse masses of the N(+1) final-state particles.

Our scale choice for tt̄tt̄ production is motivated by the study in ref. [38]. Theoretical

uncertainties due to the scale definition are estimated via the independent variation of µr
and µf in the interval {µc/2, 2µc}. In order to show the scale dependence of (N)LOi/LOQCD

relative corrections we will also consider the diagonal variation µr = µf , simultaneously

in the numerator and the denominator. This scale dependence does not directly indicate

scale uncertainties, but it will be very useful in our discussion.

Concerning the PDFs, we use the LUXqed plus PDF4LHC15 nnlo 100 set [57, 58], which

is in turn based on the PDF4LHC set [59–62]. This PDF set includes NLO QED effects in

the DGLAP evolution and especially the most precise determination of the photon density.

4With the unit CKM matrix no b quarks are present in the initial state for tt̄W± production, while for

tt̄tt̄ their relative effect w.r.t. LO1 is at or below the per-mil level.
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σ[fb] LOQCD LOQCD + NLOQCD LO LO + NLO LO+NLO
LOQCD+NLOQCD

µ = HT /2 363+24%
−18% 544+11%

−11% (456+5%
−7%) 366+23%

−18% 577+11%
−11% (476+5%

−7%) 1.06 (1.04)

Table 1. Cross sections for tt̄W± production at 13 TeV in various approximations. The numbers

in parentheses are obtained with the jet veto of eq. (3.6) applied.

σ[pb] LOQCD LOQCD + NLOQCD LO LO + NLO LO+NLO
LOQCD+NLOQCD

µ = HT /2 6.64+28%
−21% 16.58+17%

−15% (11.37+11%
−12%) 6.72+27%

−21% 20.86+15%
−14% (14.80+11%

−11%) 1.26 (1.30)

Table 2. Same as in table 1 but for 100 TeV.

3.2 Results for pp→ tt̄W± production

We start by presenting predictions for pp → tt̄W± total cross sections at 13 and 100 TeV

proton-proton collisions with and without applying a jet veto and then we discuss results

at the differential level. The total cross sections at 13 TeV for tt̄W± production are shown

in table 1 at different accuracies, namely, LOQCD, LOQCD + NLOQCD, LO and LO + NLO.

We also show for each value its relative scale uncertainty and we provide the ratio of the

predictions at LO + NLO and LOQCD + NLOQCD accuracy. Analogous results at 100 TeV

are displayed in table 2. Numbers in parentheses refer to the case in which we apply a jet

veto, rejecting all the events with

pT (j) > 100 GeV and |y(j)| < 2.5 , (3.6)

where also hard photons are considered as a jet.5 The purpose of this jet veto will become

clear in the discussion below. Further details about the size of the individual (N)LOi terms

are provide in table 3 (13 TeV) and table 4 (100 TeV), where we show predictions for the

quantities

δ(N)LOi
(µ) =

Σ(N)LOi
(µ)

ΣLOQCD
(µ)

, (3.7)

where Σ(µ) is simply the total cross section evaluated at the scale µf = µr = µ. In tables 3

and 4 we do not show the result for LO1 ≡ LOQCD, since it is by definition always equal

to one, regardless of the value of µ. We want to stress that results in tables 3 and 4 do not

show directly scale uncertainties; the value of µ is varied simultaneously in the numerator

and the denominator of δ. The purpose of studying δ as a function of µ will become clear

below when we discuss the different dependence in δNLO1 versus δNLO2 and δNLO3 .

From tables 1 and 2 it can be seen that the LOQCD predictions, both at 13 and 100 TeV,

have a scale dependence that is larger than 20%. Including the LOi contributions with

i > 1 changes the cross section by about 1% and leaves also the scale dependence almost

unchanged. As discussed in section 2, the LO2 is exactly zero due to colour, thus this small

correction is entirely coming from the LO3 contribution. In tables 3 and 4 it can be seen that

5We explicitly verified that vetoing only quark and gluons, but not photons, leads to differences below

the percent level. Moreover, from an experimental point of view, vetoing jets that are not isolated photons

would be simply an additional complication.
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δ[%] µ = HT /4 µ = HT /2 µ = HT

LO2 - - -

LO3 0.8 0.9 1.1

NLO1 34.8 (7.0) 50.0 (25.7) 63.4 (42.0)

NLO2 −4.4 (−4.8) −4.2 (−4.6) −4.0 (−4.4)

NLO3 11.9 (8.9) 12.2 (9.1) 12.5 (9.3)

NLO4 0.02 (−0.02) 0.04 (−0.02) 0.05 (−0.01)

Table 3. σ(N)LOi
/σLOQCD

ratios for tt̄W± production at 13 TeV for various values of µ = µr = µf .

the scale dependence of this LO3 contribution is slightly different from the LO1. The factori-

sation scale dependence is almost identical for the LO1 and LO3 terms (both are qq̄′ initiated

and have similar kinematic dependence), thus this difference is entirely due to the variation

of the renormalisation scale, which, at leading order, only enters the running of αs. The

LO1 has two powers of αs while the LO3 has none. The value of αs decreases with increasing

scales, and therefore, it is no surprise that δLO3 increases with larger values for the scales.

As already known, in tt̄W± production NLO QCD corrections are large and lead to

a reduction of the scale uncertainty. Indeed, for the central scale choice, the total cross

section at 13 TeV increases by 50% when including the NLOQCD contribution, and a massive

150% correction is present at 100 TeV. The reduction in the scale dependence is about a

factor two for 13 TeV, resulting in an 11% uncertainty. On the other hand, given the large

NLOQCD corrections, at 100 TeV the resulting scale dependence at LOQCD + NLOQCD is

larger than at 13 TeV, remaining at about 16%. Comparing these pure-QCD predictions

to the complete-NLO cross sections (LO+NLO) we see that the latter are about 6% larger

at 13 TeV, while the relative scale dependencies are identical. At 100 TeV, even though

the relative scale dependence at complete-NLO is 1-2 percentage points smaller than at

LOQCD + NLOQCD, in absolute terms it is actually larger. This effect is due to the large

increase of about 26% induced by (N)LOi terms with i > 1. Indeed, this increase is mostly

coming from the contribution of the tW → tW scattering, which appears at NLO3 via the

quark real-emission and has a Born-like scale dependence. However, this dependence is

relatively small since the NLO3 involves only a single power of αs.

