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Abstract

This Thesis focuses on two main topics. Firstly, we introduce and analyze the novel
concept of Systemic Optimal Risk Transfer Equilibrium (SORTE), and we progres-
sively generalize it (i) to a multivariate setup and (ii) to a dynamic (conditional)
setting. Additionally we investigate its relation to a recently introduced concept of
Systemic Risk Measures. We present Conditional Systemic Risk Measures and study
their properties, dual representation and possible interpretations of the associated
allocations as equilibria in the sense of SORTE. On a parallel line of work, we de-
velop a duality for the Entropy Martingale Optimal Transport problem and provide
applications to problems of nonlinear pricing-hedging. The mathematical techniques
we exploit are mainly borrowed from functional and convex analysis, as well as prob-
ability theory. More specifically, apart from a wide range of classical results from
functional analysis, we extensively rely on Fenchel-Moreau-Rockafellar type conju-
gacy results, Minimax Theorems, theory of Orlicz spaces, compactness results in the
spirit of Komlós Theorem. At the same time, mathematical results concerning util-
ity maximization theory (existence of optima for primal and dual problems, just to
mention an example) and optimal transport theory are widely exploited.



2



Contents

Introduction 7
I.1 Systemic Optimal Risk Transfer Equilibrium . . . . . . . . . . . . . . . 8
I.2 Multivariate Systemic Optimal Risk Transfer Equilibrium . . . . . . . . 14
I.3 Conditional Systemic Risk Measures . . . . . . . . . . . . . . . . . . . 18
I.4 Entropy Martingale Optimal Transport . . . . . . . . . . . . . . . . . . 24

Acknowledgements 35

1 Systemic Optimal Risk Transfer Equilibrium 37
1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.2 On several notions of Equilibrium . . . . . . . . . . . . . . . . . . . . . 39

1.2.1 Pareto Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.2.2 Systemic utility maximization . . . . . . . . . . . . . . . . . . . 39
1.2.3 Risk Exchange Equilibrium . . . . . . . . . . . . . . . . . . . . 40
1.2.4 Systemic Optimal Risk Transfer Equilibrium (SORTE) . . . . . 41
1.2.5 Explicit Formulas in the Exponential Case . . . . . . . . . . . . 45

1.3 Proof of Theorem 1.2.14 and Theorem 1.2.15 . . . . . . . . . . . . . . . 45
1.3.1 Scheme of the proof . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.3.2 Minimax Approach . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.3.3 Utility Maximization with a fixed probability measure . . . . . . 55
1.3.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.3.5 Dependence of the SORTE on X and on B . . . . . . . . . . . . 60

1.4 Exponential Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
1.4.1 Explicit formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 62
1.4.2 A toy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
1.4.3 Dependence on weights and stability . . . . . . . . . . . . . . . 67

1.5 Appendix to Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.5.1 Orlicz Spaces and Utility Functions . . . . . . . . . . . . . . . . 68
1.5.2 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2 Multivariate Systemic Optimal Risk Transfer Equilibrium 75
2.1 Preliminary notations and Multivariate Utility . . . . . . . . . . . . . . 76

2.1.1 Multivariate Utility Functions . . . . . . . . . . . . . . . . . . . 76
2.2 Multivariate Orlicz Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.3 Setup and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4 Multivariate Systemic Optimal Risk Transfer Equilibrium . . . . . . . . 83

2.4.1 Main Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3



2.4.2 Pareto Allocation and Nash Equilibrium . . . . . . . . . . . . . 85
2.4.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

On the existence of an mSORTE and Nash Equilibrium . 88
On uniqueness of an mSORTE and Pareto Optimality . 89

2.4.4 Dependence on X of mSORTE . . . . . . . . . . . . . . . . . . 90
2.4.5 On the assumptions and examples . . . . . . . . . . . . . . . . . 92

Assumption 2.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 92
The ∆2 condition . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Assumption 2.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Main Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.4.6 Comparison with univariate SORTE . . . . . . . . . . . . . . . 95
2.5 Systemic Utility Maximization and Duality . . . . . . . . . . . . . . . . 96

2.5.1 Preliminary Study . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.5.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.5.3 Optimization with fixed Q ∈ QV . . . . . . . . . . . . . . . . . 102
2.5.4 Refined results: Existence of the optimizers . . . . . . . . . . . 104

Setup A and Setup B . . . . . . . . . . . . . . . . . . . . . . . . 106
Setup C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

2.5.5 Working on (L∞(P))N . . . . . . . . . . . . . . . . . . . . . . . 116
2.5.6 General case: total wealth A ∈ R . . . . . . . . . . . . . . . . . 117

2.6 Appendix to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2.6.1 Superdifferentials . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2.6.2 Additional properties of Multivariate Utilitity Functions . . . . 119
2.6.3 Additional properties of Conjugates of Multivariate Utility Func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
2.6.4 Results on Multivariate Orlicz Spaces . . . . . . . . . . . . . . . 124

Sequential w∗-compactness in Orlicz Spaces . . . . . . . . . . . 127
2.6.5 On Komlós Theorem . . . . . . . . . . . . . . . . . . . . . . . . 129
2.6.6 Integrability Issues . . . . . . . . . . . . . . . . . . . . . . . . . 129

3 Dynamic Systemic Risk Measures 133
3.1 Static Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.2 Conditional Systemic Risk Measures . . . . . . . . . . . . . . . . . . . 135

3.2.1 Setup and Notation . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.2.2 Dual Representation of Conditional Systemic Risk Measures . . 137

3.3 Multivariate Utility Functions and Induced Orlicz Spaces . . . . . . . . 140
3.3.1 Multivariate Utility Functions . . . . . . . . . . . . . . . . . . . 140
3.3.2 Multivariate Orlicz Spaces . . . . . . . . . . . . . . . . . . . . . 141

3.4 Conditional Shortfall Systemic Risk Measures on (L∞(F))N . . . . . . 142
3.4.1 Proof of Theorem 3.4.4 . . . . . . . . . . . . . . . . . . . . . . . 144
3.4.2 Uniqueness and Integrability of optima of ρG (·) . . . . . . . . . 154

Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

3.4.3 Optimization with a fixed measure Q ∈ Q1
G . . . . . . . . . . . . 158

3.5 The exponential case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.5.1 Explicit formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4



Finitely generated G . . . . . . . . . . . . . . . . . . . . . . . . 161
Countably generated G: explicit formulas . . . . . . . . . . . . . 164
General G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

3.5.2 Time consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 168
3.6 Conditional Shortfall Systemic Risk Measures and equilibrium: Dy-

namic mSORTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.7 Appendix to Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

3.7.1 Essential suprema and infima . . . . . . . . . . . . . . . . . . . 176
3.7.2 Proofs: Static Systemic Risk Measures . . . . . . . . . . . . . . 176
3.7.3 Miscellaneous Results . . . . . . . . . . . . . . . . . . . . . . . . 177
3.7.4 Additional properties of multivariate utility functions . . . . . . 178

4 Entropy Martingale Optimal Transport 181
4.1 A Generalized Optimal Transport Duality . . . . . . . . . . . . . . . . 182

4.1.1 The Entropy Martingale Optimal Transport Duality . . . . . . . 185
4.1.2 A useful rephrasing of Theorem 4.1.4 . . . . . . . . . . . . . . . 189

4.2 Additive structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.2.1 Additive Structure of U . . . . . . . . . . . . . . . . . . . . . . 191
4.2.2 Duality for the general Cash Additive setup . . . . . . . . . . . 191
4.2.3 Additive Structure of D. . . . . . . . . . . . . . . . . . . . . . . 192
4.2.4 Divergences induced by utility functions . . . . . . . . . . . . . 192

4.3 Applications of the Main Theorems of Section 4.1 . . . . . . . . . . . . 194
4.3.1 Subhedging and Superhedging . . . . . . . . . . . . . . . . . . . 194

Superhedging and Subhedging without Options . . . . . . . . . 198
Penalization with market prices . . . . . . . . . . . . . . . . . . 198

4.3.2 Beyond uniperiodal semistatic hedging . . . . . . . . . . . . . . 201
Dual representation for Generalized OCE associated to the in-

direct utility function . . . . . . . . . . . . . . . . . . 202
4.4 Appendix to Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

4.4.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Weak and Narrow Topology . . . . . . . . . . . . . . . . . . . . 204

4.4.2 Auxiliary Results and Proofs . . . . . . . . . . . . . . . . . . . 204
4.4.3 On Minimax Duality Theorem . . . . . . . . . . . . . . . . . . . 208

5



6



Introduction

This Thesis takes its beginnings from a quite natural question: given the notion of
Systemic Risk Measures (SRM) of Biagini et al. (2020) [20], what can we say from the
point of view of equilibrium? In [20] the authors study the following problem defining
SRM via scenario-dependent allocations:

X 7→ ρ(X) := inf

{
N∑
j=1

Y j | Y ∈ C,
N∑
j=1

EP
[
uj
(
Xj + Y j

)]
≥ B

}

where C stands for a set of feasible random allocations such that for every Y ∈ C it
holds that

∑N
j=1 Y

j is deterministic, even though each Y j is a random variable. One
of the key findings in [20] is that for every initial datum X there exists a vector of
probability measures QX such that

ρ(X) = ρQX (X) := inf

{
N∑
j=1

EQjX
[Y j] | Y satisfies

N∑
j=1

EP
[
uj
(
Xj + Y j

)]
≥ B

}
.

We might infer that each feasible allocation Y has a natural, initial-time determinis-
tic counterpart [EQjX

[Y j]]Nj=1 one might use to build the capital ρ(X). Consequently,

SRM in [20] are set in fact in a uniperiodal framework in which exchanges take place
both at initial and at terminal time. Inspired by the setup of [20] we consider a
system of agents, each with an initial risky endowment, interacting in a uniperiodal
environment and having at disposal some exogenously assigned amount A. We de-
sign an equilibrium concept for the following game: the agents share deterministic
amounts at initial time (similarly to the procedure of constructing the total amount
securing the system in [20]) in such a way that the total amount exchanged in the
system is equal to the given A, and at terminal time a second, scenario dependent
reallocation takes place. In order to properly define an equilibrium, we clearly need
a criterion for optimality. We adopt the utility maximization approach. Each set of
initial time deterministic allocations (namely a vector a ∈ RN with

∑N
j=1 a

j = A)

acts as set of budget constraints, given “pricing functionals”[p1, . . . , pN ], for the util-
ity maximization of each agent (who optimizes over terminal time random alloca-
tions, at first ignoring the actions of other players), that is we consider the problems

Upj

j (aj) = sup {EP [uj(X
j + Y j)] | pj(Y j) ≤ aj}. This produces indirect utilities for

each player, depending on the particular initial exchanges. Aggregating (i.e. sum-
ming, in a utilitarian approach) these indirect utilities, we get a value function for a

second optimization problem over deterministic exchanges: a 7→
∑N

j=1 U
pj

j (aj). An
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equilibrium for such a game will consist then of three ingredients: initial time alloca-

tions [a1
X , . . . , a

N
X ] maximizing the aggregate indirect utility

∑N
j=1 U

pjX
j (aj), terminal

time allocations [Y 1
X , . . . , Y

N
X ] each maximizing the indirect utility of single agents

U
pjX
j (ajX), “pricing functionals”[p1

X , . . . , p
N
X ] linking them via ajX = pjX(Y j

X). This
essentially explains the genesis of the concept of Systemic Optimal Risk Transfer
Equilibrium (SORTE), to be introduced more in detail in Section I.1.
Given this initial step, our research branches out into two main directions. Firstly, we
consider a more explicit interaction between agents from the point of view preferences,
allowing for indirect utility of single agents to depend on the actions of other agents.
Using multivariate utility functions, we generalize the concept of SORTE to the one
of Multivariate SORTE and study the consequences of the new interactions from
the point of view of Nash equilibria. An introductory motivation for this step can
be found in Section I.2. Secondly (see Section I.3), dynamics are introduced both
for Systemic Risk Measures and (Multivariate) SORTE using as customary in the
literature conditional expectations. We also explicitly link optimal allocations for
Systemic Risk Measures to (Multivariate) SORTE.
Convex duality methods and functional analysis results used in the research described
above are also applied in the last part of the Thesis, where we turn our attention to
a different topic. We study Entropy Martingale Optimal Transport, a relaxation of
the classical Martingale Optimal Transport problem of Beiglböck et al. [14], in which
the marginal constraints are replaced by general penalization terms. The key point
in our analysis is inspired by the work of Liero et al. [108]: the authors consider
a generalization of the classical transport problem in which the usual infimum, over
probability measures with given marginals P1,P2, of a cost functional in integral form,

namely inf
{∫

K1×K2
c dµ | µ1 = P1, µ2 = P2

}
is replaced by the more general problem

inf
µ∈Meas(K1×K2)

(∫
K1×K2

c dµ+D1(µ1) +D2(µ2)

)
.

The infimum is taken over all measures, but penalization terms for the marginals
(i.e. D1,D2) appear. The classical optimal transport problem admits under suitable
assumptions the duality

inf

{∫
K1×K2

c dµ | µ1 = P1, µ2 = P2

}
= sup

ϕ+ψ≤c
(S1(ϕ) + S2(ψ))

where S1(·) = EP1 [·], S2(·) = EP2 [·]. The duality we develop can be applied to obtain
a nonlinear pricing-hedging duality, in the spirit of [14]: as one might intuitively
guess, the expectations under the given marginals in the classical dual problem will
be replaced by more general (and possibly nonlinear) valuation functionals S1, S2.
Further explanations are deferred to Section I.4.

I.1 Systemic Optimal Risk Transfer Equilibrium

In Chapter 1 we introduce the concept of Systemic Optimal Risk Transfer Equilibrium,
denoted by SORTE, that conjugates the classical Bühlmann’s notion of an equilibrium
risk exchange with capital allocation based on systemic expected utility optimization.
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The capital allocation and risk sharing equilibrium that we consider can be applied to
many contexts, such as: equilibrium among financial institutions, agents, or countries;
insurance and reinsurance markets; capital allocation among business units of a single
firm; wealth allocation among investors.
To fix terminology, we will refer to a participant in these problems (either financial
institution or firms or countries) as an agent; the class consisting of these N agents
as the system; the individual risk of the agents (or the random endowment or future
profit and loss) as the risk vector X := [X1, ..., XN ]; the amount Y := [Y 1, ..., Y N ]
that can be exchanged among the agents as random allocation. We will generically
refer to a central regulator authority, or CCP, or executive manager as a central
bank (CB). In a one period framework, we consider N agents, each one characterized
by a concave, strictly monotone utility function uj : R→ R and by the original
risk Xj ∈ L0(Ω,F ,P), for j = 1, ..., N . Here, (Ω,F ,P) is a probability space and
L0(Ω,F ,P) is the vector space of real valued F -measurable random variables. The
sigma algebra F represents all possible measurable events at the final time T . EP [·]
denotes the expectation under P. Given another probability measure Q, EQ [·] denotes
the expectation under Q. For the sake of simplicity we are assuming zero interest rate.
We present now the main concepts of our approach and leave the details and the
mathematical rigorous presentation to Chapter 1. In order to adequately present the
core problem, we need to shortly elaborate on Bühlmann’s risk exchange equilibrium
and Systemic Optimal (deterministic) Allocation.

1. Bühlmann’s risk exchange equilibrium

We recall Bühlmann’s definition of a risk exchange equilibrium in a pure ex-
change economy (or in a reinsurance market). The initial wealth of agent n
is denoted by xj ∈ R and the variable Xj represents the original risk of this
agent. In this economy each agent is allowed to exchange risk with the other
agents. Each agent has to agree to receive (if positive) or to provide (if negative)

the amount Ỹ j(ω) at the final time in exchange of the amount EQ[Ỹ j] paid (if
positive) or received (if negative) at the initial time, where Q is some pricing

probability measure. Hence Ỹ j is a time T measurable random variable. In
order that at the final time this risk sharing procedure is indeed possible, the
exchange variables Ỹ j have to satisfy the clearing condition

N∑
j=1

Ỹ j = 0 P− a.s.

As in Bühlmann (1980) [32] and (1984) [33], we say that a pair (ỸX ,QX) is a
risk exchange equilibrium if:

(a) for each j, Ỹ j
X maximizes: EP

[
uj(x

j +Xj + Ỹ j − EQX [Ỹ j])
]

among all vari-

ables Ỹ j,

(b)
∑N

j=1 Ỹ
j
X = 0 P−a.s.

It is clear that only for some particular choice of the equilibrium pricing measure
QX , the optimal solutions Ỹ j

X to the problems in (a) will also satisfy the condition
in (b).
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In addition it is evident that the clearing condition in (b) requires that all agents

accept to exchange the amount Ỹ j
X(ω) at the final time T .

Define

CR :=

{
Y ∈ (L0(Ω,F ,P))N |

N∑
j=1

Y j ∈ R

}
(I.1)

that is, CR is the set of random vectors such that the sum of the components is
P-a.s. a deterministic number.

Observe that with the change of notations Y j := xj + Ỹ j − EQX [Ỹ j], we ob-
tain variables with EQX [Y j] = xj for each n, and an optimal solution Y j

X still
belonging to CR and satisfying

N∑
j=1

Y j
X =

N∑
j=1

xj P− a.s. (I.2)

As can be easily checked

sup
Ỹ j

EP

[
uj(x

j +Xj + Ỹ j − EQX [Ỹ j ])
]

= sup
Y j

{
EP
[
uj(X

j + Y j)
]
| EQX [Y j ] ≤ xj

}
.

Hence the two above conditions in the definition of a risk exchange equilibrium
may be equivalently reformulated as

(a’) for each j, Y j
X maximizes EP [uj(X

j + Y j)] among all variables satisfying
EQX [Y j] ≤ xj,

(b’) YX ∈ CR and
∑N

j=1 Y
j
X =

∑N
j=1 x

j P-a.s.

We remark that here the quantity xj ∈ R is preassigned to each agent.

2. Systemic Optimal (deterministic) Allocation

To simplify the presentation, we now suppose that the initial wealth of each
agent is already absorbed in the notation Xj, so that Xj represents the initial
wealth plus the original risk of agent j. We assume that the system has at
disposal a total amount of capital A ∈ R to be used at a later time in case
of necessity. This amount could have been assigned by the Central Bank, or
could have been the result of previous trading in the system, or could have been
collected ad hoc by the agents. The amount A could represent an insurance
pot or a fund collected (as guarantee for future investments) in a community of
homeowners. For further interpretation of A, see also the related discussion in
Section 5.2 of Biagini et al. (2020) [20]. In any case, we consider the quantity A
as exogenously determined. This amount is allocated among the agents in order
to optimize the overall systemic satisfaction. If we denote with aj ∈ R the cash
received (if positive) or provided (if negative) by agent j, then the terminal time
wealth at disposal of agent j will be (Xj + aj). The optimal vector aX ∈RN

could be determined according to the following aggregate time-T criterion

sup

{
N∑
j=1

EP
[
uj(X

j + aj)
]
| a ∈RN s.t.

N∑
j=1

aj = A

}
. (I.3)
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Note that each agent is not optimizing his own utility function. As the vector
a ∈RN is deterministic, it is known at time t = 0 and therefore the agents have
to agree to provide or receive money only at such initial time.

However, under the assumption that also at the final time the agents have confidence
in the overall reliability of the other agents, one can combine the two approaches
outlined in Items 1 and 2 above to further increase the optimal total expected systemic
utility and simultaneously guarantee that each agent will optimize his/her own single
expected utility, taking into consideration an aggregated budget constraint assigned
by the system. Of course an alternative assumption to trustworthiness could be that
the rules are enforced by the CB.

We denote with Lj ⊆ L0(Ω,F ,P) a space of admissible random variables and assume
that Lj+R =Lj. We will consider maps pj : Lj → R that represent the pricing or cost
functionals, one for each agent j. As we shall see, in some relevant cases, all agents
will adopt the same functional p1 = ... = pN , which will then be interpreted as the
equilibrium pricing functional, as in Bühlmann’s setting above, where pj(·) := EQ[·]
for all j. However, we do not have to assume this a priori. Instead we require that
the maps pj satisfy for all j = 1, ..., N :

i) pj is monotone increasing,

ii) pj(0) = 0,

iii) pj(Y + c) = pj(Y ) + c for all c ∈ R and Y ∈ Lj.
Such assumptions in particular imply pj(c) = c for all constants c ∈ R. A relevant
example of such functionals are

pj(·) := EQj [·] , (I.4)

where Qj are probability measures for j = 1, ..., N . Another example could be pj =
−ρj, for convex risk measures ρj.

Now we will apply both approaches, outlined in Items 1 and 2 above, to describe the
concept of a Systemic Optimal Risk Transfer Equilibrium.

3. Systemic Optimal Risk Transfer Equilibrium.

As explained in Item 1, given some amount aj assigned to agent j, this agent
may buy Ỹ j at the price pj(Ỹ j) in order to optimize

EP

[
uj(a

j +Xj + Ỹ j − pj(Ỹ j))
]

.

The pricing functionals pj, j = 1, ..., N have to be selected in such a way that
the optimal solution verifies the clearing condition

N∑
j=1

Ỹ j = 0 P− a.s.

However, as in Item 2, aj is not exogenously assigned to each agent, but only
the total amount A is at disposal of the whole system. Thus the optimal way
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to allocate A among the agents is given by the solution (ỸX , pX , aX) of the
following problem:

sup
a∈RN

{
N∑
j=1

sup
Ỹ j

{
EP

[
uj(a

j +Xj + Ỹ j − pjX(Ỹ j))
]}
|

N∑
j=1

aj = A

}
, (I.5)

N∑
j=1

Ỹ j
X = 0 P− a.s. (I.6)

From (I.5) and (I.6) it easily follows that an optimal solution (Ỹ j
X , p

j
X , a

j
X) fulfills

N∑
j=1

pjX(Ỹ j
X) = 0. (I.7)

Furthermore, letting Y j := aj + Ỹ j − pjX(Ỹ j), from the Cash Additivity of pjX
we deduce pjX(Y j) = aj + pjX(Ỹ j) − pjX(Ỹ j) = aj and

∑N
j=1 Y

j
X =

∑N
j=1 a

j +∑N
j=1 Ỹ

j
X −

∑N
j=1 p

j
X(Ỹ j

X) =
∑N

j=1 a
j and, as before, the above optimization

problem can be reformulated as

sup
a∈RN

{
N∑
j=1

sup
Y j

{
EP
[
uj(X

j + Y j)
]
| pjX(Y j) ≤ aj

}
|

N∑
j=1

aj = A

}
, (I.8)

N∑
j=1

Y j
X = A P− a.s. (I.9)

Analogously to (I.7) we have that a solution (Y j
X , p

j
X , a

j
X) satisfies

N∑
j=1

pjX(Y j
X) = A

by (I.8) and (I.9).

The two optimal values in (I.5) and (I.8) coincide. We see that while each
agent is behaving optimally according to his preferences, the budget constraint
pjX(Y j) ≤ aj are not a priori assigned, but are endogenously determined through
an aggregate optimization problem. The optimal value ajX determines the opti-
mal risk allocation of each agent. It will turn out that ajX = pjX(Y j

X). Obviously,
the optimal value in (I.5) is greater than (or equal to) the optimal value in (I.3),
which can be economically translated into the statement that allowing for ex-
changes also at terminal time increases the systemic performance.

In addition to the condition in (I.9), we introduce further possible constraints
on the optimal solution, by requiring that

YX ∈ B, (I.10)

where B ⊆ CR.
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In Chapter 1, see Section 1.2.4, we formalize the above discussion and show the
existence of the solution (Y j

X , pjX , a
j
X) to (I.8), (I.9) and (I.10), which we call Systemic

Optimal Risk Transfer Equilibrium (SORTE). We show that pjX can be chosen to be of
the particular form pjX(·) := EQjX

[·], for a probability vector QX = [Q1
X , ...,QN

X ]. The

crucial step, Theorem 1.3.5, is the proof of the dual representation and the existence of
the optimizer of the associated problem (1.14). The optimizer of the dual formulation
provides the optimal probability vector QX that determines the functional pjX(·) :=
EQjX

[·]. The characteristics of the optimal QX depend on the feasible allocation set

B. When no constraints are enforced, i.e., when B = CR, then all the components of
QX turn out to be equal. Hence we find that the implicit assumption of one single
equilibrium pricing measure, made in the Bühlmann’s framework, is in our theory a
consequence of the particular selection B = CR, but for general B this in not always
the case. We emphasize that the existence of multiple equilibrium pricing measures
QX = [Q1

X , ...,QN
X ] is a natural consequence of the presence of the - non trivial -

constraints set B, see Reamrk 1.2.9 and Example 1.2.10 for further details.

Bühlmann’s equilibrium (YX) satisfies two relevant properties: Pareto optimality
(there are no feasible allocation Y such that all agents are equal or better off - com-
pared with YX - and at least one of them is better off) and Individual Rationality
(each agent is better off with Y j

X than without it). Any feasible allocation satisfying
these two properties is called an optimal risk sharing rule, see Barrieu and El Karoui
(2005) [9] or Jouini et al. (2007) [99].
We show that a SORTE is unique (once the class of pricing functionals is restricted to
those in the form pj(·) = EQj [·]). We also prove Pareto optimality, see the Definition
1.2.1 and the exact formulation in Theorem 1.3.17.
However, a SORTE lacks Individual Rationality. This is shown in the toy example of
Section 1.4.2, but it is also evident from the expression in equation (I.8). As already
mentioned, each agent is performing rationally, maximizing her expected utility, but
under a budget constraint pjX(Y j) ≤ ajX that is determined globally via an additional

systemic maximization problem (supa∈RN{... |
∑N

j=1 a
j = A}) that assigns priority

to the systemic performance, rather than to each individual agent. In the SORTE
we replace individual rationality with such a systemic induced individual rationality,
which also shows the difference between the concepts of SORTE and of an optimal risk
sharing rule. We also point out that the participation in the risk sharing mechanism
may be appropriately mitigated or enforced by the use of adequate sets B, see e.g.
Example 1.3.20 for risk sharing restricted to subsystems. From the technical point
of view, we will not rely on any of the methods and results related to the notion of
inf-convolution, which is a common tool to prove existence of optimal risk sharing
rules (see for example [9] or [99]) in the case of monetary utility functions, as we do
not require the utility functions to be cash additive. Our proofs are based on the dual
approach to (systemic) utility maximization. This is summarized in Section 1.3.1.
Furthermore, the exponential case is treated in detail in Section 1.4.

Remark I.1.1. We stress the fact that in (I.8) we might add positive weights γ =
[γ1, ..., γN ] ∈ RN , substituting uj(·) in (I.8) with γjuj(·), j = 1, . . . , N . Section 1.4.3
is devoted to a detailed discussion of the non-utilitarian setup (γ 6= 1), with stability
results in the case of exponential utility functions.
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The work presented in Chapter 1 originates from the systemic risk approach developed
in Biagini et al. (2019) [19] and (2020) [20]. The notion of a SORTE is inspired by the
following utility maximization problem, associated to the risk minimization problem

sup
Y ∈B⊂CR

{
EP

[
N∑
j=1

uj(X
j + Y j)

]
|

N∑
j=1

Y j ≤ A

}
, A ∈ R, (I.11)

that was also introduced in [20] and linked to the systemic risk approach adopted
there. Related papers on Systemic Risk Measures are Acharya et al. (2016) [3],
Armenti et al. (2018) [7], Chen et al. (2013) [42], Feinstein et al. (2017) [69], Kromer
et al. (2016) [105]. For an exhaustive overview on the literature on systemic risk, see
Fouque and Langsam (2013) [78] and Hurd (2016) [98].
For a review on Arrow-Debreu Equilibrium (see Debreu (1959) [50]; Mas Colell and
Zame (1991) [109] for the infinite dimensional case) we refer to Section 3.6 of Föllmer
and Schied (2016) [77], which is close to our setup. In the spirit of the Arrow-
Debreu Equilibrium, Bühlmann (1980) [32] and (1984) [33] proved the existence of
risk exchange equilibria in a pure exchange economy. Such risk sharing equilibria had
been studied in different forms starting from the seminal papers of Borch (1962) [26],
where Pareto-optimal allocations were proved to be comonotonic for concave utility
functions, and Bühlmann and Jewell (1979) [34]. The differences with Bühlmann’s
setup and our approach have been highlighted before in detail.
In Barrieu and El Karoui (2005) [9] inf-convolution of convex Risk Measures has been
introduced as a fundamental tool for studying risk sharing. Existence of optimal
risk sharing for law-determined monetary utility functions is obtained in Jouini et al.
(2008) [99] and then generalized to the case of non-monotone Risk Measures by Acciaio
(2007) [1] and Filipović and Svindland (2008) [73], to multivariate risks by Carlier and
Dana (2013) [40] and Carlier et al. (2012)[41], to cash-subadditive and quasi-convex
Risk Measures by Mastrogiacomo and Rosazza Gianin (2015) [110]. Further works on
risk sharing are also Dana and Le Van (2010) [48], Heath and Ku (2004) [87], Tsanakas
(2009) [127], Weber (2018) [128]. Risk sharing problems with quantile-based Risk
Measures are studied in Embrechts et al. (2018) [68] by explicit construction, and in
(2020) [67] for heterogeneous beliefs. In Filipović and Kupper (2008) [70] Capital and
Risk Transfer is modeled as (deterministically determined) redistribution of capital
and risk by means of a finite set of non deterministic financial instruments. Existence
issues are studied and related concepts of equilibrium are introduced. Recent further
extensions have been obtained in Liebrich and Svindland (2018) [107].

The SORTE concept was analyzed, jointly with F. Biagini, J.-P. Fouque, M. Frittelli
and T. Meyer-Brandis, in [18] (2021).

I.2 Multivariate Systemic Optimal Risk Transfer

Equilibrium

We proceed in extending the notion of SORTE to the case when the value function
to be optimized has two components, one being the sum of the single agents’ utility
functions, as in the aforementioned case of SORTE, the other consisting of a truly
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systemic component. This marks the progress from SORTE to Multivariate Systemic
Optimal Risk Transfer Equilibrium (mSORTE). In Chapter 2 we will consider multi-
variate utility functions U : RN → R of the form

U(x) :=
N∑
j=1

uj(x
j) + Λ(x) (I.12)

where u1, . . . , uj : R→ R are (univariate) utility functions and

Λ : RN → R

is a (not necessarily strictly) concave, increasing function on RN that is bounded from
above. Using the additional aggregative term Λ we can model the fact that the choices
of each single agent in the system depend not only on his/her individual preferences,
but also on others agents’ behavior.

Before moving to the discussion of the generalization of SORTE to the multivariate
case, we believe it is instructive to look back at the arguments that motivated the intro-
duction of SORTE and see how these could be generalized under multivariate utility.
More specifically, we consider possible multivariate generalizations for Bühlmann’s
risk exchange equilibrium and for the Systemic Optimal Allocation problem.

1. Bühlmann’s risk exchange equilibrium We find it more comfortable to
look at the formulation in (a’) and (b’). Condition (b’) does not depend on the
particular choice of utilities, hence we will focus on (a’). We observe that the
condition (a’) can be rewritten as follows:

(a′1) the j−th allocation Y j
X , given all other agents’ positions

Y
[−j]
X = [Y 1

X , . . . , Y
j−1
X , Y j+1

X , . . . , Y N
X ]

maximizes the function (see Equation (2.15))

Z 7→ EP
[
uj(X

j + Z)
]

+ EP

[
Λ(X + [Y

[−j]
X ;Z])

]
where [Y [−j];Z] :=

[
Y 1, . . . , Y j−1, Z, Y j+1, . . . , Y N

]
, for Λ ≡ 0, among all

scalar variables Z satisfying EQX [Z] ≤ xj;

(a′2) YX maximizes Z 7→
∑N

j=1 EP [uj(X
j + Zj)] + EP [Λ(X + Z)], for Λ ≡ 0,

among all vector variables Z with EQX [Zj] ≤ xj for every j = 1, . . . , N .

