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ABSTRACT
The advances in understanding the inherited biological 
mechanisms of non- small cell lung cancer harbouring 
epidermal growth factor receptor (EGFR) mutations led to a 
significant improvement in the outcomes of patients treated 
with EGFR tyrosine kinase inhibitors. Despite these clinically 
impressive results, clinical results are not always uniform, 
suggesting the need for deepening the molecular heterogeneity 
of this molecularly defined subgroup of patients beyond the 
clinical and biological surface.
The availability of tissue and blood- based tumour genotyping 
allows us to improve the understanding of molecular and 
genetic intratumor heterogeneity, driving the measurement 
of clonal evaluation in patients with lung cancer carrying 
EGFR mutations. Genetic diversification, clonal expansion 
and selection are highly variable patterns of genetic diversity, 
resulting in different biological entities, also a prerequisite for 
Darwinian selection and therapeutic failure.
Such emerging pieces of evidence on the genetic diversity, 
including adaptive and immunomodulated aspects, provide 
further evidence for the role of the tumour microenvironment 
(TME) in drug- resistance and immune- mediated mechanisms. 
Matching in daily clinical practice, the detailed genomic profile 
of lung cancer disease and tracking the clonal evolution could 
be the way to individualise the further target treatments in 
EGFR- positive disease. Characterising the tumour and immune 
microenvironment during the time of the cancer evaluation 
could be the way forward for the qualitative leap needed 
from bench to bedside. Such a daring approach, aiming at 
personalising treatment selection in order to exploit the TME 
properties and weaken tumour adaptivity, should be integrated 
into clinical trial design to optimise patient outcome.

INTRODUCTION
Lung cancer is the main cause of death for 
cancer worldwide.1 In the last decades, many 
efforts have been spent in order to improve 
the overall survival (OS) and quality of life of 
patients with advanced- stage non- small cell 
lung cancer (NSCLC). In particular, signifi-
cant results were obtained from several clin-
ical trials that investigated the adoption of 
tyrosine kinase inhibitors (TKIs) instead of 
chemotherapy, improving significantly overall 
response rates (RRs) and progression- free 

survival (PFS) in different molecular subsets, 
including the EGFR- mutated subtype.2–6

The importance of the epidermal growth 
factor receptor (EGFR) gene molecular assess-
ment for EGFR TKI administration was raised 
over a decade ago. As a matter of fact, the 
efficacy of these novel drugs is subordinated 
to the identification of sensitising mutations 
in the EGFR gene.7 From an epidemiological 
point of view, EGFR mutations range from 
10% to 15% in Caucasian patients and up to 
50% in East- Asian patients, and are identified 
more frequently in patients with adenocarci-
noma, who are female and who have never 
smoked or are former smokers.8 9 For this 
reason, the College of American Patholo-
gists, the International Association for the 
Study of Lung Cancer, the Association for 
Molecular Pathology, the National Compre-
hensive Cancer Network and the American 
Society of Clinical Oncology guidelines 
identified several genes to that necessarily 
require testing in patients with advanced 
NSCLC, including EGFR.10–12 Noteworthy, 
despite the clinical efficacy of EGFR TKIs in 
the vast majority of patients with advanced- 
stage NSCLC harbouring a sensitising EGFR 
mutation, is that a non- negligible percentage 
of patients displayed mixed responses or 
progressive disease.13 Furthermore, the intra-
tumor heterogeneous distribution of EGFR 
mutations has been shown to be involved 
as a resistance mechanism during TKI 
treatments.14 As a consequence, only cells 
harbouring EGFR mutations will respond 
to TKI action, with the remaining tumour 
cells, insensitive to the treatment, respon-
sible for disease persistence and ultimately 
progression15 (figure 1). In this setting, the 
EGFR sensitive mutant tumour cells may 
coexist with other subclonal tumour cells with 
either different EGFR genetic alterations or 
with other gene mutations.16 Interestingly, 
the presence of multiple nodules is related 
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to a higher rate of heterogeneity.13 Besides, mutational 
heterogeneity is present in a non- negligible percentage 
of patients with advanced- stage NSCLC between the 
primary tumour and its metastases.17 Driver mutations 
(eg, EGFR) are early events in tumour development and 
for this reason are homogenously existing in all tumour 
cells, whereas other alterations may arise during cancer 
progression and adaptation.17 18 Of note, a wide range of 
mutations can affect EGFR with different responsiveness 
to the different target treatments.19 In addition, EGFR 
mutations may coexist with other alterations in the same 
gene or other different genes.20 21

