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Introduction

The study of periodic and quasi-periodic orbits in nearly integrable Hamiltonian systems is a
long standing and challenging problem, that dates back to Poincaré. Quoting Poincaré, they
represent the only opening through which we can try to enter a place which, up to now, was
deemed inaccessible. The aim of this thesis is to find effective and constructive algorithms for
constructing both periodic and quasi-periodic solutions via a modification of the normal form
methods related to Kolmogorov’s theorem. The thesis is divided in two parts. The first part
concerns the classical problem of the continuation of periodic orbits surviving to the breaking of
invariant maximal or lower dimensional completely resonant tori in nearly integrable Hamiltonian
systems: we here propose a new scheme which allows to deal with the problem of degeneracy
at any order of perturbation. The second part regards the development of a variation of the
Kolmogorov’s normalization algorithm, by avoiding the so-called translation step at the price of
fixing only the final frequency, while the initial one can only be determined a posteriori.

Consider the Hamiltonian
H = H0(I) + εH1(I, ϕ) ,

where I ∈ U ⊂ Rn, ϕ ∈ Tn are action-angle variables and ε is a small perturbation parameter.
The unperturbed system, H0, is clearly integrable and the bounded orbits, lying on invariant tori,
are generically quasi-periodic. Besides, if the unperturbed frequencies satisfy resonance relations,
one has periodic orbits on a dense set of resonant tori. The Kolmogorov’s theorem ensures the
persistence of a set of large measure of quasi-periodic orbits, lying on (strongly) non-resonant tori,
for the perturbed system, if ε is small enough and a suitable non-degeneracy condition for H0

is satisfied. Instead, considering a completely resonant torus foliated by periodic orbits, when a
small perturbation is added such a torus is generically destroyed and only a finite number of the
periodic orbits carried by the torus are expected to survive.

In the first part of the thesis, after an initial preparation of the Hamiltonian which exhibits
one fast rotating angle and the remaining slow angles, we develop a constructive normal form
scheme that allows to identify and approximate the periodic orbits which continue to exist after
the breaking of the resonant torus of maximal or low dimension (the results have been collected
in [74], [85]). In particular, it enables to treat the continuation of those periodic orbits which
are at leading order degenerate, hence not covered by classical averaging methods (see [77], [78]).
Degeneracy (the so-called Poincaré degeneracy) may arise for instance when the approximate
periodic orbits, which correspond to critical points of time averaged perturbation

〈H1〉T =
1

T

∫ T

0

H1 dt

evaluated at the unperturbed periodic orbits, are not isolated and appear as families depending
on one or more parameters.

The method, inspired to classical Kolmogorov’s schemes, consists of a finite number of nor-
malization steps, each of which includes also averaging of leading terms and translation of the
actions of the torus. The novelty of this construction lies in the “parametric” dependence of
the translation on the slow angles that are candidates for the continuation and are determined
a posteriori, at the end of the procedure. Given a finite number of normal form steps, possible
candidates for the continuation are first identified as critical points of a functional (which is a
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Introduction

ε-perturbation of the average 〈H1〉T ) on the sub-torus of slow angles: these are relative equilibria
of the truncated Hamiltonian. Then, the existence of a unique continuation of the so obtained
approximate periodic orbits is ensured by an iterative fixed point method, provided appropriate
spectral properties of the period map are fulfilled. The method is completely constructive, so
suitable for implementation of possible applications with an algebraic manipulator. Besides, it
allows to deal with any degree of degeneracy, including the completely degenerate case considered
in [61] and extended in [73], when 〈H1〉T ≡ const.

Moreover, a further development in the normal form algorithm enables to study the approxi-
mate linear stability of the periodic orbit, by obtaining a high-order approximation of its Floquet
exponents. If additional requirements are asked on this spectrum, we can obtain information
about the effective linear stability of the continued periodic orbits; here arguments from Krein’s
signature and resolvent theory are necessary. In Chapter 1 we deal with the case of full dimen-
sional tori, while Chapter 2 concerns the extension to lower dimensional elliptic tori and the study
of linear stability.

The original motivation for this kind of investigation is the mathematical study of spatially
localized time-periodic solutions in Hamiltonian lattices, such as chains of weakly coupled an-
harmonic oscillators (like Klein-Gordon models). This class of periodic orbits, sometimes called
multibreathers (as generalization of their forerunners breathers), can be looked at as periodic orbits
which survive to the breaking of a lower dimensional completely resonant torus. Their existence
and stability have been studied since the late 90’s with an averaging procedure named effective
Hamiltonian method (introduced already in [58], [5] and developed for example in [1], [55]) which
fails in those cases where approximate solutions are degenerate.

In this context, our scheme enables to face degenerate scenarios which naturally emerge when
studying discrete solitons in one-dimensional discrete non-linear Schrödinger lattices (standard
dNLS, coupled dNLS, Zig-Zag dNLS,...): in these models, one-parameter families of solutions of
the averaged Hamiltonian appear when non consecutive excited sites are considered or when in the
model long range interactions are added (like next-to-nearest neighbourhood). Otherwise, one-
parameter families of approximate solutions appear when studying vortexes in 2D square lattices.
In these problems, the only approach till now explored was based on an ansatz of the solution and
then implemented with bifurcation methods suitably combined with a perturbation scheme (see,
e.g., [70], [75]).

Up to our knowledge, the existing results for chains of weakly coupled oscillators are valid for
specific configurations (e.g. restricting to consecutive oscillators) and degenerate solutions can be
hardly explored. On the contrary, our approach allows us to face every kind of degeneracy and to
tackle the problem of studying discrete solitons in models with several resonant modules, not only
the standard (1 : . . . : 1) resonance (the results will be collected in [22]). Moreover, the already
available methods for non degenerate solutions can be recovered by a single step of our normal
form scheme.

Applications of our algorithm to several degenerate models are collected in Chapter 3.

The second part of the thesis (Chapter 4) focuses on the Kolmogorov’s normalization algorithm
with a variation on the handling of the frequencies. The motivation behind the development of
this approach has strong connections with the problem of persistence of lower dimensional elliptic
invariant tori under sufficiently small perturbations.

Indeed, in [38] the authors gave a constructive proof of the existence of lower dimensional
elliptic tori for planetary systems, adapting the classical Kolmogorov’s normalization algorithm
and a result of Pöschel (see [79]) that allows to estimate the measure of a suitable set of non-
resonant frequencies. The key point is that both the internal frequencies of the torus and the
transversal ones vary at each normalization step, and cannot be kept fixed as in Kolmogorov’s
algorithm. This makes the accumulation of small divisors much more tricky to control and, more
important, the result is only valid in measure and therefore one cannot know a priori if a specific
torus exists or not.

In order to overcome this problem, as a first step, we decide to adapt the classical Kolmogorov’s
normalization algorithm so as to avoid the translation that keeps the frequencies fixed and to
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introduce a detuning between the fixed final frequencies and the corresponding initial ones, to be
determined a posteriori.

This approach, in principle, also allows to start from a resonant torus carrying frequencies ω0

that by construction falls into a strongly non-resonant one. The results have been collected in [84].
The next goal will be the extension of the scheme developed to the elliptic lower dimensional

case.
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Chapter 1

Continuation of degenerate
periodic orbits: full dimensional
tori

We consider a canonical system of differential equations with Hamiltonian

H(I, ϕ, ε) = H0(I) + εH1(I, ϕ) + ε2H2(I, ϕ) + . . . , (1.1)

where I ∈ U ⊂ Rn1 , ϕ ∈ Tn1 are action-angle variables and ε is a small perturbation parameter.
The orbits of the integrable unperturbed system, H0(I) lie on invariant tori and are generically
quasi-periodic. Moreover, if the unperturbed frequencies satisfy resonance relations, one has pe-
riodic orbits on a dense set of resonant tori. As we have recalled in the Introduction, the KAM
theorem ensures the persistence of a set of large measure of quasi-periodic orbits, lying on strongly
non-resonant tori, if ε is small enough and a suitable non-degeneracy condition for H0 is satisfied
(the so-called Kolmogorov non-degeneracy or twist condition). Instead, for arbitrary small pertur-
bations, a resonant torus is generically destroyed and only a finite number of periodic orbits are
expected to survive. The location and stability of the continued periodic orbits are determined by a
theorem of Poincaré (see [77,78]), who approached the problem locally: with an averaging method,
he was able to select those isolated unperturbed solutions which, under a suitable non-degeneracy
condition (nowadays called Poincaré non-degeneracy), can be continued by means of an implicit
function theorem. In particular, introducing the n1− 1 resonant angles qj = kjϕ1− k1ϕj , one can
consider the time averaged perturbation

〈H1〉T (q) =
1

T

∫ T

0

H1 dt ,

evaluated at the unperturbed periodic orbits, which only depends on the particular periodic orbit
taken into account and not on the initial point on it. Hence, it is defined as a function of the
resonant angles and, according to Poincaré, periodic orbits for which it holds that

∇q〈H1〉 = 0 , |D2
q〈H1〉| 6= 0

can be continued also for ε 6= 0.
A modern approach aiming at studying continuation of periodic orbits has been developed in

the seventies by Weinstein [89] and Moser [65] using bifurcation techniques, turning the problem
to the investigation of critical points of a functional on a compact manifold, whose number can
be estimated from below with geometrical methods, like Morse theory (see, e.g., [3, 10]). The
latter approach allows to extend the Poincaré-Birkhoff Theorem for two-dimensional twist maps,
obtaining a global result which claims that a minimal number of periodic solutions surely survive.
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1. Continuation of degenerate periodic orbits: full dimensional tori

The drawback lies in the fact that the method is not at all constructive, thus it does not permit
the localization of the periodic orbits on the torus. In the same spirit, variational methods which
make use of the mountain pass theorem were developed some years later by Fadell and Rabinowitz,
under different hypotheses (see Chapter 1 in [11] for a simplified exposition of this result).

More recently, the problem of continuation of degenerate periodic orbits in nearly integrable
Hamiltonian systems, using perturbation techniques, has been studied in [88] and [61], respectively
in the sense of Kolmogorov and Poincaré degeneracy. On the other hand, from the early nineties
great attention has been devoted to the generalization of Poincaré’s result to partially resonant tori,
where the unperturbed torus is foliated by quasi-periodic orbits, since the number of resonances is
strictly less than n1−1. In this case, the starting point still consists in looking for non-degenerate
critical points of the perturbation averaged over the unperturbed quasi-periodic solution. However,
the presence of more than a single frequency requires the assumption of additional hypotheses,
which allow to implement suitable versions of the KAM scheme. Along this line, first results were
due to Treshchev [87], Cheng [15], Cheng and Wang [16], Li and Yi [56]. Recently, these results
have been successfully extended to multiscale nearly integrable Hamiltonian systems, where the
integrable part of the Hamiltonian H0(I, ε), properly involves several time scales, see, e.g., [90,91].
All the quoted works deal with the case where the unperturbed invariant torus is degenerate due to
resonances among its frequencies. Instead, we remark that the problems of existence of invariant
tori of dimension less than the number of degrees of freedom in weakly perturbed Hamiltonian
system, i.e., the extension to lower dimensional tori of the classical KAM theory, has been widely
investigated by many authors, see, e.g., [26,44,47,62,63,66,93,94] in a general abstract framework,
and [12,20,21,38,46,86] for more recent problems mainly emerging in Celestial Mechanics.

In this first part of the thesis we follow the line traced by Poincaré and deal with those cases
when the Poincaré non-degeneracy condition is not fulfilled. In particular, under a twist-like
condition of the form (1.7) (see, e.g., [9]) and analytic estimates of the perturbation, we develop
an original normal form scheme, inspired by a recent completely constructive proof of the classical
Lyapunov’s theorem on periodic orbits (see [33]), and which allows to investigate the continuation
of degenerate periodic orbits for completely resonant tori of maximal or low dimension. Precisely,
first we identify possible candidates for the continuation via normal form, then we prove the
existence of a unique solution by using the Newton-Kantorovich method.

Generically, the estimates of our normal form procedure do not give a convergent normal form.
Actually, looking for a convergent normal form which is valid for all possible periodic orbits could
be too much to ask. The idea is that a suitably truncated normal form allows to produce the
approximated periodic orbits and the continuation can be performed via a contraction theorem or
with a further convergent normal form around a selected periodic orbit.

The strength of the present perturbation algorithm is at least twofold. First, it provides a
way to construct approximate periodic solutions at any desired order in ε, thus going beyond the
average approximation mostly used in the literature. One of the few results which represents an
improvement with respect to the usual average method is the one claimed in [61], where a criterion
for the existence of periodic orbits on completely degenerate resonant tori is proved. In that work
the authors, by means of a standard Lindstedt expansion as the original works of Poincaré, are able
to push the perturbation scheme at second order in the small parameter ε. However, the possibility
to provide a criterion for the continuation, although remarkable, is a consequence of the restriction
to completely degenerate cases, like when the Fourier expansion of H1 with respect to the angle
variables does not include a certain resonance class. In this way, all the partial degeneracies are
excluded. Such a limitation is overcome by the normal form that is here proposed: indeed, by
being able to deal with any degree of degeneracy, it results more general (also in terms of order
of accuracy), thus including also the above mentioned result. The formal scheme itself has also a
second relevant aspect. Since this approximation is given by a recursive explicit algorithm, it can
be much useful for numerical applications (see, e.g., [41]) and it is independent of the possibility
to conclude the proof with a contraction theorem.

Furthermore, this approach provides a constructive normal form that might be applied to
a sufficiently general class of models, in particular as regards the extension to lower dimensional
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1.1 Analytic setting

completely resonant tori in Chapter 2. It allows to study spatially localized time-periodic solutions
(often called multibreathers) in chains of weakly coupled oscillators, provided that it is possible to
explicitly perform a transformation to action-angle variables for the oscillators which are excited in
the unperturbed system. Indeed, these solutions can be interpreted as periodic orbits that survive
to the breaking of a lower dimensional completely resonant torus. For instance, our procedure
would also include non-linear Hamiltonian lattices with next-to-nearest neighbor interactions, such
as

H =
∑
j∈J

y2
j

2
+
∑
j∈J

V (xj) + ε

i∑
l=1

∑
j∈J

W (xj+l − xj) ;

where V (x) is the potential of an anharmonic oscillator which allows for action variables (at least
locally, like the Morse potential), and W (x) represents a generic also next-to-nearest neighbour
(possibly linear) interaction, with i the maximal range of the interaction. In the class of nearly
integrable Hamiltonian lattices, the possibility to generalize the formal scheme to lower dimensional
tori represents a breakthrough in the investigation of degenerate multibreathers and vortexes in
one and two-dimensional lattices (see, e.g., [54,70,72,75,76]). In this context, degenerate scenarios
which stem from the study of discrete solitons in dNlS lattices will be investigated in Chapter 3,
thanks also to the possibility of easily introducing the suitable setting with action-angle variables.

Existence and stability of multibreathers have been studied since the 90’s with an averaging
procedure, named effective Hamiltonian method (introduced in [5,58] and developed e.g. in [1,55]),
which however fails in those cases where approximate solutions are degenerate, for example not
isolated. The method is an extension of the Poincaré’s result to the case of lower dimensional com-
pletely resonant tori in chains of weakly coupled oscillators. Moreover, it considers an effective
Hamiltonian which, in the lowest order of approximation, is exactly the time averaged pertur-
bation 〈H1〉 evaluated at the unperturbed periodic orbit. Hence, critical points of this effective
Hamiltonian at leading order are the candidates for continuation which results in the application
of the implicit function theorem under the same hypotheses of non-degeneracy as before (Kol-
mogorov and Poincaré non-degeneracy) and a non-resonance condition (first Melnikov condition)
between the internal oscillators of the torus and the external ones.

This first Chapter is devoted to the normal form algorithm which allows to treat continuation
of degenerate periodic orbits in the case of completely resonant tori of maximal dimension. Before
entering the details of the normalization procedure, I will introduce the generic analytic setting
which will be used also in Chapter 2.

In Section 1.5 the special degenerate case of one-parameter families of periodic solutions is
analyzed and a simplified version of the continuation theorem is presented, exploiting perturbation
theory of matrices. Indeed, the hypotheses of the continuation theorem are not always easy to
be verified and the just mentioned simplification provides a more applicable formulation which
can be applied in several applications. In Chapter 2, by means of the improvement of the normal
form algorithm, we will exploit the properties of the monodromy matrix in order to get a generic
strategy which enables to more easily check the validity of the assumptions and obtain continuation
of periodic orbits.

1.1 Analytic setting

In this section we detail the analytic setting which is helpful to go into the details of the normal
form procedure. For the sake of simplicity, we introduce the setting for the generic case of lower
dimensional tori. This enables us to better justify some choices of notation due to the extension
of the normal form algorithm in the next Chapter.

Consider a canonical system of differential equations with n = n1 + n2 d.o.f. and Hamiltonian

H(I, ϕ, ξ, η, ε) = H0(I, ξ, η) + εH1(I, ϕ, ξ, η; ε) , (1.2)

where (I, ϕ) ∈ U(I∗) × Tn1 are action-angle variables defined in a neighbourhood U(I∗) ⊂ Rn1

of the action I∗, (ξ, η) ∈ V(0) ⊂ C2n2 are Cartesian variables defined in a neighbourhood V(0)
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1. Continuation of degenerate periodic orbits: full dimensional tori

of the origin. The Hamiltonian (1.2) is assumed to be analytic in all variables and in the small
parameter ε.

Introduce the distinguished classes of functions P̂l,m, with integers l and m, which can be
written as a Taylor-Fourier expansion

g(I, ϕ, ξ, η) =
∑
i∈Nn1
|i|=l

∑
(m1,m2)∈N2n2

|m1|+|m2|=m

∑
k∈Zn1

gi,m1,m2,k I
i exp(i〈k, ϕ〉)ξm1ηm2 , (1.3)

with coefficients gi,m1,m2,k ∈ C. We say that g ∈ P` in case

g ∈
⋃

l≥0,m≥0
2l+m=`

P̂l,m .

We also set P−4 = P−3 = P−2 = P−1 = {0}.
Consider the Hamiltonian (1.2) and select a completely resonant elliptic lower dimensional

torus for the unperturbed Hamiltonian setting I = I∗ and ξ = η = 0 such that

ω̂(I∗) = ∇IH0(I∗) = ωk , with ω ∈ R , k ∈ Zn1 . (1.4)

Expanding the Hamiltonian in Taylor series of the translated actions J = I−I∗ and the Cartesian
coordinates (ξ, η), and in Fourier series of the angles ϕ we get

H(0) = 〈ω̂, J〉+

n2∑
j=1

iΩjξjηj +
∑
`>2

f
(0,0)
` (J, ξ, η) +

∑
s>0

∑
`≥0

f
(0,s)
` (ϕ, J, ξ, η) , (1.5)

where f
(0,s)
` ∈ P` is of order O(εs) and the first superscript stands for the normalization step.

We also define the (n1 − 1)-dimensional resonant module associated to the resonant frequency
ω̂(I∗) as

Mω =
{
h ∈ Zn1 : 〈ω̂(I∗), h〉 = 0

}
.

In a neighborhood of the resonant torus, it is useful to introduce the resonant variables (q̂, p̂) in
place of (ϕ, J), in order to better describe the periodic dynamics. Without affecting the generality
of the result, we will assume k1 = 1; this choice simplifies the interpretation of the new variables.
The canonical change of coordinates is built with an unimodular matrix which defines the slow
angles q̂j = kjϕ1 − ϕj , for j = 2, . . . , n1, as the phase differences with respect to the fast angle
q̂1 of the periodic orbit; the momenta are defined so as to complement the canonical change of
coordinates, in particular p̂1 = 〈k, J〉.

In order to underline the dependence on fast and slow angles in the normal form scheme, we
introduce the notations p̂ = (p1, p), q̂ = (q1, q) with p1 = p̂1, p = (p̂2, . . . , p̂n) and correspondingly
for q1 and q. The Hamiltonian (1.5) then reads

H(0) = ωp1 +

n2∑
j=1

iΩjξjηj +
∑
`>2

f
(0,0)
` (p̂, ξ, η) +

∑
s>0

∑
`≥0

f
(0,s)
` (q̂, p̂, ξ, η) ,

where f
(0,s)
` ∈ P` and it is a function of order O(εs). Indeed, the linear change of coordinates does

not affect the belonging to the classes of functions P`.
Besides, we introduce the extended complex domains Dρ,σ,R = Gρ × Tn1

σ × BR, namely

Gρ =
{
p̂ ∈ Cn1 : max

1≤j≤n1

|p̂j | < ρ
}
,

Tn1
σ =

{
q̂ ∈ Cn1 : Re q̂j ∈ T, max

1≤j≤n1

| Im q̂j | < σ
}
,

BR =
{

(ξ, η) ∈ C2n2 : max
1≤j≤n2

(|ξj |+ |ηj |) < R
}
.
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1.2 Main results

Given a generic analytic function g : Dρ,σ,R → C, we define the weighted Fourier norm

‖g‖ρ,σ,R =
∑
i∈Nn1

∑
(m1,m2)∈N2n2

∑
k∈Zn1

|gi,m1,m2,k|ρ|i|R|m1|+|m2|e|k|σ .

Hereafter, we are going to use the shorthand notation ‖ · ‖α for ‖ · ‖α(ρ,σ,R) .
Let us remark that, for the case of full dimensional tori, the transversal variables ξ and η are

simply absent.

1.2 Main results

Consider a completely resonant maximal torus of H0 with unperturbed frequencies ω̂(I∗) as in
(1.4). This corresponds to a suitable choice of the actions I = I∗ with non-vanishing components.

Expanding (1.1) in power series of the translated actions J = I − I∗, one has

H(0) = 〈ω̂, J〉+ f
(0,0)
4 (J) +

∑
l>2

f
(0,0)
2l (J)

+ f
(0,1)
0 (ϕ) + f

(0,1)
2 (ϕ, J)

+
∑
s>1

f
(0,s)
0 (ϕ) +

∑
s>1

f
(0,s)
2 (ϕ, J)

+
∑
s>0

∑
l>1

f
(0,s)
2l (ϕ, J) ,

where f
(0,s)
2l is a homogeneous polynomial of degree l in J and it is a function of order O(εs).

Introducing the convenient notations p̂ = (p1, p), q̂ = (q1, q), the Hamiltonian can be written
in the form

H(0) = ωp1 + f
(0,0)
4 (p1, p) +

∑
l>2

f
(0,0)
2l (p1, p)

+ f
(0,1)
0 (q1, q) + f

(0,1)
2 (q1, q, p1, p)

+
∑
s>1

f
(0,s)
0 (q1, q) +

∑
s>1

f
(0,s)
2 (q1, q, p1, p)

+
∑
s>0

∑
l>1

f
(0,s)
2l (q1, q, p1, p)

(1.6)

where f
(0,s)
2l is a homogeneous polynomial of degree l in p̂ and it is a function of order O(εs).

Since we aim to continue a generic unperturbed periodic orbit q1 = q1(0) + ωt, q = q∗, p1 = 0,
p = 0 with fixed frequency ω, we look for a normal form which is able to select those phase shifts,
q∗, which represent good candidates for continuation. The Hamiltonian is said to be in normal
form up to order r if the constant and linear terms in the actions are averaged (up to order r) with
respect to the fast angle, q1, and if, for a fixed but arbitrary q∗, the linear terms in the action,
evaluated at q = q∗, vanish identically.

We state here our main result concerning the normal form.

Proposition 1.2.1 Consider a Hamiltonian H(0) expanded as in (1.6) that is analytic in a domain
Dρ,σ. Let us assume that

(H1) there exists a positive constant m such that for every v ∈ Rn1 one has

m

n1∑
i=1

|vi| ≤
n1∑
i=1

|
n1∑
j=1

C0,ijvj | , where C0 = D2
p̂f

(0,0)
4 ; (1.7)

(H2) the terms appearing in the expansion of the Hamiltonian satisfy

‖f (0,s)
2l ‖1 ≤

E

22l
εs , with E > 0. (1.8)
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1. Continuation of degenerate periodic orbits: full dimensional tori

Then, for every positive integer r there is a positive ε∗r such that for 0 ≤ ε < ε∗r there exists an
analytic canonical transformation Φ(r) satisfying

D 1
4 (ρ,σ) ⊂ Φ(r)

(
D 1

2 (ρ,σ)

)
⊂ D 3

4 (ρ,σ)

such that the Hamiltonian H(r) = H(0) ◦ Φ(r) has the following expansion

H(r)(p1, p, q1, q; q
∗) = ωp1 + f

(r,0)
4 (p1, p) +

∑
l>2

f
(r,0)
2l (p1, p)

+

r∑
s=1

f
(r,s)
0 (q; q∗) +

r∑
s=1

f
(r,s)
2 (q, p1, p; q

∗)

+
∑
s>r

f
(r,s)
0 (q1, q; q

∗) +
∑
s>r

f
(r,s)
2 (q1, q, p1, p; q

∗)

+
∑
s>0

∑
l>1

f
(r,s)
2l (q1, q, p1, p; q

∗) ,

(1.9)

where q∗ is a fixed but arbitrary parameter and f
(r,s)
2l ∈ P2l is a function of order O(εs). The

Hamiltonian (1.9) is said to be in normal form up to order r since for s ≤ r satisfies:

1. f
(r,s)
0 (q; q∗) do not depend on the fast angle q1;

2. f
(r,s)
2 (q, p̂; q∗) do not depend on q1 and, evaluated at q = q∗, satisfy

f
(r,s)
2 (q∗, p̂; q∗) = 0 .

The Hamilton equations associated to the truncated normal form, i.e., neglecting terms of
order O(εr+1), once evaluated at x∗ = (q = q∗, p̂ = 0), read

q̇1 = ω , q̇ = 0 , ṗ1 = 0 , ṗ = −
r∑
s=1

∇qf (r,s)
0 .

Hence, if
r∑
s=1

∇qf (r,s)
0

∣∣
q=q∗

= 0 , (1.10)

then q1 = q1(0), q = q∗, p1 = 0, p = 0 is the initial datum of a periodic orbit with frequency ω for
the truncated normal form. Considering the whole system given byH(r), the initial datum provides
an approximate periodic orbit with frequency ω, which turns out to be a relative equilibrium of
the truncated Hamiltonian. In order to provide a precise definition of approximate periodic orbit
we introduce the variation over the T -period map Υ : U(x∗) ⊂ R2n1−1 → V(x∗) ⊂ R2n1−1, a
smooth function of the 2n1 − 1 variables x = (q, p̂), parameterized by the initial phase q1(0) and
the small parameter ε, precisely1

Υ(x(0); ε, q1(0)) =

(
F(x(0); ε, q1(0))
G(x(0); ε, q1(0))

)
=

(
q̂(T )− q̂(0)− ΛT

1
ε (p(T )− p(0))

)
, (1.11)

with Λ = (ω, 0) ∈ Rn1 .
Let us stress that (q1 = ωt+q1(0), x∗) corresponds to a periodic orbit for the truncated normal

form, thus Υ(x∗; ε, q1(0)) is of order2 O(εr), as we will prove in Lemma1.4.1. Hence, a true periodic
orbit, close to the approximate one, is identified by an initial datum x∗p.o. = (q∗p.o., p̂p.o.) ∈ U(x∗)
such that

Υ(x∗p.o.; ε, q1(0)) = 0 .

1Let us remark that the actions p have been scaled by ε in Υ, in order to reveal degeneracy of periodic orbits.
2The actions p have been scaled by ε in Υ, hence only G is of order O(εr+1), while F is of order O(εr).
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1.3 Normal form algorithm

In order to prove the existence of a unique solution q1 = q1(0), q∗ = q∗p.o., p̂ = p̂p.o., close
enough to the approximate one, we will apply the Newton-Kantorovich algorithm. Therefore we
need to ensure that the Jacobian matrix (with respect to the initial datum)

M(ε) = Dx(0)Υ(x∗; ε, q1(0)) (1.12)

is invertible and its eigenvalues are not too small with respect to εr.
We now state the main result concerning continuation of periodic orbits

Theorem 1.2.1 Consider the map Υ defined in (1.11) in a neighbourhood of the torus p̂ = 0 and
let x∗(ε) = (q∗(ε), 0), with q∗(ε) satisfying (1.10), an approximate zero of Υ, namely

‖Υ(x∗(ε); ε, q1(0))‖ ≤ c1εr ,

where c1 is a positive constant depending on U and r. Assume that the matrix M(ε) defined
in (1.12) is invertible and its eigenvalues satisfy

|λ| & εα , for λ ∈ spec(M(ε)) with 2α < r . (1.13)

Then, there exist c0 > 0 and ε∗ > 0 such that for any 0 ≤ ε < ε∗ there exists a unique x∗p.o.(ε) =
(q∗p.o.(ε), p̂p.o.(ε)) ∈ U which solves

Υ(x∗p.o.; ε, q1(0)) = 0 ,
∥∥x∗p.o. − x∗∥∥ ≤ c0εr−α . (1.14)

We will see in the next Section that the above Theorem generalizes the classical result by
Poincaré, which corresponds to the construction of the first order normal form together with a
non-degeneracy assumption on the ε-independent version of (1.10), precisely

∇qf (1,1)
0 = 0 , |D2

qf
(1,1)
0 | 6= 0 . (1.15)

In such a case, due to the simplified form of Υ, the solution (q∗p.o., p̂p.o.) can be obtained via
implicit function theorem in a neighborhood of the approximate initial datum x∗, q∗ being a
solution of the first of (1.15), independent of ε. Hence, our high-order normal form construction
becomes a necessary way in order to deal with degenerate cases, where for example solutions of

(1.15) are not isolated and appear as d-parameter families, thus leading to |D2
qf

(1,1)
0 | = 0. Let us

also remark that our scheme provides a refined averaged Hamiltonian which allows to treat the

totally degenerate case, i.e., ∇qf (1,1)
0 ≡ 0. In particular, the results presented in [61] by means of

Lindstedt perturbation scheme can be obtained as special cases.

1.3 Normal form algorithm

This Section is dedicated to detail the first step of the normal form algorithm and the generic
one that takes the Hamiltonian (1.6) and brings it into normal form up to an arbitrary and finite
order r. We will use the formalism of Lie series (see, e.g., [43] and [32]).

The transformation at step r is generated via composition of two Lie series of the form

exp(L
χ

(r)
2

) ◦ exp(L
χ

(r)
0

) ,

where
χ

(r)
0 = X

(r)
0 + 〈ζ(r), q̂〉 ,

with ζ(r) ∈ Rn1 and X
(r)
0 ∈ P0, χ

(r)
2 ∈ P2 of order O(εr). The generating functions χ

(r)
0 and

χ
(r)
2 are unknowns to be determined so that the transformed Hamiltonian is in normal form up to

order r. We also denote by Lg· the Poisson bracket {·, g}.
We now state an algebraic property of the P` classes of functions:
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1. Continuation of degenerate periodic orbits: full dimensional tori

Lemma 1.3.1 Let f ∈ P`1 and g ∈ P`2 , then {f, g} ∈ P`1+`2−2.

Proof. We set `i = 2li + mi with i = 1, 2 and, by considering the Poisson bracket between f
and g

{f, g} =

n1∑
j=1

(
∂f

∂q̂j

∂g

∂p̂j
− ∂f

∂p̂j

∂g

∂q̂j

)
+

n2∑
j=1

(
∂f

∂ξj

∂g

∂ηj
− ∂f

∂ηj

∂g

∂ξj

)
,

we can deduce that each partial derivative with respect to p̂j turns the degree 2li into 2(li − 1) =
2li − 2 and, similarly, each partial derivative with respect to ξj or ηj transforms the degree mi

into mi − 1. This concludes the proof.

�

1.3.1 First normalization step

Consider the starting Hamiltonian (1.6).

First stage of the first normalization step

Our aim is to put the term f
(0,1)
0 in normal form, by averaging it with respect to the fast angle q1.

Furthermore, we want to perform a translation of the linear terms in the actions, in order to keep
the frequencies of the selected resonant torus fixed, when we are considering q = q∗. It means
that we want to keep the frequency ω unchanged and not to introduce transversal frequencies on
the torus. We determine the generating function

χ
(1)
0 (q̂) = X

(1)
0 (q̂) + 〈ζ(1), q̂〉 with ζ(1) ∈ Rn1 ,

belonging to P0 and of order O(ε), by solving the homological equations

L
X

(1)
0
ωp1 + f

(0,1)
0 = 〈f (0,1)

0 〉q1 ,

L〈ζ(1),q̂〉f
(0,0)
4 +

〈
f

(0,1)
2

∣∣∣
q=q∗

〉
q1

= 0 .

where 〈 · 〉q1 denotes the average with respect to the fast angle q1. Considering the Taylor-Fourier
expansion

f
(0,1)
0 (q̂) =

∑
k

c
(0,1)
0,k exp(i〈k, q̂〉) ,

we get

X
(1)
0 (q̂) =

∑
k1 6=0

c
(0,1)
0,k

ik1ω
exp(i〈k, q̂〉) .

The translating vector ζ(1) is the solution of the following linear system

∑
j

C0,ijζ
(1)
j =

∂

∂p̂i

〈
f

(0,1)
2

∣∣∣
q=q∗

〉
q1
.

Remark 1.3.1 This translation does not involve the linear term in the actions L
X

(1)
0 (q̂)

f
(0,0)
4 (p1, p),

since one has 〈
L
X

(1)
0 (q̂)

f
(0,0)
4

∣∣∣
q=q∗

〉
q1

= 0 .
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1.3 Normal form algorithm

The transformed Hamiltonian is calculated as

H(I;0) = exp
(
L
χ

(1)
0

)
H(0) =

= ωp1

+ f
(I;0,1)
0 + f

(I;0,1)
2

+
∑
s>1

f
(I;0,s)
0 +

∑
s>1

f
(I;0,s)
2

+
∑
s≥0

∑
l>1

f
(I;0,s)
2l .

The functions f
(I;0,s)
2l are recursively defined as

f
(I;0,1)
0 = 〈f (0,1)

0 〉q1 ,

f
(I;0,1)
2 = f

(0,1)
2 −

〈
f

(0,1)
2 (q∗)

〉
q1

+ L
X

(1)
0
f

(0,0)
4 ,

f
(I;0,s)
2l =

s∑
j=0

1

j!
Lj
χ

(1)
0

f
(0,s−j)
2l+2j , for l = 0, 1, s 6= 1 ,

or l ≥ 2, s ≥ 0 ,

with f
(I;0,s)
2l ∈ P2l.

Second stage of the first normalization step

Our goal is to put in normal form the term f
(I;0,1)
2 , by averaging it with respect to the fast angle

q1. We determine the generating function χ
(1)
2 , belonging to P2 and of order O(ε), by solving the

homological equation

L
χ

(1)
2
ωp1 + f

(I;0,1)
2 = 〈f (I;0,1)

2 〉q1 . (1.16)

Hence, considering the Taylor-Fourier expansion

f
(I;0,1)
2 (p̂, q̂) =

∑
|l|=1
k

c
(I;0,1)
l,k p̂l exp(i〈k, q̂〉) ,

we get

χ
(1)
2 (p̂, q̂) =

∑
|l|=1
k1 6=0

c
(I;0,1)
l,k p̂l exp(i〈k, q̂〉)

ik1ω
.

The transformed Hamiltonian is computed as

H(1) = exp
(
L
χ

(1)
2

)
H(I;0)

and is given by

H(1) = ωp1

+ f
(1,1)
0 + f

(1,1)
2

+
∑
s>1

f
(1,s)
0 +

∑
s>1

f
(1,s)
2

+
∑
s≥0

∑
l>1

f
(1,s)
2l ,
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1. Continuation of degenerate periodic orbits: full dimensional tori

with
f

(1,1)
2 = 〈f (I;0,1)

2 〉q1 ,

f
(1,s)
2 =

1

(s− 1)!
Ls−1

χ
(1)
2

(
f

(I;0,1)
2 +

1

s
L
χ

(1)
2
f

(I;0,0)
2

)
+

s−2∑
j=0

1

j!
Lj
χ

(1)
2

f
(I;0,s−j)
2 =

=
1

(s− 1)!
Ls−1

χ
(1)
2

(
1

s
〈f (I;0,1)

2 〉q1 +
s− 1

s
f

(I;0,1)
2

)
+

s−2∑
j=0

1

j!
Lj
χ

(1)
2

f
(I;0,s−j)
2 , for s 6= 1 ,

f
(1,s)
2l =

s∑
j=0

1

j!
Lj
χ

(1)
2

f
(I;0,s−j)
2l , for l 6= 1, s ≥ 0 ,

where we have exploited the homological equation (1.16).
We can stress that, of course, this stage does not give rise to terms which change the function

f
(I;0,1)
0 .

Let us consider the Hamilton equations of H(1)

q̇1 = ω +∇p1

[
f

(1,0)
4 + f

(1,1)
2

]
+O(|p̂|2) +O(ε|p̂|) +O(ε2)

q̇ = ∇p
[
f

(1,0)
4 + f

(1,1)
2

]
+O(|p̂|2) +O(ε|p̂|) +O(ε2)

ṗ1 = O(ε|p̂|2) +O(ε2)

ṗ = −∇qf (1,1)
0 −∇qf (1,1)

2 +O(ε|p̂|2) +O(ε2) ,

When we neglect terms of order O(ε2) and we evaluate the equations at x∗ = (q = q∗, p̂ = 0), we
get

q̇1 = ω , q̇ = 0 , ṗ1 = 0 , ṗ = −∇qf (1,1)
0

∣∣
q=q∗

.

Let us remark that, for q = q∗, one has f
(1,1)
2

∣∣
q=q∗

= 0, because of the translation performed in

the first stage of the normalization step.
Therefore, if

∇qf (1,1)
0

∣∣
q=q∗

= 0 , (1.17)

then (q1 = q1(0) + ωt, x∗) represents a relative equilibrium of the truncated Hamiltonian which
we aim to continue. We remark that the equation (1.17) allows to select the candidates q∗ for the
continuation, which are independent of ε. The periodicity of an orbit for the Hamiltonian H(1) is
given by the following condition:

q̂(T )− q̂(0)− ΛT =

∫ T

0

∇p
[
f

(1,0)
4 + f

(1,1)
2

]
ds+O(|p̂|2) +O(ε|p̂|) +O(ε2) = 0 ,

p1(T )− p1(0) = O(ε|p̂|2) +O(ε2) = 0 ,

p(T )− p(0) = −
∫ T

0

∇q
[
f

(1,1)
0 + f

(1,1)
2

]
ds+O(ε|p̂|2) +O(ε2) = 0 ,

Due to the conservation of the energy, we can neglect the equation for p1. In addition, we can
divide the n1−1 actions p by ε. Hence, we get a system of 2n1−1 equations in 2n1−1 unknowns
x(0) = (q(0), p1(0), p(0)). We can now define the map Υ as in (1.11). Therefore, the approximate
periodic solution

q1(t) = ωt+ q1(0) , q(t) = q∗ , p̂(t) = 0
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1.3 Normal form algorithm

coincides with an approximate zero of the map Υ, thus, for ε = 0, one has Υ(x∗; 0, q1(0)) = 0.
In order to apply the implicit function theorem and obtain the continuation of the unperturbed
periodic orbit, we have to verify the condition on the determinant of the Jacobian matrix M(0).

To this end, we expand3 the solution x = (q̂, p̂) w.r.t ε, getting

x(t, ε) = x(0)(t) + εx(1)(t) +O(ε2) .

Since we consider an initial datum x0 which does not depend on ε, we have

x(0)(0) = x0 , x(k)(0) = 0 , k ≥ 1 .

In particular, we have the following expansions

p̂(t, q0, p̂0, ξ0, η0, ε) = p̂0 +O(ε)

q̂(t, q0, p̂0, ξ0, η0, ε) = q̂(0)(t) +O(ε) , with q
(0)
1 (t) = ωt+ q

(0)
1 (0), q(0)(t) = q∗ ,

(1.18)

where the dependence on q1(0) is implied.
Let us compute the differential of the functions F and G. By inserting (1.18) in F and G, we

get

F =

∫ T

0

C0p̂0 ds+O(|p̂|2) +O(ε) ,

G = −1

ε

∫ T

0

[
∇qf (1,1)

0 (q(0)(t)) +∇qf (1,1)
2 (q(0)(t), p̂0)

]
ds+O(|p̂|2) +O(ε) .

Thus, we obtain

Dq0F
∣∣
(x∗;0)

= O , Dp̂0
F
∣∣
(x∗;0)

= C0T ,

Dq0G
∣∣
(x∗;0)

= −T
ε
D2
qf

(1,1)
0 (q∗) , Dp̂0

G
∣∣
(x∗;0)

= −T
ε
D2
p̂qf

(1,1)
2 (q∗)

and the matrix

M(0) =


O C0T

−T
ε
D2
qf

(1,1)
0 (q∗) −T

ε
D2
p̂qf

(1,1)
2 (q∗)

 .

Due to the twist condition (1.7), in order to apply the implicit function theorem, we only need
that ∣∣∣∣−Tε D2

qf
(1,1)
0 (q∗)

∣∣∣∣ 6= 0 .

To conclude, under the above hypothesis of non-degeneracy, we can infer the continuation of
the unperturbed approximate periodic orbit to a true periodic orbit, with the same frequency ω
obtaining the following Theorem

Theorem 1.3.1 Consider the starting Hamiltonian (1.6) and assume the twist condition (1.7).
The unperturbed approximate periodic orbits for which it holds that

∇qf (1,1)
0 (q∗) = 0 ,

∣∣∣D2
qf

(1,1)
0 (q∗)

∣∣∣ 6= 0 ,

namely non-degenerate periodic orbits, are analytically continued at fixed period, i.e. there exists
a value ε∗ such that for |ε| < ε∗ we get continuation.

The result is exactly the continuation statement of Poincaré’s Theorem.

3Let us stress that the solution is analytic w.r.t. the parameter ε, in view of the analyticity of the Hamiltonian.
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1. Continuation of degenerate periodic orbits: full dimensional tori

1.3.2 Generic r-th normalization step

We now describe the generic r-th normalization step, starting from the Hamiltonian in normal
form up to order r − 1, H(r−1), namely

H(r−1) = ωp1 +
∑
s<r

f
(r−1,s)
0 +

∑
s<r

f
(r−1,s)
2

+ f
(r−1,r)
0 + f

(r−1,r)
2

+
∑
s>r

f
(r−1,s)
0 +

∑
s>r

f
(r−1,s)
2

+
∑
s≥0

∑
l>1

f
(r−1,s)
2l ,

(1.19)

where f
(r−1,s)
2l ∈ P2l is of order O(εs); f

(r−1,s)
0 and f

(r−1,s)
2 for 1 ≤ s < r are in normal form.

First stage of the normalization step

Our aim is to put the term f
(r−1,r)
0 in normal form and to keep the harmonic frequencies of the

selected resonant torus fixed. We determine the generating function χ
(r)
0 = X

(r)
0 + 〈ζ(r), q̂〉 by

solving the homological equations

L
X

(r)
0
ωp1 + f

(r−1,r)
0 = 〈f (r−1,r)

0 〉q1 ,

L〈ζ(r),q̂〉f
(0,0)
4 +

〈
f

(r−1,r)
2

∣∣∣
q=q∗

〉
q1

= 0 .

Considering the Taylor-Fourier expansion

f
(r−1,r)
0 (q̂) =

∑
k

c
(r−1,r)
0,k exp(i〈k, q̂〉) ,

we readily get

X
(r)
0 (q̂) =

∑
k1 6=0

c
(r−1,r)
0,k

ik1ω
exp(i〈k, q̂〉) .

The translation vector, ζ(r), is determined by solving the linear system∑
j

C0,ijζ
(r)
j =

∂

∂p̂i

〈
f

(r−1,r)
2

∣∣∣
q=q∗

〉
q1
.

This translation, which involves the linear term in the actions f
(r−1,r)
2 , allows to keep the frequency

ω fixed and kills the small transversal frequencies in the angles q.
The transformed Hamiltonian is computed as

H(I;r−1) = exp
(
L
χ

(r)
0

)
H(r−1)

and has a form similar to (1.19), precisely

H(I;r−1) = exp
(
L
χ

(r)
0

)
H(r−1) =

= ωp1 +
∑
s<r

f
(I;r−1,s)
0 +

∑
s<r

f
(I;r−1,s)
2

+ f
(I;r−1,r)
0 + f

(I;r−1,r)
2

+
∑
s>r

f
(I;r−1,s)
0 +

∑
s>r

f
(I;r−1,s)
2

+
∑
s≥0

∑
l>1

f
(I;r−1,s)
2l .
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1.4 Proof of Theorem 1.2.1

The functions f
(I;r−1,s)
2l are recursively defined as

f
(I;r−1,r)
0 =

〈
f

(r−1,r)
0

〉
q1
,

f
(I;r−1,r)
2 = f

(r−1,r)
2 −

〈
f

(r−1,r)
2 (q∗)

〉
q1

+ L
X

(r)
0
f

(0,0)
4 ,

f
(I;r−1,s)
2l =

bs/rc∑
j=0

1

j!
Lj
χ

(r)
0

f
(r−1,s−jr)
2l+2j , for l = 0, 1, s 6= r ,

or l ≥ 2, s ≥ 0 ,

(1.20)

with f
(I;r−1,s)
2l ∈ P2l.

Second stage of the normalization step

We now put f
(I;r−1,r)
2 in normal form, by averaging with respect to the fast angle q1. This

is necessary in order to avoid small oscillations of q around q∗. We determine the generating

function χ
(r)
2 by solving the homological equation

L
χ

(r)
2
ωp1 + f

(I;r−1,r)
2 =

〈
f

(I;r−1,r)
2

〉
q1

.

Considering again the Taylor-Fourier expansion

f
(I;r−1,r)
2 (p̂, q̂) =

∑
|l|=1
k

c
(I;r−1,r)
l,k p̂l exp(i〈k, q̂〉)

we get

χ
(r)
2 (p̂, q̂) =

∑
|l|=1
k1 6=0

c
(I;r−1,r)
l,k p̂l exp(i〈k, q̂〉)

ik1ω
.

The transformed Hamiltonian is computed as

H(r) = exp
(
L
χ

(r)
2

)
H(I;r−1)

and is given the form (1.19), replacing the upper index r − 1 by r , with

f
(r,r)
2 = 〈f (I;r−1,r)

2 〉q1 ,

f
(r,jr)
2 =

1

(j − 1)!
Lj−1

χ
(r)
2

(
1

j
〈f (I;r−1,r)

2 〉q1 +
j − 1

j
f

(I;r−1,r)
2

)

+

bs/rc−2∑
j=0

1

j!
Lj
χ

(r)
2

f
(I;r−1,s−jr)
2 ,

f
(r,s)
2l =

bs/rc∑
j=0

1

j!
Lj
χ

(r)
2

f
(I;r−1,s−jr)
2l for l = 0, s ≥ 0 ,

or l = 1, s 6= jr ,

or l ≥ 2, s ≥ 0 .

(1.21)

1.4 Proof of Theorem 1.2.1

By means of the normal form construction, it is possible to give the original Hamiltonian the form
(1.9).
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1. Continuation of degenerate periodic orbits: full dimensional tori

The Hamilton equations associated to the Hamiltonian H(r) read

q̇1 = ω +∇p1

[
f

(r,0)
4 +

r∑
s=1

f
(r,s)
2

]
+O(|p̂|2) +O(ε|p̂|) +O(εr+1)

q̇ = ∇p

[
f

(r,0)
4 +

r∑
s=1

f
(r,s)
2

]
+O(|p̂|2) +O(ε|p̂|) +O(εr+1)

ṗ1 = O(ε|p̂|2) +O(εr+1)

ṗ = −
r∑
s=1

∇qf (r,s)
0 −

r∑
s=1

∇qf (r,s)
2 +O(ε|p̂|2) +O(εr+1)

Evaluating at x∗ and neglecting terms of order O(εr+1), the Hamilton equations provide a periodic
orbit of frequency ω once q∗ fulfills the equation (1.10). Generically, for r ≥ 2, the value q∗ would
depend analytically on ε, precisely q∗(ε) = q∗0 + O(ε), with q∗0 solution of the ε-independent
equation (1.15). The periodicity of an orbit for the Hamiltonian H(r) is given by

q̂(T )− q̂(0)− ΛT =

∫ T

0

∇p

[
f

(r,0)
4 +

r∑
s=1

f
(r,s)
2

]
ds+O(|p|2) +O(ε|p|) +O

(
εr+1

)
= 0 ,

p1(T )− p1(0) = O(ε|p|2) +O
(
εr+1

)
= 0 ,

p(T )− p(0) = −
∫ T

0

r∑
s=1

∇q
[
f

(r,s)
0 + f

(r,s)
2

]
ds+O(ε|p|2) +O

(
εr+1

)
= 0 ,

Due to conservation of the energy, we can eliminate the equation for p1, divide the n1−1 actions p
by ε and look at q1(0) as a parameter (the phase along the orbit). The system of 2n1−1 equations
in 2n1 − 1 unknowns x(0)

q̂(T )− q̂(0)− ΛT =

∫ T

0

∇p

[
f

(r,0)
4 +

r∑
s=1

f
(r,s)
2

]
ds+O(|p|2) +O(ε|p|) +O

(
εr+1

)
= 0 ,

p(T )− p(0)

ε
= −1

ε

∫ T

0

r∑
s=1

∇q
[
f

(r,s)
0 + f

(r,s)
2

]
ds+O(|p|2) +O(εr) = 0 ,

takes the form (1.11). The approximate periodic solution

q1(t) = ωt+ q1(0) , q(t) = q∗ , p̂(t) = 0 ,

corresponds to an approximate zero x∗ for the map Υ.
Introduce the quantities

Ξr = max

(
eE

ωδ2
rρσ

+
eE

4mδrρ2
, 2 +

eE

ωδrρσ
,

2eE

ωδ2
rρσ

)
,

that will be useful for the estimates in Section 1.6, with ρ, σ, δr the constants and the restrictions
of the domain due to Cauchy’s estimates (see Lemma 1.6.1). Now, we can state the following
Lemma

Lemma 1.4.1 Let x∗ = (q∗, 0) be a relative equilibrium for the truncated normal form, i.e. an
approximate periodic orbit for the Hamiltonian H(r), then Υ(x∗; ε, q1(0)) is of order O(εr).