It is now natural to “turn on”the aggregation term Λ in (a′1) and (a′2) to get a
multivariate extension, observing that whenever we drop the assumption Λ ≡ 0
the two conditions (a′1) and (a′2) are not equivalent anymore. We then say that
a pair (YX ,QX) is a weak multivariate risk exchange equilibrium (resp.
multivariate risk exchange equilibrium) if conditions (a′1) (resp. (a′2)) and
(b′) are met, with the suppression of the condition Λ ≡ 0.
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2. Systemic Optimal (deterministic) Allocation

The generalization to the multivariate case is very natural: the optimal vector
aX ∈ RN can be determined according to the following aggregate terminal time
criterion

sup

{
N∑
j=1

EP
[
uj(X

j + aj)
]

+ EP [Λ(X + a)] | a ∈ RN s.t.
N∑
j=1

aj = A

}
. (I.13)

We may now proceed following conceptually Section I.1 in introducing the natural
generalization of SORTE to the multivariate setup. As explained in detail in Section
2.4.1, and due to the presence of the alternative conditions (a′1) and (a′2), there are
two (a priori non equivalent) paths to follow.
The first approach considers the most natural counterpart of the definition of SORTE
(Definition 1.2.7) in the multivariate setup, which leads to the definition of Weak
Multivariate SORTE (Definition 2.4.1), and is conceptually related to the weak mul-
tivariate risk exchange equilibrium.
The second one is motivated by the formulation (I.8) of the SORTE, and yields the
concept of Multivariate SORTE. As can be easily verified, a Multivariate SORTE
turns out to be in particular a Weak Multivariate SORTE and we will mostly focus
our attention on the stronger concept.
To be more precise, we will define (Section 2.4.1) a Multivariate Systemic Optimal Risk
Transfer Equilibrium (mSORTE) as a triple (YX ,QX , aX) such that YX = [Y 1

X , ..., Y
N
X ]

satisfies (I.9) and (I.10), and (YX , aX) is an optimum for

sup
a∈RN

{
sup
Y

{
EP [U(X + Y )] | EQjX

[
Y j
]
≤ aj ∀j = 1, . . . , N

}
|

N∑
n=1

an = A

}
(I.14)

where U(·) is defined in (I.12). We emphasize the fact that the setup and results for
SORTE in Chapter 1 can be recovered from the ones we are to present in Chapter
2 by setting Λ ≡ 0. As explained in Section 2.4.3, we prove existence, uniqueness,
Pareto optimality of an mSORTE under three different setups of assumptions. A
detailed study of these assumptions is collected in Section 2.4.5. In Section 2.4.6
we also compare such assumptions with the one considered in Chapter 1. We stress
here that such assumptions are reasonably weak and weaker than those assumed in
Chapter 1. Just to mention a few examples, any of the following multivariate utility
functions satisfies our assumptions:

U(x) :=
N∑
j=1

uj(x
j) + u

(
N∑
j=1

βjx
j

)
, with βj ≥ 0, for all j, (I.15)

where u : R→ R, for some p > 1, is any one of the following functions:

uexp(x) := 1− exp (−px) ; up(x) =

{
p x
x+1

x ≥ 0

1− |x− 1|p x < 0
;

uatan(x) =

{
p arctan(x) x ≥ 0

1− |x− 1|p x < 0
;
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and u1, . . . , uN are exponential utility functions (uj(x
j) = 1− exp (−αjxj), α > 0) for

any choice of u as above, or uj(x
j) = upj(x

j), pj > p for u = up or u = uatan. The
function Λ could also be constructed as follows. Let G : RN→ R be convex, mono-
tone decreasing and bounded from below, and F : R→ R be concave and monotone
decreasing on range(G). Then Λ : RN→ R defined by

Λ(x) = F (G(x)) (I.16)

is concave, monotone increasing and bounded above by F (inf G). Notice that, as
detailed in Section 2.3, we will require differentiability only in few circumstances.
We here provide an example in which our assumptions are met, covering the non
differentiable case. Take γj ≥ 0, j = 1, . . . , N , G(x) :=

∑N
j=1 γj(x

j − kj)− and take
F : R→ R defined by F (x) := −xα , α ≥ 1, which is concave and monotone decreasing
on range(G) = [0,∞). Then

Λ(x) := −

(
N∑
j=1

γj(x
j − kj)−

)α

(I.17)

is concave, monotone increasing and bounded above by 0, and U(x) :=
∑N

j=1 uj(x
j) +

Λ(x), with u1, . . . , uN exponential utility functions and Λ assigned in (I.17), satisfies
our assumptions.

Quite remarkably, this generalization of a SORTE allows us to introduce and to study a
Nash Equilibrium property for an mSORTE, as shown in Section 2.4.3. We prove that,
in addition to being Pareto optimal, the component YX of an mSORTE is a Nash Equi-
librium (see Theorem 2.4.11 and Theorem 2.4.12). We point out that, in interpreting
the component YX as Nash Equilibrium, we are considering that each agent’s value
function is not simply given by its expected (univariate) utility. In fact, we require that
the j−th agent, given all other agents’ positions Y [−j] = [Y 1, . . . , Y j−1, Y j+1, . . . , Y N ],
optimizes the function (see Equation (2.15))

Z 7→ UY [−j]

j (Z) := E
[
uj(X

j + Z)
]

+ E
[
Λ(X + [Y [−j];Z])

]
where [Y [−j];Z] :=

[
Y 1, . . . , Y j−1, Z, Y j+1, . . . , Y N

]
.

From a technical perspective, our results can be considered as consequences of Theo-
rem 2.4.9 and Theorem 2.4.10. The proof of Theorem 2.4.9, which is the most lengthy
and complex, is split according to the Setups we work in. The proofs for Setup A
and B (collected in Theorem 2.5.16) use a Komlós- type argument. This allows us to
obtain existence of optimizers for both the primal and the dual problems without re-
quiring differentiability of U(·), which is a rather unusual result in the literature. The
one for Setup C instead (see Theorem 2.5.17) is somehow inspired by Theorem 1.3.5
in Chapter 1, and is based on a minimax argument. A duality result links the content
of Theorems 2.4.9 and 2.4.10 yielding the existence result in Theorem 2.4.11. The
uniqueness argument in Theorem 2.4.12 is inspired by the corresponding uniqueness
result in Chapter 1 (Theorem 1.3.17). We also remark that, differently from the case
of SORTE, we need to construct the dual system (MΦ, KΦ), where MΦ is a multivari-
ate Orlicz Heart having as topological dual space the Köthe dual KΦ. Here, we denote
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with Φ : (R+)N → R the multivariate Orlicz function Φ(y) := U(0)−U(− |y|) associ-
ated to the multivariate utility function. Details of this construction are provided in
Sections 2.1 and 2.2.

As already mentioned, our study of mSORTE is a somehow natural prosecution of
the one of SORTE. Thus, as far as the conceptual aspects are concerned, we refer
to the all the literature reviewed in Section I.1 for extended comments. Here, we
limit multivariate utility functions have been widely exploited in the study of optimal
investment under transaction costs, and we cite Campi and Owen (2011) [38], Dee-
lestra et al. (2001) [51], Kamizono (2004) [100], Bouchard and Pham (2005) [28] and
references therein for more details on these functions and their study.

The results regarding mSORTE and its relation to SORTE are collected in Doldi and
Frittelli (2019) [58].

I.3 Conditional Systemic Risk Measures

As mentioned before, the notions of SORTE and mSORTE were inspired by recent
results on Systemic Risk Measures. It is then natural to investigate further the link
between these concepts. In Chapter 3 we provide a natural extension of static Systemic
Risk Measures to a dynamic, conditional setting. We then study related concepts of
time consistency and link the SORTE and mSORTE to Conditional Shortfall Systemic
Risk Measures.

To put our principal findings into perspective, we briefly review the literature per-
taining to Systemic Risk Measures. We let X = [X1, . . . , XN ] ∈ (L0(Ω,F ,P))N be a
vector of N random variables on the probability space (Ω,F ,P), representing a con-
figuration of risky (financial) factors at a future time T associated to a system of N
financial institutions/banks.

A traditional approach to evaluate the risk of each institution j ∈ {1, ...N} is to apply
a univariate Monetary Risk Measure ηj to the single financial position Xj, yielding
ηj(Xj). Let L be a subspace of L0(Ω,F ,P). A Monetary Risk Measure (see [77]) is
a map η : L → R that can be interpreted as the minimal capital needed to secure a
financial position with payoff Z ∈ L, i.e., the minimal amount m ∈ R that must be
added to Z in order to make the resulting (discounted) payoff at time T acceptable

η(Z) := inf{m ∈ R | Z +m ∈ A}, (I.18)

where the acceptance set A ⊆ L0(Ω,F ,P) is assumed to be monotone, i.e., Z ≥ Y ∈ A
implies Z ∈ A. Then η is monotone decreasing and satisfies the Cash Additivity
property

η(Z +m) = η(Z)−m, for all m ∈ R and Z ∈ L. (I.19)

Under the assumption that the set A is convex (resp. is a convex cone) the maps in
(I.18) are convex (resp. convex and positively homogeneous) and are called Convex
(resp. Coherent) Risk Measures, see Artzner et al. (1999) [8], Föllmer and Schied
(2002) [76], Frittelli and Rosazza Gianin (2002) [83]. Once the risk ηj(Xj) of each
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institution j ∈ {1, ...N} has been determined, the quantity

ρ(X) :=
N∑
j=1

ηj(Xj)

could be used as a very preliminary and näıf assessment of the risk of the entire
system.

I.3.1 Static Systemic Risk Measures

The approach sketched above does not clearly capture systemic risk of an intercon-
nected system, and the design of more adequate Risk Measures for financial systems
is the topic of a vast literature on systemic risk. Let LF be a vector subspace of
(L0(Ω,F ,P))N . A Systemic Risk Measure is a map ρ : LF → R that evaluates the
risk ρ(X) of the complete system X ∈ LF and satisfies additionally financially rea-
sonable properties.

First aggregate then allocate. In Chen et al. (2013) [42] the authors investigated
under which conditions a Systemic Risk Measure could be written in the form

ρ(X) = η(U(X)) = inf{m ∈ R | U(X) +m ∈ A}, (I.20)

for some univariate Monetary Risk Measure η and some aggregation rule

U : RN → R

that aggregates the N -dimensional risk factors into a univariate risk factor. We also
refer to Kromer et al. (2016) [105] for extension to general probability space.
Such systemic risk might again be interpreted as the minimal cash amount that secures
the system when it is added to the total aggregated system loss U(X), given that U(X)
allows for a monetary loss interpretation. Note, however, that in (I.20) systemic risk
is the minimal capital added to secure the system after aggregating individual risks.

First allocate then aggregate. A second approach consisted in measuring sys-
temic risk as the minimal cash that secures the aggregated system by adding the
capital into the single institutions before aggregating their individual risks. This way
of measuring systemic risk can be expressed by

ρ(X) := inf

{
N∑
j=1

mj | m = [m1, · · · ,mN ] ∈ RN , U(X +m) ∈ A

}
. (I.21)

Here, the amountmj is added to the financial positionXj of institution j ∈ {1, · · · , N}
before the corresponding total loss U(X + m) is computed. We refer to Armenti et
al. (2018) [7] and Biagini et al. (2019) [19] for a detailed study of Systemic Risk
Measures in the form (I.21) and to Feinstein et al. (2017) [69] for a similar approach
for set valued Risk Measures. Dual representations of Systemic Risk Measures based
on acceptance sets have recently been studied in Arduca et al. (2019) [6].
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Scenario dependent allocations. The “first allocate and then aggregate” ap-
proach was then extended in Biagini et al. (2019) [19] and (2020) [20] by adding
to X not merely a vector m = [m1, · · · ,mN ] ∈ RN of deterministic amounts but,
more generally, a random vector Y ∈ C, for some given class C. In particular, one
main example considered in [20] is given by the class C such that

C ⊆ CR ∩ L, where CR :=

{
Y ∈ (L0(Ω,F ,P))N |

N∑
j=1

Y j ∈ R

}
, (I.22)

and L is a subspace of (L0(Ω,F ,P))N representing possible additional integrability
or boundedness requirements. The set C represents the class of feasible allocations,
and it is possible to model additional constraints on the allocation Y ∈CR by requiring
Y ∈ C ⊂ CR, with strict inclusion. It is assumed that RN ⊆ C.
Under these premises the Systemic Risk Measure considered in [20] takes the form

ρ(X) := inf

{
N∑
j=1

Y j | Y ∈ C, U(X + Y ) ∈ A

}
(I.23)

and can still be interpreted, since C ⊆ CR, as the minimal total cash amount
∑N

j=1 Y
j ∈

R needed today to secure the system by distributing the cash at the future time
T among the components of the risk vector X. However, while the total capital
requirement

∑N
j=1 Y

j is determined today, contrary to (I.21) the individual allocation

Y j(ω) to institution j does not need to be decided today but in general depends on the
scenario ω realized at time T . As explained in detail in [20], this total cash amount
ρ(X) can be composed today through the formula

N∑
j=1

aj(X) = ρ(X), (I.24)

where each cash amount aj(X) ∈ R can be interpreted as a risk allocation of bank j.
The exact formula for the risk allocation aj(X) will be introduced later in (I.27).
We remark that by selecting C = RN in (I.23), one recovers the deterministic case
(I.21); while when C = CR no further requirements are imposed on the set of feasible
allocations.

Shortfall Systemic Risk Measures. A special, relevant case of Systemic Risk
Measures of the form (I.23) “first allocate and then aggregate, with scenario depen-
dent allocation” is given by the class of Shortfall Systemic Risk Measures, where the
acceptance set has the form A = {Z ∈ L1(Ω,F ,P) | EP[Z] ≥ B} for a given constant
B ∈ R, namely:

ρ(X) := inf

{
N∑
j=1

Y j | Y ∈ C, EP [U(X + Y )] ≥ B

}
. (I.25)

For the financial motivation behind these choices and for a detailed study of this class
of measures, we refer to [19] and [20] when C ⊆ CR, and to Armenti et al. (2018) [7]
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for the analysis of such Risk Measures in the special case C = RN , i.e. when only
deterministic allocations are allowed.
The choice of the aggregation functions U : RN → R is also a key ingredient in the
construction of ρ and we refer to Acharia et al. (2016) [3], Adrian and Brunnermeier
(2016) [4], Huang et al. (2009) [97], Lehar (2005) [106], Brunnermeier and Cheridito
(2019) [31], Biagini et al. (2019) and (2020) [19], [20] for the many examples of
aggregators adopted in literature. In order to obtain more specific and significant
properties of ρ, [20] selected the aggregator

U(x) =
N∑
j=1

uj(x
j), x ∈ RN , (I.26)

for strictly concave increasing utility functions uj : R→ R, for each j = 1, · · · , N .
Systemic Risk Measures can be applied not only to determine the overall risk ρ(X) of
the system, but also to establish the riskiness of each individual financial institution.
As explained in [20] it is possible to determine the risk allocations aj(X) ∈ R of each
bank j that satisfy (I.24) and additional meaningful properties. It was there shown
that, with the choice (I.26), a fair risk allocation of bank j is given by:

aj(X) := EQj(X)

[
Y j(X)

]
, j = 1, · · · , N, (I.27)

where the vector Y (X) is the optimizer in (I.25) and Q(X) is the vector of probability
measures that optimizes the dual problem associated to ρ(X).
We will adopt the generalization of the aggregation function (I.26) defined by (I.12),
namely

U(x) =
N∑
j=1

uj(xj) + Λ(x), x ∈ RN ,

where the multivariate aggregator Λ : RN → R is concave and increasing (not neces-
sarily in a strict sense). Thus the selection Λ ≡ 0 is possible and hence, in this case,
(I.12) reduces to (I.26). Similarly to the extension from SORTE to mSORTE, the
addition of the term Λ allows for modeling interdependence among agents from the
point of view of preferences.
As shown in Chapter 3, a fairness property for the risk allocation of each bank can be
established also in a conditional setting and for the aggregator expressed by (I.12).

I.3.2 Conditional Systemic Risk Measures

The temporal setting in the approaches described above is static, meaning that the
Risk Measures do not allow for possible dynamic elements, such as additional infor-
mation, or the possibility of risk monitoring in continuous time, or the possibility of
intermediate payoffs and valuation. In order to model the conditional setting we
then assume that G ⊆ F is a sub sigma algebra of F and we consider Risk Measures
ρG with range in L0(Ω,G,P) and interpret ρG (X) as the risk of the whole system X
given the information G.
Conditional Risk Measures have mostly been studied in the framework of univari-
ate Dynamic Risk Measures, where one adjusts the risk measurement in response to
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the flow of information that is revealed when time elapses. Detlefsen and Scandolo
(2005) [57] was one of the first contribution in the study of Conditional Convex Risk
Measures and since then a vast literature appeared. We refer the reader to Barrieu
and El Karoui (2005) [10] for a good overview on univariate Dynamic Risk Measures.
We observe that such a conditional and dynamic framework generated a florilegium
of interesting ramification in different fields, including the relationships with BSDEs
(Barrieu and El Karoui (2005) [10], Rosazza Gianin (2006) [120], Bion-Nadal (2008)
[25], Delbaen et al. (2010) [53]) and Non Linear Expectation (Peng (2004) [113]).
Several results have also been obtained for the case of quasi-convex conditional maps
and Risk Measures, see Frittelli and Maggis (2011) [80], (2014) [81] and (2014) [82].
A vast literature has focused on conditional counterparts to classical static results
regarding dual representation and separation properties, using L0-modules. Among
the many contributions in this stream of research we mention Filipović et al. (2009)
[71] and (2012) [72], Drapeau et al. (2016) [63], Drapeau et al. (2019) [64], Guo
(2010) [86] and references therein. We will prefer here a more direct approach. We do
not really need to rely on this kind of very abstract results, nor to extend them in a
multidimensional framework required for our systemic perspective. Overall, the fact
that natural conditional counterparts hold for static results is not so surprising. The
two are intrinsically related by a Boolean Logic principle. As seen in Carl and Jam-
neshan (2018) [39] traditional theorems carry over to the conditional setup assuming
that suitable concatenation properties hold.

A Conditional Systemic Risk Measure is a map ρG : LF → L0(Ω,G,P) that associates
to a N -dimensional risk factor X∈LF ⊆ (L0(Ω,F ,P))N a G-measurable random vari-
able. A Conditional Systemic Risk Measure thus models the risk of a system as new
information arises in the course of time. The study of Conditional Systemic (multi-
variate) Risk Measure was initiated by Hoffmann et al. (2016) [94] and (2018) [95].
However, as pointed out in [95], in the context of Systemic Risk Measures, a second
interesting and important dimension of conditioning arises, besides dynamic condi-
tioning: risk measurement conditional on information in space in order to identify
systemic relevant structures. In that case G represents for example information on
the state of a subsystem, see Föllmer (2014) [74] or Föllmer and Kluppelberg (2014)
[75]. In order to allow for both interpretations, in Chapter 3 a general sigma algebra
G ⊆ F will be considered.
We finally observe that the papers [94] and [95] consider exclusively the conditional
extension of (static) Systemic Risk Measures of the “first aggregate and then allocate”
form expressed by (I.20).
Our interest in Chapter 3 is the study of general Conditional (convex) Systemic Risk
Measures and the detailed analysis of Conditional Shortfall Systemic Risk Measures.
Our findings show that most properties of Shortfall Systemic Risk Measures carry
over to the conditional setting, even if the proofs become more technical, and that a
new vector type consistency, with respect to sub sigma algebras H ⊆ G ⊆ F , replaces
the scalar recursiveness property of univariate Risk Measures.

More precisely, we define axiomatically a Conditional Systemic Risk Measure (CSRM)
on LF as a map ρG : LF → L1(Ω,G,P) satisfying Monotonicity, Conditional Convex-
ity and the Conditional Monetary Property (see Definition 3.2.5). Our first results
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(Theorem 3.2.9 and Corollary 3.2.10) show, under fairly general assumptions, that:
(i) ρG admits the conditional dual representation

ρG (X) = ess sup
Q∈QG

(
N∑
j=1

EQj
[
−Xj

∣∣G]− α(Q)

)
, X ∈ LF , (I.28)

where QG, defined in Equation (3.11), is a set of vectors of probability measures and
the penalty α(Q) ∈ L0(Ω,G,P) is defined in Equation (3.12); (ii) the supremum in
(I.28) is attained.
We then specialize our analysis by considering the Conditional Shortfall Systemic Risk
Measure, associated to multivariate utility functions U of the form (I.12), defined by

ρG (X) := ess inf

{
N∑
j=1

Y j | Y ∈ CG, EP [U (X + Y )|G] ≥ B

}
, (I.29)

where B is now a random variable in L∞(Ω,G,P) and the set of G-admissible alloca-
tions is

CG ⊆

{
Y ∈ (L1(Ω,F ,P))N such that

N∑
j=1

Y j ∈ L∞(Ω,G,P)

}
.

Thus, with these definitions that mimic those in (I.22) and in (I.25), the same moti-
vations explained in the unconditional setting, mutatis mutandis, remain true in the
conditional one.
Observe that for the trivial selection G = {∅,Ω}, for which Conditional Risk Mea-
sures reduce to static ones, our work extends the results in [20] to the more general
aggregator U in the form (I.12).

In Theorem 3.4.4 we prove the main properties of the Conditional Shortfall Systemic
Risk Measure ρG and, in particular, we show that (i) ρG is continuous from above
and from below; (ii) the essential infimum in (I.29) is attained by a vector Y (G, X) =
[Y 1(G, X), ..., Y N(G, X)] ∈ CG; (iii) ρG admits the dual representation described in
(3.23); (iv) the supremum in the dual formulation (3.23) of ρG is attained by a vector
Q(G, X) = [Q1(G, X), ...,QN(G, X)] of probability measures satisfying:

N∑
j=1

EQj(G,X)

[
Y j(G, X)

∣∣G] =
N∑
j=1

Y j(G, X) = ρG (X) P− a.s.

In the same spirit of [20], we will then interpret the quantity

aj(G, X) := EQj(G,X)

[
Y j(G, X)

∣∣G]
as a fair risk allocation of institution j, given G.

Section 3.5 is then devoted to the particular case of exponential utility functions

uj(x
j) := −e−αjxj , αj > 0, j = 1, ..., N,

23



and with Λ ≡ 0. As in the static case (see [20]), also in the conditional case it is
possible to find the explicit formulas for: (i) the value of the Conditional Shortfall
Systemic Risk Measure ρG (X) ; (ii) the optimizer Y (G, X) in (I.29) of ρG (X); (iii)
the vector Q(G, X) of probability measures that attains the supremum in the dual
formulation. We prove these properties first for a finitely generated sigma algebra G,
where we rely on the results in [20], and then we extend them to a general G.
Finally, for sub sigma algebrasH ⊆ G ⊆ F we prove a particular consistency property,
which does not have a counterpart in the univariate case. Indeed, a recursive property
of the type ρH(−ρG (X)) = ρH (X) is not even well defined in the systemic setting, as
ρG (X) is a random variable but the argument of ρH is a vector of random variables.
However, we explain that consistency properties may be well defined for: (i) the vector
optimizers Y (G, X) of ρG (X) and Y (H, Y (G, X)) of ρH (Y (G, X)); (ii) the fair risk
allocations vectors [a(G, X)]k := [EQk(G,X)[Y

k(G, X)|G]]k of ρG (X) and a(H, a(G, X))
of ρH (a(G, X)). The consistency properties are shown in (3.56) and (3.58) and proven
in Theorem 3.5.8 for the entropic Conditional Systemic Risk Measure.

In a final Section we elaborate on the concept of Systemic Optimal Risk Transfer
Equilibrium, a notion anticipated above and formalized in Chapter 1. Based on the
results on the Conditional Shortfall Systemic Risk Measure developed in Section 3.6,
we are able to provide in Theorem 3.6.3 a direct extension of this equilibrium in
the conditional setting. At the same time, we show that the optimal allocations for
Shortfall Systemic Risk Measures, in both the static and dynamic cases, admit an
interpretation in the sense of a suitably defined equilibrium. By the choice of the
trivial G = {∅,Ω} our findings cover the static setup, and provide an explicit link
between the theory in Chapter 1 and [20].

The analysis of Conditional Systemic Risk Measures of Chapter 3 can be found in
Doldi and Frittelli (2020) [59].

I.4 Entropy Martingale Optimal Transport

Chapter 4 is conceptually separate from all the previous ones, even though duality
theory plays a major role here too. We exploit Optimal Transport theory to develop
the duality

A := inf
Q∈Mart(Ω)

(EQ [c] +DU(Q)) = sup
∆∈H

sup
ϕ∈Φ∆(c)

SU (ϕ) := B. (I.30)

Problem (A) is inspired by the Entropy Optimal Transport primal problem (Liero et
al. (2018) [108]) with the additional constraint that the infimum of the cost functional
c is taken over martingale probability measures. This is mirrored in the additional
supremum over the integrands ∆ ∈ H in problem (B), and in the Cash Additivity of
the functional SU . The functional SU is associated to a typically non linear utility
functional U and represents the pricing rule over continuous bounded functions ϕ
defined on Ω. In order to provide a context for our arguments, we believe it is
instructive to look back at some classical concepts in financial mathematics. Since we
aim at a nonlinear pricing-hedging duality, we will briefly summarize the highlights of
the classical theory and of the robust one. We will also recall the key points regarding
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Coherent Risk Measures, and the passage to the more general convex ones, since our
relaxation-by-penalization procedure follows a somehow parallel path. We will resume
the discussion of our work on page 28.

I.4.1 Pricing-hedging Duality in Financial Mathematics

The notion of subhedging price is one of the most analyzed concepts in financial
mathematics. In this introduction we will take the point of view of the subhedging
price, but obviously an analogous theory for the superhedging price can be developed
as well. We are assuming a discrete time market model with zero interest rate.

The classical setup In the classical setup of stochastic securities market models,
one considers an adapted stochastic process X = (Xt)t, t = 0, ..., T, defined on a
filtered probability space (Ω,F , (Ft)t,P), representing the price of some underlying
asset. Let P(P) be the set of all probability measures on Ω that are absolutely
continuous with respect to P, Mart(Ω) be the set of all probability measures on Ω
under which X is a martingale and M(P) = P(P) ∩Mart(Ω). We also let H be the
class of admissible integrands and I∆ := I∆(X) be the stochastic integral of X with
respect to ∆ ∈ H. Under reasonable assumptions on H, the equality

EQ
[
I∆(X)

]
= 0 (I.31)

holds for all Q ∈ M(P) and, as well known, all linear pricing functionals compatible
with no arbitrage are expectations EQ[·] under some probability Q ∈M(P) such that
Q ∼ P.
We denote with p the subhedging price of a contingent claim c : R→ R written on
the payoff XT of the underlying asset. If we let L(P) ⊆ L0((Ω,FT ,P)) be the space
of random payoff and let Z := c(XT ) ∈ L(P), then p : L(P)→ R is defined by

p(Z) := sup
{
m ∈ R | ∃∆ ∈ H s.t. m+ I∆(X) ≤ Z, P− a.s.

}
. (I.32)

The subhedging price is independent from the preferences of the agents, but it depends
on the reference probability measure via the class of P-null events. It satisfies the
following two key properties:

(CA) Cash Additivity on L(P): p(Z + k) = p(Z) + k, for all k ∈ R, Z ∈ L(P).

(IA) Integral Additivity on L(P): p(Z + I∆) = p(Z), for all ∆ ∈ H, Z ∈ L(P).

When a functional p satisfies (CA), then Z, k and p(Z) must be expressed in the same
monetary unit and this allows for the monetary interpretation of p, as the price of the
contingent claim. This will be one of the key features that we will require also in the
novel definition of the nonlinear subhedging value. The (IA) property and p(0) = 0
imply that the p price of any stochastic integral I∆(X) is equal to zero, as in (I.31).
Since the seminal works of El Karoui and Quenez (1995) [66], Karatzas (1997) [101],
Delbaen and Schachermayer (1994) [54], it was discovered that, under the no arbitrage
assumption, the dual representation of the subhedging price p is

p(Z) = inf
Q∈M(P)

EQ [Z] . (I.33)
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More or less in the same period, the concept of Coherent Risk Measure was
introduced in the pioneering work by Artzner et al. (1999) [8]. A Coherent Risk
Measure ρ : L(P) → R determines the minimal capital required to make a financial
position acceptable and its dual formulation is assigned by

− ρ(Y ) = inf
Q∈Q⊆P(P)

EQ [Y ] , (I.34)

where Y is a random variable representing future profit-and-loss and Q ⊆ P(P).
Coherent Risk Measures ρ are convex, cash additive, monotone and positively homo-
geneous. We take the liberty to label both the representations in (I.33) and in (I.34)
as the “sublinear case”.

In the study of incomplete markets the concept of the (buyer) indifference price
pb, originally introduced by Hodges and Neuberger (1989) [93], received, in the early
2000, increasing consideration (see Frittelli (2000) [79], Rouge and El Karoui (2000)
[121], Delbaen et al. (2002) [52], Bellini and Frittelli (2002) [15]) as a tool to assess,
consistently with the no arbitrage principle, the value of non replicable contingent
claims, and not just to determine an upper bound (the superhedging price) or a lower
bound (the subhedging price) for the price of the claim. Differently from the notion of
subhedging, pb is based on some concave increasing utility function u : R→ [−∞,+∞)
of the agent. By defining the indirect utility function

U(w0) := sup
∆∈H

EP[u(w0 + I∆(X))],

where w0 ∈ R is the initial wealth, the indifference price pb is defined as

pb(Z) := sup {m ∈ R | U(Z −m) ≥ U(0)} .

Under suitable assumptions, the dual formulation of pb is

pb(Z) = inf
Q∈M(P)

{EQ [Z] + αu(Q)} , (I.35)

and the penalty term αu : M(P) → [0,+∞] is associated to the particular utility
function u appearing in the definition of pb via the Fenchel conjugate of u. Observe
that the functional pb is concave, monotone increasing and satisfies both properties
(CA) and (IA), but it is not necessarily linear on the space of all contingent claims.
As recalled in the conclusion of Frittelli (2000) [79], “there is no reason why a price
functional defined on the whole space of bundles and consistent with no arbitrage
should be linear also outside the space of marketed bundles”.
It was exactly the particular form (I.35) of the indifference price that suggested to
Frittelli and Rosazza Gianin (2002) [83] to introduce the concept of Convex Risk
Measure (also independently introduced by Föllmer and Schied (2002) [76]), as a
map ρ : L(P) → R that is convex, cash additive and monotone decreasing. Under
good continuity properties, the Fenchel-Moreau Theorem shows that any Convex Risk
Measure admits the following representation

− ρ(Y ) = inf
Q∈P(P)

{EQ [Y ] + α(Q)} (I.36)
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for some penalty α. We will then label functional in the form (I.35) or (I.36) as the
“convex case”. As a consequence of the Cash Additivity property, in the dual repre-
sentations (I.35) or (I.36) the infimum is taken with respect to probability measures,
namely with respect to normalized non negative elements in the dual space, which in
this case can be taken as L1(P). Differently from the indifference price pb, Convex
Risk Measures do not necessarily take into account the presence of the stochastic se-
curity market, as reflected by the absence of any reference to martingale measures in
the dual formulation (I.34) and (I.36), in contrast to (I.33) and (I.35).

Pathwise finance As a consequence of the financial crises in 2008, the uncertainty
in the selection of a reference probability P gained increasing attention and led to
the investigation of the notions of arbitrage and pricing-hedging duality in different
settings. On the one hand, the single reference probability P was replaced with a
family of - a priori non dominated - probability measures, leading to the theory of
Quasi-Sure Stochastic Analysis (see Bayraktar and Zhang (2016) [12], Bayraktarand
Zhou (2017) [13], Bouchard and Nutz (2015) [27], Cohen (2012) [43], Denis and Mar-
tini (2006) [56], Peng (2019) [114], Soner et al. (2011) [125]). On the other hand,
taking an even more radical approach, a probability free, pathwise, theory of financial
markets was developed, as in Acciaio et al. (2016) [2], Burzoni et al. (2016) [36],
Burzoni et al. (2017) [37], Burzoni et al. (2019) [35], Riedel (2015) [117]. In such
a framework, Optimal Transport theory became a very powerful tool to prove path-
wise pricing-hedging duality results with very relevant contributions by many authors
(Beiglböck et al. (2013) [14], Davis et al. (2014) [49], Dolinksi and Soner (2014) [61],
Dolinsky and Soner (2015) [62]; Galichon et al. (2014) [85], Henry-Labordère (2013)
[88], Henry-Labordère et al. (2016) [89]; Hou and Ob lój (2018) [96], Tan and Touzi
(2013) [126]). These contributions mainly deal with what we labeled above as the
sublinear case, while our main interest in Chapter 4 is to develop the convex case
theory, as explained below.