In tables 3 and 4 we can see that δNLO1 ≡ δNLOQCD
is strongly µ dependent, while this is

not the case for δNLOi with i > 1. In fact, this behaviour is quite generic and not restricted

to tt̄W± production; it can be observed for a wide class of processes. The µ dependence in

δNLO1 leads to the reduction of the scale dependence of LOQCD +NLOQCD results w.r.t. the

LOQCD ones. On the contrary, the δNLOi quantities with i > 1 are typically quite indepen-

dent of the value of µ. The reason is the following. The NLOi contributions are given by

“QCD corrections” to LOi contributions as well “EW corrections” to the LOi−1 ones. The

former involve explicit logarithms of µ due the renormalisation of both αs and PDFs, while

the latter contain only explicit logarithms of µ due the O(α) PDFs counterterms. Indeed,

in the Gµ-scheme, or other schemes such as α(0) or α(mZ), the numerical input for α does
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δ[%] µ = HT /4 µ = HT /2 µ = HT

LO2 - - -

LO3 0.9 1.1 1.3

NLO1 159.5 (69.8) 149.5 (71.1) 142.7 (73.4)

NLO2 −5.8 (−6.4) −5.6 (−6.2) −5.4 (−6.1)

NLO3 67.5 (55.6) 68.8 (56.6) 70.0 (57.6)

NLO4 0.2 (0.1) 0.2 (0.2) 0.3 (0.2)

Table 4. σ(N)LOi
/σLOQCD

ratios for tt̄W± production at 100 TeV for various values of µ = µr = µf .

not depend on an external renormalisation scale. Moreover, the O(α) PDF counterterms

induce a much smaller effect than those of QCD, since they are O(α/αs) suppressed and do

not directly involve the gluon PDF. Thus, for a generic process, since a LOi contribution

is typically quite suppressed w.r.t. the LOi−1 one — or even absent, as e.g. for (multi)

EW vector boson production — the scale dependence of δNLOi with i > 1 is small. For

this reason it is customary, and typically also reasonable, to quote NLO EW corrections

independently from the scale definition. As can be seen in tables 3 and 4 this is also correct

for tt̄W±, but as we will see in the next section the situation is quite different for tt̄tt̄ pro-

duction, where also the δ(N)LOi
(µ) quantities with i > 1 strongly depend on the value of µ.

By considering the µ dependence of the δNLO1(µ) contributions in tables 3 and 4, we

see a different behaviour in the two tables. At 13 TeV the scale dependence of δNLOQCD
(µ)

increases with increasing scales. This is to be expected: the LO1 contribution has a large

renormalisation-scale dependence, resulting in a rapidly decreasing cross section with in-

creasing scales. In order to counterbalance this, the scale dependence of the NLO1 contri-

bution must be opposite so that the scale dependence at NLO QCD accuracy is reduced.

On the other hand, at 100 TeV, the scale dependence of the δNLO1(µ) decreases with in-

creasing scales, suggesting that the scale dependence at LOQCD + NLOQCD is actually

larger than at LOQCD. As can be seen in table 2 this does not appear to be the case. The

reason is that contrary to 13 TeV, at 100 TeV collision energy the LOQCD has not only a

large renormalisation-scale dependence, but also the factorisation-scale one is sizeable. In

fact, the scale dependence in table 2 is dominated by terms in which µr and µf are varied

in opposite directions, i.e., {µr, µf} = {2µc, µc/2} and {2µc, µc/2}. However, in table 4

we only consider the simultaneous variation of µr and µf . If we had estimated the scale

uncertainty in tables 1 and 2 by only varying µ = µr = µf , we would actually have seen

an increment of the uncertainties in moving from LOQCD to LOQCD + NLOQCD.

The NLO EW corrections, the NLO2 contribution, are negative and have a −4-6% im-

pact w.r.t. the LO1 cross section. This is well within the LOQCD+NLOQCD scale uncertain-

ties. The opening of the tW → tW scattering enhances the NLO3 contribution enormously.

In fact, it is much larger than the NLO2 terms, yielding a +12% effect at 13 TeV and almost

a +70% increase of the cross section at 100 TeV, both w.r.t. LOQCD. While at 13 TeV this

is still within the LOQCD + NLOQCD scale uncertainty band, this is not at all the case at
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100 TeV. Indeed, it is these NLO3 contributions that are responsible for the enhancement

in the cross sections at the complete-NLO level as compared to the LOQCD + NLOQCD

ones, as presented in the last column of tables 1 and 2. Hence, they must be included for

accurate predictions for pp→ tt̄W± cross sections. Conversely, the NLO4 contributions are

at the sub-percent level and can be neglected in all phenomenologically relevant studies.

Applying a jet veto, such as the one of eq. (3.6), impacts only the real-emission correc-

tions for tt̄W± production. All the LOi terms remain unaffected and, since the dominant

NLO real-emission contributions for this process are positive, the NLOi cross sections de-

crease. This is also what one expects from a physical point of view: the jet veto cuts away

part of the available phase space, resulting in a decrease in the number of expected events.

Indeed, in tables 3 and 4 we can see that this is the case (for all values of µ). On the

other hand, not all the NLOi are affected in the same way by the jet veto. The NLOQCD

contribution is reduced by a large amount, about a factor two for the central value of the

scales, while the reduction in the other NLOi cross sections is much smaller. The reason for

this difference is the following: a large fraction of the NLO1 contribution originates from

hard radiation, mainly due to the opening of the quark-gluon luminosity and the double

logarithmic enhancement due to the radiation of a relatively soft/collinear W boson from a

hard quark jet, cf., the left diagram of figure 2. Instead, the NLO2 ≡ NLOEW is dominated

by “EW corrections” to LO1 and, therefore, does not involve a large increase due to the

opening of the qg initiated real-emission contributions. Hence, the effect from the jet veto

is strongly reduced. On the other hand, the NLO3 does contain the enhancement from

the gluon luminosity and is completely dominated by the tW → tW scattering, which is

part of the real-emission contributions, see the right diagram of figure 2 and the discussion

in section 2. Even so, these contributions are not very strongly affected by the jet veto,

since the jet in tW → tW scattering is going mostly in the forward directions, which are

unaffected by the central jet veto of eq. (3.6). The jet veto may be customised in order to

enhance or suppress the NLOi contributions, e.g., to study the impact of tW → tW scat-

tering in more detail. However, it should be noted that a stronger jet veto would further

suppress the NLOi contributions, but it may also lead to unreliable results at fixed-order,

due to the presence of unresummed large and negative contributions from QCD Sudakov

logarithms. We leave a detailed study of the effects of various jet vetoes for future work.

On the total cross sections, see tables 1 and 2, the effect of the jet veto is not only

manifest in the reduction of the LOQCD + NLOQCD and LO + NLO cross sections, but also

in their greatly-reduced scale uncertainties. The latter are almost halved for the 13 TeV

cross sections and reduced to about 11% at 100 TeV. This is another confirmation that

the NLOQCD is dominated by hard radiation due to the opening of additional production

channels, which have a large tree-level induced scale dependence. This reduction of the

uncertainties coming from scale variations means that the difference between the purely

QCD calculation and complete-NLO predictions becomes of the same order as the scale

uncertainties (at 13 TeV) or even considerably larger (at 100 TeV). Hence, with the jet veto

applied, it becomes even more important to include the NLO3 contribution for a reliable

prediction of the cross section for tt̄W± hadroproduction. We stress that the inclusion of

only NLO EW corrections leads to a smaller shift and in the opposite direction.
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Differential distributions. Results for three representative distributions, m(tt̄),

pT (W±) and pT (tt̄), are shown for 13 TeV in figure 5 and for 100 TeV in figure 6. We

consider the observables without (the plots on the left) and with (the plots on the right)

the jet veto of eq. (3.6). Each plot has the following layout. The main panel shows distri-

butions at NLO QCD (black) and complete-NLO (pink) accuracy, including scale variation

uncertainties. For reference, we include also the LOQCD central value (µ = µc ≡ HT /2) as

a black-dashed line.6 The lower insets show three different quantities, all normalised to the

central value of the LOQCD +NLOQCD prediction. The grey band is the LOQCD +NLOQCD

prediction including scale-uncertainties and the pink band is the one at complete-NLO ac-

curacy, i.e., they are the same quantities in the main panel but normalised. The blue

band is instead what is typically denoted as the result at “NLO QCD + EW” accuracy,

namely, the LOQCD + NLOQCD + NLOEW prediction. Via the comparison of these three

quantities one can see at the same time the difference between results at NLO QCD and

complete-NLO accuracy but also their differences with NLO QCD + EW results, which

have already been presented in refs. [18].