Proof. Considering the remainder of the Hamiltonian H(r), namely
∑
s>r

∑
2l≥0 f

(r,s)
2l , we

obtain the following estimate, if ε is small enough (i.e. take ε < 1
100Ξ3

r
):

∑
s>r

∑
l≥0

‖f (r,s)
2l ‖ ≤

∑
s>r

∑
l≥0

100s

20
Ξ3s
r

E

22l
εs ≤ E

15

∑
s≥0

(
100Ξ3

rε
)s − r∑

s=0

(
100Ξ3

rε
)s

=
E

15

(
100Ξ3

rε
)r+1

1− 100Ξ3
rε

,
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1.4 Proof of Theorem 1.2.1

where we have used the estimates contained in Lemma 1.6.4. By considering the estimates for
the symplectic gradient in Corollary A.2.1 and integrating over the period T , we can deduce that
there exist a domain U and a constant c1(r), dependent on the domain, such that

‖Υ(x∗; ε, q1(0))‖ ≤ c1(r)εr ,

where we have taken into account the scaling of the actions with respect to ε.
�

We come now to the proof of the Theorem 1.2.1.
Proof. The proof of the Theorem consists in the application of the Proposition A.1.1 reported in
section A.1 of the Appendix. Since we are seeking for a true periodic solution close to the approx-
imate one, we take x in a small ball centered in x∗. Thus both the variables can be interpreted
locally as Cartesian variables in R2n1−1. Consider the differential of the map Υ evaluated at x∗,
namely the matrix M(ε) defined in (1.12). Extracting from M(ε) its leading order in ε, we get

M(ε) = M0 +O(ε) , M0 := M(0) =

(
0 C0T

−B1T −D1T

)
,

where

B1 =
1

ε
D2
qf

(r,1)
0

∣∣
q=q∗0

and C0 is the twist matrix defined in (1.7). The first hypothesis (A.1) in Proposition A.1.1 is
satisfied with β = r, due to Lemma 1.4.1. The third assumption (A.3) on Lipschitz continuity
is satisfied in view of the analyticity of the flow at time T w.r.t. the initial datum (it keeps the
same smoothness as its vector field). The core of the statement is then the requirement on the
invertibility of M(ε). If B1 is invertible, then the same holds true for M0 (the twist C0 being
invertible); thus M(ε) is also invertible and the second hypothesis (A.2) is satisfied with α = 0,
M0 being independent of ε. This is actually the non-degenerate case, namely the Poincaré’s
theorem. If instead B1 has a nontrivial Kernel, namely we have degeneracy, then the same holds
also for M0 (typically with a greater dimension). The required invertibility of M(ε), asked by
Theorem 1.2.1, is necessarily due to the ε-corrections, which are responsible for the bifurcations
of the zero eigenvalues of the matrix M0. Hence, in order to fulfill (A.2) for a generic step r, we
need the smallest eigenvalues of M(ε) = N(ε) +O(εr) to bifurcate from zero as λj(ε) ∼ εα, with
α < r, which is guaranteed by the condition 2α < r needed in Proposition A.1.1. Thus, we get the
hypothesis (1.13). Finally, estimates (1.14) are of the same type as the one in Proposition A.1.1,
even after back-transforming the solutions to the original canonical variables with Φ(r). Indeed,
the normalizing transformation Φ(r) is a near the identity transformation (see the Appendix for
the proof of Proposition 2.1.1, which is just a generalization of Proposition 1.2.1).

�

In case of absence of the scaling w.r.t. ε in the map Υ, the result about the continuation of
periodic orbits may be stated as follows

Theorem 1.4.1 Consider the map Υ defined in (1.11) (without the scaling of the actions) in
a neighbourhood of the torus p̂ = 0 and let x∗(ε) = (q∗(ε), 0), with q∗(ε) satisfying (1.10), an
approximate zero of Υ, namely

‖Υ(x∗(ε); ε, q1(0))‖ ≤ c1εr+1 ,

where c1 is a positive constant depending on U and r. Assume that the matrix M(ε) defined
in (1.12) is invertible and its eigenvalues satisfy

|λ| & εα , for λ ∈ spec(M(ε)) with 2α < r + 1 .

Then, there exist c0 > 0 and ε∗ > 0 such that for any 0 ≤ ε < ε∗ there exists a unique x∗p.o.(ε) =
(q∗p.o.(ε), p̂p.o.(ε)) ∈ U which solves

Υ(x∗p.o.; ε, q1(0)) = 0 ,
∥∥x∗p.o. − x∗∥∥ ≤ c0εr+1−α .
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1. Continuation of degenerate periodic orbits: full dimensional tori

1.5 One-parameter families

Generically we expect that, in most cases, two normal form steps should be enough to get a clear
insight into the degeneracy. In particular, with a second order approximation one can investigate
whether one-parameter families which are solutions of (1.15), are destroyed or not. In the first
case, the isolated solutions which survive to the breaking of the family are natural candidates for
continuation, once (1.13) has been verified. In the second case, at least a third step of normalization
is necessary, unless there are good reasons to believe that the whole family survives, due to the
effect of some hidden symmetry of the model.

What we are going to develop is exactly the case when the first of (1.15) admits one-parameter
families of solutions on the torus Tn1−1, which means that dim (Ker(B1)) = 1. In this easier case
(which represents the weakest degeneracy for B1), under suitable conditions on the matrix M0, it
is possible to apply some results of perturbation theory of matrices to M(ε) (see [92], Chap. IV,
par. 1.4) in order to replace assumption (1.13) with a more accessible criterion. This allows to
get a more applicable formulation of Theorem 1.2.1, which will be used in applications.

1.5.1 Some few facts on matrix perturbation theory

The degeneracy we are considering implies that 0 ∈ Spec(−B1T ), with the geometric multiplicity
equal to one (mg(0,−B1T ) = 1). Let a1 be the (n1 − 1)-dimensional vector generating Ker(B1).
Let us introduce also f1 as the embedding of a1 into R2n1−1, namely the (2n1 − 1) vector

f1 =

(
a1

0

)
.

It is the vector generating ker(M0). Indeed, in order to study the Ker(M0), we have to solve(
O C0T
−B1T −D1T

)(
x
y

)
=

(
C0Ty

−B1Tx−D1Ty

)
=

(
0
0

)
which, due to the invertibility of C0, gives y = 0, and thus x ∈ Ker(B1). We have the following
Lemma

Lemma 1.5.1 Consider the matrix M0, with Ker(M0) = Span(f1) . If the orthogonality condition〈
C−1

0 D>1 a1,

(
a1

0

)〉
= 0 , (1.22)

is fulfilled (with

(
a1

0

)
a n1-dimensional vector), then the algebraic multiplicity of the zero eigen-

value is greater than two (ma(0,M0) ≥ 2).

Proof. The statement can be derived investigating the Kernel of the adjoint matrix M>0 . It is
easy to see that

Ker(M>0 ) = Span (g) , g =

(
−C−1

0 D>1 a1

a1

)
and to deduce that the assumption (1.22) is equivalent to 〈f1, g〉 = 0, where the right hand vector
in (1.22) is the n1-dimensional vector built by complementing a1 with one 0. The last, according to
Lemma III, Chapter 1.16 of [92], is not compatible with ma(0,M0) = 1. Precisely, we can observe
that the orthogonality condition between the two vectors allows to find a second generalized
eigenvector f2 for Ker(M0), as a solution of M0f2 = f1. Indeed, the Fredholm alternative theorem
guarantees the existence of f2 under exactly the condition 〈f1, g〉 = 0.

�

In order to determine the asymptotic behavior of the eigenvalues λ(ε) ∈ spec(M(ε)), we make
use of the fact that dim(Ker(M0)) = 1 and we consider the following expansion

M(ε) = M0 + εM1 +O(ε2) =

(
εA1T C0T + εC1T

−B1T − εB2T −D1T − εD2T

)
+O(ε2) .
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1.5 One-parameter families

Then the following Lemma holds true (see [92], Chapter IV, § 1)

Lemma 1.5.2 Let λ0 be an eigenvalue of M0 with mg(λ0,M0) = 1 and ma(λ0,M0) = h ≥ 2 and
let f1, . . . , fh be the generalized eigenvectors relative to λ0, defined by the recursive scheme

M0f1 = λ0f1, M0f2 = λ0f2 + f1, . . . ,M0fh = λ0fh + fh−1.

Moreover, let g1, . . . , gh be the generalized eigenvectors for M>0 relative to λ0, such that

〈fj , gi〉 = δji, with j, i = 1, . . . , h

and define

γ = 〈M1f1, gh〉 .

If γ 6= 0, then the h solutions λj(ε) of the characteristic equation

det(M(ε)− λI) = 0

are given by

λj(ε) = λ0 − (εγ)
1/h
j +O(ε2/h) ,

where (εγ)
1/h
j are the h distinct roots of h

√
εγ.

1.5.2 The special case of ma(0,M0) = 2.

We have to bound the inverse matrix M−1(ε), hence we are interested in the bifurcations of the
zero eigenvalue, thus in the previous Lemma 1.5.2 we can take λ0 = 0 and f1 as the eigenvector
generating Ker(M0). Moreover, since(

A1T C1T
−B2T −D2T

)
f1 =

(
A1Ta1

−B2Ta1

)
,

the value of γ does not depend on the whole matrix M1, but only on the blocks A1 and B2. The
problem is further simplified when ma(0,M0) = 2: in this case g2 coincides with g and γ reduces
to

γ = 〈M1f1, g2〉 =
〈(
A1Ta1 −B2Ta1

)
,

(
−C−1

0 D>1 a1

a1

)〉
=
〈
−T
(
B2 +D1C

−1
0 A1

)
a1, a1

〉
.

Thus, under the easier condition

γ = 〈
(
B2 +D1C

−1
0 A1

)
a1, a1〉 6= 0 ,

Theorem 1.2.1 can be formulated as

Theorem 1.5.1 Consider Υ = (F,G) defined by (1.11) in a neighborhood of the point x∗, with
q∗(ε) defined by (1.10) and r = 2. Let dim(Ker(B1)) = 1, a1 being its generator. Assume also
that ma(0,M0) = 2 and that

γ 6= 0 . (1.23)

Then, there exist positive constants c0 and ε∗ such that, for |ε| < ε∗ there exists a point x∗p.o.(ε) ∈
U × Tn1−1 which solves

Υ(x∗p.o.; ε, q1(0)) = 0 ,
∥∥x∗p.o. − x∗∥∥ ≤ c0ε3/2 .
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1. Continuation of degenerate periodic orbits: full dimensional tori

In order to verify condition (1.23), the block matrices A1 and B2 are needed; as a consequence,
the first order corrections to the generic Cauchy problem, q̂(1)(t) and p̂(1)(t) have to be derived.
With a standard approach, as the one performed in [61], and after expanding in ε both the map
Υ and the solution q∗(ε) = q∗0 +O(ε), one gets

εA1T = −T
2

2
C0Dqq̂f

(2,1)
0 (q∗0) + TDqp̂f

(2,1)
2 (q∗0)

−εB2T = −TD3
qf

(2,1)
0 (q∗0)q∗1 −

T

ε
D2
qf

(2,2)
0 (q∗0)

+
T 2

2ε

[
D2
qpf

(2,1)
2 (q∗0)D2

qf
(2,1)
0 (q∗0)−D2

qf
(2,1)
0 (q∗0)D2

qpf
(2,1)
2 (q∗0)

]
+
T 3

6ε

[
D2
qf

(2,1)
0 (q∗0)C0D

2
qf

(2,1)
0 (q∗0)

]
.

Despite the formulation of Theorem 1.5.1 is simplified with respect to the abstract result stated in
Theorem 1.2.1, it is evident from the above formulas that it may be a hard task to verify condition
(1.23). However, if the original Hamiltonian is even in the angle variables, as often happens in
models of weakly coupled anharmonic oscillators, then condition (1.23) can be further simplified
if the solutions to be investigated are the in/out-of-phase solutions q∗ = 0, π, as shown in the
pedagogical example 3.2.1 in Chapter 3.

Moreover, in Chapter 2 a different approach, which exploits the connection of the matrix (1.12)
with the monodromy matrix, will be described. It will allow to get a more accessible condition to
be verified in applications for all degenerate scenarios.

1.6 Analytic estimates

The formal algorithm we have described results in a recursive scheme of estimates on the norms of
the various functions. Prior to state the main results, we introduce some helpful technical tools.

1.6.1 Estimates for Poisson brackets and Lie series

Lemma 1.6.1 Let d ∈ R such that 0 < d < 1 and g ∈ P2l be an analytic function with bounded
norm ‖g‖1. Then one has ∥∥∥∥ ∂g∂p̂j

∥∥∥∥
1−d
≤
‖g‖1
dρ

,

∥∥∥∥ ∂g∂q̂j
∥∥∥∥

1−d
≤
‖g‖1
edσ

.

Lemma 1.6.2 Let d ∈ R such that 0 < d < 1 and j ≥ 1. Then one has

∥∥∥∥Ljχ(r)
0

f

∥∥∥∥
1−d−d′

≤ j!

e

(
e‖X(r)

0 ‖1−d′
d2ρσ

+
e|ζ(r)|
dρ

)j
‖f‖1−d′ ,

∥∥∥∥Ljχ(r)
2

f

∥∥∥∥
1−d−d′

≤ j!

e2

(
2e‖χ(r)

2 ‖1−d′
d2ρσ

)j
‖f‖1−d′ .

1.6.2 Recursive scheme of estimates

We need to introduce a sequence of restrictions of the domain so as to apply Cauchy’s estimate.
Having fixed d ∈ R, 0 < d ≤ 1/4, we consider a sequence δr≥1 of positive real numbers satisfying

δr+1 ≤ δr ,
∑
r≥1

δr ≤
d

2
;
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1.6 Analytic estimates

thus the sequence δr has to satisfy the inequality δr < C/r for some r > r and C ∈ R. Moreover,
we introduce a further sequence dr≥0 of real numbers recursively defined as

d0 = 0 , dr = dr−1 + 2δr .

In order to precisely state the iterative Lemma, we need to introduce the quantities Ξr, pa-
rameterized by the index r, as

Ξr = max

(
eE

ωδ2
rρσ

+
eE

4mδrρ2
, 2 +

eE

ωδrρσ
,

2eE

ωδ2
rρσ

)
.

Following the approach described in [35], the number of terms generated recursively by formulæ

(1.20) and (1.21) is controlled by the two sequences {νr,s}r≥0 , s≥0 and {ν(I)
r,s}r≥1 , s≥0 of integer

numbers that are recursively defined as

ν0,s = 1 for s ≥ 0 ,

ν(I)
r,s =

bs/rc∑
j=0

νjr−1,rνr−1,s−jr for r ≥ 1 , s ≥ 0 ,

νr,s =

bs/rc∑
j=0

(3νr−1,r)
jν

(I)
r,s−jr for r ≥ 1 , s ≥ 0 .

(1.24)

Let us stress that when s < r, the above (1.24) simplify as

ν(I)
r,s = νr−1,s , νr,s = ν(I)

r,s ,

namely
νr,s = νr−1,s = . . . = νs,s .

Lemma 1.6.3 The sequence of positive integers {νr,s}r≥0 , s≥0 defined in (1.24) is bounded by the
exponential growth

νr,s ≤ νs,s ≤
100s

20
for r ≥ 0 , s ≥ 0 .

Let us introduce the quantities b(I; r, s, 2l) and b(r, s, 2l) (r being a positive integer, while s and
l are non-negative ones) that will be useful to control the exponents of the Ξr in the normalization
procedure,

b(I; r, s, 2l) =



s if r = 1 ,

0 if r ≥ 2, s = 0 ,

3s−b s+r−1
r c−b s+r−2

r c−2 if r ≥ 2, 0 < s ≤ r, l = 0

3s−b s+r−1
r c−b s+r−2

r c−1 if r ≥ 2, r < s ≤ 2r, l = 0

3s−b s+r−1
r c−b s+r−2

r c−1 if r ≥ 2, 0 < s ≤ r, l = 1

3s−b s+r−1
r c−b s+r−2

r c in the other cases

and

b(r, s, 2l) =



0 if r > 0, s = 0

3s−b s+r−1
r c−w2l if r = 1, s > 0 ,

3s−b s+r−1
r c−b s+r−2

r c−2 if r ≥ 2, 0 < s ≤ r, l = 0

3s−b s+r−1
r c−b s+r−2

r c−1 if r ≥ 2, r < s ≤ 2r, l = 0

3s−b s+r−1
r c−b s+r−2

r c−1 if r ≥ 2, 0 < s ≤ r, l = 1

3s−b s+r−1
r c−b s+r−2

r c in the other cases

with w0 = 2, w2 = 1 and w2l = 0 for l ≥ 2.

We are now ready to state the main Lemma collecting the estimates for the generic r-th
normalization step of the normal form algorithm.
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1. Continuation of degenerate periodic orbits: full dimensional tori

Lemma 1.6.4 Consider a Hamiltonian H(r−1) expanded as in (1.19). Let χ
(r)
0 = X

(r)
0 + 〈ζ(r), ϕ〉

and χ
(r)
2 be the generating functions used to put the Hamiltonian in normal form at order r, then

one has

‖X(r)
0 ‖1−dr−1

≤ 1

ω
νr−1,rΞ

3r−4
r Eεr ,

|ζ(r)| ≤ 1

4mρ
νr−1,rΞ

3r−3
r Eεr ,

‖χ(r)
2 ‖1−dr−1−δr ≤

1

ω
3νr−1,rΞ

3r−3
r

E

4
εr .

The terms appearing in the expansion of H(I;r−1) in (1.20) are bounded as

‖f (I;r−1,s)
2l ‖1−dr−1−δr ≤ ν(I)

r,sΞ
b(I;r,s,2l)
r

E

22l
εs .

The terms appearing in the expansion of H(r) in (1.21) are bounded as

‖f (r,s)
2l ‖1−dr ≤ νr,sΞ

b(r,s,2l)
r

E

22l
εs .

Remark 1.6.1 Our estimates do not provide the convergence of the normal form algorithm. We
are considering a completely resonant normal form, thus, if ω 6= 0, the divisors k1ω introduced
in the solution of the homological equations cannot become arbitrarily small. In particular, we do
not need a strong non-resonance condition on the frequencies. However, the restrictions of the
domains, due to the Cauchy’s estimates for derivatives, introduce the small denominators δr that
actually accumulate to zero. We think it is reasonable that the normal form diverges, since looking
for a convergent normal form which is valid for all possible periodic orbits could be too much to
ask. It would mean to have a local normal form which gives a global result.

All the Lemmas of this Section and Proposition 1.2.1 are just a particular case of those regarding
the lower dimensional torus. Hence, refer to the Appendix (Section A.2) for the proofs, mutatis
mutandis.
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Chapter 2

Continuation of degenerate
periodic orbits: lower dimensional
tori

This Chapter is devoted to the extension to lower dimensional resonant tori of the algorithm
developed in the first Chapter. Hence, consider a canonical system of differential equations with
n = n1 + n2 d.o.f. and the analytic Hamiltonian

H(I, ϕ, x, y, ε) = H0(I, x, y) + εH1(I, ϕ, x, y) , (2.1)

where I ∈ U(I∗) ⊂ Rn1 , ϕ ∈ Tn1 are action-angle variables, (x, y) ∈ V(0) ⊂ R2n2 and ε is a small
perturbation parameter. This Hamiltonian is a generalization of the Hamiltonian (1.1) considered
for the full dimensional case. It is also assumed to be the perturbation of an integrable Hamiltonian
H0 = H̃0(I) + Ĥ0(x, y), where Ĥ0(x, y) is at least quadratic. Furthermore, we assume that the
Hamiltonian Ĥ0 has an elliptic equilibrium at the origin, namely

Ĥ0 =
∑
j∈J\I

Ωj
x2
j + y2

j

2
+ h.o.t. .

More generally, we can consider the Hamiltonian

H(I, ϕ, x, y, ε) = H̃0(I) + Ĥ0(x, y) + εH1(I, ϕ, x, y) + ε2H2(I, ϕ, x, y) + . . . .

Introduce a set of indexes J and a subset of indexes I ⊂ J , with |I| = n1 and |J \ I| = n2.
Select now a completely resonant elliptic lower dimensional torus of H0, setting Ij = I∗j 6= 0 for
j ∈ I and xj = yj = 0 for j ∈ J \I. We also assume the same analytical setting of the Chapter 1.

We want to investigate the problem of the continuation of periodic orbits which survive to the
breaking of a completely resonant n1-dimensional torus I∗ of (2.1). A typical example is provided
by physical models described by a Hamiltonian (2.1) made by identical and weakly coupled nonlin-
ear oscillators (see references in Chapter 1 and the editorial review [68] on Hamiltonian Lattices),
with n1 ones that have been excited and oscillate periodically with the same frequencies ω̂(I∗)
and n2 ones are at rest. In this context, spatially localized time-periodic solutions, the so-called
multibreathers, are relevant objects in the investigation of phenomena of confinement and transfer
of the energy along the chain. Their continuation for the perturbed system has been tackled in
the non-degenerate case by means of the effective Hamiltonian method cited in Chapter 1.

The normal form procedure that will be presented in this Chapter allows to extend the above
mentioned method and enables to face degenerate scenarios which require a different and more
powerful approach. In addition, it permits to investigate also the linear stability of continued
periodic orbits. Indeed, the normal form step described will include three stages which suffice
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2. Continuation of degenerate periodic orbits: lower dimensional tori

to achieve an abstract result on continuation of periodic orbits. However, the algorithm will be
refined in order to add a fourth stage which enables to get easier conditions to be verified in
applications, and which, together with a fifth one, is necessary to study the approximate linear
stability of periodic orbits. Then, effective linear stability can be inferred with further assumptions
on the spectrum of the approximate periodic orbits.

2.1 Main results

We now perform the canonical change of coordinates

xj =
1√
2

(ξj + iηj), yj =
i√
2

(ξj − iηj), j ∈ J \ I ,

so that ∑
j∈J\I

Ωj
x2
j + y2

j

2
=
∑
j∈J\I

iΩjξjηj .

In addition, expanding (2.1) in power series of the translated actions J = I − I∗, one has

H(0) = 〈ω̂, J〉+
∑
j∈J\I

iΩjξjηj +
∑
`>2

f
(0,0)
` (J, ξ, η)

+ f
(0,1)
0 (ϕ) + f

(0,1)
1 (ϕ, ξ, η) + f

(0,1)
2 (ϕ, J, ξ, η) + f

(0,1)
3 (ϕ, J, ξ, η) + f

(0,1)
4 (ϕ, J, ξ, η)

+
∑
s>1

f
(0,s)
0 (ϕ) +

∑
s>1

f
(0,s)
1 (ϕ, ξ, η) +

∑
s>1

f
(0,s)
2 (ϕ, J, ξ, η) +

∑
s>1

f
(0,s)
3 (ϕ, J, ξ, η)

+
∑
s>1

f
(0,s)
4 (ϕ, J, ξ, η)

+
∑
s>0

∑
`>4

f
(0,s)
` (ϕ, J, ξ, η) ,

where f
(0,s)
` ∈ P` is a function of order O(εs).

Introducing the resonant variables (q̂, p̂) in place of (ϕ, J), the Hamiltonian can be written in
the form

H(0) = ωp1 +
∑
j∈J\I

iΩjξjηj +
∑
`>2

f
(0,0)
` (p̂, ξ, η)

+ f
(0,1)
0 (q̂) + f

(0,1)
1 (q̂, ξ, η) + f

(0,1)
2 (q̂, p̂, ξ, η) + f

(0,1)
3 (q̂, p̂, ξ, η) + f

(0,1)
4 (q̂, p̂, ξ, η)

+
∑
s>1

f
(0,s)
0 (q̂) +

∑
s>1

f
(0,s)
1 (q̂, ξ, η) +

∑
s>1

f
(0,s)
2 (q̂, p̂, ξ, η) +

∑
s>1

f
(0,s)
3 (q̂, p̂, ξ, η)

+
∑
s>1

f
(0,s)
4 (q̂, p̂, ξ, η)

+
∑
s>0

∑
`>4

f
(0,s)
` (q̂, p̂, ξ, η)

(2.2)

where f
(0,s)
` ∈ P` and it is a function of order O(εs).

In addition, let us assume that

(H1) there exists a positive constant m such that for every v ∈ Rn1 one has

m

n1∑
i=1

|vi| ≤
n1∑
i=1

|
n1∑
j=1

C0,ijvj | , where C0 = D2
p̂f

(0,0)
4 ; (2.3)
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2.1 Main results

(H2) the terms appearing in the expansion of the Hamiltonian satisfy

‖f (0,s)
` ‖1 ≤

E

2`
εs , with E > 0. (2.4)

(H3) the frequencies satisfy the conditions of non-resonance

k1ω ± Ωj 6= 0, k1 ∈ Z , (2.5)

k1ω ± Ωl ± Ωk 6= 0, k1 ∈ Z \ {0} , (2.6)

known as first and second Melnikov conditions.

Let us remark that the hypotheses (H1) and (H2) are the same as the maximal dimension
case. The third assumption (H3) ensures absence of resonances between the periodic motion and
the transverse linear oscillations. The first Melnikov condition is enough to obtain continuation
of periodic orbits, the second one is needed to study the linear stability of the orbits.

We now state our main result concerning the normal form algorithm.

Proposition 2.1.1 Consider a Hamiltonian H(0) expanded as in (2.2) that is analytic in a domain
Dρ,σ. Let us assume the hypotheses (H1), (H2), (H3). Then, for every positive integer r there
is a positive ε∗r such that for 0 ≤ ε < ε∗r there exists an analytic canonical transformation Φ(r)

satisfying

D 1
4 (ρ,σ,R) ⊂ Φ(r)

(
D 1

2 (ρ,σ,R)

)
⊂ D 3

4 (ρ,σ,R) (2.7)

such that the Hamiltonian H(r) = H(0) ◦ Φ(r) has the following expansion

H(r)(q̂, p̂, ξ, η; q∗) = ωp1 +
∑
j∈J\I

iΩjξjηj +
∑
`>2

f
(r,0)
` (p̂, ξ, η)

+

r∑
s=1

(
f

(r,s)
0 (q; q∗) + f

(r,s)
2 (q, p̂, ξ, η; q∗) + f

(r,s)
3 (q̂, ξ, η; q∗) + f

(r,s)
4 (q̂, p̂, ξ, η; q∗)

)

+
∑
s>r

4∑
`=0

f
(r,s)
` (q̂, p̂, ξ, η; q∗) +

∑
s>0

∑
`>4

f
(r,s)
` (q̂, p̂, ξ, η; q∗) ,

(2.8)

where q∗ is a fixed but arbitrary parameter and f
(r,s)
` ∈ P` is a function of order O(εs). The

Hamiltonian (2.8) is said to be in normal form up to order r since for s ≤ r satisfies:

1. f
(r,s)
0 (q; q∗) do not depend on the fast angle q1;

2. f
(r,s)
1 (q̂, ξ, η; q∗) have been completely removed from (2.2);

3. f
(r,s)
2 (q, p̂, ξ, η; q∗) do not depend on q1 and, evaluated at ξ = η = 0 and q = q∗, satisfy

f
(r,s)
2 (q∗, p̂, 0, 0; q∗) = 0 ;

4. f
(r,s)
3 (q̂, ξ, η; q∗) do not depend on the actions p̂;

5. f
(r,s)
4 (q̂, p̂, ξ, η; q∗), evaluated at ξ = η = 0, do not depend on the fast angle q1.

The Hamilton equations associated to the truncated normal form, i.e., neglecting terms of
order O(εr+1), once evaluated at x∗ = (q = q∗, p̂ = 0, ξ = 0, η = 0), read

q̇1 = ω , q̇ = 0 , ṗ1 = 0 , ṗ = −
r∑
s=1

∇qf (r,s)
0 , ξ̇ = 0 , η̇ = 0 .
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2. Continuation of degenerate periodic orbits: lower dimensional tori

Hence, if
r∑
s=1

∇qf (r,s)
0

∣∣
q=q∗

= 0 , (2.9)

then q1 = q1(0), q = q∗, p1 = 0, p = 0, ξ = 0, η = 0 is the initial datum of a periodic orbit with
frequency ω for the truncated normal form1.

In order to investigate the continuation of the approximate periodic orbit, we introduce, once
again, the variation over the T -period map Υ : U(x∗) ⊂ R2n−1 → V(x∗) ⊂ R2n−1, a smooth
function of the variables x = (q, p̂, ξ, η), parameterized by the initial phase q1(0) and the parameter
ε, namely2

Υ(x(0); ε, q1(0)) =


F(x(0); ε, q1(0))
G(x(0); ε, q1(0))
R(x(0); ε, q1(0))
S(x(0); ε, q1(0))

 :=


q̂(T )− q̂(0)− ΛT
p(T )− p(0)
ξ(T )− ξ(0)
η(T )− η(0)

 , (2.10)

with Λ = (ω, 0) ∈ Rn1 and where we have neglected the equation for p1, due to conservation of
the energy.

A true periodic orbit, close to the approximate one, is identified by an initial datum x∗p.o. =
(q∗p.o., p̂p.o., ξp.o., ηp.o.) ∈ U(x∗) such that

Υ(x∗p.o.; ε, q1(0)) = 0 .

Therefore, in order to prove its existence, we apply the Newton-Kantorovich method, under the
assumption that the Jacobian matrix

M(ε) = Dx(0)Υ(x∗; ε, q1(0)) = N(ε) +O(εr+1) (2.11)

is invertible and its eigenvalues are not too small w.r.t. εr+1. The (2n − 1)-dimensional square
matrixN(ε) has a block diagonal structure, which will be revealed in Section 2.3, with the (2n1−1)-
dimensional square matrix Ñ(ε) as first block.

As a consequence, we can state the following result

Theorem 2.1.1 Consider the map Υ defined in (2.10) in a neighbourhood of the torus p̂ = 0, ξ =
0, η = 0 and let x∗(ε) = (q∗(ε), 0, 0, 0), with q∗(ε) satisfying (2.9), an approximate zero of Υ,
namely

‖Υ(x∗(ε); ε, q1(0))‖ ≤ c1εr+1 ,

where c1 is a positive constant depending on U and r. Assume that the matrix N(ε) defined
in (2.11) is invertible and its eigenvalues satisfy

|λ| & εα , for λ ∈ σ(Ñ(ε)) with 2α < r + 1 , (2.12)

where Ñ(ε) stands for the first block of the matrix N(ε). Then, there exist c0 > 0 and ε∗ > 0 such
that for any 0 ≤ ε < ε∗ there exists a unique x∗p.o.(ε) = (q∗p.o.(ε), p̂p.o.(ε), ξp.o.(ε), ηp.o.(ε)) ∈ U
which solves

Υ(x∗p.o.; ε, q1(0)) = 0 ,∥∥x∗p.o. − x∗∥∥ ≤ c0εr+1−α .

This Theorem generalizes the result obtained by means of the effective Hamiltonian method
for chains of weakly coupled anharmonic oscillators. In particular, in the next Section we will
prove that the first step of our normal form procedure allows to reproduce this non-degenerate

1Let us remark that q∗(ε) is analytic in ε. Indeed, (ωt+q1(0), x∗) is a periodic solution of an analytic Hamiltonian
system. Hence, it has to be analytic in ε.

2Let us stress that, differently from the first Chapter, the actions p have not been scaled by ε in Υ. The scaling
will be necessary only in the first normalization step in order to obtain continuation of non-degenerate periodic
orbits by means of the implicit function theorem.
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2.2 Normal form algorithm

result. Moreover, comparisons with the literature are also made; more precisely, we will discuss
differences with respect to the result in [55].

In order to study the linear stability of continued periodic orbits we have to consider the
quadratic Hamiltonian of the normal form that gives the linear approximation of the dynamics
close to the approximate periodic orbit. Its canonical linear vector field can be represented by a
block diagonal matrix L(ε), whose spectrum provides information about the approximate linear
stability. The effective linear stability of the true periodic orbit can be easily inferred from the
approximate one in the generic case of distinct eigenvalues, under suitable assumptions on the
spectrum of the first (2n1 − 1)-dimensional block L11(ε) of the matrix L(ε). One of the main
ingredients which allows to get the result about effective linear stability will be the monodromy
matrix of the periodic orbit. As we will see in Section 2.3, it also corresponds to the differential
of the flow at the period T w.r.t. the initial datum of the periodic orbits. This results in a strong
connection with the matrices M(ε) and L(ε) for the approximate periodic orbit. By considering
the true periodic orbit given by x∗p.o. and the Hamiltonian H(r), the associated monodromy matrix
turns out to be equal to exp(L(ε)T ) + O(εr+1−α) with α as in Theorem 2.1.1. Its spectrum is
the union of two different components, one of which, Σ11, is close to Σ(exp(L11(ε)T )). Hence, the
following Theorem and its Corollary can be stated:

Theorem 2.1.2 Assume that L11(ε) has 2n1 − 2 distinct non-zero eigenvalues and let c̃ > 0 and
β < r + 1− α, with 2α < r + 1 as in Theorem 2.1.1, be such that

|λj − λk| > c̃εβ , for all λj , λk ∈ Σ(L11(ε)) \ {0} . (2.13)

Then there exists ε∗ > 0 such that if |ε| < ε∗ and µ = eλT ∈ Σ(exp(L11(ε)T )), there exists one
eigenvalue ν ∈ Σ11 inside the complex disk Dε(µ) =

{
z ∈ C : |z − µ| < cεr+1−α}, with c > 0 a

suitable constant independent of µ.

Corollary 2.1.1 Under the assumptions of Theorem 2.1.2 the periodic orbit x∗p.o. is linearly stable
if and only if the same holds for the approximate periodic orbit x∗. In the unstable case, the number
of hyperbolic directions of the periodic orbit x∗p.o. is the same as for x∗.

The stability results are achieved in Section 2.4.
Let me stress that the structure of the monodromy matrix also enables to more easily verify

the condition (2.12), giving a more applicable criterion for the continuation with respect to the
one in the first Chapter.

2.2 Normal form algorithm

In this section, by using the formalism of Lie series, we detail the first step of the normal form
algorithm that takes the Hamiltonian (2.2) and brings it into normal form up to order 1. Afterward,
we will describe the generic r-th normalization step.

The transformation at step r is generated via composition of four Lie series of the form

exp(L
χ

(r)
4

) ◦ exp(L
χ

(r)
3

) ◦ exp(L
χ

(r)
2

) ◦ exp(L
χ

(r)
1

) ◦ exp(L
χ

(r)
0

) ,

where χ
(r)
0 = X

(r)
0 + 〈ζ(r), q̂〉, with ζ(r) ∈ Rn1 and X

(r)
0 ∈ P0, χ

(r)
1 ∈ P1, χ

(r)
2 ∈ P2, χ

(r)
3 ∈ P3,

χ
(r)
4 ∈ P4 of order O(εr). The generating functions χ

(r)
0 , χ

(r)
1 , χ

(r)
2 , χ

(r)
3 and χ

(r)
4 are unknowns to

be determined so that the transformed Hamiltonian is in normal form up to order r. Once again,
we denote by Lg· the Poisson bracket {·, g}.

2.2.1 First normalization step

Consider the starting Hamiltonian (2.2). We now describe the five stages of the first normalization
step. We remark that the first three stages are sufficient to study the continuation of periodic
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2. Continuation of degenerate periodic orbits: lower dimensional tori

orbits. The fourth stage allows to simplify the conditions that have to be verified to obtain
continuation. Moreover, part of the third stage and the last two stages are needed in order to
investigate linear stability of periodic orbits.

First stage of the first normalization step

As in the maximal dimension case, we put the term f
(0,1)
0 in normal form. We determine the

generating function

χ
(1)
0 (q̂) = X

(1)
0 (q̂) + 〈ζ(1), q̂〉 with ζ(1) ∈ Rn1 ,

belonging to P0 and of order O(ε), by solving the homological equations

L
X

(1)
0
ωp1 + f

(0,1)
0 = 〈f (0,1)

0 〉q1 ,

L〈ζ(1),q̂〉f
(0,0)
4

∣∣∣
ξ=η=0

+
〈
f

(0,1)
2

∣∣∣
ξ=η=0
q=q∗

〉
q1

= 0 .

Considering the Taylor-Fourier expansion

f
(0,1)
0 (q̂) =

∑
k

c
(0,1)
0,0,0,k exp(i〈k, q̂〉) ,

we get

X
(1)
0 (q̂) =

∑
k1 6=0

c
(0,1)
0,0,0,k

ik1ω
exp(i〈k, q̂〉) .

The translating vector ζ(1) is the solution of the following linear system

∑
j

C0,ijζ
(1)
j =

∂

∂p̂i

〈
f

(0,1)
2

∣∣∣
ξ=η=0
q=q∗

〉
q1
.

The transformed Hamiltonian is calculated as

H(I;0) = exp
(
L
χ

(1)
0

)
H(0) =

= ωp1 +
∑
j∈J\I

iΩjξjηj

+ f
(I;0,1)
0 + f

(I;0,1)
1 + f

(I;0,1)
2 + f

(I;0,1)
3 + f

(I;0,1)
4

+
∑
s>1

f
(I;0,s)
0 +

∑
s>1

f
(I;0,s)
1 +

∑
s>1

f
(I;0,s)
2 +

∑
s>1

f
(I;0,s)
3 +

∑
s>1

f
(I;0,s)
4

+
∑
s≥0

∑
`>2

f
(I;0,s)
` .

The functions f
(I;0,s)
` are recursively defined as

f
(I;0,1)
0 = 〈f (0,1)

0 〉q1 ,

f
(I;0,s)
` =

s∑
j=0

1

j!
Lj
χ

(1)
0

f
(0,s−j)
`+2j , for ` = 0, s 6= 1 ,

or ` ≥ 1, s ≥ 0 ,

with f
(I;0,s)
` ∈ P`.
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Second stage of the first normalization step

We now put in normal form the term f
(I;0,1)
1 , by removing the linear terms in the transversal

variables ξ, η from the Hamiltonian. We determine the generating function χ
(1)
1 , belonging to P1

and of order O(ε), by solving the homological equation

L
χ

(1)
1

(
ωp1 +

∑
j∈J\I

iΩjξjηj

)
+ f

(I;0,1)
1 = 0 . (2.14)

Considering again the Taylor-Fourier expansion

f
(I;0,1)
1 (q̂, ξ, η) =

∑
|m1|+|m2|=1

k

c
(I;0,1)
0,m1,m2,k

exp(i〈k, q̂〉)ξm1ηm2 ,

we obtain

χ
(1)
1 (q̂, ξ, η) =

∑
|m1|+|m2|=1

k

c
(I;0,1)
0,m1,m2,k

exp(i〈k, q̂〉) ξm1ηm2

i
[
k1ω + 〈m1 −m2, Ω〉

] .

with Ω ∈ Rn2 .

Remark 2.2.1 Due to the first Melnikov condition (2.5) and to the constraint |m1| + |m2| = 1,
the denominator cannot vanish. Indeed,

∑
i (m1i −m2i) = ±1, from which one obtains

k1ω + 〈m1 −m2,Ω〉 = k1ω +
∑
i

Ωi (m1i −m2i) = k1ω ± Ωj 6= 0 for some j ∈ J \ I .

The transformed Hamiltonian is computed as

H(II;0) = exp
(
L
χ

(1)
1

)
H(I;0) =

= ωp1 +
∑
j∈J\I

iΩjξjηj

+ f
(II;0,1)
0 + f

(II;0,1)
2 + f

(II;0,1)
3 + f

(II;0,1)
4

+
∑
s>1

f
(II;0,s)
0 +

∑
s>1

f
(II;0,s)
1 +

∑
s>1

f
(II;0,s)
2 +

∑
s>1

f
(II;0,s)
3 +

∑
s>1

f
(II;0,s)
4

+
∑
s≥0

∑
`>2

f
(II;0,s)
` ,

(2.15)

with

f
(II;0,1)
1 = 0 ,

f
(II;0,2)
0 = f

(I;0,2)
0 + L

χ
(1)
1
f

(I;0,1)
1 +

1

2
L
χ

(1)
1

(
L
χ

(1)
1
f

(I;0,0)
2

)
=

= f
(I;0,2)
0 +

1

2
L
χ

(1)
1
f

(I;0,1)
1 ,

f
(II;0,s)
` =

s∑
j=0

1

j!
Lj
χ

(1)
1

f
(I;0,s−j)
`+j , for ` = 0, s 6= 2 ,

or ` = 1, s 6= 1 ,

or ` ≥ 2, s ≥ 0 .

where we have used (2.14).
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2. Continuation of degenerate periodic orbits: lower dimensional tori

Third stage of the first normalization step

Our goal is to put in normal form the term f
(II;0,1)
2 , by averaging it with respect to the fast angle

q1. We determine the generating function χ
(1)
2 , belonging to P2 and of order O(ε), by solving the

homological equation

L
χ

(1)
2

(
ωp1 +

∑
j∈J\I

iΩjξjηj

)
+ f

(II;0,1)
2 = 〈f (II;0,1)

2 〉q1 . (2.16)

Hence, considering the Taylor-Fourier expansion

f
(II;0,1)
2 (p̂, q̂, ξ, η) =

∑
|l|=1
k

c
(II;0,1)
l,0,0,k p̂

l exp(i〈k, q̂〉) +
∑

|m1|+|m2|=2
k

c
(II;0,1)
0,m1,m2,k

exp(i〈k, q̂〉)ξm1ηm2 ,

we get

χ
(1)
2 (p̂, q̂, ξ, η) =

∑
|l|=1
k1 6=0

c
(II;0,1)
l,0,0,k p̂

l exp(i〈k, q̂〉)
ik1ω

+
∑

|m1|+|m2|=2
k1 6=0

c
(II;0,1)
0,m1,m2,k

exp(i〈k, q̂〉) ξm1ηm2

i
[
k1ω + 〈m1 −m2, Ω〉

] .

Remark 2.2.2

1. Notice that the term f
(II;0,1)
2 , being either linear in the actions or quadratic in the transversal

variables, can be rewritten as f̃
(II;0,1)
2 (p̂, q̂) + f̂

(II;0,1)
2 (q̂, ξ, η). As a consequence, χ

(1)
2 can be

split in two terms in the same way.

2. We can observe that, in order to obtain the continuation of periodic orbits, it suffices to

average the term f̃
(II;0,1)
2 (p̂, q̂) w.r.t. the fast angle q1. We also added an average for the

term f̂
(II;0,1)
2 (q̂, ξ, η) so as to study the linear stability of periodic orbits.

3. Due to the second Melnikov condition (2.6) and to the constraint |m1| + |m2| = 2, the
denominator cannot vanish. Indeed,

k1ω+〈m1−m2,Ω〉 = k1ω+
∑
i

Ωi (m1i −m2i) =

{
k1ω ± 2Ωl

k1ω ± Ωl ± Ωk
6= 0 for some l, k ∈ J \I .

The transformed Hamiltonian is computed as

H(III,0) = exp
(
L
χ

(1)
2

)
H(II;0)

and is given in the form (2.15), replacing the upper index II by III, with

f
(III;0,1)
2 = 〈f (II;0,1)

2 〉q1 ,

f
(III;0,s)
2 =

1

(s− 1)!
Ls−1

χ
(1)
2

(
f

(II;0,1)
2 +

1

s
L
χ

(1)
2
f

(II;0,0)
2

)
+

s−2∑
j=0

1

j!
Lj
χ

(1)
2

f
(II;0,s−j)
2 =

=
1

(s− 1)!
Ls−1

χ
(1)
2

(
1

s
〈f (II;0,1)

2 〉q1 +
s− 1

s
f

(II;0,1)
2

)
+

s−2∑
j=0

1

j!
Lj
χ

(1)
2

f
(II;0,s−j)
2 , for s 6= 1 ,

f
(III;0,s)
` =

s∑
j=0

1

j!
Lj
χ

(1)
2

f
(II;0,s−j)
` , for ` 6= 2, s ≥ 0 ,

where we have exploited the homological equation (2.16).
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2.2 Normal form algorithm

Fourth stage of the first normalization step

We now put in normal form the term f̃
(III;0,1)
3 = f

(III;0,1)
3 − f (III;0,1)

3

∣∣∣
p̂=0

, by removing the cubic

terms which depend both on the actions and on the transversal variables ξ, η. We determine the

generating function χ
(1)
3 , belonging to P3 and of order O(ε), by solving the homological equation

L
χ

(1)
3

(
ωp1 +

∑
j∈J\I

iΩjξjηj

)
+ f̃

(III;0,1)
3 = 0 . (2.17)

Considering again the Taylor-Fourier expansion

f̃
(III;0,1)
3 (q̂, p̂, ξ, η) =

∑
|l|=1

|m1|+|m2|=1
k

c
(III;0,1)
l,m1,m2,k

exp(i〈k, q̂〉)p̂lξm1ηm2 ,

we obtain

χ
(1)
3 (q̂, p̂, ξ, η) =

∑
|l|=1

|m1|+|m2|=1
k

c
(III;0,1)
l,m1,m2,k

exp(i〈k, q̂〉) p̂lξm1ηm2

i
[
k1ω + 〈m1 −m2, Ω〉

] .

with Ω ∈ Rn2 .

Remark 2.2.3 Let us stress that we do not need to put the term f
(III;0,1)
3

∣∣∣
p̂=0

= f̂
(III;0,1)
3 (q̂, ξ, η)

in normal form in order to study the linear stability of periodic orbits. Indeed, it does not affect
the linearization of the system in normal form.

The transformed Hamiltonian is calculated as

H(IV;0) = exp
(
L
χ

(1)
3

)
H(III;0) ,

and is given in the form (2.15), replacing the upper index II by IV, with

f
(IV;0,1)
3 = f

(III;0,1)
3

∣∣∣
p̂=0

,

f
(IV;0,2)
4 = f

(III;0,2)
4 + L

χ
(1)
3
f

(III;0,1)
3 +

1

2
L2

χ
(1)
3

f
(III;0,0)
2 =

= f
(III;0,2)
4 +

1

2
L
χ

(1)
3
f

(III;0,1)
3 +

1

2
L
χ

(1)
3
f

(III;0,1)
3

∣∣∣
p̂=0

,

f
(IV;0,s)
` =

s∑
j=0

1

j!
Lj
χ

(1)
3

f
(III;0,s−j)
`−j , for ` = 3, s 6= 1 ,

or ` = 4, s 6= 2 ,

or ` 6= 3, 4, s ≥ 0 .

where we have used (2.17).

Fifth stage of the first normalization step

Our aim is to put in normal form the term f
(IV;0,1)
4

∣∣∣
ξ=η=0

, by averaging it with respect to the

fast angle q1. We determine the generating function χ
(1)
4 , belonging to P4 and of order O(ε), by

solving the homological equation

L
χ

(1)
4
ωp1 + f

(IV;0,1)
4

∣∣∣
ξ=η=0

= 〈f (IV;0,1)
4

∣∣∣
ξ=η=0

〉q1 .

Therefore, considering the Taylor-Fourier expansion

f
(IV;0,1)
4 (p̂, q̂) =

∑
|l|=2
k

c
(IV;0,1)
l,0,0,k p̂l exp(i〈k, q̂〉) ,
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2. Continuation of degenerate periodic orbits: lower dimensional tori

we get

χ
(1)
4 (p̂, q̂) =

∑
|l|=2
k1 6=0

c
(IV;0,1)
l,0,0,k p̂l exp(i〈k, q̂〉)

ik1ω
.

The transformed Hamiltonian is calculated as

H(1) = exp
(
L
χ

(1)
4

)
H(IV;0) =

= ωp1 +
∑
j∈J\I

iΩjξjηj

+ f
(1,1)
0 + f

(1,1)
2 + f

(1,1)
3 + f

(1,1)
4

+
∑
s>1

f
(1,s)
0 +

∑
s>1

f
(1,s)
1 +

∑
s>1

f
(1,s)
2 +

∑
s>1

f
(1,s)
3 +

∑
s>1

f
(1,s)
4

+
∑
s≥0

∑
`>2

f
(1,s)
` ,

(2.18)

with

f
(1,1)
4 = 〈f (IV;0,1)

4

∣∣∣
ξ=η=0

〉q1 +

(
f

(IV;0,1)
4 − f (IV;0,1)

4

∣∣∣
ξ=η=0

)
,

f
(1,s)
` =

s∑
j=0

1

j!
Lj
χ

(1)
4

f
(IV;0,s−j)
`−2j . for ` = 4, s 6= 1 ,

or ` 6= 4, s ≥ 0 .

Remark 2.2.4 Considering the function

f
(1,1)
2 = f

(0,1)
2 + L

χ
(1)
0
f

(0,0)
4 + L

χ
(1)
1
f

(0,0)
3 ,

we can observe that the term L
χ

(1)
1
f

(0,0)
3 depends only on the transversal variables and the angles,

due to the separability of the unperturbed initial Hamiltonian. Hence, it keeps unchanged the
frequencies of the resonant torus.

Let us consider the Hamiltonian H(1) in (2.18)

H(1) = ωp1 +
∑
j∈J\I

iΩjξjηj + f̂
(1,0)
3 (ξ, η) + f̃

(1,0)
4 (p̂) + f̂

(1,0)
4 (η, ξ)

+ f
(1,1)
0 (q) + f̃

(1,1)
2 (q, p̂) + f̂

(1,1)
2 (q, ξ, η) + f̂

(1,1)
3 (q̂, ξ, η)

+ f̃
(1,1)
4 (q, p̂) + f

(1,1)

4 (q̂, p̂, ξ, η) + f̂
(1,1)
4 (q̂, ξ, η)

+

1∑
s=0

∑
`>4

f
(1,s)
` +O(ε2)

= K(1) +O(ε2)

and its Hamilton equations

q̇1 = ω +∇p1

[
f̃

(1,0)
4 + f̃

(1,1)
2

]
+O(|p̂|2) +O(ε|p̂|a−1|ξ|b|η|c) +O(ε2)

q̇ = ∇p
[
f̃

(1,0)
4 + f̃

(1,1)
2

]
+O(|p̂|2) +O(ε|p̂|a−1|ξ|b|η|c) +O(ε2)

ṗ1 = −∇q1 f̂
(1,1)
3 +O(ε|p̂|a|ξ|b|η|c) +O(ε2)

ṗ = −∇qf (1,1)
0 −∇q

[
f

(1,1)
2 + f̂

(1,1)
3

]
+O(ε|p̂|a|ξ|b|η|c) +O(ε2)

ξ̇ = iΩ̃ξ +∇η
[
f̂

(1,1)
2 + f̂

(1,1)
3

]
+O(|ξ|m|η|n−1) +O(ε|p̂|a|ξ|b|η|c−1) +O(ε2)

η̇ = −iΩ̃η −∇ξ
[
f̂

(1,1)
2 + f̂

(1,1)
3

]
+O(|ξ|m−1|η|n) +O(ε|p̂|a|ξ|b−1|η|c) +O(ε2) ,
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2.2 Normal form algorithm

where a, b, c,m, n ∈ N such that 2a+ b+ c = 4 and m+ n = 3, and Ω̃ is the diagonal matrix with
frequencies Ωj on the diagonal. We stress that, for q = q∗, one has

f
(1,1)
2

∣∣
ξ=η=0
q=q∗

= f̃
(1,1)
2 |

q=q∗
= 0 ,

because of the translation performed in the first stage of the normalization step. Hence, by
neglecting terms of order O(ε2) and evaluating the equations at x∗ = (q∗, 0, 0, 0), we get

q̇1 = ω , q̇ = 0 , ṗ1 = 0 , ṗ = −∇qf (1,1)
0

∣∣
q=q∗

, ξ̇ = 0 , η̇ = 0 .