We will now abandon the classical setup described above and work without a reference
probability measure. We consider T ∈ N, T ≥ 1, and

Ω := K0 × · · · ×KT

for K0, . . . , KT subsets of R and denote with X0, . . . , XT the canonical projections
Xt : Ω→ Kt, for t = 0, 1, ..., T . We set

Mart(Ω) := {Martingale probability measures for the canonical process of Ω} ,

and when µ is a measure defined on the Borel sigma algebra of (K0 × · · · ×KT ), its
marginals will be denoted with µ0, . . . , µT . We consider a contingent claim c : Ω →
(−∞,+∞] which is now allowed to depend on the whole path and we will adopt
semistatic trading strategies for hedging. This means that in addition to dynamic
trading in X via the admissible integrands ∆ ∈ H, we may invest in “vanilla” options
ϕt : Kt → R. For modeling purposes we take vector subspaces Et ⊆ Cb(Kt) for
t = 0, . . . , T , where Cb(Kt) is the space of real-valued, continuous, bounded functions
on Kt. For each t, Et is the set of static options that can be used for hedging, say
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affine combinations of options with different strikes and same maturity t. The key
assumption in the robust, Optimal Transport based, formulation is that the marginals
(Q̂0, Q̂1, ..., Q̂T ) of the underlying price process X are known. This assumption can
be justified (see the seminal papers by Breeden and Litzenberger (1978) [29] and
Hobson (1998) [92], as well as the many contributions by Hobson (2011) [90], Cox
and Ob lój (2011) [44], [45], Cox and Wang (2013) [46], Henry-Labordère et al. (2016)
[89], Brown et al. (2001) [30], Hobson and Klimmerk (2013) [91]) by assuming the
knowledge of prices of a sufficiently large number of plain vanilla options maturing at
each intermediate date.
Thus the class of arbitrage-free pricing measures that are compatible with the observed
prices of the options is given by

M(Q̂0, Q̂1, ...Q̂T ) :=
{
Q ∈ Mart(Ω) | Xt ∼Q Q̂t for each t = 0, . . . , T

}
.

In this framework,

H := {∆ = [∆0, . . . ,∆T−1] | ∆t ∈ Cb(K0 × · · · ×Kt;R)} , (I.37)

I :=

{
I∆(x) =

T−1∑
t=0

∆t(x0, . . . , xt)(xt+1 − xt) | ∆ ∈ H

}
, (I.38)

and the subhedging duality, obtained in [14] Theorem 1.1, takes the form:

inf
Q∈M(Q̂0,Q̂1,...Q̂T )

EQ [c]

= sup

{
T∑
t=0

EQ̂t [ϕt] | ∃∆ ∈ H s.t.
T∑
t=0

ϕt(xt) + I∆(x) ≤ c(x) ∀x ∈ Ω

}
(I.39)

where the RHS of (I.39) is known as the robust subhedging price of c. Comparing
(I.39) with the duality between (I.32) and (I.33), we observe that: (i) the P−a.s.
inequality in (I.32) has been replaced by an inequality that holds for all x ∈ Ω; (ii) in
(I.39) the infimum of the price of the contingent claim c is taken under all martingale
measures compatible with the option prices, with no reference to the probability P;
(iii) static hedging with options is allowed.
As can be seen from the LHS of (I.39), this case falls into the category labeled above
as the sublinear case, and the purpose of our work is to investigate the convex case, in
the robust setting, using the tools from Entropy Optimal Transport (EOT) recently
developed in Liero et al. (2018) [108].
Let us first describe the financial interpretation of the problems that we are going to
study.

The dual problem
The LHS of (I.39), namely infQ∈M(Q̂0,Q̂1,...Q̂T ) EQ [c], represents the dual problem in the
financial application, but is typically the primal problem in Martingale Optimal
Transport (MOT). We label this case as the sublinear case of MOT. In [108], the
primal Entropy Optimal Transport (EOT) problem takes the form

inf
µ∈Meas(Ω)

(
EQ [c] +

T∑
t=0

DFt,Q̂t(µt)

)
, (I.40)
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where Meas(Ω) is the set of all positive finite measures µ on Ω, and DFt,Q̂t(µt) is a
divergence in the form:

DFt,Q̂t(µt) :=

∫
Kt

Ft

(
dµt

dQ̂t

)
dQ̂t, if µt � Q̂t, (I.41)

otherwise DFt,Q̂t(µt) := +∞. Problem (I.40) represents the convex case of Optimal
Transport (OT) theory. Notice that in the EOT primal problem (I.40) the typical

constraint that µ has prescribed marginals (Q̂0, Q̂1, ...Q̂T ) is relaxed (as the infimum
is taken with respect to all positive finite measures) by introducing the divergence
functional DFt,Q̂t(µt), which penalizes those measures µ that are “far” from some

reference marginals (Q̂0, Q̂1, ...Q̂T ). Observing that we could potentially push our
smoothing argument above even further, we might consider more general marginal
penalizations, not necessarily in the divergence form (I.41), that is we could take
functionals Dt in place of DFt,Q̂t(µt), t = 0, ..., T , in (I.40). We are then naturally
let to the study of the convex case of MOT, i.e. to the Entropy Martingale Optimal
Transport (EMOT) problem:

D(c) := inf
Q∈Mart(Ω)

(
EQ [c] +

T∑
t=0

Dt(Qt)

)
. (I.42)

These penalizations D0, . . . ,DT will be better specified later.

The primal problem: the Nonlinear Subhedging Value
We provide the financial interpretation of the primal problem which will yield the
EMOT problem D as its dual. It is convenient to reformulate the robust subhedging
price in the RHS of (I.39) in a more general setting.

Definition I.4.1. Consider a measurable function c : Ω → R representing a (possi-
bly path dependent) option, the set V of hedging instruments and a suitable pricing
functional π : V → R. Then the robust Subhedging Value of c is defined by

Ππ,V(c) = sup {π(v) | v ∈ V s.t. v ≤ c} .

In the classical setting, functionals of this form (and even with a more general for-
mulation) are known as general capital requirement, see for example Frittelli and
Scandolo (2006) [84]. We stress however that in Definition I.4.1 the inequality v ≤ c
holds for all elements in Ω with no reference to a probability measure whatsoever.
The novelty in this definition is that a priori π may not be linear and it is crucial to
understand which evaluating functional π we may use. For our discussion, we assume
that the vector subspaces Et ⊆ Cb(Kt) satisfies Et + R =Et, for t = 0, . . . , T . We let
E := E0 × · · · × ET , and V := E0 + · · ·+ ET + I. Suppose we took a linear pricing rule
π : V → R defined via a Q̂ ∈ Mart(Ω) by

π(v) := EQ̂

[
T∑
t=0

ϕt + I∆

]
(i)
= EQ̂

[
T∑
t=0

ϕt

]
(ii)
=

T∑
t=0

EQ̂t [ϕt], (I.43)
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where we used (I.31) and the fact that Q̂t is the marginal of Q̂. In this case, we would
trivially obtain for the robust subhedging value of c

Ππ,V(c) = sup {π(v) | v ∈ V s.t. v ≤ c} (I.44)

= sup

{
T∑
t=0

EQ̂t [ϕt] | ∃∆ ∈ H s.t.
T∑
t=0

ϕt(xt) + I∆(x) ≤ c(x) ∀x ∈ Ω

}

= sup

{
m ∈ R | ∃∆ ∈ H, ϕ ∈ E , s.t. m−

T∑
t=0

EQ̂t [ϕt] +
T∑
t=0

ϕt + I∆ ≤ c

}

= sup

{
m ∈ R | ∃∆ ∈ H, ϕ ∈ E , with EQ̂t [ϕt] = 0 s.t. m+

T∑
t=0

ϕt + I∆ ≤ c

}
,

(I.45)

where in the last equality we replaced ϕt with (EQ̂t [ϕt]− ϕt) ∈ Et, which satisfies:

EQ̂t

[
EQ̂t [ϕt]− ϕt

]
= 0. (I.46)

Interpretation: Ππ,V(c) is the supremum amount m ∈ R for which we may buy options

ϕt and dynamic strategies ∆ ∈ H such that m+
∑T

t=0 ϕt+I∆ ≤ c , where the value of
both the options and the stochastic integrals are computed as the expectation under
the same martingale measure (Q̂ for the integral I∆; its marginals Q̂t for each option
ϕt).

However, as mentioned above when presenting the indifferent price pb, there is a priori
no reason why one has to allow only linear functional in the evaluation of v ∈ V .

We thus generalize the expression for Ππ,V(c) by considering valuation functionals
S : V → R and St : Et → R more general than EQ̂[·] and EQ̂t [·].
Nonetheless, in order to be able to repeat the same key steps we used in (I.44)-(I.45)
and therefore to keep the same interpretation, we shall impose that such functionals
S and St satisfy the property in (I.46) and the two properties (i) and (ii) in equation
(I.43), that is:

(a) St[ϕt + k] = St[ϕt] + k and St[0] = 0, for all ϕt ∈ Cb(Kt), k ∈ R, t = 0, . . . , T ,

(b) S

[(
T∑
t=0

ϕt

)
+ I∆(x)

]
= S

[
T∑
t=0

ϕt

]
for all ∆ ∈ H and ϕ ∈ E ,

(c) S

[
T∑
t=0

ϕt

]
=

T∑
t=0

St[ϕt] for all ϕ ∈ E .

We immediately recognize that (a) is the Cash Additivity (CA) property on Cb(Kt)
of the functional St and (b) implies the Integral Additivity (IA) property on V . As
a consequence, repeating the same steps in (I.44)-(I.45), we will obtain as primal
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problem the nonlinear subhedging value of c :

P(c) = sup {S(v) | v ∈ V : v ≤ c}

= sup

{
T∑
t=0

St(ϕt) | ∃∆ ∈ H s.t.
T∑
t=0

ϕt(xt) + I∆(x) ≤ c(x) ∀x ∈ Ω

}
(I.47)

= sup

{
m ∈ R | ∃∆ ∈ H, ϕ ∈ E , with St(ϕt) = 0 s.t. m+

T∑
t=0

ϕt + I∆ ≤ c

}
,

(I.48)

to be compared with (I.45).
Interpretation: P(c) is the supremum amount m ∈ R for which we may buy zero
value options ϕt and dynamic strategies ∆ ∈ H such that m +

∑T
t=0 ϕt + I∆ ≤ c,

where the value of both the options and the stochastic integrals are computed with
the same functional S.

Before further elaborating on these issues, let us introduce the concept of Stock Ad-
ditivity, which is the natural counterpart of properties (IA) and (CA) when we are
evaluating hedging instruments depending solely on the value of the underlying stock
X at some fixed date t ∈ {0, . . . , T}. Let Idt be the identity function xt 7→ xt on
Kt. As before, the set of hedging instruments is denoted by Et ⊆ Cb(Kt) and we will
suppose that Idt ∈ Et (that is, we can use units of stock at time t for hedging) and
that Et + R = Et (that is, deterministic amounts of cash can be used for hedging as
well).

Definition I.4.2. A functional pt : Et → R is stock additive on Et if pt(0) = 0 and

pt(ϕt + αtIdt + λt) = pt(ϕt) + αtx0 + λt ∀ϕt ∈ Et, λt ∈ R, αt ∈ R .

We now clarify the role of stock additive functionals in our setup. Suppose that
St : Et → R are stock additive on Et, t = 0, . . . , T . It can be shown (see Lemma 4.4.7)
that if there exist ϕ, ψ ∈ E0 × ...× ET and ∆ ∈ H such that

∑T
t=0 ϕt =

∑T
t=0 ψt + I∆

then
T∑
t=0

St(ϕt) =
T∑
t=0

St(ψt).

This allows us to define a functional S : V = E0 + · · ·+ ET + I → R by

S(υ) :=
T∑
t=0

St(ϕt), for υ =
T∑
t=0

ϕt + I∆. (I.49)

Then S is a well defined, integral additive functional on V , and S, S0, . . . , ST satisfy
the properties (a), (b), (c). There is a natural way to produce a variety of stock
additive functionals, as explained in Example I.4.3 below.

Example I.4.3. Consider a Martingale measure Q̂ ∈ Mart(Ω) and a concave non
decreasing utility function ut : R → [−∞,+∞), satisfying u(0) = 0 and ut(xt) ≤
xt ∀xt ∈ R. We can then take

St(ϕt) = UQ̂t(ϕt) := sup
α∈R, λ∈R

(∫
Ω

ut (ϕt(xt) + αxt + λ) dQ̂t(xt)− (αx0 + λ)

)
.
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As shown in Lemma 4.3.2 the Stock Additivity property is then satisfied for these
functionals.

When we consider stock additive functionals S0, . . . , ST that induce the functional S
as explained in (I.49), we can focus our attention to the optimization problem (I.47)
or (I.48), that will be referred to as our primal problem.

The Duality As a consequence of our main results we prove the following duality
(see Theorem 4.2.3). If

Dt(Qt) := sup
ϕt∈Et

(
St(ϕt)−

∫
Kt

ϕt dQt

)
for Qt ∈ Prob(Kt), t = 0, . . . , T,

and D(c) and P(c) are defined respectively in (I.42) and (I.47), then

D(c) = P(c).

We also treat the particular case of S0, . . . , ST induced by utility functions, as ex-
plained in Example I.4.3. In the special case of linear utility functions ut(xt) = xt, we
recover the sublinear MOT theory.

I.4.2 Entropy Martingale Optimal Transport Duality

We described and provided the financial interpretation of the new duality D(c) =
P(c). This will be a particular case of a more general duality established in Theorem
4.1.3 and Theorem 4.1.4.
In our main result (Theorem 4.1.4) we start by introducing two general functionals,
U : E → [−∞,+∞) and DU : ca(Ω) → (−∞,+∞], that are associated through a
Fenchel-Moreau type relation (see (4.1)). The vector space E ⊆ Cb(Ω;RT+1) consists
of continuous and bounded functions defined on some Polish space Ω and with values
in RT+1. The map U needs not be either cash additive or lower semicontinuous.
We then rely on the notion of the Optimized Certainty Equivalent (OCE), that was
introduced in Ben Tal and Teboulle (1986) [16] and further analyzed in Ben Tal
and Teboulle (2007) [17]. As it is easily recognized, any OCE is, except for the
sign, a particular Convex Risk Measure and so it is cash additive. We introduce the
Generalized Optimized Certainty Equivalent (Generalized OCE) associated to U as
the functional SU : E → [−∞,+∞] defined by

SU(ϕ) := sup
ξ∈RT+1

(
U(ϕ+ ξ)−

T∑
t=0

ξt

)
, ϕ ∈ E . (I.50)

Thus we obtain a cash additive map SU(ϕ + ξ) = SU(ϕ) +
∑T

t=0 ξt, which will guar-
antee that in the problem (I.40) the elements µ ∈Meas(Ω) are normalized, i.e. are
probability measures. Then the duality will take the form

inf
Q∈Mart(Ω)

(EQ [c] +DU(Q)) = sup
∆∈H

sup
ϕ∈Φ∆(c)

SU (ϕ) , (I.51)
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where

Φ∆(c) :=

{
ϕ ∈ dom(U),

T∑
t=0

ϕt(xt) + I∆(x) ≤ c(x) ∀x ∈ Ω

}
,

and we also prove the existence of the optimizer for the problem in the LHS of (I.51),
see Proposition 4.1.6.
The penalization term D:=DU associated to U does not necessarily have an additive
structure (D(Q) =

∑T
t=0Dt(Qt)) nor needs to have the divergence formulation, as

described in (I.41), and so it does not necessarily depend on a given martingale mea-

sure Q̂. As explained in Sections 4.3.1 and 4.3.2 this additional flexibility in choosing
D allows several different interpretations and constitutes one generalization of the
Entropy Optimal Transport theory of [108]. Of course, the other additional differ-
ence with EOT is the presence in (I.51) of the additional supremum with respect to
admissible integrand ∆ ∈ H. As a consequence, in the LHS of (I.51) the infimum is
now taken with respect to martingale measures. We also point out that in [108], the
cost functional c is required to be lower semicontinuous and nonnegative and that the
theory is developed only for the bivariate case (t = 0, 1), while in Chapter 4 we take
c lower semicontinuous and with compact level sets, hence bounded from below, and
consider the multivariate case (t = 0, ..., T ).
In [108] the authors work with a Hausdorf topological space Ω, while we request Ω
to be a Polish space and for some of the results even a compact subset of RN . This
stronger assumption however is totally reasonable for the applications we deal with
(see Remark 4.3.4) and, in case of the Polish space assumption, it would be also com-
patible with a theory for stochastic processes X in continuous time, a topic left for
future investigation. We stress the fact that our work has some points in common
with Pennanen and Perkkiö (2019) [115], in particular regarding our additive setup in
Section 4.2. The authors in this paper consider a more general underlying space (un-
bounded claims) and a more general cost function in place of the classical integral of
a cost function, but only with additive (in time) penalizations and valuation function-
als. [115] Section 3.3 contains some considerations on possible applications of their
generalized Optimal Transport duality to robust superhedging, again covering the ad-
ditive case, but working with martingale nonnegative measures instead of martingale
probability measures. This is mirrored by the fact that the authors do not consider
cash additive valuation functionals. On the contrary, Cash Additivity is one of the
key properties we consider here together with the new concepts of Stock and Integral
Additivity, and causes Generalized Optimized Certainty Equivalents to appear in our
duality. Finally, we do not require the strong assumption of any (semi)continuity for
pricing functionals, and allow for static parts of semistatic superhedging strategies in
a strict (and possibly not norm closed) subset Et of Cb(K0 × · · · ×Kt).

The analysis of EMOT, described in Chapter 4, can be found in Doldi and Frittelli
(2020) [60].
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Chapter 1

Systemic Optimal Risk Transfer
Equilibrium

In Chapter 1 we propose a novel concept of a Systemic Optimal Risk Transfer Equilib-
rium (SORTE), which is inspired by the Bühlmann’s classical notion of an Equilibrium
Risk Exchange. In both the Bühlmann and the SORTE definition, each agent is behav-
ing rationally by maximizing his/her expected utility given a budget constraint. The
two approaches differ by the budget constraints. In Bühlmann’s definition the vector
that assigns the budget constraint is given a priori. On the contrary, in the SORTE
approach, the vector that assigns the budget constraint is endogenously determined
by solving a systemic utility maximization. SORTE gives priority to the systemic
aspects of the problem, in order to optimize the overall systemic performance, rather
than to individual rationality. We provide sufficient general assumptions that guaran-
tee existence, uniqueness, and Pareto optimality of a SORTE with budget A ∈ R and
set of admissible allocations B, namely a triple (YX ,QX , aX) consisting respectively of
a vector of random allocations, a vector of probability measures and a deterministic
vector such that

• for each j, Y j
X is optimal for

U
QjX
j (aj) := sup

{
EP
[
uj(X

j + Y )
]
| Y ∈ Lj, EQjX

[Y ] ≤ ajX

}
,

• aX is optimal for

sup

{
N∑
j=1

U
QjX
j (aj) | a ∈RN s.t.

N∑
j=1

aj ≤ A

}
,

• YX ∈ B and
∑N

j=1 Y
j
X = A P−a.s.

Chapter 1 is structured as follows: after fixing notation and setup, in Section 1.2
we formalize mathematically the several notions of equilibrium we already mentioned
in Section I.1 and state our main results, that is existence (Theorem 1.2.14) and
uniqueness (Theorem 1.2.15) of SORTE. Section 1.3 is devoted to their proofs. Section
1.4 collects examples and explicit formulas for the specific case of exponential utility
functions. Finally, Section 1.5 collects all auxiliary notions and results we need.
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1.1 Notations

Let (Ω,F ,P) be a probability space and consider the following set of probability
vectors on (Ω,F)

PN :=
{
Q = [Q1, ...,QN ] | such that Qj � P for all j = 1, ..., N

}
.

For a vector of probability measures Q we write Q� P to denote Q1� P, . . . ,QN �
P. Similarly for Q ∼ P. For Q ∈ P1 let

L0(Q) :=L0(Ω,F ,Q;R) L1(Q) :=L1(Ω,F ,Q;R) L∞(Q) := L∞(Ω,F ,Q;R)

be the vector spaces of Q− a.s. finite, Q− integrable and Q− essentially bounded
random variables respectively, and set Lp+(Q) = {Z ∈ Lp(Q)|Z ≥ 0Q− a.s.} and
Lp(Ω,F ,Q;RN) = (Lp(Q))N , for p ∈ {0, 1,∞}. For Q = [P1, . . . ,QN ] ∈ PN and
p ∈ {0, 1,∞} define

Lp(Q) :=Lp(Q1)× ...×Lp(QN) , Lp+(Q) :=Lp+(Q1)× ...×Lp+(QN) .

We finally set R+ = [0,+∞) and R++ = (0,+∞) = R+ \ {0}.
For each j = 1, ..., N consider a vector subspace Lj with R ⊆ Lj ⊆ L0(Ω,F ,P;R) and
set

L:=L1 × ...× LN⊆(L0(P))N .

Consider now a subset Q ⊆ PN and assume that the pair (L,Q) satisfies that for
every Q ∈ Q

L ⊆ L1(Q).

One could take as Lj, for example, L∞ or some Orlicz space. Our optimization
problems will be defined on the vector space L to be specified later.
For each j = 1, ..., N , let uj : R→ R be concave and strictly increasing. Fix
X = (X1, ..., XN) ∈L.
For (Q, a, A) ∈ Q×RN×R define

UQj
j (aj) := sup

{
EP
[
uj(X

j + Y )
]
| Y ∈ Lj, EQj [Y ] ≤ aj

}
, (1.1)

SQ(A) := sup

{
N∑
j=1

UQj
j (aj) | a ∈RN s.t.

N∑
j=1

aj ≤ A

}
, (1.2)

ΠQ(A) := sup

{
EP

[
N∑
j=1

uj(X
j + Y j)

]
| Y ∈ L,

N∑
j=1

EQj [Y
j] ≤ A

}
. (1.3)

Obviously, such quantities depend also on X, but as X will be kept fixed throughout
most of the analysis, we may avoid to explicitly specify this dependence in the no-

tations. As uj is increasing we can replace in the definitions of UQj
j (aj), SQ(A) and

ΠQ(A) the inequality in the budget constraint with an equality.
When a vector Q ∈ Q is assigned, we can consider two problems. First, for each

j, UQj
j (aj) is the optimal value of the classical one dimensional expected utility

maximization problem with random endowment Xj under the budget constraint
EQj [Y ] ≤ aj, determined by the real number aj and the valuation operator EQj [·]
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associated to Qj. Second, if we interpret the quantity
∑N

j=1 uj(·) as the aggregated

utility of the system, then ΠQ(A) is the maximal expected utility of the whole system
X, among all Y ∈ L satisfying the overall budget constraint

∑N
j=1 EQj [Y j] ≤ A. No-

tice that in these problems the vector Y is not required to belong to CR (see (I.1)), but
only to the vector space L. We will show in Lemma 1.3.11 the quite obvious equality
SQ(A) = ΠQ(A).

1.2 On several notions of Equilibrium

1.2.1 Pareto Allocation

Definition 1.2.1. Given a set of feasible allocations V ⊆ L and a vector X ∈ L,
Ŷ ∈ V is a Pareto allocation for V if

Y ∈ V and EP
[
uj(X

j + Y j)
]
≥ EP

[
uj(X

j + Ŷ j)
]

for all n (1.4)

imply EP [uj(X
j + Y j)] = EP

[
uj(X

j + Ŷ j)
]

for all j.

In general Pareto allocations are not unique and, not surprisingly, the following version
of the First Welfare Theorem holds true. Define the optimization problem

Π(V ) := sup
Y ∈V

N∑
j=1

EP
[
uj(X

j + Y j)
]
. (1.5)

Proposition 1.2.2. Whenever Ŷ ∈ V is the unique optimal solution of Π(V ), then
it is a Pareto allocation for V .

Proof. Let Ŷ be optimal for Π(V ), so that EP

[∑N
j=1 uj(X

j + Ŷ j)
]

= Π(V ). Suppose

that there exists Y such that (1.4) holds true. As Y ∈ V we have:

EP

[
N∑
j=1

uj(X
j + Ŷ j)

]
= Π(V ) ≥ EP

[
N∑
j=1

uj(X
j + Y j)

]
≥ EP

[
N∑
j=1

uj(X
j + Ŷ j)

]
,

by (1.4). Hence also Y is an optimal solution to Π(V ). Uniqueness of the optimal

solution implies Y = Ŷ .

1.2.2 Systemic utility maximization

The next definition is the utility maximization problem, in the case of a system of N
agents.

Definition 1.2.3. Fix Q ∈ Q. The pair (YX , aX) ∈ L×RN is a Q−Optimal Allo-
cation with budget A ∈ R if

1) for each j, Y j
X is optimal for UQj

j (ajX),
2) aX is optimal for SQ(A),
3) YX ∈ L.
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Note that in the above definition the vector Q ∈ Q is exogenously assigned. Given a
total budget A ∈ R, the vector aX ∈ RN maximizes the systemic utility

N∑
j=1

UQj
j (aj)

among all feasible a ∈RN (
∑N

j=1 a
j ≤ A) and Y j

X maximizes the single agent expected

utility EP [uj(X
j + Y )] among all feasible allocations Y ∈ Lj s.t. EQj [Y ] ≤ ajX . Since

Q ∈ Q is given, the budget constraint EQj [Y ] ≤ ajX is well defined for all Y ∈ L and
we do not need additional conditions of the form Y ∈ CR. A generalization of the
classical single agent utility maximization yields the following existence result.

Proposition 1.2.4. Under Assumption 1.2.12 (a) select Q = {Q} for some Q ∈ Qv
(see (1.11)) with Q ∼ P. Set L = L1(Q1)×· · ·×L1(QN) and let X ∈MΦ (see (1.67)).
Then a Q−Optimal Allocation exists.

Proof. The proof can be obtained with the same arguments employed in Section 4.2
of [20].

Let (YX , aX) ∈ L×RN be a Q−Optimal Allocation. Due to Lemma 1.3.11, ΠQ(A) =
SQ(A) and

ΠQ(A) = SQ(A) = sup
a∈RN ,

∑N
j=1 a

j=A

N∑
j=1

sup
Y j∈Lj

{
EP
[
uj(X

j + Y j)
]
| EQj [Y

j] = aj
}

=
N∑
j=1

sup
Y j∈Lj

{
EP
[
uj(X

j + Y j)
]
| EQj [Y

j] = ajX
}
,

where we replaced the inequalities with equalities in the budget constraints, as uj
are monotone. Hence the systemic utility maximization problem ΠQ(A) with overall
budget constraint A reduces to the sum of j single agent maximization problems,
where, however, the budget constraint of each agents is assigned by ajX = EQj [Y

j
X ]

and the vector aX maximizes the overall performance of the system. We will also
recover this feature in the notion of a SORTE, where the probability vector Q will be
endogenously determined, instead of being a priori assigned, as in this case.

1.2.3 Risk Exchange Equilibrium

We here formalize Bühlmann’s risk exchange equilibrium in a pure exchange economy,
[32] and [33], already mentioned in conditions (a’) and (b’), Item 1 of Section I.1. Let
Q1 be the set of vectors of probability measures having all components equal:

Q1 :=
{
Q ∈ PN | Q1 = ... = QN

}
.

To be consistent with Definition 1.2.3 we keep the same numbering for the corre-
sponding conditions.
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Definition 1.2.5. Fix A ∈ R, a ∈ RN such that
∑N

j=1 a
j = A. The pair (YX ,QX) ∈

L×Q1 is a risk exchange equilibrium (with budget A and allocation a ∈ RN)
if:

1) for each j, Y j
X is optimal for U

QjX
j (aj),

3) YX ∈ CR,
∑N

j=1 Y
j
X = A P-a.s.

Theorem 1.2.6 (Bühlmann, [33]). For twice differentiable, concave, strictly increas-
ing utilities u1, . . . , uj : R → R such that their risk aversions are positive Lipschitz
and for L = (L∞(P))N , Q = Q1 and X ∈ L, there exists a unique risk exchange
equilibrium that is Pareto optimal.

Proof. See [33].

In a risk exchange equilibrium with budget A, the vector a ∈ RN such that
∑N

j=1 a
j =

A is exogenously assigned, while both the optimal exchange variable YX and the
equilibrium price measure QX are endogenously determined. On the contrary, in a
Q−Optimal Allocation the pricing measure is assigned a priori, while the optimal
allocation YX and optimal budget aX are endogenously determined. We shall now
introduce a notion which requires to endogenously recover the triple (YX ,QX , aX)
from the systemic budget A.

1.2.4 Systemic Optimal Risk Transfer Equilibrium (SORTE)

The novel equilibrium concept presented in equations (I.8) (I.9) and (I.10) can now
be formalized as follows. To this end, recall from (I.1) the definition of CR and fix a
convex cone

B ⊆ CR
of admissible allocations such that RN + B = B.

Definition 1.2.7 (SORTE). The triple (YX ,QX , aX) ∈ L×Q×RN is a Systemic
Optimal Risk Transfer Equilibrium with budget A ∈ R if:

1) for each j, Y j
X is optimal for U

QjX
j (ajX),

2) aX is optimal for SQX (A),
3) YX ∈ B ⊆ CR and

∑N
j=1 Y

j
X = A P-a.s.

Remark 1.2.8. It follows from the monotonicity of each uj that
∑N

j=1 a
j
X = A and

EQjX
[Y j
X ] = ajX . Hence

N∑
j=1

EQjX
[Y j
X ] =

N∑
j=1

ajX = A,

and
N∑
j=1

Y j
X =

N∑
j=1

EQjX
[Y j
X ] P-a.s. (1.6)

The main aim of Chapter 1 is to provide sufficient general assumptions that guarantee
existence and uniqueness as well as good properties of a SORTE.
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Remark 1.2.9. We emphasize that the existence of multiple equilibrium pricing mea-
sures QX = [Q1

X , ...,QN
X ] is a natural consequence of the presence of the - non trivial

- constraints set B. Indeed, even in the Bühlmann setting, if we add constraints, of a
very simple nature, a single equilibrium pricing measure might not exists any more.
Consider the following extension of a Bühlmann risk exchange equilibrium.
Let B ⊆ CR be fixed. We say that a pair (ỸX ,QX), with QX a single probability
measure, is a constrained risk exchange equilibrium if:

(a2) for each j, Ỹ j
X maximizes: EP

[
uj(x

j +Xj + Ỹ j − EQX [Ỹ j])
]

among all variables

Ỹ j,
(b2) ỸX ∈ B and

∑N
j=1 Ỹ

j
X = 0 P−a.s.

We show with the next example that such an equilibrium (with one single probability
QX) does not exist in general. The example we present is rather simple, yet in-
structive, since it shows that the absence of the equilibrium arises not from technical
assumptions, like integrability conditions, but is rather a structural problem caused
by the presence of additional constraints. Here we provide the intuition for it. Sup-
pose that two isolated systems of agents have, under suitable assumptions, their own
(unconstrained) equilibria, and that such two equilibria do not coincide. As shown in
the next example, we might then consider the two systems as one single larger system
consisting of two isolated clusters, expressing this latter property with the addition of
constraints. Then it is evident that an equilibrium (with a unique pricing measure)
cannot exist for such a unified system.