Patients harbouring EGFR sensitive mutations, who 
receive EGFR TKIs in the metastatic setting, usually 
achieved a significant disease response with prolonged 
survival.

Although the effectiveness of TKIs is confirmed by 
a multitude of preclinical and clinical studies, not all 
patients equally benefit from these target treatments,22 
mainly confirming three clusters within the treated 
EGFR population, characterised by different prognosis 
subgroups: poor prognosis, characterised with limited 
survival and fast progression (OS <12 months); good prog-
nosis, overlapping survival of pivotal randomized clinical 
trials (RCTs) (OS 24–30 months); excellent prognosis, 
characterised by doubled or tripled survival, compared 
with standards (OS more than 36 months). This survival 
heterogeneity appears closely linked to the tumour 
heterogeneity, through the increasing role of co- occur-
ring mutations and immune- microenvironment, identi-
fying new potential prognostic and predictive biomarkers 
in EGFR- positive disease. In this review, we overview the 
tumour heterogeneity of NSCLC harbouring EGFR muta-
tions, from tumour clonality to co- occurring mutations, 

through the complex role of the tumour microenviron-
ment (TME).

EGFR TUMOUR CLONALITY
The concept of clonal evolution of tumour cell popu-
lation was reported for the first time as early as 1976.23 
In this theory, neoplastic cells take origin from a single 
progenitor that subsequently acquires, under selective 
pressure, different genomic alterations.23 For this reason, 
these genomic alterations, which occur in the early 
phases of cancer development and give an advantage in 
cancer growth, are identified in all neoplastic cells.23 24 
To date, lung adenocarcinoma seems to originate from a 
multistep progression, from atypical adenomatous hyper-
plasia to adenocarcinoma in situ, and finally invasive 
adenocarcinoma.25 In this evolution, EGFR driver altera-
tions are acquired in the early step of cancer progression 
and can be identified in the vast majority of neoplastic 
cancer cells. Driver mutations, such as those in the EGFR, 
have been shown to be significantly more often truncal 
events compared with mutations in non- driver genes that 
are usually branch mutations.26 As a consequence, the 
heterogeneous distribution of EGFR mutations in lung 
adenocarcinomas is extremely rare, as demonstrated in 
a seminal study of Yatabe et al.15 Of note, similar results 
were obtained by Sun et al.27 In this study, identical EGFR 
mutations were identified in different areas of tumours 
featuring mixed histology.27 In the experience of Mattsson 
et al, even if three different histological areas were 
selected for molecular analysis, the same EGFR molecular 
status emerged.28 In order to evaluate the spatial distribu-
tion of EGFR and Kirsten Rat Sarcoma Viral Oncogene 
Homolog mutations, Dietz et al analysed central tumour 
sections (5 mm×5 mm segments) of lung mutated 