Therefore, if ∇qf (1,1)
0

∣∣
q=q∗

= 0, then (q1 = q1(0) + ωt, x∗) represents a relative equilibrium of the

truncated Hamiltonian. The periodicity condition is the following:

q̂(T )− q̂(0)− ΛT =

∫ T

0

∇p
[
f̃

(1,0)
4 + f̃

(1,1)
2

]
ds+O(|p̂|2) +O(ε|p̂|a−1|ξ|b|η|c) +O(ε2) = 0 ,

p1(T )− p1(0) = −
∫ T

0

∇q1 f̂
(1,1)
3 ds+O(ε|p̂|a|ξ|b|η|c) +O(ε2) = 0 ,

p(T )− p(0) = −
∫ T

0

∇q
[
f

(1,1)
0 + f

(1,1)
2 + f̂

(1,1)
3

]
ds+O(ε|p̂|a|ξ|b|η|c) +O(ε2) = 0 ,

ξ(T )− ξ(0) =

∫ T

0

iΩ̃ξ +∇η
[
f̂

(1,1)
2 + f̂

(1,1)
3

]
ds+O(|ξ|m|η|n−1) +O(ε|p̂|a|ξ|b|η|c−1)+

+O(ε2) = 0 ,

η(T )− η(0) = −
∫ T

0

iΩ̃η +∇ξ
[
f̂

(1,1)
2 + f̂

(1,1)
3

]
ds+O(|ξ|m−1|η|n) +O(ε|p̂|a|ξ|b−1|η|c)+

+O(ε2) = 0 ,

Once again, by neglecting the equation for p1 and dividing the n1 − 1 actions p by ε, we get a
system of 2n− 1 equations in 2n− 1 unknowns x(0) = (q(0), p1(0), p(0), ξ(0), η(0)).

With the aim of applying the implicit function theorem in the non-degenerate case, in this first
normalization step we define the map Υ in (2.10) with the scaling of the actions by ε. Hence, the
approximate periodic solution

q1(t) = ωt+ q1(0) , q(t) = q∗ , p̂(t) = 0 , ξ(t) = 0 , η(t) = 0

coincides with an approximate zero of the map. Thus, for ε = 0, one has Υ(x∗; 0, q1(0)) = 0. In
order to apply the implicit function theorem, it remains to verify the condition on the determinant
of the Jacobian matrix M(0).

For this purpose, we follow the same procedure of the maximal dimension case, considering
the expansion of the solution x = (q̂, p̂, ξ, η) w.r.t ε

x(t, ε) = x(0)(t) + εx(1)(t) +O(ε2) .

with

x(0)(0) = x0 , x(k)(0) = 0 , k ≥ 1 .

In particular, we have the following expansions

p̂(t, q0, p̂0, ξ0, η0, ε) = p̂0 +O(ε)

q̂(t, q0, p̂0, ξ0, η0, ε) = q̂(0)(t) +O(ε) , with q
(0)
1 (t) = ωt+ q

(0)
1 (0), q(0)(t) = q∗ ,

ξ(t, q0, p̂0, ξ0, η0, ε) = ξ(0)(t) +O(ε) , with ξ(0)(t) = ξ0e
iΩ̃t +O(|ξ0|m|η0|n−1) ,

η(t, q0, p̂0, ξ0, η0, ε) = η(0)(t) +O(ε) , with η(0)(t) = η0e
−iΩ̃t +O(|ξ0|m−1|η0|n) ,

(2.19)
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2. Continuation of degenerate periodic orbits: lower dimensional tori

where the dependence on q1(0) is implied.
Let us start computing the differential of the functions F and G. By inserting (2.19) in F and

G, we get

F =

∫ T

0

C0p̂0 ds+O(|p̂|2) +O(ε) ,

G = −1

ε

∫ T

0

[
∇qf (1,1)

0 (q(0)(t)) +∇qf (1,1)
2 (q(0)(t), p̂0, ξ

(0)(t), η(0)(t))+

+∇q f̂ (1,1)
3 (q̂(0)(t), ξ(0)(t), η(0)(t))

]
ds+O(|p̂|a|ξ|b|η|c) +O(ε) .

Hence, we obtain

Dq0F
∣∣
(x∗;0)

= O , Dp̂0
F
∣∣
(x∗;0)

= C0T ,

Dξ0F
∣∣
(x∗;0)

= O , Dη0
F
∣∣
(x∗;0)

= O ,

Dq0G
∣∣
(x∗;0)

= −T
ε
D2
qf

(1,1)
0 (q∗) , Dp̂0

G
∣∣
(x∗;0)

= −T
ε
D2
p̂q f̃

(1,1)
2 (q∗) ,

Dξ0G
∣∣
(x∗;0)

= O , Dη0G
∣∣
(x∗;0)

= O .

As regards the functions R and S, by inserting (2.19) in their expressions, we get, for ε = 0,

R =

∫ T

0

iΩ̃ξ(0) ds+O(|ξ(0)|m|η(0)|n−1) ,

S = −
∫ T

0

iΩ̃η(0) ds+O(|ξ(0)|m−1|η(0)|n) .

It means that ξ(0), η(0) are the solutions of a system of the following type:

d

dt
z = Az + P(z) , with P(z) = O(|z|2) ,

with z = (ξ(0), η(0)). Therefore, using the variation of constants method, the solutions can be
rewritten as

z(t, z0) = eAtz0 +

∫ t

0

e(t−s)A P(z(s, z0)) ds ,

from which follows

Dz0z(t, z0) = eAt +

∫ t

0

e(t−s)A P ′(z(s, z0))Dz0z(s, z0) ds .

Evaluating the differential in z0 = 0, one has

z(s, 0) = 0 and P ′(z(s, 0)) = 0 ,

and, consequently,

Dz0z(t, z0)
∣∣
z0=0

= eAt .

We can deduce that

Dz0(z(T, z0)− z0)
∣∣
z0=0

= eAT − I ,
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2.2 Normal form algorithm

with, in our case, the matrix

A :=

 iΩ̃ O

O −iΩ̃

 .

Finally, we have

Dq0R
∣∣
(x∗;0)

= O , Dp̂0
R
∣∣
(x∗;0)

= O ,

Dξ0R
∣∣
(x∗;0)

= eiΩ̃T − I , Dη0R
∣∣
(x∗;0)

= O ,

Dq0S
∣∣
(x∗;0)

= O , Dp̂0S
∣∣
(x∗;0)

= O ,

Dξ0S
∣∣
(x∗;0)

= O , Dη0
S
∣∣
(x∗;0)

= e−iΩ̃T − I ,

hence, we get

O C0T O O

−T
ε
D2
qf

(1,1)
0 (q∗) −T

ε
D2
p̂qf

(1,1)
2 (q∗) O O

O O e2πi Ω̃
ω − I O

O O O e−2πi Ω̃
ω − I


.

In order to apply the implicit function theorem, we only need that∣∣∣∣−Tε D2
qf

(1,1)
0 (q∗)

∣∣∣∣ 6= 0 ,

because of the twist condition of the form (2.3) and the first Melnikov condition (2.5). Indeed, it
is necessary that ∣∣∣e±2πi Ω̃

ω − I
∣∣∣ 6= 0

and the above condition reads

e±2πi
Ωj
ω − 1 6= 0 , ∀ j ,

which is equivalent to kω ± Ωj 6= 0. In conclusion, the applicability of the implicit function
theorem results in the continuation of the unperturbed periodic orbit for ε 6= 0. Namely there
exist an open interval of ε values around zero and a neighborhood U(x∗) such that the system
with Hamiltonian H(1) admits a unique periodic orbit with frequencies ω and initial condition
x∗p.o. = (q∗p.o., p̂p.o., ξp.o., ηp.o.) = (q∗p.o.(ε), p̂p.o.(ε), ξp.o.(ε), ηp.o.(ε)) = (q∗, 0, 0, 0) +O(ε).

We now want to investigate the linear stability of the unperturbed periodic orbit. Let us
consider the Hamiltonian H(1) after a normalizing step; it has the structure

H(1) = K(1) +O(ε2) ,

For the truncated normal form K(1), the periodic orbit q1 = ωt+q1(0), q = q∗, p̂ = 0, ξ = 0, η =
0 is a relative equilibrium. In order to study its linear stability, we introduce small displacement
variables (Q̂, P̂ ) around the relative equilibrium

Q1 = q1 − ωt− q1(0) , Q = q − q∗ ,
P1 = p1 , P = p .
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2. Continuation of degenerate periodic orbits: lower dimensional tori

The linearized equations for the variables (Q̂, P̂ , ξ, η) are Hamiltonian, and correspond to the
Hamiltonian field given by the quadratic term in the Taylor expansion of K(1)

K(1) = K(1)(ωt+ q1(0), x∗)+

+DqK
(1)(ωt+ q1(0), x∗)Q+Dp̂K

(1)(ωt+ q1(0), x∗)P̂+

+DξK
(1)(ωt+ q1(0), x∗)ξ +DηK

(1)(ωt+ q1(0), x∗)η+

+
1

2
Q>D2

qK
(1)(ωt+ q1(0), x∗)Q+

1

2
P̂>D2

p̂K
(1)(ωt+ q1(0), x∗)P̂+

+Q>D2
qp̂K

(1)(ωt+ q1(0), x∗)P̂+

+
1

2
ξ>D2

ξK
(1)(ωt+ q1(0), x∗)ξ +

1

2
η>D2

ηK
(1)(ωt+ q1(0), x∗)η+

+ ξ>D2
ξηK

(1)(ωt+ q1(0), x∗)η + . . . ,

where respectively

B(ε) = D2
qK

(1)(ωt+ q1(0), x∗) = D2
q

[
f

(1,1)
0

]
(x∗) = εB1

D(ε) = D2
qp̂K

(1)(ωt+ q1(0), x∗) = D2
qp̂

[
f̃

(1,1)
2

]
(x∗) = εD1

C(ε) = D2
p̂K

(1)(ωt+ q1(0), x∗) = D2
p̂

[
f̃

(1,0)
4 + f̃

(1,1)
4

]
(x∗) = C0 + εC1

G(ε) = D2
ξK

(1)(ωt+ q1(0), x∗) = D2
ξ

[
f̂

(1,1)
2

]
(x∗) = εG1

F (ε) = D2
ηK

(1)(ωt+ q1(0), x∗) = D2
η

[
f̂

(1,1)
2

]
(x∗) = εF1

E(ε) = D2
ξηK

(1)(ωt+ q1(0), x∗) = D2
ξη

[
f̂

(1,0)
2 + f̂

(1,1)
2

]
(x∗) = E0 + εE1

Remark 2.2.5 We observe that we do not have the terms D2
p̂ηK

(1)(ωt+q1(0), x∗) and D2
p̂ξK

(1)(ωt+

q1(0), x∗), due to the absence of the term f
(1,1)
3 (q̂, p̂, ξ, η) in the Hamiltonian H(1) and to the eval-

uation at the relative equilibrium. For the latter reason, also the terms D2
qηK

(1)(ωt + q1(0), x∗)

and D2
qξK

(1)(ωt+ q1(0), x∗) are absent.

In order to write the linear Hamiltonian field, we extend the matrices B(ε) and D(ε) (the last
one being (n1 − 1) × n1 rectangular) in order to include the Q1 dependence. Hence, we denote
by B̃(ε) the square-matrix obtained adding a zero row at first position and a zero column at first
position to B(ε). Similarly, we denote by D̃(ε) the square-matrix obtained adding a zero row at
first position to D(ε). So doing, the quadratic Hamiltonian which represents the linear motion
around the approximate periodic orbit is

K
(1)
2 =

1

2
Q̂>B̃(ε)Q̂+ Q̂>D̃(ε)P̂ +

1

2
P̂>C(ε)P̂ +

1

2
ξ>G(ε)ξ + ξ>E(ε)η +

1

2
η>F (ε)η ,
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2.2 Normal form algorithm

and the field is
˙̂
Q

˙̂
P

ξ̇

η̇

 =



O I O O

−I O O O

O O O I

O O −I O





B̃(ε) D̃(ε) O O

D̃(ε)
>

C(ε) O O

O O G(ε) E(ε)

O O E(ε)> F (ε)




Q̂

P̂
ξ
η

 =

=



D̃(ε)
>

C(ε) O O

−B̃(ε) −D̃(ε) O O

O O E(ε)> F (ε)

O O −G(ε) −E(ε)




Q̂

P̂
ξ
η

 = L(ε)


Q̂

P̂
ξ
η

 .

Since L(ε) is constant in time, the stability of the periodic orbit reduces to the study of the
spectrum of L(ε), hence to the zeros of

det(L(ε)− λI) = 0 .

With reference to L(ε)−λI, if we “lift” the (n1 + 1)-th row at second position and the (n1 + 1)-th
column at second position, then the determinant does not change (we make 2n1 changes of the
sign), and we can factor out a λ2 dependence

det(L(ε)− λI) = λ2 det(V (ε)− λI) = 0 ,

where V (ε)− λI is a 2n− 2 square-matrix with the following block form

V (ε)− λI =



(bD(ε)− λI)> bC(ε) O O

−B(ε) −bD(ε)− λI O O

O O (E(ε)− λI)> F (ε)

O O −G(ε) −E(ε)− λI


,

where bD(ε) is the n1 − 1 square-matrix D(ε) without the first columns, and bC(ε) is the n1 − 1
square-matrix C(ε) without both the first column and row, i.e. any dependence on p1. The
determinant det(V (ε) − λI) is the product of the determinants of the two squared blocks on the
diagonal. As regards the first block, in order to compute the eigenvalues, we make an exchange of
rows so as to obtain ∣∣∣∣∣∣∣

−B(ε) −bD(ε)− λI

(bD(ε)− λI)> bC(ε)

∣∣∣∣∣∣∣ = 0 . (2.20)

If the periodic orbit is non-degenerate, i.e. |B(ε)| 6= 0, then we can calculate (2.20) as

det(−B(ε)) · det
(
bC(ε)− (bD(ε)− λI)>(−B(ε))−1(−bD(ε)− λI)

)
= 0 ,

namely
det
(
bC0 + εbC1 − (εbD1 − λI)>(−εB1)−1(−εbD1 − λI)

)
= 0 .

Since the relation must hold in the limit ε → 0, under the assumption of invertibility3 for the
matrix bC0, it is necessary that the leading order of approximation of λ is O(

√
ε). So, we can

3This condition is always guaranteed if the the symmetric matrix C0 is positive definite. Indeed, there exists a
matrix S such that S>S = C0. Moreover, considering the matrix K which is the n1 × (n1 − 1) submatrix of the
unimodular matrix used to introduced the resonant variables, we get bC0 = K>C0K and

rank(K>C0K) = rank((SK)>SK) = rank(SK) = rank(K) = n1 − 1 .
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2. Continuation of degenerate periodic orbits: lower dimensional tori

rewrite the eigenvalues as λ =
√
εµ =

√
ε(µ0 +O(ε

1
l )), with µ0 6= 0 and l ∈ N, µ being the solution

of an algebraic equation. Hence, we get

det
(
bC0 + εbC1 − (

√
εbD1 − µI)>(−B1)−1(−

√
εbD1 − µI)

)
= 0 ,

which, in the limit ε→ 0, reads

det
(
−B1bC0 − µ2

0I
)

= 0 .

Therefore, up to terms of order O(
√
ε), the eigenvalues of the first block of V (ε) are determined

by B1 and bC0.
Regarding the second block of V (ε), since E0 = iΩ̃, for ε = 0 it corresponds to the Hamiltonian

H =
∑
j∈J\I Ωj

x2
j+y

2
j

2 . If we assume Ωj > 0 (or Ωj < 0), the latter Hamiltonian is positive definite

(or negative definite). Hence, for ε 6= 0, it cannot lose definiteness, so, due to the Dirichlet’s crite-
rion4, it cannot lose stability and its eigenvalues remain imaginary for all orders of approximation
w.r.t ε.

Remark 2.2.6 Let us observe that, concerning the transversal variables, one can obtain the ap-
proximate (and actually also the effective) stability of periodic orbits by means of the Krein’s
theory5. If the Floquet multipliers lie on the unit circle and are definite, then periodic orbits are
stable. The assumption on the approximate multipliers may be translated in terms of approximate
characteristic exponents (which are the eigenvalues of L(ε)), asking that all of them be purely
imaginary. The hypothesis on definiteness results in the condition Ωj > 0 (or Ωj < 0), provided
that we assume the second Melnikov condition. Taking advantage of the normal form construc-
tion, we have reduced existence and stability of periodic orbits to the ones of relative equilibrium
points. By doing so, it is not necessary to invoke Krein’s signature: the definiteness assumption is
enough for an equilibrium point not to lose stability. However, we remark that the hypothesis on
second Melnikov condition has been already assumed during the construction of the normal form
algorithm, which allows to turn the study of continuation and stability of periodic orbits into the
ones of equilibrium points.

The result can be stated as follows

Proposition 2.2.1 Consider the starting Hamiltonian (2.2) and assume the twist condition (2.3)
and the Melnikov conditions (2.5), (2.6). The unperturbed approximate periodic orbits for which
it holds that

∇qf (1,1)
0 (q∗) = 0 ,

∣∣∣D2
qf

(1,1)
0 (q∗)

∣∣∣ 6= 0 ,

namely non-degenerate periodic orbits, are analytically continued at fixed period, i.e. there exists
a value ε∗ such that for |ε| < ε∗ we get continuation. Moreover, as regards the approximate linear
stability, the characteristic exponents λ of the internal variables of the approximate periodic orbits
can be expanded as

√
ε(µ0 + O(ε

1
l )), with l ∈ N, and µ2

0 the eigenvalues of the matrix −B1bC0;
while the characteristic exponents iΩj of the transversal variables remain purely imaginary under
perturbation, if we assume Ωj > 0 (or Ωj < 0) for all j ∈ J \ I.

The result may also be formulated and proved in terms of effective linear stability of continued
periodic orbits. For the effective stability result in the generic case with r normal form steps, see
the Section 2.4. Instead, for a proof in the non-degenerate case with the particular scaling of the
internal characteristic exponents, refer to [73], where we get an extension of the Poincaré’s result
to lower dimensional tori by means of a standard perturbation expansion of the solutions w.r.t.
the small parameter.

Furthermore, the result we have just achieved is a generalization of the extension to lower
dimensional tori of the Poincaré’s result obtained by means of the effective Hamiltonian method

4See [57].
5See [4, 25,59,60,92].
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2.2 Normal form algorithm

for chains of weakly coupled oscillators. So it also includes the result given by V. Koukouloyannis
and P. G. Kevrekidis, in [55], for chains of weakly coupled oscillators. They consider a countable
set of oscillators with a nearest-neighbor coupling, with Hamiltonian

H = H0 + εH1 =

+∞∑
i=−∞

(
p2
i

2
+ V (xi)

)
+
ε

2

+∞∑
i=−∞

(xi+1 − xi)2

where V (xi) is the potential function, xi the displacement from the equilibrium and pi the mo-
mentum of the i-th oscillator. Assume that, in the “anticontinuous” limit ε = 0, n + 1 adjacent
“central” oscillators move in periodic orbits with frequency ω and arbitrary phases, while the “non-
central” oscillators lie at rest. They seek conditions under which these orbits can be continued
for ε 6= 0, giving rise to multibreathers with the same frequency. After performing an action-
angle canonical transformation for the central oscillators, they consider the averaged Hamiltonian
resulting from the effective Hamiltonian method at the lowest order of approximation

Heff = H0(Ii) + ε〈H1〉(φi, Ii) , i = 1, . . . , n ,

where φi are the slow angles and 〈H1〉 is the average value of H1 over the fast angle. The critical
points of this effective Hamiltonian which satisfy the conditions∣∣D2

IH0

∣∣ 6= 0 (twist condition) ,∣∣D2
φ〈H1〉

∣∣ 6= 0 (Poincaré non-degeneracy) ,

ωp 6= kω (first Melnikov condition) ,

where ωp = V ′′(0), can be continued for ε 6= 0.
In addition, they determine the linear stability of the multibreathers investigating the linear

stability of the critical points of Heff . Similarly to the above discussion, this can be reduced
to the study of the non-zero characteristic exponents of the central oscillators, for which their
approach provides an O(

√
ε) estimate.

Let us remark that, in order to apply the Krein’s signature theory for the stability of the
external oscillators, also in their procedure it would be needed an additional hypothesis of non
resonance, represented by the second Melnikov condition. Moreover, due to equivalence of potential
functions, it would be reduced to the simplified second Melnikov condition 2ωp 6= kω.

Furthermore, since they consider solutions with φi = 0, π (which are the only solutions in this
kind of systems with consecutive excited oscillators, see [54]), they obtain bD(ε) = 0, so the first
correction to the characteristic exponents is of order O(ε3/2). We also remark that, by explicitly
computing the matrix C(ε), one gets a tridiagonal invertible matrix, hence the matrix bC(ε) is
automatically invertible in this system.

2.2.2 Generic r-th normalization step

We summarize the five stages of a generic r-th normalizing step. The starting Hamiltonian has
the form

H(r−1) = ωp1 +
∑
j∈J\I

iΩjξjηj

+
∑
s<r

f
(r−1,s)
0 +

∑
s<r

f
(r−1,s)
2 +

∑
s<r

f
(r−1,s)
3 +

∑
s<r

f
(r−1,s)
4

+ f
(r−1,r)
0 + f

(r−1,r)
1 + f

(r−1,r)
2 + f

(r−1,r)
3 + f

(r−1,r)
4

+
∑
s>r

f
(r−1,s)
0 +

∑
s>r

f
(r−1,s)
1 +

∑
s>r

f
(r−1,s)
2 +

∑
s>r

f
(r−1,s)
3 +

∑
s>r

f
(r−1,s)
4

+
∑
s≥0

∑
`>2

f
(r−1,s)
` .

(2.21)

where f
(r−1,s)
0 , f

(r−1,s)
2 , f

(r−1,s)
3 and f

(r−1,s)
4 , for 1 ≤ s < r, are in normal form.
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2. Continuation of degenerate periodic orbits: lower dimensional tori

First stage of the r-th normalization step

We average the term f
(r−1,r)
0 with respect to the fast angle q1, determining the generating function

χ
(r)
0 (q̂) = X

(r)
0 (q̂) + 〈ζ(r), q̂〉 with ζ(r) ∈ Rn1 ,

belonging to P0 and of order O(εr), by solving the homological equations

L
X

(r)
0
ωp1 + f

(r−1,r)
0 = 〈f (r−1,r)

0 〉q1 ,

L〈ζ(r),q̂〉f
(0,0)
4

∣∣∣
ξ=η=0

+
〈
f

(r−1,r)
2

∣∣∣
ξ=η=0
q=q∗

〉
q1

= 0 .

By considering the Taylor-Fourier expansion

f
(r−1,r)
0 (q̂) =

∑
k

c
(r−1,r)
0,0,0,k exp(i〈k, q̂〉) ,

we obtain

X
(r)
0 (q̂) =

∑
k1 6=0

c
(r−1,r)
0,0,0,k

ik1ω
exp(i〈k, q̂〉) .

The vector ζ(r) is determined by solving the linear system∑
j

C0,ijζ
(r)
j =

∂

∂p̂i

〈
f

(r−1,r)
2

∣∣∣
ξ=η=0
q=q∗

〉
q1
.

The transformed Hamiltonian is computed as

H(I;r−1) = exp
(
L
χ

(r)
0

)
H(r−1) =

= ωp1 +
∑
j∈J\I

iΩjξjηj

+
∑
s<r

f
(I;r−1,s)
0 +

∑
s<r

f
(I;r−1,s)
2 +

∑
s<r

f
(I;r−1,s)
3 +

∑
s<r

f
(I;r−1,s)
4

+ f
(I;r−1,r)
0 + f

(I;r−1,r)
1 + f

(I;r−1,r)
2 + f

(I;r−1,r)
3 + f

(I;r−1,r)
4

+
∑
s>r

f
(I;r−1,s)
0 +

∑
s>r

f
(I;r−1,s)
1 +

∑
s>r

f
(I;r−1,s)
2 +

∑
s>r

f
(I;r−1,s)
3 +

∑
s>r

f
(I;r−1,s)
4

+
∑
s≥0

∑
`>2

f
(I;r−1,s)
` .

The functions f
(I;r−1,s)
` are recursively defined as

f
(I;r−1,r)
0 = 〈f (r−1,r)

0 〉q1 ,

f
(I;r−1,s)
` =

bs/rc∑
j=0

1

j!
Lj
χ

(r)
0

f
(r−1,s−jr)
`+2j , for ` = 0, s 6= r ,

or ` 6= 0 s ≥ 0 ,

(2.22)

with f
(I;r−1,s)
` ∈ P`.

Second stage of the r-th normalization step

We now remove the term f
(I;r−1,r)
1 by means of the generating function χ

(r)
1 , belonging to P1 and

of order O(εr), by solving the homological equation

L
χ

(r)
1

(
ωp1 +

∑
j∈J\I

iΩjξjηj

)
+ f

(I;r−1,r)
1 = 0 . (2.23)
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2.2 Normal form algorithm

Considering again the Taylor-Fourier expansion

f
(I;r−1,r)
1 (q̂, ξ, η) =

∑
|m1|+|m2|=1

k

c
(I;r−1,r)
0,m1,m2,k

exp(i〈k, q̂〉)ξm1ηm2 ,

we get

χ
(r)
1 (q̂, ξ, η) =

∑
|m1|+|m2|=1

k

c
(I;r−1,r)
0,m1,m2,k

exp(i〈k, q̂〉) ξm1ηm2

i
[
k1ω + 〈m1 −m2, Ω〉

] .

with Ω ∈ Rn2 .
The transformed Hamiltonian is calculated as

H(II;r−1) = exp
(
L
χ

(r)
1

)
H(I;r−1) =

= ωp1 +
∑
j∈J\I

iΩjξjηj

+
∑
s<r

f
(II;r−1,s)
0 +

∑
s<r

f
(II;r−1,s)
2 +

∑
s<r

f
(II;r−1,s)
3 +

∑
s<r

f
(II;r−1,s)
4

+ f
(II;r−1,r)
0 + f

(II;r−1,r)
2 + f

(II;r−1,r)
3 + f

(II;r−1,r)
4

+
∑
s>r

f
(II;r−1,s)
0 +

∑
s>r

f
(II;r−1,s)
1 +

∑
s>r

f
(II;r−1,s)
2 +

∑
s>r

f
(II;r−1,s)
3 +

∑
s>r

f
(II;r−1,s)
4

+
∑
s≥0

∑
`>2

f
(II;r−1,s)
` ,

(2.24)
with

f
(II;r−1,r)
1 = 0 ,

f
(II;r−1,2r)
0 = f

(I;r−1,2r)
0 + L

χ
(r)
1
f

(I;r−1,r)
1 +

1

2
L
χ

(r)
1

(
L
χ

(r)
1
f

(I;r−1,0)
2

)
=

= f
(I;r−1,2r)
0 +

1

2
L
χ

(r)
1
f

(I;r−1,r)
1 ,

f
(II;r−1,s)
` =

bs/rc∑
j=0

1

j!
Lj
χ

(r)
1

f
(I;r−1,s−jr)
`+j , for ` = 0, s 6= 2r ,

or ` = 1 s 6= r ,

or ` ≥ 2 s ≥ 0 ,

(2.25)

where we have exploited (2.23).

Third stage of the r-th normalization step

We now average the term f
(II;r−1,r)
2 with respect to the fast angle q1, determining the generating

function χ
(r)
2 , belonging to P2 and of order O(εr), by solving the homological equation

L
χ

(r)
2

(
ωp1 +

∑
j∈J\I

iΩjξjηj

)
+ f

(II;r−1,r)
2 = 〈f (II;r−1,r)

2 〉q1 . (2.26)

Therefore, considering the Taylor-Fourier expansion

f
(II;r−1,r)
2 (p̂, q̂, ξ, η) =

∑
|l|=1
k

c
(II;r−1,r)
l,0,0,k p̂l exp(i〈k, q̂〉) +

∑
|m1|+|m2|=2

k

c
(II;r−1,r)
0,m1,m2,k

exp(i〈k, q̂〉)ξm1ηm2 ,

we obtain

χ
(r)
2 (p̂, q̂, ξ, η) =

∑
|l|=1
k1 6=0

c
(II;r−1,r)
l,0,0,k p̂l exp(i〈k, q̂〉)

ik1ω
+

∑
|m1|+|m2|=2

k1 6=0

c
(II;r−1,r)
0,m1,m2,k

exp(i〈k, q̂〉) ξm1ηm2

i
[
k1ω + 〈m1 −m2, Ω〉

] .
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The transformed Hamiltonian is computed as

H(III;r−1) = exp
(
L
χ

(r)
2

)
H(II;r−1)

and is in the form (2.24), replacing the upper index II by III, with f
(III;r−1,s)
` ∈ P` given by

f
(III;r−1,r)
2 = 〈f (II;r−1,r)

2 〉q1 ,

f
(III;r−1,ri)
2 =

1

(i− 1)!
Li−1

χ
(r)
2

(
f

(II;r−1,r)
2 +

1

i
L
χ

(r)
2
f

(II;r−1,0)
2

)
+

i−2∑
j=0

1

j!
Lj
χ

(r)
2

f
(II;r−1,ri−rj)
2 =

=
1

(i− 1)!
Li−1

χ
(r)
2

(
1

i
〈f (II;r−1,r)

2 〉q1 +
i− 1

i
f

(II;r−1,r)
2

)
+

i−2∑
j=0

1

j!
Lj
χ

(r)
2

f
(II;r−1,ri−rj)
2 ,

f
(III;r−1,s)
` =

bs/rc∑
j=0

1

j!
Lj
χ

(r)
2

f
(II;r−1,s−jr)
` , for ` = 2, s 6= ri ,

or ` 6= 2, s ≥ 0 ,

(2.27)

where we have used the homological equation (2.26).

Fourth stage of the r-th normalization step

We now remove the term f̃
(III;r−1,r)
3 = f

(III;r−1,r)
3 − f (III;r−1,r)

3

∣∣∣
p̂=0

, which depends both on the

actions and on the transversal variables ξ, η. We determine the generating function χ
(r)
3 , belonging

to P3 and of order O(εr), by solving the homological equation

L
χ

(r)
3

(
ωp1 +

∑
j∈J\I

iΩjξjηj

)
+ f̃

(III;r−1,r)
3 = 0 . (2.28)

Hence, considering the Taylor-Fourier expansion

f̃
(III;r−1,r)
3 (q̂, p̂, ξ, η) =

∑
|l|=1

|m1|+|m2|=1
k

c
(III;r−1,r)
l,m1,m2,k

exp(i〈k, q̂〉)p̂lξm1ηm2 ,

we get

χ
(r)
3 (q̂, p̂, ξ, η) =

∑
|l|=1

|m1|+|m2|=1
k

c
(III;r−1,r)
l,m1,m2,k

exp(i〈k, q̂〉) p̂lξm1ηm2

i
[
k1ω + 〈m1 −m2, Ω〉

] .

with Ω ∈ Rn2 .

The transformed Hamiltonian is computed as

H(IV;r−1) = exp
(
L
χ

(r)
3

)
H(III;r−1)
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2.2 Normal form algorithm

and is given in the form (2.24), replacing the upper index II by IV, with

f
(IV;r−1,r)
3 = f

(III;r−1,r)
3

∣∣∣
p̂=0

,

f
(IV;r−1,2r)
4 = f

(III;r−1,2r)
4 + L

χ
(r)
3
f

(III;r−1,r)
3 +

1

2
L2

χ
(r)
3

f
(III;r−1,0)
2 =

= f
(III;r−1,2r)
4 +

1

2
L
χ

(r)
3
f

(III;r−1,r)
3 +

1

2
L
χ

(r)
3
f

(III;r−1,2)
3

∣∣∣
p̂=0

,

f
(IV;r−1,s)
` =

bs/rc∑
j=0

1

j!
Lj
χ

(r)
3

f
(III;r−1,s−jr)
`−j , for ` = 3, s 6= r ,

or ` = 4, s 6= 2r ,

or ` 6= 3, 4, s ≥ 0 .

(2.29)

where we have exploited (2.28).

Fifth stage of the r-th normalization step

We average the term f
(IV;r−1,r)
4

∣∣∣
ξ=η=0

with respect to the fast angle q1. We determine the gener-

ating function χ
(r)
4 , belonging to P4 and of order O(εr), by solving the homological equation

L
χ

(r)
4
ωp1 + f

(IV;r−1,r)
4

∣∣∣
ξ=η=0

= 〈f (IV;r−1,r)
4

∣∣∣
ξ=η=0

〉q1 .

By considering the Taylor-Fourier expansion

f
(IV;r−1,r)
4 (p̂, q̂) =

∑
|l|=2
k

c
(IV;r−1,r)
l,0,0,k p̂l exp(i〈k, q̂〉) ,

we obtain

χ
(r)
4 (p̂, q̂) =

∑
|l|=2
k1 6=0

c
(IV;r−1,r)
l,0,0,k p̂l exp(i〈k, q̂〉)

ik1ω
.

The transformed Hamiltonian is calculated as

H(r) = exp
(
L
χ

(r)
4

)
H(IV;r−1)

and is given in the form (2.21), replacing the upper index r − 1 by r, with

f
(r,r)
4 = 〈f (IV;r−1,r)

4

∣∣∣
ξ=η=0

〉q1 +

(
f

(IV;r−1,r)
4 − f (IV;r−1,r)

4

∣∣∣
ξ=η=0

)
,

f
(r,s)
` =

bs/rc∑
j=0

1

j!
Lj
χ

(r)
4

f
(IV;r−1,s−jr)
`−2j . for ` = 4, s 6= r ,

or ` 6= 4, s ≥ 0 .

(2.30)
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2. Continuation of degenerate periodic orbits: lower dimensional tori

2.3 Proof of Theorem 2.1.1

The Hamilton equations associated to the Hamiltonian in normal form up to order r read

q̇1 = ω +∇p1

[
f̃

(r,0)
4 +

r∑
s=1

f̃
(r,s)
2

]
+O(|p̂|2) +O(ε|p̂|a−1|ξ|b|η|c) +O(εr+1)

q̇ = ∇p

[
f̃

(r,0)
4 +

r∑
s=1

f̃
(r,s)
2

]
+O(|p̂|2) +O(ε|p̂|a−1|ξ|b|η|c) +O(εr+1)

ṗ1 = −
r∑
s=1

∇q1 f̂
(r,s)
3 +O(ε|p̂|a|ξ|b|η|c) +O(εr+1)

ṗ = −
r∑
s=1

∇qf (r,s)
0 −

r∑
s=1

∇q
[
f

(r,s)
2 + f̂

(r,s)
3

]
+O(ε|p̂|a|ξ|b|η|c) +O(εr+1)

ξ̇ = iΩ̃ξ +

r∑
s=1

∇η
[
f̂

(r,s)
2 + f̂

(r,s)
3

]
+O(|ξ|m|η|n−1) +O(ε|p̂|a|ξ|b|η|c−1) +O(εr+1)

η̇ = −iΩ̃η −
r∑
s=1

∇ξ
[
f̂

(r,s)
2 + f̂

(r,s)
3

]
+O(|ξ|m−1|η|n) +O(ε|p̂|a|ξ|b−1|η|c) +O(εr+1) ,

where a, b, c,m, n ∈ N such that 2a+ b+ c = 4 and m+ n = 3, and Ω̃ is the diagonal matrix with
frequencies Ωj on the diagonal.

Neglecting terms of order O(εr+1) and evaluating at x∗ = (q = q∗, p̂ = 0, ξ = 0, η = 0), the
Hamilton equations of the truncated normal form read

q̇1 = ω , q̇ = 0 , ṗ1 = 0 , ṗ = −
r∑
s=1

∇qf (r,s)
0

∣∣
q=q∗

, ξ̇ = 0 , η̇ = 0 .

Thus, if q∗ fulfills the equation (2.9) then (q1 = q1(0) + ωt, x∗) represents a relative equilibrium
of the truncated Hamiltonian, i.e. it is the initial datum of an approximate periodic orbit for the
whole system6. Moreover, the periodicity condition for an orbit of the Hamiltonian H(r) can be
rewritten as follows

q̂(T )− q̂(0)− ΛT =

∫ T

0

∇p̂

[
f̃

(r,0)
4 +

r∑
s=1

f̃
(r,s)
2

]
ds+O(|p̂|2) +O(ε|p̂|a−1|ξ|b|η|c)+

+O(εr+1) = 0

p1(T )− p1(0) = −
∫ T

0

r∑
s=1

∇q1 f̂
(r,s)
3 ds+O(ε|p̂|a|ξ|b|η|c) +O(εr+1) = 0

p(T )− p(0) = −
∫ T

0

(
r∑
s=1

∇qf (r,s)
0 +

r∑
s=1

∇q
[
f

(r,s)
2 + f̂

(r,s)
3

])
ds+O(ε|p̂|a|ξ|b|η|c)+

+O(εr+1) = 0

ξ(T )− ξ(0) =

∫ T

0

(
iΩ̃ξ +

r∑
s=1

∇η
[
f̂

(r,s)
2 + f̂

(r,s)
3

])
ds+O(|ξ|m|η|n−1)+

+O(ε|p̂|a|ξ|b|η|c−1) +O(εr+1) = 0

η(T )− η(0) = −
∫ T

0

(
iΩ̃η −

r∑
s=1

∇ξ
[
f̂

(r,s)
2 + f̂

(r,s)
3

])
ds+O(|ξ|m−1|η|n)+

+O(ε|p̂|a|ξ|b−1|η|c) +O(εr+1) = 0 ,

6Let us observe that the candidate q∗ for the continuation are now dependent on ε.
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2.3 Proof of Theorem 2.1.1

and defines the map Υ as in (2.10).
As in the first Chapter, we introduce some quantities useful for the estimates in Section 2.5:

Ξr = max

(
eE

αδ2
rρσ

+
eE

4mδrρ2
, 2 +

eE

αδ2
rρσ

,
E

αδ2
r

(
2e

ρσ
+
e2

R2

))
,

with
α = min

k1,j,l,k
(|ω|, |k1ω ± Ωj | , |k1ω ± Ωl ± Ωk|) ,

and ρ, σ, δr which are the constants and the restrictions of the domain due to Cauchy’s estimates
(see Lemma 2.5.1). Since the approximate periodic orbit is a periodic orbit for the truncated
normal form, we get

Lemma 2.3.1 Let x∗ = (q∗, 0, 0, 0) be a relative equilibrium for the truncated normal form K(r),
i.e. an approximate periodic orbit for the Hamiltonian H(r), then Υ(x∗; ε, q1(0)) is of order
O(εr+1).

Proof. Consider the remainder of the Hamiltonian H(r), namely
∑
s>r

∑
`≥0 f

(r,s)
` . For ε <

1
212Ξ5

r
, we get the estimate: ∑

s>r

∑
`≥0

‖f (r,s)
` ‖ ≤ 2E

(
214Ξ5

rε
)r+1

.

Hence, following the same procedure of Lemma 1.4.1, we obtain the estimate for the map Υ.
�

The proof of Theorem 2.1.1 simply consists in the application of Proposition A.1.1 7. In
particular, the main assumption concerns the invertibility of the matrix M(ε) and its eigenvalues.
In contrast to the non-degenerate case, now it is really difficult to directly verify condition (A.2)
starting from the definition (2.11). Indeed, it requires to insert (2.19) in the new functions F,
G, R and S, to expand it w.r.t. ε and, finally, to compute the differential w.r.t. the initial
datum, evaluated at x∗. However, we can take advantage of the normal form construction and
of the connection with the monodromy matrix, which allow the matrix M(ε) to be more easily
calculated, without computing all the expansions w.r.t. ε just mentioned.

The monodromy matrix of a system is the fundamental matrix Φ(t) evaluated at the period
T , under the hypothesis Φ(0) = I. It also corresponds to the differential of the flow at the period
T w.r.t. the initial datum of the periodic orbit. Indeed, the flow satisfies the equation

dφt(x0)

dt
= XH(r)(φt(x0)),

where XH(r) is the Hamiltonian vector field of H(r). By computing the differential w.r.t. the
initial datum, one gets the variational equation

d

dt
dx0φ

t(x0) = dXH(r)(φt(x0))dx0φ
t(x0)

dx0φ
0(x0) = I

,

As a result, Φ(T ;x0) = dx0
φT (x0). Moreover, we observe that the matrix M(ε) corresponds

to dx0φ
T (x∗) − I, in which we have neglected the first column and the equation for p1. As

a consequence, from the structure of the Jacobian matrix dXH(r)(φt(x∗)), we can deduce the
structure of the monodromy matrix and, consequently, of M(ε). Indeed, similarly to the first
normalization step, if we consider the linearized equation of the Hamiltonian K(r) in normal form
up to order r (i.e. the approximate variational equation), around the approximate equilibrium, we
get a constant matrix with null block on the anti-diagonal. Taking into account the exponential of

7See section A.1 in the Appendix.
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2. Continuation of degenerate periodic orbits: lower dimensional tori

this matrix multiplied by the period T , we obtain the approximate monodromy matrix evaluated
at x∗, with null block on the anti-diagonal. Neglecting the first column and the equation for p1 and
subtracting the identity matrix, we get the structure for M(ε) claimed by the following Lemma.
Prior to state the Lemma, we introduce a convenient notation. Let M be a 2n-dimensional square
matrix. We denote by Mred the reduced matrix, namely the (2n − 1)-dimensional square matrix
obtained from M by removing the first column (related to the fast angle q1) and the (n1 + 1)-th
row (related to the momentum p1).

Lemma 2.3.2 The differential M(ε) defined in (2.11) is the reduction of Φ(T ;H(r), x∗) − I,
namely

M(ε) =
(

Φ(T ;H(r), x∗)− I
)
red

.

Moreover, M(ε) has the following decomposition

M(ε) = N(ε) +O(εr+1) , with N(ε) =


Ñ(ε) O

O N̂(ε)

 ,

where the leading term reads

N(ε) =
(

Φ(T ;K(r), x∗)− I
)
red

, with Φ(T ;K(r), x∗) = exp (dXK(r)(x∗)T ) .

We can now prove the Theorem 2.1.1:
Proof. Let us stress that we have proved (A.1) in Lemma 2.3.1, with β = r + 1. Besides,
the condition (A.3), which is a Lipschitz continuity requirement, is also satisfied, in view of the
analyticity of the Hamiltonian and its vector field. As regards the second hypothesis (A.2) on the
invertibility of the Jacobian matrix and on the smallness of its eigenvalues, in order to investigate
them, we have to exploit the Lemma 2.3.2, obtaining the matrix

M(ε) = N(ε) +O(εr+1) with N(ε) =


Ñ(ε) O

O N̂(ε)

 ,

and

N̂(0) =


e2πi Ω̃

ω − I O

O e−2πi Ω̃
ω − I

 .

If the matrix N(ε) is invertible, then the same holds true for M(ε), by continuity. One can also
prove8 that if |λ| & εα (with α < r, which is guaranteed by the hypothesis 2α < r + 1), with
λ ∈ σ(N), then |ν| & εα, with ν ∈ σ(M). Moreover, from the structure of the matrix N(ε), we
can deduce that its spectrum is the union of the spectrum of the two blocks Ñ and N̂ . We also
remark that the block N̂ is always invertible, because of the invertibility of its leading order, due
to the first Melnikov condition (2.5). Furthermore, the smallest eigenvalue of the matrix N is the
smallest eigenvalue of the matrix Ñ . Therefore, we only need the requirement on the spectrum of
the block Ñ .

�

8See Proposition A.3.1 in the Appendix.
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2.4 Approximate and effective linear stability

It is well worth noting how the statement of Theorem 2.1.1 may be formulated, according to
the structure of the normal form algorithm. In order to state a theorem about the continuation
of periodic orbits, one can perform only three stages of the normalization step, the third one

consisting of the average of the term f̃
(II;r−1,r)
2 (p̂, q̂) only. By so doing, the abstract result requires

an assumption on the eigenvalues of the matrix N(ε), not only on the block Ñ(ε). Indeed, three
stages do not suffice to obtain the two block on the anti-diagonal equal to zero, in general. This
does not allow to split the spectrum of the matrix N(ε) in the spectrum of its diagonal blocks.

As a consequence, with the purpose of getting a more accessible criterion for applications, it
is necessary to perform a fourth stage in the normalization step. It permits to remove the term

f
(III;r−1,r)
3 − f (III;r−1,r)

3

∣∣∣
p̂=0

, achieving the desired structure with null blocks on the anti-diagonal.

Let us stress that the fourth stage does not need a second Melnikov condition. We also remark
that the matrix of the linearized system is not independent of time in this case, due to lack of

averaging of the terms f̂
(II;r−1,r)
2 (ξ, η) and f̃

(II;r−1,r)
4 (q̂, p̂), namely of the second half of the third

stage and of the fifth stage. Therefore, we cannot easily deduce the structure of the matrix M(ε),
simply considering the exponential of the linearized matrix. However, it allows to simplify the
statement, giving a criterion on the eigenvalues of the block Ñ(ε), in all models in which the
Hamiltonian does not depend on the fast angle q1 (because of the effect of some symmetries of
the systems). So, the fourth stage actually allows to get an easier condition to be verified for
applications.

2.4 Approximate and effective linear stability

Coming back to the complete normal form scheme with five stages, in order to investigate the
approximate linear stability of the approximate periodic orbit we have to compute the eigenvalues

of the matrix of the linearization obtained from the quadratic Hamiltonian K
(r)
2 of the normal

form. Hence, as in the first normalization step, we need to study the spectrum of the constant
matrix

L(ε) =

L11(ε) O

O L22(ε)

 ,

with

L11(ε) =

 D̃(ε)
>

C(ε)

−B̃(ε) −D̃(ε)

 , and L22(ε) =

 E(ε)> F (ε)

−G(ε) −E(ε)

 ,
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2. Continuation of degenerate periodic orbits: lower dimensional tori

where

B(ε) = D2
qK

(r)(ωt+ q1(0), x∗) = D2
q

[
r∑
s=1

f
(r,s)
0

]
(x∗) = εB1 + . . .+ εrBr ,

C(ε) = D2
p̂K

(r)(ωt+ q1(0), x∗) = D2
p̂

[
r∑
s=0

f̃
(r,s)
4

]
(x∗) = C0 + . . .+ εrCr ,

D(ε) = D2
qp̂K

(r)(ωt+ q1(0), x∗) = D2
qp̂

[
r∑
s=1

f̃
(r,s)
2

]
(x∗) = εD1 + . . .+ εrDr ,

E(ε) = D2
ξηK

(r)(ωt+ q1(0), x∗) = D2
ξη

[
r∑
s=0

f̂
(r,s)
2

]
(x∗) = E0 + . . .+ εrEr ,

F (ε) = D2
ηK

(r)(ωt+ q1(0), x∗) = D2
η

[
r∑
s=1

f̂
(r,s)
2

]
(x∗) = εF1 + . . .+ εrFr ,

G(ε) = D2
ξK

(r)(ωt+ q1(0), x∗) = D2
ξ

[
r∑
s=1

f̂
(r,s)
2

]
(x∗) = εG1 + . . .+ εrGr ,

B̃(ε) is the square-matrix obtained adding a zero row at first position and a zero column at first
position to B(ε) and D̃(ε) is the square-matrix obtained adding a zero row at first position to
D(ε). By factoring out a λ2 dependence in the equation det(L(ε) − λI), similarly to the first
normalization step, we are reduced to compute the eigenvalues of

V (ε) =

 V11(ε) O

O V22(ε)

 ,

with

V11(ε) =

 (bD(ε))> bC(ε)

−B(ε) −bD(ε)

 and V22(ε) = L22(ε) (2.31)

where bD(ε) is the n1 − 1 square-matrix D(ε) without the first columns, and bC(ε) is the n1 − 1
square-matrix C(ε) without both the first column and row. Observe that the spectrum of the
approximate matrix V (ε) is the union of the spectrum of two diagonal blocks. The first one is
Σ(V11(ε)), made of 2n1 − 2 eigenvalues which vanish as ε → 0. The second one is Σ(V22(ε)). As
in the first normalization step, we assume Ωj > 0 (or Ωj < 0) so that the matrix V22 is positive
(negative) definite and the elliptic equilibrium persists for ε small enough. Let us stress that the
same claim may be inferred invoking the Krein’s signature, as observed in Remark 2.2.6.

As a consequence, the approximate linear stability of the periodic orbits only depends on the
vanishing part of the spectrum Σ(V11(ε)). Moreover, in order to get linear stability, it is necessary
to demand that all its eigenvalues be purely imaginary.

We now investigate to what extent the stability of the true periodic orbit can be inferred by
the stability of the approximate one, under suitable assumptions on Σ(V11(ε)). Let us stress that
the above matrix is an approximation of the matrix one has to consider in order to investigate
the linear stability of true periodic orbits. To this end, we have to add O(εr+1), due to the
perturbation of the normal form K(r), and a second perturbation O(εr+1−α), because of the error∥∥x∗p.o. − x∗∥∥ ≤ c0εr+1−α.

We can now state the following Theorem

Theorem 2.4.1 Consider the monodromy matrix Φ(T ;H(r), x∗p.o.) and its approximation given
by exp (L(ε)T ), with L22(ε) positive definite. Then for |ε| small enough the following holds true:
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2.5 Analytic estimates

1. there exists a positive constant cA such that one has

Φ(T ;H(r), x∗p.o.) = exp (L(ε)T ) +A , with ‖A‖op ≤ cA|ε|
r+1−α , (2.32)

where α is the same as in Theorem 2.1.1;

2. Σ(Φ(T ;H(r), x∗p.o.)) = Σ11∪Σ22, where Σ11 is close to Σ(exp(L11(ε)T )) and includes at least
two elements equal to 1, while Σ22 is close to Σ(exp(L22(ε)T )) and all its elements lie on
the unit circle.

Proof. In view of continuity and separation of the two spectra Σ(L11(ε)) and Σ(L22(ε)),
the spectrum of the monodromy matrix splits into two different components. Moreover, Krein’s
signature theory ensures that Σ22, which is a deformation of Σ(exp(L22(ε)T )), lies on the unit
circle.