At 13 TeV and without the jet veto (left plots of figure 5), the predictions for the

three observables at the various levels of accuracy presented, coincide within their respec-

tive scale uncertainties. For the m(tt̄) and, in particular the pT (W±), we see that the

NLO EW corrections are negative and increase (in absolute value) towards the tails of

the two distributions as expected from EW Sudakov logarithms coming from the virtual

corrections. Only in the very tail of the distributions, close to m(tt̄) ∼ 2000 GeV and

pT (W±) ∼ 2000 GeV the uncertainty bands of the NLO QCD and NLO QCD + EW

predictions no longer overlap. As expected from the inclusive results, the complete-NLO

results increase the NLO QCD + EW predictions such that they move again closer to

the NLO QCD central value. Indeed, the NLO QCD and the complete-NLO bands do

overlap for the complete phase-space range plotted. Moreover, the difference between the

NLO QCD + EW predictions and the complete-NLO is close to a constant for these two ob-

servables. Conversely, applying the jet veto changes the picture. First, it is quite apparent

that the relative impact of the NLO EW corrections is increased significantly, reaching up

to −40% in the tail of the pT (W±) distribution, as compared to only −20% without the jet

veto. The reason is obvious: the jet veto reduces the large contribution from the NLOQCD,

hence, relatively speaking the NLOEW becomes more important. In other words, while

the NLOQCD has a large contribution from the real-emission corrections, and are therefore

greatly affected by the jet veto, in this region of phase space the NLOEW is dominated

by the EW Sudakov logarithms, which are not influenced by the jet veto. The other im-

portant effect coming from the jet veto is the reduction of the scale uncertainties: as we

have already seen at the inclusive level, this reduction is about a factor two for 13 TeV.

For the m(tt̄) and pT (W±) this also appears to be the case over the complete kinematic

ranges plotted for the NLO QCD predictions. At small and intermediate ranges, this is

also the case for the NLO QCD + EW and the complete-NLO results. On the other hand,

6Comparisons among the scale uncertainties of the LOQCD and LOQCD + NLOQCD result have been

documented in detail for 13 and 100 TeV in refs. [38] and [63], respectively.
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in the far tails, the uncertainty bands from the NLO QCD + EW and, to a slightly lesser

extend, the complete-NLO are increased. Again, this is no surprise, since, as we have just

concluded, these predictions contain a large contribution from EW Sudakov corrections in

the NLOEW, which have the same large scale uncertainty as the LO1. Given that, rela-

tively speaking, these NLOEW contributions become significantly more important with the

jet veto, also the scale uncertainties become significantly larger.

For the third observable, pT (tt̄), the situation is extreme. This is mainly due to the

fact that the NLOQCD corrections are not constant over the phase space as was the case for

m(tt̄) and pT (W±). Rather, due to terms of order αs log2(p2
T (tt̄)/m2

W ) the NLOQCD greatly

enhances the LOQCD predictions for moderate, and, in particular, large pT (tt̄). This en-

hancement originates from the real-emission tt̄W±q final-states, where a soft and collinear

W± can be emitted from the final-state quark (see left diagram in figure 2). Thus, while at

the Born level the tt̄ pair is always recoiling against the W± boson, at NLO QCD accuracy,

for large pT (tt̄) values, it mainly recoils against a jet that is emitting the W± boson. More

details about this mechanism can be found in ref. [38]. For this reason, without a jet veto,

at NLO QCD accuracy very large corrections and scale uncertainties are present for large

pT (tt̄) values. Indeed, the dominant NLOQCD contribution, the soft and collinear emission

of a W± boson from a final-state quark, is very large and does not lead to a reduction of the

scale dependence.7 Moreover, since the NLOQCD are by far the dominant contributions,

the effects from (N)LOi, with i > 1 are completely negligible at large transverse momenta.

Only for intermediate transverse momenta, 80 GeV < pT (tt̄) < 400 GeV, we see a small

effect in the comparison of NLO QCD and complete-NLO.

On the other hand, with a jet veto, the NLOQCD contribution (and therefore also the

scale uncertainties) is strongly reduced. Indeed, when the jet veto is applied, hard-jets

and the corresponding logarithmic enhancements are not present, and the tt̄ pair is mostly

recoiling directly against the W± boson, making the predictions for pT (tt̄) and pT (W±)

very similar. The only difference is in the comparison of the NLO QCD and the complete-

NLO predictions. For the pT (W±) observable, this difference is basically a constant in the

region 30 GeV < pT (W±) < 400 GeV. On the other hand, for pT (tt̄) we see that the NLO3

contribution is not a constant: there is a reduction at small transverse momenta. Indeed,

one would expect from tW → tW scattering that the transverse momenta of the top pair

is typically larger than in the (N)LO1, due to the t-channel enhancement (between the tt̄

and the W±j pairs) at large transverse momenta. This is somewhat washed-out for the

pT (W±) since it is the W boson together with the jet that receive this enhancement.

At 100 TeV, see figure 6, the differences between the various predictions are qualita-

tively different from 13 TeV. The reason is that the opening of the qg-induced contributions

in NLO1 and the tW → tW scattering contribution in NLO3 are much more dramatic. The

central value of the complete-NLO predictions is typically outside of the NLO QCD band

even though the scale uncertainties are larger at 100 TeV than at 13 TeV. Moreover, with

the jet veto, the bands generally do not even touch, apart from where they cross at large

pT (W±) and pT (tt̄).

7The size of the NLOQCD contribution is the difference between the dashed and the solid black line.
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Without a jet veto, on the basis of all the previous considerations, also NLO cor-

rections on top of the tt̄W±j final state may be relevant for tt̄W± inclusive production.

Indeed sizeable effects are expected from QCD and EW corrections on top of the dominant

αs log2(p2
T (tt̄)/m2

W ) contribution and the large NLO3 one, both arising from the qg initial

state. The former would lead also to a reduction of the scale dependence in the tail of the

pT (tt̄) distribution, which is dominated by the tt̄W±j final state. However, these contri-

butions are part of the NNLO corrections to the inclusive tt̄W± production and therefore

are not available and not included in our calculation. A possible way for estimating these

effects is merging tt̄W± and tt̄W±j (and tt̄W±γ) final states at NLO accuracy. In the case

of NLO QCD corrections a study in this direction has been suggested for tt̄W± production

in ref. [38]. For NLOEW and subleading NLOi corrections a fully-consistent technology is

not yet available to perform this kind of study.