Example 1.2.10. In order to ignore all integrability issues, in this example we assume
that Ω is a finite set, endowed with the sigma algebra of all its subsets and the uniform
probability measure. Consider N = 4, uj(x) := (1− e−αjx), αj > 0, j = 1, . . . , 4, and
some vectors x ∈ R4, and X ∈ (L∞)4. Moreover take

B =
{
Y ∈ CR | Y 1 + Y 2 = 0, Y 3 + Y 4 = 0

}
.

Thus X and B model a single system of 4 agents which can exchange the risk only in
a restricted way (agent 1 with agent 2, and agent 3 with agent 4), so that in effect the
system consists of two isolated clusters of agents. Then a constrained risk exchange
equilibrium in general does not exists. By contradiction, suppose that (ỸX ,QX) is

a constrained risk exchange equilibrium. It is easy to verify that ([Ỹ 1
X , Ỹ

2
X ],QX) is a

(unconstrained) risk exchange equilibrium with respect to [X1, X2] and [x1, x2] (i.e.

it satisfies Items (a) and (b) of Section I.1 for N = 2). Similarly, ([Ỹ 3
X , Ỹ

4
X ],QX) is a

(unconstrained) risk exchange equilibrium with respect to [X3, X4] and [x3, x4]. This
implies using equation (2) in Bühlmann [33] that

exp (η(X1 +X2))

EP [exp (η(X1 +X2))]
=

dQX

dP
=

exp (θ(X3 +X4))

EP [exp (θ(X3 +X4))]
, η =

1

α1

+
1

α2

, θ =
1

α3

+
1

α4

,

which clearly gives a contradiction, since X is arbitrary.
Observe, however, that in this example a constrained equilibrium exists if we allow
for possibly different pricing measures, namely if we may replace the measure
QX with a vector [Q1

X , . . . ,QN
X ]. This would amount to replacing (a2) with (a3) below,

namely to require that:
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(a3) for each j, Ỹ j
X maximizes: EP

[
uj(x

j +Xj + Ỹ j − EQjX
[Ỹ j])

]
among all variables

Ỹ j,
(b2) ỸX ∈ B and

∑N
j=1 Ỹ

j
X = 0 P−a.s.

Then such an equilibrium exists. Indeed, by the results in Bühlmann [33], we can

guarantee the existence of the risk exchange equilibrium ([Ỹ 1
X , Ỹ

2
X ],Q12

X ) with respect

to [X1, X2] and [x1, x2], and the risk exchange equilibrium ([Ỹ 3
X , Ỹ

4
X ],Q34

X ) with respect

to [X3, X4] and [x3, x4]. Then ([Ỹ 1
X , Ỹ

2
X , Ỹ

3
X , Ỹ

4
X ], [Q12

X ,Q12
X ,Q34

X ,Q34
X ]) satisfies (a3) and

(b2). The conclusion is that, even in the Bühlmann case, the presence of
constraints implies multiple equilibrium pricing measures.
From the mathematical point of view, this fact is very easy to understand in our setup,
described in Assumption 1.2.12. More constraints implies a smaller set B0 of feasible
vectors Ỹ ∈ B such that

∑N
j=1 Ỹ

j
X = 0 and this in turn implies a larger polar set of B0

(which we will denote withQ, see the definition in Section 1.3 Item 4. The equilibrium
exists only if we are allowed to pick the pricing vector QX in this larger set Q, but
the elements in Q don’t need to have all equal components. Economically, multiple
pricing measures may arise because the risk exchange mechanism may be restricted
to clusters of agents, as in this example, and agents from different clusters may well
adopt a different equilibrium pricing measure. For further details on clustering, see
the Examples 1.2.19 and 1.3.20.

Remark 1.2.11. We will show the existence of a triple (YX ,QX , aX) ∈ L×Q×RN

verifying the three conditions in Definition 1.2.7. Hence, we also obtain the exis-
tence of the SORTE in the formulations given in (I.5), (I.6), (I.10) or in (I.8), (I.9),
(I.10), for generic functional pj verifying the conditions (i), (ii) and (iii) stated in the
Introduction on page 11 (see also Remark 1.3.3).

In Chapter 1 we will work under the following Assumption 1.2.12.

Assumption 1.2.12.

(a) Utilities: u1, . . . , uN : R→ R are strictly concave, strictly increasing differen-
tiable functions with

lim
x→−∞

uj(x)

x
= +∞ lim

x→+∞

uj(x)

x
= 0, for any j ∈ {1, . . . , N}.

Moreover we assume that the following property holds: for any j ∈ {1, . . . , N}
and Qj � P

EP

[
vj

(
λ

dQj

dP

)]
< +∞ for some λ > 0 ⇔ EP

[
vj

(
λ

dQj

dP

)]
< +∞∀λ > 0,

(1.7)
where vj(y) := supx∈R {uj(x)− xy} denotes the convex conjugate of uj.

(b) Constraints: B ⊆ CR is a convex cone, closed in probability, such that RN+B =
B.

Remark 1.2.13. In particular, Assumptions 1.2.12 (b) implies that all constant vectors
belong to B. The condition (1.7) is related to the Reasonable Asymptotic Elasticity
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condition on utility functions, which was introduced in [122]. This assumption, even
though quite weak (see [21] Section 2.2), is fundamental to guarantee the existence of
the optimal solution to classical utility maximization problems (see [21] and [122]).

Theorem 1.2.14. A Systemic Optimal Risk Transfer Equilibrium (YX ,QX ,
aX) exists, with Q1

X , . . . ,QN
X equivalent to P.

Theorem 1.2.15. Under the additional Assumption that B is closed under truncation
(Definition 1.3.13) the Systemic Optimal Risk Transfer Equilibrium is unique
and is a Pareto optimal allocation.

The formal statements and proofs are postponed to Section 1.3, Theorem 1.3.12 and
Theorem 1.3.17.

Remark 1.2.16. A priori there are no reasons why a Q-optimal allocation YX in Defini-
tion 1.2.3 would also satisfy the constraint

∑N
j=1 Y

j
X ∈ R. The existence of a SORTE

is indeed the consequence of the existence of a probability measure QX such that the
QX-optimal allocation YX in Definition 1.2.3 satisfies also the additional risk transfer
constraint

∑N
j=1 Y

j
X = A P−a.s.

Remark 1.2.17. Without the additional feature expressed by 2) in the Definition 1.2.7,
for all choices of aX satisfying

∑N
j=1 a

j
X = A there exists an equilibrium (YX ,QX) in

the sense of Definition 1.2.5 (see Theorem 1.2.6). The uniqueness of a SORTE is then
a consequence of the uniqueness of the optimal solution in condition 2).

Remark 1.2.18. Depending on which one of the three objects (Y,Q, a) ∈ L×Q ×
RN we keep a priori fixed, we get a different notion of equilibrium (see the various
definitions above). The characteristic features of the risk exchange equilibria and
of a SORTE, compared with the more classical utility optimization problem in the
systemic framework of Section 1.2.2, are the condition

∑N
j=1 Y

j
X = A P−a.s. and the

existence of the equilibrium pricing vector QX .

For both concepts of equilibrium (Definitions 1.2.5 and SORTE), each agent is be-
having rationally by maximizing his expected utility given a budget constraint. The
two approaches differ by the budget constraints. In Bühlmann’s definition the vector
a ∈ RN that assigns the budget constraint (EQjX

[Y j] ≤ aj) is prescribed a priori. On

the contrary, in the SORTE approach, the vector a ∈ RN , with
∑N

j=1 aj = A, that

assigns the budget constraint EQjX
[Y j] ≤ aj is determined by optimizing the problem

in condition 2), hence by taking into account the optimal systemic utility SQX (A),

which is (by definition) larger than the systemic utility
∑N

j=1 U
QjX
j (aj) in Bühlmann’s

equilibrium. The SORTE gives priority to the systemic aspects of the problem in order
to optimize the overall systemic performance. A toy example showing the difference
between a Bühlmann’s equilibrium and a SORTE is provided in Section 1.4.2.

Example 1.2.19. We now consider the example of a cluster of agents, already in-
troduced in [20]. For h ∈ {1, · · · , N} , let I := (Im)m=1,...,h be some partition of
{1, · · · , N}. We introduce the following family

B(I) =

{
Y ∈ L0(RN ) | ∃ d = [d1, · · · , dh] ∈ Rh :

∑
i∈Im

Y i = dm∀m = 1, · · · , h

}
⊆ CR.

(1.8)
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For a given I, the values (d1, · · · , dh) may change, but the elements in each of the h
groups Im is fixed by the partition I. It is then easily seen that B(I) is a linear space
containing RN and closed with respect to convergence in probability. We point out
that the family B(I) admits two extreme cases:

(i) the strongest restriction occurs when h = N, i.e., we consider exactly N groups,
and in this case B(I) = RN corresponds to no risk sharing;

(ii) on the opposite side, we have only one group h = 1 and B(I) = CR is the largest
possible class, corresponding to risk sharing among all agents in the system.
This is the only case considered in Bühlmann’s definition of equilibrium.

Remark 1.2.20. As already mentioned in the Introduction, one additional feature of
a SORTE, compared with the Bühlmann’s notion, is the possibility to require, in
addition to

∑N
j=1 Y

j = A that the optimal solution belongs to a pre-assigned set B
of admissible allocations, satisfying Assumption 1.2.12 (b). In particular, we allow
for the selection of the sets B = RN or B = CR. The characteristics of the optimal
probability QX depend on the admissible set B. For B = CR, all the components of
QX turn out to be equal. We also know (see Lemma 1.3.21) that for B = B(I) all
the components Qi

X of QX are equal for all i ∈ Im, for each group Im. Additional
examples of sets B are provided in Section 1.3.5.

1.2.5 Explicit Formulas in the Exponential Case

We believe it is now instructive to anticipate the explicit solution to the SORTE
problem in the exponential case for B = CR. This is a particular case of a more
general situation treated in detail in Section 1.4.

Theorem 1.2.21. Take exponential utilities

uj(x) := 1− exp(−αjx), j = 1, . . . , N for α1, . . . , αN > 0.

Then the SORTE for B = CR is given by
Ŷ k = −Xk + 1

αk

(
X
β

)
+ 1

αk

[
A
β

+ ln (αk)− ER [ln(α)]
]

k = 1, . . . , N

dQ̂k
dP =

exp
(
−X
β

)
EP
[
exp
(
−X
β

)] =: dQ̂
dP k = 1, . . . , N

âk = EQ̂k [Ŷ
k] k = 1, . . . , N

(1.9)

where β :=
∑N

j=1
1
αj

, X :=
∑N

j=1X
j, R(n) :=

1
αj∑N
k=1

1
αk

for j = 1, ...N , α := (α1, ..., αN),

ER [ln(α)] =
∑N

j=1R(n) ln(αj).

1.3 Proof of Theorem 1.2.14 and Theorem 1.2.15

We need to introduce the following concepts and notations:
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1. The utility functions in Assumption 1.2.12 induce an Orlicz space structure: see
Section 1.5.1 for the details and the definitions of the spaces LΦ and MΦ. Here
we just recall the following inclusions among the Banach spaces: (L∞(P))N ⊆
MΦ ⊆ LΦ ⊆ (L1(P))N and that for a vector of probability measures Q� P the
condition dQ

dP ∈ L
Φ∗ implies LΦ ⊆ L1(Q). From now on in Chapter 1 we assume

that X ∈MΦ.

2. For any A ∈ R we set

BA := B ∩

{
Y ∈ (L0(P))N |

N∑
j=1

Y j ≤ A P-a.s.

}
.

Observe that B0 ∩MΦ is a convex cone.

3. We introduce the following problem for X ∈MΦ and for a vector of probability
measures Q� P, with dQ

dP ∈ L
Φ∗ ,

πQ(A) := sup

{
N∑
j=1

EP
[
uj
(
Xj + Y j

)]
| Y ∈MΦ,

N∑
j=1

EQj
[
Y j
]
≤ A

}
. (1.10)

Notice that in (1.10) the vector Y is not required to belong to CR, but only to
the vector space MΦ. In order to show the existence of the optimal solution to
the problem πQ(A), it is necessary to enlarge the domain in (1.10).

4. Q is the set of vectors of probability measures defined by

Q :=

{
Q� P | dQ

dP
∈ LΦ∗ ,

N∑
j=1

EP

[
Y j dQj

dP

]
≤ 0, ∀Y ∈ B0 ∩MΦ

}

where dQ
dP =

[
dQ1

dP , . . . ,
dQN
dP

]
. Identifying Radon-Nikodym derivatives and mea-

sures in the natural way, Q turns out to be the set of normalized (i.e. with
componentwise expectations equal to 1), non negative vectors in the polar of
B0 ∩MΦ in the dual system (MΦ, LΦ∗). In our N -dimensional systemic one-
period setting, the set Q plays the same crucial role as the set of martingale
measures in multiperiod stochastic securities markets.

5. We introduce the following convex subset of Q:

Qv := Q ∩

{
dQ
dP
∈ LΦ∗ | dQj

dP
≥ 0∀ j,

N∑
j=1

EP

[
vj

(
dQj

dP

)]
< +∞

}
. (1.11)

6. Set
L :=

⋂
Q∈Qv

L1(Q1)× · · · × L1(QN), Q := Qv. (1.12)
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Note that MΦ ⊆ L and that L has the product structure L = L1 × · · · × LN : let
Projj denote the projection on the n−th component, defined on Qv, and take the
corresponding image Qj := Projj(Qv) (consisting of a family of probability measures,
all absolutely continuous with respect to P). Set Lj :=

⋂
Q∈Qj L

1(Q). Then L =

L1 × · · · × LN .
We will consider the optimization problems (1.1), (1.2) and (1.3) with the particular
choice of (L,Q) in (1.12) and will show that, with such choice, πQ(A) = ΠQ(A).
Observe that if all utility functions are bounded from above, the requirement

N∑
j=1

EP

[
vj

(
dQj

dP

)]
< +∞

is redundant, but it becomes important if we allow for utility functions to be un-
bounded.
We also require some additional definitions and notations:

a) B0 is the polar of the cone co(Qv) in the dual pair(
LΦ∗1 × · · · × LΦ∗N ,

⋂
Q∈Qv

L1(Q1)× · · · × L1(QN)

)
,

that is

B0 :=

{
Y ∈

⋂
Q∈Qv

L1(Q1)× · · · × L1(QN) |
N∑
j=1

EQj
[
Y j
]
≤ 0, ∀Q ∈ Qv

}
.

It is easy to verify that
B0 ∩MΦ ⊆ B0 .

b) For any A ∈ R we define BA as the set

BA :=

{
Y ∈

⋂
Q∈Qv

L1(Q1)× · · · × L1(QN) |
N∑
j=1

EQj
[
Y j
]
≤ A, ∀Q ∈ Qv

}
.

We will prove that BA is the correct enlargement of the domain BA ∩MΦ in
order to obtain the existence of the optimal solution of the primal problem.

c) {ei}i=1,...,N is the canonical base of RN .

Lemma 1.3.1. In the dual pair (MΦ, LΦ∗), consider the polar (B0∩MΦ)0 of B0∩MΦ.
Then (B0 ∩MΦ)0 ∩ (L0

+)N is the cone generated by Q.

Proof. From the definition of B0 and the fact that B contains all constant vectors, we
may conclude that all vectors in RN of the form ei − ej belong to B0 ∩MΦ. Then for
all Z ∈ (B0 ∩MΦ)0 and for all i, j ∈ {1, . . . , N} we must have: EP [Zi]− EP [Zj] ≤ 0.
As a consequence, Z ∈ (B0 ∩MΦ)0 implies EP [Z1] = · · · = EP

[
ZN
]

and so

(B0 ∩MΦ)0 ∩ (L0
+)N = R+ · Q, (1.13)

where R+ := {b ∈ R, b ≥ 0}.
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Lemma 1.3.2. Qev := {Q ∈ Qv s.t. Q ∼ P} 6= ∅.

Proof. The condition B ⊆ CR implies B0∩MΦ ⊆ (CR∩MΦ∩{
∑N

j=1 Y
j ≤ 0}), so that

the polars satisfy the opposite inclusion: (CR ∩MΦ ∩{
∑N

j=1 Y
j ≤ 0})0 ⊆ (B0 ∩MΦ)0.

Observe now that any vector [Z, . . . , Z], for Z ∈ L∞+ , belongs to (CR∩MΦ∩{
∑N

j=1 Y
j ≤

0})0. In particular, (B0∩MΦ)0 contains vectors in the form
[
ε+Z
1+ε

, . . . , ε+Z
1+ε

]
with ε > 0

and Z ∈ L∞+ , EP [Z] = 1. Each component of such a vector has expectation equal to
1, belongs to L∞+ and satisfies ε+Z

1+ε
≥ ε

1+ε
. All these conditions imply that there exists

a probability vector Q ∈Q such that dQ
dP > 0 P−a.s. with

∑N
j=1 EP

[
vj

(
dQj
dP

)]
< ∞,

hence Qev 6= ∅.

1.3.1 Scheme of the proof

The proof of Theorem 1.2.14 is inspired by the classical duality theory in utility
maximization, see for example [47] and [102] and by the minimax approach developed
in [15]. More precisely, our road map will be the following:

1. First we show, in Remark 1.3.4, how we may reduce the problem to the case
A = 0.

2. We consider

π(A) := sup


N∑
j=1

EP
[
uj
(
Xj + Y j

)]
| Y ∈MΦ ∩ B,

N∑
j=1

Y j ≤ A P-a.s.

 . (1.14)

In Theorem 1.3.5 we specialize the duality, obtained in Theorem 1.5.3 for a
generic convex cone C, for the maximization problem π(0) over the convex cone

C =B0∩MΦ and prove: (i) the existence of the optimizer Ŷ of π(0), which

belongs to B0; (ii) the existence of the optimizer Q̂ to the dual problem of π(0).
Here we need all the assumptions on the utility functions and on the set B and
an auxiliary result stated in Theorem 1.5.4.

3. Proposition 1.3.7 will show that also the elements in the closure of B∩MΦ satisfy
the key condition

∑N
j=1 EQj [Y j] ≤

∑N
j=1 Y

j ∈ R for all Q ∈ Q.

4. Theorem 1.5.3 is then again applied, to a different set

C =

{
Y ∈MΦ |

N∑
j=1

EQj
[
Y j
]
≤ 0

}

to derive Proposition 1.3.9, which establishes the duality for πQ(0) and πQ(A)
in case a fixed probability vector Q is assigned.

5. The minimax duality:

π(A) = min
Q∈Qv

πQ(A) = πQ̂(A),

is then a simple consequence of the above results (see Corollary 1.3.10). This
duality is the key tool to prove the existence of a SORTE (see Theorem 1.3.12).
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6. Uniqueness and Pareto optimality are then proved in Theorem 1.3.17.

Remark 1.3.3. Notice that in the definition of π(A) there is no reference to a probabil-
ity vector Q. However, the optimizer of the dual formulation of π(A) is a probability

vector Q̂ (that will be the equilibrium pricing vector in the SORTE). Even if in the
equations (I.8), (I.9), (I.10) we do not a priori require pricing functional of the form
pj(·) = EQj [·], this particular linear expression naturally appears from the dual for-
mulation.

1.3.2 Minimax Approach

Remark 1.3.4. Only in this Remark, we need to change the notation a bit: we make
the dependence of our maximization problems on the initial point explicit. To this
end we will write

πX(A) := sup

{
N∑
j=1

EP
[
uj
(
Xj + Y j

)]
| Y ∈ BA ∩MΦ

}
,

πQ
X(A) := sup

{
N∑
j=1

EP
[
uj
(
Xj + Y j

)]
| Y ∈MΦ,

N∑
j=1

EQj
[
Y j
]
≤ A

}
.

It is possible to reduce the maximization problem expressed by πX(A) (and similarly
by πQ

X(A)) to the problem related to π·(0) (respectively, πQ
· (0)) by using the following

simple observation: for any a0 ∈ RN with
∑N

j=1 a
j
0 = A consider

πX(A) = sup

{
N∑
j=1

EP
[
uj
(
Xj + Y j

)]
| Y ∈ B ∩MΦ,

N∑
j=1

Y j ≤ A

}

= sup

{
N∑
j=1

EP
[
uj
(
Xj + aj0 + (Y j − aj0)

)]
| Y ∈ B ∩MΦ,

N∑
j=1

(
Y j − aj0

)
≤ 0

}

= sup

{
N∑
j=1

EP
[
uj
(
Xj + aj0 + Zj

)]
| Z ∈ B0 ∩MΦ

}
,

where last equality holds as we are assuming that RN+B = B. The last line represents
the original problem, but with A = 0 and a different initial point. This fact will be
used in the conclusion of the proof of Theorem 1.3.5.

In the following Theorem we follow a minimax procedure inspired by the technique
adopted in [21].

Theorem 1.3.5. Under Assumption 1.2.12 we have

π(A) := sup
Y ∈BA∩MΦ

N∑
j=1

EP
[
uj
(
Xj + Y j

)]
= max

Y ∈BA

N∑
j=1

EP
[
uj
(
Xj + Y j

)]
(1.15)

= min
Q∈Q

min
λ∈R++

(
λ

(
N∑
j=1

EQj
[
Xj
]

+ A

)
+

N∑
j=1

EP

[
vj

(
λ

dQj

dP

)])
. (1.16)
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The minimization problem in (1.16) admits a unique optimum (λ̂, Q̂) ∈ R++×Q with

Q̂ ∼ P. The maximization problem in (1.15) admits a unique optimum Ŷ ∈ BA, given
by

Ŷ j = −Xj − v′j

(
λ̂

dQ̂j

dP

)
, j = 1, ..., N , (1.17)

which belongs to BA. In addition,

N∑
j=1

EQ̂j

[
Ŷ j
]

= A and
N∑
j=1

EQj
[
Ŷ j
]
≤ A ∀Q ∈ Qv. (1.18)

Proof. We first prove the result for the case A = 0.
STEP 1
We first show that

sup
B0∩MΦ

N∑
j=1

EP
[
uj
(
Xj + Y j

)]
<

N∑
j=1

vj(0) =
N∑
j=1

uj(+∞) ∀X ∈ MΦ (1.19)

so that we will be able to apply Theorem 1.5.3 with the choice C := B0 ∩MΦ. We
distinguish two possible cases:

∑N
j=1 uj(+∞) = +∞ or

∑N
j=1 uj(+∞) < +∞.

For
∑N

j=1 uj(+∞) = +∞: observe that for any Q ∈ Qv (which is nonempty by Lemma
1.3.2) and λ > 0 we have

N∑
j=1

EP
[
uj
(
Xj + Y j

)]
≤

N∑
j=1

EP

[
(Xj + Y j)

(
λ

dQj

dP

)]
+

N∑
j=1

EP

[
vj

(
λ

dQj

dP

)]

≤
N∑
j=1

EP

[
Xj

(
λ

dQj

dP

)]
+

N∑
j=1

EP

[
vj

(
λ

dQj

dP

)]
.

We exploited above Fenchel inequality and the definition of Qv. Observing that
the last line does not depend on Y and is finite, and using the well known relation
vj(0) = uj(+∞), j = 1, . . . , N , we conclude that

sup
B0∩MΦ

N∑
j=1

EP
[
uj
(
Xj + Y j

)]
< +∞ =

N∑
j=1

vj(0).

For
∑N

j=1 uj(+∞) < +∞: if the inequality in (1.19) were not strict, for any maximiz-
ing sequence (Ym)m we would have, by monotone convergence, that

N∑
j=1

EP [uj (+∞)]−
N∑
j=1

EP
[
uj
(
Xj + Y j

m

)]
= EP

[∣∣∣∣∣
N∑
j=1

(
uj(+∞)− uj(Xj + Y j

m)
)∣∣∣∣∣
]
−→
m

0.

Up to taking a subsequence we can assume the convergence is also almost sure. Since
all the terms in

∑N
j=1 (uj(+∞)− uj(Xj + Y j

m)) are non negative, we also see that

uj(X
j+Y j

m)→m uj(+∞) almost surely for every j = 1, . . . , N . By strict monotonicity
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of the utilities, this would imply that, for each j, Y j
m →m +∞. This clearly contradicts

the constraint Ym ∈ B0.
STEP 2
We will prove equations (1.15) and (1.16), with a supremum over BA in place of a
maximum, since we will show in later steps (STEP 4) that this supremum is in fact
a maximum.
We observe that since B0 ∩MΦ ⊆ B0

sup
B0∩MΦ

N∑
j=1

EP
[
uj
(
Xj + Y j

)]
≤ sup
B0

N∑
j=1

EP
[
uj
(
Xj + Y j

)]
.

Moreover, by the Fenchel inequality

sup
B0

N∑
j=1

EP
[
uj
(
Xj + Y j

)]
≤ inf

λ∈R+,Q∈Q

(
λ

N∑
j=1

EQj
[
Xj
]

+
N∑
j=1

EP

[
vj

(
λ

dQj

dP

)])
.

Equations (1.15) and (1.16) follow from Theorem 1.5.3 replacing there the convex
cone C with B0 ∩MΦ and using equation (1.13), which shows that (C0

1)+ = Q.
STEP 3
We prove that if λ̂ and Q̂ are optima in equation (1.16), then Ŷ j := −Xj− v′j

(
λ̂dQ̂j

dP

)
defines an element in B0. Observe that λ̂ minimizes the function

R++ 3 γ 7→ ψ(γ) :=
N∑
j=1

(
γEQ̂j

[
Xj
]

+ EP

[
vj

(
γ

dQ̂j

dP

)])

which is real valued and convex. Also we have by Monotone Convergence Theorem
and Lemma 1.5.2.1. that the right and left derivatives, which exist by convexity,
satisfy

d±ψ

dγ
(γ) =

N∑
j=1

EP

[
Xj dQ̂j

dP

]
+

N∑
j=1

EP

[
v′j

(
γ

dQ̂j

dP

)
dQ̂j

dP

]
,

hence the function is differentiable. Since λ̂ is a minimum for ψ, this implies ψ′(λ̂) = 0,
which can be rephrased as

N∑
j=1

(
EP

[
Xj dQ̂j

dP

]
+ EP

[
v′j

(
λ̂

dQ̂j

dP

)
dQ̂j

dP

])
= 0, (1.20)

i.e.,
N∑
j=1

EQ̂j

[
Ŷ j
]

= 0. (1.21)

Now consider minimizing

Q 7→
N∑
j=1

(
λ̂EQj

[
Xj
]

+ EP

[
vj

(
λ̂

dQj

dP

)])
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for fixed λ̂ and Q varying in Qv. Let again Q̂, with η̂ := dQ̂
dP , be an optimum and

consider another Q ∈ Qv, with η := dQ
dP . By Assumption 1.2.12, the expression∑N

j=1 EP

[
vj

(
λdQj

dP

)]
is finite for all choices of λ. Observe that by convexity and

differentiability of vj we have

λ̂ηjv′j

(
λ̂η̂j
)
≤ λ̂η̂jv′j

(
λ̂η̂j
)

+ vj

(
λ̂ηj
)
− vj

(
λ̂η̂j
)
.

Hence by Lemma 1.5.2.1. and Q̂,Q ∈ Qv we conclude that(
ηjv′j

(
λ̂η̂j
))+

∈ L1(P). (1.22)

To prove that also the negative part is integrable, we take a convex combination of
Q̂,Q ∈ Qv, which still belongs to Qv. By optimality of η̂ the function ϕ defined for
x ∈ [0, 1] as

x 7→ ϕ(x) :=
N∑
j=1

(
λ̂EP

[
Xj
(
(1− x)η̂j + xηj

)]
+ EP

[
vj

(
λ̂
(
(1− x)η̂j + xηj

))])
has a minimum at 0, thus the right derivative of ϕ at 0 must be non negative, so that:

N∑
j=1

d

dx

∣∣∣
0

(
(1− x)λ̂EP

[
Xj η̂j

]
+ xλ̂EP

[
Xjηj

])
≥ −

N∑
j=1

d

dx

∣∣∣
0
EP

[
vj

(
(1− x)λ̂η̂j + xλ̂ηj

)]
.

(1.23)

Define Hj(x) := vj

(
(1− x)λ̂η̂j + xλ̂ηj

)
and observe that as x ↓ 0 by convexity

0 ≤
(
−1

x
(Hj(x)−Hj(0)) +Hj(1)−Hj(0)

)
↑
(
−λ̂v′j

(
λ̂η̂j
)
ηj + λ̂v′j

(
λ̂η̂j
)
η̂j +Hj(1)−Hj(0)

)
.

(1.24)

Write now explicitly equation (1.23) in terms of incremental ratios and add and sub-

tract the real number EP

[∑N
j=1 (Hj(1)−Hj(0))

]
to get for ∆j := Hj(1)−Hj(0)

lim
x↓0

N∑
j=1

(
1

x

[(
(1− x)λ̂EP

[
Xj η̂j

]
+ xλ̂EP

[
Xjηj

])
− λ̂EP

[
Xj η̂j

]]
+ EP [∆j]

)
(1.25)

≥ lim
x↓0

N∑
j=1

(
EP

[
−1

x
(Hj(x)−Hj(0)) + ∆j

])
. (1.26)

The first limit is trivial. Observe that by (1.24) and Monotone Convergence Theorem
we also may compute the second limit and then deduce:

N∑
j=1

(
λ̂EP

[
Xj
(
ηj − η̂j

)]
+ EP [Hj(1)−Hj(0)]

)
≥

N∑
j=1

EP

[
−λ̂v′j

(
λ̂η̂j
)
ηj + λ̂v′j

(
λ̂η̂j
)
η̂j +Hj(1)−Hj(0)

]
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and therefore

+∞ >

N∑
j=1

λ̂EP
[
Xj
(
ηj − η̂j

)]
≥ EP

[
N∑
j=1

(
−λ̂v′j

(
λ̂η̂j
)
ηj + λ̂v′j

(
λ̂η̂j
)
η̂j
)]

= EP

[
N∑
j=1

(
λ̂
(
v′j

(
λ̂η̂j
)
ηj
)−
− λ̂

(
v′j

(
λ̂η̂j
)
ηj
)+

+ λ̂v′j

(
λ̂η̂j
)
η̂j
)]

.

Since
∑N

j=1 v
′
j

(
λ̂η̂j
)
η̂j ∈ L1(P) by Lemma 1.5.2.1, and

∑N
j=1

(
v′j

(
λ̂η̂j
)
ηj
)+

∈ L1(P)

by equation (1.22), we deduce that
∑N

j=1

(
v′j

(
λ̂η̂j
)
ηj
)−
∈ L1(P) so that

0 ≤
(
v′j

(
λ̂η̂j
)
ηj
)−
≤

N∑
j=1

(
v′j

(
λ̂η̂j
)
ηj
)−
∈ L1(P).

We conclude that v′j

(
λ̂η̂j
)
ηj defines a vector in L1(P)× · · · × L1(P), hence

Ŷ ∈ L1(Q1)× · · · × L1(QN) ∀Q ∈ Qv. (1.27)

Moreover equation (1.23) can be rewritten as:

0 ≤
N∑
j=1

λ̂EP
[
Xj
(
ηj − η̂j

)]
+

N∑
j=1

λ̂E
[
v′j

(
λ̂η̂j
) (
ηj − η̂j

)]
. (1.28)

Now rearrange the terms in (1.28)

0 ≤ −
N∑
j=1

λ̂
(
EP
[
Xj η̂j

]
+ EP

[
v′j

(
λ̂η̂j
)
η̂j
])

+
N∑
j=1

λ̂
(
EP
[
Xjηj

]
+ EP

[
v′j

(
λ̂η̂j
)
ηj
])

and use (1.20):

0 ≤ 0−
N∑
j=1

λ̂
(
EP

[(
−Xj − v′j

(
λ̂η̂j
))

ηj
])

= −λ̂
N∑
j=1

EP

[
Ŷ j dQj

dP

]
.