In order to obtain the estimate of the error in (2.32), we exploit the fact that the monodromy
matrix is the differential of the flow with respect to the initial datum. Considering the matrix
Φ(T ;K(r), x∗p.o.), we take into account two different sources of approximation: the one of the

Hamiltonian H(r) with its normal form K(r) and the one due to the approximation of the initial
datum of the periodic orbit. Hence, the error term consists of the normal form remainder O(εr+1)
and of the error of the periodic orbit, which is of order O(εr+1−α) (with 2α < r+ 1), as it follows
from Theorem 2.1.1. The latter is the dominant one and this concludes the proof.

�

Let us stress that the matrix N(ε) in Theorem 2.1.1 can now be rewritten as

N(ε) = (exp(L(ε)T )− I)red

with Ñ(ε) = (exp(L11(ε)T )− I)red.
We are now ready to prove the Theorem 2.1.2 on the localization of the eigenvalues9 of Σ11 by

exploiting the spectrum of the matrix L11(ε) in the generic case of distinct eigenvalues.

Proof. [Theorem 2.1.2] The proof follows from Proposition A.3.2 in the Appendix, by exploit-
ing (2.32) and the fact that the difference between the Floquet multipliers close to 1, eλjT − eλkT ,
is, at leading order, the same as the exponents λj − λk.

�

Remark 2.4.1 If the eigenvalues in Theorem 2.1.2 are not distinct or β does not satisfy the
condition β < r + 1 − α, one can also take advantage of the normal form algorithm and perform
further normalization steps, in order to increase the accuracy of the approximation and try to
apply the Theorem. An example of this procedure will be given in the railway model in Chapter 3.

2.5 Analytic estimates

Now, our aim is to turn the formal algorithm into a recursive scheme of estimates. We here report
only the statements needed to describe the analytic estimates. The detailed proofs are given in
Section A.2 of the Appendix for three stages of the normalization step, which contain all the
key aspects of the procedure. The case of five stages only requires further calculations. Before
detailing the main results, we must anticipate some useful technical tools.

2.5.1 Estimates for Poisson brackets and Lie series

We report some basic Cauchy’s estimates which will be needed to bound the transformed Hamil-
tonian.

9See also Lemma 2 in [1].
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Lemma 2.5.1 Let d ∈ R such that 0 < d < 1 and g ∈ P` be an analytic function with bounded
norm ‖g‖1. Then one has

∥∥∥∥ ∂g∂p̂j
∥∥∥∥

1−d
≤
‖g‖1
dρ

,

∥∥∥∥ ∂g∂q̂j
∥∥∥∥

1−d
≤
‖g‖1
edσ

,

∥∥∥∥ ∂g∂ξj
∥∥∥∥

1−d
≤
‖g‖1
dR

,

∥∥∥∥ ∂g∂ηj
∥∥∥∥

1−d
≤
‖g‖1
dR

,

Lemma 2.5.2 Let d ∈ R such that 0 < d < 1 and j ≥ 1. Then one has

∥∥∥∥Ljχ(r)
0

f

∥∥∥∥
1−d−d′

≤ j!

e

(
e‖X(r)

0 ‖1−d′
d2ρσ

+
e|ζ(r)|
dρ

)j
‖f‖1−d′ ,

∥∥∥∥Ljχ(r)
1

f

∥∥∥∥
1−d−d′

≤ j!

e2

(
‖χ(r)

1 ‖1−d′
d2

(
e

ρσ
+
e2

R2

))j
‖f‖1−d′ ,

∥∥∥∥Ljχ(r)
2

f

∥∥∥∥
1−d−d′

≤ j!

e2

(
‖χ(r)

2 ‖1−d′
d2

(
2e

ρσ
+
e2

R2

))j
‖f‖1−d′ ,

∥∥∥∥Ljχ(r)
3

f

∥∥∥∥
1−d−d′

≤ j!

e2

(
‖χ(r)

3 ‖1−d′
d2

(
2e

ρσ
+
e2

R2

))j
‖f‖1−d′ ,

∥∥∥∥Ljχ(r)
4

f

∥∥∥∥
1−d−d′

≤ j!

e2

(
2e‖χ(r)

4 ‖1−d′
d2ρσ

)j
‖f‖1−d′ .

2.5.2 Recursive scheme of estimates

Having fixed d ∈ R, 0 < d ≤ 1/4, we consider a sequence δr≥1 of positive real numbers satisfying

δr+1 ≤ δr ,
∑
r≥1

δr ≤
d

5
,

and a further sequence dr≥0 defined as

d0 = 0 , dr = dr−1 + 5δr .

This sequence allows to control the restrictions of the domain due to the Cauchy’s estimate.

The factors entered by the estimate of the norm of the Poisson brackets are bounded by

Ξr = max

(
eE

αδ2
rρσ

+
eE

4mδrρ2
, 2 +

eE

αδ2
rρσ

,
E

αδ2
r

(
2e

ρσ
+
e2

R2

))
,

with

α = min
k1,j,l,k

(|ω|, |k1ω ± Ωj | , |k1ω ± Ωl ± Ωk|) ,

that is strictly greater than zero in view of the the Melnikov conditions.

The number of terms in (2.22), (2.25), (2.27), (2.29) and (2.30) is controlled by the five se-
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quences
ν0,s = 1 for s ≥ 0 ,

ν(I)
r,s =

bs/rc∑
j=0

νjr−1,rνr−1,s−jr for r ≥ 1 , s ≥ 0 ,

ν(II)
r,s =

bs/rc∑
j=0

(ν(I)
r,r)

jν
(I)
r,s−jr for r ≥ 1 , s ≥ 0 ,

ν(III)
r,s =

bs/rc∑
j=0

(2ν(II)
r,r )jν

(II)
r,s−jr for r ≥ 1 , s ≥ 0 .

ν(IV)
r,s =

bs/rc∑
j=0

(ν(III)
r,r )jν

(III)
r,s−jr for r ≥ 1 , s ≥ 0 .

νr,s =

bs/rc∑
j=0

(ν(IV)
r,r )jν

(IV)
r,s−jr for r ≥ 1 , s ≥ 0 .

We can now state the following Lemma:

Lemma 2.5.3 The sequence of positive integers {νr,s}r≥0 , s≥0 defined in (A.13) is bounded by

νr,s ≤ νs,s ≤
214s

28
.

The following Lemma collects all the key estimates concerning the generating functions and
the transformed Hamiltonians.

Lemma 2.5.4 Consider a Hamiltonian H(r−1) expanded as in (2.2). Let χ
(r)
0 , χ

(r)
1 , χ

(r)
2 , χ

(r)
3

and χ
(r)
4 be the generating functions used to put the Hamiltonian in normal form at order r, then

one has

‖X(r)
0 ‖1−dr−1

≤ 1

α
νr−1,rΞ

5r−5
r Eεr ,

|ζ(r)| ≤ 1

4mρ
νr−1,rΞ

5r−3Eεr ,

‖χ(r)
1 ‖1−dr−1−δr ≤

1

α
ν(I)
r,rΞ

5r−4
r

E

2
εr ,

‖χ(r)
2 ‖1−dr−1−2δr ≤

1

α
2ν(II)
r,r Ξ5r−3

r

E

22
εr ,

‖χ(r)
3 ‖1−dr−1−3δr ≤

1

α
ν(III)
r,r Ξ5r−2

r

E

23
εr ,

‖χ(r)
4 ‖1−dr−1−4δr ≤

1

α
ν(IV)
r,r Ξ5r−1

r

E

24
εr .

The terms appearing in the expansion of H(r), i.e. in (2.8), are bounded as

‖f (r,s)
` ‖1−dr ≤ νr,sΞ5s

r

E

2`
εs . (2.33)

Let us stress that the proof of Lemma 2.5.4 actually requires stricter estimates in (2.33) both for
the lower order terms (as it is evident from the bounds on the generating functions) and for the
intermediate stages of the r-th normalization step. The detailed proof with the stricter estimates
for the exponents is given for three stages of the normalization step in the Appendix.
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Chapter 3

Applications

The aim of this Chapter is to present applications of the abstract results gained in previous Chap-
ters. The normal form scheme developed allows to investigate different kinds of degeneracy with
the help of a symbolic manipulator, thus confirming the practical applicability of the abstract
results. In terms of possible applications, one can consider the problem of the existence of de-
generate discrete solitons or multibreathers in one-dimensional discrete non-linear Schrödinger or
Klein-Gordon lattices, as well as discrete vortexes in two-dimensional lattices.

Considering a chain of weakly coupled anharmonic oscillators, the simplest case of degeneracy
arises when in the multibreather configuration there are holes between oscillators which are large
in comparison with the interaction range, thus leading to the lack of some terms in the averaged
perturbation. A more subtle form of degeneracy is related to internal symmetries generated
by beyond nearest-neighbor interactions and their relative strength, even for consecutive sites
configurations.

Several degenerate scenarios, in particular in the dNLS class of Hamiltonian lattices or also
in Klein-Gordon models, can also be treated with a suitable rotating frame ansatz1 and the
combination of a Lyapunov-Schmidt decomposition with perturbative techniques (see, e.g., [50,
69, 75, 76]). As regards the Klein-Gordon model, it can be proved that for low energy and small
coupling parameter the dNLS model represents a normal form for the Klein-Gordon, so the latter
can be approximated with the former in this regime and the standard approach based on the
ansatz can be applied (see for instance [67, 71]). However, the normal form approach enables to
face every kinds of degeneracy and any resonant module in the same way, so to include, differently
from the literature, cases in which the resonances among the excited frequencies differ from the
usual (1 : . . . : 1), since different amplitudes have been chosen for the selected sites. In this latter
case the investigation of periodic orbits can be extended to the analysis of two-dimensional subtori
foliated by periodic orbits.

3.1 Main results

In the following Sections we will investigate continuation and linear stability of degenerate periodic
orbits in different dNLS models. In particular, all the forthcoming applications are chains of weakly
coupled anharmonic oscillators where the coupling parameter ε has to be considered small enough
(we are considering the anti-continuum limit ε→ 0) and which turn out to be dNLS models. We
will investigate different forms of degeneracy; the first two examples, which contain all the details
and calculations in order to clarify how the normal form algorithm and the abstract results work,
immediately describe the two main mechanisms of degeneracy mentioned above.

I here summarize the main results obtained in each application:

1See also Section A.4 for the standard approach for the dNLS model.
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• Square dNLS cell

!

Candidates for continuation at first order: two non-degenerate configurations and three one-
parameter families which all intersect in the square vortex configurations (phase differences
±π/2). Two families break down at second order, apart from the in/out-of-phase configu-
rations (phase differences 0 or π) which can be continued; the third one and also the two
square vortex configurations which are contained in it, reveal to be true solutions of the
model. Only the solution with all the phase differences equal to π turns out to be linearly
stable.

• The seagull

Candidates for continuation at first order: four one-parameter families which do not intersect.
At second order the four families break down and only the continuation of the eight in/out-
of-phase configurations is feasible. One of the latter is also linearly stable. The effect
of focusing/defocusing non-linearity (γ positive or negative) on the linear stability is also
studied.

• Multi-pulse solutions (2 excited sites)

It is a completely degenerate case: at first order every phase difference between the two
oscillators is a candidate for the continuation. At second order, only the two in/out-of-phase
configurations survive and can be continued, one of which is also linearly stable.

• Multi-pulse solutions (3 excited sites)

Candidates for continuation at first order: two disjoint one-parameter families. At second
order the two families break down and only the four in/out-of-phase configurations still
persist and can be continued. One of them is also linearly stable. The role of the non-linear
parameter γ is stressed.

• ZigZag model

Candidates for continuation at first order: two one-parameter families, intersecting in the
vortex-like solutions, and four isolated solutions, three of which non-degenerate and the
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fourth one degenerate. At second order, the two families break down and only the in/out-of-
phase solutions survive. All these latter configurations and the isolated one can be continued.
This proves the non-existence of four-sites vortex-like structures in ZigZag models, confirming
the result in [76]. Only the solution with all the phase differences equal to 0 turns out to be
linearly stable.

• Railway model

Candidates for continuation at first order: three one-parameter families, which all intersect
in the vortex configurations, and four isolated non-degenerate solutions. At second order, we
only get four in/out-of-phase solutions and two square vortex configurations. The standard
in/out-of-phase ones can be continued, while for the vortexes we need a third normal form
step, which is conclusive for their non-existence. Once again, only the solution with all the
phase differences equal to 0 is linearly stable. The advantages of the normal form procedure
in the study of the effective linear stability are also stressed.

• Multi-pulse solutions (3 excited sites) with purely non-linear coupling

Candidates for continuation at first order: four isolated solutions, three of which degenerate
and the fourth one non-degenerate. The degeneracy can be removed only at order three,
where we get that all the in/out-of-phase solutions survive and can be continued. One of
them is also linearly stable.

• Different resonances: non-degenerate case

Due to the resonances different from the standard (1 : . . . : 1) and to the action of the
symmetry in the dNLS, the first normalization order results in existence and continuation
of non-degenerate two-dimensional subtori foliated by periodic orbits, for phase differences
between the third and the second excited oscillator equal to 0, π.

• Different resonances: degenerate case

This is a completely degenerate case, where the degeneracy is removed at second order which
provides the continuation of two-dimensional subtori foliated by periodic orbits, for phase
differences between the third and the first excited oscillator equal to 0, π.

The normal form algorithm and all the other computations have been performed by means of
Mathematica.

Before entering the details of the applications, we introduce the dNLS model.
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The dNLS model

We consider the dNLS equation in the general form

iψ̇j = ψj − ε(Lψ)j + γψj |ψj |2 , with j ∈ J , (3.1)

where ψj ∈ C, γ 6= 0 is a parameter tuning the non-linearity and L is a linear operator which can
include beyond nearest-neighbors interactions. In this Chapter we will make different choices for
the linear operator L. The boundary conditions will be either periodic or of Dirichlet type in the
case of J finite2. The equations can be written in Hamiltonian form iψ̇j = ∂H

∂ψj
with

H = H0 + εH1 , H0 =
∑
j∈J
|ψj |2 +

γ

2

∑
j∈J
|ψj |4 .

We introduce the set of excited sites I = {j1, . . . , jn1
} ⊂ J , not necessarily consecutive, in

order to include also configurations where the localization of the amplitude (hence of the energy),
is clustered, with holes separating the different clusters along the lattice.

In the limit of ε = 0, we consider unperturbed excited oscillators
{
ψ

(0)
j

}
j∈I

with resonant

frequencies in order to get a periodic flow on the resonant torus. The typical choice is given by

the (1 : . . . : 1) resonance, obtained by choosing a common frequency ω for all the
{
ψ

(0)
j

}
j∈I

.

All the unperturbed periodic orbits foliate a n-dimensional torus of the phase space: the torus
corresponds to |ψj |2 = R2 for j ∈ I and ψj = 0 for the remaining j 6∈ I. Hence, this problem for
the dNLS model can be recast in the investigation of the breaking of a completely resonant torus,
namely we want to determine via our normal form procedure which solutions, degenerate or not,
are going to survive as ε 6= 0, at fixed period.

For the applications of the normal form approach, we start from the “real” Hamiltonian for-
mulation of systems of weakly coupled anharmonic oscillators, which can be obtained from the
original Hamiltonian by using real and imaginary parts of the complex amplitudes ψj as canonical
configurations-momenta: more precisely

xj =
i√
2

(
ψj − ψ̄j

)
, yj =

1√
2

(
ψ̄j + ψj

)
⇒ 1

2

(
x2
j + y2

j

)
= |ψj |2 . (3.2)

Let me stress that in all the following applications the twist condition (1.7) or (2.3) will be satisfied
thanks to the anharmonicity of the oscillators. Instead, as regards the first and the second Melnikov
conditions, it is necessary to choose suitable values for the parameters γ and I∗j with j ∈ I, the
latter being the actions which define the torus.

3.2 Applications: full dimensional tori

3.2.1 Square dNLS cell with nearest-neighbour interaction

The following example is a model of weakly coupled oscillators which reveals to be a dNLS model
(3.1) of the following kind

iψ̇j = ψj − ε(Lψ)j + γψj |ψj |2 , −(Lψ)j = ψj+1 + ψj−1 , (3.3)

with j ∈ J = {1, . . . , 4}, γ = 2, and periodic boundary conditions. The equations can be written
in the Hamiltonian form iψ̇j = ∂H

∂ψj
from

H =
∑
j∈J

(
|ψj |2 + |ψj |4 + ε

(
ψj+1ψj + ψj+1ψj

))
, (3.4)

2Or vanishing at infinity as ψ ∈ `2(C) in the case of infinite J : this case is not properly covered by our normal
form technique, since the analytical estimates should be extended; however the formal algorithm works as well.
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with ψ5 = ψ1. This is a model where extrema of the averaged Hamiltonian are not isolated. In
particular, degenerate solutions appear with the weakest possible degeneracy, namely they are
one-parameter families of approximate solutions. This allows to get a more applicable formulation
of Theorem 1.2.1, as proved in Section 1.5. Otherwise, the structure of the monodromy matrix
can be exploited and the Theorem 2.1.1 can be applied.

Let us rewrite the Hamiltonian system in real coordinates with the canonical transformation
(3.2), obtaining

H = H0 + εH1 =

4∑
j=1

(
x2
j + y2

j

2
+

(
x2
j + y2

j

2

)2

+ ε(xj+1xj + yj+1yj)

)
,

with periodic boundary conditions, i.e., x5 ≡ x1 and y5 ≡ y1. Introducing the action-angle
variables (xj , yj) = (

√
2Ij cosϕj ,−

√
2Ij sinϕj), the Hamiltonian reads

H =

4∑
j=1

(
Ij + I2

j + 2ε
√
Ij+1Ij cos(ϕj+1 − ϕj)

)
.

Let us now fix the completely resonant torus I∗ = (I∗, I∗, I∗, I∗). The model is a one-dimensional
discrete Hamiltonian lattice with an interaction beyond nearest neighbors, as represented in the
following picture.

1 2 3 4
I∗

Otherwise, the configuration can be seen as a two-dimensional discrete Hamiltonian lattice
with nearest neighbor interactions, which explains the name square cell.

1 2

34

1 2

34

Making a Taylor expansion around I∗, i.e. setting Ij = Jj+I
∗ for j = 1, . . . , 4 , the unperturbed

part H0 reads

H0(J) = 4I∗ + 4(I∗)2 + (1 + 2I∗)(J1 + J2 + J3 + J4) + J2
1 + J2

2 + J2
3 + J2

4 ,

while the perturbation H1 takes the form

H1(J, ϕ) = 2I∗(cos(ϕ2 − ϕ1) + cos(ϕ3 − ϕ2) + cos(ϕ4 − ϕ3) + cos(ϕ4 − ϕ1))

+ (J1 + J2) cos(ϕ2 − ϕ1) + (J3 + J2) cos(ϕ3 − ϕ2)

+ (J4 + J3) cos(ϕ4 − ϕ3) + (J1 + J4) cos(ϕ4 − ϕ1)

− (J1 − J2)2 cos(ϕ2 − ϕ1)

4I∗
− (J2 − J3)2 cos(ϕ3 − ϕ2)

4I∗

− (J3 − J4)2 cos(ϕ4 − ϕ3)

4I∗
− (J1 − J4)2 cos(ϕ4 − ϕ1)

4I∗
+O(|J |3) .

We introduce3 the resonant angles q̂ = (q1, q) and their conjugate actions p̂ = (p1, p)
q1 = ϕ1

q2 = ϕ2 − ϕ1

q3 = ϕ3 − ϕ2

q4 = ϕ4 − ϕ3

,


p1 = J1 + J2 + J3 + J4

p2 = J2 + J3 + J4

p3 = J3 + J4

p4 = J4

.

3In this example, we have preferred the angles to be the relative phase differences among consecutive angles,
rather than the phase differences with respect to the first angle ϕ1, as in the previous Chapters.
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Thus, ignoring the constant terms, we can rewrite H as

H = ωp1 +
(

(p1 − p2)2 + (p2 − p3)2 + (p3 − p4)2 + p2
4

)
+ ε
[(

2I∗ cos(q2) + 2I∗ cos(q3) + 2I∗ cos(q4) + 2I∗ cos(q2 + q3 + q4)
)

+ (p1 − p3) cos(q2) + (p2 − p4) cos(q3) + p3 cos(q4)

+ (p1 − p2 + p4) cos(q2 + q3 + q4)

− cos (q2) (p1 − 2p2 + p3)
2

4I∗
− cos (q3) (p2 − 2p3 + p4)

2

4I∗
− cos (q4) (p3 − 2p4)

2

4I∗

− cos (q2 + q3 + q4) (p1 − p2 − p4)
2

4I∗

]
+O(ε|p̂|3)

= ωp1 + f
(0,0)
4 (p1, p2, p3, p4) + f

(0,1)
0 (q2, q3, q4)

+ f
(0,1)
2 (p1, p2, p3, p4, q2, q3, q4) + f

(0,1)
4 (p1, p2, p3, p4, q2, q3, q4) +O(ε|p̂|3) ,

where ω = 1 + 2I∗.

We now proceed to polish the Hamiltonian in order to study continuation and stability of
periodic orbits.

We observe that the Hamiltonian does not depend on the fast angle q1. This is due to the
effect of the Gauge symmetry of the model, as visible in the complex form (3.4). As a consequence,

f
(0,1)
0 (q2, q3, q4) is already in normal form and the first stage only consists in the translation of

the actions, which allows to keep ω fixed. Since f
(0,1)
2 is automatically averaged w.r.t. q1, the

homological equation defining ζ(1) is equivalent to the following linear system

〈∇p̂f (0,0)
4 , ζ(1)〉 = f

(0,1)
2

∣∣∣
q=q∗

,

whose solution is given by

ζ
(1)
1 = ε (cos(q∗2) + cos(q∗3) + cos(q∗4) + cos(q∗2 + q∗3 + q∗4))

ζ
(1)
2 = ε

(
cos(q∗2)

2
+ cos(q∗3) + cos(q∗4) +

cos(q∗2 + q∗3 + q∗4)

2

)
ζ

(1)
3 = ε

(
cos(q∗3)

2
+ cos(q∗4) +

cos(q∗2 + q∗3 + q∗4)

2

)
ζ

(1)
4 = ε

(
cos(q∗4)

2
+

cos(q∗2 + q∗3 + q∗4)

2

)
.

Since the normal form preserves the symmetry, the newly generated term f
(I;0,1)
2 is again inde-

pendent of q1. This also applies to the term f
(I;0,1)
4 , so no further average is required. The values

q∗, which define the approximate periodic orbit at leading order, are given by the solutions of the

trigonometric system ∇qf (1,1)
0 = 0 (depending only on sines, due to the parity of the Hamiltonian),

which reads 
− 2I∗ sin(q2)− 2I∗ sin(q2 + q3 + q4) = 0

− 2I∗ sin(q3)− 2I∗ sin(q2 + q3 + q4) = 0

− 2I∗ sin(q4)− 2I∗ sin(q2 + q3 + q4) = 0

.

Such solutions are given by the two isolated configurations (0, 0, 0), (π, π, π), and the three one-
parameter families Q1 = (ϑ, ϑ, π − ϑ), Q2 = (ϑ, π − ϑ, ϑ), Q3 = (ϑ, π − ϑ, π − ϑ), with ϑ ∈ S1,
which all intersect in the two opposite configurations ±(π2 ,

π
2 ,

π
2 ). Since the twist condition (2.3)

is verified, we only need the invertibility of the matrix B1 in (1.4) in order to apply the implicit
function theorem (which reduces to the classical result of Poincaré). Factoring out −2I∗, the
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non-degeneracy condition reads∣∣∣∣∣∣
cos(q2) + cos(q2 + q3 + q4) cos(q2 + q3 + q4) cos(q2 + q3 + q4)

cos(q2 + q3 + q4) cos(q3) + cos(q2 + q3 + q4) cos(q2 + q3 + q4)
cos(q2 + q3 + q4) cos(q2 + q3 + q4) cos(q4) + cos(q2 + q3 + q4)

∣∣∣∣∣∣ 6= 0 .

If we evaluate the determinant in the two isolated configurations, we get det(B1) = ±4 6= 0, hence
the corresponding solutions can be continued for small enough ε. In the three families we obviously
get a degeneracy, since the tangent direction to each family represents a Kernel direction, hence
det
(
B1

∣∣
Qj

)
= 0. Furthermore, in the intersections ±(π2 ,

π
2 ,

π
2 ) the matrices are identically zero.

For all these families a second normalization step is thus needed.

The first stage of the second normalization step deals with

f
(1,2)
0 = f

(I;0,2)
0 = L〈ζ(1),q̂〉f

(0,1)
2 +

1

2
L2
〈ζ(1),q̂〉f

(0,0)
4 ,

which is already averaged over q1, due to the preservation of the symmetry. The same holds also

for the linear term in the action variables f
(1,2)
2 , given by

f
(1,2)
2 = f

(I;0,2)
2 = L〈ζ(1),q̂〉f

(0,1)
4 .

Hence, the homological equation providing the new translation ζ(2) reads

L〈ζ(2),q̂〉f
(0,0)
4 + L〈ζ(1),q̂〉f

(0,1)
4

∣∣∣
q=q∗

= 0 .

The new linear term in the action

f
(I;1,2)
2 = L〈ζ(1),q̂〉f

(0,1)
4 + L〈ζ(2),q̂〉f

(0,0)
4 ,

is again already averaged over q1 and, similarly, no further average is needed for the term

f
(I;1,2)
4 = L〈ζ(1),q̂〉f

(0,1)
6 .

Hence, the second step is concluded, and the transformed Hamiltonian reads

H(2) = ωp1 + f
(2,0)
4 (p̂)

+ f
(2,1)
0 (q) + f

(2,1)
2 (p̂, q) + f

(2,1)
4 (p̂, q)

+ f
(2,2)
0 (q) + f

(2,2)
2 (p̂, q) + f

(2,2)
4 (p̂, q)

+O(ε|p̂|3) +O
(
ε3
)
.

The approximate periodic orbits correspond to the q∗ for which

∇q
(
f

(2,1)
0 (q) + f

(2,2)
0 (q)

)
= ∇qf (2,1)

0 (q) +∇q
〈
∇p̂f (0,1)

2 (q), ζ(1)
〉
q1

= 0 ,

where in the correction due to f
(2,2)
0 , only the term L〈ζ(1),q̂〉f

(0,1)
2 really matters, having a nontrivial

dependence on the slow angles q. By exploiting the explicit expression for ζ(1) previously derived,
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and replacing q∗ with q in it, we explicitly get the system

−8 (sin(q2) + sin(q2 + q3 + q4)) + ε

(
2 sin(2q2) + sin(q2 − q3) + 2 sin(q2 + q3)

+ 2 sin(2q2 + 2q3 + 2q4) + 2 sin(2q2 + q3 + q4)

+ sin(q2 + q3 + 2q4)

)
= 0

−8 (sin(q3) + sin(q2 + q3 + q4)) + ε

(
2 sin(2q3) + sin(q3 − q2) + 2 sin(q2 + q3)

+ sin(q3 − q4) + 2 sin(q3 + q4)

+ 2 sin(2q2 + 2q3 + 2q4) + sin(2q2 + q3 + q4)

+ sin(q2 + q3 + 2q4)

)
= 0

−8 (sin(q4) + sin(q2 + q3 + q4)) + ε

(
2 sin(2q4) + sin(q4 − q3) + 2 sin(q3 + q4)

+ 2 sin(2q2 + 2q3 + 2q4) + sin(2q2 + q3 + q4)

+ 2 sin(q2 + q3 + 2q4)

)
= 0

,

depending on the effective small parameter ε̃ = ε
I∗ . The above system has the structure

F (q, ε) = F0(q) + εF1(q) = 0 , (3.5)

where F : T3 × U(0)→ R3. Moreover, we have already found at first normalization step that

F (Qj(ϑ), 0) = F0(Qj(ϑ)) = 0 .

Suppose that there exists a solution q(ε) = (q2(ε), q3(ε), q4(ε)) which is at least continuous in the
small parameter, i.e. C0(U(0),T3). Hence, by continuity, we must have

lim
ε→0

F (q2(ε), q3(ε), q4(ε), ε) = F0(q2(0), q3(0), q4(0)) = 0 ,

which means that q(0) ∈ Qj . Let us introduce the matrices B̃1,j(ϑ) =
∂F0(Qj(ϑ))

∂q and observe that
the tangent directions to the three families

∂ϑQ1 =

 1
1
−1

 , ∂ϑQ2 =

 1
−1
1

 and ∂ϑQ3 =

 1
−1
−1


represent the Kernel directions of B̃1,j , for j = 1, 2, 3, respectively. A standard proposition of
bifurcation theory provides a necessary condition for the existence of a solution Qj(ϑ, ε) which is
a continuation of Qj(ϑ).

Proposition 3.2.1 Necessary condition for the existence of a solution q(ε) = Qj(ϑ, ε) of (3.5) is
that

F1(Qj(ϑ, 0)) ∈ Range(B̃1,j(ϑ)) .

If B̃1,j(ϑ) is symmetric, the above condition simplifies

F1(Qj(ϑ, 0)) ⊥ Ker(B̃1,j(ϑ)). (3.6)

Let us apply the above Proposition to show that the families Q1 and Q3 break down. Precisely, all
their points, except for those corresponding to ϑ = {0, π/2, π}, do not represent true candidates
for the continuation. We compute 〈F1(Qj(ϑ, 0)), ∂ϑQj〉 for j = 1, 3

〈F1(Q1(ϑ)), ∂ϑQ1〉 = 8 sin(2ϑ) = 〈F1(Q3(ϑ)), ∂ϑQ3〉 ,
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which shows that the necessary condition is generically violated for the two families Q1,3, apart
from the in/out-of-phase configurations (0, 0, π), (π, π, 0), (0, π, π), (π, 0, 0) and the symmetric
vortex configurations ±

(
π
2 ,

π
2 ,

π
2

)
, the last being also points of Q2(ϑ).

A way to conclude that the above mentioned in/out-of-phase configurations can be continued
to periodic solutions is to apply Theorem 1.5.1. Indeed, the main and first fact to notice is that if
q∗0 = 0, π then D1 = 0, since it depends only on sines; then by Lemma 1.5.1 we get ma(0,M0) ≥ 2.
Moreover, a direct computation shows that the algebraic multiplicity of the zero eigenvalue of M0

is exactly two, so that we can apply Theorem 1.5.1. In order to verify the main condition (1.23),
since D1 = 0, we can restrict to compute only B2. In the configurations (0, 0, π) and (π, π, 0), we
get

B2 =

2 1 1
1 2 1
1 1 2

−
16 (I∗)

2
0 16 (I∗)

2

0 32 (I∗)
2

32 (I∗)
2

16 (I∗)
2

32 (I∗)
2

48 (I∗)
2

 T 2

6
,

while, in (0, π, π) and (π, 0, 0), we have

B2 =

2 1 1
1 2 1
1 1 2

−
48 (I∗)

2
32 (I∗)

2
16 (I∗)

2

32 (I∗)
2

32 (I∗)
2

0

16 (I∗)
2

0 16 (I∗)
2

 T 2

6
.

Anyway, we immediately obtain in all the four cases

γ =
〈
〈B2, a1〉, a1

〉
= 4 6= 0 ,

with a1 = ∂ϑQ1 for the first matrix B2, and a1 = ∂ϑQ3 for the second one. Hence, the above
in/out-of-phase configurations can be continued with |λ| & ε1/2, λ being an eigenvalue of the
matrix M(ε).

Otherwise, we can infer the continuation of these configurations, taking advantage of the
structure of the monodromy matrix, as stated in Lemma 2.3.2. In such a way, we get |λ| & ε for
all the points, then Theorem 2.1.1 can be applied with α = 1 and r = 2. Let us remark that the
discrepancy in the scaling of the eigenvalues for the two different procedures is only due to the
scaling of the actions in the first method.

It remains to investigate the second family Q2, which satisfies the necessary condition (3.6)
because it represents a solution for (3.5), namely F (Q2(ϑ)) ≡ 0 .

We explicitly constructed the normal form up to order three by using Mathematica and checked
that this family still persists. This led us to conjecture that it represents a true solution of the
problem. Indeed, using the complex coordinates as in (3.4) and the usual ansatz (A.42), we obtain
the stationary equation for the amplitudes φj

λφj = 2φj |φj |2 − ε(Lφ)j , λ = ω − 1 , −(Lφ)j = φj+1 + φj−1 .

If we further assume that the continued solutions have the same amplitude at all the sites, |φj | = R,
and the phase-shifts belong to the second family Q2

φj = Reiϕj , ϕ = (ϕ1, ϕ1 + θ, ϕ1 + π, ϕ1 + θ + π) ,

then we realize that for any θ ∈ S1 one has

Leiϕ(θ) = 0 .

Hence the stationary equation becomes

λ = 2R2 = 2I∗ ,

which implies that a two-dimensional resonant torus, embedded in the original unperturbed four-
dimensional torus, survives for any given ε.
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To study the approximate linear stability of the approximate periodic orbits we have to consider
the 2n1 − 2 square-matrix V11(ε) as in (2.31) with the block form

V11(ε) =

(
(bD)> bC
−B bD

)
.

In this first example, I will explicitly report the matrix V11(ε) and its eigenvalues for all the
configurations that can be continued, degenerate or not, in order to show the structure of the
matrix for different values of q∗ and better work out the details for studying the stability properties.

Since by definition the matrix D carries one derivative only w.r.t. q, then it depends only on
sin(〈k, q〉) and then it vanishes at q∗ = 0, π. In other terms, we are reduced to study the spectrum
of the simplified V11(ε) matrix

V11(ε) =

(
0 bC
−B 0

)
.

We notice that in this example the matrices

bC = D2
p

(
f

(2,0)
4 + f

(2,1)
4 + f

(2,2)
4

)
(q∗) and −B = −D2

q

(
f

(2,1)
0 + f

(2,2)
0

)
(q∗)

reduce to

D2
p

(
f

(0,0)
4 + f

(0,1)
4 + L〈ζ(1),q̂〉f

(0,1)
6

)
(q∗) and −D2

q

(
f

(0,1)
0 + L〈ζ(1),q̂〉f

(0,1)
2

)
(q∗) .

Hence, for the in/out-of-phase configurations (0, 0, π), (π, π, 0), (0, π, π), (π, 0, 0), we get V (ε)
respectively equal to

0 0 0 4− 2ε

I∗
− 3ε2

2(I∗)2
−2 +

2ε

I∗
+

2ε2

(I∗)2
− ε2

2(I∗)2

0 0 0 −2 +
2ε

I∗
+

2ε2

(I∗)2
4− 2ε

I∗
− 3ε2

2(I∗)2
−2

0 0 0 − ε2

2(I∗)2
−2 4 +

2ε

I∗
− 3ε2

2(I∗)2

−2ε2 −2I∗ε− ε2 −2I∗ε− ε2 0 0 0

−2I∗ε− ε2 −2ε2 −2I∗ε− ε2 0 0 0

−2I∗ε− ε2 −2I∗ε− ε2 −4I∗ε− 2ε2 0 0 0



,



0 0 0 4 +
2ε

I∗
− 3ε2

2(I∗)2
−2− 2ε

I∗
+

2ε2

(I∗)2
− ε2

2(I∗)2

0 0 0 −2− 2ε

I∗
+

2ε2

(I∗)2
4 +

2ε

I∗
− 3ε2

2(I∗)2
−2

0 0 0 − ε2

2(I∗)2
−2 4− 2ε

I∗
− 3ε2

2(I∗)2

−2ε2 2I∗ε− ε2 2I∗ε− ε2 0 0 0

2I∗ε− ε2 −2ε2 2I∗ε− ε2 0 0 0

2I∗ε− ε2 2I∗ε− ε2 4I∗ε− 2ε2 0 0 0



,
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

0 0 0 4− 2ε

I∗
− 3ε2

2(I∗)2
−2 − ε2

2(I∗)2

0 0 0 −2 4 +
2ε

I∗
− 3ε2

2(I∗)2
−2− 2ε

I∗
+

2ε2

(I∗)2

0 0 0 − ε2

2(I∗)2
−2− 2ε

I∗
+

2ε2

(I∗)2
4 +

2ε

I∗
− 3ε2

2(I∗)2

4I∗ε− 2ε2 2I∗ε− ε2 2I∗ε− ε2 0 0 0

2I∗ε− ε2 −2ε2 2I∗ε− ε2 0 0 0

2I∗ε− ε2 2I∗ε− ε2 −2ε2 0 0 0



,



0 0 0 4 +
2ε

I∗
− 3ε2

2(I∗)2
−2 − ε2

2(I∗)2

0 0 0 −2 4− 2ε

I∗
− 3ε2

2(I∗)2
−2 +

2ε

I∗
+

2ε2

(I∗)2

0 0 0 − ε2

2(I∗)2
−2 +

2ε

I∗
+

2ε2

(I∗)2
4− 2ε

I∗
− 3ε2

2(I∗)2

−4I∗ε− 2ε2 −2I∗ε− ε2 −2I∗ε− ε2 0 0 0

−2I∗ε− ε2 −2ε2 −2I∗ε− ε2 0 0 0

−2I∗ε− ε2 −2I∗ε− ε2 −2ε2 0 0 0



.

By computing the eigenvalues of the above matrices, we obtain

λ1,2(ε) = ±i

(
2ε+

ε3

4 (I∗)
2 + h.o.t.

)
,

λ3,4(ε) = ±
(

27/4
√
I∗
√
ε− 7ε3/2

27/4
√
I∗

+ h.o.t.

)
,

λ5,6(ε) = ±i

(
27/4
√
I∗
√
ε+

7ε3/2

27/4
√
I∗

+ h.o.t.

)
.

Therefore, all the above degenerate in/out-of-phase configurations are unstable. Let me stress that
the additional factor

√
ε in the eigenvalues λ1,2 stems from the degenerate tangential direction to

the families.

We now study the linear stability of the non-degenerate in/out-of-phase configurations (0, 0, 0)
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and (π, π, π). We get the V11(ε) matrices

0 0 0 4− 3ε

I∗
− 3ε2

(I∗)2
−2 +

2ε

I∗
+

2ε2

(I∗)2
− ε

I∗
− ε2

(I∗)2

0 0 0 −2 +
2ε

I∗
+

2ε2

(I∗)2
4− 3ε

I∗
− 3ε2

(I∗)2
−2 +

2ε

I∗
+

2ε2

(I∗)2

0 0 0 − ε

I∗
− ε2

(I∗)2
−2 +

2ε

I∗
+

2ε2

(I∗)2
4− 3ε

I∗
− 3ε2

(I∗)2

4I∗ε− 4ε2 2I∗ε− 2ε2 2I∗ε− 2ε2 0 0 0

2I∗ε− 2ε2 4I∗ε− 4ε2 2I∗ε− 2ε2 0 0 0

2I∗ε− 2ε2 2I∗ε− 2ε2 4I∗ε− 4ε2 0 0 0



,



0 0 0 4 +
3ε

I∗
− 3ε2

(I∗)2
−2− 2ε

I∗
+

2ε2

(I∗)2

ε

I∗
− ε2

(I∗)2

0 0 0 −2− 2ε

I∗
+

2ε2

(I∗)2
4 +

3ε

I∗
− 3ε2

(I∗)2
−2− 2ε

I∗
+

2ε2

(I∗)2

0 0 0
ε

I∗
− ε2

(I∗)2
−2− 2ε

I∗
+

2ε2

(I∗)2
4 +

3ε

I∗
− 3ε2

(I∗)2

−4I∗ε− 4ε2 −2I∗ε− 2ε2 −2I∗ε− 2ε2 0 0 0

−2I∗ε− 2ε2 −4I∗ε− 4ε2 −2I∗ε− 2ε2 0 0 0

−2I∗ε− 2ε2 −2I∗ε− 2ε2 −4I∗ε− 4ε2 0 0 0



,

with eigenvalues respectively equal to

λ1,2(ε) = −2
√

2I∗
√
ε+

3ε3/2

√
2I∗

+ h.o.t. ,

λ3,4(ε) = 2
√

2I∗
√
ε− 3ε3/2

√
2I∗

+ h.o.t. ,

λ5,6(ε) = ±
(

4
√
I∗
√
ε− 4ε3/2

√
I∗

+ h.o.t.

)
,

and

λ1,2(ε) = i

(
−2
√

2I∗
√
ε− 3ε3/2

√
2I∗

+ h.o.t.

)
,

λ3,4(ε) = i

(
2
√

2I∗
√
ε+

3ε3/2

√
2I∗

+ h.o.t.

)
,

λ5,6(ε) = ±i

(
4
√
I∗
√
ε+

4ε3/2

√
I∗

+ h.o.t.

)
.

We can deduce that only the configuration (π, π, π) is stable, the eigenvalues being purely imag-
inary. We can observe that all the eigenvalues of this non-degenerate configuration are of order
O(
√
ε), as proved in Theorem 2.2.1 in Chapter 2. In order to infer the effective linear stability, we

cannot apply the Theorem 2.1.2, since the eigenvalues are not distinct. However, it can be derived
by using the definiteness of J−1L11(ε) which results in the definiteness of the matrices bC(ε) and
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B(ε). These latter being positive definite at leading order of approximation, they remain so for
all orders and the eigenvalues are always purely imaginary.

Instead, if we want to investigate the linear stability of the symmetric vortex configurations
±(π/2, π/2, π/2), we have to study the spectrum of the simplified V11(ε) matrix

V11(ε) =

(
bD> bC

0 bD

)
.

Indeed, the matrix B depends only on cos(〈k, q〉), so it vanishes at q∗ = ±π/2, whereas the matrix
bD is different from zero. Furthermore, in this example, the matrix

bD = D2
qp̂

(
f

(2,1)
2 + f

(2,2)
2

)
(q∗)

reduces to

D2
qp̂

(
f

(0,1)
2 + L〈ζ(1),q̂〉f

(0,1)
4

)
(q∗) .

Since the translating vector ζ(1) and the functions f
(0,1)
4 and f

(0,1)
6 depend only on cos(k · q), we

can observe that also the matrices D2, C1, and C2 vanish at q∗ = ±π/2. Hence, we obtain the
matrices 

−ε ε ε 4 −2 0

−2ε 0 2ε −2 4 −2

−ε −ε ε 0 −2 4

0 0 0 ε 2ε ε

0 0 0 −ε 0 ε

0 0 0 −ε −2ε −ε


,



ε −ε −ε 4 −2 0

2ε 0 −2ε −2 4 −2

ε ε −ε 0 −2 4

0 0 0 −ε −2ε −ε

0 0 0 ε 0 −ε

0 0 0 ε 2ε ε


,

with the following eigenvalues

λ1,2 = 0 ,

λ3,4(ε) = −2iε ,

λ5,6(ε) = 2iε .

The two vortex configurations are not stable: they belong to the family of true solutions Q2 and
the zero eigenvalues always persist at every order because of the surviving of a two-dimensional
torus of periodic orbits. Hence, periodic orbits are not isolated and they cannot be stable in strict
sense.

We can observe that the additional factor
√
ε in the eigenvalues λ3,4 and λ5,6 results from the

degenerate tangential directions to the families Q1 and Q3, while the zero eigenvalue comes from
the persistence of the second family Q2.
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Consider now the two configurations with q∗ = 0, π, belonging to the family of true solutions
Q2, namely (0, π, 0) and (π, 0, π). We get the V11(ε) matrices

0 0 0 4− ε

I∗
−2

ε

I∗

0 0 0 −2 4 +
ε

I∗
−2

0 0 0
ε

I∗
−2 4− ε

I∗

0 −2I∗ε −2I∗ε 0 0 0

−2I∗ε −4I∗ε −2I∗ε 0 0 0

−2I∗ε −2I∗ε 0 0 0 0


,



0 0 0 4 +
ε

I∗
−2 − ε

I∗

0 0 0 −2 4− ε

I∗
−2

0 0 0 − ε

I∗
−2 4 +

ε

I∗

0 2I∗ε 2I∗ε 0 0 0

2I∗ε 4I∗ε 2I∗ε 0 0 0

2I∗ε 2I∗ε 0 0 0 0


,

with the following eigenvalues

λ1,2 = 0 ,

λ3.4(ε) = ±i

(
2
√

2I∗
√
ε+

ε3/2

√
2I∗

+ h.o.t.

)
,

λ5,6(ε) = ±
(

2
√

2I∗
√
ε− ε3/2

√
2I∗

+ h.o.t.

)
.

We can conclude that both configurations are not stable and we remark, once again, that the null
eigenvalues are due to the persistence of the family Q2. Moreover, also the family Q2 cannot be
stable, because the eigenvalues different from zero are not all purely imaginary.

3.3 Applications: lower dimensional tori

3.3.1 The seagull

In the following lower dimensional example we consider the same dNLS model of the previous
example, namely (3.3), but with fixed boundary conditions and a generic value of γ. Although
it does not represent a dNLS lattice in the proper sense due to the limited number of sites, it
is nevertheless suitable to see the advantages of the normal form construction. Furthermore, it
sheds some light onto the role of the non-linearity in the linear stability of multi-peaked discrete
solitons in dNLS lattices. Indeed, at variance with models considered in literature, we notice that
a change in the sign of the non-linear parameter γ does not influence the nature of the degenerate
eigenspaces. On the contrary, considering consecutive excited sites as in [69], a change in the sign
of γ (at fixed linear interaction ε) produces an exchange of stable and unstable directions around
the periodic solutions.

Let us remark that, in order to apply Theorem 2.1.1, we have to control the smallest eigen-
value of the matrix M(ε). This is a delicate point, particularly in actual applications. In-
deed, to numerically verify this assumption one has to investigate the spectrum of the matrix
(exp (L11(ε)T )− I)red, by interpolating the decay of the smallest eigenvalue with respect to ε.
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In some specific cases like the example here considered, it might not be the easiest way to verify

the condition. However, one can further decompose the quadratic Hamiltonian K
(r)
2 in order to

decouple the fast variables (Q1, P1) from the slow variables (Q,P ) with a linear canonical change
of coordinates (see [87]).

Precisely, we decompose the matrix C so as to put in evidence the first row and column vectors,
namely

C =

(
C11 C12

C21 C22

)
where C11 is the first element, C12 = C>21 is the (n1 − 1)-dimensional row vector and C22 is the
(n1 − 1)-dimensional square matrix.

Assume now that C22 is invertible, then we can introduce the canonical change of coordinates

u = Q , u1 = Q1 − C12C
−1
22 Q , P = v − v1C12C

−1
22 , P1 = v1 .

The transformed quadratic Hamiltonian K
(r)
2 now reads

K
(r)
2 =

1

2
c11v

2
1 +

1

2

[
u>Bu+ v>C22v

]
+ u>Dv +

1

2
ξ>Gξ + ξ>Eη +

1

2
η>Fη ,

where c11 = C11−C12C
−1
22 C21 and the term u>Dv contains mixed terms in action-angles variables.

The main advantage is that, if D = 0, then the fast dynamics and the slow one turn out to be
decoupled, hence it suffices to investigate the eigenvalues of the matrix(

0 C22

−B 0

)
which represents the linear vector fields of the new slow variables (Q,P ). Hence (2.12) can be
easily checked, possibly without the needs of numerical interpolation.

Let us consider a system of coupled anharmonic oscillators with Hamiltonian

H = H0 + εH1 =

3∑
j=−3

(
x2
j + y2

j

2
+ γ

(
x2
j + y2

j

2

)2)
+ ε

2∑
j=−3

(xj+1xj + yj+1yj) ,

with fixed boundary conditions x−3 ≡ y−3 ≡ x3 ≡ y3 ≡ 0. Introducing the action-angle variables
(xj , yj) = (

√
2Ij cosϕj ,−

√
2Ij sinϕj), for the set of indices I = {−2,−1, 1, 2}, and the complex

canonical coordinates for the central oscillator

x0 =
1√
2

(ξ0 + iη0), y0 =
i√
2

(ξ0 − iη0) ,

the Hamiltonian reads

H =
∑
j∈I

(
Ij + γI2

j

)
+ iξ0η0 − γξ2

0η
2
0

+ ε

(
2
√
I−1I−2 cos(ϕ−1 − ϕ−2) + 2

√
I2I1 cos(ϕ2 − ϕ1)

+ (ξ0 + iη0)
(√

I−1 cos(ϕ−1) +
√
I1 cos(ϕ1)

)
+ i (ξ0 − iη0)

(√
I−1 sin(ϕ−1) +

√
I1 sin(ϕ1)

))
.

Let us now fix the lower dimensional resonant torus I∗j = I∗, for j ∈ I, and ξ0 = η0 = 0 and make
a Taylor expansion around I∗.

×
-3 0

×
3-2 -1 1 2

0

I∗
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The unperturbed Hamiltonian H0 reads

H0(J, ξ0, η0) = 4I∗+4γ(I∗)2+(1+2γI∗)(J−2+J−1+J1+J2)+γ
(
J2
−2 + J2

−1 + J2
1 + J2

2

)
+iξ0η0−γξ2

0η
2
0 ,

while the perturbation H1 takes the form

H1(J, ϕ, ξ0, η0) = 2I∗ cos(ϕ−1 − ϕ−2) + 2I∗ cos(ϕ2 − ϕ1)

+ (ξ0 + iη0)
√
I∗ cos(ϕ−1) + (ξ0 + iη0)

√
I∗ cos(ϕ1)

+ i(ξ0 − iη0)
√
I∗ sin(ϕ−1) + i(ξ0 − iη0)

√
I∗ sin(ϕ1)+

+ (J−2 + J−1) cos(ϕ−1 − ϕ−2) + (J1 + J2) cos(ϕ2 − ϕ1)

+
J−1(ξ0 + iη0) cos(ϕ−1)

2
√
I∗

+
iJ−1(ξ0 − iη0) sin(ϕ−1)

2
√
I∗

+
J1(ξ0 + iη0) cos(ϕ1)

2
√
I∗

+
iJ1(ξ0 − iη0) sin(ϕ1)

2
√
I∗

− (J−2 − J−1)2 cos(ϕ−1 − ϕ−2)

4I∗

− (J1 − J2)2 cos(ϕ2 − ϕ1)

4I∗
+O(|ξ0|a|η0|b|J |3) ,

where a, b ∈ N such that a + b = 1. We now introduce the angles q̂ = (q1, q) and their conjugate
actions p̂ = (p1, p) 

q1 = ϕ−2

q2 = ϕ−1 − ϕ−2

q3 = ϕ1 − ϕ−1

q4 = ϕ2 − ϕ1

,


p1 = J−2 + J−1 + J1 + J2

p2 = J−1 + J1 + J2

p3 = J1 + J2

p4 = J2

.