Figure 1 Clonal evolution through epidermal growth factor receptor- targeted therapy. (A) Intratumor heterogeneity based 
on multiregion sequencing. (B) Linear cancer evolution through subclonal selection. (C) Cell progression after tyrosine kinase 
inhibitors showing different genomic patterns of selection through different lines of therapy.
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adenocarcinomas.29 Of note, driver mutations were iden-
tified in 462 (98.9%) out of 467 tumour segments with 
different allelic frequencies (range: 0.04–19.36).29 Sun 
et al evidenced the higher presence of EGFR mutations 
in cancer cells, performing a cytological fine needle 
aspiration (FNA) approach.30 A higher concordance 
(91.7%) was reached when the FNA molecular approach 
was compared with the histological one.30 Despite these 
pieces of evidence, it is currently known that tumours are 
characterised by distinct subclones with several genomic 
alterations.31 Intratumoral heterogeneity was reported 
in different cancer types, including NSCLC, as a conse-
quence of genetic and epigenetic alterations derived 
from genomic and chromosomal instability and different 
patterns of clonal evolution over space and time.32 33 In 
fact, despite driver mutations (eg, EGFR) occurring early 
in tumour growth and development and consequently 
homogenously distributing within the tumour, other 
alterations may arise during cancer progression and adap-
tation.17 Single- cell analysis may provide insight into the 
occurrence of intratumoral heterogeneity of EGFR muta-
tions.34 In cases in which both EGFR- mutated and non- 
mutated neoplastic cells are present, response to TKIs 
may be of low intensity.14 When different neoplastic cells 
are discovered within the same lesion, only tumour cells 
harbouring EGFR sensitising mutations display respon-
siveness to TKI treatments. Conversely, the remaining 
non- mutated neoplastic cells, which are not sensitive to 
the target treatment, without the selective pressure may 
replace the decaying cells.15 In this setting, subclonal 
tumour cells without EGFR sensitising mutations may 
coexist EGFR sensitive mutant tumour cells.16 Inter-
estingly, the higher rate was evidenced when multiple 
nodules affect the same patient.13 As far as mutational 
heterogeneity is concerned, metastases feature different 
genomic alterations with respect to the primary site in 
a non- negligible percentage of patients with advanced- 
stage NSCLC.17 Liquid biopsy may overcome the limi-
tation of spatial heterogeneity in lung cancer.35 36 Each 
single tumour cell actively or passively sheds nucleic acids 
into the bloodstream.37 This evidence may be relevant, in 
particular when resistance mutations arise.38 39

BIODIVERSITY OF EGFR MUTATIONS: DRIVER, PASSENGER AND 
CO-OCCURRING MUTATIONS
As far as EGFR mutations are concerned, the vast majority 
is represented by in- frame deletions involving exon 19 
(about 45%) and exon 21 p.L858R (about 40%).40 Of 
note, these mutations lie in the tyrosine kinase domain of 
EGFR protein and are targetable by TKIs. As early as 2004, 
Lynch et al and Paez et al discovered for the first time the 
driver role of EGFR mutations in patients with NSCLC 
.7 41 The authors reported for the first time that mutations 
involving the tyrosine kinase domain of EGFR protein 
might predict responsiveness to the first generation TKI 
gefitinib.7 The remaining (10%–15%) ‘uncommon’ 
EGFR mutations are still under investigation for their 