This proves that
N∑
j=1

EQj
[
Ŷ j
]
≤ 0 ∀Q ∈ Qv (1.29)

and then Ŷ ∈ B0.
STEP 4 (Optimality of Ŷ )
Under our standing Assumption 1.2.12 it is well known that u(−v′(y)) = v(y) −
yv′(y), ∀y ≥ 0. As a consequence we get by direct substitution

uj(X
j + Ŷ j) = uj

(
−v′j

(
λ̂

dQ̂j

dP

))
= −λ̂dQ̂j

dP
v′j

(
λ̂

dQ̂j

dP

)
+ vj

(
λ̂

dQ̂j

dP

)
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and

N∑
j=1

EP

[
uj

(
Xj + Ŷ j

)]
= λ̂

(
−

N∑
j=1

EP

[
dQ̂j

dP
v′j

(
λ̂

dQ̂j

dP

)])
+

N∑
j=1

EP

[
vj

(
λ̂

dQ̂j

dP

)]
.

Use now the expression in (1.20) to substitute in the first RHS term:

N∑
j=1

EP

[
uj

(
Xj + Ŷ j

)]
= λ̂

N∑
j=1

EQ̂j [X
j] +

N∑
j=1

EP

[
vj

(
λ̂

dQ̂j

dP

)]
.

The optimality of Ŷ follows then by optimality of (λ̂, Q̂) in (1.16).

Using now our findings in STEP 2 together with optimality of Ŷ , the proof of equation
(1.15) is now complete.

STEP 5 (Ŷ ∈ B0)
By Lemma 1.3.2 there exists a Q ∈ Qev := {Q ∈ Qv s.t. Q ∼ P} and from (1.27) we

know that v′j

(
λdQ̂j

dP

)
∈ L1(Qj), λ > 0. Also, for every j = 1, . . . , N, v′j(0+) = −∞,

so that Qj
(

dQ̂j
dP = 0

)
= 0. As Q ∼ P, this in turn implies P

(
dQ̂j
dP = 0

)
= 0, for every

j = 1, . . . , N . Hence Q̂ ∼ P. Theorem 1.5.4 now can be applied to K := (B0 ∩MΦ)
and Qev to get

⋂
Q∈Qev

clQ
(
(B0 ∩MΦ)− L1

+ (Q)
)

=

Z ∈ ⋂
Q∈Qev

L1 (Q) |
N∑
j=1

EQj
[
Zj
]
≤ 0 ∀Q ∈ Qev

 .

(1.30)

As Ŷ ∈ B0 and B0 is included in the RHS of (1.30), we deduce that Ŷ belongs to the

LHS of (1.30). Now by equation (1.21) we see that Ŷ satisfies
∑N

j=1 EP

[
Ŷ j dQ̂j

dP

]
= 0,

and this implies that:
Ŷ ∈ clQ̂

(
B0 ∩MΦ

)
, (1.31)

the L1(Q̂1)× · · · × L1(Q̂1)-(norm) closure of B0 ∩MΦ. In particular Ŷ is a Q̂ (hence

P)- a.s. limit of elements in B0 which is closed in probability P, so that Ŷ ∈ B0.
STEP 6
The conditions in (1.18) are proved in (1.21) and (1.29). We conclude with uniqueness.
By the strict concavity of the utilities and the convexity of B0, it is evident that
the maximization problem given by supB0

∑N
j=1 EP [uj (Xj + Y j)] admits at most one

optimum. Now clearly if (λ̂, Q̂) and (λ̃, Q̃) are optima for the minimax expression

(1.16), they both give rise to two optima Ŷ , Ỹ as in the previous steps. Uniqueness of

the solution for the primal problem implies Ŷ = Ỹ . Under Assumption 1.2.12.(a) the

functions v′1, . . . , v
′
N are injective and therefore we conclude that λ̂dQ̂

dP = λ̃dQ̃
dP . Taking

expectations we get λ̂ = λ̃ and then (λ̂, Q̂) = (λ̃, Q̃).
Conclusion
The more general case A 6= 0 can be obtained using Remark 1.3.4. We just sketch one
step of the proof, as the other steps follows similarly. Using a0 as in Remark 1.3.4, in
STEP 3 we see that

0 ≤ −λ̂
N∑
j=1

EP

[
Ŷ j dQj

dP

]
+ λ̂

N∑
j=1

aj0
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which yields that Ŷ ∈ BA.

Remark 1.3.6. Notice that Y ∈ B ∩MΦ implies that Z ∈ B0, where Z is defined by
Zj := Y j − xj

∑N
k=1 Y

k for any x ∈ RN such that
∑N

j=1 x
j = 1. To see this, recall

that we are assuming that RN +B = B. As
∑N

j=1 Y
j ∈ R, then Z ∈ B and, since also

trivially integrability is preserved and
∑N

j=1 Z
j = 0, we conclude that Z ∈ B0.

Proposition 1.3.7. For all Y ∈ B ∩MΦ and Q ∈ Q

N∑
j=1

EQj
[
Y j
]
≤

N∑
j=1

Y j. (1.32)

Moreover, denoting by clQ
(
B ∩MΦ

)
the L1(Q1) × · · · × L1(QN)-norm closure of

B ∩ MΦ, inequality (1.32) holds for all Y ∈ clQ
(
B ∩MΦ

)
and Q ∈ Q, Q ∼ P.

In particular, (1.32) holds for Q̂ ∼ P and Ŷ ∈ clQ̂
(
B0 ∩MΦ

)
defined in Theorem

1.3.5.

Proof. Take Y ∈ B∩MΦ and argue as in Remark 1.3.6, with the notation introduced
there. By the definition of the polar,

∑N
j=1 EP [Zjϕj] ≤ 0 for all ϕ ∈ (B ∩MΦ)0, and

in particular for all Q ∈ Q

0 ≥
N∑
j=1

EP

[
Zj dQj

dP

]
=

N∑
j=1

EP

[
Y j dQj

dP

]
−

N∑
j=1

EP

[
xj

(
N∑
k=1

Y k

)
dQj

dP

]

where we recognize
∑N

j=1 EQj [Y j] −
∑N

j=1 Y
j in RHS. As to the second claim, take

a sequence (kj)j in B ∩MΦ converging both Q-almost surely (hence P-a.s.) and in
norm to Y and apply (1.32) to kj to get

N∑
j=1

EQj
[
Y j
]

= lim
j

N∑
j=1

EQj
[
kjj
] P-a.s.

≤ lim inf
j

(
N∑
j=1

kjj

)
P-a.s.
=

N∑
j=1

Y j. (1.33)

Remark 1.3.8. In particular (1.32) shows that ∀Q ∈ Q{
Y ∈ B ∩MΦ |

N∑
j=1

Y j ≤ A

}
⊆

{
Y ∈MΦ |

N∑
j=1

EQj
[
Y j
]
≤ A

}

and therefore π(A) ≤ πQ(A).

1.3.3 Utility Maximization with a fixed probability measure

The following represents a counterpart to Theorem 1.3.5, once a measure is fixed a
priori.
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Proposition 1.3.9. Fix Q ∈ Qv. If πQ(A) < +∞, then

πQ(A) = ΠQ(A) = sup

{
N∑
j=1

EP
[
uj
(
Xj + Y j

)]
| Y ∈ L1(Q),

N∑
j=1

EQj
[
Y j
]
≤ A

}
(1.34)

= min
λ∈R+

(
λ

(
N∑
j=1

EQj
[
Xj
]

+ A

)
+

N∑
j=1

EP

[
vj

(
λ

dQj

dP

)])
.

If additionally any of the two expressions is strictly less than
∑N

j=1 uj(+∞), then

πQ(A) = min
λ∈R++

(
λ

(
N∑
j=1

EQj
[
Xj
]

+ A

)
+

N∑
j=1

EP

[
vj

(
λ

dQj

dP

)])
. (1.35)

Proof. Again, we prove the case A = 0 since Remark 1.3.4 can be used to obtain the
general case A 6= 0. From MΦ ⊆ L ⊆ L1(Q) we obtain:

πQ(0) := sup

{
N∑
j=1

EP
[
uj
(
Xj + Y j

)]
| Y ∈MΦ,

N∑
j=1

EQj
[
Y j
]
≤ 0

}
≤ ΠQ(0)

≤ sup

{
N∑
j=1

EP
[
uj
(
Xj + Y j

)]
| Y ∈ L1(Q),

N∑
j=1

EQj
[
Y j
]
≤ 0

}

≤ min
λ∈R+

(
λ

N∑
j=1

EQj
[
Xj
]

+
N∑
j=1

EP

[
vj

(
λ

dQj

dP

)])
(1.36)

by the Fenchel inequality. Define the convex cone

C :=

{
Y ∈MΦ |

N∑
j=1

EQj
[
Y j
]
≤ 0

}
.

The hypotheses on C of Theorem 1.5.3 hold true and inequality (1.36) shows that

πQ(0) < +∞ for all X ∈MΦ. The finite dimensional cone
{
λ
[

dQ1

dP , . . . ,
dQN
dP

]
, λ ≥ 0

}
is a closed subset of LΦ∗ , hence by the Bipolar Theorem

C0 =

{
λ

[
dQ1

dP
, . . . ,

dQN

dP

]
, λ ≥ 0

}
.

Hence the set (C0
1)+ in the statement of Theorem 1.5.3 is exactly

{[
dQ1

dP , . . . ,
dQN
dP

]}
and Theorem 1.5.3 proves that πQ(0) is equal to the RHS of (1.36). We can similarly
argue to prove (1.35).

To conclude, we provide the minimax duality between the maximization problems
with and without a fixed measure
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Corollary 1.3.10. The following holds:

π(A) = min
Q∈Qv

πQ(A) = πQ̂(A) < +∞ ,

where Q̂ is the minimax measure from Theorem 1.3.5.

Proof. It is an immediate consequence of Theorem 1.3.5 and Proposition 1.3.9.

Lemma 1.3.11. For all Q ∈ Q we have ΠQ(A) = SQ(A) and, if Q̂ is the minimax
measure from Theorem 1.3.5, then

π(A) = πQ̂(A) = ΠQ̂(A) = SQ̂(A). (1.37)

Proof. Let Y ∈ L, Q ∈ Q, aj := EQj [Y
j] and Zj := Y j−aj. As L+RN = L, Zj ∈ Lj

and

ΠQ(A) = sup
Y ∈L

{
EP

[
N∑
j=1

uj(X
j + Y j)

]
|

N∑
j=1

EQj [Y
j] = A

}

= sup
a∈RN , Z∈L

{
EP

[
N∑
j=1

uj(X
j + Zj + aj)

]
| EQj [Z

j] = 0,
N∑
j=1

aj = A

}

= sup
a∈RN ,

∑N
j=1 a

j=A

{
sup

Z∈L : EQj [Zj ]=0

N∑
j=1

EP
[
uj(X

j + Zj + aj)
]}

= sup
a∈RN ,

∑N
j=1 a

j=A

N∑
j=1

sup
Zj∈Lj

{
EP
[
uj(X

j + Zj + aj)
]
| EQj [Z

j] = 0
}

= sup
a∈RN ,

∑N
j=1 a

j=A

N∑
j=1

sup
Y j∈Lj

{
EP
[
uj(X

j + Y j)
]
| EQj [Y

j] = aj
}

= sup
a∈RN

∑N
j=1 a

j=A

N∑
j=1

UQj
j (aj) = SQ(A) .

The first equality in (1.37) follows from Corollary 1.3.10 and the second one from
(1.34).

1.3.4 Main results

Theorem 1.3.12. Take Q = Qv and set L =
⋂

Q∈Qv L
1(Q). Under Assumption

1.2.12, for any X ∈ MΦ and any A ∈ R a SORTE exists, namely (Ŷ , Q̂) ∈BA×Qv
defined in Theorem 1.3.5 and

âj := EQ̂j [Ŷ
j], j = 1, . . . , N, (1.38)

satisfy:

1. Ŷ j is an optimum for U Q̂j
j (âj), for each j ∈ {1, . . . , N},
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2. â is an optimum for SQ̂(A),

3. Ŷ ∈ B and
∑N

j=1 Ŷ
j = A P−a.s.

Proof.

1): We prove that U Q̂j
j (âj) = EP

[
uj

(
Xj + Ŷ j

)]
< uj(+∞), for all j = 1, . . . , N ,

thus showing that Ŷ j is an optimum for U Q̂j
j (âj). As Ŷ j ∈ Lj for all j = 1, . . . , N ,

then by definition of U Q̂j
j (âj) we obtain:

sup
{
EP
[
uj(X

j + Z)
]∣∣∣Z ∈ Lj, EQ̂j [Z] ≤ âj

}
=: U Q̂j

j (âj) ≥ EP

[
uj

(
Xj + Ŷ j

)]
.

If, for some index, the last inequality were strict we would obtain the contradiction

πQ̂(A) = π(A)
Thm. 1.3.5

=
N∑
j=1

EP

[
uj

(
Xj + Ŷ j

)]
<

N∑
j=1

U Q̂j
j (âj) ≤ SQ̂(A) = πQ̂(A) ,

(1.39)
where we used (1.37) in the first and last equality.

In particular then EP

[
uj

(
Xj + Ŷ j

)]
< uj(+∞), for all j = 1, . . . , N . Indeed, if

the latter were equal to uj(+∞), then uj would attain its maximum over a compact
subset of R, which is not the case.
2): From (1.18) we know that A =

∑N
j=1EQ̂j [Ŷ

j] =
∑N

j=1 â
j. From (1.37) we have

SQ̂(A) = π(A)
Thm. 1.3.5

=
N∑
j=1

EP

[
uj

(
Xj + Ŷ j

)]
=

N∑
j=1

U Q̂j
j (âj) ≤ SQ̂(A).

3): We already know that Ŷ ∈BA:= B ∩ {Y ∈ (L0(P))N |
∑N

j=1 Y
j ≤ A}. From Propo-

sition 1.3.7 we deduce

A =
N∑
j=1

EQ̂j [Ŷ
j] ≤

N∑
j=1

Ŷ j ≤ A.

We now turn our attention to uniqueness and Pareto optimality, but we will need an
additional property and an auxiliary result.

Definition 1.3.13 (Definition 4.18 in [20]). We say that B ⊆ (L0(P))N is closed
under truncation if for each Y ∈ B there exists mY ∈ N and cY = [c1

Y , ..., c
N
Y ] ∈ RN

such that
∑N

j=1 c
j
Y =

∑N
j=1 Y

j ∈ R and for all m ≥ mY

Ym := Y I{∩Nj=1{|Y j |<m}} + cY I{∪Nj=1{|Y j |≥m}} ∈ B. (1.40)

Remark 1.3.14. We stress the fact that all the sets introduced in Example 1.2.19
satisfy closedness under truncation.

Lemma 1.3.15. Let B be closed under truncation. Then for every A ∈ R

BA ∩ L ⊆ BA.
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Proof. Fix any Q ∈ Qv and argue as in Proposition 4.20 in [20]: let Y ∈ BA ∩ L ⊆
L1(Q) and consider Ym for m ∈ N as defined in (1.40), where w.l.o.g. we assume
mY = 1. Note that

∑N
j=1 Y

j
m =

∑N
j=1 Y

j ≤ A for all m ∈ N. By boundedness of

Ym and (1.40), we have Ym ∈ B ∩MΦ for all m ∈ N. Further, Ym → Y P-a.s. for
m → ∞ , and thus, since |Ym| ≤ max{|Y |, |cY |} ∈ L1(Q) for all m ∈ N (| · |, max
and the inequality are meant componentwise), also Ym → Y in L1(Q) for m→∞ by
dominated convergence.
Now, if Q ∼ P we can directly apply Proposition 1.3.7 to get that

∑N
j=1 EQj [Y

j] ≤∑N
j=1 Y

j ≤ A. If we only have Q � P we can see that (1.33) still holds, with the
particular choice of (Ym)m in place of (kn)n, because the construction of Ym is made
P-almost surely.

Define

Π(A) := sup

{
EP

[
N∑
j=1

uj(X
j + Y j)

]
| Y ∈ L ∩ B,

N∑
j=1

Y j ≤ A

}
. (1.41)

Lemma 1.3.16. Let B be closed under truncation. If Q̂ is the minimax measure from
Theorem 1.3.5, then

π(A) = Π(A) = πQ̂(A) = ΠQ̂(A) = SQ̂(A). (1.42)

Proof. It is clear that since BA∩MΦ ⊆ BA∩L we have π(A) ≤ Π(A) just by definitions
(1.14) and (1.41). Now observe that by Lemma 1.3.15 we have BA ∩ L ⊆ BA, so that

Π(A) ≤ ΠQ̂(A). The chain of equalities then follows by Lemma 1.3.11.

Theorem 1.3.17. Let B be closed under truncation. Under the same assumptions of
Theorem 1.3.12, for any X ∈ MΦ and A ∈ R the SORTE is unique and is a Pareto
optimal allocation for both the sets

V =

{
Y ∈ L ∩ B |

N∑
j=1

Y j ≤ A P-a.s.

}
and V =

{
Y ∈ L |

N∑
j=1

EQ̂j
[
Y j
]
≤ A

}
.

(1.43)

Proof. Use Proposition 1.3.9 and Corollary 1.3.10 to get that for any Q ∈ Qv

ΠQ(A) = πQ(A) ≥ π(A). (1.44)

Let (Ỹ , Q̃, ã) be a SORTE and (Ŷ , Q̂, â) be the one from Theorem 1.3.12.
By 1) and 2) in the definition of SORTE, together with Lemma 1.3.11, we see that

Ỹ is an optimum for ΠQ̃(A) = SQ̃(A). Also, Ỹ ∈ BA ∩ BA by Lemma 1.3.15. We can
conclude by equation (1.15) that

π(A) ≥
N∑
j=1

EP

[
uj

(
Xj + Ỹ j

)]
= ΠQ̃(A)

eq.(1.34)
= πQ̃(A)

Cor.1.3.10

≥ π(A),

which tells us that π(A) = πQ̃(A) =
∑N

j=1 EP

[
uj

(
Xj + Ỹ j

)]
.
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By Theorem 1.3.5, we also have π(A) =
∑N

j=1 EP

[
uj

(
Xj + Ŷ j

)]
. Then Ŷ , Ỹ ∈

BA (Lemma 1.3.15) and Π(A) = π(A) (Lemma 1.3.16) imply that both Ŷ , Ỹ are
optima for Π(A). By strict concavity of the utilities u1, . . . , uN , Π(A) has at most one
optimum. From this, together with uniqueness of the minimax measure (see Theorem

1.3.5), we get (Ỹ , Q̃) = (Ŷ , Q̂). We infer from equation (1.38) and Remark 1.2.8 that
also ã = â.
To prove the Pareto optimality observe that Theorem 1.3.5 proves that Ŷ ∈ BA⊆ L is
the unique optimum for Π(A) (see Lemma 1.3.16) and so it is also the unique optimum

for ΠQ̂(A). Pareto optimality then follows from Proposition 1.2.2, noticing that Π(V )

for the two sets in (1.43) are Π(A) and ΠQ̂(A) respectively.

In the proof of Theorem 1.3.17 we show that the component Ŷ of SORTE is an
optimum for the “sup-convolution”(1.41). This implies that an optimum for such a
“sup-convolution”can be realized in a two stage procedure (allocation of A at the

beginning, reinsurance with Ỹ at terminal time) given by SORTE, which conjugates
the systemic optimality and the individual preferences.

1.3.5 Dependence of the SORTE on X and on B
We see from the proof of Theorem 1.3.12 that the triple defining the SORTE (obvi-
ously) depends on the choice of A. We now focus on the study of how such triple
depends on X. To this end, we first specialize to the case B = CR.

Proposition 1.3.18. Under the hypotheses of Theorem 1.3.12 and for B = CR, the

variables dQ̂
dP and X + Ŷ are σ(X1 + · · ·+XN) (essentially) measurable.

Proof. By Theorem 1.3.12 and Theorem 1.3.17 we have that (λ̂, Q̂) is an optimum
of the RHS of equation (1.16). Notice that in this specific case Y := ei1A − ej1A ∈
B ∩MΦ for all i, j and all measurable sets A ∈ F . Let Q ∈ Q. Then from (1.32)∑N

j=1(EQj [Y
j]−Y j) ≤ 0 and so Qi(A)−1A−Qj(A)+1A ≤ 0, i.e., Qi(A)−Qj(A) ≤ 0.

Similarly taking Y := −ei1A + ej1A ∈ B, we get Qj(A) − Qi(A) ≤ 0. Hence all the
components of vectors in Q are equal. Let G := σ(X1 + · · · + XN). Then for any
λ ∈ R++ and any [Q, . . . ,Q] ∈ Q we have:

λ

(
N∑
j=1

EQj
[
Xj
]

+ A

)
+

N∑
j=1

EP

[
vj

(
λ

dQj

dP

)]

= λ

(
EP

[(
N∑
j=1

Xj

)
dQ
dP

]
+ A

)
+

N∑
j=1

EP

[
vj

(
λ

dQ
dP

)]

= λ

(
EP

[(
N∑
j=1

Xj

)
EP

[
dQ
dP

∣∣∣∣G]
]

+ A

)
+

N∑
j=1

EP

[
EP

[
vj

(
λ

dQ
dP

)∣∣∣∣G]]

≥ λ

(
N∑
j=1

EP

[
XjEP

[
dQ
dP

∣∣∣∣G]]+ A

)
+

N∑
j=1

EP

[
vj

(
λEP

[
dQ
dP

∣∣∣∣G])] ,
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where in the last inequality we exploited the tower property and Jensen inequality, as
v1, . . . , vN are convex. Notice now that EP

[
dQ
dP

∣∣G] defines again a probability measure
(on the whole F , the initial sigma algebra) and that this measure still belongs to Q
since all its components are equal. As a consequence, the minimum in equation (1.16)

can be equivalently taken over λ ∈ R++ (as before) and Q ∈ Q∩ (L0(Ω,G,P))
N

. The

claim for Ŷ follows from (1.17).

It is interesting to notice that this dependence on the componentwise sum of X also
holds in the case of Bühlmann’s equilibrium (see [33] page 16 and [26]).

Remark 1.3.19. In the case a cluster of agents, see the Example 1.2.19, the above result
can be clearly generalized: the i-th component of the vector Q̂, for i belonging to the
m-th group, only depends on the sum of those components of X whose corresponding
indexes belong to the m-th group itself. It is also worth mentioning that if we took
B(I) = RN , we would see that each component of Q̂ and of Ŷ is a measurable function
of the corresponding component of X. This is reasonable since, in this case, at the final
time each agent would be only allowed to share and exchange risk with herself/himself
and the systemic features of the model we are considering would be lost.

We provide now some additional examples, to the ones in Example 1.2.19, of possible
feasible sets B and study the dependence of the probability measures from B.

Example 1.3.20. Consider a measurable partition A1, . . . , AK of Ω and a collection of
partitions I1, . . . , IK of {1, . . . , N} as in Example 1.2.19. Take the associated clusters
B(I1), . . . ,B(IK) defined as in (1.8). Then the set

B :=

(
K∑
i=1

B(Ii)1Ai

)
∩ CR (1.45)

satisfies Assumptions 1.2.12 and is closed under truncation, as it can be checked
directly.

The set in (1.45) can be seen as a scenario-dependent clustering. A particular simple
case of (1.45) is the following. For a measurable set A1 ∈ F take A2 = Ω \ A1. Then
the set CR1A1 + RN1A2 is of the form (1.45) and consists of all the Y ∈ (L0)N such
that (i) there exists a real number σ ∈ R with

∑N
j=1 Y

j = σ P−a.s. on A1, (ii) there

exists a vector b ∈ RN such that Y = b P−a.s. on A2 and (iii) σ =
∑N

j=1 b
j (recall

that Y ∈ CR by (1.45)).

Let us motivate Example 1.3.20 with the following practical example. Suppose for
each bank i a regulator establishes an excessive exposure threshold Di. If the position
of bank i falls below such threshold, we can think that it is too dangerous for the
system to let that bank take part to the risk exchange. As a consequence, in the
clustering example, on the event {X i ≤ Di} we can require the bank to be left alone.
Also the symmetric situation can be considered: a bank j whose position is too good,
say exceeding a value Aj, will not be willing to share risk with all others, thus entering
the game only as isolated individual or as a member of the groups of “safer” banks.
Both these requirements, and many others (say considering random thresholds) can
be modeled with the constraints introduced in Example 1.3.20.
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It is interesting to notice that, as in Example 1.2.19, assuming a constraint set of the
form given in Example 1.3.20 forces a particular behavior on the probability vectors
in Qv.

Lemma 1.3.21. Let B be as in Example 1.3.20 and let Q ∈Qv. Fix any i ∈ {1, ..., K}
and any group I im of the partition I i = (I im)m. Then all the components Qj, j ∈ I im,
agree on F|Ai := {F ∩ Ai, F ∈ F}.

Proof. We think it is more illuminating to prove the statement in a simplified case,
rather than providing a fully formal proof (which would require unnecessarily compli-
cated notation). This is “without loss of generality”in the sense that it is clear how
to generalize the method. To this end, let us consider the case K = 2 (i.e. A2 = Ac1)
and B(I1) := CR, B(I2) := RN . For any F ∈ F and i, j ∈ {1, . . . , N} we can take
Y := (1F (ei − ej)) 1A1 + 01A2 to obtain Y ∈ CR1A1 + RN1A2 ,

∑N
j=1 Y

j = 0. By defini-

tion of Qv we get for any Q ∈ Qv that Qi(A∩F )−Qj(A∩F ) ≤ 0, and interchanging
i, j yields Qi(A ∩ F ) = Qj(A ∩ F ) for any i, j = 1 . . . , N , F ∈ F .

1.4 Exponential Case

We now specialize our analysis to the exponential setup, where

uj(x) := 1− exp(−αjx), j = 1, . . . , N for α1, . . . , αN > 0. (1.46)

This allows us to provide explicit formulas for a wide range of constraint sets B
(namely, all those introduced in Example 1.2.19) and so the stability properties of
SORTE, with respect to a different weighting of utilities, will be evident.

1.4.1 Explicit formulas

We consider a set of constraints of the form B = B(I) as given in Example 1.2.19.
Given X ∈MΦ and m ∈ {1, . . . , h}, we set:

βm : =
∑
j∈Im

1

αj
β :=

N∑
j=1

1

αj
Xm :=

∑
j∈Im

Xj,

R(n) : =

1
αj∑N
k=1

1
αk

, j = 1, ...N , α := (α1, ..., αN), ER [ln(α)] =
N∑
j=1

R(n) ln(αj).

Theorem 1.4.1. Take u1, . . . , uN as given by (1.46) and B = B(I) as in Example
1.2.19. For L and Q defined in Theorem 1.3.12, the SORTE is given by

Ŷ k = −Xk + 1
αk

(
Xm

βm
− dm(X)

)
+ 1

αk

[
A
β

+ ln (αk)− ER [ln(α)]
]

k ∈ Im
dQ̂k
dP

=
exp
(
−Xm
βm

)
EP
[
exp
(
−Xm
βm

)] =: dQ̂m
dP k ∈ Im

âk = EQ̂k [Ŷ
k] k = 1, . . . , N

(1.47)
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where

dm(X) :=

[
h∑
j=1

βj
β

ln

(
EP

[
exp

(
−Xj

βj

)])]
− ln

(
EP

[
exp

(
−Xm

βm

)])
.

Proof. The utility functions in (1.46) satisfy Assumption 1.2.12 (a) and B satisfies
Assumption 1.2.12 (b) and closedness under truncation, hence Theorems 1.3.12 and
1.3.17 guarantee existence and uniqueness. Recall that from this choice of B we have
that for each Q ∈ Qv, all the components of Q are equal in each index subset Im.
It is easy to check that

vj(λy) =
λy

αj
ln

λ

αj
+

λ

αj
y ln y − λ

αj
y + 1 . (1.48)

Substitute now y = dQj
dP ∈ Qv in the above expressions and take expectations to get

EP

[
vj

(
λ

dQj

dP

)]
= φj(λ) +

λ

αj
EP

[
dQj

dP
ln

(
dQj

dP

)]
, φj(λ) =

λ

αj
ln

λ

αj
− λ

αj
+ 1 .

(1.49)
Let K

(
λ, dQ

dP

)
be the functional to be optimized in (1.16). Set

ξ :=
N∑
j=1

1

αj
ln

(
1

αj

)
, φ(λ) =

N∑
j=1

φj(λ) = λξ + βλ lnλ− λβ +N.

Then from (1.49) we deduce

K

(
λ,

dQ
dP

)
= λ

(
N∑
j=1

EQj
[
Xj
]

+ A

)
+ φ(λ) +

N∑
j=1

λ

αj
EP

[
dQj

dP
ln

(
dQj

dP

)]
. (1.50)

Set

µ :=
N∑
j=1

1

αj
EP

[
dQ̂j

dP
ln

(
dQ̂j

dP

)]
+ A+

N∑
j=1

EQ̂j [X
j]. (1.51)

From (1.50) and (1.51)

K

(
λ,

dQ̂
dP

)
= λµ+ λ (ξ + β ln(λ)− β) +N .

The associated first order condition obtained differentiating in λ yields the unique
solution

λ̂ = exp

(
−µ+ ξ

β

)
which can be substituted in K

(
·, dQ̂

dP

)
yielding

K

(
λ̂,

dQ̂
dP

)
= −λ̂β +N . (1.52)
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We now guess that the vector of measures Q̂ defined via (1.47) is optimal and compute
the associated µ:

µ =
N∑
j=1

EQ̂j [X
j] + A+

N∑
j=1

1

αj
EP

[
dQ̂j

dP
ln

(
dQ̂j

dP

)]
= A+

h∑
j=1

EP

[(
Xj

) dQ̂j

dP

]
+

h∑
j=1

βjEP

[
dQ̂j

dP
ln

(
exp

(
−Xj

βj

))]
+

h∑
j=1

βjEP

dQ̂j

dP
ln

 1

EP

[
exp

(
−Xj

βj

)]
 .

Hence

µ = A−
h∑
j=1

βj ln

(
EP

[
exp

(
−Xj

βj

)])
(1.53)

and substituting (1.52) in the explicit formula for λ̂ we get

K

(
λ̂,

dQ̂
dP

)
= −β exp

(
− 1

β

(
A+ ξ +

h∑
j=1

βj ln

(
EP

[
exp

(
−Xj

βj

)])))
+N .

(1.54)
Using equation (1.17) we define, for the measure given in (1.47),

Ŷ k = −Xk − v′j

(
λ̂

dQ̂
dP

)
k = 1, . . . , N .

By (1.48) (with λ = 1) we obtain, for k ∈ Im, v′k(y) = 1
αk

ln
(

y
αk

)
and

v′k

(
λ̂

dQ̂
dP

)
=

1

αk
ln

(
1

αk

)
+

1

αk
ln

exp
(
−Xm

βm
− A+µ

β

)
EP

[
exp

(
−Xm

βm

)]


=
1

αk
ln

(
1

αk

)
− 1

αk

(
Xm

βm
+
A+ µ

β

)
− 1

αk
ln

(
EP

[
exp

(
−Xm

βm

)])
Eq.(1.53)

=

1

αk
ln

(
1

αk

)
− 1

αk

(
Xm

βm
+
A+ ξ

β

)
+

1

αk
dm(X) .

Hence for k ∈ Im we have

Ŷ k = −Xk +
1

αk

(
Xm

βm
+
A+ ξ

β
− dm(X)

)
− 1

αk
ln

(
1

αk

)
.

A simple computation yields Ŷ ∈ MΦ,
∑

k∈Im Y
k ∈ R and

∑N
j=1 Ŷ

j = A, so that

Ŷ ∈ BA ∩MΦ.
Moreover

exp
(
−
(
Xk + Ŷ k

))
= exp

(
−αk

(
1

αk

(
Xm

βm
+
A+ ξ

β
− dm(X)

)
− 1

αk
ln

(
1

αk

)))
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=
1

αk
exp

(
−Xm

βm

)
exp

(
−A+ ξ

β

)
exp (dm(X))

=
1

αk

exp
(
−Xm

βm

)
EP

[
exp

(
−Xm

βm

)] exp

(
−A+ ξ

β

)
exp

(
h∑
j=1

βj
β

ln

(
EP

[
exp

(
−Xj

βj

)]))
.