Hence, the Hamiltonian can be rewritten as

H = ωp1 + iξ0η0 + γ
(
(p1 − p2)2 + (p2 − p3)2 + (p3 − p4)2 + p2

4

)
− γξ2

0η
2
0

+ ε

[
2I∗ cos(q2) + 2I∗ cos(q4)

+ (ξ0 + iη0)
√
I∗ cos(q1 + q2) + (ξ0 + iη0)

√
I∗ cos(q1 + q2 + q3)

+ i(ξ0 − iη0)
√
I∗ sin(q1 + q2) + i(ξ0 − iη0)

√
I∗ sin(q1 + q2 + q3)

+ (p1 − p3) cos(q2) + p3 cos(q4)

+
(p2 − p3)(ξ0 + iη0) cos(q1 + q2)

2
√
I∗

+
i(p2 − p3)(ξ0 − iη0) sin(q1 + q2)

2
√
I∗

+
(p3 − p4)(ξ0 + iη0) cos(q1 + q2 + q3)

2
√
I∗

+
i(p3 − p4)(ξ0 − iη0) sin(q1 + q2 + q3)

2
√
I∗

− (p1 − 2p2 + p3)2 cos(q2)

4I∗
− (p3 − 2p4)2 cos(q4)

4I∗

]
+O(ε|ξ0|a|η0|b|p̂|3)

= ωp1 + iξ0η0 + f
(0,0)
4 (p̂, ξ0, η0) + f

(0,1)
0 (q2, q4) + f

(0,1)
1 (q̂, ξ0, η0)

+ f
(0,1)
2 (p̂, q) + f

(0,1)
3 (p, q̂, ξ0, η0) + f

(0,1)
4 (p, q) +O(ε|ξ0|a|η0|b|p̂|3) ,

where ω = 1 + 2γI∗.

Remark 3.3.1 Let us observe that this is the same kind of model of the square dNLS cell in the
first example. Hence, the Hamiltonian turns out to be a dNLS model with a Gauge symmetry. As
regards terms that depend only on the internal variables of the torus, the symmetry once again
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reveals itself as an independence from the fast angle q1. On the contrary, the terms that also
depend on the transversal variables contain the angle q1, since they are not expressed in a system
of coordinates which allows the symmetry to appear by an independence from a particular variable.

Since f
(0,1)
0 is automatically averaged w.r.t. q1, the first stage of the first normalization step

only consists in the translation correcting the frequencies. Moreover, also f
(0,1)
2 does not depend

on the fast angle q1, hence the homological equation defining ζ(1) is equivalent to the following
linear system ∑

j

C0,i,jζ
(1)
j =

∂

∂p̂i
f

(0,1)
2

∣∣∣
q=q∗

,

with

C0 = γ


2 −2 0 0
−2 4 −2 0
0 −2 4 −2
0 0 −2 4

 .

The solution is given by 

ζ
(1)
1 =

ε

γ
(cos(q∗2) + cos(q∗4))

ζ
(1)
2 =

ε

γ

(
cos(q∗2)

2
+ cos(q∗4)

)
ζ

(1)
3 =

ε

γ
cos(q∗4)

ζ
(1)
4 =

ε

2γ
cos(q∗4)

. (3.7)

We remove the term f
(I;0,1)
1 = f

(0,1)
1 from the Hamiltonian by means of the generating function

χ
(1)
1 = ε

(
i

√
I∗
(
e−i(q1+q2) + e−i(q1+q2+q3)

)
ξ0

ω − 1
+

√
I∗
(
ei(q1+q2) + ei(q1+q2+q3)

)
η0

ω − 1

)
.

The new term f
(II;0,1)
2 = f

(0,1)
2 +L〈ζ(1),q̂〉f

(0,0)
4 is again independent of q1, so no further average is

required. We now remove the cubic terms which depend both on the actions and on the transversal

variables from f
(III,0,1)
3 = f

(0,1)
3 + L

χ
(1)
1
f

(0,0)
4 , by means of the generating function

χ
(1)
3 = −εe−i(q1+q2+q3)

(
−1 + eiq3

)
p3

(
ei(2q1+2q2+q3)η0 − iξ0

)
+ eiq3p2

(
e2i(q1+q2)η0 + iξ0

)
2
√
I∗ (ω − 1)

+ εe−i(q1+q2+q3) p4

(
e2i(q1+q2+q3)η0 + iξ0

)
2
√
I∗ (ω − 1)

.

The new term f
(IV,0,1)
4 = f

(0,1)
4 turns out to be independent of q1, thus the first step is concluded.

The values q∗, which determine the approximate periodic orbits at leading order, are the
solutions of the following system {

− 2I∗ sin(q2) = 0

− 2I∗ sin(q4) = 0
.

Such solutions are given by the four one-parameter families Q1 = (0, ϑ, 0), Q2 = (0, ϑ, π), Q3 =
(π, ϑ, 0), Q4 = (π, ϑ, π), with ϑ ∈ S1. We observe that the non-degeneracy condition is not
fulfilled, indeed ∣∣∣∣∣∣

−2I∗ cos(q2) 0 0
0 0 0
0 0 −2I∗ cos(q4)

∣∣∣∣∣∣ = 0 .
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Thus, a second normalization step is needed in order to investigate the continuation of all the
one-parameter families.

The first stage of the second normalization step consists, once again, in the translation which
keeps the frequencies fixed, since the term

f
(1,2)
0 = L〈ζ(1),q̂〉f

(0,1)
2 +

1

2
L2
〈ζ(1),q̂〉f

(0,0)
4 +

1

2
L
χ

(1)
1
f

(0,1)
1

is already averaged w.r.t q1. The same occurs also for the term

f
(1,2)
2

∣∣∣
ξ=η=0
q=q∗

= L〈ζ(1),q̂〉f
(0,1)
4

∣∣∣
ξ=η=0
q=q∗

+ L
χ

(1)
1
f

(0,1)
3

∣∣∣
ξ=η=0
q=q∗

+
1

2
L2

χ
(1)
1

f
(0,0)
4

∣∣∣
ξ=η=0
q=q∗

.

Therefore, the homological equation is given by

L〈ζ(2),q̂〉f
(0,0)
4

∣∣∣
ξ=η=0

+ f
(1,2)
2

∣∣∣
ξ=η=0
q=q∗

= 0 .

The second stage deals with the term

f
(I;1,2)
1 = L〈ζ(1),q̂〉f

(0,1)
3 + L

χ
(1)
1

(
f

(0,1)
2 + L〈ζ(1),q̂〉f

(0,0)
4

)
+ L

χ
(1)
3
f

(0,1)
0 ,

while the new term

f
(II;1,2)
2 = L〈ζ(1),q̂〉f

(0,1)
4 + L

χ
(1)
1
f

(0,1)
3 +

1

2
L2

χ
(1)
1

f
(0,0)
4 + L〈ζ(2),q̂〉f

(0,0)
4

is again already averaged over q1.
The fourth stage copes with

f
(III;1,2)
3 = L〈ζ(1),q̂〉f

(0,1)
5 + L

χ
(1)
1
f

(0,1)
4 + L

χ
(1)
3

(
f

(0,1)
2 + L〈ζ(1),q̂〉f

(0,0)
4

)
+ L

χ
(2)
1
f

(0,0)
4 ,

and the term

f
(IV;1,2)
4

∣∣∣
ξ=η=0

=

(
L〈ζ(1),q̂〉f

(0,1)
6 + L

χ
(1)
1
f

(0,1)
5 +

1

2
L
χ

(1)
3

(
f

(0,1)
3 + f

(0,1)
3

∣∣∣
p̂=0

)
+

1

2
L
χ

(1)
3

(
L
χ

(1)
1

(
f

(0,0)
4 + f

(0,0)
4

∣∣∣
p̂=0

)))∣∣∣
ξ=η=0

is, once again, averaged w.r.t. q1, hence the second step is concluded. The transformed Hamilto-
nian reads

H(2) = ωp1 + iξ0η0 + f
(2,0)
4 (p̂, ξ0, η0)

+ f
(2,1)
0 (q) + f

(2,1)
2 (p̂, q, ξ0, η0) + f

(2,1)
3 (q̂, ξ0, η0) + f

(2,1)
4 (p̂, q, ξ0, η0) +O(ε|ξ0|a|η0|b|p̂|c)

+ f
(2,2)
0 (q) + f

(2,2)
2 (p̂, q, ξ0, η0) + f

(2,2)
3 (q̂, ξ0, η0) + f

(2,2)
4 (p̂, q, ξ0, η0) +O(ε2|ξ0|a|η0|b|p̂|c)

+O
(
ε3
)
,

with a, b, c ∈ N such that a+ b+ 2c = 5. The approximate periodic orbits are the solutions q∗ of
the system

∇q
(
f

(2,1)
0 (q) + f

(2,2)
0 (q)

)
= 0 .

Since in the correction f
(2,2)
0 (q) only the terms L〈ζ(1),q̂〉f

(0,1)
2 and 1

2Lχ(1)
1
f

(0,1)
1 have a non trivial

dependence on the angles q, using (3.7), we get the system

− 2I∗ sin(q2) +
ε

γ
sin(q2) cos(q2) = 0

ε

γ
sin(q3) = 0

− 2I∗ sin(q4) +
ε

γ
sin(q4) cos(q4) = 0

.
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The above system has the structure

F (q, ε) = F0(q) + εF1(q) = 0 (3.8)

where F : T3 × U(0)→ R3. In addition, we know from the first normalization step that

F (Qj(ϑ), 0) = F0(Qj(ϑ)) = 0 .

Suppose that there exists a solution q(ε) = (q2(ε), q3(ε), q4(ε)) which is at least continuous in the
small parameter. Thus, we must have

lim
ε→0

F (q2(ε), q3(ε), q4(ε), ε) = F0(q2(0), q3(0), q4(0)) = 0 .

We introduce the matrices B̃1,j(ϑ) =
∂F0(Qj(ϑ))

∂q and observe that the tangent direction to the four
families Qj

∂ϑQj =

0
1
0


is the Kernel direction of B̃1,j(ϑ), for j = 1, . . . , 4. By computing

〈F1(Qj(ϑ, 0)), ∂ϑQj〉 =
sin(ϑ)

γ
j = 1, . . . , 4 ,

from Proposition 3.2.1 we obtain that, apart from the in/out-of-phase configurations (0, 0, 0),
(0, π, 0), (0, 0, π), (0, π, π), (π, 0, 0), (π, π, 0), (π, 0, π) and (π, π, π), the four families break down.
We observe that the eight in/out-of-phase configurations are solutions of the equation (3.8).

In order to ensure the continuation of these configurations, we have to verify the condi-
tion (2.12), with x∗ approximate zero of Υ, namely

‖Υ(x∗; ε, q1(0))‖ ≤ c1ε3 .

In order to verify (2.12) we have two options: (i) examine the spectrum of (exp (L11(ε)T )− I)red
and numerically interpolate the smallest eigenvalue, getting |λ| & ε for each of the eight configu-
ration; (ii) since qj = q∗ = {0, π}, the mixed terms in action-angle variables are missing and we
can compute eTσl − 1, with σl eigenvalues of the matrix(

0 C22

−B 0

)
,

with

B =

−2εI∗ cos(q2) + ε2

γ cos2(q2) 0 0

0 − ε
2

γ cos(q3) 0

0 0 −2εI∗ cos(q4) + ε2

γ cos2(q4)

 .

Hence, C22 being definite and of order O(1) in the limit of small ε, we obtain that condition (2.12)
is verified with α = 1 and r = 2. Applying the Theorem 2.1.1, we can infer the existence
of a unique x∗p.o.(ε) = (q∗p.o.(ε), p̂p.o.(ε), ξp.o.(ε), ηp.o.(ε)), with q∗p.o.(ε) = q∗ = {0, π} such that∥∥x∗p.o. − x∗∥∥ ≤ c0ε2, for each candidate for the continuation.

Coming to the linear stability, first we exploit the structure of the matrix V (ε), with D ≡ 0, in
order to get the approximate linear stability of the continued periodic orbits. It turns out that the
stable and unstable directions correspond to the positive or negative eigenvalues of C22B, where
the prefactor γ in C22 accounts for the positive or negative signature of C22 (which is the same of
C0). Hence, the stability depends on the signature of γB, given by the elements on its diagonal.
The degenerate direction depends only on ε2, thus it is always a saddle at q3 = 0 and always a
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centre at q3 = π. Instead, the non-degenerate directions depend on the sign of the product γε,
which converts hyperbolic subspace into centre subspace at fixed q2,4 ∈ {0, π}. In particular, by
studying the spectrum in the in/out-of-phase configurations and for attractive interactions (ε > 0),
we find that the only stable approximate periodic orbit corresponds to the configuration (π, π, π)
when γ > 0 and to (0, π, 0) when γ < 0. In order to derive the effective linear stability, we have
to verify (2.13). Symbolic calculations implemented in Mathematica give

λ1,2(ε) = ±i

(
2
√

2
√
I∗|γ|

√
ε+

√
2ε3/2√
I∗|γ|

+ h.o.t.

)
,

λ3,4(ε) = ±i

(
2
√

2
√
I∗|γ|

√
ε+

5ε3/2

2
√

2
√
I∗|γ|

+ h.o.t.

)
,

λ5,6(ε) = ±i

(√
2ε− ε2

4
√

2I∗|γ|
+ h.o.t.

)
.

Thus condition (2.13) holds true with r + 1− α = 2 and β = 3
2 .

3.3.2 Standard dNLS models

We now start to consider a dNLS model in the proper sense, with a large number of sites. We
consider the dNLS equation in the general form

iψ̇j = ψj − ε(Lψ)j + γψj |ψj |2 ,

where the linear term L includes beyond nearest-neighbors terms

Lψ =

i∑
l=1

κl(∆lψ) , (∆lψ)j = ψj+l − 2ψj + ψj−l ∀j ∈ J ,

i is the biggest length of interaction, and the boundary conditions are periodic. The equations
can be written in Hamiltonian form iψ̇j = ∂H

∂ψj
with

H = H0 + εH1 ,

H0 =
∑
j∈J
|ψj |2 +

γ

2

∑
j∈J
|ψj |4 ,

H1 =

i∑
l=1

κl
∑
j∈J
|ψj+l − ψj |2 .

(3.9)

With the transformation (3.2), the original Hamiltonian is thus turned into a system of weakly
coupled anharmonic oscillators with Hamiltonian

H = H0 + εH1 =
∑
j∈J

(
1

2

(
x2
j + y2

j

)
+
γ

8

(
x2
j + y2

j

)2)

+ ε

i∑
l=1

κl
∑
j∈J

(
x2
j + y2

j

)
− ε

i∑
l=1

κl
∑
j∈J

(xj+lxj + yj+lyj) .

(3.10)

We now introduce action-angle variables (xj , yj) = (
√

2Ij cosϕj ,−
√

2Ij sinϕj) for the set of
indices j ∈ I, and the complex canonical coordinates

xj =
1√
2

(ξj + iηj) , yj =
i√
2

(ξj − iηj) ,
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for the remaining ones J \ I, so that the Hamiltonian reads

H(I, ϕ, ξ, η, ε) = H0(I, ξ, η) + εH1(I, ϕ, ξ, η) , H0 = H̃0(I) + Ĥ0(ξ, η) ,

with

H̃0 =
∑
j∈I

(
Ij +

γ

2
I2
j

)
,

Ĥ0 =
∑
j∈J\I

(
iΩξjηj −

γ

2
ξ2
j η

2
j

)
, Ω = 1 ,

H1 = 2

i∑
l=1

κl
∑
j∈I

Ij + 2

i∑
l=1

κl
∑
j∈J\I

iξjηj − effective coupling terms ,

where the effective coupling terms come from the products xj+lxj + yj+lyj in (3.10).

Multi-pulse solutions

We now consider the Hamiltonian in (3.9), with only nearest-neighbors interactions (κ1 = 1)
and periodic boundary conditions. We are going to consider two different kind of sets I, both
dealing with problem of degeneracy due to non consecutive excited sites, the periodic boundary
conditions being irrelevant. In the first case we take only two non consecutive sites I = {−l, l},
with l ≥ 1: the larger the distance 2l among the sites is, the greater the number of normal form
steps needed to remove the degeneracy is, r being equal to 2l. In the second case we take 3 sites,
giving an asymmetric configuration I = {−2,−1, 1}: this is the easiest (and shortest) asymmetric
example witch exhibits degeneracy, due to the lack of the interaction at order ε between the
second and the fourth sites. In both the cases it will be shown, accordingly to the already existing
literature (see for example [50,69]), that only standard in/out-of-phase solutions do exist. Linear
stability analysis provides a scaling of Floquet exponents coherent with the literature and Theorem
2.1.2 can be always applied in these examples. Moreover, the normal form remarkably shows the
effect of switching from focusing to defocusing dNLS, obtained by changing the sign of γ: non-
degenerate saddle and center eigenspaces exchange their stability, while degenerate eigenspaces
keep unchanged their stability whenever the order of degeneracy is odd, as with I = {−2,−1, 1}.

First case: I = {−l, l}, J = {−7, . . . , 7}. In the first case, the perturbation H1, given by the
nearest neighbours interactions, reads

H1 = 2
∑
j=±l

Ij + 2
∑
j 6=±l

iξjηj −
∑
j∈J

(xj+1xj + yj+1yj) ,

where the products xj+1xj + yj+1yj are of the following three types:

xj+1xj + yj+1yj = i(ξj+1ηj + ξjηj+1)

xjxl + yjyl =
√
Il[cos(ϕl)(ξj + iηj)− i sin(ϕl)(ξj − iηj)] j = l ± 1

xjx−l + yjy−l =
√
I−l[cos(ϕ−l)(ξj + iηj)− i sin(ϕ−l)(ξj − iηj)] j = −l ± 1

,

while no term of the form cos(ϕl − ϕ−l) appears at order O(ε). We expand H0 and H1 in
Taylor series of the actions around I∗, forget constant terms and introducing the resonant angles
q̂ = (q1, q) and their conjugated actions p̂ = (p1, p){

q1 = ϕ−l

q2 = ϕl − ϕ−l
,

{
p1 = J−l + Jl

p2 = Jl
,
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we can rewrite, as in the previous examples, the initial Hamiltonian in the form

H = ωp1 +
∑
j∈J\I

iξjηj + f
(0,0)
4 (p̂, ξ, η) + f

(0,1)
1 (q̂, ξ, η) + f

(0,1)
2 (p̂, ξ, η)

+ f
(0,1)
3 (q̂, p̂, ξ, η) +

∑
l≥5

f
(0,1)
l (q̂, p̂, ξ, η) ,

with ω = 1 +γI∗ = 1 + I∗. Notice in particular that f
(0,1)
4 and f

(0,1)
0 are missing, this latter being

a constant term. Moreover, f
(0,1)
2 does not depend on q̂: this is due to the lack of coupling terms

xjxj+1 + yjyj+1 with both j and j + 1 belonging to I.
We start considering l = 1, hence I = {−1, 1}.
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0

I∗

The first stage of the normalization step consists only in the translation correcting the fre-
quencies, given by a constant vector. The homological equation defining ζ(1) is equivalent to the
system ∑

j

C0,i,jζ
(1)
j =

∂

∂p̂i
f

(0,1)
2

∣∣∣
q=q∗,ξ=η=0

,

with

C0 =

(
1 −1
−1 2

)
,

and f
(0,1)
2 = f

(0,1)
2 (p1) + f

(0,1)
2 (ξ, η). Hence f

(0,1)
2

∣∣∣
q=q∗,ξ=η=0

is independent of q∗ and the solution

of the system is ζ(1) = 2ε(2, 1).

The remaining stages are needed to remove f
(I,0,1)
1 = f

(0,1)
1 and the part of f

(III,0,1)
3 = f

(0,1)
3 +

L
χ

(1)
1
f

(0,0)
4 depending of both (q̂, p̂) and (ξ, η). Indeed, the term f

(II,0,1)
2 = f

(0,1)
2 + L〈ζ(1),q̂〉f

(0,0)
4

is independent of the angles and the term f
(IV,0,1)
4 (q̂, p̂, ξ, η)

∣∣∣
ξ=η=0

= f
(0,1)
4 (q̂, p̂, ξ, η)

∣∣∣
ξ=η=0

≡ 0,

as for f
(1,0)
0 ; hence the first step in concluded. Being f

(0,1)
0 (q̂) ≡ 0, any q2 is a critical point and

the problem is trivially degenerate. A second normalization step is needed.
The second step can be performed in a similar way to the seagull example, but this time the

only stage that is absent is the fourth one. Once computed, we get from the gradient of f
(2,2)
0

−2ε2 sin(q2) = 0 ,

which provides only standard solutions q∗2 ∈ {0, π}. In order to conclude the existence of the
two in/out-of-phase configurations above, we need to check condition (2.12) with α < 3

2 . Indeed,
explicit symbolic calculations made with Mathematica clearly show that (2.12) holds with α = 1.
The stability analysis shows that q∗2 = 0 is the unstable configuration, while q∗2 = π is the stable
one, with Floquet exponents

λ1,2(ε) = ±i

(
2ε+

ε3

(I∗)
2 + h.o.t.

)
.

Theorem 2.1.2 applies with β = 1 < 2 = r + 1 − α, hence Floquet multipliers are ε2-close to the
approximate ones eλT (where T is the period).
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If l > 1, the procedure for the continuation is clearly the same: it turns out that degeneracy

persists up to order r = 2l − 1, namely f
(r,r)
0 ≡ 0 for r ≤ 2l − 1. At order r = 2l one gets from

f
(r,r)
0 an equation of the form

c(I∗)εr sin(q2) = 0 ,

with c(I∗) a constant depending on I∗, which again provides only standard solutions q2 = {0, π}.
Existence of the two in/out-of-phase configurations above is ensured by condition (2.12) with
α = r/2 < (r + 1)/2. Linear stability is clearly affected by the increased (odd) order of the
degeneracy; stable and unstable configurations are expected to be respectively q2 = π and q2 = 0,
with approximate Floquet exponents of order O(εl).

Second case: I = {−2,−1, 1}, J = {−6, . . . , 7}.

-6 -5 -4 -3 0 2 3 4 5 6-2 -1 1

0

I∗

The perturbation H1, given by the nearest neighbors interactions, reads

H1 = 2
∑
j∈I

Ij + 2
∑

j 6=−2,−1,1

iξjηj −
∑
j∈J

(xj+1xj + yj+1yj) ,

where the products xlxj + ylyj are of the following three types:

xj+1xj + yj+1yj = i(ξj+1ηj + ξjηj+1)

xjxl + yjyl =
√
Il[cos(ϕl)(ξj + iηj)− i sin(ϕl)(ξj − iηj)] l = j ± 1

x−1x−2 + y−1y−2 = 2
√
I−2I−1 cos(ϕ−1 − ϕ−2)

.

By expanding H0 and H1 in Taylor series of the actions around I∗, forgetting constant terms and
introducing the resonant angles q̂ = (q1, q) and their conjugated actions p̂ = (p1, p)

q1 = ϕ−2

q2 = ϕ−1 − ϕ−2

q3 = ϕ1 − ϕ−1

,


p1 = J−2 + J−1 + J1

p2 = J−1 + J1

p3 = J1

,

we can rewrite the initial Hamiltonian in the form

H = ωp1 +
∑
j∈J\I

iξjηj + f
(0,0)
4 (p̂, ξ, η) + f

(0,1)
0 (q2) + f

(0,1)
1 (q̂, ξ, η)

+ f
(0,1)
2 (q, p̂, ξ, η) + f

(0,1)
3 (q̂, p̂, ξ, η) + f

(0,1)
4 (q, p̂) +

∑
l≥5

f
(0,1)
l (q̂, p̂, ξ, η) ,

with ω = 1+γI∗ = 1+I∗. The first stage of the normalization step consists only in the translation
ζ(1) correcting the frequencies 

ζ
(1)
1 = 2ε (3− cos(q∗2))

ζ
(1)
2 = ε (4− cos(q∗2))

ζ
(1)
3 = 2ε

,

since f
(0,1)
0 (q2), due to the effect of the symmetry, is already independent of q1 and no average

is required. We remark that the normal form construction keeps the symmetry, thus the terms
depending only on (q, p̂) remain independent of q1 and no averages are required, as for the original
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Hamiltonian H. In particular the terms f
(0,1)
2 (q, p̂, ξ, η) and f

(0,1)
4 (q, p̂) are already independent

of q1; in this example they explicitly read

f
(0,1)
2 (q, p̂, ξ, η) = −ε

(
(−2 + cos (q2)) p1 − cos (q2) p3 − 2i

∑
j∈J\I

ξjηj + i

(
η11ξ1 + η3ξ2 + η4ξ3 + η2ξ1

+ η2ξ3 + η3ξ4 + η5ξ4 + η4ξ5 + η6ξ5 + η5ξ6 + η9ξ8 + η8ξ9 + η10ξ9 + η9ξ10

+ η11ξ10 + η10ξ11 + η1ξ2 + η1ξ11

))
,

f
(0,1)
4 (q, p̂) =

ε cos(q2)

4I∗
(p1 − 2p2 + p3)

2
.

The remaining stages consist in removing f
(I,0,1)
1 , which connects the torus with the transversal

variables, and the part of f
(III,0,1)
3 (q̂, p̂, ξ, η) which depends on both the sets of variables. This

concludes the first normalization step. The critical points q∗ of f
(1,1)
0 = −2εI∗ cos(q2) are solutions

of the following trigonometric equation

2εI∗ sin(q2) = 0 ,

hence we get two disjoint one-parameter families Q1(ϑ) = (0, ϑ) and Q2(ϑ) = (π, ϑ) on the torus
T2, where ϑ = q3. In order to remove the degeneracy, a second normalization step is needed,
where in this case the first and the fourth stages are absent.

Proceeding according to the normal form algorithm, we are led to consider the trigonometric
system {

2εI∗ sin(q2)− 2ε2(2− cos(q2)) sin(q2) = 0

− 2ε2 sin(q3) = 0
,

which provides the critical points of f
(2,1)
0 + f

(2,2)
0 . The system only admits the four in/out-of-

phase solutions (q∗2 , q
∗
3) ∈ {(0, 0), (0, π), (π, 0), (π, π)}. In order to conclude the existence of the four

in/out-of-phase configurations above, we need to check condition (2.12), again with α < 3
2 . In all

the considered cases, explicit symbolic calculations made with Mathematica show that (2.12) holds
with α = 1. Approximate linear stability analysis provides (0, π) as the only stable configuration
with Floquet exponents

λ1,2(ε) = ±i

(
2
√
I∗
√
ε+

ε3/2

4
√
I∗

+ h.o.t.

)
,

λ3,4(ε) = ±i
√

3

(
ε− ε2

8I∗
+ h.o.t.

)
,

while the other configurations are unstable. Approximate linear stability corresponds to effective
linear stability, since also in this case Theorem 2.1.2 applies with β = 1 < 2 = r + 1 − α, hence
Floquet multipliers are located ε2-close to the approximate ones, and fulfill the usual symmetries
of the spectrum of a symplectic matrix.

Remark 3.3.2 We here remark what happens to the Floquet exponents once the sign of the non-
linear coefficient γ is changed. It turns out, as already stressed in the literature, that eigenvalues
of order O(

√
ε) switch from real to imaginary and viceversa, hence stable and unstable eigenspaces

are exchanged. However, eigenvalues of order O(ε) keep their nature. This is the effect of a
cancellation of γ in front of the equation −2ε2 sin(q3), as already stressed in the seagull example.
The new stable configuration would be (π, π).

ZigZag model

Let us consider the Hamiltonian system (3.9) with κ1 = κ2 = 1, namely the so-called ZigZag
model. This is a particular case of two coupled one-dimensional dNLS models, where the ZigZag
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coupling provides a one-dimensional Hamiltonian system with nearest and next-to-nearest neigh-
bor interactions. We want to investigate the continuation of vortex-like localized structures given
by four consecutive excited sites; hence the lower dimensional resonant torus is I∗ = (I∗, I∗, I∗, I∗),
ξ = η = 0 and I = {0, 1, 2, 3} ⊂ J = {−6, . . . , 9}.

-6 -4 -2 0 2 4 6 8

-5 -3 -1 1 3 5 7 9

These configurations have been the object of investigation of [76]: there, methods of bifurcation
theory (namely a Lyapunov-Schmidt reduction) have been used to show non-existence of four-sites
solutions with phase differences ql different from {0, π}, first in the dNLS model and then in the
Klein-Gordon lattice. Here we want to obtain the same results by means of our normal form
algorithm, and correct a minor statement on non-degeneracy of the isolated configurations.

In this case the perturbation, given by the nearest and next-to-nearest neighbors interactions,
reads

H1 = 4

3∑
j=0

Ij + 4
∑

j<0∨j>3

iξjηj − 2
∑
j∈J

((xj+1xj + yj+1yj) + (xj+2xj + yj+2yj))

where the products xj+1xj + yj+1yj are of the following three types:

xj+1xj + yj+1yj = i(ξj+1ηj + ξjηj+1)

xj+1xj + yj+1yj =
√
Ij+1[cos(ϕj+1)(ξj + iηj)− i sin(ϕj+1)(ξj − iηj)]

xj+1xj + yj+1yj = 2
√
Ij+1Ij cos(ϕj+1 − ϕj)

.

By expanding H0 and H1 in Taylor series of the actions around I∗, forgetting constant terms and
introducing the resonant angles q̂ = (q1, q) and their conjugated actions p̂ = (p1, p)

q1 = ϕ0

q2 = ϕ1 − ϕ0

q3 = ϕ2 − ϕ1

q4 = ϕ3 − ϕ2

,


p1 = J0 + J1 + J2 + J3

p2 = J1 + J2 + J3

p3 = J2 + J3

p4 = J3

,

we can rewrite the initial Hamiltonian in the form

H = ωp1 +
∑
j∈J\I

iξjηj + f
(0,0)
4 (p̂, ξ, η) + f

(0,1)
0 (q2, q3, q4) + f

(0,1)
1 (q̂, ξ, η)

+ f
(0,1)
2 (q, p̂, ξ, η) + f

(0,1)
3 (q̂, p̂, ξ, η) + f

(0,1)
4 (q, p̂, ξ, η) +

∑
l≥5

f
(0,1)
l (q̂, p̂, ξ, η) ,

with ω = 1+γI∗ = 1+I∗. The first stage of the normalization step consists only in the translation
correcting the frequencies. The homological equation defining ζ(1) gives the solution

ζ
(1)
1 = 2ε (4− cos(q∗2)− cos(q∗3)− cos(q∗4)− cos(q∗2 + q∗3)− cos(q∗3 + q∗4))

ζ
(1)
2 = ε (6− cos(q∗2)− 2 cos(q∗3)− 2 cos(q∗4)− cos(q∗2 + q∗3)− 2 cos(q∗3 + q∗4))

ζ
(1)
3 = ε (4− cos(q∗3)− 2 cos(q∗4)− cos(q∗2 + q∗3)− cos(q∗3 + q∗4))

ζ
(1)
4 = ε (2− cos(q∗4)− cos(q∗3 + q∗4))

.
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The remaining steps are the same as for the previous example I = {−2,−1, 1} in the focusing

dNLS model. Let us determine the q∗-values, critical points of f
(1,1)
0 , that solve the trigonometric

system 
2I∗ sin(q2) + 2I∗ sin(q2 + q3) = 0

2I∗ sin(q3) + 2I∗ sin(q2 + q3) + 2I∗ sin(q3 + q4) = 0

2I∗ sin(q4) + 2I∗ sin(q3 + q4) = 0

,

obtaining only the following solutions: we have four isolated solutions (0, 0, 0), (0, 0, π), (π, 0, 0),
(π, 0, π), and two one-parameter families (ϑ, π, ϑ−π) and (ϑ, π,−ϑ). In order to apply an implicit
function theorem we have to verify the non-degeneracy condition, which factoring out 2I∗, reads∣∣∣∣∣∣

cos(q2) + cos(q2 + q3) cos(q2 + q3) 0
cos(q2 + q3) cos(q3) + cos(q2 + q3) + cos(q3 + q4) cos(q3 + q4)

0 cos(q3 + q4) cos(q4) + cos(q3 + q4)

∣∣∣∣∣∣ 6= 0 .

By calculating the determinant in correspondence of the q∗-values determined above, we see that
non-degeneracy is fulfilled in three of the four isolated solutions (0, 0, 0), (0, 0, π), (π, 0, 0), while
for the fourth isolated configuration (π, 0, π) and the two families we have degeneracy. The topo-

logically isolated configuration (π, 0, π) is a degenerate minimizer of f
(1,1)
0 , since along the tangent

direction (π+ t,−2t, π+ t) it is possible to observe a growth as O(t4); this represents an example
of degenerate isolated configuration.

For all these configurations we have to perform a second normalization step. In this example
only the fourth stage is missing.

The equation that allows us to have periodic orbits for the approximate dynamic is the following

∇q
(
f

(2,1)
0 + f

(2,2)
0

)
= 0 ,

and can be rewritten as

F (q2, q3, q4, ε) = F0(q2, q3, q4) + εF1(q2, q3, q4) = 0,

with F : T3 × U(0) → R3. We know that, for ε = 0, F admits as solutions four points and two
families Qj(ϑ) with

Q1(ϑ) = (ϑ, π, ϑ− π)

Q2(ϑ) = (ϑ, π,−ϑ).

We wonder under which conditions it is possible to continue w.r.t. ε the degenerate solutions.
Observe that the vectors

∂ϑQ1 =

1
0
1

 , and ∂ϑQ2 =

 1
0
−1


generate the Kernel of

∂F0(Qj(ϑ))
∂q with j = 1, 2. Applying Proposition 3.2.1, the necessary condition

to obtain the continuation is F1(Qj(ϑ)) ⊥ ∂ϑQj(ϑ), so from

〈F1(Q1(ϑ)), ∂ϑQ1〉 = 4 sin(2ϑ)

〈F1(Q2(ϑ)), ∂ϑQ2〉 = −4 sin(ϑ),

we can deduce that the two families Qj(ϑ) break down and only four solutions

(0, π, π), (π, π, 0), (0, π, 0), (π, π, π)

are allowed for continuation. Indeed, the two vortex-like solutions
(
π
2 , π,−

π
2

)
and

(
−π2 , π,

π
2

)
,

belonging to the intersection of the two families, solve only the necessary condition for Q1 and not
the one for Q2.
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In order to conclude the existence of the three non-degenerate in/out-of-phase configurations
above, we need to check condition (2.12) with α < 3

2 . Explicit symbolic calculations made with
Mathematica clearly show that (2.12) holds with α = 1/2 in the three isolated and non-degenerate
configurations4 while α = 1 for the remaining four configurations belonging to Q1,2(ϑ) and for the
fourth isolated solution (π, 0, π). The additional

√
ε factor comes from the degenerate tangential

directions; hence existence is proved.
Concerning the approximate linear stability analysis, (0, 0, 0) is the unique stable configuration;

indeed

λ1,2(ε) = ±2
√

2i

(√
I∗
√
ε+

ε3/2

√
I∗

+ h.o.t.

)
,

λ3,4(ε) = ±i

(
2
√

2
√
I∗
√
ε+

5ε3/2

√
2
√
I∗

+ h.o.t.

)
,

λ5,6(ε) = ±i

(
2
√
I∗
√
ε+

ε3/2

√
I∗

+ h.o.t.

)
.

However it has two pairs of exponents which coincide at order
√
ε, but they are different at order

ε3/2; this leads to β = 3/2 in the assumption of Theorem 2.1.2. Since r + 1− α = 3− 1
2 = 5

2 , the

statement ensures existence of two couples of distinct Floquet multipliers which are ε5/2-close to
eλT on the unitary circle, which means effective linear stability of the solution.

Railway model

We here consider the so-called railway-model: it simply consists of two coupled dNLS models, in
each of which only nearest neighbors interactions are active.

2 4 6 8 10 12 14 16

1 3 5 7 9 11 13 15

The model, labeling the sites of the two one-dimensional lattices according to the index set
J = {1, . . . , N}, with N = 16, is described by the Hamiltonian

H =
∑
j∈J

(
1

2

(
x2
j + y2

j

)
+
γ

8

(
x2
j + y2

j

)2)

+ 3ε
∑
j∈J

1

2

(
x2
j + y2

j

)
− ε

∑
j∈J

(xj+1xj−1 + yj+1yj−1)− ε
N/2∑
j=1

(x2jx2j−1 + y2jy2j−1) ,

which is a minor variation of the Hamiltonian system (3.9). Indeed, we are considering k1 = 1/2
and k2 = 1 and we have rewrite the second part of the perturbation in terms of odd and even terms.
We want to investigate the continuation of the minimal vortex configuration, namely the localized
structures given by four consecutive excited sites, that we here take as I = {7, 8, 9, 10}, with
phase differences between the neighboring ones all equal to π/2. The existence of such rotating
structures has been shown in proper two-dimensional lattices in [70], by expanding at very high
perturbation orders the Kernel equation obtained with a Lyapunov-Schmidt reduction. On the
other hand, in [75] similar structures have been proved not to exists in the one-dimensional dNLS
lattice (3.10) with κ1 = κ3 = 1, which at first order in the perturbation parameter ε exhibits

the same averaged term f
(1,1)
0 (q) as the two-dimensional problem, hence the same critical points.

4Indeed for these non-degenerate solutions one normal form step would have been enough, being α < (r+1)/2 =
1.
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The present railway-model represents a natural hybrid setting between one-dimensional and two-
dimensional square lattices: here, by means of our normal form algorithm, we are going to show
non-existence of the minimal vortex, thus enforcing the proper two-dimensional nature of these
kind of localized solutions.

As in the previous examples, we introduce action-angle variables (I, ϕ) and complex coordinates
(ξ, η) and we expand H0 and H1 in Taylor series of the actions around I∗; by forgetting constant
terms and introducing the resonant angles q̂ = (q1, q) and their conjugated actions p̂ = (p1, p)

q1 = ϕ7

q2 = ϕ8 − ϕ7

q3 = ϕ9 − ϕ8

q4 = ϕ10 − ϕ9

,


p1 = J7 + J8 + J9 + J10

p2 = J8 + J9 + J10

p3 = J9 + J10

p4 = J10

,

we can rewrite the starting Hamiltonian again in the form

H = ωp1 +
∑
j∈J\I

iξjηj + f
(0,0)
4 (p̂, ξ, η) + f

(0,1)
0 (q2, q3, q4) + f

(0,1)
1 (q̂, ξ, η)

+ f
(0,1)
2 (q, p̂, ξ, η) + f

(0,1)
3 (q̂, p̂, ξ, η) + f

(0,1)
4 (q, p̂, ξ, η) +

∑
l≥5

f
(0,1)
l (q̂, p̂, ξ, η) ,

with ω = 1 + γI∗ = 1 + I∗. The homological equation defining ζ(1) gives the solution

ζ
(1)
1 = ε (12− 2 cos(q∗2)− 2 cos(q∗4)− 2 cos(q∗2 + q∗3)− 2 cos(q∗3 + q∗4))

ζ
(1)
2 = ε (9− cos(q∗2)− 2 cos(q∗4)− cos(q∗2 + q∗3)− 2 cos(q∗3 + q∗4))

ζ
(1)
3 = ε (6− 2 cos(q∗4)− cos(q∗2 + q∗3)− cos(q∗3 + q∗4))

ζ
(1)
4 = ε (3− cos(q∗4)− cos(q∗3 + q∗4))

,

while the remaining stages are the same of the previous example (the second and the fourth stages

are absent). The q∗-values, critical points of f
(1,1)
0 , have to solve the trigonometric system

2I∗ sin(q2) + 2I∗ sin(q2 + q3) = 0

2I∗ sin(q2 + q3) + 2I∗ sin(q3 + q4) = 0

2I∗ sin(q4) + 2I∗ sin(q3 + q4) = 0

.

We obtain the following solutions: we have two isolated solutions (0, 0, 0), (π, 0, π), and three
one-parameter families Qj(ϑ)

Q1(ϑ) = (ϑ, π,−ϑ)

Q2(ϑ) = (ϑ, π, ϑ+ π).

Q3(ϑ) = (ϑ,−2ϑ, ϑ+ π).

.

Moreover we notice that, as in the previous ZigZag model, the three families all intersect in the
two vortex configurations ±

(
π
2 , π,−

π
2

)
. These are completely degenerate configurations, since the

Kernel admits three independent directions ∂ϑQj on the tangent space to the torus T3; hence

D2
qf

(1,1)
0

(
π
2 , π,−

π
2

)
≡ 0 and the following non-degeneracy condition is not fulfilled:∣∣∣∣∣∣

cos(q2) + cos(q2 + q3) cos(q2 + q3) 0
cos(q2 + q3) cos(q2 + q3) + cos(q3 + q4) cos(q3 + q4)

0 cos(q3 + q4) cos(q4) + cos(q3 + q4)

∣∣∣∣∣∣ 6= 0 ,

where we have factored out 2I∗. It is immediate to verify that the two isolated configurations are
non-degenerate, hence also a strategy based on the implicit function theorem works out. For all
the remaining solutions on Qj we have to perform a second normalization step. As in the previous
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example, the fourth stage is missing. The equation that allows us to have periodic orbits for the
approximate dynamic is the following

∇q
(
f

(2,1)
0 + f

(2,2)
0

)
= 0 ,

which can be rewritten again as

F (q2, q3, q4, ε) = F0(q2, q3, q4) + εF1(q2, q3, q4) = 0,

with F : T3 × U(0)→ R3. In this case there are three vectors

∂ϑQ1 =

 1
0
−1

 , ∂ϑQ2 =

1
0
1

 ∂ϑQ3 =

 1
−2
1


that generate the Kernel of ∂ϑF0(Qj(ϑ)) with j = 1, 2, 3. Once again, applying Proposition 3.2.1,
the necessary condition to obtain the continuation is F1(Qj(ϑ)) ⊥ ∂ϑQj(ϑ); it turns out that
F1(Q1(ϑ)) ≡ 0, hence nothing can be concluded on Q1, similarly to what already observed also in
the square dNLS cell. For the other two families we get

〈F1(Q2(ϑ)), ∂ϑQ2〉 = 4 sin(2ϑ)

〈F1(Q3(ϑ)), ∂ϑQ3〉 = 4 sin(2ϑ),

and we can deduce that they break down and only the four solutions

(0, π, π), (π, π, 0), (0, 0, π), (π, 0, 0)

or the two vortexes
(
π
2 , π,−

π
2

)
and

(
−π2 , π,

π
2

)
are allowed for continuation. The existence of the

four in/out-of-phase configurations above is ensured by condition (2.12); indeed, explicit symbolic
calculations made with Mathematica clearly show that (2.12) holds with α = 1 < 3

2 . In the two
vortexes, instead, the decay of the smallest eigenvalue is too fast to fulfill (2.12), being α ≈ 3 > 3

2 .
Hence, a third normal form step is needed to study the continuation of the configurations in Q1(ϑ),
vortexes included. And indeed, by applying at order O(ε3) the previous bifurcation argument, we
get

〈F2(Q1(ϑ)), ∂ϑQ1〉 =
4

I∗
sin(ϑ) ,

where clearly ε3F2(q) = ∇qf (3,3)
0 . The third normalization step is thus conclusive for the non-

existence of the two vortex configurations: only the two in/out-of-phase solutions (π, π, π) and
(0, π, 0) can be continued. Continuation is derived from (2.12), which holds true with α = 3/2 <
2 = (r + 1)/2 with r = 3.

Concerning the approximate linear stability analysis, (0, 0, 0) is the unique stable configuration.

λ1,2(ε) = ±i

(
2
√
I∗
√
ε+

6

(I∗)5/2
ε7/2 + h.o.t.

)
,

λ3,4(ε) = ±i

(
2
√
I∗
√
ε− ε5/2

(I∗)3/2
+ h.o.t.

)
,

λ5,6(ε) = ±i

(
2
√

2
√
I∗
√
ε+

√
2ε3/2

√
I∗

+ h.o.t.

)
.

They split only at order ε5/2. This leads to β = 5/2 in the assumption of Theorem 2.1.2. Since
r + 1 − α = 4 − 1

2 = 7
2 , the statement ensures existence of two couples of distinct Floquet

multipliers which are ε7/2-close to eλT on the unitary circle, which means effective linear stability
of the solution.

89



3. Applications

Remark 3.3.3 It is remarkable the effect of having studied the non-degenerate configurations
with the more accurate normal form at order r = 3, although useless for the continuation purpose.
Indeed, while stopping at order r = 1, 2, Theorem 2.1.2 could not have applied to conclude effective
stability of the solution and the localization of its Floquet exponents; indeed the two couples of
Floquet exponents would have been equal. On the contrary, for r = 3 the eigenvalues split at order
5/2 and the Theorem can be applied. This shows the power of the normal form, which allows to
increase the accuracy of the approximation beyond the minimal order needed to ensure existence
of the continuation.

3.3.3 Multi-pulse solutions in the dNLS model with purely non-linear
coupling

We consider here a dNLS model with purely non-linear coupling, hence not covered by (3.9); as the
simplest choice, only nearest-neighbors interactions are active. It is well known that in this model
single-site discrete solitons (as breathers in Klein-Gordon models) are more compactly supported,
with tails decaying more than exponentially fast (for this kind of models see for example [28,81]).
In terms of normal form, due to this weaker interaction among the sites of the chain, we need
r = 3 to remove the degeneracy, even if there are no holes.

-6 -5 -4 -3 -2 2 3 4 5 6-1 0 1

0

I∗

To be precise, we consider a perturbation H1 of the form

H1 =
∑
j

|ψj+1 − ψj |4 ,

I = {−1, 0, 1}, J = {−7, . . . , 7} and, as before, periodic boundary conditions. The perturbation
H1 is given by the quartic nearest neighbors interaction, which in real coordinates reads

H1 =
1

2

∑
j∈J

(x2
j + y2

j )2 +
∑
j∈J

(xj+1xj + yj+1yj)
2

−
∑
j∈J

(x2
j + y2

j )(xj+1xj + yj+1yj)−
∑
j∈J

(x2
j + y2

j )(xj−1xj + yj−1yj)

+
1

2

∑
j∈J

(x2
j+1 + y2

j+1)(x2
j + y2

j ) .

By expanding H0 and H1 in Taylor series of the actions around I∗, forgetting constant terms
and introducing the resonant angles and their conjugated actions

q1 = ϕ−1

q2 = ϕ0 − ϕ−1

q3 = ϕ1 − ϕ0

,


p1 = J−1 + J0 + J1

p2 = J0 + J1

p3 = J1

,

we can rewrite the initial Hamiltonian in the usual form

H = ωp1 +
∑
j∈J\I

iξjηj + f
(0,0)
4 (p̂, ξ, η) + f

(0,1)
0 (q) + f

(0,1)
1 (q̂, ξ, η) + f

(0,1)
2 (q̂, p̂, ξ, η)

+ f
(0,1)
3 (q̂, p̂, ξ, η) + f

(0,1)
4 (q̂, p̂, ξ, η) +

∑
l≥5

f
(0,1)
l (q̂, p̂, ξ, η) ,
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where ω = 1 + γI∗ = 1 + I∗. This problem is degenerate at order O(ε), indeed

f
(1,1)
0 = 8 (I∗)

2
ε (cos(2q2)− cos(q2) + cos(2q3)− cos(q3))

(after removing constant terms after the expansion around the torus), hence the solutions of the
system {

8 (I∗)
2

sin(q2)− 4 (I∗)
2

sin(2q2) = 0

8 (I∗)
2

sin(q2)− 4 (I∗)
2

sin(2q2) = 0
.

are critical points of f
(1,1)
0 . We obtain the four isolated solutions (0, π), (π, 0), (0, π) and (π, π). The

non- degeneracy condition is fulfilled only in the last configuration. For the remaining solutions,
the degeneracy persists also at order O(ε2). This requires a third normal form step by means of
we can conclude the existence of all the four configurations above. Indeed, we check condition
(2.12) with α < 2 and explicit symbolic calculations made with Mathematica clearly show that
(2.12) holds with α = 3/2.

The approximate stability analysis easily shows that (0, 0) is the only stable configuration,
with Floquet exponents

λ1,2(ε) = ±2iI∗
(
ε3/2 + ε5/2 + h.o.t.

)
,

λ3,4(ε) = ±2iI∗
(√

3ε3/2 +
1√
3
ε5/2 + h.o.t.

)
.

Theorem 2.1.2 applies with β = 3/2 < 5/2 = r+1−α, hence Floquet multipliers are O(ε5/2)-close
to the approximate ones.

3.3.4 Other resonances and persistence of two-dimensional tori.

Let us consider again the standard dNLS model (3.9) with κ1 = 1 and κl = 0 for any 2 ≤ l ≤ i, and
periodic boundary conditions. Differently from most of the literature on localized solutions, we
now consider a resonant torus with resonance relationships different from the classical (1 : . . . : 1).
In this case, the action of the symmetry group is transversal to the action of the periodic flow on
the unperturbed torus; hence, the objects which have to survive in this model with one additional
conserved quantity (A.43) are two-dimensional resonant subtori of the given initial resonant torus.
Our normal form allows to approximate at any perturbation order the subtori surviving to the
breaking of the original resonant torus; such a good approximation can be used to prove the
persistence of the considered subtorus. The persistence of these objects in Hamiltonian systems
(and more generic dynamical systems) with symmetries is known in the literature, as well as
applications of this theory due to Nekhoroshev to dNLS lattices (see [6–8]). However, in contrast
to the literature, the continuation is here made at fixed period and not at fixed values of the
independent conserved quantities, and, more important, the normal form allows to treat both non-
degenerate and degenerate subtori (while in the mentioned results only non-degenerate objects are
covered).

We show how to construct the leading order approximation of these subtori in both a non-
degenerate and a degenerate case, in the easiest case of three consecutive excited sites I =
{−1, 0, 1}, and always assuming γ = 1. By restricting to these considered examples, we also
explain how to modify the proof of Theorem 2.1.1 in terms of the map Υ, so to prove the persis-
tence of these families of localized and time-periodic structures in this class of dNLS models.

Non-degenerate case: as a first case, we consider the sets I = {−1, 0, 1} and J = {−7, . . . , 7},
with the following excited actions {I∗, 1 + 2I∗, 1 + 2I∗}, so that at ε = 0 the flow lies on a resonant
torus with frequencies ω̂ = ω(1, 2, 2), with ω = 1 + I∗.
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After expanding H0 and H1 in Taylor series of the actions around I∗l , with l ∈ {−1, 0, 1}, we
introduce the resonant angles q̂ = (q1, q) and their conjugated actions p̂ = (p1, p) as follows

q1 = ϕ−1

q2 = ϕ0 − 2ϕ−1

q3 = ϕ1 − ϕ0

,


p1 = J−1 + 2J0 + 2J1

p2 = J0 + J1

p3 = J1

,

so that we can rewrite the initial Hamiltonian in the form

H = ωp1 +
∑
j∈J\I

iξjηj + f
(0,0)
4 (p̂, ξ, η) + f

(0,1)
0 (q̂) + f

(0,1)
1 (q̂, ξ, η)

+ f
(0,1)
2 (q̂, p̂, ξ, η) + f

(0,1)
3 (q̂, p̂, ξ, η) + f

(0,1)
4 (q̂, p̂, ξ, η) +

∑
l≥5

f
(0,1)
l (q̂, p̂, ξ, η) .