Further details about individual NLOi contributions at the differential level are given

in figure 7 (13 TeV) and figure 8 (100 TeV). In the plots we show all the δNLOi(µ) for

µ = µc ≡ HT /2 (solid line), µ = µc/2 (dashed line) and µ = 2µc (dotted line). We show

the same distributions (with and without veto) as in figures 5 and 6. We remark again that

the δNLOi(µ) do not show directly scale uncertainties since the value of µ is varied both

in the numerator and the denominator of δ. On the other hand, we can directly see that

also at the differential level the relative sizes of both NLO2 and NLO3 w.r.t. the LOQCD

are almost insensitive to the value of the scale; the corresponding solid, dashed and dotted

lines are almost indistinguishable. As expected, also at the differential level the impact of

the NLO4 is completely negligible for the whole range of the distributions considered.

As could already have been concluded by comparing the dashed and solid black lines

in figures 5 and 6, the NLO QCD corrections are not at all a constant over phase space.

The solid black lines in figures 7 and 8 make this very clear. In particular for the pT (tt̄)

distributions without the jet veto (lower left plots), the NLO1 ≡ NLOQCD contribution

easily becomes as large as the LO1 ≡ LOQCD and increases to more than an order of

magnitude larger than LO1 at large transverse momenta in 100 TeV collisions. But also

for pT (W±) we see large NLO QCD corrections, in particular at 100 TeV. On the other

hand, for m(tt̄) the NLO QCD corrections are mostly flat, in particular at 13 TeV. With

the jet veto (plots on the right) the situation changes quite dramatically. The NLO QCD

corrections are, in general, under much better control, even though one can see that the

extreme tails in the pT (W±) and pT (tt̄) at 100 TeV the NLOQCD contributions decrease

rapidly and are starting to be strongly influenced by logarithms related to the jet-veto

scale. If one would look at even larger transverse momenta, or, equivalently, reduce the

jet-veto scale, these logarithms will grow and eventually fixed-order perturbation theory

would break down, showing the need for resummation of these jet-veto logarithms.

Since these plots are normalised w.r.t. the LO1 (cf., the lower insets of figures 5 and 6

which are normalised to LO1+NLO1), one can clearly see the effects of the NLO EW correc-

tions, i.e., the NLO2, independently from the NLO QCD corrections. One sees the typical

EW Sudakov logarithms: negligible effects at the percent level at small and moderate tt̄

invariant masses and W± and tt̄ transverse momenta, but growing rapidly with increasing

values of the observables, to about −20% at m(tt̄) ' 2000 GeV and −40% at pT (W±) '
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Figure 5. Differential distributions for tt̄W± production at 13 TeV. For the plots on the right,

the jet veto of eq. (3.6) has been applied. The main panels show the scale-uncertainty bands for

LOQCD + NLOQCD (black) and LO + NLO (pink), and central value of LOQCD; in the lower inset

the scale-uncertainty bands are normalised to the LOQCD + NLOQCD central value and also the

LOQCD + NLOQCD + NLOEW prediction (blue) is displayed.
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Figure 6. Same as figure 5 but for 100 TeV collisions.

– 18 –



J
H
E
P
0
2
(
2
0
1
8
)
0
3
1

pT (tt̄) ' 2000 GeV. The fact that the NLO EW corrections are smaller for m(tt̄) in compar-

ison to pT (W±) and pT (tt̄) is no surprise since the impact of the EW Sudakov logarithms is

related to the number of invariants that are large for the observable considered. Typically,

for large invariant masses, there need to be fewer large invariants than for producing large

transverse momenta. The size of the NLO EW corrections relative to the LO1 is quite

similar for 13 TeV and 100 TeV collisions. Moreover, by comparing the distributions with

and without the jet veto we also see that their sizes are hardly influenced by the jet veto.

At variance with the NLO2 term, at 13 TeV the NLO3 contribution is much more

constant w.r.t. the LO1 over the whole phase space. Indeed, for the m(tt̄) the δNLO3 is

effectively a constant, increasing the LO1 cross section by about 12% (which is reduced

by applying the jet veto to about 9%). Similarly, for the pT (W±) distribution, the NLO3

correction is fairly flat. On the other hand, the pT (tt̄) does show some kinematic depen-

dence in the δNLO3 ratio. It is small at small transverse momenta, increases at intermediate

values and, in particular when the jet veto is applied, it decreases again at large values of

pT (tt̄). This is consistent with what we found in the comparing the LOQCD +NLOQCD and

NLO QCD + EW predictions in figure 5. At 100 TeV the NLO3 contributions are large

and the δNLO3 plots are not at all flat in the phase space. As at 13 TeV, the effects are

most dramatic in the pT (tt̄) distributions, which show a large hump at around 500 GeV

(1 TeV) with (without) the jet veto. However, as discussed before, without a jet veto, at

large pT (tt̄) the NLOQCD corrections is giant and is even the dominant contribution among

all the (N)LOi ones, including the LO1. For this reason, although δNLO2 and δNLO3 are

large at high pT (tt̄), results at LOQCD + NLOQCD, LOQCD + NLOQCD + NLOEW, and

LO + NLO accuracies are very close to each other; the three predictions are all dominated

by NLOQCD, while δNLOi are normalised to LOQCD.

The application of a jet veto as in eq. (3.6) may be exploited in BSM analyses such

as the one described in ref. [33]; rather than requiring a forward jet it may be possible

to observe enhancements in the tW± → tW± scattering directly in tt̄W± production by

vetoing hard central jets.
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Figure 7. Individual NLOi contributions to tt̄W± production at 13 TeV normalised to LO1 ≡
LOQCD, for different values of the scale µ for the same distributions as considered in figure 5. These

plots do not directly show scale uncertainties. Note that NLO1 ≡ NLOQCD and NLO2 ≡ NLOEW.
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Figure 8. Same as figure 7 but for 100 TeV collisions.
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σ[fb] LOQCD LOQCD + NLOQCD LO LO + NLO LO(+NLO)
LOQCD(+NLOQCD)

µ = HT /4 6.83+70%
−38% 11.12+19%

−23% 7.59+64%
−36% 11.97+18%

−21% 1.11 (1.08)

Table 5. Cross section for pp→ tt̄tt̄ at 13 TeV in various approximations.

σ[pb] LOQCD LOQCD + NLOQCD LO LO + NLO LO(+NLO)
LOQCD(+NLOQCD)

µ = HT /4 2.37+49%
−31% 3.98+18%

−19% 2.63+44%
−28% 4.18+17%

−17% 1.11 (1.05)

Table 6. Same as in table 5 but for 100 TeV.

3.3 Results for pp→ tt̄tt̄ production

Similarly to the previous section, we start by presenting predictions for tt̄tt̄ total cross

sections at 13 and 100 TeV proton-proton collisions and then we discuss results at the

differential level. Using a layout that is similar to table 1, in table 5 we show 13 TeV

predictions at LOQCD, LOQCD + NLOQCD, LO and LO + NLO accuracies. We also display

the LO/LOQCD and, in brackets, (LO + NLO)/(LOQCD + NLOQCD) ratios. Results at

100 TeV are in table 6. In table 7, similarly to table 3, we show 13 TeV predictions for the

δ(N)LOi
(µ) ratios, and analogous results at 100 TeV are in table 8.