As a consequence
N∑
j=1

EP

[
1− exp

(
−αj

(
Xj + Ŷ j

))]

= −
N∑
j=1

1

αj
exp

(
− 1

β

(
A+ ξ +

h∑
j=1

βj ln

(
EP

[
exp

(
−Xj

βj

)])))
+N

Eq.(1.54)
= K

(
λ̂,

dQ̂
dP

)
(1.55)

which implies
N∑
j=1

EP

[
uj

(
Xj + Ŷ j

)]
= K

(
λ̂,

dQ̂
dP

)
. (1.56)

To sum up we have

K

(
λ̂,

dQ̂
dP

)
Eq.(1.56)

=
N∑
j=1

EP

[
uj

(
Xj + Ŷ j

)]

Ŷ ∈BA∩MΦ

≤ sup
Y ∈BA∩MΦ

N∑
j=1

EP
[
uj(X

j + Y j)
] Thm.(1.3.5)

= min
λ>0
Q∈Qv

K

(
λ,

dQ
dP

)
≤ K

(
λ̂,

dQ̂
dP

)
.

Consequently Ŷ is the (unique) optimum for the optimization problem in LHS of

(1.15), and (λ̂, Q̂) is the (unique) optimum to the minimization problem in (1.16).

Moreover, setting âj := EQ̂j [Ŷ
j], j = 1, . . . , N, the SORTE (which, as already ar-

gued, exists and is unique) is given by
(
Ŷ , Q̂, â

)
.

Remark 1.4.2. We observe that in the terminal part of the proof above we also got
an explicit formula for the maximum systemic utility:

sup
Y ∈BA∩MΦ

N∑
j=1

EP
[
uj(X

j + Y j)
] Thm.(1.3.5)

= K

(
λ̂,

dQ̂
dP

)
(1.57)

where K
(
λ̂, dQ̂

dP

)
is given in (1.55).
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1.4.2 A toy Example

In the following two examples we compare a Bühlmann’s Equilibrium with a SORTE
in the simplest case where X = 0 := (0, ..., 0) and A = 0. In the formula below we use
the well known fact:

sup
Y ∈L1(Q)

{EP [uj(Y )] | EQ[Y ] ≤ x} = 1− e−αjx−H(Q,P) ,

where H(Q,P) = E[dQ
dP ln(dQ

dP )] is the relative entropy, for Q� P.

Example 1.4.3 (Bühlmann’s equilibrium solution). As X := 0 then XN =
∑N

k=1X
k =

0 and therefore the optimal probability measure QX defined in Bühlmann is:

dQX

dP
:=

e−
1
β
XN

EP

[
e−

1
β
XN

] = 1, (1.58)

i.e. QX = P. Take a = 0 = (0, ..., 0). We compute

UQX
j (0) = UP

j (0) := sup {EP [uj(0 + Y )] | EP[Y ] ≤ 0} = 1− e−αj0−H(P,P) = 1− 1 = 0 ,

as H(P,P) = 0, so that
N∑
j=1

UP
j (0) = 0.

As a consequence, and as uj(0) = 0, the optimal solution for each single n is obviously
Y j
X = 0.

Conclusion: The Bühlmann’s equilibrium solution associated to X := 0 (and A = 0)
is the couple (YX ,QX) = (0,P). Here the vector a is taken a priori to be equal to
(0, ..., 0).

Example 1.4.4 (SORTE). From Theorem 1.4.1 with X := 0 and A = 0 we obtain

for the SORTE that: the optimal probability measure Q̂ coincides again with P; the
optimal Ŷ is:

Ŷ j =
1

αj
[ln(αj)− ER [ln(α)]] := âj. (1.59)

Recalling that Q̂ is in fact a minimax measure for the optimization problem π0(0) (see
the proof of Theorem 1.3.12), we can say that

SP(0) = SQ̂(A)
Lemma.1.3.16

= π0(0)
(1.55),(1.57)

= N − βe−
ξ
β (1.60)

Notice that if the αj are equal for all n, then SP(0) = 0, but in general

SP(0) = N − βe−
ξ
β ≥ 0.

Indeed, by Jensen inequality:

e−
ξ
β = eER[ln(α)] ≤ ER[eln(α)] = ER[α] :=

N∑
j=1

1
αj
αj∑N

k=1
1
αk

=
N

β
.

66



From (1.59) we deduce that the αj are equal for all j if and only if âj = 0 for all j,

but in general âj may differ from 0. As Ŷ j = âj, the same holds also for the optimal
solution Ŷ . When âj < 0 a violation of Individual Rationality occurs.
Conclusion: The SORTE solution associated to X := 0 (and A = 0) is the triplet

(Ŷ ,P, â) where Ŷ = â is assigned in equation (1.59).

The above comparison shows that a SORTE is not a Bühlmann equilibrium, even
when X := 0 and A = 0. When the αj are all equal, then the Bühlmann and the
SORTE solution coincide, as all agents are assumed to have the same risk aversion.

Remark 1.4.5. In this example, notice that we may control the risk sharing components
Y j of agent j in the SORTE by:

|Y j| ≤ 1

αmin

[ln(αmax)− ln(αmin)] .

Suppose that αmin < αmax and consider the expression for Ŷ j = âj in (1.59). If

αj = αmin then the corresponding Ŷ j < 0 is in absolute value relatively large (divide

by αmin), while if αk = αmax the corresponding Ŷ k > 0 is in absolute value relatively
small (divide by αmax).

1.4.3 Dependence on weights and stability

As customary in the literature on general equilibrium and risk sharing, we could have
considered, in place of (I.8) and (I.9), the more general problem

sup
a∈RN

{
N∑
j=1

sup
Y j

{
EP
[
γjuj(X

j + Y j)
]
| pjX(Y j) ≤ aj

}
|

N∑
j=1

aj = A

}
, (1.61)

N∑
j=1

Y j
X = A P− a.s. , (1.62)

where the positive weights γ = [γ1, ..., γN ] ∈ RN
++ could have been selected exoge-

nously, say by a social planner. In such more general problems, equilibria will gener-
ally depend on the selected weights. However, we are focused on existence, uniqueness
and Pareto optimality of the equilibrium and for this analysis we may restrict, without
loss of generality, our attention to the utilitarian choice γ1 = ... = γN = 1, as we now
explain. It is easy to check that given u1, . . . , uN satisfying our assumptions (namely
Assumption 1.2.12.(a)), the associated functions x 7→ uγj (x) := γjuj(x), j = 1, . . . , N
will satisfy the same Assumption 1.2.12.(a) and so (1.61) can be written as

sup
a∈RN

{
N∑
j=1

sup
Y j

{
EP
[
uγj (X

j + Y j)
]
| pjX(Y j) ≤ aj

}
|

N∑
j=1

aj = A

}
, (1.63)

Thus, technically speaking, the study of the existence, uniqueness and Pareto opti-
mality of the equilibrium in a non-utilitarian setup (γ 6= 1) boils down to the one in
(I.8) and (I.9). Of course it could be of interest to study the dependence of the optimal
solution from the vector γ and to analyze the stability properties of the equilibrium
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with respect to the utility functions. We address this problem for exponential utility
functions, but the general case is left for future investigation.
Given γj ∈ (0,+∞), j = 1, . . . , N and u1, . . . , uN satisfying Assumption 1.2.12 (a),
we recall that uγj (x) := γjuj(x), j = 1, . . . , N and we denote by vγj (·) their convex
conjugates. These functions uγj satisfy Assumption 1.2.12 (a).
In our exponential setup and under closedness under truncation, a different weighting
only results in a translation of both allocations at initial and terminal time of a
SORTE, without affecting the optimal measure:

Proposition 1.4.6. Consider u1, . . . , uN as given in (1.46) and take the associated
uγ1 , . . . , u

γ
N as above. Suppose B satisfies Assumption 1.2.12 (b) and is closed under

truncation. Call
(
Ŷ , Q̂, â

)
the unique SORTE associated to u1, . . . , uN , and similarly

define
(
Ŷγ, Q̂γ, âγ

)
as the unique SORTE associated to uγ1 , . . . , u

γ
N . Then


Ŷ k
γ = Ŷ k + gk(γ) k = 1, . . . , N

dQ̂kγ
dP = dQ̂k

dP k = 1, . . . , N

âkγ = âk + gk(γ) k = 1, . . . , N

where

gk(γ) :=
1

αk

∑N
j=1

1
αj

ln
(

1
γj

)
∑N

j=1
1
αj

− 1

αk
ln

(
1

γk

)
=

1

αk
(ln(γj)− ER[ln(γ)]) k = 1, . . . , N .

Proof. For a general set B, we here provide only a sketch of the proof. Using the
formulas for v1, . . . , vN , after some computations one can write explicitly the minimax
expression (1.16). Then use the gradient formula (1.17) to deduce (1.64). A more
direct proof, that works only for sets B in the form described in Example 1.2.19, is
based on the observation that

uγj (x) := γjuj(x) = γj − γj exp(−αjx) = γj − exp

(
−αj

[
x− 1

αj
ln(γj)

])
.

Hence,
(
Ŷγ, Q̂γ, âγ

)
can be obtained by a straightforward computation from the so-

lution
(
Ŷ , Q̂, â

)
, which is explicitly given in Theorem 1.4.1, using Xj− 1

αj
ln(γj), j =

1, . . . , N in place of X.

1.5 Appendix to Chapter 1

1.5.1 Orlicz Spaces and Utility Functions

We consider the utility maximization problem defined on Orlicz spaces, see [116] for
further details on Orlicz spaces. This presents several advantages. From a mathe-
matical point of view, it is a more general setting than L∞, but at the same time it
simplifies the analysis, since the topology is order continuous and there are no singular
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elements in the dual space. Furthermore, it has been shown in [22] that the Orlicz
setting is the natural one to embed utility maximization problems.
Let u : R → R be a concave and increasing function satisfying limx→−∞

u(x)
x

= +∞.
Consider φ(x) := −u(−|x|)+u(0). Then φ : R+ → [0,+∞) is a strict Young function,

i.e., it is finite valued and convex on R+ with φ(0) = 0 and limx→+∞
φ(x)
x

= +∞. No-
tice that another popular approach to Young functions considers φ : R→ R requesting
that φ is even and that φ|R+ satisfies our assumptions. The two approaches can be
used equivalently here. The Orlicz space Lφ and Orlicz Heart Mφ are respectively
defined by

Lφ :=
{
X ∈ L0(R) | EP[φ(α |X|)] < +∞ for some α > 0

}
, (1.64)

Mφ :=
{
X ∈ L0(R) | EP[φ(α |X|)] < +∞ for all α > 0

}
, (1.65)

and they are Banach spaces when endowed with the Luxemburg norm. The topological
dual of Mφ is the Orlicz space Lφ

∗
, where the convex conjugate φ∗ of φ, defined by

φ∗(y) := sup
x∈R+

{xy − φ(x)} , y ∈ R+,

is also a strict Young function. Note that

EP[u(X)] > −∞ if EP[φ(|X|)] < +∞. (1.66)

Remark 1.5.1. It is well known that L∞(P;R) ⊆ Mφ ⊆ Lφ ⊆ L1(P;R). In addition,
from the Fenchel inequality xy ≤ φ(x) + φ∗(y) we obtain

(α|X|)
(
λ

dQ
dP

)
≤ φ(α|X|) + φ∗

(
λ

dQ
dP

)
for some probability measure Q � P and λ ≥ 0, and we immediately deduce that
dQ
dP ∈ L

φ∗ implies Lφ ⊆ L1(Q;R).

Given the utility functions u1, · · · , uN : R→ R, satisfying the above conditions, with
associated Young functions Φ1, · · · ,ΦN , we define

MΦ := MΦ1 × · · · ×MΦN , LΦ := LΦ1 × · · · × LΦN . (1.67)

1.5.2 Auxiliary results

Lemma 1.5.2. Let v : [0,+∞)→ R ∪ {+∞} be a convex function, and suppose that
its restriction to (0,+∞) is real valued and differentiable. Let Q � P be a given
probability measure with v

(
λdQ

dP

)
∈ L1(P) for all λ > 0. Then

1. v′ is defined on (0,+∞) and real valued there and extendable to [0,+∞) by
taking limx→0 v

′(x) ∈ R ∪ {−∞}. Also, dQ
dP v

′ (λdQ
dP

)
∈ L1(P) for all λ > 0.

2. If g is such that g + 1
g
∈ L∞+ (P), then v

(
g dQ

dP

)
∈ L1(P).

3. If v′(0+) = −∞, v′(+∞) = +∞ and v is strictly convex F (γ) := EP
[

dQ
dP v

′ (γ dQ
dP

)]
is a well defined bijection between (0,+∞) and R.
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Proof. Lemma 2 of [21].

The following dual representation holds:

Theorem 1.5.3. Let u1 . . . , uj : R→ R be strictly increasing and concave functions.
Let C ⊆MΦ be a convex cone such that for every i, j = 1, . . . , N, ei − ej ∈ C. Denote
by C0 the polar of the cone C in the dual pair (MΦ, LΦ∗)

C0 :=

{
Z ∈ LΦ∗ s.t.

N∑
j=1

EP
[
Y jZj

]
≤ 0 ∀Y ∈ C

}
.

Set

C0
1 :=

{
Z ∈ C0 s.t. EP

[
Z1
]

= · · · = EP
[
ZN
]

= 1
}

(C0
1)+ :=

{
Z ∈ C0

1 s.t. Zj ≥ 0 for all j
}

and suppose that

πC(X) := sup
Y ∈C

(
N∑
j=1

EP
[
uj
(
Xj + Y j

)])
< +∞ ∀X ∈MΦ.

Then

πC(X) = min
λ∈R+,Q∈(C0

1)+

(
λ

N∑
j=1

EP

[
Xj dQj

dP

]
+

N∑
j=1

EP

[
vj

(
λ

dQj

dP

)])
.

If any of the two expressions above is strictly smaller than
∑N

j=1 uj(+∞), then

πC(X) = min
λ∈R++,Q∈(C0

1)+

(
λ

N∑
j=1

EP

[
Xj dQj

dP

]
+

N∑
j=1

EP

[
vj

(
λ

dQj

dP

)])
.

Proof.

Observe first that X 7→ ρ(X) := − supY ∈C

(∑N
j=1 EP [uj (Xj + Y j)]

)
is a non increas-

ing, finite valued, convex functional on the Fréchet lattice MΦ. Only convexity is
non-evident: to show it, consider X,Z ∈ MΦ and Y,W ∈ C. For any 0 ≤ λ ≤ 1, we
have by concavity

λ

N∑
j=1

EP
[
uj
(
Xj + Y j

)]
+ (1− λ)

N∑
j=1

EP
[
uj
(
Zj +W j

)]
≤

N∑
j=1

EP
[
uj
(
λ(Xj + Y j) + (1− λ)(Zj +W j)

)]
=

N∑
j=1

EP
[
uj
(
λXj + (1− λ)Zj +

(
λY j + (1− λ)W j

))]
≤ −ρ(λX + (1− λ)Z)
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as λY + (1− λ)W ∈ C. Thus taking suprema over Y,W ∈ C we get

λ(−ρ(X)) + (1− λ)(−ρ(Z)) ≤ −ρ(λX + (1− λ)Z).

Now the Extended Namioka-Klee Theorem (see [23] Theorem A.3) can be applied and
we obtain

ρ(X) = max
0≤Z∈LΦ∗

(
N∑
j=1

EP
[
Xj(−Zj)

]
− α(Z)

)
,

where

α(Z) := sup
X∈MΦ

(
N∑
j=1

EP
[
Xj(−Zj)

]
− ρ(X)

)

= sup
X∈MΦ

(
N∑
j=1

EP
[
Xj(−Zj)

]
+ sup

Y ∈C

(
N∑
j=1

EP
[
uj
(
Xj + Y j

)]))

= sup
Y ∈C

(
sup
X∈MΦ

(
N∑
j=1

EP
[
Xj(−Zj)

]
+

(
N∑
j=1

EP
[
uj
(
Xj + Y j

)])))

= sup
Y ∈C

(
N∑
j=1

EP
[
Y j(Zj)

]
+ sup

W∈MΦ

(
N∑
j=1

EP
[
W j(−Zj)

]
+

(
N∑
j=1

EP
[
uj
(
W j
)])))

.

(1.68)

Observe now that −U(z) :=
∑N

j=1−uj(zj) for z ∈ RN defines a continuous, convex,
proper function whose Fenchel transform is

(−U)∗(w) := sup
z∈RN

(〈z, w〉 − (−U(z)))

= sup
z∈RN

(〈z, w〉+ U(z)) = sup
z∈RN

(U(z)− 〈z,−w〉) =
N∑
j=1

vj(−wj).

Now we apply Corollary on page 534 of [118] with L = MΦ, L∗ = LΦ∗ , F (x) = −U(x)
to see that

sup
W∈MΦ

(
N∑
j=1

EP
[
W j(−Zj)

]
+

N∑
j=1

EP
[
uj
(
W j
)])

= EP

[
N∑
j=1

vj(Z
j)

]

and replacing this in (1.68) we get:

α(Z) = sup
Y ∈C

(
N∑
j=1

EP
[
Y jZj

]
+ EP

[
N∑
j=1

vj(Z
j)

])
.

Now observe that there are two possibilities:

• either Z ∈ C0, and in this case α(Z) = EP

[∑N
j=1 vj(Z

j)
]

since 0 ∈ C

• or α(Z) = +∞, since v1, . . . , vN are bounded from below.
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Hence

− sup
Y ∈C

(
N∑
j=1

EP
[
uj
(
Xj + Y j

)])
= max

0≤Z∈LΦ∗

(
N∑
j=1

EP
[
Xj(−Zj)

]
− α(Z)

)

= max
0≤Z∈C0

(
−

(
N∑
j=1

EP
[
XjZj

]
+ EP

[
N∑
j=1

vj(Z
j)

]))

= − min
0≤Z∈C0

(
N∑
j=1

EP
[
XjZj

]
+ EP

[
N∑
j=1

vj(Z
j)

])
. (1.69)

Moreover, since for every i, j = 1, . . . , N ei − ej ∈ C we can argue as in Lemma 1.3.1
to deduce that C0 ∩ (L0

+)N = R+ · (C0
1)+. Replacing this in the expression (1.69) we

get

sup
Y ∈C

 N∑
j=1

EP
[
uj
(
Xj + Y j

)] = min
λ∈R+,Q∈(C0

1)+

λ N∑
j=1

EP

[
Xj dQj

dP

]
+

N∑
j=1

EP

[
vj

(
λ

dQj

dP

)] .

To prove the last claim, observe that if the optimum λ in the right hand side was 0,
we would have

sup
Y ∈C

(
N∑
j=1

EP
[
uj
(
Xj + Y j

)])
=

N∑
j=1

vj (0) =
N∑
j=1

uj(+∞),

which contradicts our hypotheses.

Theorem 1.5.4. Let u1, . . . , uN satisfy Assumption 1.2.12. Let K ⊆MΦ be a convex
cone such that for all i, j ∈ {1, . . . , N} ei − ej ∈ K and suppose that Qev 6= ∅, where

Qev :=

{
Q ∼ P | dQj

dP
∈ LΦ∗j ,EP

[
vj

(
dQj

dP

)]
< +∞,

N∑
j=1

EQj
[
kj
]
≤ 0 ∀k ∈ K

}
⊆ LΦ∗ .

Then denoting by clQ(. . . ) the closure in L1 (Q1)× · · · × L1
(
QN
)

with respect to the

norm ‖X‖Q :=
∑N

j=1 ‖Xj‖L1(Qj) we have

⋂
Q∈Qev

clQ
(
K − L1

+ (Q)
)

=

W ∈ ⋂
Q∈Qev

L1 (Q) |
N∑
j=1

EQj
[
W j
]
≤ 0 ∀Q ∈ Qev

 .

Proof. We modify the procedure in [21] Theorem 4. The inclusion (LHS ⊆ RHS)
can be checked directly. As to the opposite one (RHS ⊆ LHS), suppose we had a
k ∈ RHS and a Q ∈ Qev with k /∈ clQ

(
K − L1

+ (Q)
)
, that is k /∈ LHS. We stress that

by construction
N∑
j=1

EQj
[
kj
]
≤ 0 ∀Q ∈ Qev . (1.70)

In the dual system (
L1(Q), L∞(Q)

)
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the set clQ
(
K − L1

+ (Q)
)

is convex and σ (L1(Q), L∞(Q))-closed by compatibility of
the latter topology with the norm topology. Thus we can use Hahn-Banach Separation
Theorem to get a class ξ̂ ∈ L∞(Q) with

0 = sup
W∈(K−L1

+(Q))

(
N∑
j=1

EP

[
ξ̂jW j dQj

dP

])
<

N∑
j=1

EP

[
ξ̂jkj

dQj

dP

]
. (1.71)

We now work componentwise. First observe that

[−1ξ̂j<0]Nj=1 ∈ 0− L∞+ (Q) ⊆ K − L1
+ (Q) ,

so that ξ̂j ≥ 0 Qj-a.s. for every j = 1, . . . , N . Hence ξ̂j dQj
dP ≥ 0 P-a.s. for every

j = 1, . . . , N .
Moreover, since for all i, j ∈ {1, . . . , N} ei − ej ∈ K, we have

EP

[
ξ̂1 dQ1

dP

]
= · · · = EP

[
ξ̂N

dQN

dP

]
. (1.72)

It follows that for every j = 1, . . . , N

P
(
ξ̂j

dQj

dP
> 0

)
> 0

since if this were not the case all the terms in equation (1.72) would be null, which

would yield ξ̂1 dQ1

dP = · · · = ξ̂N dQN
dP = 0, a contradiction with (1.71).

Hence the vector
dQj

1

dP
:=

1

EP

[
ξ̂j dQj

dP

] ξ̂j dQj

dP

is well defined and identifies a vector of probability measures [Q1
1, . . . ,QN

1 ]. We triv-
ially have that

Qj
1 � P,

dQj
1

dP
∈ LΦ∗j ,

and by equation (1.71), together with (1.72)

sup
W∈K

(
N∑
j=1

EP

[
W j dQj

1

dP

])
≤ 0 <

N∑
j=1

EP

[
kj

dQj
1

dP

]
. (1.73)

We observe that if we could prove Q1 ∈ Qev, we would get a contradiction with (1.70).
However this needs not to be true, since we cannot guarantee Q1

1, . . . ,QN
1 ∼ P.

As Q ∈ Qev, we have Q ∼ P, and for Q1 above we have Q1 � Q,
dQk1
dQk ∈ L

∞(Qk) =
L∞(P). Take λ ∈ (0, 1] and define Qλ via

dQk
λ

dP
:= λ

dQk

dP
+ (1− λ)

dQk
1

dP
.

We now prove that Qλ ∈ Qev. It is easy to check that

0 < λ ≤ dQk
λ

dQk
≤ (1− λ)

dQk
1

dQk
+ λ ,
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so that Lemma 1.5.2.2. with g = gk :=
dQkλ
dQk , together with EP

[
vk

(
dQk
dP

)]
< +∞∀ k =

1, . . . , N (Q ∈ Qev by construction), yields for all k ∈ {1, . . . , N} and λ ∈ (0, 1]

EP

[
vk

(
dQk

λ

dP

)]
= EP

[
vk

(
dQk

λ

dQk

dQk

dP

)]
= EP

[
vk

(
gk

dQk

dP

)]
< +∞ .

Moreover Q ∈ Qev and λ > 0 imply Qk
λ ∼ P for all k = 1, . . . , N . This, together with

equation (1.73), yields

N∑
j=1

EP

[
W j dQj

λ

dP

]
≤ 0 ∀W ∈ K, ∀λ ∈ (0, 1] .

We can conclude that Qλ ∈ Qev, ∀λ ∈ (0, 1]. At the same time

N∑
j=1

EP

[
kj

dQj
λ

dP

]
= λ

N∑
j=1

EP

[
kj

dQj

dP

]
+ (1−λ)

N∑
j=1

EP

[
kj

dQj
1

dP

]
−−→
λ→0

N∑
j=1

EP

[
kj

dQj
1

dP

]

which, since by Equation (1.73)
∑N

j=1 EP

[
kj

dQj1
dP

]
> 0, gives a contradiction with

Equation (1.70). We conclude that RHS ⊆ LHS.
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Chapter 2

Multivariate Systemic Optimal
Risk Transfer Equilibrium

A Systemic Optimal Risk Transfer Equilibrium (SORTE) was introduced in Chap-
ter 1 for the analysis of the equilibrium among financial institution or in insurance-
reinsurance markets. A SORTE conjugates the classical Bühlmann’s notion of an
Equilibrium Risk Exchange with a capital allocation principle based on systemic ex-
pected utility optimization. In Chapter 2 we extend such a notion to the case in
which the value function to be optimized has two components, one being the sum
of the single agents’ utility functions, the other consisting of a truly systemic com-
ponent. Technically, the extension of SORTE to the new setup requires developing
a theory for multivariate utility functions and selecting at the same time a suitable
framework for the duality theory. Conceptually, this more general framework allows
us to introduce and study a Nash Equilibrium property of the optimizer. We prove
existence, uniqueness, Pareto optimality and the Nash Equilibrium property of the
newly defined Multivariate Systemic Optimal Risk Transfer Equilibrium (mSORTE)
with budget A ∈ R and set of admissible allocations B. An mSORTE consists of a
triple (YX ,QX , aX) ∈ L×M×RN , a random vector, a vector of probability measures
and a deterministic vector respectively, with Y ∈ L1(QX) and such that

• (YX , aX) is an optimum for

sup
a∈RN∑N
j=1 aj=A

(
sup

{
EP [U(X + Y )] | Y ∈ L ∩ L1(QX), EQjX

[
Y j
]
≤ aj, ∀j

})
,

• YX ∈ B and
∑N

j=1 Y
j
X = A P−a.s.

Chapter 2 is organized as follows. Multivariate utility functions we use are introduced
is Section 2.1, while Section 2.2 is a short account on multivariate Orlicz spaces and on
the relevant properties from functional analysis needed in the sequel of the Chapter.
Section 2.3 is devoted to the specification of our notations and assumptions. The core
of Chapter 2 is Section 2.4, where we formally present the key concepts and provide
our main results. Most of the proofs, as well as findings of some independent interest,
are deferred to Section 2.5. Section 2.6 collects some additional technical results and
some of the proofs related to Section 2.2.
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2.1 Preliminary notations and Multivariate Utility

The notation regarding underlying probability space, measures on it and Lebesgue
spaces is borrowed from Section 1.1. For each j = 1, ..., N consider a vector subspace
Lj with R ⊆ Lj ⊆ L0(Ω,F ,P;R) and set

L:=L1 × ...× LN⊆(L0(P))N .

One could take as Lj, for example, L∞(P) or some Orlicz space. With

M⊆ PN

we will denote a subset of probability vectors. Our optimization problems will be
defined for the set M and on the vector space L, to be specified later (see Setups A,
B and C in Section 2.3).
Given a vector y ∈ RN and n ∈ {1, . . . , N} we will denote by y[−n] the vector in RN−1

obtained suppressing the n-th component of y for N ≥ 2 (and y[−n] = ∅ if N = 1)
and we set

[y[−n]; z] :=
[
y1, . . . , yn−1, z, yn+1, . . . , yN

]
∈ RN , for z ∈ R. (2.1)

Finally, we will write 〈x, y〉 =
∑N

j=1 x
jyj for the usual innner product of vectors

x, y ∈ RN , and ∂E for the boundary of E ⊆ RN .

2.1.1 Multivariate Utility Functions

Definition 2.1.1. We say that U : RN → R is a multivariate utility function
if it is strictly concave and increasing with respect to the partial componentwise or-
der. When N = 1 we will use the term univariate utility function instead. For a
multivariate utility function U we define the convex conjugate in the usual way by

V (y) := sup
x∈RN

(U(x)− 〈x, y〉) . (2.2)

Observe that by definition U(x) ≤ 〈x, y〉+V (y) for every x, y ∈ RN , and V (·) ≥ U(0)
that is V is lower bounded. Some useful properties of V are collected in Section 2.6.3.

Definition 2.1.2 ([119] Chapter V). Let f : RN → R be concave and let z ∈ RN be
given. We define the superdifferential of f at z as

∂f(z) := {ν ∈ RN | f(x)− f(z) ≤
N∑
j=1

νj(xj − zj) ∀x ∈ RN} .

By an abuse of notation we will denote by ∇f(z) =
[
∂f
∂x1 (z), . . . , ∂f

∂xN
(z)
]

a given choice

of a point in ∂f(z). If N = 1, we will write df
dx

(z) for a choice of a point in ∂f(z).
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It is well known that ∂f(z) 6= ∅ for any z ∈ RN([119] Theorem 23.4) and that ∂f(z)
consists of a single point if and only if the function f is differentiable in z ([119]
Theorem 25.1). More properties are collected in Section 2.6.1.

Remark 2.1.3. With the notation of Definition 2.1.2, given a concave f : RN → R we
can write f(x) ≤

∑N
j=1

∂f
∂xj

(z)(xj − zj) + f(z) for any x, z ∈ RN . In particular, given

concave nondecreasing u1, . . . , uN : R→ R, all null in 0, for any x1, . . . , xN ≥ 0

N∑
j=1

uj(x
j) ≤ max

j=1,...,N

(
duj
dxj

(0)

) N∑
j=1

xj. (2.3)

For a univariate f : R→ R we denote the usual left and right derivatives at the point
z as d±f

dx
(z). The following assumption holds true throughout Chapter 2 without

further mention.

Standing Assumption I. We consider multivariate utility functions in the form

U(x) :=
N∑
j=1

uj(x
j) + Λ(x) (2.4)

where u1, . . . , uj : R→ R are univariate utility functions and Λ : RN → R is concave,
increasing with respect to the partial componentwise order and bounded from above.
Furthermore we assume that for every ε > 0 there exists a point zε ∈ RN such that

N∑
j=1

∣∣∣∣ ∂Λ

∂xj
(zε)

∣∣∣∣ < ε . (2.5)

We also assume the Inada conditions

lim
x→+∞

uj(x)

x
= 0 and lim

x→−∞

uj(x)

x
= +∞ ∀ j = 1, . . . , N,

and that, without loss of generality, uj(0) = 0 ∀ j = 1, . . . , N .

Observe that such a multivariate utility function is split in two components: the sum
of single agent utility functions and a universal part Λ that could be either selected
upon agreement by all the agents or could be imposed by a regulatory institution.
As Λ is not necessarily strictly convex nor strictly increasing, we may choose Λ = 0,
which corresponds to the case analyzed in Chapter 1.

Remark 2.1.4. Condition (2.5) is inspired by Asymptotic Satiability as defined in
Definition 2.13 of [38]. To be more explicit and in view of Definition 2.1.2, (2.5)
means: for every ε > 0 there exists a zε ∈ RN and a selection νε ∈ ∂Λ(zε), such that∑N

j=1 |νjε | < ε .

Remark 2.1.5. U(·) defined in (2.4) is a multivariate utility function as introduced
in Definition 2.1.1 since it inherits strict concavity and strict monotonicity from
u1, . . . , uN . We may assume without loss of generality that uj(0) = 0 ∀ j = 1, . . . , N ,
since we can always write

U(x) =
N∑
j=1

(
uj(x

j)− uj(0)
)

+

(
Λ(x) +

N∑
j=1

uj(0)

)
.
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Thus, we can always redefine the univariate utility function and the multivariate one,
without affecting other assumptions, in such a way that univariate utilities are null
in 0.
In the following we will make extensive use of the following properties, without explicit
mention: for every f : R→ R nondecreasing and such that f(0) = 0 it holds that

f(x) = f(x+) + f(−x−), (f(x))+ = f
(
x+
)
. (2.6)

For each j = 1, . . . , N we define the convex conjugate of uj by

vj(y) := sup
x∈R

(uj(x)− xy) y ∈ R . (2.7)

Remark 2.1.6. We observe that v1, . . . , vN are finite valued on (0,+∞) by the Inada
conditions and bounded below by u1(0), . . . , uN(0) respectively. Since V as defined in
(2.2) satisfies V (y) ≤

∑N
j=1 vj(y

j) + supz∈RN Λ(z), we infer that V (·) is finite valued

on (0,+∞)N .