ability to predict response or resistance to specific EGFR 
TKIs.19 In this setting, a broad range of different alter-
ations, covering exons 18–21, should be correctly classi-
fied in order to administrate the best treatment choice.19 
Exon 18 mutations rarely occur (about 3% and 4%) 
in patients with advanced- stage NSCLC and limited 
literature focused the attention on their function.42–44 
However, most frequently, the alterations within exon 
18 lie in codons 719 and 709.45 Collectively, these muta-
tions seem to be more sensitive to second- generation 
EGFR TKIs followed by third- generation, and then first- 
generation inhibitors (primary resistance or low respon-
siveness).19 In addition to the frequent classical deletions 
(comprising up to 30 alterations) investigated in the 
different clinical trials,46 exon 19 harbours many other 
less investigated deletions.47 Of note, exon 19 deletions 
may interest the entire exon (codons 746–761) and, in 
a non- negligible percentage of cases (>50%), may be 
associated with additional insertions (indels).48 Despite 
a high RR to all TKIs, it would be preferred to admin-
istrate the third- generation TKIs.19 Exon 20 harbours a 
heterogeneous group of mutations (point mutations, 
duplications, insertions).49 The resistance mutation 
p.T790M represents the most common EGFR exon 
20 point mutation. This latter occurs in 50%–60% of 
patients with advanced- stage NSCLC with acquired resist-
ance to first- generation or second- generation TKIs, but it 
is sensitive to the third- generation TKI osimertinib.5 50 51 
Noteworthy, the prevalence of this alteration in treatment 
naïve patients is quite low with (about 2%)52 and has been 
associated with inherited susceptibility to lung cancer.53 54 
Exon 20 is also involved in other resistance mechanisms. 
Thress et al reported for the first time the EGFR exon 
20 p.C797S resistance point mutation after treatment 
with osimertinib.55 Conversely, EGFR exon 20 insertions 
represent 4%–12% of all EGFR mutations;56 whereas less 
frequent point mutations are identified in codon 768 (p.
S768I; about 1%).57 Nevertheless, in both cases, respon-
siveness to afatinib or osimertinib was reported.19 As far as 
exon 21 is concerned, the second most frequent mutated 
codon is 861 (p.L861Q; 1% and 2%).58 The spectrum 
of the response of this alteration is similar to that seen 
in exon 20 insertions and p.S768I.19 When considering 
EGFR mutations, it pivotal to distinguish between muta-
tions able to confer an advantage in tumour growth and 
development (so- called ‘driver mutations’) and the other 
mutations that can arise in cancer cells without pathogenic 
features (so- called ‘passenger mutations’).59 In patients 
with NSCLC, tobacco habits may induce the highest rate 
of mutations. Of note, a high percentage of these altera-
tions are passenger mutations, useful to identify a muta-
tional signature characteristic of tobacco smoking.60 In 
particular, it was evidenced a higher percentage of signa-
ture 4 (C>A mutations) and 5 (C>T and T>C mutations) 
in lung cancer associated with smoking history.60 To this 
end, several efforts have been spent in order to classify 
these alterations correctly. In this setting, computational 
analysis may be helpful to define driver and passenger 
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mutations. In particular, the analysis of amino acid resi-
dues through the protein in both wild- type and mutant 
proteins and the analysis of tridimensional structure 
should be taking into account.61 Anoosha et al underlined 
that leucine and glycine substitutions in helix and strand 
are more frequently associated with driver mutations, 
whereas charged residues arginine and glutamic acid 
are more frequently associated with coil- buried and coil- 
exposed mutants, respectively.61 Finally, EGFR mutations 
can be associated with each other or with other genetic 
alterations which may be present. EGFR multiple muta-
tions account for about 25% of patients with EGFR muta-
tions.20 In the vast majority of cases, classical sensitising 
mutations are associated with additional rare alterations.20 
In these cases, second- generation and third- generation 
TKIs may play a pivotal therapeutic role.19 Interestingly, 
EGFR mutations may be associated with other gene 
alterations, in particular in tumor protein P53 (TP53).21 
Yu et al identified in pretreated EGFR- mutated samples 
co- occurring mutations in TP53, phosphatidylinositol-4,5- 
bisphosphate 3- kinase catalytic subunit alpha (PIK3CA), 
catenin beta 1 and retinoblastoma 1 (RB1).62 The authors 
underlined a shorter time to progression on EGFR TKI 
when a TP53 mutation was evidenced.62 In another study, 
Chen et al identified co- occurring mutations in TP53, 
RB1, PIK3CA, FA tumour suppressor homolog 1 (FAT1), 
or ATP- binding cassette subfamily B member 1 (ABCB1), 
mitogen- activated protein kinase kinase 2.63 Interest-
ingly, TP53, RB1, FAT1 and ABCB1 were associated with 
the worse PFS.63 Another gene that may occur in asso-
ciation with EGFR is represented by AT- rich interaction 
domain 1A.64 Despite its clinical role is not completely 
explain, the authors hypothesised that this association 
might limit targeted therapy response.64 Recent findings 
showed that co- mutations can occur in several druggable 
genes, as well, including MET deregulation, BRAF muta-
tions, HER2 amplification and gene fusions.36 65 Despite 
the encouraging results from dual TKI inhibition at the 
occurrence of EGFR TKI resistance,66 much less is known 
about the role of targetable co- mutations in EGFR TKI- 
naïve patients, and future investigation is needed in this 
setting.