As can be seen in tables 5 and 6, the scale dependence is very large at LOQCD and LO

accuracy and it is strongly reduced both in the NLO QCD and complete-NLO predictions

to about 20%. Nevertheless, it is still larger than the impact of the non-purely-QCD

contributions, which is also reduced moving from LO to NLO accuracy, halved in the

100 TeV case. At the inclusive level, the difference between LO + NLO and LOQCD +

NLOQCD predictions is well within their respective scale uncertainties, especially at 100 TeV

where this difference is merely 5% of the LOQCD + NLOQCD result. However, the numbers

in tables 5 and 6 hide the most important feature of the complete-NLO result, i.e., very

large and scale-dependent cancellations among the (N)LOi terms with i ≥ 2. This will

become clear from the discussion in the next paragraph.

As anticipated in section 2, in tt̄tt̄ production the LO2 and LO3 contributions are not

so suppressed w.r.t. the LOQCD, at variance with tt̄W± production (see tables 7 and 8, cf.

tables 3 and 4). For tt̄tt̄ production, due to sizeable contributions from the EW tt → tt

scattering, LO2 and LO3 can induce corrections of the order −30% and +40% on top of

the LO1, respectively.8 Therefore, also the NLO2 and NLO3 contributions are large, since

they contain “QCD corrections” to LO2 and LO3 terms, respectively. The fact that a

large fraction of NLO2 and NLO3 contributions is of QCD origin can be understood by the

µ-dependencies of δNLO2 and δNLO3 ratios, which, as can be seen in tables 7 and 8, are very

large. Indeed, NLO2 and NLO3 terms involve explicit logarithms of µ that compensate

the PDF and αs scale dependence at LO2 and LO3 accuracy, respectively. Thus, in tt̄tt̄

8Similarly to the case of the LO3 in tt̄W± production, the scale dependences of the LO2 and especially

of the LO3 are much smaller than that of LO1, due to the different powers of αs associated to them. Hence,

with larger(smaller) values of the scales and consequently smaller(larger) values of LO1, the δLO2 and δLO3

become larger(smaller) in absolute value.
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δ[%] µ = HT /8 µ = HT /4 µ = HT /2

LO2 −26.0 −28.3 −30.5

LO3 32.6 39.0 45.9

LO4 0.2 0.3 0.4

LO5 0.02 0.03 0.05

NLO1 14.0 62.7 103.5

NLO2 8.6 −3.3 −15.1

NLO3 −10.3 1.8 16.1

NLO4 2.3 2.8 3.6

NLO5 0.12 0.16 0.19

NLO6 < 0.01 < 0.01 < 0.01

NLO2 + NLO3 −1.7 −1.6 0.9

Table 7. tt̄tt̄: σ(N)LOi
/σLOQCD

ratios at 13 TeV, for different values of µ = µr = µf .

production, at variance with most of the other production processes studied in the litera-

ture, quoting the relative size of NLOEW ≡ NLO2 or NLO3 corrections without specifying

the QCD-renormalisation and factorisation scale is simply meaningless. Moreover, δNLO2

and δNLO3 corrections can separately be very large, easily reaching ±15% (depending on

the value of µ). Surprisingly, for our central value of the renormalisation and factorisation

scales, the δNLO2 and δNLO3 are almost zero,9 particularly for 13 TeV. On the other hand,

if we had taken HT /2 or even mtt̄tt̄ as our central scale choice, the NLO2 and NLO3 correc-

tions relative to the LO1, δNLO2 and δNLO3 , would have been much larger. Still, even for the

central value µ = HT /4, the corrections are much larger than foreseen, especially for δNLO3

which naively is expected to be of order α3
sα

2/α4
s = α2/αs ∼ 0.1% level. On the other hand,

the relative cancellation observed between NLO2 and NLO3 contributions is even larger

than in the case of LO2 and LO3. As can be seen in the last rows of tables 7 and 8, at the

inclusive level the sum of the ratios δNLO2 + δNLO3 is not only small, but also stable under

scale variation,10 resulting in corrections of at most a few percents w.r.t. the LOQCD. Fur-

thermore, particularly at 13 TeV, δNLO2 +δNLO3 receives also additional cancellations when

summed to δNLO4 , which itself is much larger than the expected α2
sα

3/α4
s = α3/α2

s ∼ 0.01%

level. To the best of our understanding, these cancellations are accidental.

These large and accidental cancellations among the (N)LOi terms with i > 1 are

particularly relevant from a BSM perspective, since the level of these cancellations may be

altered by new physics. As an example, we can refer to the case of an anomalous yt coupling,

which, as we have already mentioned, has been considered in the tree-level analysis of

ref. [34]. Terms proportional to y2
t are present in all the (N)LOi with i ≥ 2 and terms

9Our choice for the central value of the scales has not been tuned in order to reduce the effects from the

NLO2 and NLO3. Rather, it is motivated by the study in ref. [38], which deals only with the LO1 and NLO1.
10We verified this feature also with different functional forms for the scale µ.
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δ[%] µ = HT /8 µ = HT /4 µ = HT /2

LO2 −18.7 −20.7 −22.8

LO3 26.3 31.8 37.8

LO4 0.05 0.07 0.09

LO5 0.03 0.05 0.08

NLO1 33.9 68.2 98.0

NLO2 −0.3 −5.7 −11.6

NLO3 −3.9 1.7 8.9

NLO4 0.7 0.9 1.2

NLO5 0.12 0.14 0.16

NLO6 < 0.01 < 0.01 < 0.01

NLO2 + NLO3 −4.2 −4.0 2.7

Table 8. tt̄tt̄: σ(N)LOi
/σLOQCD

ratios at 100 TeV, for different values of µ = µr = µf .

proportional to y4
t are present in all the (N)LOi with i ≥ 3, but also terms proportional to

y6
t are present for any i ≥ 3. Moreover, also contributions proportional to yt, y

3
t and y5

t are

possible. Similar considerations apply also to other new physics effects in tt̄tt̄ production

(see, e.g., ref. [64] and references therein for scenarios already analysed in the literature).

In order to understand the hierarchy of the different (N)LOi contributions, it is impor-

tant to note that at 13 TeV and especially at 100 TeV the total cross section is dominated

by the gg initial state (see, e.g., ref. [38]). For this reason, the LO4, LO5, NLO5 and NLO6

contributions, which are vanishing for the gg initial state, are much smaller than the other

contributions. The modest scale dependence of δNLO4 is also induced by this feature; the

NLO4 contribution mainly arises from “EW corrections” to gg-induced LO3 contributions,

which do not have any explicit dependence on µ; and therefore the scale dependence of the

NLO4 follows the scale dependence of the LO3 to a large extent.