2.2 Multivariate Orlicz Spaces

Given a (univariate) Young function φ : R+ → R we can associate to it its conjugate
function φ∗(y) := supx∈R+

(x |y| − φ(x)). As in [116], we can associate to both φ and

φ∗ the Orlicz spaces and Hearts Lφ,Mφ, Lφ
∗
,Mφ∗ .

We now introduce multivariate Orlicz functions and spaces. The following definition
is a slight modification of the one in Appendix B of [7].

Definition 2.2.1. A function Φ : (R+)N → R is said to be a multivariate Orlicz
function if it null in 0, convex, continuous, increasing in the usual partial order and
satisfies: there exist A > 0, b constants such that Φ(x) ≥ A ‖x‖ − b ∀x ∈ (R+)N .

For a given multivariate Orlicz function Φ we define, as in [7], the Orlicz space and
the Orlicz Heart respectively:

LΦ :=
{
X ∈ L0

(
(Ω,F ,P); [−∞,+∞]N

)
| ∃λ ∈ (0,+∞),EP [Φ(λ |X|)] < +∞

}
MΦ :=

{
X ∈ L0

(
(Ω,F ,P); [−∞,+∞]N

)
| ∀λ ∈ (0,+∞),EP [Φ(λ |X|)] < +∞

}
(2.8)

where |X| := [|Xj|]Nj=1 is the componentwise absolute value. We introduce the Lux-
emburg norm as the functional

‖X‖Φ := inf

{
λ > 0 | EP

[
Φ

(
1

λ
|X|
)]
≤ 1

}
defined on L0

(
(Ω,F ,P); [−∞,+∞]N

)
and taking values in [0,+∞].

Lemma 2.2.2. Let Φ be a multivariate Orlicz function. Then

1. The Luxemburg norm is finite on X if and only if X ∈ LΦ.
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2. The Luxemburg norm is in fact a norm on LΦ, which makes it a Banach space.

3. MΦ is a vector subspace of LΦ, closed under Luxemburg norm, and is a Banach
space itself if endowed with the Luxemburg norm.

4. LΦ is continuously embedded in (L1(P))N .

5. Convergence in Luxemburg norm implies convergence in probability.

6. X ∈ LΦ, |Y j| ≤ |Xj| ∀j = 1, . . . , N implies Y ∈ LΦ, and the same holds for the
Orlicz Heart. In particular X ∈ LΦ implies X± ∈ LΦ and the same holds for
the Orlicz Heart.

7. The topology of ‖·‖Φ on MΦ is order continuous and MΦ is the closure of (L∞)N

in Luxemburg norm.

8. MΦ and LΦ are Banach lattices if endowed with the topology induced by ‖·‖Φ

and with the componentwise P-almost sure order.

Proof. Claims (1)-(5) follow as in [7]. (6) is trivial from the definitions. As to (7),
sequential order continuity is an application of Dominated Convergence Theorem, and
order continuity follows from Theorem 1.1.3 in [65]. (8) is evident.

Now we need to work a bit on duality.

Definition 2.2.3. The Köthe dual KΦ of the space LΦ is defined as

KΦ :=

{
Z ∈ L0

(
(Ω,F ,P); [−∞,+∞]N

)
|

N∑
j=1

XjZj ∈ L1(P), ∀X ∈ LΦ

}
. (2.9)

Proposition 2.2.4. KΦ can be identified with a subspace of the topological dual of
LΦ and is a subset of (L1(P))N .

Proof. See Section 2.6.4.

By Proposition 2.2.4 KΦ is a normed space which can be naturally endowed with
the dual norm of continuous linear functionals, which we will denote by ‖Z‖∗Φ :=

sup
{
EP

[
|
∑N

j=1X
jZj|

]
| ‖X‖Φ ≤ 1

}
. This norm will play here the role of the Orlicz

norm, and the relation between the two norms ‖·‖Φ and ‖·‖∗Φ is well understood in
the univariate case (see Theorem 2.2.9 in [65]). The following Proposition summarizes
useful properties which show how the Köthe dual can play the role of the Orlicz space
LΦ∗ for MΦ in univariate theory, and are the counterparts to Corollary 2.2.10 in [65].

Proposition 2.2.5. The following hold:

1. KΦ =
{
Z ∈ L0

(
(Ω,F ,P); [−∞,+∞]N

)
|
∑N

j=1X
jZj ∈ L1(P), ∀X ∈MΦ

}
.

2. The topological dual of (MΦ, ‖·‖Φ) is (KΦ, ‖·‖∗Φ).
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3. Suppose LΦ = LΦ1×· · ·×LΦN . Then we have that KΦ = LΦ∗1 ×· · ·×LΦ∗N where
this is only meant as equality of sets.

Proof. See Section 2.6.4.

Definition 2.2.6. For a multivariate utility function U specified in (2.4), we define
the function Φ on (R+)N by

Φ(y) := U(0)− U(− |y|), y ∈ (R+)N (2.10)

and
Φj(z) := uj(0)− uj(− |z|), z ∈ R+ , (2.11)

as the (univariate) functions associated to the univariate utilities u1, . . . , uN .

Remark 2.2.7. Notice that Φ is a multivariate Orlicz function, which generates multi-
variate Orlicz space and Orlicz Heart, and Φ1, . . . ,ΦN are univariate Orlicz functions.
To prove these claims, we only need to verify the existence of A > 0, b given in Defi-
nition 2.2.1. We first consider the univariate case. By Proposition 2.6.1 for b = uj(0)

and M =
d+uj

dx
(0), we have uj(−xj) ≤M(−xj)+ b for all xj > 0 and j = 1, . . . , N . As

a consequence Φ(xj) ≥Mxj+uj(0)−b for all xj > 0 and j = 1, . . . , N . We also notice

that
d+uj

dx
(0) > 0 by strict monotonicity of uj. The multivariate case follows from the

univariate one: we have the inequality Φ(x) ≥
∑N

j=1 Φj(x
j) − supRN (Λ) + Λ(0) and

by assumption u1, . . . , uN are univariate utilities.

Remark 2.2.8. The conjugate functions of Φ1, . . . ,ΦN will be denoted by Φ∗1, . . . ,Φ
∗
N .

To each of these functions Φ1, . . . ,ΦN and Φ∗1, . . . ,Φ
∗
N we can associate Orlicz spaces

and Orlicz hearts. The relationship between the convex conjugate vj of uj and the
conjugate Φ∗j of Φj is

Φ∗j(y) =

{
0 y ≤ βj

vj(y)− vj(βj) y > βj
,

where βj :=
d−uj

dx
(0). When uj is bounded from above, vj is also bounded in a neigh-

borhood of 0 (vj(0) = u(+∞) < +∞), and consequently an integrability condition of
the form EP[Φ∗j(·)] < +∞ holds true if and only if EP[vj(·)] < +∞.

We now provide an example connecting the multivariate theory to the univariate
classical one.

Remark 2.2.9. Even thought we will not make this assumption in the rest of the Chap-
ter, suppose in this Remark that Φ(x) =

∑N
j=1 Φj(x

j) for univariate Orlicz functions,
that is each separately satisfying Definition 2.2.1 for N = 1. Then we could consider
the multivariate spaces LΦ and MΦ as above or we could take LΦ1 × · · · × LΦN and
MΦ1 × · · · ×MΦN .
As shown in Section 2.6.4, the following identity between sets holds:

MΦ = MΦ1 × · · · ×MΦN and LΦ = LΦ1 × · · · × LΦN

and furthermore
1

N

N∑
j=1

∥∥Xj
∥∥

Φj
≤ ‖X‖Φ ≤ N

N∑
j=1

∥∥Xj
∥∥

Φj
. (2.12)

Observe that in the setup of this Remark, from Proposition 2.2.5 Item 3, we have

KΦ = LΦ∗1 × · · · × LΦ∗N .
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2.3 Setup and Assumptions

Recall that CR :=
{
Y ∈ (L0(Ω,F , P ))N |

∑N
j=1 Y

j ∈ R
}

that is, CR is the set of ran-

dom vectors such that the sum of the components is P-a.s. a deterministic number.
The following assumption holds true throughout Chapter 2 without further mention.

Standing Assumption II. B ⊆ CR is a convex cone, closed in probability, 0 ∈ B,
RN + B = B. The vector X belongs to the Orlicz Heart MΦ.

Observe that the Standing Assumption II implies that all constant vectors belong to
B, so that all (deterministic) vector in the form ei− ej (differences of elements in the
canonical base of RN) belong to B∩MΦ. We recall the following concept, introduced
in [20] Definition 5.15 and was already used in Chapter 1.

Definition 2.3.1. B is closed under truncation if for each Y ∈ B there exists mY ∈ N
and cY ∈ RN such that

∑N
j=1 Y

j =
∑N

j=1 c
j
Y and for all m ≥ mY

Ym := Y 1{|Y j |<m∀j=1,...,N} + cY 1Ω\{|Y j |<m ∀j=1,...,N} ∈ B .

Some of the following assumptions will be needed for some of our main results. How-
ever, unlike for Standing Assumptions I and II, it will be always explicitly mentioned
if and when these are assumed.

Assumption 2.3.2. B is closed under truncation.

As pointed out in [20], B = CR is closed under truncation. Closedness under trunca-
tion property holds true for a rather wide class of constraints. For a more detailed
explanation and examples, see also Chapter 1 Example 1.2.19 and Example 1.3.20.

Assumption 2.3.3. LΦ = LΦ1 × · · · × LΦN .

While Assumption 2.3.2 is a requirement on the set of random allocations, Assumption
2.3.3 is a request on the utility functions we allow for. It can be rephrased as: if forX ∈
(L0 ((Ω,F ,P); [−∞,+∞]))N there exist λ1, . . . , λN > 0 such that EP [uj(−λj |Xj|)] >
−∞, then there exists α > 0 such that EP [Λ(−α |X|)] > −∞. This request is rather
weak and there are many examples of choices of U and Λ that guarantee this condition
is met (see Section 2.4.5). Note however that this is not a request on the topological
spaces, but just an integrability requirement, and it is automatically satisfied if Λ ≡ 0.

Assumption 2.3.4. u1, . . . , uN satisfy AE−∞, that is: u1, . . . , uN are differentiable
on R and

lim inf
x→−∞

xu′j(x)

uj(x)
> 1 ∀ j = 1, . . . , N .

Assumption 2.3.5. The function V , defined in (2.2), satisfies the following condi-
tion: for every Q = [Q1, . . . ,QN ] � P with EP

[
V
(
λdQ

dP

)]
< +∞ for some λ > 0 it

holds that

EP

[
V

([
λ1

dQ1

dP
, . . . , λN

dQN

dP

])]
< +∞ ∀λ1, . . . , λN > 0 .
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As explained in Section 2.4.5, in the case N = 1 the Assumption 2.3.5 is a con-
dition associated to Reasonable Asymptotic Elasticity, introduced [122], and is the
classical one needed for the validity of many results in the theory of univariate utility
maximization, see for example [104] and [122].
In Section 2.4.5, we provide further details and sufficient conditions for these assump-
tions, which show that these are reasonable. We here only note that in case Λ ≡ 0
we will obtain the same results of Chapter 1 but under weaker assumptions. A more
precise formulation of this fact can be found in Section 2.4.6.
We introduce the following sets:

1. For any A ∈ R consider the set of random allocations

BA := B ∩

{
Y ∈ (L0(P))N |

N∑
j=1

Y j ≤ A

}
⊆ CR . (2.13)

2. Q is the set of vectors of probability measures Q = [Q1, . . . ,QN ], with Qj � P
∀ j = 1, . . . , N , defined by

Q :=

{
Q |

[
dQ1

dP
. . . ,

dQ1

dP

]
∈ KΦ,

N∑
j=1

EQj
[
Y j
]
≤ 0 ∀Y ∈ B0 ∩MΦ

}
.

(2.14)
Identifying Radon-Nikodym derivatives and measures in the natural way, this
can be rephrased as: Q is the set of normalized (i.e. with componentwise
expectations equal to 1), non negative vectors in the polar of B0 ∩MΦ, in the
dual system (MΦ, KΦ).

3. QV is the following subset of Q:

QV :=

{
Q ∈ Q | EP

[
V

(
λ

dQ
dP

)]
< +∞ for some λ > 0

}
.

We are now ready to specify the framework that will be adopted in our main results.
To this end, we will consider three sets of assumptions:

Setup A: Assumption 2.3.2 and Assumption 2.3.3 are fulfilled and we setM :=
QV and L :=

⋂
Q∈QV L

1(Q).

Setup B Assumption 2.3.3 and Assumption 2.3.4 are fulfilled and we setM :=
QV and L :=

⋂
Q∈QV L

1(Q).

Setup C Assumption 2.3.5 is fulfilled, u1, . . . , uN are differentiable on R, Λ is
differentiable on RN and we set M := QV and L := (L0(P))N .

Recall from (2.1) that we set

[Y [−n];Z] :=
[
Y 1, . . . , Y n−1, Z, Y n+1, . . . , Y N

]
∈ (L0(P))N , for Z ∈ L0(P).
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Consider a multivariate utility function U . For

(Y,Q, a, A) ∈ (L ∩ L1(Q))×M×RN×R

define:

UY [−j]

j (Z) := EP
[
uj(X

j + Z)
]

+ EP
[
Λ(X + [Y [−j], Z])

]
, Z ∈ L0(P), j = 1, . . . , N,

(2.15)

UQj ,Y [−j]

j (aj) := sup
{
UY [−j]

j (Z) | Z ∈ Lj ∩ L1(Qj), EQj [Z] ≤ aj
}
, j = 1, . . . , N,

(2.16)

TQ(a) := sup
{
EP [U(X + Y )] | Y ∈ L ∩ L1(Q), EQj

[
Y j
]
≤ aj, ∀j = 1, . . . , N

}
,

(2.17)

SQ(A) := sup

{
TQ(a) | a ∈ RN ,

N∑
j=1

aj ≤ A

}
. (2.18)

Obviously, all such quantities depend also on X, but as X will be kept fixed through-
out most of the analysis, we may avoid to explicitly specify this dependence in the
notations. As u1, . . . , uN ,Λ, U are increasing we can replace, in the definitions (2.16),
(2.17), (2.18), the inequalities in the budget constraints with equalities. Moreover,
it is clear that when Λ ≡ 0 the problem SQ(A) introduced in (2.18) coincides with
SQ(A) defined in (1.2).

Remark 2.3.6. From the definition of V we obtain the Fenchel inequality

U(X + Y ) ≤ 〈X + Y, λZ〉+ V (λZ) P-a.s. for all X, Y, Z ∈ (L0(P))N , λ ≥ 0.

Recall that MΦ ⊆ L1(Q) for all Q ∈Q. For all X ∈ MΦ, for all Q ∈Q and Y such
that

∑N
j=1 EQj [Y j] ≤ A we then have:

EP [U(X + Y )] ≤ inf
λ≥0

{
λ

N∑
j=1

EQj
[
(Xj + Y j)

]
+ EP

[
V

(
λ

dQ
dP

)]}

≤ inf
λ≥0

{
λ

(
N∑
j=1

EQj
[
Xj
]

+ A

)
+ EP

[
V

(
λ

dQ
dP

)]}

and the last expression is finite if Q ∈QV . Therefore, for all Y ∈ B0 ∩MΦ

EP [U(X + Y )] ≤ inf
Q∈QV

inf
λ≥0

{
λ

N∑
j=1

EQj
[
Xj
]

+ EP

[
V

(
λ

dQ
dP

)]}
< +∞ .

2.4 Multivariate Systemic Optimal Risk Transfer

Equilibrium

2.4.1 Main Concepts

Here is the natural generalization of SORTE as introduced in Chapter 1:
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Definition 2.4.1. The triple (YX ,QX , aX) ∈ L×M×RN with YX ∈ L1(QX) is a
Weak Multivariate Systemic Optimal Risk Transfer Equilibrium (Weak
mSORTE) with budget A ∈ R if:

1) for each j = 1, . . . , N , Y j
X is optimal for UQjX ,Y

[−j]
X

j (ajX),
2) aX is optimal for SQX (A),
3) YX ∈ B and

∑N
j=1 Y

j
X = A P- a.s.

Definition 2.4.2. The triple (YX ,QX , aX) ∈ L×M×RN with YX ∈ L1(QX) is a
Multivariate Systemic Optimal Risk Transfer Equilibrium (mSORTE) with
budget A ∈ R if

1. (YX , aX) is an optimum for

sup
a∈RN∑N
j=1 aj=A

(
sup

{
EP [U(X + Y )] | Y ∈ L ∩ L1(QX), EQjX

[
Y j
]
≤ aj, ∀j

})
,

2. YX ∈ B and
∑N

j=1 Y
j
X = A P- a.s.

When Λ ≡ 0 the definition of the Weak mSORTE coincides with the one of the
SORTE, as defined in Chapter 1. See Section 2.4.6 for an accurate comparison.

Remark 2.4.3. It follows from the monotonicity of the utility functions that
∑N

j=1 a
j
X =

A and EQjX
[Y j
X ] = ajX . Hence

N∑
j=1

EQjX
[Y j
X ] =

N∑
j=1

ajX = A

and
N∑
j=1

Y j
X =

N∑
j=1

EQjX
[Y j
X ] P− a.s. (2.19)

Lemma 2.4.4. A Multivariate SORTE is a Weak Multivariate SORTE.

Proof. Let (YX ,QX , aX) ∈ L×M×RN be an mSORTE as in Definition 2.4.2.
We prove that Item 1 in Definition 2.4.1 holds true. By Remark 2.4.3 we have ajX =
EQjX

[Y j
X ], j = 1, . . . , N . For any Z ∈ Lj ∩ L1(Qj

X) with EQjX
[Z] ≤ ajX we have that

[Y
[−j]
X ;Z] satisfies then the constraints of the problem

sup
{
EP [U(X + Y )] | Y ∈ L ∩ L1(QX), EQjX

[
Y j
]
≤ ajX , ∀j

}
and we have by Item 1 of Definition 2.4.2 that

EP [U(X + YX)] ≥ EP

[
U(X + [Y

[−j]
X ;Z]

]
.

By simple computations, this implies U
Y

[−j]
X

j (Y j
X) ≥ U

Y
[−j]
X

j (Z), yielding the required
optimality.
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We now move to Item 2 of Definition 2.4.1:

sup
a∈RN∑N
j=1 a

j=A

TQX (a)

(2.17)
= sup

a∈RN∑N
j=1 aj=A

(
sup

{
EP [U(X + Y )] | Y ∈ L ∩ L1(QX), EQjX

[
Y j
]
≤ aj, ∀j

})
Def. 2.4.2

Item 1= EP [U(X + YX)]

Rem.2.4.3

≤
(

sup
{
EP [U(X + Y )] | Y ∈ L ∩ L1(QX), EQjX

[
Y j
]
≤ ajX , ∀j

})
(2.17)
= TQX (aX) ≤ sup

a∈RN∑N
j=1 a

j=A

TQX (a)

which implies optimality of aX .

Finally, Item 3 of Definition 2.4.1 trivially holds, since YX satisfies Item 2 of Definition
2.4.2.

2.4.2 Pareto Allocation and Nash Equilibrium

For each j = 1, ..., N , let uj : R→ R and let Λ : RN → R. Similarly to Chapter 1 we
give the following definition:

Definition 2.4.5. Given a set of feasible allocations V ⊆ (L0(P))N , Y ∈ V is a
Pareto allocation for V if

Z ∈ V,

{
EP [uj(X

j + Zj)] ≥ EP [uj(X
j + Y j)] for all j,

EP [Λ(X + Z)] ≥ EP [Λ(X + Y )]
(2.20)

imply:

EP
[
uj(X

j + Zj)
]

= EP
[
uj(X

j + Y j)
]

for all j, and EP [Λ(X + Z)] = EP [Λ(X + Y )] .

In general Pareto allocations are not unique and the following version of the First
Welfare Theorem holds true (compare with Proposition 1.2.2).

Proposition 2.4.6. Define the optimization problem

Π(V) := sup
Z∈V

{
N∑
j=1

EP
[
uj(X

j + Zj)
]

+ EP [Λ(X + Z)]

}
. (2.21)

Whenever Y ∈ V is the unique optimal solution of Π(V), then it is a Pareto allocation
for V.
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Proof. Let Y be optimal for Π(V), so that E
[∑N

j=1 uj(X
j + Y j)

]
+ E [Λ(X + Y )] =

Π(V). Suppose that there exists Z such that (2.20) holds true. As Z ∈ V we have:

EP

[
N∑
j=1

uj(X
j + Y j)

]
+ EP [Λ(X + Y )]

= Π(V) := sup
W∈V

{
N∑
j=1

EP
[
uj(X

j +W j)
]

+ EP [Λ(X +W )]

}

≥ EP

[
N∑
j=1

uj(X
j + Zj)

]
+ EP [Λ(X + Z)]

≥ EP

[
N∑
j=1

uj(X
j + Y j)

]
+ EP [Λ(X + Y )]

by (2.20). Hence Z is an optimal solution to Π(V). Uniqueness of the optimal solution
implies Z = Y , and the validity of Definition 2.4.5 follows.

We also introduce a version of a Nash Equilibrium:

Definition 2.4.7. Given a set of feasible allocations V ⊆ (L0(P))N , Y ∈ V is a Nash
Equilibrium for V if for every j ∈ {1, . . . , N}

UY [−j]

j (Y j) ≥ UY [−j]

j (Z) for all Z such that [Y [−j];Z] ∈ V ,

where UY [−j]
j (·), j = 1, . . . , N are defined in (2.15).

Assuming that all agents n 6= j adopt strategy Y [−j], in a Nash Equilibrium the
strategy Y j of agent j maximizes his own expected utility plus an additional sys-
temic/regulatory term:

Y j := arg max
{
EP
[
uj(X

j + •)
]

+ EP
[
Λ(X + [Y [−j]; •])

]}
.

2.4.3 Main Results

The analysis in Chapter 1 regards existence, uniqueness and properties of a SORTE.
Here we provide sufficient conditions for existence, uniqueness, Pareto optimality and
the Nash Equilibrium property of a mSORTE, see Theorems 2.4.11 and 2.4.12. Such
results are relatively simple consequences of the following key duality Theorem 2.4.9,
whose proof in Section 2.5 will involve several steps.
We introduce the following sets of random vectors, for A ∈ R:

L(A)
V :=

⋂
Q∈QV

{
Y ∈ (L0(P))N |

N∑
j=1

Y j dQj

dP
∈ L1(P),EP

[
N∑
j=1

Y j dQj

dP

]
≤ A

}
, (2.22)

LV := L(0)
V .
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Remark 2.4.8. For any Q ∈ QV

L(A)
V ⊆

{
Y ∈ (L0(P))N |

N∑
j=1

Y j dQj

dP
∈ L1(P),EP

[
N∑
j=1

Y j dQj

dP

]
≤ A

}
and then, by Fenchel inequality (using an argument similar to the one in Remark
2.3.6) we deduce that the following weak duality holds true

sup
Y ∈L(A)

V

EP [U(X + Y )] (2.23)

≤ inf
Q∈QV

sup

EP [U(X + Y )] | Y ∈ (L0(P))N ,
N∑
j=1

Y j dQj

dP
∈ L1(P), EP

 N∑
j=1

Y j dQj

dP

 ≤ A


(2.24)

≤ inf
Q∈QV

inf
λ≥0

λ
 N∑
j=1

EQj
[
Xj
]

+A

+ EP

[
V

(
λ

dQ
dP

)] (2.25)

≤ inf
λ≥0

λ
 N∑
j=1

EQ̂j
[
Xj
]

+A

+ EP

[
V

(
λ

dQ̂
dP

)] < +∞, for any Q̂ ∈ QV . (2.26)

Theorem 2.4.9. In either setup A, B or C the following holds:

sup
Y ∈BA∩MΦ

EP [U(X + Y )] = sup
Y ∈L(A)

V

EP [U(X + Y )] (2.27)

= min
Q∈QV

min
λ≥0

(
λ

(
N∑
j=1

EQj
[
Xj
]

+ A

)
+ EP

[
V

(
λ

dQ
dP

)])
. (2.28)

Moreover:

1. There exists a unique optimum Ŷ ∈ L(A)
V to the problem in RHS of (2.27).

2. Any optimum (λ̂, Q̂) of (2.28) satisfies λ̂ > 0 and Q̂ ∼ P.

3. For any optimum (λ̂, Q̂) of (2.28) we have Ŷ ∈ BA ∩ L ∩ L1(Q̂) and

N∑
j=1

EQ̂j [Ŷ
j] = A =

N∑
j=1

Ŷ j, P− a.s..

4. If U is differentiable, there exists a unique optimum (λ̂, Q̂) of (2.28).

5. In Setup A

sup
Y ∈BA∩(L∞(P))N

EP [U(X + Y )] = sup
Y ∈BA∩MΦ

EP [U(X + Y )] . (2.29)

Proof. Setup A and B: the case A = 0 is covered in Theorem 2.5.16. Setup C: the case
A = 0 is covered in Theorem 2.5.17 (observe that differentiability of U is assumed in
the setup C). In Section 2.5.6 we then explain how we can apply also to A 6= 0 the
same arguments used for A = 0. Corollary 2.5.19 proves (2.29).
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The following result is the counterpart to Theorem 2.4.9, once a vector Q ∈ QV is
fixed.

Theorem 2.4.10. For either L =
⋂

Q∈QV L
1(Q) or L = (L0(P))N , for every Q ∈ QV

and A ∈ R the following holds:

sup
Y ∈L∩L1(Q)∑N
j=1 EQj [Y j]≤A

EP [U(X + Y )] = min
λ≥0

(
λ

(
N∑
j=1

EQj
[
Xj
]

+ A

)
+ EP

[
V

(
λ

dQ
dP

)])
.

(2.30)

Proof. Consider first A = 0. By Proposition 2.5.11

min
λ≥0

(
λ

(
N∑
j=1

EQj
[
Xj
])

+ EP

[
V

(
λ

dQ
dP

)])
= sup

Y ∈MΦ∑N
j=1 EQj [Y j]≤0

EP [U(X + Y )] .

Observing that MΦ ⊆ L ∩ L1(Q) ⊆ L1(Q), we have

sup
Y ∈MΦ

∑N
j=1 EQj [Y j]≤0

EP [U(X + Y )] ≤ sup
Y ∈L∩L1(Q)∑N
j=1 EQj [Y j]≤0

EP [U(X + Y )]

≤ sup
Y ∈L1(Q)∑N

j=1 EQj [Y j]≤0

EP [U(X + Y )] ≤ inf
λ≥0

(
λ

(
N∑
j=1

EQj
[
Xj
])

+ EP

[
V

(
λ

dQ
dP

)])
,

by Remark 2.3.6. The case A = 0 is then proved. The case A 6= 0, instead, follows
from Section 2.5.6.

On the existence of an mSORTE and Nash Equilibrium

Theorem 2.4.11. In either setup A, B or C a Multivariate Systemic Optimal Risk
Transfer Equilibrium (Ŷ , Q̂, â) ∈ L×QV ×RN exists. Furthermore, Q̂ ∼ P and Ŷ is
a Nash Equilibrium for both the sets

VA = L ∩

{
Y ∈ L1(Q̂) |

N∑
j=1

EQ̂j [Y
j] ≤ A

}

Vâ = L ∩
{
Y ∈ L1(Q̂) | EQ̂j [Y

j] ≤ âj ∀ j = 1, . . . , N
}
.

Proof. The proof of the existence of an mSORTE consists in showing that the opti-
mizers (Ŷ , Q̂) in Theorem 2.4.9, together with âj := EQ̂j [Ŷ

j], j = 1, . . . , N, are an
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mSORTE. Let Q̂ be an optimizer of (2.28). Then, from (2.27) and (2.28),

sup
Y ∈L(A)

V

EP [U(X + Y )] = min
λ≥0

(
λ

(
N∑
j=1

EQ̂j
[
Xj
]

+ A

)
+ EP

[
V

(
λ

dQ̂
dP

)])
(2.30)
= sup

Y ∈L∩L1(Q̂)∑N
j=1 EQ̂j [Y j ]≤A

EP [U(X + Y )] (2.31)

= sup
a∈RN∑N
j=1 aj=A

(
sup

{
EP [U(X + Y )] | Y ∈ L ∩ L1(Q̂), EQ̂j

[
Y j
]
≤ aj, ∀ j

})
(2.32)

= SQ̂(A),

where (2.32) is a simple reformulation of (2.31). By Item 3 of Theorem 2.4.9, the

optimizer Ŷ ∈ L(A)
V satisfies the constraints of the problem in (2.31), hence it is

also an optimum for the problem in (2.31). We conclude that Ŷ and âj := EQ̂j [Ŷ
j],

j = 1, . . . , N, provide an optimum to the problem in (2.32), so that (Ŷ , â) fulfills the
requirements in Item 1 of Definition 2.4.2 and

∑N
j=1 â

j = A. Furthermore, from Item

3 Theorem 2.4.9, Ŷ satisfies Ŷ ∈ B and
∑N

j=1 Ŷ
j = A, proving Item 2 in Definition

2.4.2.

As to the Nash Equilibrium property with respect to VA and Vâ: observe that given
Ŷ 1, . . . , Ŷ N and âj = EQ̂j [Ŷ

j], j = 1, . . . , N , we have that {Z | [Ŷ [−k];Z] ∈ VA} =

{Z | [Ŷ [−k];Z] ∈ Vâ}. To check the Nash Equilibrium property, it is then enough to
work on the set Vâ only. By Lemma 2.4.4 an mSORTE is a Weak mSORTE. Item 1
in Definition 2.4.1 then yields Nash Equilibrium property for Ŷ .

On uniqueness of an mSORTE and Pareto Optimality

Theorem 2.4.12. In Setup A and if U is differentiable the Multivariate SORTE
(Ŷ , Q̂, â) is unique. Moreover, the vector Ŷ is a Pareto Allocation for V = BA ∩ L.

Proof. We claim that if (Ŷ , Q̂, Â) is an mSORTE then Ŷ is an optimizer of RHS of

(2.27) and Q̂ is an optimizer of (2.28). Under the differentiability assumption, the
uniqueness of an mSORTE is then a consequence of the uniqueness of the optimizers
in (2.28) (Theorem 2.4.9 Item 4) and of the fact that, by the monotonicity of Λ,

u1, . . . , uN , in an mSORTE it holds: âj = EQ̂j [Ŷ
j]. To prove the claim, let (Ŷ , Q̂, Â)

be an mSORTE, so that Ŷ ∈ BA ∩ L and Q̂ ∈ QV . Observe that in the Setup
A the set B is closed under truncation. Therefore, arguing as in Lemma 1.3.15 of

Chapter 1, BA ∩ L ⊆ L(A)
V . As a consequence, Ŷ ∈ L(A)

V and EP

[
U(X + Ŷ )

]
≤
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sup
Y ∈L(A)

V
EP [U(X + Y )]. As Q̂ ∈ QV , from (2.23)-(2.26) we then obtain:

EP

[
U(X + Ŷ )

]
≤ sup

Y ∈L(A)
V

EP [U(X + Y )] (2.33)

≤ inf
λ≥0

(
λ

(
N∑
j=1

EQ̂j
[
Xj
]

+ A

)
+ EP

[
V

(
λ

dQ̂
dP

)])
(2.34)

= min
λ≥0

(
λ

(
N∑
j=1

EQ̂j
[
Xj
]

+ A

)
+ EP

[
V

(
λ

dQ̂
dP

)])
(2.35)

Thm.2.4.10
= sup

{
EP [U(X + Y )] | Y ∈ L ∩ L1(Q̂),

N∑
j=1

EQ̂j
[
Y j
]
≤ A

}
= sup

a∈RN∑N
j=1 aj=A

(
sup

{
EP [U(X + Y )] | Y ∈ L ∩ L1(Q̂), EQ̂j

[
Y j
]
≤ aj ∀j

})
(2.36)

= EP

[
U(X + Ŷ )

]
(2.37)

where the expression in (2.36) is a reformulation of the one in the previous line, and

(2.37) holds true because (Ŷ , Q̂, â) is an mSORTE and therefore Ŷ is an optimizer of
the problem in (2.36). Notice that Theorem 2.4.10 guarantees that the inf in (2.34)

is a min. We then deduce that all above inequalities are equalities and Ŷ ∈ L(A)
V is

an optimizer of RHS of (2.27) and Q̂ is an optimizer of (2.28).