Of course, we could have performed a different canonical linear transformation to resonant angles
q2,3, since the basis of the resonant modulus Mω is not unique; for example, we could have
performed the admissible choice q3 = ϕ3 − 2ϕ1. However, with this latter choice, in the term

f
(1,1)
0 we would have had a dependence on a suitable combination of the angles q2 and q3, which

means that it is possible to choose the coordinates so that to have a dependence on a proper angle.
Hence, the choice we have made is more convenient and better reveals the action of the symmetry.

Hence at any order r the normal form terms f
(r,s)
0 will be independent both of q1 (because of

averaging) and of q2. These variables q1,2 are going to parameterize the persisting subtori. At

first order, the averaging of f
(0,1)
0 gives the normal form

f
(1,1)
0 = −2ε(1 + 2I∗) cos(q3) ,

whose critical points are only q∗3 = 0, π. As already stressed, the absence of the resonant angle
q2 has not to be interpreted in this case as the effect of a proper degeneracy, since we expect
a finite numbers of two-dimensional subtori to be continued. Thus the two subtori are clearly

non-degenerate, satisfying D2
q3f

(1,1)
0 (q∗) 6= 0.

In order to prove the persistence of the obtained subtori, we keep both q1(0) and q2(0) as pa-
rameters in the map Υ introduced in (2.10), and we also forget the variation of the second action p2,
since in this case we have two independent constant of motion; hence Υ : R2n−2 → R2n−2. Then,
coherently with the previous modification, the reduced monodromy matrix (exp (dXK(1)(x∗)T )− I)red,
where now x∗ = (q3 ∈ {0, π}, p̂ = 0, ξ = η = 0), is constructed removing the two columns related to
q1,2 and the two rows related to p1,2. Then, under the same assumptions of Theorem 2.1.1 on the

spectrum of N̂ , we get existence and approximation of the considered subtori. In our case, explicit
calculations with Mathematica, provide the typical non-degenerate values of α = 1

2 < r+1
2 = 1,

which allows to apply the new version of the Theorem.
The first subtorus q∗3 = π is linearly unstable, while q∗3 = 0 is linearly stable, since its Floquet

exponents are

λ1,2(ε) = ±i

(
2
√

1 + 2I∗
√
ε+

ε3/2

√
1 + 2I∗

+ h.o.t.

)
.

The Theorem 2.1.2 can be applied with β = 1/2 < r+1−α = 1, also obtaining the effective linear
stability.
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Degenerate case: as a second case, we still consider the sets I = {−1, 0, 1} and J = {−7, . . . , 7},
with the new excited actions {I∗, 1 + 2I∗, I∗}, so that at ε = 0 the flow lies on a resonant torus
with frequencies ω̂ = ω(1, 2, 1), with again ω = 1 + I∗.
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After expanding H0 and H1 in Taylor series of the actions around I∗l , with l ∈ {−1, 0, 1}, we
introduce the resonant angles q̂ = (q1, q) and their conjugated actions p̂ = (p1, p) as follows

q1 = ϕ−1

q2 = ϕ0 − 2ϕ−1

q3 = ϕ1 − ϕ−1

,


p1 = J−1 + 2J0 + J1

p2 = J0

p3 = J1

,

getting the starting Hamiltonian

H = ωp1 +
∑
j∈J\I

iξjηj + f
(0,0)
4 (p̂, ξ, η) + f

(0,1)
0 (q̂) + f

(0,1)
1 (q̂, ξ, η)

+ f
(0,1)
2 (q̂, p̂, ξ, η) + f

(0,1)
3 (q̂, p̂, ξ, η) + f

(0,1)
4 (q̂, p̂, ξ, η) +

∑
l≥5

f
(0,1)
l (q̂, p̂, ξ, η) .

Also in this case a different canonical linear transformation to resonant angles q2,3 might have
been performed, but, as stressed before, this one is more convenient since at any order r the normal

form terms f
(r,s)
0 will be independent both of q1 (because of averaging) and of q2. Differently from

the previous examples, at first order, the averaging of f
(0,1)
0 gives a trivial normal form term

f
(1,1)
0 ≡ 0, because the two resonant oscillators at sites {−1, 1} are not interacting at order O(ε);

hence a second normal form step is required. At order r = 2 the degeneracy is removed, since we
get

f
(2,2)
0 =

2(I∗)2

(1 + I∗)2
ε2 cos(q3) ,

whose critical points are again only q∗3 = 0, π. Explicit calculations with Mathematica, provide
the expected value of α = 1 < r+1

2 = 3
2 , which allows to apply the same strategy used before.

The first subtorus q∗3 = 0 is linearly unstable, while q∗3 = π is linearly stable, since the Floquet
exponents are

λ1,2(ε) = ±i

(
2I∗

1 + I∗
ε+

2I∗
(
5 + 22I∗ + 24(I∗)2

)
ε3

(1 + I∗)5
+ h.o.t.

)
.

The Theorem 2.1.2 can be applied with β = 1 < r + 1 − α = 2, also getting the effective linear
stability.

3.4 Conclusions

In this Chapter we have applied our abstract results on continuation and stability of periodic orbits
in nearly integrable Hamiltonian system, to revisit the existence of time-periodic and spatially
localized solutions in dNLS lattices, such as discrete solitons or multi-pulse solutions. It has
been shown in several different dNLS models, starting from the standard one, moving to coupled
dNLS chains or models with a purely non-linear interaction, that in the limit of small coupling
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parameter ε this class of solutions are frequently degenerate at leading order, so that a first step
of averaging is not enough. The abstract normal form scheme and the main theorems on existence
and linear stability, allow to investigate with the help of a symbolic manipulator different kinds
of degenerate configurations in dNLS lattices, thus confirming the practical applicability of the
abstract algorithm. At the same time, they allow to shed some light on a wider class of localized
periodic solutions, leading to the existence of two-dimensional resonant tori, thanks for example
to the effect of the rotation symmetry of dNLS models. However, it is necessary to stress that the
possibility to apply the present approach to multibreathers in weakly coupled chains of anharmonic
oscillators as the Klein-Gordon models collides with the need to explicitly transform the excited
oscillators to action-angle variables. This is a problem which might be overcome with special
choices of the non-linear potential, like the Morse potential, or with a preliminary dNLS normal
form approximation of the non-linear lattice, in the limit of small coupling parameter and energy.
As a different direction of future development, the scheme might be extended so to study the
existence of degenerate quasi-periodic solutions (degenerate KAM-subtori), both from an abstract
point of view and in terms of applications to physical models. Furthermore, this normal form
construction could be a preliminary unavoidable step in order to perform further investigations,
for instance the study of long-time stability of periodic orbits.
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Variation on the Kolmogorov’s
theorem
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Chapter 4

KAM with knobs

The aim of this Chapter is to reconsider the proof of Kolmogorov’s theorem with a variation on
the handling of the frequencies. Particular attention is paid to the constructive aspect: we want to
produce an algorithm that can be explicitly applied, e.g., with the aid of an algebraic manipulator.

The motivation that gives rise to the development of this approach is the problem of persistence
of lower dimensional elliptic invariant tori under sufficiently small perturbations. Indeed, in [38]
the authors gave a constructive proof of the existence of lower dimensional elliptic tori for planetary
systems, adapting the classical Kolmogorov’s normalization algorithm (see also [86]) and a result
of Pöschel [79], that allows to estimate the measure of a suitable set of non-resonant frequencies.
The key point is that both the internal frequencies of the torus and the transversal ones vary at
each normalization step, and cannot be kept fixed as in Kolmogorov’s algorithm. This makes the
accumulation of small divisors much more tricky to control and, more important, the result is only
valid in measure and therefore one cannot know a priori if a specific torus exists or not.

A different approach based on Lindstedt’s series, that allows to control the frequencies, has
been proposed in [18, 19] in the context of FPU problem. However, the algorithm has been so
far introduced and used, up to our knowledge, only in a formal way and the literature lacks of
rigorous convergence estimates.

The idea is to overcome the issue of having a result that is valid only in measure, playing with
the frequency like one do with a control knob. The Chapter focuses on full dimensional invariant
tori, thus representing a first step in this direction.

Of course, considering full dimensional invariant tori, the original Kolmogorov’s normalization
algorithm allows to have a complete control of the frequencies, that are fixed along the whole
normalization procedure. However, considering lower dimensional elliptic tori, as explained in
detail by Pöschel [79], we cannot fix the frequencies and we have to let them vary. Thus, as a
first result, we decide to adapt the classical Kolmogorov’s normalization algorithm so as to avoid
the translation that keep the frequencies fixed and introducing a detuning1 between the fixed final
frequencies and the corresponding initial ones, to be determined a posteriori. This approach, in
principle, also allows to start from a resonant torus carrying frequencies ω(0) that by construction
falls into a strongly non-resonant one.

In order to better illustrate the point of view of our variation, I briefly recall some classical
results on KAM theory. Consider the so-called fundamental problem of dynamics as stated by
Poincaré, i.e., a canonical system of differential equations with Hamiltonian

H(p, q) = H0(p) + εH1(p, q; ε) , (4.1)

where (p, q) ∈ Rn × Tn are action-angle variables and ε is a small parameter. The functions H0

and H1 are assumed to be analytic in all the variables and in the small parameter. Komogorov,
in his seminal paper [52] that, together with the works of Arnold [2] and Moser [64], gave birth to

1The detuning can be figured as the action of turning a control knob.
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the KAM theory, proved the existence of quasi-periodic solutions for this Hamiltonian, with given
strongly non-resonant frequencies.

The original idea of Kolmogorov is to select the actions p∗ such that the frequency vector
ω = ∇pH0(p∗) satisfies a Diophantine condition

|〈k, ω〉| > γ|k|−τ for all k ∈ Zn , k 6= 0 ,

for some positive γ and τ ≥ n − 1. Hence, the Hamiltonian can be expanded around p∗ and,
denoting again by p the translated actions p− p∗, we rewrite the Hamiltonian as

H(p, q) = 〈ω, p〉+O(p2) + εH1(p, q; ε) . (4.2)

In rough words, Kolmogorov theorem ensures the persistence of the torus p = 0 (p = p∗ in the
original variables) carrying quasi-periodic solutions with frequencies ω, if ε is small enough and
H0(p) is non-degenerate (the so-called Kolmogorov non-degeneracy or twist condition).

Let me stress that the role of the non-degeneracy assumption on H0(p) is twofold: (i) it
allows to select the desired frequencies, parameterized by the actions; (ii) it allows to perform the
translation step that keeps the frequency fixed along the normalization algorithm.

However, if the Hamiltonian is already in the form (4.2) or satisfies the so-called twistless
property, i.e., it consists of a sum of a kinetic term, quadratic in p, and of a potential energy,
depending only on the angles, it turns out that the non-degeneracy assumption can be removed
(see, e.g., [29, 34]).

Nowadays, the literature about KAM theory is so vast that an exhaustive list would fill several
pages. Different proofs have been given by many authors. Here, we just mention some contribu-
tions in the fields (for full dimensional and lower dimensional tori), adopting different methods,
i.e. [24, 26,27,29–31,34–38,45,46,79,80,83].

A final remark is about the so called quadratic (or superconvergent or Newton-like) method,
originally adopted by Kolmogorov and considered crucial until Russmann (see [82,83]) pointed out
that a careful analysis of the accumulation of the small divisors allows to sharpen some estimates
and get rid of it. Eventually, a proof of Kolmogorov theorem via classical expansions in a small
parameter has been obtained by Giorgilli and Locatelli (see [34–36]).

Between the different approaches, a proof of the Kolmogorov’s theorem based on an a posteriori
format has been given e.g. in [23,24] and applied to dissipative systems for instance in [14]. Instead,
for a proof which uses the Lindstedt’s series method, see for example [17,29,30].

Let me stress that the approach based on classical expansions on some parameter gives ab-
solutely convergent series and allows to unveil the mechanism of the accumulation of the small
divisors, leading in a natural way to introduce a more relaxed non-resonant condition for the
frequency vector ω, introduced in [40] and adopted in [38,39]. Precisely

Condition τ : The sequence {αr}r≥0 satisfies

−
∑
r≥1

lnαr
r(r + 1)

= Γ <∞ , with min
0<|k|≤rK

|〈k, ω〉| ≥ αr , (4.3)

where K and Γ are two positive constants. Furthermore, the classical approach is the only way to
directly implement KAM theory in practical applications and it proved advantageous in different
contexts, e.g., the construction of lower-dimensional elliptic tori in [38, 86] or the continuation
of periodic orbits as we have seen in previous Chapters. In the present Chapter too, we adopt
the classical approach, which also turns out to be better suited in order to devise a normal form
algorithm that introduce a detuning of the initial frequencies that will be determined, step by
step, along the normalization procedure.

4.1 Main results

Consider the Hamiltonian (4.1) and assume that H0(p) and H1(p, q; ε), for ε small enough, are
real analytic bounded functions in the domain G ⊆ Rn × Tn.
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Given a point p0 ∈ G, denote by ω(0)(p0) ∈ Rn the corresponding frequency vector and expand
the Hamiltonian in a neighbourhood of p0, denoting again by p the translated actions p − p0,
precisely

H(p, q) = 〈ω(0), p〉+O(p2) + εH1(p, q; ε) . (4.4)

As remarked before, one can assume a non-degeneracy condition on H0(p) so as to ensure that
the frequency vector is parameterized by the actions. However, if the Hamiltonian is already in
this form, no non-degeneracy assumption is required.

We can now state our main theorem

Theorem 4.1.1 Consider the Hamiltonian (4.4) with unknown frequency vector ω(0). Pick a
strongly non-resonant frequency vector ω ∈ Rn satisfying the condition τ in (4.3). Then there
exists a positive ε∗ such that for |ε| < ε∗ the following statement holds true: there exists a real
analytic near to the identity canonical transformation (p, q) = C(∞)(p(∞), q(∞)) leading the Hamil-
tonian (4.4) in normal form, i.e.,

H(∞) = 〈ω, p(∞)〉+O(p(∞)2
) . (4.5)

The initial frequency vector ω(0) is determined a posteriori and the detuning ω − ω(0) is of order
O(ε).

A more quantitative statement, including a detailed definition of the threshold on the smallness
of the perturbation, is given in Section 4.4.

At difference with respect to the original Kolmogorov’s theorem, we do not keep the frequencies
fixed along the normalization procedure. The idea, that will be fully detailed in the next Section,
is to replace the classical translation step with a change of the frequencies. Thus, once selected the
end invariant torus, the theorem ensures the existence of the starting one that, by construction,
falls into the wanted invariant torus.

Finally, the normalization algorithm is based on classical expansions, thus we have a sequence
of detuning {ω(s)}s≥1 between the frequencies ω and ω(0) satisfying

ω = ω(0) +
∑
s≥1

ω(s) . (4.6)

The sequence {ω(s)}s≥1 will be determined step by step by the normalization procedure and at
any given finite normal form order r we get an approximation of the initial frequency vector given
by ω(0) = ω −

∑r
s=1 ω

(s). This can be useful in practical applications, e.g., constructing invariant
KAM tori in planetary systems, where only a finite number of explicit normal form steps can be
actually performed.

4.2 Analytic setting and expansion of the Hamiltonian

In this section we detail the analytic setting which will be useful in the following.
The Hamiltonian (4.1) is assumed to be real analytic for sufficiently small values of ε and real

holomorphic function of the (p, q) variables in the complex domain Dρ0,σ0
= Gρ0

× Tnσ0
where ρ0

and σ0 are positive parameters, Gρ0
=
⋃
p∈G ∆ρ0

(p), with

∆ρ0
(p) = {z ∈ Cn : |pj − zj | < ρ0} ,

Tnσ0
= {q ∈ Cn : |Im(qj)| < σ0}

are the usual complex extensions of the real domains.
We now define the norms that we are going to use. For real vectors x ∈ Rn we use

|x| =
n∑
j=1

|xj | .
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4. KAM with knobs

while for an analytic function f(p, q) with q ∈ Tn we use the weighted Fourier norm

‖f‖ρ,σ =
∑
k∈Zn

|fk|ρe|k|σ ,

with

|fk|ρ = sup
p
|fk(p)| .

Hereafter, we are going to use the shorthand notation ‖ · ‖α for ‖ · ‖α(ρ,σ) and | · |α for | · |αρ , α
being any positive real number.

We here describe how to expand the Hamiltonian (4.4) in power series of a small parameter.
Indeed, we split the Hamiltonian in a sum of trigonometric polynomials and we introduce an
artificial parameter µ which will represent the expansion parameter, instead of ε. The idea (see
e.g. [35]) is to exploit the exponential decay of the Fourier coefficients for analytic functions: pick
an arbitrary positive integer K and split the Fourier expansion of f`(p, q, ε) as

f
(1)
` =

∑
0≤|k|≤K

c`,k(p, ε) exp(i〈k, q〉) ,

f
(s)
` =

∑
(s−1)K<|k|≤sK

c`,k(p, ε) exp(i〈k, q〉) , for s > 1 .

This splitting allows to simplify the control of the small divisors that show up in the normalization
procedure. Let me also remark that, in contrast to the first part of the thesis, the subscript `
directly stands for the degree in the actions. Thus we can expand the Hamiltonian (4.4) as

H(p, q) = 〈ω(0), p〉+
∑
`≥2

f` +
∑
s≥1

∑
`≥0

f
(s)
` (4.7)

where the terms are bounded as

‖f`‖1 ≤
E

2`
, ‖f (s)

` ‖1 ≤
ε0E

2`
µs ,

with

ρ =
ρ0

4
, E = 2n−1E0 , µ = e−

Kσ0
8 , ε0 = εe

Kσ0
8

(
1 + e−

σ0
8

1− e−
σ0
8

)n
F0

E0
, σ =

σ0

4
.

and

sup
p
|H0(p)| ≤ E0 , sup

p,q,ε
|H1(p, q; ε)| ≤ F0 . (4.8)

The definitions of ρ and E result from the Cauchy’s estimate of the Taylor expansion, while for
µ, ε0 and σ the exponential decay of the coefficients in Fourier expansion has been used. These
latter estimates can be found in Lemma 8 in [42].

4.3 Normal form algorithm

In this section we present the algorithm leading the Hamiltonian (4.7) in normal form. The
procedure is here described from a purely formal point of view, while the study of the convergence
is postponed to the next sections.

First, let us exploit the detuning (4.6), that we report here for convenience

ω = ω(0) +
∑
s≥1

ω(s) ,
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and rewrite the Hamiltonian in the form

H(0)(p, q) = 〈ω, p〉+
∑
`≥2

f
(0,0)
` (p, q) +

∑
s≥1

∑
`≥0

f
(0,s)
` (p, q)−

∑
s≥1

〈ω(0,s), p〉 , (4.9)

where we have modified the notation, so as to add a superscript 0 to the Hamiltonian, which will
keep track of the normalization order. We stress again that the quantities ω(0,s), with s ≥ 1, are
unknowns that will be determined along the normalization procedure.

As in the original Kolmogorov’s proof scheme, starting from H(0), we construct an infinite
sequence of Hamiltonians {H(r)}r≥0, where H(r) is in normal form up to order r, namely

H(r)(p, q) = 〈ω, p〉+
∑
s>r

(
f

(r,s)
0 (q) + f

(r,s)
1 (p, q)− 〈ω(r,s), p〉

)
+
∑
s≥0

∑
`≥2

f
(r,s)
` . (4.10)

Assume that r − 1 steps have been performed, so that the Hamiltonian (4.10) has the wanted
form with r− 1 in place of r. The transformation that brings the Hamiltonian in normal form up
to order r is computed by the composition of two Lie series,

exp(L
χ

(r)
1

) ◦ exp(L
χ

(r)
0

) ,

with generating functions χ
(r)
0 and χ

(r)
1 that are determined in order to kill the unwanted terms

f
(r−1,r)
0 (q) and f

(r−1,r)
1 (p, q)−〈ω(r−1,r), p〉, hence the Hamiltonian is in Kolmogorov’s normal form

up to order r. At difference with respect to the original approach designed by Kolmogorov we do
not introduce a translation of the actions p, since we do not keep the initial frequency ω(0,0) fixed.
Indeed, in our algorithm the role of the translation is played by the detuning of the frequency of
order r, i.e., ω(r−1,r).

4.3.1 Generic r-th normalization step

First stage of the normalization step

Our aim is to remove the term f
(r−1,r)
0 (q), determining the generating function χ

(r)
0 (q) which is

the solution of the homological equation

L
χ

(r)
0
〈ω, p〉+ f

(r−1,r)
0 = 0 . (4.11)

Considering the Fourier expansion

f
(r−1,r)
0 (q) =

∑
0<|k|≤rK

c
(r−1,r)
0,k exp(i〈k, q〉) ,

one can easily check that the solution of (4.11) is given by

χ
(r)
0 (q) =

∑
0<|k|≤rK

c
(r−1,r)
0,k

i〈k, ω〉
exp(i〈k, q〉) .

Let me remark that the homological equation (4.11) can be solved only provided the function

f
(r−1,r)
0 has null average with respect to the angles q. In this case, the average is a constant that

can be neglected. The intermediate Hamiltonian H(I;r−1) = exp(L
χ

(r)
0

)H(r−1) reads

H(I;r−1)(p, q) =〈ω, p〉

+ f
(I;r−1,r)
1 (p, q)− 〈ω(r−1,r), p〉

+
∑
s>r

(
f

(I;r−1,s)
0 (q) + f

(I;r−1,s)
1 (p, q)− 〈ω(r−1,s), p〉

)
+
∑
s≥0

∑
`≥2

f
(I;r−1,s)
` ,
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with

f
(I;r−1,s)
0 =


0 , s ≤ r ;

f
(r−1,s)
0 , r < s < 2r ;

f
(r−1,s)
0 + L

χ
(r)
0

(
f

(r−1,s−r)
1 − 〈ω(r−1,s−r), p〉

)
+

bs/rc∑
j=2

1

j!
Lj
χ

(r)
0

f
(r−1,s−jr)
j , s ≥ 2r .

f
(I;r−1,s)
1 =


0 , s < r ;
bs/rc∑
j=0

1

j!
Lj
χ

(r)
0

f
(r−1,s−jr)
1+j , s ≥ r .

f
(I;r−1,s)
` =

bs/rc∑
j=0

1

j!
Lj
χ

(r)
0

f
(r−1,s−jr)
`+j , ` ≥ 2 .

(4.12)

Second stage of the normalization step

We now remove the term f
(I;r−1,r)
1 (p, q) − 〈ω(r−1,r), p〉, by determining the generating function

χ
(r)
1 (p, q) which solves the homological equation

L
χ

(r)
1
〈ω, p〉+ f

(I;r−1,r)
1 − 〈ω(r−1,r), p〉 = 0 , (4.13)

with

f
(I;r−1,r)
1 = f

(r−1,r)
1 + L

χ
(r)
0
f

(0,0)
2 .

Considering the Taylor-Fourier expansion

f
(I;r−1,r)
1 (p, q) =

∑
|k|≤rK

c
(I;r−1,r)
1,k exp(i〈k, q〉) ,

one can easily check that the solution of (4.13) is given by

χ
(r)
1 (p, q) =

∑
0<|k|≤rK

c
(I;r−1,r)
1,k

i〈k, ω〉
exp(i〈k, q〉) and 〈ω(r−1,r), p〉 = 〈f (r−1,r)

1 〉q ,

where 〈 · 〉q denotes the average with respect to the angles q. Let me stress that, in order to

solve the homological equation, we should have imposed 〈ω(r−1,r), p〉 = 〈f (I;r−1,r)
1 〉q, but the term

L
χ

(r)
0
f

(0,0)
2 has null average.

We complete the normalization step by computing the Hamiltonian H(r) = exp(L
χ

(r)
1

)H(I;r−1)
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that takes the form (4.10) and setting k = bs/rc, m = s mod r, s = kr +m we have

f
(r,s)
0 =

k−1∑
j=0

1

j!
Lj
χ

(r)
1

f
(I;r−1,s−jr)
0 ,

f
(r,s)
1 =



0 , s ≤ r ;

f
(I;r−1,s)
1 +

k−1∑
j=1

1

j!
Lj
χ

(r)
1

(
f

(I;r−1,s−jr)
1 − 〈ω(r−1,s−jr), p〉

)
, s > r , m 6= 0 ;

f
(I;r−1,s)
1 +

k−2∑
j=1

1

j!
Lj
χ

(r)
1

(
f

(I;r−1,s−jr)
1 − 〈ω(r−1,s−jr), p〉

)
+
k − 1

k!
Lk−1

χ
(r)
1

(
f

(I;r−1,r)
1 − 〈ω(r−1,r), p〉

)
, s > r , m = 0 ;

f
(r,s)
` =

k∑
j=0

1

j!
Lj
χ

(r)
1

f
(I;r−1,s−jr)
` , ` ≥ 2 ,

〈ω(r,s), p〉 = 〈ω(r−1,s), p〉 .

(4.14)

The justification of the formulas (4.12) and (4.14) is just a matter of straightforward com-
putations, exploiting (4.11) and (4.13) in order to kill the unwanted terms and to simplify the

expression of f
(r,kr)
1 .

Let us remark that in the Hamiltonian in normal form up to order r, the quantities {ω(r,s)}rs=1

have been explicitly determined (and will not be modified by the normalization algorithm), while
{ω(r,s)}s>r are still unknowns to be determined. Finally the redefinition of the sequence of detun-
ings at each normalization step, by updating the corresponding label, is a mere technical detail
that turns out to be useful when dealing with the quantitative estimates.

4.4 Analytic estimates

In this section, we translate our formal algorithm into a recursive scheme of estimates on the
norms of the functions. This essentially requires to bound the norm of the Lie series. The useful
estimates are collected in the following statements.

Lemma 4.4.1 Let f be analytic in Dρ,σ with finite norm ‖f‖1 Then for 0 < d < 1 and for
1 ≤ j ≤ n we have ∥∥∥∥ ∂f∂pj

∥∥∥∥
(1−d)

≤ ‖f‖1
dρ

,

∥∥∥∥ ∂f∂qj
∥∥∥∥

(1−d)

≤ ‖f‖1
edσ

;

Lemma 4.4.2 Let d and d′ be real numbers such that d > 0 , d′ ≥ 0 and d + d′ < 1 ; let χ and
f be two analytic functions on D(1−d′)(ρ,σ) having finite norms ‖χ‖1−d′ and ‖f‖1−d′ , respectively.
Then, for j ≥ 1, we have

∥∥Ljχf∥∥1−d−d′ ≤
j!

e2

(
2e‖χ‖1−d′
d2ρσ

)j
‖f‖1−d′ . (4.15)

The proof of these Lemmas are just a minor variation of the proofs of Lemmas A.2.3 and A.2.4.

The estimates for the Lie derivatives require to restrict the analytic domain. Hence, at each
normalization step r, we need to introduce a restriction of the domain, dr. Of course, the series
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taking into account all these restrictions must converge; thus, the divisors d2
r appearing in (4.15)

must shrink to zero as r →∞. To this end, we define the sequences {dr}r≥0 and {δr}r≥1 as

d0 = 0 , dr = dr−1 + 2δr , δr =
3

4π2
· 1

r2
. (4.16)

At the r-th step of the normalization algorithm, we make a restriction δr of the domain for both
the canonical transformations, thus the Hamiltonian H(r) is analytic in D(1−dr). Our definition
ensures that the sequences of domains converge to a compact set whose interior is not empty, since
limr→∞ dr = 1/4.

We also introduce the real and non increasing sequence {αr}r≥0 defined2 as

α0 = 1 , αr = min
(

1, min
0<|k|≤rK

∣∣〈k, ω〉∣∣) . (4.17)

This means that αr represents the smallest divisor that may occur in the solutions of the homo-
logical equations at step r.

As we will see in the estimates of the functions, the small divisors αr and δr always appear as
products βr = αrδ

2
r , thus we can control all the divisors with the same method. For convenience,

we also define β0 = 1.

By using (4.3), one can check that the generating functions, χ
(r)
0 and χ

(r)
1 , and the detuning

ω(r−1,r), are bounded as

‖χ(r)
0 ‖1−dr−1

≤
‖f (r−1,r)

0 ‖1−dr−1

αr
, (4.18)

‖〈ω(r−1,r), p〉‖1−dr−1 ≤ ‖〈f
(r−1,r)
1 〉q‖1−dr−1 , (4.19)

‖χ(r)
1 ‖1−dr−1−δr ≤

‖f (I;r−1,r)
1 ‖1−dr−1−δr

αr
. (4.20)

We are now ready to estimate the terms appearing in the intermediate Hamiltonian and in the
Hamiltonian in normal form up to order r, namely (4.12) and (4.14), respectively.

Setting

Gr,0 =
2e

ρσ
‖f (r−1,r)

0 ‖1−dr−1

one has

‖f (I;r−1,s)
0 ‖1−dr−1−δr ≤



‖f (r−1,s)
0 ‖1−dr−1 , r < s < 2r ;

‖f (r−1,s)
0 ‖1−dr−1

+
Gr,0
δ2
rαr
‖f (r−1,s−r)

1 − 〈ω(r−1,s−r), p〉‖1−dr−1

+

bs/rc∑
j=2

(
Gr,0
δ2
rαr

)j
‖f (r−1,s−jr)
j ‖1−dr−1 , s ≥ 2r .

‖f (I;r−1,s)
1 ‖1−dr−1−δr ≤

bs/rc∑
j=0

(
Gr,0
δ2
rαr

)j
‖f (r−1,s−jr)

1+j ‖1−dr−1
, s ≥ r .

‖f (I;r−1,s)
` ‖1−dr−1−δr ≤

bs/rc∑
j=0

(
Gr,0
δ2
rαr

)j
‖f (r−1,s−jr)
`+j ‖1−dr−1

, ` ≥ 2 .

(4.21)
Setting

Gr,1 =
2e

ρσ
‖f (I;r−1,r)

1 ‖1−dr−1−δr

2For consistency reasons we slightly modify the definition in (4.3).
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and recalling that k = bs/rc, m = s mod r, s = kr +m, ` ≥ 2, one has

‖f (r,s)
0 ‖1−dr ≤

k−1∑
j=0

(
Gr,1
δ2
rαr

)j
‖f (I;r−1,s−jr)

0 ‖1−dr−1−δr ,

‖f (r,s)
1 ‖1−dr ≤

k−1∑
j=0

(
Gr,1
δ2
rαr

)j
‖f (I;r−1,s−jr)

1 − 〈ω(r−1,s−jr), p〉‖1−dr−1−δr ,

‖f (r,s)
` ‖1−dr ≤

k∑
j=0

(
Gr,1
δ2
rαr

)j
‖f (I;r−1,s−jr)
` ‖1−dr−1−δr ,

‖〈ω(r,s), p〉‖ ≤ ‖〈ω(r−1,s), p〉‖ .

(4.22)

As already remarked, a crucial difference with respect to the classical Kolmogorov’s normal form
algorithm is that the corrections {ω(r,s)}s>r are still unknowns to be determined. Therefore,
strictly speaking, we cannot bound any term containing these quantities. However, this is not a
true issue since, once we are able to estimate a term, it remains unchanged by the subsequent

normalization steps. Moreover, the terms 〈ω(r,s), p〉 are always paired with the terms f
(r,s)
1 and

by construction they simply cancel out the zero average part, thus they do not play any role in
the normal form estimates.

To be more formal, we will assume that the norms of the detunings {ω(r,s)}s>r decay according
to a prescribed geometrical law given a priori, and then we prove by induction that the assumption
is satisfied.

Let us remark that all the estimates exhibit a common structure: they are sums of different
contributions obtained by multiplying a factor Gr,0/(δ

2
rαr) or Gr,1/(δ

2
rαr) at some power by the

known norms of some functions. Thus, we are naturally led to consider the quantities

β0 = 1 , βr = δ2
rαr .

These are the small divisors that we are going to carefully analyze in the next subsection. Indeed,
it is well known that the accumulation of the small divisors can prevent the convergence of any
normalization procedure.

4.4.1 Accumulation of small divisors

The accumulation of small divisors can be analyzed by just focusing on indices of the succession
{βr}r≥0. Indeed, the mechanism of accumulation is rather matter of indices: the key point is not
the actual values of the divisors, but which divisors can appear.

We call list of indices a collection {j1, . . . , js} of non negative integers, with length s ≥ 0. The
empty list {} of length 0 is allowed, as well as repeated indices. The index 0 is allowed, too, and
will be used in order to pad a short list to the wanted length, when needed. As we said before,
the lists of indices provide a full characterization of the products of small divisors: to the list
{j1, . . . , js} we associate the product of divisors {βj1 , . . . , βjs}. Adding any number of zeros to a
list of indices is harmless, for we have set β0 = 1.

We say that a function f owns a list of indices I = {j1, . . . , jk} if its estimate presents a divisor
βj1 · · ·βjk .

In order to identify the worst possible product of divisors in every function, we need to look
for:

(i) the number of divisors βj ;
(ii) a selection rule which identifies which lists can really arise.
Hence, let I = {j1, . . . , js} and I ′ = {j′1, . . . , j′s} be two sets of indices with the same number

s of elements. Let us introduce the following relation of partial ordering on those sets: we say
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that I C I ′ in case there is a permutation of the indices such that the relation jm ≤ j′m holds true
for m = 1, . . . , s . If two sets of indices contain a different number of elements, first, we pad the
shorter one with zeros and, then, we use the same method to compare them. With the symbol ∪,
we mean concatenation of lists.

I∗1 {}
I∗2 {1}
I∗3 {1 , 1}
I∗4 {1 , 1 , 2}
I∗5 {1 , 1 , 1 , 2}
I∗6 {1 , 1 , 1 , 2 , 3}
I∗7 {1 , 1 , 1 , 1 , 2 , 3}
I∗8 {1 , 1 , 1 , 1 , 2 , 2 , 4}
I∗9 {1 , 1 , 1 , 1 , 1 , 2 , 3 , 4}
I∗10 {1 , 1 , 1 , 1 , 1 , 2 , 2 , 3 , 5}

Table 4.1: The special lists I∗s for 1 ≤ s ≤ 10.

So, we can state the following definition

Definition 4.4.1 For all integers r ≥ 0 and s > 0 , let us introduce the family of indices sets

Jr,s =
{
I = {j1, . . . , js−1} : 0 ≤ jm ≤ min{r, bs/2c} , I C I∗s

}
, (4.23)

where the special lists of indices I∗s are defined as

I∗s =

{⌊
s

s

⌋
,

⌊
s

s− 1

⌋
, . . . ,

⌊
s

2

⌋}
.

The condition I C I∗s represents the selection rule S which enables to select the divisors that
can appear along the normalization procedure. In table 4.1 we give examples of the special lists
just defined.

We are now ready to claim technical Lemmas which will be useful in the following.

Lemma 4.4.3 For the sets of indices I∗s = {j1, . . . , js} the following statements hold true:

(i) the maximal index is jmax =
⌊
s
2

⌋
;

(ii) for every k ∈ {1, . . . , jmax} the index k appears exactly
⌊
s
k

⌋
−
⌊

s
k+1

⌋
times;

(iii) for 0 < r ≤ s one has (
{r} ∪ I∗r ∪ I∗s

)
C I∗r+s .

For the proof of this Lemma see [40] and [38].
We now come to exploit the relation between lists of indices and products of small divisors.

Consider the sequence {αk}k≥0. To a list I we associate the quantity Q(I) =
∏
j∈I

1
αj

, getting

also the following property
if I C I ′ then Q(I) > Q(I ′) .

Let us consider the special sequence

Q∗s =
∏
j∈I∗s

1

αj
.

We look for a sufficient condition assuring that the sequence has a finite limit. In view of Lemma
4.4.3, we evaluate

lnQ∗s = ln
∏
j∈I∗s

1

αj
≤ −

s∑
k=1

(⌊ s
k

⌋
−
⌊ s

k + 1

⌋)
lnαk ≤ −s

∑
k≥1

lnαk
k(k + 1)

.
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Hence, this justifies the introduction of the condition τ in (4.3) for the sequence {αk}k≥0, and
allows to get Q∗s < esΓ, which means that it grows not faster than geometrically.

Remark 4.4.1 The condition τ is weaker than the diophantine one and equivalent to the Bruno’s
condition

−
∑
r≥1

lnα2r−1

2r
= B <∞

introduced by Alexander Bruno. Indeed, it can be proved that Γ < B < 2Γ. Moreover, Bruno’s
condition is the optimal one for the problem of Schröder–Siegel, as proved by J.C. Yoccoz, while
for the problem of Kolmogorov the question is still open.

We now return to the sets Jr,s and the small divisors βr.

Lemma 4.4.4 For the sets of indices Jr,s the following statements hold true:

(i) Jr,s = J{min r,bs/2c},s ;

(ii) Jr−1,s ⊆ Jr,s ;

(iii) if I ∈ Jr−1,r and I ′ ∈ Jr,s, then
(
{min{r, s}} ∪ I ∪ I ′

)
∈ Jr,s+r ;

We now associate to the collections of lists Jr,s introduced in (4.23) the sequence of positive
numbers

T0,s = Ts,0 = 1 for s ≥ 0 , Tr,s = max
I∈Jr,s

∏
j∈I,j≥1

1

βj
, for r, s ≥ 1 . (4.24)

Lemma 4.4.5 The sequence Tr,s satisfies the following properties for all r, s ≥ 1

(i) Tr−1,s ≤ Tr,s and Tr′,s = Ts,s for r′ > s;

(ii)
1

βm
Tr−1,rTr,s ≤ Tr,r+s where m = min{r, s}.

The proofs of the above two Lemmas can be found in [38].

In the following table we summarize the relevant information concerning the set of indices
appearing in the denominators, namely the accumulation of the small divisors.

Function conditions set of indices bounded by

f
(r,s)
0 0 ≤ r < s (Jr,s)2 T 2

r,s

f
(r,s)
1 0 ≤ r < s {r} ∪ (Jr,s)2 1

βr
T 2
r,s

f
(r,s)
`≥2 r ≥ 0 , s ≥ 1 ({min{r, s}} ∪ Jr,s)2 1

β2
min{r,s}

T 2
r,s

χ
(r)
0 r ≥ 1 {r} ∪ (Jr−1,r)

2 1
βr
T 2
r−1,r

χ
(r)
1 r ≥ 1 ({r} ∪ Jr−1,r)

2 1
β2
r
T 2
r−1,r

Table 4.2: The number of indices and the selection rules for the functions f
(r,s)
` .

With a little abuse of notation, in the table above we have introduced a sort of power of a set
so that, for instance, (Jr,s)2 = Jr,s ∪ Jr,s. The selection rules for the indices appearing at the
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4. KAM with knobs

denominators are really the keystone of the whole proof. The proof of these selection rules is just
an application of Lemma 4.4.4 and is reported in Section A.5.

It basically requires to unfold all the recursive inequalities (4.18)–(4.22).

Now, we can state a Lemma which provides a geometrical bounds for the accumulation of small
divisors.

Lemma 4.4.6 Let the sequence {αr}r≥1, introduced by (4.17), satisfy condition τ and the se-
quence {δr}r≥1 be defined as in (4.16). Then, the sequence {Tr,s}r≥0 , s≥0 defined by (4.24) is
bounded by

Tr,s ≤
1

αsδ2
s

Tr,s ≤
(
213eΓ

)s
for r ≥ 1 , s ≥ 1 .

The proof of this Lemma is deferred to the Appendix, Section A.5.

4.4.2 Recurrent estimates

In the previous subsection, we provided the tools needed to control the accumulation of the small
divisors. We now collect the estimates of all the different contributions and prove the convergence
of the normal form algorithm.

First, it is convenient to introduce the constant

M = max

{
1,

4eE

ρσ

}
, (4.25)

that allows to get rid of many contributions in an uniform way. Furthermore, in order to trans-
late the normalization scheme into recursive estimates, we need to control also the number of
sums involved in the recursive formulas (4.21) and (4.22). Hence, we introduce the sequences

{νr,s}r≥0 , s≥0, {ν(I)
r,s}r≥1 , s≥0:

ν0,s = 1 for s ≥ 0 ,

ν(I)
r,s =

bs/rc∑
j=0

νjr−1,rνr−1,s−jr for r ≥ 1 , s ≥ 0 ,

νr,s =

bs/rc∑
j=0

(ν(I)
r,r)

jν
(I)
r,s−jr for r ≥ 1 , s ≥ 0 .

(4.26)

Here too, we can provide a geometric bound for this sequences, by means of the following Lemma

Lemma 4.4.7 The sequence of positive integers {νr,s}r≥0 , s≥0 defined in (4.26) is bounded by the
exponential growth

νr,s ≤ νs,s ≤
26s

24
for r ≥ 0 , s ≥ 0 .

The proof is deferred to the Appendix, Section A.5, and is only a simplified version of Lemma
A.2.2.

In order to complete the proof, we need an estimate also for the transformed Hamiltonian and
the generating functions.

Lemma 4.4.8 Consider the Hamiltonian H(0) expanded as in (4.9) with

‖f (0,0)
` ‖1 ≤

E

2`
and ‖f (0,s)

` ‖1 ≤
ε0E

2`
µs for s > 0 .
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4.4 Analytic estimates

Assume that on H(0) we have performed r ≥ 1 normalization steps of the formal algorithm de-
scribed in Section 4.3. Then the following estimates hold true

1

δ2
r

‖χ(r)
0 ‖1−dr−1

≤ ε0Eµ
rM2r−2

T 2
r−1,r

βr
νr−1,r ,

1

δ2
r

‖χ(r)
1 ‖1−dr−1−δr ≤

ε0E

2
µrM2r−1

T 2
r−1,r

β2
r

ν(I)
r,r .

‖〈ω(r−1,r), p〉‖1−dr−1 ≤
ε0E

2
µrM2r−1

T 2
r−1,r

βr−1
νr−1,r .

(4.27)

Moreover, the terms appearing in the expansion of the transformed Hamiltonian H(r) in (4.10)
are bounded by

‖f (r,s)
` ‖1−dr ≤

ε0Eµ
sM2s−2+`

2`
T 2
r,s

β`r
νr,s for 0 ≤ ` ≤ 1 , s > r ,

‖f (r,s)
` ‖1−dr ≤

ε0Eµ
sM2s

2`
T 2
r,s

β2
min{r,s}

νr,s , for ` ≥ 2 , s > 1 ,

The proof of this Lemma is just a simplified version of Lemma 1.6.4: instead of the quantities Ξr
we deal with the constant M and the sequence Tr,s, the latter being bounded as in Table 4.2. In
Section A.5 we report the proof for the first normalization step and the sketch for the r-th step.

To summarize, we have bounded geometrically the accumulation of small divisors, the number
of sums involved in the recursive formulas and the generating functions. This allows to use
the general result on convergence of Lie series and to obtain an infinite sequence of canonical
transformations which produces an Hamiltonian in normal form of Kolmogorov.

We can now provide a more quantitative statement of Theorem 4.1.1.

Proposition 4.4.1 Consider the Hamiltonian H(0) expanded as in (4.9) with

‖f (0,0)
` ‖1 ≤

E

2`
and ‖f (0,s)

` ‖1 ≤
ε0Eµ

s

2`
for s > 0 .

Assume that the frequency vector ω satisfy the τ -condition (4.3). Then if

µ ≤ µ̄ =
1

26(213MeΓ)2
and ε < µ

(
1− e−

σ0
8

1 + e−
σ0
8

)n
E0

F0
,

where M , Γ, σ0, E0 and F0 are defined in (4.25), (4.3) and (4.8), respectively. Then there
exists an analytic near to the identity canonical transformation C(∞) : D1/2 → D3/4 such that the

transformed Hamiltonian H(∞) = H(0) ◦ C(∞) is in normal form, i.e.,

H(∞)(q, p) = 〈ω, p〉+
∑
s≥0

∑
`≥2

f
(∞,s)
` (q, p) .

The functions f
(∞,s)
` (q, p) are bounded by

‖f (∞,0)
` ‖1 ≤

E

2`
and ‖f (∞,s)

` ‖1 ≤
ε0Eµ̄

s

2`
for s > 0 .

and the detuning is bounded as |ω − ω(0)| < O(ε).

Proof. Having bounded geometrically the accumulation of small divisors, the number of sums
involved in the recursive formulas and hence the generating functions, it is now straightforward
to prove this Proposition. Thus we only sketch here the key points.
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4. KAM with knobs

We denote by (p(0), q(0)) the original coordinates and by Ĉ(r) the canonical transformation
which maps (p(r), q(r)) to (p(r−1), q(r−1)). The canonical transformation can be written as

p(r−1) = exp(L
χ

(r)
0

)p(I,r−1) = p(I,r−1) − ∂χ
(r)
0

∂q(I,r−1)
,

p(I,r−1) = exp(L
χ

(r)
1

)p(r) = p(r) −
∑
s≥1

1

s!
Ls−1

χ
(r)
1

∂χ
(r)
1

∂q(r)
,

q(r−1) = exp(L
χ

(r)
1

)q(r) = q(r) +
∑
s≥1

1

s!
Ls−1

χ
(r)
1

∂χ
(r)
1

∂p(r)
.

Hence, considering a domain D(3d−dr)(ρ,σ) and using Lemma 4.4.8, we get

∣∣∣p(r−1) − p(I,r−1)
∣∣∣ <

∥∥χ(r)
0

∥∥
1−dr−1

eδrσ
≤M2r

(
213eΓ

)2r
26rε0Eµ

r ,

∣∣∣p(I,r−1) − p(r)
∣∣∣ <

∥∥χ(r)
1

∥∥
1−dr−1−δr
eδrσ

∑
s≥1

1

e2

2e
∥∥χ(r)

1

∥∥
1−dr−1−δr

δ2
rρσ

s−1

≤

≤ δrρM2r
(
213eΓ

)2r
26r ε0E

2
µr
∑
s≥1

(
M2r

(
213eΓ

)2r
26r ε0E

2
µr
)s−1

,

∣∣∣q(r−1) − q(r)
∣∣∣ <

∥∥χ(r)
1

∥∥
1−dr−1−δr
δrρ

∑
s≥1

1

e2

2e
∥∥χ(r)

1

∥∥
1−dr−1−δr

δ2
rρσ

s−1

≤

≤ δrσM2r
(
213eΓ

)2r
26r ε0E

2
µr
∑
s≥1

(
M2r

(
213eΓ

)2r
26r ε0E

2
µr
)s−1

.

(4.28)

If ε0 < 1 and µ < µ with

µ =
1

26(213eΓM)2
,

then the series in the estimates (4.28) converges. So, we have an absolutely convergent series which
defines the canonical transformation which turns out to be analytic. Let me stress that ε0 < 1
implies that the smaller µ is, the smaller ε is. Thus, we have a threshold for the parameters and∣∣∣p(r−1) − p(r)

∣∣∣ < ε0δrρ ,
∣∣∣q(r−1) − q(r)

∣∣∣ < ε0δrσ .

A similar argument applies to the inverse transformation, thus we obtain

D(3d−dr)(ρ,σ) ⊂ Ĉ(r)(D(3d−dr−1−δr)(ρ,σ)) ⊂ D(3d−dr−1)(ρ,σ) .

Consider now the sequence of transformations C(r) = Ĉ(1) ◦ . . . ◦ Ĉ(r).
For (p(r−1), q(r−1)) ∈ D(3d−dr−1)(ρ,σ) the transformation is clearly analytic. Setting d = 1

4 and

using (4.16), one has
∑
j≥1 δj ≤

d
2 = 1

8 , and C(r) converges to an analytic canonical transformation

C(∞) which satisfies
D 1

4 (ρ,σ) ⊂ C(∞)
(
D 1

2 (ρ,σ)

)
⊂ D 3

4 (ρ,σ) .

Due to the condition µ < µ, it can be also proved that the sequence of functions H(r) defines an
analytic Hamiltonian H(∞) = H ◦ C(∞) in normal form of Kolmogorov, as in (4.5).

From the third of (4.27), we get also that |ω− ω(0)| = O(ε), so this concludes the proof of the
Proposition.

�
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4.5 Conclusions

4.5 Conclusions

In this Chapter we have presented a variation of the Kolmogorov’s normal form scheme, in order
to provide an algorithm which enables to completely control the frequencies, avoiding the so-called
translation step. Although in the case of full dimensional tori the Kolmogorov’s scheme allows to
get a complete handling of the frequencies, our approach can be useful to face the problem in the
generic case of lower dimensional tori, where the frequencies cannot be fixed.

Hence, in the light of the results just discussed, the natural future development will be the
construction of a normal form procedure for lower dimensional tori, with possible applications to
planetary systems. In particular, this extension will allow to select a specific frequency of a torus
and to start also from a resonant torus, showing its existence and effectively construct it.
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Appendix A

A.1 Newton-Kantorovich method

Proposition A.1.1 (Newton-Kantorovich method) Consider Υ ∈ C1 (U(x∗)× U(0), V ). As-
sume that there exist three constants c1,2,3 > 0 dependent, for ε small enough, on U(x∗) ⊂ V only,
and two parameters 0 ≤ 2α < β such that

‖Υ(x∗, ε)‖ ≤ c1|ε|β , (A.1)

‖[Υ′(x∗, ε)]−1‖L(V ) ≤ c2|ε|−α , (A.2)

‖Υ′(z, ε)−Υ′(x∗, ε)‖L(V ) ≤ c3 ‖z − x
∗‖ . (A.3)

Then there exist positive c0 and ε∗ such that, for |ε| < ε∗, there exists a unique x0(ε) ∈ U(x∗)
which fulfills

Υ(x0, ε) = 0 , ‖x0 − x∗‖ ≤ c0|ε|β−α .
Furthermore, Newton’s algorithm converges to x0.

We recall that ‖ · ‖L(V ) represents the usual norm for a linear operator from V toV .
Proof. The result is a direct consequence of the Contraction Principle applied to a suitable closed
ball centered in x∗. Indeed, by following a standard procedure (see, i.e., [53]), let us formulate the
original problem as a fixed point problem, namely Υ(x, ε) = 0 if and only if A(x, ε) = x , where

A(x, ε) = x− [Υ′(x∗, ε)]−1Υ(x, ε) .