Differential distributions. We now move to the description of the results at the differ-

ential level, where we consider the following distributions: the invariant mass of the four

(anti)top quarks m(tt̄tt̄) (figure 9), the sum of the transverse masses of all the particles

in the final state HT as defined in eq. (3.5) (figure 10), the transverse momenta of the

hardest of the two top quarks pT (t1) (figure 11), and the rapidity of the softest one y(t2)

(figure 12). At variance with the case of tt̄W± production in section 3.2, we organise plots

according to the observable considered. In the figures we display 13 TeV results on the left

and 100 TeV results on the right. In the upper plots of each of these figures we provide

predictions at different levels of accuracy, using a similar layout11 as in figures 5 and 6,

11At variance with tt̄W± production, we do not show LOQCD + NLOQCD + NLOEW predictions. This

level of accuracy is rather artificial, since the NLOEW ≡ NLO2 terms are dominated by “QCD corrections”

to the LO2 ones. Hence, including NLO2 without LO2 would not be very consistent. Moreover, there are

large cancellations between LO2 and LO3, so, including only the former and not the latter would not be
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which is described in detail in section 3.2. Also for tt̄tt̄ production, comparisons among the

scale uncertainties of the LOQCD and LOQCD + NLOQCD result have been documented in

detail in ref. [38] for 13 TeV, so they are not repeated here. Individual contributions from

the different (N)LOi terms are instead displayed in the central and lower plots. In the

central plots we show the δ(N)LOi
(µ), see eq. (3.7), with µ = µc ≡ HT /4, while the lower

plots focus on NLO2 and NLO3 contributions and their sum featuring large cancellations.

In particular, we show δNLO2(µ), δNLO3(µ) and their sum for µ = µc (solid line), µ = µc/2

(dashed line) and µ = 2µc (dotted line). In practice, the dark-blue and red solid lines

are the same quantities in the middle and lower plots. Once again, we remark that the

δNLOi(µ) ratio does not show directly the scale uncertainty since the value of µ is varied

both in the numerator and the denominator of δ.

Away from the threshold region, i.e., m(tt̄tt̄) > 900 GeV, the complete-NLO prediction

for the four-top invariant-mass distribution is very close to the NLO QCD one, with an

almost constant increase of about 10%, both at 13 and 100 TeV, see upper plots in figure 9.

This increase is well within the uncertainty bands of either of the predictions. On the

other hand, in the threshold region the enhancement of the cross section due to terms with

(N)LOi, with i > 1, is much larger than for the inclusive results. In this region the central

value of the complete-NLO predictions lies outside the LO1+NLO1 uncertainty band. From

the central plots of figure 9, it can be seen that the (N)LO2 and (N)LO3 contributions are

individually sizeable w.r.t. LOQCD and their relative impact has a large dependence on

kinematics, easily reaching several tens of percents in certain regions of phase space.

As anticipated from the inclusive results, there are large cancellations in the distri-

butions among LO2 and LO3 contributions and especially among NLO2, NLO3 ones; the

latter are explicitly shown in the lower plots. In particular, although the corresponding

δ(N)LOi
terms individually depend on the value of m(tt̄tt̄), they lead for m(tt̄tt̄) > 900 GeV

to the aforementioned constant increase of about 10% of the complete-NLO prediction

w.r.t. the NLO QCD result. As can be seen in the central plots, the δLO2 is negative, it

is about −10% at m(tt̄tt̄) ' 4000 GeV and further decreases for smaller invariant masses,

reaching about −40% at m(tt̄tt̄) ' 900 GeV. On the other hand, the δLO3 is positive, and

very close to the absolute value of δLO2 plus a constant 12 (at 13 TeV) or 16 (at 100 TeV)

percentage points. Moreover, even though also the δNLO2 and δNLO3 are depending quite

strongly on the value of m(tt̄tt̄), they sum to almost a constant −1% (at 13 TeV) and −4%

(at 100 TeV). Therefore, indeed, the entire sum LO2 + LO3 + NLO2 + NLO3 is almost a

constant 10% correction to the LO1 + NLO1 — away from the threshold region.

In the threshold region, the situation is quite different. While the δLO3 keeps increasing

closer and closer to threshold, the derivative of δLO2 reverses sign at m(tt̄tt̄) ' 900 GeV.

In other words, the δLO2 also starts to increase closer and closer to threshold. The same

is true for the corrections induced by NLO2 and NLO3 contributions: the δNLO3 sharply

increases close to threshold. Hence, the delicate cancellation among the LO2 and LO3 (and

giving a correct picture. On top of this, from the inclusive results, we already know that there are also large

cancellations between the NLO2 and NLO3 terms. Given the dominance of the gg-induced contributions,∑3
i=1 (N)LOi is already very close to the complete-NLO predictions, hence we show only the latter and

compare them to the pure-QCD NLO predictions.
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Figure 9. The m(tt̄tt̄) distribution in tt̄tt̄ production. Left: 13 TeV. Right: 100 TeV. Upper plots:

scale uncertainty bands (same layout as the plots in figures 5 and 6). Central plots: individual

(N)LOi contributions normalised to LO1 ≡ LOQCD. Lower plots: same as central plots but only

with NLO2, NLO3, and their sum, at different values of the scale µ. These lower plots do not show

scale uncertainties. Note that NLO1 ≡ NLOQCD and NLO2 ≡ NLOEW.
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Figure 10. The HT distribution in tt̄tt̄ production. See the caption of figure 9 for the description

of the plots.
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Figure 11. The pT (t1) distribution in tt̄tt̄ production. See the caption of figure 9 for the description

of the plots.
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Figure 12. The y(t2) distribution in tt̄tt̄ production. See the caption of figure 9 for the description

of the plots.
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NLO2 and NLO3) contributions completely breaks down in this region of phase space.

Moreover, also the NLO4 reaches several tens of percent close to threshold and should not

be neglected when studying this region of phase space. Conversely, also at the differential

level, LO4, LO5, NLO5 and NLO6 contributions are negligible.

There are two different physical effects at the origin of the large NLO corrections

in the threshold region. First, also the LO2 and LO3 contributions are larger in this

region and thus their “QCD corrections”, which respectively enter the NLO2 and NLO3

contributions, preserve this increment w.r.t. the rest of the phase space. Second, the

exchange of Z or Higgs bosons among top quarks, or in general among heavy particles, can

lead to Sommerfeld enhancements when the top quarks are in a non-relativistic regime.

This effect has already been documented in refs. [65, 66] for the case of top-quark pair

production and in refs. [67–69] for the exchange of a virtual Higgs boson between an on-

shell Higgs boson and another on-shell heavy particle. The threshold region forces each

tt̄, tt or t̄t̄ pair to potentially lead to this kind of effect. These large “EW corrections” on

top of LO1 and LO2 terms lead to additional sizeable contributions to NLO2 and NLO3,

respectively. Moreover, since also LO3 is large, via this kind of “EW corrections” even

NLO4 is very large and incredibly enhanced w.r.t. the result at the inclusive level.