IMMUNE HETEROGENEITY IN EGFR-POSITIVE NSCLC
EGFR- mutant NSCLCs represent a big challenge for 
the immunotherapy treatments that have dramatically 
changed survival in NSCLC but still have not found a role 
in treating patients with EGFR- positive NSCLC.

Though in a phase II trial, patients with pretreated 
EGFR/ALK- positive aNSCLC showed similar RRs to 
durvalumab when compared with wild- type popula-
tion,67 the main subgroup analysis and meta- analysis of 
randomised controlled trials with immunotherapy are 
concordant in demonstrating no improvements in OS 
compared with standard chemotherapy.68 The only excep-
tion to this evidence, to date, is represented by the first- 
line combination treatment of chemo- immunotherapy 

with an antiangiogenic drug (IMpower150 trial, evalu-
ating the addition of atezolizumab to carboplatin/pacli-
taxel and bevacizumab), where the benefit in PFS and OS 
is present regardless of the EGFR/ALK status.69 However, 
these results should be interpreted with caution given the 
limited number of patients included and the heteroge-
neity of patients with EGFR mutations enrolled (patients 
with sensitising and resistant mutations, TKI- naïve and 
TKI- pretreated patients). Further prospective studies are 
required, and some ongoing clinical trials are exploring 
this question.

Those controversial evidences well reflect the immune 
heterogeneity of EGFR- mutant NSCLC, where the effi-
cacy of treatments with immune checkpoint inhibitors is 
dependent on the strong interplay among tyrosine kinase 
pathway mediators, programmed death- ligand 1 (PD- L1), 
TME factors such as vascular endothelial growth factor 
(VEGF) and interferon- gamma (IFNg).70

It is well established that EGFR- positive NSCLC is asso-
ciated with low mutational burden, consistently with 
the evidence that this kind of molecular alteration is 
more common in no/light smoker patients. In contrast, 
tumour mutation burden (TMB) is strongly related to 
smoking history.71–73 As TMB is related to response to 
monotherapy with immune checkpoint inhibitors, the 
low TMB in EGFR- mutant NSCLCs is consistent with the 
lack of benefit from such treatments in these patients.74 75 
In contrast with this aspect, TMB was found to be a nega-
tive prognostic factor for EGFR mutant NSCLC treated 
with EGFR TKIs.76 Interestingly, a recent work by Hast-
ings et al showed that EGFR L858R and G719 tumours 
have higher TMB compared with EGFR del19 tumours, 
consistently with the finding of worse outcome with ICIs 
of EGFR del19 tumours compared with EGFR WT.77

Conversely, PD- L1 expression shows an opposite 
behaviour than TMB in EGFR- mutant NSCLC, as it 
is frequently highly expressed in oncogene- addicted 
tumours, both at preclinical and clinical level.78 79 This 
finding is apparently in contrast with the data showing 
an increase in response to immunotherapy with the 
increasing levels of PD- L1.80 Indeed, PD- L1 expression in 
EGFR- mutant cells is the result of signalling pathways that 
are activated downstream of the receptor tyrosine kinase 
(RTK). Phosphoinositide 3- kinase/AKT pathway, as well 
as mitogen- activated protein kinase and signal trans-
ducer and activator of transcription 3 (STAT3) through 
Src and Src- homology region 2 domain- containing phos-
phatase-2, can induce upregulation of PD- L1.70 EGFR 
inhibition with EGFR TKIs decreases PD- L1 levels, which 
are restored at the occurrence of TKI resistance.78 Since 
EGFR TKI resistance is commonly mediated by the 
activation of other RTKs and downstream mediators, 
a profound role of cross- talking pathways and signal-
ling molecules as immune modulators are emerging 
and attempts to combine TKIs and immunotherapy are 
currently ongoing.81 82