We first of all show that A is a contraction of a sufficiently small ball centered in x∗. We first
rewrite our assumptions in a more general form

‖Υ(x∗, ε)‖ ≤ µ , ‖[Υ′(x∗, ε)]−1‖L(V ) ≤M ,

and we introduce the auxiliary quantities

η = Mµ = c1c2|ε|β−α , h = Mc3η = c1c
2
2c3|ε|β−2α .

Notice that the condition β > 2α is necessary in order to have

lim
ε→0

h = 0 .

The main ingredient is the continuity of Υ′, since Υ ∈ C1 locally around x∗ (independently from
ε). From finite increment formula we get, for x, y ∈ B(x∗, r) ⊂ U(x∗)

‖A(x, ε)−A(y, ε)‖ ≤

(
sup

z∈B(x∗,r)

‖A′(z, ε)‖L(V )

)
‖x− y‖ ;

thus, we aim at showing that, with a suitable choice of the radius r, we have

sup
z∈B(x∗,r)

‖A′(z, ε)‖L(V ) < 1 .
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Since
A′(z, ε) = I− [Υ′(x∗, ε)]

−1
Υ′(z, ε) = [Υ′(x∗, ε)]

−1
[Υ′(x∗, ε)−Υ′(z, ε)]

we get

‖A′(z, ε)‖L(V ) ≤
∥∥∥[Υ′(x∗, ε)]

−1
∥∥∥
L(V )

‖Υ′(x∗, ε)−Υ′(z, ε)‖L(V ) ≤

≤M ‖Υ′(x∗, ε)−Υ′(z, ε)‖L(V ) .

From the continuity of Υ′ it follows that, provided ‖z − x∗‖ is small enough, it is possible to make
Υ′(x∗, ε) − Υ′(z, ε) arbitrary small. The Lipschitz-continuity estimate1 in the hypotheses of the
Proposition allows to explicitly deal with this issue. Indeed, from

‖Υ′(x∗, ε)−Υ′(z, ε)‖L(V ) ≤ c3 ‖z − x
∗‖ ,

we get
‖A′(z, ε)‖L(V ) ≤Mc3 ‖z − x∗‖ ≤Mc3r =: q , ∀z ∈ B(x∗, r) ,

and also
sup

z∈B(x∗,r)

‖A′(z, ε)‖L(V ) ≤ q .

In order to show that Υ(B(x∗, r)) ⊂ B(x∗, r), namely that ‖z − x∗‖ ≤ r implies ‖A(z, ε)− x∗‖ ≤
r , we start splitting

‖A(z, ε)− x∗‖ ≤ ‖A(z, ε)−A(x∗, ε)‖+ ‖A(x∗, ε)− x∗‖ .

We will separately estimate the two r.h.t.. From the bound on A′(z, ε) we get

‖A(z, ε)−A(x∗, ε)‖ ≤ sup
z∈B(x∗,r)

‖A′(z, ε)‖L(V ) ‖z − x
∗‖ ≤ qr .

on the other hand, by exploiting the initial definition of A(x, ε), one has

‖A(x∗, ε)− x∗‖ =
∥∥x∗ − [Υ′(x∗, ε)]−1Υ(x∗, ε)− x∗

∥∥ =
∥∥[Υ′(x∗, ε)]−1Υ(x∗, ε)

∥∥ ≤
≤
∥∥∥[Υ′(x∗, ε)]

−1
∥∥∥
L(V )

‖Υ(x∗, ε)‖ ≤Mµ .

Hence, in order to have Υ(B(x∗, r)) ⊂ B(x∗, r), it must happen

Mµ+ qr ≤ r .

Thus, two independent conditions have to be satisfied:

Mc3r < 1 , η +Mc3r
2 ≤ r .

The second is equivalent to
Mc3r

2 − r + η ≤ 0 ,

which can be re-scaled to
r = ηρ , hρ2 − ρ+ 1 ≤ 0 .

The corresponding equation, under the condition h < 1
4 , has the two zeros

t± =
1

2h

(
1±
√

1− 4h
)
.

Moreover one has t− < 2 , since 1 − 4h <
√

1− 4h , and for h ∼ 0 we get t−(h) ∼ 1 . Collecting
the above information, the radius r has to fulfill

ηt− ≤ r ≤ t+η .
1Actually Holder-continuity would be sufficient, modifying the conditions on α and β.

114



A.2 Analytic estimates: lower dimensional tori

If we make the more restrictive choice

ηt− ≤ r ≤ 2η ,

then, from h < 1
4 , it follows that Υ is an 1

2 -contraction map

Mc3r < 2Mc3η = 2h <
1

2
.

In our case, h < 1
4 comes directly from being h(ε) infinitesimal w.r.t. ε; thus for ε small enough

the condition is satisfied. Moreover, from h(ε) ≈ 1, one deduces that the optimal choice for the
radius is

r(ε) = ηt− ≈ c1c2|ε|β−α .

�

A.2 Analytic estimates: lower dimensional tori

In this Section we report the analytic estimates for the generic r-th normalization step with three
stages, which are enough in order to obtain continuation of periodic orbits. This simplified version
of the normalization algorithm, with the third stage which only consists of an average of the linear

term in the actions f
(II;r−1,r)
2 (q̂, p̂), enables us to show all the key aspects of the estimates that

can be extended to the case of five stages with further calculations, and include obviously the
maximal dimension case.

A.2.1 Generic r-th normalization step with three stages

We here summarize the three stages of a generic r-th normalizing step needed in order to obtain
continuation of periodic orbits. The starting Hamiltonian has the form

H(r−1) = ωp1 +
∑
j∈J\I

iΩjξjηj

+
∑
s<r

f
(r−1,s)
0 +

∑
s<r

f
(r−1,s)
2

+ f
(r−1,r)
0 + f

(r−1,r)
1 + f

(r−1,r)
2

+
∑
s>r

f
(r−1,s)
0 +

∑
s>r

f
(r−1,s)
1 +

∑
s>r

f
(r−1,s)
2

+
∑
s≥0

∑
l>2

f
(r−1,s)
l .

(A.4)

where f
(r−1,s)
0 , f

(r−1,s)
2 for 1 ≤ s < r, are in normal form.

First stage of the r-th normalization step

We average the term f
(r−1,r)
0 with respect to the fast angle q1, determining the generating function

χ
(r)
0 (q̂) = X

(r)
0 (q̂) + 〈ζ(r), q̂〉 with ζ(r) ∈ Rn1 ,

by solving the homological equations

L
X

(r)
0
ωp1 + f

(r−1,r)
0 = 〈f (r−1,r)

0 〉q1 ,

L〈ζ(r),q̂〉f
(0,0)
4

∣∣∣
ξ=η=0

+
〈
f

(r−1,r)
2

∣∣∣
ξ=η=0
q=q∗

〉
q1

= 0 .
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By considering the Taylor-Fourier expansion

f
(r−1,r)
0 (q̂) =

∑
k

c
(r−1,r)
0,0,0,k exp(i〈k, q̂〉) ,

we obtain

X
(r)
0 (q̂) =

∑
k1 6=0

c
(r−1,r)
0,0,0,k

ik1ω
exp(i〈k, q̂〉) .

The vector ζ(r) is determined by solving the linear system∑
j

Cijζ
(r)
j =

∂

∂p̂i

〈
f

(r−1,r)
2

∣∣∣
ξ=η=0
q=q∗

〉
q1
. (A.5)

The transformed Hamiltonian is computed as

H(I;r−1) = exp
(
L
χ

(r)
0

)
H(r−1) =

= ωp1 +
∑
j∈J\I

iΩjξjηj

+
∑
s<r

f
(I;r−1,s)
0 +

∑
s<r

f
(I;r−1,s)
2 +

∑
s<r

f
(I;r−1,s)
3 +

∑
s<r

f
(I;r−1,s)
4

+ f
(I;r−1,r)
0 + f

(I;r−1,r)
1 + f

(I;r−1,r)
2 + f

(I;r−1,r)
3 + f

(I;r−1,r)
4

+
∑
s>r

f
(I;r−1,s)
0 +

∑
s>r

f
(I;r−1,s)
1 +

∑
s>r

f
(I;r−1,s)
2 +

∑
s>r

f
(I;r−1,s)
3 +

∑
s>r

f
(I;r−1,s)
4

+
∑
s≥0

∑
l>2

f
(I;r−1,s)
l .

The functions f
(I;r−1,s)
` are recursively defined as

f
(I;r−1,r)
0 = 〈f (r−1,r)

0 〉q1 ,

f
(I;r−1,s)
` =

bs/rc∑
j=0

1

j!
Lj
χ

(r)
0

f
(r−1,s−jr)
`+2j , for ` = 0, s 6= r ,

or ` 6= 0 s ≥ 0 ,

(A.6)

with f
(I;r−1,s)
` ∈ P`.

Second stage of the r-th normalization step

We remove the term f
(I;r−1,r)
1 by solving the homological equation

L
χ

(r)
1

(
ωp1 +

∑
j∈J\I

iΩjξjηj

)
+ f

(I;r−1,r)
1 = 0 . (A.7)

Considering again the Taylor-Fourier expansion

f
(I;r−1,r)
1 (q̂, ξ, η) =

∑
|m1|+|m2|=1

k

c
(I;r−1,r)
0,m1,m2,k

exp(i〈k, q̂〉)ξm1ηm2 ,

we get

χ
(r)
1 (q̂, ξ, η) =

∑
|m1|+|m2|=1

k

c
(I;r−1,r)
0,m1,m2,k

exp(i〈k, q̂〉) ξm1ηm2

i
[
k1ω + 〈m1 −m2, Ω〉

] .
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with Ω ∈ Rn2 .

The transformed Hamiltonian is calculated as

H(II;r−1) = exp
(
L
χ

(r)
1

)
H(I;r−1) =

= ωp1 +
∑
j∈J\I

iΩjξjηj

+
∑
s<r

f
(II;r−1,s)
0 +

∑
s<r

f
(II;r−1,s)
2 +

∑
s<r

f
(II;r−1,s)
3 +

∑
s<r

f
(II;r−1,s)
4

+ f
(II;r−1,r)
0 + f

(II;r−1,r)
2 + f

(II;r−1,r)
3 + f

(II;r−1,r)
4

+
∑
s>r

f
(II;r−1,s)
0 +

∑
s>r

f
(II;r−1,s)
1 +

∑
s>r

f
(II;r−1,s)
2 +

∑
s>r

f
(II;r−1,s)
3 +

∑
s>r

f
(II;r−1,s)
4

+
∑
s≥0

∑
l>2

f
(II;r−1,s)
l ,

with

f
(II;r−1,r)
1 = 0 ,

f
(II;r−1,2r)
0 = f

(I;r−1,2r)
0 + L

χ
(r)
1
f

(I;r−1,r)
1 +

1

2
L
χ

(r)
1

(
L
χ

(r)
1
f

(I;r−1,0)
2

)
=

= f
(I;r−1,2r)
0 +

1

2
L
χ

(r)
1
f

(I;r−1,r)
1 ,

f
(II;r−1,s)
` =

bs/rc∑
j=0

1

j!
Lj
χ

(r)
1

f
(I;r−1,s−jr)
`+j , for ` = 0, s 6= 2r ,

or ` = 1 s 6= r ,

or ` ≥ 2 s ≥ 0 ,

(A.8)

where we have exploited (A.7).

Third stage of the r-th normalization step

We average the term f
(II;r−1,r)
2

∣∣∣
ξ=η=0

with respect to the fast angle q1, by solving the homological

equation

L
χ

(r)
2

(
ωp1 +

∑
j∈J\I

iΩjξjηj

)
+ f

(II;r−1,r)
2

∣∣∣
ξ=η=0

= 〈f (II;r−1,r)
2

∣∣∣
ξ=η=0

〉q1 . (A.9)

Therefore, considering the Taylor-Fourier expansion

f
(II;r−1,r)
2 (p̂, q̂, 0, 0) =

∑
|l|=1
k

c
(II;r−1,r)
l,0,0,k p̂l exp(i〈k, q̂〉) ,

we obtain

χ
(r)
2 (p̂, q̂) =

∑
|l|=1
k1 6=0

c
(II;r−1,r)
l,0,0,k p̂l exp(i〈k, q̂〉)

ik1ω
.

The transformed Hamiltonian is computed as

H(r) = exp
(
L
χ

(r)
2

)
H(II;r−1)
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and is in the form (A.4), replacing the upper index r − 1 by r, with f
(r,s)
` ∈ P` given by

f
(r,r)
2 = 〈f (II;r−1,r)

2 〉q1 ,

f
(r,ri)
2 =

1

(i− 1)!
Li−1

χ
(r)
2

(
f

(II;r−1,r)
2 +

1

i
L
χ

(r)
2
f

(II;r−1,0)
2

)
+

i−2∑
j=0

1

j!
Lj
χ

(r)
2

f
(II;r−1,ri−rj)
2 =

=
1

(i− 1)!
Li−1

χ
(r)
2

(
1

i
〈f (II;r−1,r)

2 〉q1 +
i− 1

i
f

(II;r−1,r)
2

)
+

i−2∑
j=0

1

j!
Lj
χ

(r)
2

f
(II;r−1,ri−rj)
2 ,

f
(r,s)
` =

bs/rc∑
j=0

1

j!
Lj
χ

(r)
2

f
(II;r−1,s−jr)
` , for ` = 2, s 6= ri ,

or ` 6= 2, s ≥ 0 ,

(A.10)

where we have used the homological equation (A.9).

A.2.2 Recursive scheme of estimates

In order to estimate the norms of the functions involved in the normalization algorithm, we need
to introduce a sequence of restrictions of the domain so as to apply Cauchy’s estimate. Having
fixed d ∈ R, 0 < d ≤ 1/4, we consider a sequence δr≥1 of positive real numbers satisfying

δr+1 ≤ δr ,
∑
r≥1

δr ≤
d

3
, (A.11)

thus the sequence δr has to satisfy the inequality δr < C/r for some r > r and C ∈ R. Moreover,
we introduce a further sequence dr≥0 of real numbers recursively defined as

d0 = 0 , dr = dr−1 + 3δr .

We also need to introduce the quantities Ξr, parametrized by the index r, as

Ξr = max

(
eE

αδ2
rρσ

+
eE

4mδrρ2
, 2 +

eE

αδ2
rρσ

,
E

αδ2
r

(
2e

ρσ
+
e2

R2

))
, (A.12)

with
α = min

k1,j
{|k1ω ± Ωj |, |ω|} > 0 ,

in view of the first Melnikov condition.
The number of terms in formulæ (A.6), (A.8), and (A.10) is controlled by the three sequences

{νr,s}r≥0 , s≥0, {ν(I)
r,s}r≥1 , s≥0 and {ν(II)

r,s }r≥1 , s≥0:

ν0,s = 1 for s ≥ 0 ,

ν(I)
r,s =

bs/rc∑
j=0

νjr−1,rνr−1,s−jr for r ≥ 1 , s ≥ 0 ,

ν(II)
r,s =

bs/rc∑
j=0

(ν(I)
r,r)

jν
(I)
r,s−jr for r ≥ 1 , s ≥ 0 ,

νr,s =

bs/rc∑
j=0

(2ν(II)
r,r )jν

(II)
r,s−jr for r ≥ 1 , s ≥ 0 .

(A.13)
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Let us stress that when s < r, the above simplify as

ν(I)
r,s = νr−1,s , ν(II)

r,s = ν(I)
r,s , νr,s = ν(II)

r,s ,

namely

νr,s = νr−1,s = . . . = νs,s .

Let us introduce the quantities b(I; r, s, `), b(II; r, s, `), b(r, s, `) in order to control the exponents
of Ξr in the normalization procedure:

b(r, s, `) =



0 if r = 0

0 if r > 0, ` 6= 1, s = 0

0 if r > 0, ` = 1, s ≤ r
5s− 2− 2

⌊
s−1
r

⌋
− w` if r > 0, ` 6= 1, s > 0

or if r > 0, ` = 1, s > r

b(I; r, s, `) =



0 if r = 0, ` = 0, s ≤ 1

s if r = 0, ` = 0, s 6= 1

0 if r = 0, ` > 0, s = 0

s if r = 0, ` > 0, s > 0

0 if r > 0, ` = 0, s = 0

5s− 2− 2
⌊
s−1
r+1

⌋
− w` if r > 0, ` = 0, s > 0

0 if r > 0, ` = 1, s < r

5s− 2− 2
⌊
s−2
r

⌋
− w` if r > 0, ` = 1, s ≥ r

0 if r > 0, ` = 2, s = 0

2 if r > 0, ` = 2, s = 1

5s− 2−
⌊
s−1
r

⌋
−
⌊
s−2
r

⌋
− w` if r > 0, ` = 2, s > 1

0 if r > 0, ` > 2, s = 0

5s− 2− 2
⌊
s−1
r

⌋
− w` if r > 0, ` > 2, s > 0
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b(II; r, s, `) =



0 if r = 0, ` = 0, s ≤ 1

3 if r = 0, ` = 0, s = 2

2s if r = 0, ` = 0, s > 2

0 if r = 0, ` = 1, s ≤ 1

2s if r = 0, ` = 1, s > 1

2s if r = 0, ` ≥ 2

0 if r = 1, ` = 0, s = 0

5s− 2− 2
⌊
s−1
r+1

⌋
− w` if r = 1, ` = 0, s > 0

0 if r = 1, ` = 1, s ≤ 2

5s− 2− 2
⌊
s−1
r+1

⌋
− w` if r = 1, ` = 1, s > 2

0 if r = 1, ` = 2, s < 1

5s− 2−
⌊
s−1
r

⌋
−
⌊
s−2
r

⌋
+
⌊

s
r+1

⌋
− w` if r = 1, ` = 2, s ≥ 1

0 if r = 1, ` > 2, s = 0

5s− 2− 2
⌊
s−1
r

⌋
+
⌊

s
r+1

⌋
− w` if r = 1, ` > 2, s > 0

0 if r > 1, ` = 0, s = 0

5s− 2− 2
⌊
s−1
r+1

⌋
− w` if r > 1, ` = 0, s > 0

0 if r > 1, ` = 1, s ≤ r + 1

5s− 2− 2
⌊
s−1
r+1

⌋
− w` if r > 1, ` = 1, s > r + 1

0 if r > 1, ` = 2, s = 0

5s− 2− 2
⌊
s−1
r+1

⌋
− w` if r > 1, ` = 2, s > 0

0 if r > 1, ` > 2, s = 0

5s− 2− w` if r > 1, ` > 2, s = 1

5s− 2−
⌊
s−1
r

⌋
− b s−2

r

⌋
− w` if r > 1, ` > 2, s > 1

with w` = max(0, 3− `).
We are now ready to state the main Lemma collecting the estimates for the generic r-th

normalization step of the normal form algorithm.

Lemma A.2.1 Consider a Hamiltonian H(r−1) expanded as in (A.4). Let χ
(r)
0 = X

(r)
0 +〈ζ(r), ϕ〉,

χ
(r)
1 and χ

(r)
2 be the generating functions used to put the Hamiltonian in normal form at order r,

then one has

‖X(r)
0 ‖1−dr−1

≤ 1

α
νr−1,rΞ

5r−7
r Eεr ,

|ζ(r)| ≤ 1

4mρ
νr−1,rΞ

5r−5
r Eεr ,

‖χ(r)
1 ‖1−dr−1−δr ≤

1

α
ν(I)
r,rΞ

5r−4
r

E

2
εr

‖χ(r)
2 ‖1−dr−1−2δr ≤

1

α
2ν(II)
r,r Ξ5r−3

r

E

4
εr .

The terms appearing in the expansion of H(I;r−1) in (A.6) are bounded as

‖f (I;r−1,s)
` ‖1−dr−1−δr ≤ ν(I)

r,sΞ
b(I;r−1,s,`)
r

E

2`
εs .

The terms appearing in the expansion of H(II;r−1) in (A.8) are bounded as

‖f (II;r−1,s)
` ‖1−dr−1−2δr ≤ ν(II)

r,s Ξb(II;r−1,s,`)
r

E

2`
εs .

The terms appearing in the expansion of H(r) in (A.10) are bounded as

‖f (r,s)
` ‖1−dr ≤ νr,sΞb(r,s,`)r

E

2`
εs .
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A.2.3 Estimates for the νr,s sequence

Lemma A.2.2 The sequence of positive integers {νr,s}r≥0 , s≥0 defined in (A.13) is bounded by
the exponential growth

νr,s ≤ νs,s ≤
210s

26
for r ≥ 0 , s ≥ 0 .

Proof. First of all, we rewrite the definition of νr,s, by eliminating the two sequence {ν(I)
r,s}r≥1 , s≥0

and {ν(II)
r,s }r≥1 , s≥0. In particular, let us remove the symbol ν(II), by writing

νr,s =

bs/rc∑
j=0

2j
(
ν(I)
r,r + ν(I)

r,rν
(I)
r,0

)j bs/rc−j∑
i=0

(ν(I)
r,r)

iν
(I)
r,s−(i+j)r =

bs/rc∑
j=0

(4ν(I)
r,r)

j

bs/rc∑
i=j

(ν(I)
r,r)

i−jν
(I)
r,s−ir

=

bs/rc∑
i=0

(ν(I)
r,r)

iν
(I)
r,s−ir

i∑
j=0

4j =
1

3

bs/rc∑
i=0

(
4i+1 − 1

)
(ν(I)
r,r)

iν
(I)
r,s−ir ,

where in the second equality we have exploited ν
(I)
r,0 = 1. Similarly, we eliminate ν(I), by writing

1

3

bs/rc∑
i=0

(
4i+1 − 1

)
(ν(I)
r,r)

iν
(I)
r,s−ir =

=
1

3

bs/rc∑
i=0

(
4i+1 − 1

)
(νr−1,r + νr−1,rνr−1,0)

i
bs/rc−i∑
j=0

νjr−1,rνr−1,s−(i+j)r ,

from which, using νr−1,0 = 0, we get

νr,s =
1

3

bs/rc∑
i=0

2i
(
4i+1 − 1

)
νir−1,r

bs/rc∑
j=i

νj−ir−1,rνr−1,s−jr

=
1

3

bs/rc∑
j=0

νjr−1,rνr−1,s−jr

j∑
i=0

(
23i+2 − 2i

)
=

bs/rc∑
j=0

θjν
j
r−1,rνr−1,s−jr ,

with

θj =
1

3

j∑
i=0

(
23i+2 − 2i

)
=

1

21

(
23j+5 − 7 · 2j+1 + 3

)
.

From the definition above, we get

θ0 = 1 , θ1 = 11 ,

and we can derive
θj+1 ≤ 11θj for j ≥ 0. (A.14)

Thus we can rewrite the sequence as

ν0,s = 1 for s ≥ 0 , νr,s =

bs/rc∑
j=0

θjν
j
r−1,rνr−1,s−jr for r ≥ 1 , s ≥ 0 .

As a result, we remark that

ν0,s ≤ ν1,s ≤ . . . ≤ νs,s = νs+1,s = . . . (A.15)

and, observing that νr,r = θ0νr−1,r + θ1νr−1,r , we get

νr,r = 12νr−1,r for r ≥ 1 . (A.16)
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From the definition of {νr,s}r≥0 , s≥0, we can obtain the following: for r ≥ 2 and s > 2r we have

νr,s = νr−1,s + νr−1,r

bs/rc−1∑
j=0

θj+1ν
j
r−1,rνr−1,s−r−jr

≤ νr−1,s + 11νr−1,r

bs/rc−1∑
j=0

θjν
j
r−1,rνr−1,s−r−jr

≤ νr−1,s + 11νr−1,rνr,s−r ≤ νr−1,s + νr,rνs−r,s−r ,

where we have used (A.14) and (A.16); for r = 1 we have

ν1,s = ν0,s + ν0,1

s−1∑
j=0

θj+1ν
j
0,1ν0,s−1−j ≤

≤ (1 + θ1)ν0,s−1 + 11

s−1∑
j=1

θjν
j
0,1ν0,s−1−j ≤ 12ν1,s−1 ≤ 12νs−2,s−1 = νs−1,s−1 ,

where (A.14), (A.15), (A.16) have been used, together with θ1 = 11 and ν0,s = 1 for s ≥ 0. Due
to the above properties, we can estimate {νr,s}r≥0 , s≥0 by means of its diagonal elements νr,r.
Indeed, ν1,1 = 12 and for r ≥ 2 one has

νr,r = 12νr−1,r ≤ 12νr−2,r + 12νr−1,r−1ν1,1 ≤ . . .

≤ 12ν1,r + 12 (ν2,2νr−2,r−2 + . . .+ νr−1,r−1ν1,1) ≤ 12

r−1∑
j=1

νj,jνr−j,r−j .

From this upper bound, one can easily verify that

νr,r ≤ 28r−4λr for r ≥ 1,

with {λr}r≥1 being the Catalan sequence, which satisfies λr ≤ 4r−1. Therefore, we can conclude
that

νr,s ≤ νs,s ≤
210s

26
for r ≥ 0 , s ≥ 0 .

�

A.2.4 Estimates for multiple Poisson brackets

We report some Cauchy’s estimates on the derivatives in the restricted domains which will be
useful in the estimates for the generating functions.

Lemma A.2.3 Let d ∈ R such that 0 < d < 1 and g ∈ P` be an analytic function with bounded
norm ‖g‖1. Then one has∥∥∥∥ ∂g∂p̂j

∥∥∥∥
1−d
≤
‖g‖1
dρ

,

∥∥∥∥ ∂g∂q̂j
∥∥∥∥

1−d
≤
‖g‖1
edσ

,

∥∥∥∥ ∂g∂ξj
∥∥∥∥

1−d
≤
‖g‖1
dR

,

∥∥∥∥ ∂g∂ηj
∥∥∥∥

1−d
≤
‖g‖1
dR

,

Proof. Given g as in (1.3), one has∥∥∥∥ ∂g∂p̂j
∥∥∥∥

1−d
≤
∑
i∈Nn
|i|=l

∑
(m1,m2)∈N2n2

|m1|+|m2|=m

∑
k∈Zn

ij
ρ
|gi,m1,m2,k|(1− d)l−1ρle|k|(1−d)σRm(1− d)m

≤ 1

dρ

∑
i∈Nn
|i|=l

∑
(m1,m2)∈N2n2

|m1|+|m2|=m

∑
k∈Zn

|gi,m1,m2,k|ρle|k|σRm =
‖g‖1
dρ

,
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where we have used the elementary inequality m(λ − x)m−1 ≤ λm/x, for 0 < x < λ and m ≥ 1.
Similarly, we can deduce the estimates for the partial derivatives with respect to ξj and ηj .

Besides,∥∥∥∥ ∂g∂q̂j
∥∥∥∥

1−d
≤
∑
i∈Nn
|i|=l

∑
(m1,m2)∈N2n2

|m1|+|m2|=m

∑
k∈Zn

|kj | |gi,m1,m2,k|(1− d)l+mρlRme|k|(1−d)σ

≤ 1

edσ

∑
i∈Nn
|i|=l

∑
(m1,m2)∈N2n2

|m1|+|m2|=m

∑
k∈Zn

|gi,m1,m2,k|ρlRme|k|σ =
‖g‖1
edσ

,

where we have used the elementary inequality xαe−δx ≤ (α/(eδ))
α

, for positive α, x and δ.
�

The previous Lemma enables us to estimate gradients of functions and, consequently, the
Hamiltonian vector fields. Therefore, we can state the following Corollary

Corollary A.2.1 Let d ∈ R such that 0 < d < 1 and g ∈ P` be an analytic function with bounded
norm ‖g‖1. Then one gets

‖∇p̂ g‖1−d ≤ n1
‖g‖1
dρ

, ‖∇q̂ g‖1−d ≤ n1
‖g‖1
edσ

,

‖∇ξ g‖1−d ≤ n2
‖g‖1
dR

, ‖∇η g‖1−d ≤ n2
‖g‖1
dR

.

Proof. The proof simply follows from the estimates in Lemma A.2.3, applied on each component
of the gradient.

�

Lemma A.2.4 Let d, d′ ∈ R such that d > 0, d′ ≥ 0 and d+ d′ < 1. Then one has∥∥∥∥∥∂χ(r)
0

∂q̂j

∥∥∥∥∥
1−d

≤
∥∥X(r)

0

∥∥
1

edσ
+ |ζ(r)| , (A.17)

∥∥∥∥∥∂χ(r)
1

∂q̂j

∥∥∥∥∥
1−d

≤
∥∥χ(r)

1

∥∥
1

edσ
, (A.18)

∥∥∥∥∥∂χ(r)
1

∂ξj

∥∥∥∥∥
1−d

≤
∥∥χ(r)

1

∥∥
1

dR
,

∥∥∥∥∥∂χ(r)
1

∂ηj

∥∥∥∥∥
1−d

≤
∥∥χ(r)

1

∥∥
1

dR
, (A.19)

∥∥∥∥∥∂χ(r)
2

∂q̂j

∥∥∥∥∥
1−d

≤
∥∥χ(r)

2

∥∥
1

edσ
, (A.20)

∥∥∥∥∥∂χ(r)
2

∂p̂j

∥∥∥∥∥
1−d

≤
∥∥χ(r)

2

∥∥
1

dρ
; (A.21)

moreover, for j ≥ 1,∥∥∥∥Ljχ(r)
0

f

∥∥∥∥
1−d−d′

≤ j!

e

(
e‖X(r)

0 ‖1−d′
d2ρσ

+
e|ζ(r)|
dρ

)j
‖f‖1−d′ , (A.22)

∥∥∥∥Ljχ(r)
1

f

∥∥∥∥
1−d−d′

≤ j!

e2

(
‖χ(r)

1 ‖1−d′
d2

(
e

ρσ
+
e2

R2

))j
‖f‖1−d′ , (A.23)

∥∥∥∥Ljχ(r)
2

f

∥∥∥∥
1−d−d′

≤ j!

e2

(
2e‖χ(r)

2 ‖1−d′
d2ρσ

)j
‖f‖1−d′ , (A.24)
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Proof. The proofs of (A.17)–(A.21) are just minor modifications of Lemma A.2.3, thus are left
to the reader.

Coming to (A.22), let δ = d/j with j ≥ 1. Proceeding iteratively we get∥∥∥∥Ljχ(r)
0

f

∥∥∥∥
1−d−d′

≤

(
‖X(r)

0 ‖1−d′
jδ2eρσ

+
|ζ(r)|
δρ

)∥∥∥∥Lj−1

χ
(r)
0

f

∥∥∥∥
1−d′−(j−1)δ

≤ . . .

≤ j!

e

(
e‖X(r)

0 ‖1−d′
d2ρσ

+
e|ζ(r)|
dρ

)j
‖f‖1−d′ ,

where we have used the trivial inequality jj ≤ j! ej−1, holding true for j ≥ 1 . Finally, the proofs
of (A.23) and (A.24) are the same, mutatis mutandis.

�

A.2.5 Estimates for the generating functions

Lemma A.2.5 Let d ∈ R such that 0 < d < 1. The generating function X
(r)
0 and the vector ζ(r)

are bounded by

‖X(r)
0 ‖1−d ≤

‖f (r−1,r)
0 ‖1−d

α
, |ζ(r)| ≤ ‖f

(r−1,r)
2 ‖1−d
mρ

. (A.25)

The generating functions χ
(r)
1 and χ

(r)
2 are instead bounded by

‖χ(r)
1 ‖1−d ≤

‖f (I,r−1,r)
1 ‖1−d

α
, (A.26)

‖χ(r)
2 ‖1−d ≤

1

α

(
2‖f (r−1,r)

2 ‖1−d +
1

δ2
rρσ

‖f (r−1,r)
0 ‖1
α

‖f (0,0)
4 ‖1+

+
1

eδ2
r

(
1

ρσ
+

e

R2

)
‖f (I;r−1,r)

1 ‖1−d
α

‖f (0,0)
3 ‖1

)
,

(A.27)

Proof. The estimates for X
(r)
0 and χ

(r)
1 are trivial. The estimate for χ

(r)
2 , that is controlled by

f
(I;r−1,r)
2 , is a little bit tricky. Indeed, one has to explicitly exploit the fact that

f
(II;r−1,r)
2 = f

(I;r−1,r)
2 + L

χ
(r)
1
f

(0,0)
3 = f

(r−1,r)
2 −

〈
f

(r−1,r)
2

∣∣∣
ξ=η=0
q=q∗

〉
q1

+ L
X

(r)
0
f

(0,0)
4 + L

χ
(r)
1
f

(0,0)
3 ,

together with the trivial estimate

‖f − 〈f
∣∣
ξ=η=0
q=q∗

〉q1‖1−d ≤ 2‖f‖1−d .

Concerning the second of (A.25), as C satisfies (2.3), there exists a solution ζ(r) of (A.5) which
satisfies ∥∥∥∇p̂〈f (r−1,r)

2

∣∣
ξ=η=0
q=q∗

〉
q1

∥∥∥
1−dr−1

=
∣∣∣∑
j

Cijζ
(r)
j

∣∣∣ ≥ m|ζ(r)| .

Moreover, by the definition of the norm one has

∥∥∥∇p̂〈f (r−1,r)
2

∣∣
ξ=η=0
q=q∗

〉
q1

∥∥∥
1−dr−1

=

∥∥∥〈f (r−1,r)
2

∣∣
ξ=η=0
q=q∗

〉
q1

∥∥∥
1−dr−1

ρ
≤

∥∥∥f (r−1,r)
2

∥∥∥
1−dr−1

ρ
.

Combining the latter inequalities one gets (A.25).
�
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A.2.6 Estimates for the first step

The following Lemma collects the estimates concerning the first step of the normal form algorithm
previously described.

Lemma A.2.6 Consider a Hamiltonian H(0) expanded as in (2.2). Let χ
(1)
0 , χ

(1)
1 and χ

(1)
2 be the

generating functions used to put the Hamiltonian in normal form at order one, then one has

‖X(1)
0 ‖1 ≤

1

α
ν0,1Eε ,

|ζ(1)| ≤ 1

4mρ
ν0,1Eε ,

‖χ(1)
1 ‖1−δ1 ≤

1

α
ν

(I)
1,1Ξ1

E

2
ε ,

‖χ(1)
2 ‖1−2δ1 ≤

1

α
2ν

(II)
1,1 Ξ2

1

E

4
ε .

The terms appearing in the expansion of H(I;0), i.e. in (A.6) with r = 1, are bounded as

‖f (I;0,1)
0 ‖1−δ1 ≤ Eε ,

‖f (I;0,s)
` ‖1−δ1 ≤ ν

(I)
1,sΞ

s
1

E

2`
εs .

The terms appearing in the expansion of H(II;0), i.e. in (A.8) with r = 1, are bounded as

‖f (II;0,2)
0 ‖1−2δ1 ≤ ν

(II)
1,2 Ξ3

1Eε
2 ,

‖f (II;0,s)
` ‖1−2δ1 ≤ ν

(II)
1,s Ξ2s

1

E

2`
εs .

The terms appearing in the expansion of H(1), i.e. in (A.10) with r = 1, are bounded as

‖f (1,s)
0 ‖1−d1

≤ ν1,sΞ
3s−3
1 Eεs ,

‖f (1,s)
1 ‖1−d1

≤ ν1,sΞ
3s−2
1

E

2
εs ,

‖f (1,s)
2 ‖1−d1 ≤ ν1,sΞ

3s−1
1

E

22
εs ,

‖f (1,s)
` ‖1−d1

≤ ν1,sΞ
3s
1

E

2`
εs .

Proof. Using Lemma A.2.5, we immediately get the bounds

‖X(1)
0 ‖1 ≤

1

α
‖f (0,1)

0 ‖1 ≤
1

α
Eε , |ζ(1)| ≤ 1

mρ
‖f (0,1)

2 ‖1 ≤
Eε

4mρ
,

thus, from (A.17) with r = 1 we get∥∥∥∥∥∂χ(1)
0

∂q̂j

∥∥∥∥∥
1−δ1

≤ Eε

αeδ1σ
+

Eε

4mρ
≤
(

1

αeδ1σ
+

1

4mρ

)
Eε .

The terms f
(I;0,s)
` appearing in the expansion of the Hamiltonian H(I;0) are bounded as follows.

For ` = 0 and s = 1 one has

‖f (I;0,1)
0 ‖1−δ1 ≤ ‖f

(0,1)
0 ‖1−δ1 ≤ Eε , (A.28)
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while for the remaining terms one has

‖f (I;0,s)
` ‖1−δ1 ≤

s∑
j=0

1

j!
‖Lj

χ
(1)
0

f
(0,s−j)
`+2j ‖1−δ1

≤
s∑
j=0

1

e

(
e‖X(1)

0 ‖1
δ2
1ρσ

+
e|ζ(1)|
δ1ρ

)j
‖f (0,s−j)
`+2j ‖1

≤
s∑
j=0

1

e

(
e

αδ2
1ρσ

+
e

4mδ1ρ2

)j
Ejεj

E

2`+2j
εs−j

≤ Eεs

2`

s∑
j=0

1

e

(
eE

4αδ2
1ρσ

+
eE

16mδ1ρ2

)j
< (s+ 1)Ξs1

E

2`
εs = ν

(I)
1,sΞ

s
1

E

2`
εs,

where we used the definition of the constant Ξ1 in (A.12) and Lemma A.2.4.

As regards the second stage of the normalization step, the generating function χ
(1)
1 is bounded,

as in (A.26), by

‖χ(1)
1 ‖1−δ1 ≤

1

α
‖f (I;0,1)

1 ‖1−δ1 ≤
1

α
ν

(I)
1,1Ξ1

E

2
ε .

For the term f
(II;0,2)
0 one has

‖f (II;0,2)
0 ‖1−2δ1 ≤ ‖f

(I;0,2)
0 ‖1−δ1 +

1

2
‖L

χ
(1)
1
f

(I;0,1)
1 ‖1−2δ1

≤ ν(I)
1,2Ξ2

1Eε
2 +

1

2

‖χ(1)
1 ‖1−δ1
δ2
1R

2
‖f (I;0,1)

1 ‖1−δ1

≤ ν(I)
1,2Ξ2

1Eε
2 +

1

2

ν
(I)
1,1Ξ1Eε

2αδ2
1R

2
ν

(I)
1,1Ξ1

E

2
ε

≤ ν(II)
1,2 Ξ3

1Eε
2 ,

while the terms f
(II;0,s)
` are bounded by

‖f (II;0,s)
` ‖1−2δ1 ≤

s∑
j=0

1

j!
‖Lj

χ
(1)
1

f
(I;0,s−j)
`+j ‖1−2δ1

≤
s∑
j=0

1

e2

(
‖χ(1)

1 ‖1−δ1
δ2
1

(
e

ρσ
+
e2

R2

))j
‖f (I;0,s−j)
`+j ‖1−δ1

≤
s∑
j=0

1

e2

(
ν

(I)
1,1Ξ1Eε

2αδ2
1

(
e

ρσ
+
e2

R2

))j
ν

(I)
1,s−jΞ

s−j
1

E

2`+j
εs−j

≤ ν(II)
1,s Ξ2s

1

E

2`
εs .

Coming to the third stage of the normalization step, the generating function χ
(1)
2 is bounded,
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as in (A.27), by

‖χ(1)
2 ‖1−2δ1 ≤

1

α

(
2‖f (0,1)

2 ‖1 +
1

δ2
1ρσ

‖f (0,1)
0 ‖1
α

‖f (0,0)
4 ‖1 +

1

eδ2
1

(
1

ρσ
+

e

R2

)
‖f (I;0,1)

1 ‖1−δ1
α

‖f (0,0)
3 ‖1

)
≤ 1

α

(
2E

4
ε+

1

δ2
1ρσ

Eε

α

E

24
+

1

eδ2
1

(
1

ρσ
+

e

R2

)
ν

(I)
1,1Ξ1

E

2
ε

1

α

E

8

)
≤ 1

α

(
2 +

E

4αδ2
1ρσ

+
1

eδ2
1

(
1

ρσ
+

e

R2

)
ν

(I)
1,1Ξ1

E

4

1

α

)
E

4
ε

≤ 1

α

(
Ξ1 + ν

(I)
1,1Ξ2

1

) E
4
ε

≤ 1

α
2ν

(II)
1,1 Ξ2

1

E

4
ε .

The terms f
(1,s)
` appearing in the expansion of the Hamiltonian H(1) are bounded as follows.

The term f
(1,1)
0 is unchanged, while for ` = 0 and s = 2 one has

‖f (1,2)
0 ‖1−d1 ≤ ‖f

(II;0,2)
0 ‖1−2δ1 +

1

e

2

δ2
1ρσ
‖χ(1)

2 ‖1−2δ1‖f
(II;0,1)
0 ‖1−2δ1

≤ ν(II)
1,2 Ξ3

1Eε
2 +

1

e

2

δ2
1ρσ

1

α
2ν

(II)
1,1 Ξ2

1

E

4
εEε

≤ ν1,2Ξ3
1Eε

2 .

For ` = 0 and s 6= 1, 2, using (A.28) for the estimate of the last term in the sum, one has

‖f (1,s)
0 ‖1−d1

≤
s−3∑
j=0

1

e2

(
2e

δ2
1ρσ

)j
‖χ(1)

2 ‖
j
1−2δ1

‖f (II;0,s−j)
0 ‖1−2δ1

+
1

e2

(
2e

δ2
1ρσ

)s−2

‖χ(1)
2 ‖

s−2
1−2δ1

‖f (II;0,2)
0 ‖1−2δ1

+
1

e2

(
2e

δ2
1ρσ

)s−1

‖χ(1)
2 ‖

s−1
1−2δ1

‖f (II;0,1)
0 ‖1−2δ1

≤
s−3∑
j=0

1

e2

(
2e

δ2
1ρσ

)j
1

αj
(2ν

(II)
1,1 )jΞ2j

1

Ej

4j
εjν

(II)
1,s−jΞ

2(s−j)
1 Eεs−j

+
1

e2

(
2e

δ2
1ρσ

)s−2
1

αs−2
(2ν

(II)
1,1 )s−2Ξ2s−4

1

Es−2

4s−2
εs−2ν

(II)
1,2 Ξ3

1Eε
2

+
1

e2

(
2e

δ2
1ρσ

)s−1
1

αs−1
(2ν

(II)
1,1 )s−1Ξ2s−2

1

Es−1

4s−1
εs−1Eε

≤ ν1,sΞ
3s−3
1 Eεs .

The term f
(1,1)
1 is unchanged, while for ` = 1 and s 6= 1 one has

‖f (1,s)
1 ‖1−d1 ≤

s−2∑
j=0

1

e2

(
2e

δ2
1ρσ

)j
‖χ(1)

2 ‖
j
1−2δ1

‖f (II;0,s−j)
1 ‖1−2δ1

≤
s−2∑
j=0

1

e2

(
2e

δ2
1ρσ

)j
1

αj
(2ν

(II)
1,1 )jΞ2j

1

Ej

4j
εjν

(II)
1,s−jΞ

2(s−j)
1

E

2
εs−j

≤ ν1,sΞ
3s−2
1

E

2
εs .
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The term f
(1,1)
2 is unchanged, while for ` = 2 and s 6= 1 one has

‖f (1,s)
2 ‖1−d1

≤
s−2∑
j=0

1

e2

(
2e

δ2
1ρσ

)j
‖χ(1)

2 ‖
j
1−2δ1

‖f (II;0,s−j)
2 ‖1−2δ1

+
1

e2

(
2e

δ2
1ρσ

)s−1

‖χ(1)
2 ‖

s−1
1−2δ1

‖f (II;0,1)
2 ‖1−2δ1+

≤
s−2∑
j=0

1

e2

(
2e

δ2
1ρσ

)j
1

αj
(2ν

(II)
1,1 )jΞ2j

1

Ej

4j
εjν

(II)
1,s−jΞ

2(s−j)
1

E

4
εs−j

+
1

e2

(
2e

δ2
1ρσ

)s−1
1

αs−1
(2ν

(II)
1,1 )s−1Ξ2s−2

1

Es−1

4s−1
εs−1ν

(II)
1,1 Ξ2

1

E

4
ε

≤ ν1,sΞ
3s−1
1

E

22
εs .

Finally, for ` > 2 one has

‖f (1,s)
` ‖1−d1

≤
s∑
j=0

1

e2

(
2e

δ2
1ρσ

)j
‖χ(1)

2 ‖
j
1−2δ1

‖f (II;0,s−j)
` ‖1−2δ1

≤
s∑
j=0

1

e2

(
2e

δ2
1ρσ

)j
1

αj
(2ν

(II)
1,1 )jΞ2j

1

Ej

4j
εjν

(II)
1,s−jΞ

2(s−j)
1

E

2`
εs−j

≤ ν1,sΞ
3s
1

E

2`
εs .

This concludes the proof of the Lemma.

�

A.2.7 Proof of Lemma A.2.1

For r = 0 we do not have any generating functions and by assumption the Hamiltonian satisfies

‖f (0,s)
` ‖1 ≤

E

2`
εs .

We proceed by induction. For r = 1 use Lemma A.2.6. For r > 1, we now complete the proof

performing the step from r − 1 to r. The estimates for the generating function χ
(r)
0 result from

Lemma A.2.5, observing that

b(r − 1, r, 2) = 5r − 2− 2

⌊
r − 1

r − 1

⌋
− 1 = 5r − 5

and

b(r − 1, r, 0) = 5r − 2− 2

⌊
r − 1

r − 1

⌋
− 3 = 5r − 7 .

Indeed,

‖X(r)
0 ‖1−dr−1

≤ 1

α
νr−1,rΞ

b(r−1,r,0)
r Eεr ≤ 1

α
νr−1,rΞ

5r−7
r Eεr ,

|ζ(r)| ≤ 1

4mρ
νr−1,rΞ

b(r−1,r,2)
r Eεr ≤ 1

4mρ
νr−1,rΞ

5r−5
r Eεr .
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We now come to the functions appearing in the expansion of the Hamiltonian H(I;r−1), where one
has

‖f (I;r−1,s)
` ‖1−dr−1−δr ≤

bs/rc∑
j=0

1

j!
‖Lj

χ
(r)
0

f
(r−1,s−jr)
`+2j ‖1−dr−1−δr

≤
bs/rc∑
j=0

1

e

(
e‖X(r)

0 ‖1−dr−1

δ2
rρσ

+
e|ζ(r)|
δrρ

)j
νr−1,s−jrΞ

b(r−1,s−jr,`+2j)
r

E

2`+2j
εs−jr

≤
bs/rc∑
j=0

1

e

(
eE

αδ2
rρσ

+
eE

4mδrρ2

)j
νjr−1,rΞ

5rj−5j
r εrj

× νr−1,s−jrΞ
b(r−1,s−jr,`+2j)
r

E

2`+2j
εs−jr

≤ ν(I)
r,sΞ

b(I;r−1,s,`)
r

E

2`
εs .

The main difference with respect to the case r = 1 is due to the power of the constant Ξr, that is
controlled by the quantity b(I; r − 1, s, `).

For ` ≥ 0 and s = 0 we have
f

(I;r−1,0)
` = f

(r−1,0)
` ,

thus
b(I; r − 1, 0, `) = b(r − 1, 0, `) = 0 .

For r ≥ 2, ` > 2, one has

5rj − 4j + b(r − 1, s− jr, `+ 2j) = 5rj − 4j + 5(s− jr)− 2− 2

⌊
s− jr − 1

r − 1

⌋
− w`+2j

≤ 5s− 2− 2

⌊
s− 1

r − 1

⌋
− w` = b(I; r − 1, s, `) ,

where we have exploited w`+2j = 0 for `+ 2j ≥ 3.
Moreover, for r ≥ 2, ` = 2 and s = 1 we have

f
(I;r−1,1)
2 = f

(r−1,1)
2 ,

thus
b(I; r − 1, 1, 2) = b(r − 1, 1, 2) = 3− w2 = 2 .

For ` = 2, s > 1, j = 0 one has

5s− 2− 2

⌊
s− 1

r − 1

⌋
− w2 ≤ b(I; r − 1, s, 2) .

For ` = 2, s > 1, j ≥ 1, just notice that⌊
s− 1 + j(r − 2)

r − 1

⌋
≥
⌊
s− 2

r − 1

⌋
+ 1 .

Thus for j ≥ 1 we have

5rj − 4j + b(r − 1, s− jr, 2 + 2j) = 5rj − 4j + 5(s− jr)− 2− 2

⌊
s− jr − 1

r − 1

⌋
− w2+2j

= 5s− 2− 2

⌊
s− 1 + j(r − 2)

r − 1

⌋
≤ 5s− 2−

⌊
s− 1

r − 1

⌋
−
⌊
s− 2

r − 1

⌋
− w2 = b(I; r − 1, s, 2) .
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Similarly, for r ≥ 2, ` = 1, s ≥ r and j = 0 we have

5s− 2− 2

⌊
s− 1

r − 1

⌋
− w1 ≤ b(I; r − 1, s, 1) ,

while, for j ≥ 1, we get

5rj − 4j + b(r − 1, s− jr, 1 + 2j) = 5rj − 4j + 5(s− jr)− 2− 2

⌊
s− jr − 1

r − 1

⌋
− w1+2j

≤ 5s− 2− 2

⌊
s− 2

r − 1

⌋
− w1 = b(I; r − 1, s, 1) .

We remark that for r ≥ 2, ` = 1 and s < r one has

f
(I;r−1,s)
1 = f

(r−1,s)
1 = 0 ,

thus
b(I; r − 1, s, 1) = b(r − 1, s, 1) = 0 .

For r ≥ 2, ` = 0 and s > 0, our goal is to prove that

5rj − 4j + b(r− 1, s− jr, 2j) = 5s− 2− 2

(⌊
s− jr − 1

r − 1

⌋
+ 2j

)
−w2j ≤ 5s− 2− 2

⌊
s− 1

r

⌋
−w0 .

First notice that for j = 0 is trivial, due to the definition of w0 and to the estimate
⌊
s−1
r−1

⌋
≥
⌊
s−1
r

⌋
.

For j = 1 and s = r, the estimate is true because of the definition of f
(I;r−1,r)
0 . For j = 1,

which implies s > r (s− jr being a non negative integer), just notice that one has⌊
s− r − 1

r − 1

⌋
+ 2 ≥

⌊
s− 1

r

⌋
+ 1 .

Indeed, letting s = s′ + r, we have⌊
s− r − 1

r − 1

⌋
+ 2 =

⌊
s′ − 1

r − 1

⌋
+ 2

and ⌊
s− 1

r

⌋
+ 1 =

⌊
s′ + r − 1

r

⌋
+ 1 =

⌊
s′ − 1

r

⌋
+ 2 .