The lower plots in figure 9 further confirm the QCD origin of the NLO2 and NLO3

contributions. In order to explain this, we remind the reader that the scale dependence

of the LO2 and LO3 contributions is the typical one, i.e., LO2 and LO3 absolute values

become smaller when the scales are increased. In the plots we see that for NLO3 the (dark

blue) dashed lines are larger than the solid lines, which are in turn larger than dotted lines,

while in the case of NLO2 the order is the reversed. Since the LO2 is negative, the NLO2

term reduces the µ dependence of the LO2 one and, similarly, the NLO3 term reduces the µ

dependence of the LO3 one. Moreover, these plots confirm that also at the differential level

there are large cancellations among the NLO2 and NLO3 terms and that the δNLO2 +δNLO3

sum has a much smaller scale dependence than the two separate addends. In other words,

the remarkable cancellations among the NLO2 and NLO3 corrections are not only present

for the central value of µ, as already concluded from the middle plots in the discussion

above, but also for their scale dependencies. Notably, these cancellations are present over

a very large region of phase space. Also, if we had chosen, e.g., HT /2 as our central scale

(dashed lines in the lower plot), the NLO2 and NLO3 curves in the middle plots would

have been much further apart, leading to much larger cancellations, since their sum would

hardly have changed at all.

Compared to the invariant-mass distribution of the four tops, the case of the HT

distribution (figure 10) is similar in many respects. In particular, from the upper plots, we

see that again only in the threshold region there is a sizeable difference between the NLO

QCD predictions and the complete-NLO ones. It should be noted, though, that above the

peak in the distribution, HT & 1500 GeV, the difference between the two predictions is

very small, their central values as well as the scale uncertainties are lying almost exactly

on top of each other. Just as in the case of the m(tt̄tt̄), the middle plots show that this

is rather due to large and accidental cancellations among the various (N)LOi with i > 1

contributions, which can individually reach several tens of percent.
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Close to the HT ' 4mt threshold, the NLOi contributions are in general reverted in

sign w.r.t. the LOi ones and receive particularly large enhancements in absolute value.

This feature is due to large negative QCD Sudakov logarithms that appear in the limit

HT → 4mt. Indeed, since HT includes in its definition the momentum of the possible extra

jet, it effectively acts as a tight jet veto in this limit. Thus, “QCD corrections” involves

large and negative contributions that have to be resummed. The effect is so large that in

the first bin of the central plots of figure 10, the LOQCD + NLOQCD prediction is negative

and should not be trusted. This is a well-known instability of fixed-order perturbative

calculations. Similar but smaller effects originate also from “EW corrections”, due to the

effective veto on the real emission.

It is also interesting to note how the µ-dependence of δNLO2 reduces for large values of

HT (see bottom plots of figure 10). We can see in the central plots that δLO2 is very small

in this phase-space region, which means that the dominant NLO2 contribution cannot be

originated by “QCD corrections” on top of LO2. Rather, it is mainly induced by “EW cor-

rections” on top of the LOQCD term. Thus, we recover the typical situation, which we found

also in tt̄W± production, where δNLO2 ≡ δNLOEW
is almost independent of the value of µ.

An example of an observable in which the cancellation between the NLO2 and NLO3

is less complete in the whole range considered is the transverse momentum of the hard-

est of the two top quarks, shown in figure 11. Similarly to m(tt̄tt̄) and HT , close to the

threshold region, pT (t1) . 300 GeV, the complete-NLO predictions are above the NLO

QCD ones, reaching ∼25% at very small transverse momenta. On the other hand, for

pT (t1) & 300 GeV, the complete-NLO corrections on top of the NLO QCD are growing

negative and become about −10% in the tails of the distributions shown. From the middle

plots, which refer to the case µ = HT /4, it becomes clear which orders are responsible

for this behaviour. At small transverse momenta there are large positive corrections from

the LO3 (up to about 70% on top of LO1) and to a lesser extent the NLO4, which is itself

slightly larger than NLO3. LO2 is also large, but negative, about −40% on top of LO1, only

partially cancelling the large positive contribution from LO3. Accidentally, NLO2 correc-

tions are instead almost equal to zero.12 Adding together all these contributions and taking

also into account that the NLO1 yields a positive 80% correction, we indeed find close to

the threshold a correction of about 25% from complete-NLO result on top of the NLO QCD

one. On the other hand, with increasing pT , all the corrections quickly reduce (in absolute

value), although not all in a uniform way. The exception is the δNLO2 , which steadily grows

negative. Thus, at transverse momenta in the TeV range, the NLO2 ≡ NLOEW becomes

the dominant correction to the NLO QCD predictions. At first sight, this seems to be

the standard situation with NLO EW corrections completely dominated by Sudakov loga-

rithms, which we also observed in the NLO2 curves for the pp→ tt̄W± process, see figures 7

and 8. However, looking at the lower plots, it is clear that this cannot be the complete story.

If the NLO2 had been completely dominated by “EW corrections” on top of the LO1, the

δNLO2 ratio would have been (almost) scale independent. Conversely, although the scale

12Once again we want to remark that, unless differently specified, all the numbers in the main text refer

to µ = HT /4, but they strongly depend on the scale µ. As can be seen from the lower plots, e.g., at 13 TeV

for small transverse momenta δNLO2(HT /4) ∼ 0%, but δNLO2(HT /8) ∼ 20% and δNLO2(HT /2) ∼ −20%.
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dependence of δNLO2 does decrease with increasing transverse momenta, it remains anyway

sizeable even in the far tail of the distribution. Therefore, a non-negligible part of NLO2 is

due to “QCD corrections” on top of the LO2 also in the far tail. For these reasons, although

in this phase-space region the individual and summed δNLOi with i > 1 are not at all con-

stant, the scale dependence of δNLO2 + δNLO3 remains very small. The non-constant part

seems to be the “EW corrections” entering the NLO2, which are dominated by large and

negative Sudakov logarithms and do not introduce a new scale dependence w.r.t. the LO1.

From the y(t2) distribution (figure 12) we can see that, besides the threshold region, a

non-negligible difference between NLO QCD and complete-NLO predictions is present also

at 13 TeV (not 100 TeV) in the peripheral region of the softest of the top quark quarks.

The y(t2) distribution is also the only one, among those considered, where the impact of

the different (N)LOi terms is qualitatively different at 13 and 100 TeV. While the LOi cor-

rections are rather flat at both 13 and 100 TeV, NLOi corrections are flat only at 100 TeV;

the NLOi corrections for 13 TeV yield large effects in the peripheral region. The origin of

this difference is the range of Bjorken-x probed in the PDFs, which is indeed very different

at 13 and 100 TeV. While at 13 TeV the peripheral region is typically associated with tops

that have large rapidities also in the tt̄tt̄ rest frame, at 100 TeV it is more likely that they

originate from partonic initial states that are boosted w.r.t. the proton-proton reference

frame.13 For this reason the y(t2) distribution is flatter at 100 TeV than at 13 TeV, where

large rapidities are strongly suppressed in a Born-like kinematics and therefore they are

also much more sensitive to effects due to real emission from NLOi contributions. However,

as before, the NLO2 and NLO3 contributions almost cancel, resulting in at most ∼10%

effects w.r.t. the LO1 in the far forward and backward regions.