The immune features of EGFR- mutant cells are also 
strongly dependent on the TME. EGFR- mutant tumours 
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show a complex interaction with the TME, leading to 
an increase in T regulatory cells (T regs), decrease in 
tumour infiltrating lymphocytes and downregulation of 
major histocompatibility complex.83

IFNg, secreted by immune infiltrating cells, modulates 
STAT3/STAT1 balance through Janus kinase and, conse-
quently, mediates PD- L1 expression. Moreover, through 
the activation of cyclin- dependent kinase 5, it also inhibits 
the activity of PD- L1 repressors.84 85 In EGFR- mutant cells, 
where the activity of STAT3 is crucial for survival, the 
ability of IFNg of modulating STAT3 plays an essential 
role in immune modulation.

Also, VEGF is essential in EGFR- mutant NSCLC, not 
only because of its well- established role in EGFR–VEGF 
cross- talk, alteration affecting peritumoral and intratu-
moral vascularisation and consequently drug delivery 
impairment and EGFR TKI resistance.86 Indeed, VEGF is 
also an important immune modulator. In the presence of 
VEGF, myeloid- derived suppressor cells are stimulated to 
migrate and accumulate within tumour size, where they 
are responsible for the increase in T regs and decrease 
in T cytotoxic cells’ activity.87 88 This mechanism is prob-
ably responsible for the synergism observed with immune 
checkpoint inhibitors and antiangiogenic drugs in 
patients with EGFR- mutant NSCLC .69

The complex mechanisms of EGFR- mediated immune 
modulation are thus at the basis of the dynamic immune 
heterogeneity in EGFR- mutant NSCLC, which reflects the 
influence of EGFR- activating status in different moments 
of the lung cancer disease, EGFR TKI- naïve, TKI treat-
ment, TKI resistance and subsequent treatments.

CONCLUSIONS
Several distinct features contribute to heterogeneity in 
EGFR- positive lung tumours. Tumour clonality affects 
intratumoral heterogeneity, whereas the biodiversity of 
EGFR mutations and the presence of co- mutations have 
an impact also on immune heterogeneity and clinical 
heterogeneity. Indeed, specific subtypes of EGFR muta-
tions determine different patterns of response to EGFR 
TKIs, ranging from high and prolonged sensitivity to 
minimal or no benefit. The presence of co- occurring 
mutations can reduce EGFR TKI activity driving earlier 
resistance to EGFR inhibition sustained by the selection 
of resistant cell clones. On the other hand, the presence 
of co- mutations may increase TMB, therefore influencing 
tumour immunogenicity and subsequent potential effi-
cacy of immune- modulating drugs.

In parallel, TME is dynamically influenced by EGFR 
signalling pathways. Consequently, it may substantially 
differ at different tumour sites, not only due to intrinsic 
organ- specific features but also as a reflection of EGFR 
tumour clonality across metastatic sites.

Current clinical standard of care in EGFR- mutant 
lung cancer is barely able to face this complex biolog-
ical and clinical scenario. The described mechanisms 
responsible for intratumoral, clonal, immune and clinical 

heterogeneity are not easy to assess in a comprehensive 
and dynamic study. In our view, a multilevel diagnostic 
approach based on both tissue and blood next- generation 
sequencing should always be considered, when available, 
to obtain a more comprehensive snapshot of EGFR- 
mutant disease. The application of such a systematic and 
dynamic approach including repeated tissue and liquid 
biopsies at disease progression could be a highly effec-
tive bench- to- bedside method, with the potentiality to 
better select treatments according to specific features and 
correlates of EGFR heterogeneity.
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