While for j > 1, 2
⌊
s−jr−1
r−1

⌋
+ 4j being increasing in j, one has

2

⌊
s− jr − 1

r − 1

⌋
+ 4j ≥ 2

⌊
s− 2r − 1

r − 1

⌋
+ 8

and in view of s > 2r one has

2

⌊
s− 2r − 1

r − 1

⌋
+ 8 ≥ 2

⌊
s− 1

r

⌋
+ 3 .

Thus we have

5rj − 4j + b(r − 1, s− jr, 2j) = 5rj − 4j + 5(s− jr)− 2− 2

⌊
s− jr − 1

r − 1

⌋
− w2j

≤ b(I; r − 1, s, 0) .

The estimate for the generating function χ
(r)
1 follows from Lemma A.2.5, observing that

b(I; r − 1, r, 1) = 5r − 2− 2

⌊
r − 2

r − 1

⌋
− 2 = 5r − 4 .
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Indeed,

‖χ(r)
1 ‖1−dr−1−δr ≤

1

α
ν(I)
r,rΞ

b(I;r−1,r,1)
r

E

2
εr ≤ 1

α
ν(I)
r,rΞ

5r−4
r

E

2
εr .

We now come to the functions appearing in the expansion of the Hamiltonian H(II;r−1), where
one has

‖f (II;r−1,s)
` ‖1−dr−1−2δr ≤

bs/rc∑
j=0

1

j!
‖Lj

χ
(r)
1

f
(I;r−1,s−jr)
`+j ‖1−dr−1−2δr

≤
bs/rc∑
j=0

1

e2

(
‖χ(r)

1 ‖1−dr−1−δr
δ2
r

(
e

ρσ
+
e2

R2

))j

× ν(I)
r−1,s−jrΞ

b(I;r−1,s−jr,`+j)
r

E

2`+j
εs−jr

≤
bs/rc∑
j=0

1

e2

(
E

2αδ2
r

(
e

ρσ
+
e2

R2

))j (
ν(I)
r,r

)j
Ξ5rj−4j
r εrj

× ν(I)
r−1,s−jrΞ

b(I;r−1,s−jr,`+j)
r

E

2`+j
εs−jr

≤ ν(II)
r,s Ξb(II;r−1,s,`)

r

E

2`
εs .

The main difference with respect to the case r = 1 is due to the power of the constant Ξr, that is
controlled by the quantity b(II; r − 1, s, `).

For ` ≥ 0 and s = 0, we get

f
(II;r−1,0)
` = f

(r−1,0)
` ,

thus
b(II; r − 1, 0, `) = b(r − 1, 0, `) = 0 .

For r = 2, ` > 2, s > 0, exploiting w`+j = 0 for `+ j ≥ 3, one has

5s− 2− 2

⌊
s− jr − 1

r − 1

⌋
− 3j ≤ 5s− 2− 2

⌊
s− 1

r − 1

⌋
+

⌊
s

r

⌋
− w` = b(II; r − 1, s, `) .

For r = 2, ` = 2, s = 1 we have

f
(II;1,1)
2 = 〈f (II;0,1)

2 〉q1 ,

then
b(II; 1, 1, 2) = b(II; 0, 1, 2) = 2 .

For r = 2, ` = 2, s > 1, similarly to the case of b(I; r − 1, s, 2), one has

5s− 2− 2

⌊
s− jr − 1

r − 1

⌋
− 3j − w2+j ≤ 5s− 2−

⌊
s− 1

r − 1

⌋
−
⌊
s− 2

r − 1

⌋
+

⌊
s

r

⌋
− w2

≤ b(II; 1, s, 2) .

For r = 2, ` = 1, s < 2, we obtain

f
(II;1,s)
1 = f

(I;1,s)
1 = f

(1,s)
1 = 0 ,

thus
b(II; 1, s, 1) = b(1, s, 1) = 0 .

For r = 2, ` = 1, s = 2, we get

f
(II;1,2)
1 = 0 ,
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hence
b(II; 1, s, 1) = 0 ,

while, if s = 3 we have j < 2 thus

5s− 2− 2

⌊
s− jr − 1

r − 1

⌋
− 3j − w1+j ≤ 9 = b(II, 1, 3, 1) .

For r = 2, ` = 1, s > 3 one has

5s− 2− 2

⌊
s− jr − 1

r − 1

⌋
− 3j − w1+j ≤ 5s− 2− 2

⌊
s− 1

r

⌋
− w1 = b(II; 1, s, 1) .

For r = 2, ` = 0, s = 1 one has

f
(II;1,1)
0 = f

(I;1,1)
0 = f

(1,1)
0 = 〈f (0,1)

0 〉q1 ,

thus
b(II; 1, 1, 0) = b(1, 1, 0) = 0 ,

while for s = 2 we obtain
f

(II;1,2)
0 = 〈f (1,2)

0 〉q1 ,

thus
b(II; 1, 2, 0) = b(1, 2, 0) = 3 .

For r = 2, ` = 0, s ≥ 3, one has

5s− 2− 2

⌊
s− jr − 1

r − 1

⌋
− 3j − wj ≤ 5s− 2− 2

⌊
s− 1

r

⌋
− w0 ≤ b(II; 1, s, 0) .

For r > 2, ` > 2 and s > 1 one has

5s− 2− 2

⌊
s− jr − 1

r − 1

⌋
− 3j − w`+j ≤ 5s− 2−

⌊
s− 1

r − 1

⌋
−
⌊
s− 2

r − 1

⌋
− w` = b(II; r − 1, s, l) ,

where we have exploited w`+j = 0 for `+j ≥ 3. Indeed, remarking that 2b(s−jr−1)/(r−1)c+3j
is a non-decreasing function, one has

2

⌊
s− 1

r − 1

⌋
≥
⌊
s− 1

r − 1

⌋
+

⌊
s− 2

r − 1

⌋
.

For r > 2, ` > 2 and s = 1 we get

f
(II;r−1,1)
` = f

(r−1,1)
` ,

thus
b(r − 1, 1, `) = b(II; r − 1, 1, `) .

In the same way, for r > 2, ` = 2, s = 1, we get

f
(II;r−1,1)
2 = f

(r−1,1)
2 ,

thus
b(r − 1, 1, 2) = 2 = b(II; r − 1, 1, 2) .

For r > 2, ` = 2, s > 1 one has

5s− 2− 2

⌊
s− jr − 1

r − 1

⌋
− 3j − w2+j ≤ 5s− 2− 2

⌊
s− 1

r

⌋
− w2 ≤ b(II; r − 1, s, 2) ,
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which can be proved distinguishing the cases for j = 0 and j = 1.
Similarly to the case r = 2, for r > 2, ` = 1, s < r, we obtain

f
(II;r−1,s)
1 = f

(I;r−1,s)
1 = f

(r−1,s)
1 = 0 ,

thus
b(II; r − 1, s, 1) = b(r − 1, s, 1) = 0 .

For r > 2, ` = 1, s = r, we get

f
(II;r−1,r)
1 = 0 ,

hence
b(II; r − 1, s, 1) = 0 .

For r > 2, ` = 1, s ≥ r + 1 one has

5s− 2− 2

⌊
s− jr − 1

r − 1

⌋
− 3j − w1+j ≤ 5s− 2− 2

⌊
s− 1

r

⌋
− w1 ≤ b(II; r − 1, s, 1) .

Similarly to the previous case, one has to consider the different values of j up to j = 2.
For r > 2, ` = 0, s > 0 one has

5s− 2− 2

⌊
s− jr − 1

r − 1

⌋
− 3j − wj ≤ 5s− 2− 2

⌊
s− 1

r

⌋
− w0 ≤ b(II; r − 1, s, 0) .

Once again, one has to consider the different values of j up to j = 3.

The estimate for the generating function χ
(r)
2 follows from Lemma A.2.5, observing that

b(II; r − 1, r, 2) = 5r − 2− 2

⌊
r − 1

r

⌋
− 1 = 5r − 3 .

Indeed,

‖χ(r)
2 ‖1−dr−1−2δr ≤

1

α
2ν(II)
r,r Ξb(II;r−1,r,2)

r

E

4
εr ≤ 1

α
2ν(II)
r,r Ξ5r−3

r

E

4
εr .

We now come to the functions appearing in the expansion of the Hamiltonian H(r), where one
has

‖f (r,s)
` ‖1−dr ≤

bs/rc∑
j=0

1

j!
‖Lj

χ
(r)
2

f
(II;r−1,s−jr)
` ‖1−dr

≤
bs/rc∑
j=0

1

e2

(
2e‖χ(r)

2 ‖1−dr−1−2δr

δ2
rρσ

)j

× ν(II)
r−1,s−jrΞ

b(II;r−1,s−jr,`)
r

E

2`
εs−jr

≤
bs/rc∑
j=0

1

e2

(
2eE

4αδ2
rρσ

)j (
2ν(II)
r,r

)j
Ξ5rj−3j
r εrj

× ν(II)
r−1,s−jrΞ

b(II;r−1,s−jr,`)
r

E

2`
εs−jr

≤ νr,sΞb(r,s,`)r

E

2`
εs .

For ` ≥ 0 and s = 0 the claim is true because

f
(r,0)
` = f

(II;r,0)
` = f

(I;r,0)
` = f

(r−1,0)
` ,

which implies
b(r, 0, `) = 0 .
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For r = 2, ` ≤ 1 and s > 0 (with s > r if ` = 1)

5s− 2− 2

⌊
s− jr − 1

r

⌋
− 2j − w` = 5s− 2− 2

⌊
s− 1

r

⌋
− w` = b(r, s, l) .

For r = 2, ` = 1 and s = r, we remark that f
(2,2)
1 = 0, thus b(2, 2, 1) = 0. For r = 2, ` = 1 and

s < r, we obtain b(2, s, 1) = b(II; 2, s, 1) = 0.
For r = 2, ` = 2, if s = 2

⌊
s
2

⌋
, the homological equation allows the summation to run only up

to j =
⌊
s
2

⌋
− 1. Similarly, if s = 2

⌊
s
2

⌋
+ 1, we get s − 2j ≥ 1, since the summation runs up to

j =
⌊
s
2

⌋
. The case s− 2j = 1, which implies j =

⌊
s
2

⌋
, is trivial, because

f
(II;1,1)
2 = 〈f (II;0,1)

2 〉q1 .

For r > 2, ` > 2 one has

5rj − 2j + b(II; r − 1, s− jr, `) ≤ b(r, s, `) .

Indeed, if s =
⌊
s
r

⌋
r, the homological equation allows the summation to run only up to j =⌊

s
r

⌋
− 1. Moreover, if s =

⌊
s
r

⌋
r + 1, we get s − jr ≥ 1, since the summation runs up to j =

⌊
s
r

⌋
.

If instead s =
⌊
s
r

⌋
r +m with 2 ≤ m ≤ r − 1, we have s− jr ≥ 2, since the summation runs up to

j =
⌊
s
r

⌋
.

For r > 2, ` ≤ 2 and s > 0 (with s > r if ` = 1) one has

5s− 2− 2

⌊
s− jr − 1

r

⌋
− 2j − w` ≤ 5s− 2− 2

⌊
s− 1

r

⌋
− w2 ≤ b(r, s, l) .

For r > 2, ` = 1 and s ≤ r, we get f
(r,s)
1 = f

(II;r−1,s)
1 = 0, then b(r, s, 1) = b(II; r− 1, s, 1) = 0.

This concludes the proof of the Lemma.

A.2.8 Proof of Proposition 2.1.1

We prove the Proposition 2.1.1 in its simplified version with three stages in a normalization step.
We give an estimate for the canonical transformation. We denote by (p̂(0), q̂(0), ξ(0), η(0)) the
original coordinates, and by (p̂(r), q̂(r), ξ(r), η(r)) the coordinates at step r. We also denote by
φ(r) the canonical transformation mapping (p̂(r), q̂(r), ξ(r), η(r)) to (p̂(r−1), q̂(r−1), ξ(r−1), η(r−1)).
Precisely, we can give an explicit expression of the canonical flow, writing

p̂(r−1) = exp(L
χ

(r)
0

)p̂(I,r−1) = p̂(I,r−1) −
∑
s≥1

1

s!
Ls−1

χ
(r)
0

∂χ
(r)
0

∂q̂(I,r−1)
= p̂(I,r−1) − ∂χ

(r)
0

∂q̂(I,r−1)
,

p̂(I,r−1) = exp(L
χ

(r)
1

)p̂(II,r−1) = p̂(II,r−1) −
∑
s≥1

1

s!
Ls−1

χ
(r)
1

∂χ
(r)
1

∂q̂(II,r−1)
=

= p̂(II,r−1) − ∂χ
(r)
1

∂q̂(II,r−1)
− 1

2
L
χ

(r)
1

∂χ
(r)
1

∂q̂(II,r−1)
,

ξ(r−1) = exp(L
χ

(r)
1

)ξ(r) = ξ(r) +
∂χ

(r)
1

∂η(r)
,

η(r−1) = exp(L
χ

(r)
1

)η(r) = η(r) − ∂χ
(r)
1

∂ξ(r)
,

p̂(II,r−1) = exp(L
χ

(r)
2

)p̂(r) = p̂(r) −
∑
s≥1

1

s!
Ls−1

χ
(r)
2

∂χ
(r)
2

∂q̂(r)
,

q̂(r−1) = exp(L
χ

(r)
2

)q̂(r) = q̂(r) +
∑
s≥1

1

s!
Ls−1

χ
(r)
2

∂χ
(r)
2

∂p̂(r)
.
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where we have taken into account that the generating function χ
(r)
0 depends only on q̂(I,r−1), so it

leaves the angles and the transversal variables unchanged. Similarly, the generating function χ
(r)
1

does not modify the angles, and the function χ
(r)
2 leaves the transversal variables unchanged.

Consider now a sequence of domains D(3d−dr)(ρ,σ,R), and, using Lemma A.2.1, we get

∣∣∣p̂(r−1) − p̂(I,r−1)
∣∣∣ <

∥∥X(r)
0

∥∥
1−dr−1

eδrσ
+ |ζ(r)| ≤

(
1

αeδrσ
+

1

4mρ

)
Ξ5r
r

210r

26
Eεr ,

∣∣∣p̂(I,r−1) − p̂(II,r−1)
∣∣∣ <

∥∥χ(r)
1

∥∥
1−dr−1−δr
eδrσ

1 +

∥∥χ(r)
1

∥∥
1−dr−1−δr
2eδ2

r

(
1

ρσ
+

e

R2

) ≤
≤ 1

2αeδrσ
Ξ5r
r

210r

26
Eεr

(
1 +

1

4αeδ2
r

Ξ5r
r

210r

26
Eεr

(
1

ρσ
+

e

R2

))
,

∣∣∣ξ(r−1) − ξ(r)
∣∣∣ <

∥∥χ(r)
1

∥∥
1−dr−1−δr
δrR

≤ 1

2αδrR
Ξ5r
r

210r

26
Eεr ,

∣∣∣η(r−1) − η(r)
∣∣∣ <

∥∥χ(r)
1

∥∥
1−dr−1−δr
δrR

≤ 1

2αδrR
Ξ5r
r

210r

26
Eεr ,

∣∣∣p̂(II,r−1) − p̂(r)
∣∣∣ <

∥∥χ(r)
2

∥∥
1−dr−1−2δr

eδrσ

∑
s≥1

1

e2

2e
∥∥χ(r)

2

∥∥
1−dr−1−2δr

δ2
rρσ

s−1

≤

≤ 1

2αeδrσ
Ξ5r
r

210r

26
Eεr

∑
s≥1

(
2e

2αδ2
rρσ

Ξ5r
r

210r

26
Eεr

)s−1

,

∣∣∣q̂(r−1) − q̂(r)
∣∣∣ <

∥∥χ(r)
2

∥∥
1−dr−1−2δr

δrρ

∑
s≥1

1

e2

2e
∥∥χ(r)

2

∥∥
1−dr−1−2δr

δ2
rρσ

s−1

≤

≤ 1

2αδrρ
Ξ5r
r

210r

26
Eεr

∑
s≥1

(
2e

2αδ2
rρσ

Ξ5r
r

210r

26
Eεr

)s−1

.

(A.29)

Thus if(
1

αeδ2
rρσ

+
1

4mδrρ2

)
Ξ5r
r

210r

26
Eεr +

3

4αeδ2
r

Ξ5r
r

210r

26
Eεr

(
1

ρσ
+

e

R2

)
+

e

αδ2
rρσ

Ξ5r
r

210r

26
Eεr ≤ 1

2
,

(A.30)

then e
αδ2
rρσ

Ξ5r
r

210r

26 Eε
r ≤ 1

2 , so the series (A.29) defining the canonical transformation are ab-

solutely convergent in the domain D(3d−dr−1−δr)(ρ,σ,R). The absolute convergence implies the
uniform convergence in any compact subset of the domain D(3d−dr−1−δr)(ρ,σ,R), and so, by Weier-
strass theorem, the canonical transformation is also analytic. Furthermore, due to (A.30), one
also has the estimates

|p̂(r−1)−p̂(r)| < δrρ , |q̂(r−1)−q̂(r)| < δrσ , |ξ(r−1)−ξ(r)| < δrR , |η(r−1)−η(r)| < δrR .

Indeed,

|p̂(r−1) − p̂(r)| ≤ |p̂(r−1) − p̂(I,r−1)|+ |p̂(I,r−1) − p̂(II,r−1)|+ |p̂(II,r−1) − p̂(r)| ≤

≤
((

1

αeδ2
rρσ

+
1

4mδrρ2

)
Ξ5r
r

210r

26
Eεr +

3

4αeδ2
rρσ

Ξ5r
r

210r

26
Eεr+

+
e

αδ2
rρσ

Ξ5r
r

210r

26
Eεr

)
δrρ <

< δrρ .
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In the same way, we can deduce the other estimates.

A similar argument applies to the inverse of φ(r), which is defined as a composition of Lie series

generated by −χ(r)
2 , −χ(r)

1 and −χ(r)
0 , thus we get

D(3d−dr)(ρ,σ,R) ⊂ φ(r)(D(3d−dr−1−δr)(ρ,σ,R)) ⊂ D(3d−dr−1)(ρ,σ,R) .

Consider now the sequence of transformations Φ(r̄) = φ(1) ◦ . . . ◦ φ(r̄).

For (p̂(r−1), q̂(r−1), ξ(r−1), η(r−1)) ∈ D(3d−dr−1)(ρ,σ,R) the transformation is clearly analytic and
one has

|p̂(0) − p̂(r̄)| < ρ

r̄∑
j=1

δj , |q̂(0) − q̂(r̄)| < σ

r̄∑
j=1

δj ,

|ξ(0) − ξ(r̄)| < R

r̄∑
j=1

δj , |η(0) − η(r̄)| < R

r̄∑
j=1

δj .

Setting d = 1
4 and using (A.11), one has

∑
j≥1 δj ≤

d
3 = 1

12 , thus (2.7) immediately follows. Finally,
the estimates for the Hamiltonian in normal form had been already gathered in Lemma A.2.1.
This concludes the proof of Proposition 2.1.1.

Remark A.2.1 Since the non convergence of the normalization algorithm represents one of the
main points, let us stress that in view of the definition of Ξr in (A.12) and of δr < C/r, one
immediately get Ξr > Cr, C being a suitable positive constant. Thus

∑
r>0 Ξ5r

r ε
r cannot converge

for any positive ε.

A.3 Spectrum deformation under matrix perturbations

In this section we collect some useful results concerning the deformation of the spectrum of a
matrix under small perturbations. The results rely on resolvent theory, for which we refer to [49]
for a detailed treatment of the subject and to [1,59] for the study of the linear stability of breathers
and multibreathers.

We first set some notations. Given a matrix M defined on a vector space X, we denote by
Σ(M) its spectrum and by ρ(M) = maxλ∈Σ(M) |λj | its spectral radius. For any z 6∈ Σ(M) it is

well defined R(z) = (M − z)−1
, which is the resolvent of M . The inverse of the spectral radius of

R(z) measures the distance between z ∈ C and the spectrum of M

dist (z,Σ(M)) =
1

ρ(R(z))
. (A.31)

Let us recall that ρ(M) and the operatorial norm ‖M‖op = supx 6=0
‖Mx‖
‖x‖ satisfy

ρ(M) ≤ ‖M‖op . (A.32)

Moreover, a converse inequality is given by the following

Lemma A.3.1 Let M : X → X, then there exists cop > 1, depending on the dimension of X
only, such that

‖M‖op ≤ cop max {ρ(M), 1} . (A.33)

If M is diagonable, or if ρ(M) ≥ 1, then the above simplifies to

‖M‖op ≤ copρ(M) . (A.34)
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A.3.1 On the minimum eigenvalue

Let us now consider a given matrix N and its perturbation M(µ) = N+µP depending analytically
on a small parameter µ. The resolvent R(z, µ) of M(µ) is still well defined and holomorphic in
the two variables, provided z 6∈ Σ(M(µ)); moreover, it is possible to relate the perturbed and
unperturbed resolvents via the following series expansion

R(z, µ) = R0(z)[I +A(z, µ)R0(z)]
−1

, R0(z) = R(z, 0) , (A.35)

where R0(z) is the resolvent of the leading term N = M(0), while A(z, µ) = R(z, µ) − R0(z)
represents the deformation due to the small perturbation. In what follows we collect some useful
results relating the unperturbed spectrum Σ(N) to the perturbed spectrum Σ(M(µ)).

We collect the results relating the minimum eigenvalue of N and M in the following

Proposition A.3.1 Let us consider a matrix M(ε) = N(ε) + µ(ε)P (ε), depending on the small
parameter ε ∈ U(0). Let us assume that for any ε ∈ U it holds true:

(1) N(ε) is invertible and there exist c1 > 0 and α > 0 independent of ε such that∥∥N−1
∥∥
op
≤ c1|ε|−α ;

(2) P (ε) = P (0) +O(ε) and there exist c2 > 0 and β > α such that

|µ(ε)| ≤ c2|ε|β .

Then for ε small enough M(ε) is invertible and there exists c3 > 0 independent of ε such that

|ν| ≥ c3|ε|α , for all ν ∈ Σ(M).

Moreover, the same result holds true if we replace the first assumption with

min
λ∈Σ(N(ε))

{|λ|} ≥ c1|ε|α . (A.36)

Proof. Due to the invertibility of N , we can rewrite M as M = N (I + µT ), with T = N−1P . We

now show that (I + µT )
−1

is well defined, thus the inverse ofM is given byM−1 = (I + µT )
−1
N−1.

The operator (I + µT ) being a small perturbation of the identity I, its inverse exists provided
|µ| ‖T‖op < 1, hence hypothesis (1) implies

|µ| ‖T‖op ≤ |µ|
∥∥N−1

∥∥
op
‖P‖op ≤ c|ε|

β−α < 1 , (A.37)

where c ≈ c2c1 ‖P (0)‖op for sufficiently small ε and in such a regime is independent of ε; as a
consequence, since β − α > 0, also M(ε) is invertible for ε small enough. From the estimate∥∥∥(I + µT )

−1
∥∥∥
op
≤
∑
n≥0

|µ|n ‖T‖nop ≤
1

1− |µ| ‖T‖op
,

and recalling (A.32) we get

ρ(M−1) ≤
∥∥M−1

∥∥
op
≤

∥∥N−1
∥∥
op

1− |µ| ‖T‖op
,

where the spectral radius ρ(M−1) = 1
min{|νk|} , with νk ∈ Σ(M). Let ν1 be the minimum, then

|ν1| ≥
1− |µ| ‖T‖op
‖N−1‖op

.
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For ε sufficiently small, condition (A.37) holds and we have

|µ| ‖T‖op ≤
1

2
, that implies |ν1| ≥ c3|ε|α , with c3 =

1

2c1
.

It is clear that the main point in the proof is the bound of
∥∥N−1

∥∥
op

. In fact, the estimate (A.37)

can be obtained also replacing the assumption on ‖N‖op with (A.36). Indeed by means of (A.33)
one can obtain the following estimate

∥∥N−1
∥∥
op
≤ cop max

{
1, ρ(N−1)

}
= cop max

{
1,

1

minλ∈Σ(N(ε)) {|λ|}

}
≤ copc−1

1 |ε|−α ,

since c−1
1 |ε|−α � 1, which allows to conclude

|ν1| ≥ c3|ε|α , with c3 =
1

2
c−1
op c1 .

�

A.3.2 Deformation of eigenvalues.

We aim at localizing the eigenvalues of M(ε) = N(ε)+µ(ε)P (ε), when the spectrum of its leading
part N(ε) is known, provided ε is taken small enough in a small neighbourhood of the origin U(0).
We start with a preliminary Lemma

Lemma A.3.2 Let z 6∈ Σ(N) be a complex number satisfying

dist(z,Σ(N)) ≥ 4µcop ‖P‖op . (A.38)

Then the following inequality holds true

1

cop
dist(z,Σ(N))− µ ‖P‖op ≤ dist(z,Σ(M)) ≤ cop dist(z,Σ(N)) + µcop ‖P‖op . (A.39)

Proof. To shorten the proof, let us introduce the notations

δN (z) = dist(z,Σ(N)) , δM (z) = dist(z,Σ(M)) .

By setting R0(z) the resolvent of N , from (A.31) we have

ρ(R0(z)) =
1

δN
.

In the rest of the proof we aim at deriving bounds for δM by exploiting the perturbation of R0

given by µP . Thus, let us set R the resolvent of M and recall that

Σ(R(z)) =

{
1

λj − z

}
λj∈Σ(M)

;

from (A.32) and (A.34) we have

1

δN
= ρ(R0(z)) ≤ ‖R0(z)‖op ≤ copρ(R0(z)) =

cop
δN

.

From the second Neumann series (A.35) we can write

R(z) = R0(z)[I + µPR0]
−1

, (A.40)
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where, due to (A.38), the product µPR0 represents a perturbation of the identity

‖µPR0‖op ≤ µ ‖P‖op ‖R0‖op ≤
copµ ‖P‖op

δN
≤ 1

4
, (A.41)

so that [I + µPR0]
−1

is well defined in terms of power series of µPR0. As a consequence, from

the estimate of
∥∥∥∑k≥0(−1)kµk(PR0)

k
∥∥∥
op

, we get

δM (z) =
1

ρ(R(z))
≥ 1

‖R‖op
≥ 1

‖R0‖op
− µ ‖P‖op ≥

δN (z)

cop
− µ ‖P‖op ,

which gives the lower bound in (A.39). Let us consider again (A.35) but reversing the roles of R
and R0

R0(z) = R(z)[I− µPR]
−1

;

from (A.40) and (A.41) we have

‖R‖op ≤
4

3
‖R0‖op that implies ‖µPR‖op ≤

1

3
,

which provides the upper bound in (A.39)

δN (z) =
1

ρ(R0(z))
≥ 1

‖R0‖op
≥ 3/2

‖R‖op
− µ ‖P‖op ≥

3

2cop
δM (z)− µ ‖P‖op .

�

The localization result is collected in the following

Proposition A.3.2 Let M(ε) ∈ Mat(n) be decomposed into M(ε) = N(ε) + µ(ε)P (ε). Assume
that:

(1) P (ε) = P (0) +O(ε) with ‖P (0)‖op ≤ cP and there exists β1 > 0 such that

|µ(ε)| ≤ |ε|β1 ;

(2) there exists a cN > 0 such that for any couple of distinct eigenvalues λi 6= λj ∈ Σ(N)

|λi − λj | ≥ cNεβ2 , with β2 < β1 .

Then there exists ε∗ > 0 (depending on Σ(N)) such that, given |ε| < ε∗, for any λ ∈ Σ(N) there
exist one eigenvalue ν ∈ Σ(M) inside the disk Dε(λ) =

{
z ∈ C : |z − λ| < cM |ε|β1

}
, with cM > 0

a suitable constant independent of λ.

Proof. Take an arbitrary eigenvalue λ ∈ Σ(N) and consider a complex number z ∈ C at distance
δ̃ = c|ε|β1 , with c independent of ε to be determined along the proof. In view of (2) and for ε
small enough, one has that cN |ε|β2 � cP |ε|β1 ; hence by defining δN (z) = dist(z,Σ(N)) it turns
out

δN (z) = δ̃ = c|ε|β1 .

We want to use upper bound of (A.39) to control δM (z) = dist (z,Σ(M)); to fulfill the requirements
of Lemma A.3.2 we take c ≥ 4copcP and we exploit (1), so that

δM (z) ≤ cop(c+ cP )|ε|β1 .

This ensures the existence of an eigenvalue ν ∈ Σ(M), which depends on the choice of z, whose
distance from the initially chosen z is of order O(εβ1)

∃ν ∈ Σ(M) : |ν − z| ≤ cop(c+ cP )|ε|β1 ,

which provides the final estimate

|ν − λ| ≤ |ν − z|+ |z − λ| ≤ cM |ε|β1 , with cM = c+ cop(c+ cP ) .

�
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A.4 dNLS model: standard approach

Consider the dNLS equation (3.1). Introducing the set of excited sites I = {j1, . . . , jn1
} ⊂ J , not

necessarily consecutive, in the limit of ε = 0 we consider unperturbed excited oscillators
{
ψ

(0)
j

}
j∈I

with resonant frequencies in order to get a periodic flow on the resonant torus. In this way, at
ε = 0 we can assume the usual ansatz

ψ(0)(t) = e−iωtφ(0) , t ∈ [0, T = 2π/ω] , (A.42)

where the unperturbed spatial profile φ(0) reads

φ
(0)
j =

{
Reiϕj , j ∈ I
0 , j ∈ J \ I

.

The choice of the amplitude R uniquely defines the detuning of the frequency ω from the harmonic
limit of the uncoupled oscillators

ω(R) = 1 + γR2 .

Hence ψ(0)(t) coincides with the orbit of the Gauge symmetry eiσ acting on the phase space. In
other terms, in any point of the orbit Γ0 =

{
ψ(0)(t) : t ∈ [0, T ]

}
, the Hamiltonian flow is parallel

to the flow of the symmetry

XH(ψ(0)(t)) = ωXP (ψ(0)(t)) , ∀t ∈ [0, T ] ,

where P is the additionally conserved `2-norm

P =
∑
j∈J
|ψj |2 , (A.43)

whose Hamiltonian field XP generates the symmetry. This identification of the “group-orbit”
with the “flow-orbit” does not hold anymore if a different resonance relationship is chosen among
the unperturbed oscillators. All these orbits are uniquely defined except for a phase shift σ, due
to the action of the symmetry eiσ along the orbit, which corresponds to a change of the initial
configuration in the ansatz (A.42). In order to study the continuation of solutions (A.42) at ε 6= 0,
the usual approach is then to assume the same ansatz for the continued solution ψ(t, ε) = e−iωtφ(ε)
and insert it into the dNLS equation (3.1), thus obtaining a time-independent stationary equation
of the form F (φ, ε) = 0; the latter then is studied by methods of bifurcation theory, namely
a Lyapunov-Schmidt reduction which exploits the variational formulation of F (φ, ε) = 0 (see
[48,51,69,70,75]). Continuation is easily achieved for non-degenerate critical points of the averaged
perturbation 〈H1〉T by means of the following Proposition

Proposition A.4.1 (Kapitula’s criterium) Let φ(0)(ϕ) be the profile of an unperturbed peri-
odic solution ψ(0) given by (A.42). A necessary condition for φ(0) to be continued at ε 6= 0 is that
φ(0) is a critical point of the functional

S1(φ(0)) =
1

2π

∫ 2π

0

H1(e−iτφ(0)(ϕ))dτ .

If the critical point φ(0) is not degenerate (modulo phase shift), then for ε small enough there exists
a continuation φ(ε), solution of F (φ(ε), ε) = 0 which is analytic in ε.

A.5 Analytic estimates: KAM with knobs

In this Section we report the proofs of some Lemmas of Chapter 4.
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Proof. [Lemma 4.4.6] From the definitions (4.17) and (4.16), we get αsδ
2
s < 1. So, it remains

to prove the second part of the inequality. Starting from the definition (4.24), using the selection
rule in (4.23) and the decreasing character of the sequence {αsδ2

s}s≥1, we obtain

Tr,s
αsδ2

s

=
1

αsδ2
s

max
I∈Js,s

∏
j∈I , j≥1

1

αjδ2
j

≤
∏

j∈{s}∪I∗s , j≥1

1

αjδ2
j

.

Hence, we get

log
Tr,s
αsδ2

s

≤ − log(αsδ
2
s)−

bs/2c∑
k=1

(⌊ s
k

⌋
−
⌊ s

k + 1

⌋)
log(αkδ

2
k)

≤ −
s∑

k=1

(⌊ s
k

⌋
−
⌊ s

k + 1

⌋)
(logαk + 2 log δk)

≤ −s
∑
k≥1

logαk + 2 log δk
k(k + 1)

= s

(
Γ−

∑
k≥1

2 log δk
k(k + 1)

)
,

(A.44)

where we used properties (i) and (ii) of Lemma 4.4.3, the fact that the sequence {αsδ2
s}s≥1 is

decreasing and the condition τ in (4.3). Recalling the definition of δr we get

−
∑
k≥1

2 log δk
k(k + 1)

= 2
∑
k≥1

log

(
4π2

3

)
+ 2 log k

k(k + 1)

= 2 log

(
4π2

3

)
+ 4

∑
k≥1

log k

k(k + 1)
.

where the relation
∑
k≥1 1/[k(k + 1)] = 1 is used. As regards the second series, we exploit the

relation ∑
k≥2

f(k) ≤ f(2) +

∫ ∞
2

f(x) dx , with f(k) =
log k

k2
,

so that

4
∑
k≥1

log k

k(k + 1)
< 4

(
log 2

6
+

∫ ∞
2

log x dx

x2

)
= 4

(
log 2

6
+

1

2
(log 2 + 1)

)
.

To conclude, we obtain

−
∑
k≥1

2 log δk
k(k + 1)

< 13 log 2

Putting the estimate above into (A.44), we conclude the proof.

�

Proof. [Selection rules in Table 4.2]

For r = 0 there are no divisors, therefore every function in H(0) owns an empty list {}. Hence,
by padding every list with an appropriate number of zeros, the table 4.2 is correct, because J0,s

is a list of s − 1 zeros. For r > 0 we proceed by induction, supposing that the table applies up
to step r − 1. To this end, we follow the formal algorithm defined in (4.12) and (4.14), and the
estimates of the norms reported in (4.21) and (4.22).
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We now exploit the definitions of generating functions and factors Gr,0, Gr,1 and, for f
(I;r−1,r)
1 ,

we select the worst divisors that can appear in the sum. So, we obtain

f
(r−1,r)
0 owns Jr−1,r ∪ Jr−1,r ;

Gr,0 owns Jr−1,r ∪ Jr−1,r ;

χ
(r)
0 owns {r} ∪ Jr−1,r ∪ Jr−1,r ;

f
(I;r−1,r)
1 owns {r} ∪ Jr−1,r ∪ Jr−1,r ;

Gr,1 owns {r} ∪ Jr−1,r ∪ Jr−1,r ;

χ
(r)
1 owns {r} ∪ {r} ∪ Jr−1,r ∪ Jr−1,r .

By using the selection rule for χ
(r)
0 for all allowed values of j in the sums, we get

f
(I;r−1,s)
0 owns J 2

r−1,s + {r} ∪ J 2
r−1,r ∪ {r − 1} ∪ J 2

r−1,s−r+

+
(
{r} ∪ J 2

r−1,r

)j ∪ (min{r − 1, s− jr} ∪ Jr−1,s−jr
)2 ⊂ J 2

r,s ,

f
(I;r−1,s)
1 owns {r − 1} ∪ J 2

r−1,s +
(
{r} ∪ J 2

r−1,r

)j ∪ (min{r − 1, s− jr} ∪ Jr−1,s−jr
)2

⊂ {r} ∪ J 2
r,s ,

f
(I;r−1,s)
`≥2 owns

(
{r} ∪ J 2

r−1,r

)j ∪ (min{r − 1, s− jr} ∪ Jr−1,s−jr
)2 ⊂ (

{min{r, s}} ∪ Jr,s
)2

where we recall that the notation J 2
r,s stands for Jr,s ∪ Jr,s. The inclusion relations follow from

Lemma 4.4.4.
Using the information on χ

(r)
1 for all allowed values of j in the sums, we obtain

f
(r,s)
0 owns

(
{r} ∪ Jr−1,r

)2j ∪ J 2
r,s−jr ⊂ J 2

r,s ;

f
(r,s)
1 owns

(
{r} ∪ Jr−1,r

)2j ∪ {r} ∪ J 2
r,s−jr ⊂ {r} ∪ J 2

r,s ;

f
(r,s)
`≥2 owns

(
{r} ∪ Jr−1,r

)2j ∪ ({min{r, s− jr}} ∪ Jr,s−jr
)2 ⊂ (

{min{r, s}} ∪ Jr,s
)2
.

Once again, the inclusion relations follow from Lemma 4.4.4 and hold true for every term in the
sums. This completes the proof.

�

Proof. [Lemma 4.4.7]

The definition of νr,s can be rewrite by eliminating the sequence {ν(I)
r,s}r≥1 , s≥0.

νr,s =

bs/rc∑
j=0

(
2νr−1,r

)j bs/rc−j∑
i=0

νir−1,rνr−1,s−(i+j)r =

bs/rc∑
j=0

(2νr−1,r)
j

bs/rc∑
i=j

νi−jr−1,rνr−1,s−ir

=

bs/rc∑
i=0

(
2i+1 − 1

)
νir−1,rνr−1,s−ir =

bs/rc∑
i=0

θiν
i
r−1,rνr−1,s−ir .

Hence, we get
θi = 2i+1 − 1 θ0 = 1 , θ1 = 3 .

So, we can derive
θi+1 ≤ 4θi for i ≥ 0.

and νr,r = θ0νr−1,r + θ1νr−1,r = 4νr−1,r . Following the same path of the proof of Lemma A.2.2,
we obtain ν1,1 = 4 and for r ≥ 2 one has

νr,r = 4νr−1,r ≤ 4νr−2,r + 4νr−1,r−1ν1,1 ≤ . . .

≤ 4ν1,r + 4 (ν2,2νr−2,r−2 + . . .+ νr−1,r−1ν1,1) ≤ 4

r−1∑
j=1

νj,jνr−j,r−j .
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From this upper bound, one can easily verify that

νr,r ≤ 24r−2λr for r ≥ 1,

with {λr}r≥1 being the Catalan sequence, which satisfies λr ≤ 4r−1. Therefore, we can conclude
that

νr,s ≤ νs,s ≤
26s

24
for r ≥ 0 , s ≥ 0 .

�

A.5.1 Proof of Lemma 4.4.8

We proceed by induction. Let r = 1, the generating function χ
(1)
0 is bounded as

‖χ(1)
0 ‖1 ≤

‖f (0,1)
0 ‖1
α1

≤ ε0Eµ
1

α1
≤ ε0Eµ

T 2
0,1

α1
ν0,1 ,

this verifies the first of (4.27).

We can now bound the terms appearing in H(I;0) = exp(L
χ

(1)
0

)H(0). For ` > 0 we have

‖f (I;0,s)
` ‖1−δ1 ≤

s−1∑
j=0

(
2e

ρσ

)j (
ε0Eµ

1

β1

)j
ε0Eµ

s−j

2`+j
+

(
2e

ρσ

)s(
ε0Eµ

1

β1

)s
E

2`+s

≤ (s+ 1)

(
2e

ρσ
E

)s
ε0Eµ

s

2`
1

βs1

≤ ε0Eµ
sMs

2`
T 2

1,sν
(I)
1,s .

For ` = 0 and s ≥ 2, we have

‖f (I;0,s)
0 ‖1−δ1 ≤

s−1∑
j=0

(
2e

ρσ

)j (
ε0Eµ

1

β1

)j
ε0Eµ

s−j

2j

+

(
2e

ρσ

)s(
ε0Eµ

1

β1

)s
E

2s
+

(
2e

ρσ

)(
ε0Eµ

1

β1

)
‖〈ω(0,s−1), p〉‖1

≤ (s+ 1)

(
2e

ρσ
E

)s
ε0Eµ

s 1

βs1
+

(
2e

ρσ

)(
ε0Eµ

1

β1

)
‖〈ω(0,s−1), p〉‖1 .

Let us stress that the last addend is still unknown.

The norm of the generating function χ
(1)
1 can be bounded as

‖χ(1)
1 ‖1 ≤

‖f (I;0,1)
1 ‖1−δ1
α1

≤ 2

(
2e

ρσ
E

)
ε0Eµ

2

1

α1β1
≤ ε0EµM

2

T 2
0,1

α1β1
ν

(I)
1,1 ,

and the one of the quantity 〈ω(0,1), p〉 as

‖〈ω(0,1), p〉‖1 ≤ ‖f (0,1)
1 ‖1 ≤

ε0Eµ

2
,

thus (4.27) holds true.
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Having just determined ‖〈ω(0,1), p〉‖1, we can now estimate the norm of f
(I;0,2)
0 as

‖f (I;0,2)
0 ‖1−δ1 ≤ 3

(
2e

ρσ
E

)2

ε0Eµ
2 1

β2
1

+

(
2e

ρσ

)(
ε0Eµ

1

β1

)
‖〈ω(0,1), p〉‖1

≤ 3

(
2e

ρσ
E

)2

ε0Eµ
2 1

β2
1

+

(
2e

ρσ

)(
ε0Eµ

1

β1

)
ε0Eµ

2

≤ 3

(
4e

ρσ
E

)2

ε0Eµ
2 1

β2
1

≤ ε0Eµ
2M2T 2

1,2ν
(I)
1,2 .

Besides, the higher order terms, f
(I;0,s)
0 with s > 2, will be explicitly bounded to subsequent

normalization orders.

To conclude the inductive basis, we now bound the terms appearing in H(1) = exp(L
χ

(1)
1

)H(I;0).

First notice that ‖f (1,2)
0 ‖1−d1 = ‖f (I;0,2)

0 ‖1−d1 . The higher order terms with ` = 0 are bounded as

‖f (1,s)
0 ‖1−d1

≤
s−2∑
j=0

(
2e

ρσ

)j (
2

(
2e

ρσ
E

)
ε0Eµ

2

1

β2
1

)j

×

(
(s− j + 1)

(
2e

ρσ
E

)s−j
ε0Eµ

s−j 1

βs−j1

+

(
2e

ρσ

)(
ε0Eµ

1

β1

)
‖〈ω(0,s−j−1), p〉‖1

)

≤
(

2e

ρσ
E

)2s−2

ε0Eµ
s 1

β2s−2
1

s−2∑
j=0

(s− j + 1)


+

s−2∑
j=0

(
2e

ρσ
E

)j+1

ε0Eµ
1

β2j+1
1

‖〈ω(0,s−j−1), p〉‖1

Again, the last addend is still unknown, but this is harmless for the inductive step.

Considering ` = 1, we immediately get

‖f (1,s)
1 ‖1−d1

≤ ‖f (I;0,s)
1 ‖1 +

s−1∑
j=1

(
2e

ρσ

)j (
2

(
2e

ρσ
E

)
ε0Eµ

2

1

β2
1

)j

×

(
(s− j + 1)

(
2e

ρσ
E

)s−j (
ε0Eµ

s−j

2

1

βs−j1

+ ‖〈ω(0,s−j), p〉‖1

))
.

Here also, for s > 2 the last addend is still unknown, while for s = 2 we have

‖f (1,2)
1 ‖1−d1 ≤ 3

(
2e

ρσ
E

)2
ε0Eµ

2

2

1

β2
1

+

(
2e

ρσ

)(
2

(
2e

ρσ
E

))(
ε0Eµ

2

1

β2
1

)(
‖f (I;0,1)

1 ‖1−δ1 + ‖〈ω(0,1), p〉‖1
)

≤ 5

(
4e

ρσ
E

)3
ε0Eµ

2

2

1

β3
1

≤ ε0Eµ
2M3

2

T 2
1,2

β1
ν1,2 .
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Coming to ` ≥ 2, we have

‖f (1,s)
` ‖1−d1

≤
s∑
j=0

(
2e

ρσ

)j (
2

(
2e

ρσ
E

)
ε0Eµ

2

1

β2
1

)j

× (s− j + 1)

(
2e

ρσ
E

)s−j
ε0Eµ

s−j

2`
1

βs−j1

≤
(

2e

ρσ
E

)2s
ε0Eµ

s

2`
1

β2s
1

s∑
j=0

(s− j + 1)

≤ ε0Eµ
sM2s

2`
T 2

1,s

β2
1

ν1,s .

This complete the inductive basis, we can now consider the inductive step from r − 1 to r.

The bound for the generating function χ
(r)
0 is trivial,

‖χ(r)
0 ‖1−dr−1

≤
‖f (r−1,r)

0 ‖1−dr−1

αr
≤
ε0Eµ

rM2r−2T 2
r−1,rνr−1,r

αr
,

this proves the first of (4.27).
For ` = 0 and s ≥ 2, we have

‖f (I;r−1,s)
0 ‖1−dr−1−δr ≤

bs/rc∑
j=0

(
2e

ρσ

)j (
ε0Eµ

rM2r−2
T 2
r−1,r

βr
νr−1,r

)j
‖f (r−1,s−jr)
j ‖1−dr−1

+
2e

ρσ
ε0Eµ

rM2r−2
T 2
r−1,r

βr
νr−1,r‖〈ω(r−1,s−r), p〉‖1−dr−1

≤ ‖f (r−1,s)
0 ‖1−dr−1

+

(
2e

ρσ

)
ε0Eµ

rM2r−2
T 2
r−1,r

βr
νr−1,r‖f (r−1,s−r)

1 ‖1−dr−1

+

bs/rc∑
j=2

(
2e

ρσ

)j (
ε0Eµ

rM2r−2
T 2
r−1,r

βr
νr−1,r

)j
‖f (r−1,s−jr)
j ‖1−dr−1

+
2e

ρσ
ε0Eµ

rM2r−2
T 2
r−1,r

βr
νr−1,r‖〈ω(r−1,s−r), p〉‖1−dr−1

,

Here, for s > 2r the last addend is still unknown and will be determined in the following normal-
ization steps. Instead, for s < 2r the last inequality is bounded by

‖f (r−1,s)
0 ‖1−dr−1

+

(
2e

ρσ

)
ε0Eµ

rM2r−2
T 2
r−1,r

βr
νr−1,r‖f (r−1,s−r)

1 ‖1−dr−1

+

bs/rc∑
j=2

(
2e

ρσ

)j (
ε0Eµ

rM2r−2
T 2
r−1,r

βr
νr−1,r

)j
‖f (r−1,s−jr)
j ‖1−dr−1

+

(
2e

ρσ

)
ε0Eµ

rM2r−2
T 2
r−1,r

βr
νr−1,r

ε0Eµ
s−rM2(s−r)−1

2

T 2
r−1,s−r

βmin{r−1,s−r}
νr−1,s−r

≤ ε0Eµ
sM2s−2T 2

r,sν
(I)
r,s ,

The bound for the norms of ‖f (I;r−1,s)
` ‖1−dr−1−δr with ` ≥ 1 only requires minor modifications,

thus we only report hereafter the corresponding estimates, i.e.,

‖f (I;r−1,s)
1 ‖1−dr−1−δr ≤

ε0Eµ
sM2s−1

2

T 2
r,s

βr
ν(I)
r,s ,

‖f (I;r−1,s)
`≥2 ‖1−dr−1−δr ≤

ε0Eµ
sM2s

2`
T 2
r,s

β2
min{r,s}

ν(I)
r,s ,
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where the first bound is valid for s ≤ r, since the higher order detunings are still unknown.

The norm of the generating function χ
(r)
1 can be bounded as

‖χ(r)
1 ‖1−dr−1−δr ≤

‖f (I;r−1,r)
1 ‖1−δr−1

αr
≤ ε0Eµ

rM2r−1

2

T 2
r−1,r

αrβr
ν(I)
r,r ,

and the one of the quantity 〈ω(r−1,r), p〉 as

‖〈ω(r−1,r), p〉‖1−dr−1
≤ ‖f (r−1,r)

1 ‖1−dr−1
≤ ε0Eµ

rM2r−1

2

T 2
r−1,r

βr−1
νr−1,r ,

this proves (4.27).

Having determined the norm of 〈ω(r−1,r), p〉, we are now able to bound also ‖f (I;r−1,2r)
0 ‖1−dr−1−δr .

We can now complete the proof, bounding the terms appearing in H(r) = exp(L
χ

(r)
1

)H(I;r−1).

For ` = 0 and s ≤ 2r, we have

‖f (r,s)
0 ‖1−dr ≤

bs/rc∑
j=0

(
2e

ρσ

)j (
ε0Eµ

rM2r−1

2

T 2
r−1,r

βr
ν(I)
r,r

)j
ε0Eµ

s−jrM2(s−jr)−2T 2
r,s−jrν

(I)
r,s−jr

≤ ε0Eµ
sM2s−2T 2

r,sνr,s .

where we make use of Lemma 4.4.5 to get rid of the βr.
For ` = 1 and s ≤ 2r, we have

‖f (r,s)
1 ‖1−dr ≤

bs/rc∑
j=0

(
2e

ρσ

)j (
ε0Eµ

rM2r−1

2

T 2
r−1,r

βr
ν(I)
r,r

)j

×

(
ε0Eµ

s−jrM2(s−jr)−1

2`
T 2
r,s−jr

βr
ν

(I)
r,s−jr +

ε0Eµ
rM2(s−jr)−1

2

T 2
r−1,s−jr

βmin{r−1,s−jr}
νr−1,s−jr

)

≤ ε0Eµ
sM2s−1

2

T 2
r,s

βr
νr,s .

where again we make use of Lemma 4.4.5 to get rid of the βr and the definition of M in (4.25) so
as to take into account the contribute of the detunings.

The remaining cases only require minor modifications.
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Lattices and a Theorem of Poincaré. Mathematics in Engineering, 2021, 3(4): 1-20. DOI:
10.3934/mine.2021029 (Special Issue in honor of Antonio Giorgilli)

[74] T. Penati, M. Sansottera, V. Danesi. On the continuation of degenerate periodic orbits via
normal form: full dimensional resonant tori. Commun. Nonlinear Sci. Numer. Simul. 61
(2018), 198-224, DOI: 10.1016/j.cnsns.2018.02.003

[75] T. Penati, M. Sansottera, S. Paleari, V. Koukouloyannis, P.G. Kevrekidis. On the nonex-
istence of degenerate phase-shift discrete solitons in a dNLS nonlocal lattice. Physica D,
370:1-13, 2018. doi:10.1016/j.physd.2017.12.012

[76] T. Penati, V. Koukouloyannis, M. Sansottera, P.G. Kevrekidis, S. Paleari. On the nonex-
istence of degenerate phase-shift multibreathers in Klein-Gordon models with interactions
beyond nearest neighbors. Physica D, 398:92-114, 2019.
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