Given our findings, we suggest that the study of the µ-dependence of δNLOi can be a

very useful procedure for identifying the nature of NLOi corrections in numerical calcula-

tions. For higher values of i, the ΣNLOi(µ)/ΣLOi−1(µ) may be even more appropriate given

the different numerical sizes of the LOi terms and of their dependence on the running of

αs.
14 For instance, we verified that in tt̄tt̄ production both ΣNLO4/ΣLO3 and ΣNLO6/ΣLO5

are very mildly scale-dependent at inclusive and differential level. Indeed, both can be

considered almost purely “EW corrections”; the latter by construction and the former due

to the dominance of the gg initial-state. Conversely, we do not find this feature in the

ΣNLO5/ΣLO4 ratio, since LO4 and LO5 contributions are both small but comparable in size

and thus ΣNLO5 receives large “QCD corrections” on top of LO5 contributions.

In summary, at the inclusive and the differential levels complete-NLO results for tt̄tt̄

production are well within the NLO QCD uncertainties. For the observables presented

here, there are no large qualitative differences between results at 13 and 100 TeV, except in

the peripheral regions of the rapidity of the second hardest top quark. However, for all ob-

servables very large cancellations among the different perturbative orders are present both

at the inclusive and differential level. Their individual sizes w.r.t. the LOQCD prediction

13The maximum value for the rapidity of the tt̄tt̄ system in a Born-like configuration is log
(

13 TeV
4mt

)
∼ 3

at 13 TeV, while it is log
(

100 TeV
4mt

)
∼ 5 at 100 TeV.

14Note that ΣNLOi/ΣLOi−1 = δNLOi/δLOi−1 , so at the inclusive level the necessary information can be

obtained from tables 7 and 8.
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are also strongly dependent on the scale definition. All these arguments point to the fact

that in any BSM analysis involving tt̄tt̄ production contributions from all NLO corrections

can be relevant. Thus, they should be taken into account, at least in the estimate of the

theory uncertainty.

4 Conclusions

In this paper we have presented the complete-NLO predictions for tt̄W± and tt̄tt̄ production

at 13 and 100 TeV in proton-proton collisions. All the seven O(αisα
j) contributions with

i+ j = 3, 4 and j ≥ 1 for tt̄W± production and all the eleven O(αisα
j) contributions with

i+ j = 4, 5 have been calculated exactly without any approximation. We have shown that

complete-NLO corrections involve large contributions beyond the NLO EW accuracy for

both the tt̄W± and tt̄tt̄ production processes

In tt̄W± production we find that the O(αsα
3) contributions, denoted as NLO3 in

this article, are larger than NLO EW corrections and have opposite sign. They are of

the order 12(70)% of the LO at 13(100) TeV, with a strong dependence on particular

kinematic variables such as pT (W±) and pT (tt̄), but not m(tt̄). Thus, they are several

orders of magnitude larger than the values naively expected from their coupling orders,

i.e., NLO3/LO � α2/αs ∼ 0.1%. The main reason is the opening of the tW → tW

scattering in the NLO3. Since the NLO QCD corrections are dominated by hard radiation,

applying a jet veto suppresses the NLOQCD contributions considerably. Conversely, the

NLO3 (and the NLO EW corrections) are affected to a much lesser extent, resulting in

large corrections on top of the NLO-QCD result. At 13 TeV, applying a 100 GeV central

jet veto, the central value of the complete-NLO prediction is typically outside the NLO

QCD scale-uncertainty band. At 100 TeV, the uncertainty bands of these two predictions

do not even touch. Besides their relevance for the SM and reliable comparisons with

current and future measurements, these results further support the proposal of the BSM

analysis described in ref. [33], showing a possible sensitivity to higher-dimensional operators

in tW → tW scattering directly in tt̄W± production. Rather than requiring a jet and

considering tW → tW scattering as a Born process, our results suggest that the sensitivity

may be increased by directly considering tt̄W± production and vetoing additional jets.

In tt̄tt̄ production, LO contributions of O(α3
sα) are about −25-30% of the purely-QCD

O(α4
s) ones, while O(α2

sα
2) contributions are about +30-45%, depending on the scale

choice. For this reason, we find that the O(α4
sα) (the NLO EW corrections, or NLO2) as

well as the O(α3
sα

2) (denoted as NLO3 in this article) contributions are also large. More-

over, since they receive large contributions from “QCD corrections” (and thus αs and PDF

renormalisation) on top of respectively O(α3
sα) and O(α2

sα
2) terms, they strongly depend

on the scale definition. At 13 TeV, their relative impact w.r.t. purely-QCD O(α4
s) contri-

bution varies in both cases between ±15%. On the other hand, their sum reduces to a

rather small ±1-2%, and is almost independent from the QCD scale choice and kinematics.

Qualitatively similar results are found also at 100 TeV. The size of the cancellations is quite

remarkable, unexpected, and, to the best of our knowledge, accidental. Thus, a calculation

of only part of the complete-NLO results would be missing important contributions. These
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large cancellations between the corrections and the reduced scale dependencies of their sum

are not present very close to threshold. In this region of phase space, complete-NLO results

are sizeably different from those at NLO QCD accuracy and even contributions of O(α2
sα

3)

(denoted as NLO4 in this article) are found to be of the order of several tens of percents of

the LO. Besides their relevance for the SM and reliable comparisons with current and future

measurements, our calculations show that the possible impact of NLO corrections should

be critically considered for studies such as ref. [34], where tt̄tt̄ production has been proposed

as candidate, in conjunction with tt̄H production, for an independent determination of the

Yukawa coupling of the top quark and the Higgs-boson total decay width. Similar consider-

ations apply to other BSM studies involving tt̄tt̄ production: the various contributions from

NLO corrections are large and the cancellations among them could be spoiled by BSM ef-

fects. This should be taken into account at least in the estimate of the theory uncertainties.

In this work we have also shown that the study of the µ-dependence of the quantity

δNLOi ≡ ΣNLOi(µ)/ΣLO1(µ) can be a very useful procedure for identifying the nature

of NLOi corrections in numerical calculations. A large scale dependence is a signal of

“QCD corrections” on top of the LOi contribution, while a scale independence for δNLOi

points to “EW corrections” on top of the LOi−1 contributions. For higher values of i, the

ΣNLOi(µ)/ΣLOi−1(µ) may be even more appropriate given the possible different numerical

sizes of the LOi terms and of their dependence on the running of αs.

As a final remark, we want to remind the reader that the three known cases where NLO

corrections from supposedly subleading EW contributions are large, pp→ tt̄W±, pp→ tt̄tt̄

and pp → W+W+jj with leptonic W+ decays [26], involve very different mechanisms.

In tt̄W± production it is the opening of tW → tW scattering via the real emission in

the NLO3. In tt̄tt̄ production it is mainly the “QCD corrections” on top of EW tt → tt

scattering, which gives large contributions already at the LO. In W+W+jj production it

is instead the large EW Sudakov logarithmic corrections featured by the formally most

subleading NLO contribution [27] together with the relatively large size (especially when

standard VBS cuts are applied) of the purely EW W+W+ scattering component.
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