We conclude proving that Ŷ is a Pareto allocation: in Setup A observe that L ∩
L1(Q̂) = L and V := BA ∩L ⊆ L(A)

V , as already argued at the beginning of the proof.
In conclusion we get

EP

[
U(X + Ŷ )

]
≤ sup

Y ∈V
EP [U(X + Y )] ≤ sup

Y ∈L(A)
V

EP [U(X + Y )] = EP

[
U(X + Ŷ )

]
,

by (2.33)-(2.37). Thus Ŷ is the unique optimum, by the strict concavity of U , to the
problem Π(V) given in (2.21), and Proposition 2.4.6 can be applied.

2.4.4 Dependence on X of mSORTE

We study here the dependence of mSORTE on the initial data X. We will work
in Setup A, in such a way that both existence and uniqueness are guaranteed (see
Theorem 2.4.11 and Theorem 2.4.12).

Proposition 2.4.13. In Setup A and for B = CR, given an mSORTE (Ŷ , Q̂, â) the

variables dQ̂
dP and X + Ŷ are σ(X1 + · · ·+XN) (essentially) measurable.

Proof. By Theorem 2.4.12 there exists a unique mSORTE. Recall the proof of The-
orem 2.4.11, where we showed that the optimizers (Ŷ , Q̂) in Theorem 2.4.9, together

with âj := EQ̂j [Ŷ
j], j = 1, . . . , N, are the mSORTE. Notice that in this specific case

Y := ei1A − ej1A ∈ B ∩MΦ for all i, j. The same argument used in the proof of
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Proposition 1.3.18 of Chapter 1 can be then applied with obvious minor modifications

(i.e. using V (·) in place of
∑N

j=1 vj(·) and taking any Q ∈ QV ) to show that dQ̂
dP is

G := σ(X1 + · · ·+XN)-(essentially) measurable. We stress the fact that, similarly to
Proposition 1.3.18, all the components of any Q ∈ QV are equal.

We now focus onX+Ŷ : consider Ẑ := EP [X + Y | G]−X (the conditional expectation

is taken componentwise). Then it is easy to check that
∑N

j=1 Ẑ
j =

∑N
j=1 Ŷ

j = A which

yields Ẑ ∈ BA. We now prove that Ẑ ∈ L(A)
V , by showing that Z ∈ L =

⋂
Q∈QV L

1(Q)

(the fact that Ẑ ∈ L(A)
V follows then from the fact that L ∩ BA ⊆ L(A)

V , as argued
in the proof of Theorem 2.4.12). Since X ∈ MΦ, it is clearly enough to prove that

EP

[
X + Ŷ

∣∣∣G] ∈ L. Observe first that for any given Q� P, the measure QG defined

by dQG
dP := EP

[
dQj
dP

∣∣∣G] satisfies

Q ∈ QV =⇒ QG ∈ QV . (2.38)

To see this, recall that all the components of Q are equal, hence so are those of QG.
Moreover

N∑
j=1

EP

[
Y j dQj

G

dP

]
= EP

[
N∑
j=1

Y j dQ1
G

dP

]
=

N∑
j=1

Y j ≤ 0 ∀Y ∈ B0 ∩MΦ

and EP

[
V
(
λdQG

dP

)]
≤ EP

[
V
(
λdQ

dP

)]
by conditional Jensen Inequality.

Now, for any j = 1, . . . , N and Q ∈ QV

EP

[∣∣EP
[
Xj + Y j

∣∣G]∣∣ dQj

dP

]
≤ EP

[
EP

[
EP
[∣∣Xj + Y j

∣∣∣∣G] dQj

dP

∣∣∣∣G]]

= EP

[
EP

[∣∣Xj + Y j
∣∣EP

[
dQj

dP

∣∣∣∣G]∣∣∣∣G]] = EP

[∣∣Xj + Y j
∣∣EP

[
dQj

dP

∣∣∣∣G]] .
As a consequence, since by (2.38) L ⊆ L1(QG) and Ŷ ∈ L, we get X + Ŷ ∈ L1(Q),

and the fact that Ẑ ∈ L follows.

Finally, observe that EP

[
U
(
X + Ẑ

)]
= EP

[
U
(
EP

[
X + Ŷ

∣∣∣G])] ≥ EP

[
U(X + Ŷ )

]
by conditional Jensen Inequality. Hence Ẑ, which satisfies Ẑ ∈ L ⊆ L(A)

V , is another
optimum for the optimization problem in RHS of (2.27). By Proposition 2.5.2, with

K = L(A)
V , we get Ŷ = Ẑ. Since X + Ẑ is G-(essentially) measurable, so is clearly

X + Ŷ .

It is interesting to notice that this dependence on the componentwise sum of X also
holds in the case of SORTE (Section 1.3.5) and of Bühlmann’s equilibrium (see [33]
page 16, which partly inspired the proof above, and [26]).

Remark 2.4.14. In the case of clusters of agents, the above result can be clearly
generalized (see Remark 1.3.19 in Chapter 1).
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2.4.5 On the assumptions and examples

We introduce the following definition, inspired by Definition 2.2.1 [116].

Definition 2.4.15. Let u : R→ R and ũ : R→ R. We say that u � ũ if there exist
k ∈ R, c ∈ R+, C ∈ R+ such that ũ(x) ≥ Cu(cx) + k for each x ≤ 0.

Note that such control is required to hold only for negative values.

Assumption 2.3.3

We now consider Λ(x) := u
(∑N

j=1 βjx
j
)

for some concave increasing (not necessarily

strictly) and bounded above function u : R→ R.

Proposition 2.4.16. Let u1, . . . , uN be univariate utility functions and let

U(x) :=
N∑
j=1

uj(x) + u

(
N∑
j=1

βjx
j

)
, with β1, . . . , βN ≥ 0 and max

j
βj > 0,

satisfy Standing Assumption I. If uj � u, for each j, then Assumption 2.3.3 holds
true.

Proof. By the concavity of u we have, for every x ∈ RN ,

Λ(x) = u

(
N∑
j=1

βjx
j

)
= u

(
N∑
j=1

βj∑N
n=1 βn

(
N∑
n=1

βn

)
xj

)

≥
N∑
j=1

βj∑N
n=1 βn

u

((
N∑
n=1

βn

)
xj

)
.

(2.39)

By uj � u, and boundedness from above of u we have for each x ∈ ((−∞, 0])N and
from (2.39)

+∞ > sup
z∈RN

Λ(z) ≥ Λ(x) ≥
N∑
j=1

βj∑N
n=1 βn

(
Cjuj

(
cj

(
N∑
n=1

βn

)
xj

)
+ kj

)
. (2.40)

If X ∈ LΦ1×· · ·×LΦN , then by definition there exists a λ0 > 0 such that the inequality
EP [uj(λ(− |Xj|)] > −∞ holds for every λ ≤ λ0 and j = 1, . . . , N . This and (2.40)
then imply the existence of some λ1 > 0 such that EP [Λ(−λ |X|)] > −∞ for every
λ ≤ λ1, that is X ∈ LΦ.

The ∆2 condition

In the theory of Orlicz spaces the well known ∆2 condition on a Young function
Φ : R+ → R guarantees that LΦ = MΦ. We say that Φ ∈ ∆2 if:

There exists y0 ≥ 0, K > 0 such that Φ(2y) ≤ KΦ(y) ∀ y s.t. |y| ≥ y0.
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Proposition 2.4.17. Let Φ : R+ → R be a Young function differentiable on R+ \{0}
and let Φ∗ : R+ → R be its conjugate function. Then

lim inf
z→+∞

zΦ′(z)

Φ(z)
> 1 ⇐⇒ Φ∗ ∈ ∆2. (2.41)

In particular, under Assumptions 2.3.3 and 2.3.4 we have Φ∗1, . . . ,Φ
∗
N ∈ ∆2 which

implies
KΦ = LΦ∗1 × · · · × LΦ∗N = MΦ∗1 × · · · ×MΦ∗N . (2.42)

Proof. The equivalence of the two conditions in (2.41) can be checked along the lines
of Theorem 2.3.3 in [116], observing that the argument still works in our slightly more
general setup (use Proposition 2.2 [116] in place of Theorem 2.2.(a) [116]). As to the
final claim, the first equality in (2.42) comes from Assumption 2.3.3 and Proposition
2.2.5, Item (3). If u1, . . . , uN satisfy Assumption 2.3.4 then, as can be easily checked
by direct computation, Φj, j = 1, . . . , N satisfy the condition in LHS of (2.41), so
that Φ∗j ∈ ∆2, which in turns implies LΦ∗j = MΦ∗j .

Assumption 2.3.5

First we recall the definition of Reasonable Asymptotic Elasticity that was introduced
in [122].

Definition 2.4.18 ([122] Definition 1.5). Let u : R→ R be concave, non decreasing,
differentiable on R and satisfying the Inada conditions u′(+∞) = 0, u′(−∞) = +∞.
We say that u has Reasonable Asymptotic Elasticity (RAE) if the following conditions
are met:

AE−∞ : lim inf
x→−∞

xu′(x)

u(x)
> 1 and AE+∞ : lim sup

x→+∞

xu′(x)

u(x)
< 1 . (2.43)

It is well known that RAE is implied by a dual formulation in terms of the conju-
gate of the utility function, see Corollary 4.2 [122]. We now introduce the following
multivariate generalization of such dual formulation of RAE.

RAEN : For a function V : RN → R we say that V ∈ RAEN if for all j = 1, . . . , N
and for any compact interval [c0, c1] ⊂ (0,+∞) there exists αj > 0, bj ∈ R such
that for all vectors y ∈ RN , with yi ≥ 0 for all i, we have:

V ([y[−j], λyj]) ≤ αjV (y) + bj for all λ ∈ [c0, c1]. (2.44)

For N = 1, RAE1 is equivalent to such dual formulation of RAE, see [122] or [21].
We provide three sufficient conditions for Assumption 2.3.5 to hold true:

Proposition 2.4.19. Assumption 2.3.5 is fulfilled under any of the following sets of
conditions:

1. Assumption 2.3.3 and Assumption 2.3.4 hold. Additionally, u1, . . . , uN are
bounded from above.
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2. Λ(x) := u
(∑N

j=1 βjx
j
)
, uj � u for each j = 1, . . . , N (see Definition 2.4.15),

and uj satisfies RAE for each j (see Definition 2.4.18).

3. The convex conjugate V (·) of U(·), defined in (2.2), satisfies V ∈ RAEN .

Proof. Recall that each vj(·) is bounded below. It is also easy to check that

V (y) ≤
N∑
j=1

vj(y
j) + sup

RN
Λ , (2.45)

thus to prove Item 1 and 2 it is sufficient to show that in either set of conditions,
EP
[
V
(
λdQ

dP

)]
< +∞ for some λ > 0 implies

EP

[
vj

(
λ

dQj

dP

)]
< +∞ ∀λ > 0,∀ j = 1, . . . , N . (2.46)

Item 1: Lemma 2.6.9 implies that dQ
dP ∈ KΦ. By Proposition 2.4.17 KΦ = MΦ∗1×· · ·×

MΦ∗N . Then EP

[
Φ∗j(λ

dQ
dP

j
)
]
< +∞ for all λ > 0 and j = 1, . . . , N . By boundedness

above of utilities and Remark 2.2.8, we then deduce (2.46).

Item 2: From the computations in (2.39) we get: for some Cj > 0, cj > 0

V (y) = sup
x∈RN

(
N∑
j=1

uj(x
j)− xjyj + u

(
N∑
j=1

βjx
j

))

≥ sup
x∈RN

(
N∑
j=1

uj(x
j)− xjyj +

N∑
j=1

Cju(cjx
j)

)

which implies

V (y) ≥
N∑
j=1

sup
xj∈R

(
uj(x

j)− xjyj + Cju(cjx
j)
)
. (2.47)

Observe now that since uj � u, j = 1, . . . , N we can apply Lemma 2.6.8 to each term in
the summation in RHS of (2.47). Calling the corresponding constants βj, Bj, Kj

1 , K
j
2 ,

from (2.47) and EP
[
V
(
λdQ

dP

)]
< +∞ we infer that for each j = 1, . . . , N ,

EP

[
vj

(
λ

dQj

dP

)
1{

λdQj
dP ≤K

j
1

}] < +∞ EP

[
vj

(
βλ

dQj

dP

)
1{

λdQj
dP ≥K

j
2

}] < +∞ .

Since for each j = 1, . . . , N uj satisfies RAE, so do x 7→ uj(x) + 1, j = 1, . . . , N .
From [122] Corollary 4.2, Item (i) applied to x 7→ uj(x) + 1, j = 1, . . . , N , the above
equations imply

EP

vj (αdQj

dP

)
1{

dQj
dP ≤

K
j
1
λ

}
 < +∞ EP

vj (αdQj

dP

)
1{

dQj
dP ≥

K
j
2
λ

}
 < +∞ ∀α > 0 .
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Since v1, . . . , vN are continuous on
[
Kj

1

λ
,
Kj

2

λ

]
, we have for each j = 1, . . . , N

EP

[
vj

(
α

dQj

dP

)]
< +∞ ∀α > 0 .

Item 3: Fix β ∈ R, β > 0, and Q = [Q1, ...,QN ], Qj � P, such that EP
[
V
(
β dQ

dP

)]
<

+∞. Take any λ = [λ1, ..., λN ] ∈ RN , with λi > 0 for all i, and set c0 := mini(
λi
β

) > 0,

c1 := maxi(
λi
β

). By the definition of RAEN we then get, for any y ∈ RN with non
negative components,

V (λ1y
1, ..., λNy

N) = V

(
λ1

β
βy1, ...,

λN
β
βyN

)
≤ α1V

(
βy1,

λ2

β
βy2, ...,

λN
β
βyN

)
+ b1 ≤ α1 · ... · αNV (βy) + constant.

Hence

EP

[
V

(
λ1

dQ1

dP
, ..., λN

dQN

dP

)]
≤ α1 · ... · αNEP

[
V

(
β

dQ
dP

)]
+ constant < +∞,

by assumption.

Main Examples

Suppose that Λ(x) := u
(∑N

j=1 βjx
j
)

for an increasing and concave (both not neces-

sarily strictly) function u : R→ R, with u such that uj � u for each j = 1, . . . , N .

• If uj satisfies AE−∞ for each j, then the assumptions in Setup B are fulfilled
(Proposition 2.4.16) and Theorem 2.5.16 holds true.

• If uj satisfies RAE (i.e.: AE+∞ and AE−∞ ) for each j and u is differentiable
on R, then the assumptions in Setup B and C are fulfilled (Proposition 2.4.19,
Item 2) and both Theorems 2.5.16 and 2.5.17 hold true. The uniqueness of the

optimal solution implies that the Ŷ in Theorem 2.5.17 satisfies all the conditions
in Theorem 2.5.16.

It is now easy to verify that any of the multivariate utility functions described in
equations (I.15) and (I.17) of the Introduction fulfill either Setups A or B or C.

2.4.6 Comparison with univariate SORTE

In this subsection we set Λ ≡ 0. It is easy to see that if an optimum exists for

UY [−j],Qj
j (·) in (2.16), it no longer depends on Y [−j], and the optimization problem

UY [−j],Qj
j (·) is in fact the same problem denoted with UQj

j (·) in Equation (1.1) in
Chapter 1. Similarly, it can be seen that the optimization problem expressed by
(2.18) is, when Λ ≡ 0, equivalent to the one in Equation (1.2), Chapter 1.
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When Λ ≡ 0, Assumption 2.3.2 and Assumption 2.3.4 are left untouched, Assumption
2.3.3 is satisfied automatically, Assumption 2.3.5 can be equivalently reformulated as:
for each j = 1, . . . , N and any Qj � P,

EP

[
vj

(
λ

dQj

dP

)]
< +∞ for some λ > 0⇒ EP

[
vj

(
λ

dQj

dP

)]
< +∞ for all λ > 0 ,

(2.48)
where the convex conjugate vj of uj is given in (2.7). We recognize that (2.48) is
Assumption 1.2.12 in Chapter 1. Thus from Theorem 2.4.11 we obtain the existence
of a SORTE.

Corollary 2.4.20. Let Λ ≡ 0 and let u1, . . . , uj : R→ R be strictly increasing, strictly
concave and satisfying the Inada conditions (see Standing Assumption I). Then under
either Assumption 2.3.2 or 2.3.4 or 2.3.5 a SORTE exists, that is there exists a triple
(Ŷ , Q̂, â) ∈ L ×M× RN such that:

1. Ŷ j is an optimum for U Q̂j
j (âj), for each j ∈ {1, . . . , N},

2. â is an optimum for SQ̂(A),

3. Ŷ ∈ B and
∑N

j=1 Ŷ
j = A.

In Chapter 1 the existence of a SORTE is proved assuming RAE for u1, . . . , uN (see
Definition 2.4.18). Here, such a result is generalized assuming either B is closed
under truncation (with no differentiability requirement on u1, . . . , uN) or AE−∞ only.
Moreover, in Chapter 1 uniqueness is proved assuming additionally closedness under
truncation. As Assumption 2.3.3 is satisfied automatically if Λ ≡ 0, we showed in
Theorem 2.4.11 that closedness under truncation alone is in fact sufficient also for
existence.

2.5 Systemic Utility Maximization and Duality

2.5.1 Preliminary Study

In this Section as well as in Sections 2.5.2 and 2.5.3 we work under the Standing
Assumptions I and II only. We present here some results (well posedness and unique-
ness) for generic sets C or K. In subsequent sections these will be applied to specific
convex cones, as B0 and LV .

Theorem 2.5.1. Let C ⊆ CR be convex, closed in probability and such that C ∩MΦ

is nonempty. Assume there exists an A ∈ R such that
∑N

j=1 Y
j ≤ A for every

Y ∈ C ∩MΦ. Then for every X ∈MΦ there exists a Ŷ ∈ C ∩ L1(P) such that

−∞ < sup
Y ∈C∩MΦ

EP [U(X + Y )] ≤ EP

[
U(X + Ŷ )

]
< +∞ . (2.49)
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Proof. First observe that X + Y ≥ − (|X|+ |Y |) in the componentwise order, hence
for Z ∈ C ∩MΦ 6= ∅, as X,Z ∈MΦ, we get

sup
Y ∈C∩MΦ

EP [U(X + Y )] ≥ EP [U(X + Z)] ≥ EP [U (−(|X|+ |Z|))] > −∞ .

Take now a maximizing sequence (Yn)n in C ∩MΦ and observe that

sup
n

∣∣∣∣∣
N∑
j=1

EP
[
Xj + Y j

n

]∣∣∣∣∣ ≤
∣∣∣∣∣
N∑
j=1

EP
[
Xj
]∣∣∣∣∣+ |A| < +∞

and EP [U(X + Yn)] ≥ EP [U(X + Y1)] =: B ∈ R. Then Lemma 2.6.4 Item 1 applies
with Zn := X + Yn. Using also |Xj|+ |Y j

n | ≤ |Xj + Y j
n |+ 2 |Xj| , j = 1, . . . , N we get

sup
n

N∑
j=1

EP
[∣∣Xj

∣∣+
∣∣Y j
n

∣∣] <∞ .

Now we apply Corollary 2.6.12 with P1 = · · · = PN = P and extract the subsequence
(Ynh)h such that for some Ŷ ∈ (L1(P))N

WH :=
1

H

H∑
h=1

Ynh −−−−→
H→+∞

Ŷ P− a.s. and sup
H

N∑
j=1

EP
[∣∣W j

H

∣∣] < +∞ . (2.50)

We observe that by convexity the random vectors WH still belong to C ∩MΦ, and
Ŷ ∈ C by closedness in probability. Observe now that

EP [U(X +WH)] ≥ 1

H

H∑
h=1

EP [U(X + Ynh)] −−−−→
H→+∞

sup
Y ∈C∩MΦ

EP [U(X + Y )] (2.51)

by concavity of U and the fact that (Ynh)h is again a maximizing sequence. From the
expression in Equation (2.51) we get that for every ε > 0, definitely (in H)

EP [U(X +WH)] ≥ sup
Y ∈C∩MΦ

EP [U(X + Y )]− ε .

Apply now Lemma 2.6.4 Item 2 for B = supY ∈C∩MΦ EP [U(X + Y )]−ε to the sequence
(X+WH)H for H big enough (this sequence is bounded in (L1(P))N by (2.50)) to get
that for every ε > 0

EP

[
U(X + Ŷ )

]
≥ sup

Y ∈C∩MΦ

EP [U(X + Y )]− ε .

Clearly then Ŷ satisfies

EP

[
U(X + Ŷ )

]
≥ sup

Y ∈C∩MΦ

EP [U(X + Y )] .

Now observe that by Lemma 2.6.2 for some a > 0, b ∈ R

U(X + Ŷ ) ≤ a

N∑
j=1

(Xj + Ŷ j) + a
N∑
j=1

(−(Xj + Ŷ j)−) + b

and since RHS is in L1(P) we conclude that EP

[
U(X + Ŷ )

]
< +∞.
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We have also a uniqueness property.

Proposition 2.5.2. Let K ⊆ (L0(P))N be convex and X ∈MΦ be given. If

sup
Y ∈K

EP [U(X + Y )] < +∞

then the maximization problem supY ∈K EP [U(X + Y )] admits at most one solution.

Furthermore if there exists a Ŷ ∈ (L0(P))N such that

sup
Y ∈K

EP [U(X + Y )] ≤ EP

[
U(X + Ŷ )

]
< +∞

then we have
sup
Y ∈K

EP [U(X + Y )] < sup
z∈RN

U(z) .

Proof. The existence of one optimum at most follows from strict concavity of U (see
Standing Assumption I): if two distinct optima existed, any strict convex combination
of the two would belong to K and would produce a value for EP [U(X + •)] strictly
greater than the supremum.
The final claim is trivial if supz∈RN U(z) = +∞. Suppose that supz∈RN U(z) < +∞
and notice that

sup
Y ∈K

EP [U(X + Y )] ≤ EP

[
U(X + Ŷ )

]
≤ sup

z∈RN
U(z).

If we had supY ∈K EP [U(X + Y )] = supz∈RN U(z), then we would also have

sup
z∈RN

U(z) = EP

[
U(X + Ŷ )

]
so that:

0 = EP

[
sup
z∈RN

U(z)− U(X + Ŷ )

]
= EP

[∣∣∣∣ sup
z∈RN

U(z)− U(X + Ŷ )

∣∣∣∣] ,
which implies supz∈RN U(z) = U(X + Ŷ ) P-almost surely. In particular, from the fact

that X + Ŷ is finite almost surely, it would follow that U almost surely attains its
supremum on some compact subset of RN , which is clearly a contradiction given that
U is strictly componentwise increasing (see Standing Assumption I).

Theorem 2.5.3. Let C ⊆MΦ be a convex cone with 0 ∈ C and ei − ej ∈ C for every
i, j ∈ {1, . . . , N}. Denote by C0 the polar of the cone C in the dual pair (MΦ, KΦ):

C0 :=

{
Z ∈ KΦ |

N∑
j=1

EP
[
Y jZj

]
≤ 0 ∀Y ∈ C

}

and set
C0

1 :=
{
Z ∈ C0 | EP

[
Zj
]

= 1∀j = 1, . . . , N
}

(C0
1)+ :=

{
Z ∈ C0

1 | Zj ≥ 0 ∀j = 1, . . . , N
}
.

98



Suppose that for every X ∈MΦ

sup
Y ∈C

EP [U(X + Y )] < +∞ .

Then the following holds:

sup
Y ∈C

EP [U(X + Y )] = min
λ≥0,Q∈(C0

1)+

(
λ

N∑
j=1

EQj
[
Xj
]

+ EP

[
V

(
λ

dQ
dP

)])
. (2.52)

If any of the two expressions is strictly smaller than V (0) = supRN U , then the condi-
tion λ ≥ 0 in (2.52) can be replaced with the condition λ > 0.

Proof. The proof can be obtained with minor and obvious modifications of the one
in Chapter 1, Theorem 1.5.3 by replacing

∑N
j=1 uj(·),

∑N
j=1 vj(·), LΦ∗ there with U(·),

V (·), KΦ respectively.

We also provide an analogous result when working with the pair ((L∞(P))N , (L1(P))N)
in place of (MΦ, KΦ), which will be used in Section 2.5.5.

Theorem 2.5.4. Replacing MΦ with (L∞(P))N and KΦ with (L1(P))N in the state-
ment of Theorem 2.5.3, all the claims in it remain valid.

Proof. As in Theorem 2.5.3, the proof can be obtained with minor and obvious mod-
ifications of the one in Theorem 1.5.3 of Chapter 1, using Theorem 4 of [118] in place
of Corollary on page 534 of [118].

2.5.2 Duality

We first state some simple properties of the polar cone of B0 ∩MΦ, some of which
rephrase arguments in the proofs of Lemma 1.3.1 and Lemma 1.3.2.

Remark 2.5.5. If X ∈ MΦ, then for any fixed k = 1, . . . , N we have [0, . . . , 0, Xk, 0,
. . . , 0] ∈MΦ. This in turns implies that for any Z ∈ KΦ and X ∈MΦ, XjZj ∈ L1(P)
for any j = 1, . . . , N .

Remark 2.5.6. In the dual pair (MΦ, KΦ) take the polar (B0 ∩ MΦ)0 of B0 ∩ MΦ.
Since all (deterministic) vector in the form ei − ej belong to B0 ∩MΦ, we have that
for all Z ∈ (B0 ∩MΦ)0 and for all i, j ∈ {1, . . . , N} EP [Zi] − EP [Zj] ≤ 0. It is clear
that, as a consequence, Z ∈ (B0 ∩MΦ)0 ⇒ EP [Z1] = · · · = EP

[
ZN
]
. Recall that

R+ := {b ∈ R, b ≥ 0} and the definition of Q provided in (2.14). We then see:

(B0 ∩MΦ)0 ∩ (L0
+)N = R+ · Q (2.53)

That is, (B0 ∩MΦ)0 is the cone generated by Q.

Remark 2.5.7. The condition B ⊆ CR implies B0∩MΦ ⊆ (CR∩MΦ∩{
∑N

j=1 Y
j ≤ 0}),

so that the polars satisfy the opposite inclusion: (CR ∩ MΦ ∩ {
∑N

j=1 Y
j ≤ 0})0 ⊆

(B0 ∩MΦ)0. Observe now that any vector [Z, . . . , Z], for Z ∈ L∞+ , belongs to (CR ∩
MΦ∩{

∑N
j=1 Y

j ≤ 0})0. In particular, as a consequence, (B0∩MΦ)0 contains a vector
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in the form [ ε+Z
1+ε

, . . . , ε+Z
1+ε

] with ε > 0 and Z ∈ L∞+ , EP [Z] = 1. Each component of

such a vector has expectation equal to 1, is in L∞+ and satisfies ε+Z
1+ε
≥ ε

1+ε
. All of

these conditions together imply that in Q there exists a strictly positive vector dQ
dP

with EP
[
V
(

dQ
dP

)]
<∞, hence belonging to QV . In particular

QV 6= ∅

and there exists a Q = [Q1, . . . ,QN ] ∈ QV with Qj ∼ P, j = 1, . . . , N and ε ≤ dQj
dP ≤

M, j = 1, . . . , N for some 0 < ε < M < +∞ real numbers.

Proposition 2.5.8 (Fairness). For all Q ∈ Q
N∑
j=1

EQj
[
Y j
]
≤

N∑
j=1

Y j ∀Y ∈ B ∩MΦ .

Proof. Let Y ∈ B ∩MΦ. Notice that the hypothesis RN + B = B implies that the
vector Y0, defined by Y j

0 := Y j − 1
N

∑N
k=1 Y

k, belongs to B0. Indeed,
∑N

k=1 Y
k ∈ R

and so Y0 ∈ B and
∑N

j=1 Y
j

0 = 0. By definition of polar,
∑N

j=1 EP
[
Y j

0 Z
j
]
≤ 0 for all

Z ∈ (B ∩MΦ)0, and in particular for all Q ∈ Q

0 ≥
N∑
j=1

EP

[
Y j

0

dQj

dP

]
=

N∑
j=1

EP

[
Y j dQj

dP

]
−

N∑
j=1

EP

[
1

N

(
N∑
k=1

Y k

)
dQj

dP

]
,

and we recognize
∑N

j=1 EQj [Y j]−
∑N

j=1 Y
j in RHS.

Recall the Definition of L(A)
V in (2.22) and that LV := L(0)

V . It follows from these that

LV :=
⋂

Q∈QV

{
Y ∈ (L0(P))N |

N∑
j=1

Y j dQj

dP
∈ L1(P),EP

[
N∑
j=1

Y j dQj

dP

]
≤ 0

}
. (2.54)

Observe that we are not requiring that each term Y j dQj
dP is integrable, for Y ∈ LV .

Theorem 2.5.9.

1. For every X ∈MΦ the following holds

+∞ > π0(X) := sup
Y ∈B0∩MΦ

EP [U(X + Y )] = sup
Y ∈LV

EP [U(X + Y )] (2.55)

= min
Q∈Q

min
λ≥0

(
λ

N∑
j=1

EQj
[
Xj
]

+ EP

[
V

(
λ

dQ
dP

)])
. (2.56)

2. If any of the three expressions is strictly smaller than V (0) = supx∈RN U(x),
then the condition λ ≥ 0 in (2.56) can be replaced with condition λ > 0.

3. The vector Ŷ from Theorem 2.5.1 belongs to B0 and satisfies

N∑
j=1

Ŷ j dQj

dP
∈ L1(P) ∀Q ∈ QV .
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Proof.
Item (1): take C = B0 ∩MΦ. By Theorem 2.5.1

sup
B0∩MΦ

EP [U(X + Y )] < +∞ ∀X ∈MΦ .

From (2.14) we deduce B0 ∩MΦ ⊆ LV ,

sup
B0∩MΦ

EP [U(X + Y )] ≤ sup
Y ∈LV

EP [U(X + Y )]

and by Fenchel inequality (see Remark (2.4.8))

sup
Y ∈LV

EP [U(X + Y )] ≤ inf
λ≥0,Q∈Q

(
λ

(
N∑
j=1

EQj
[
Xj
])

+ EP

[
V

(
λ

dQ
dP

)])
.

The chain of equalities in Equations (2.55)-(2.56) then follows by Theorem 2.5.3.

Item (2): Direct substitution of λ = 0 in the expression would give a contradiction,
no matter what the optimal probability measure is.
Item (3): From Theorem 2.5.1 we know that (2.49) holds. By definition of V (·), we
have

U(X + Ŷ ) ≤ V (λZ) +
〈
X + Ŷ , λZ

〉
P− a.s. ∀λ ≥ 0, Z ∈ KΦ . (2.57)

This implies

(U(X + Ŷ ))− ≥
(
V (λZ) +

〈
X + Ŷ , λZ

〉)−
so that

(
V (λZ) +

〈
X + Ŷ , λZ

〉)−
∈ L1(P).

We prove integrability also for the positive part, assuming now Z = dQ
dP , Q ∈ QV and

taking λ > 0 such that EP [V (λZ)] < +∞. By (2.50) WH →H Ŷ P−a.s. so that

EP

[(
V (λZ) +

〈
X + Ŷ , λZ

〉)+
]

= EP

[
lim inf

H
(V (λZ) + 〈X +WH , λZ〉)+

]
≤ lim inf

H
EP
[
(V (λZ) + 〈X +WH , λZ〉)+]

≤ sup
H

(EP [V (λZ) + 〈X +WH , λZ〉]) + sup
H

(
EP
[
(V (λZ) + 〈X +WH , λZ〉)−

])
.

(2.58)

Now since EP [〈WH , λZ〉] ≤ 0

sup
H

(EP [V (λZ) + 〈X +WH , λZ〉]) ≤ EP [V (λZ) + 〈X,λZ〉] < +∞ . (2.59)

Also by (2.57)

sup
H

(
EP
[
(V (λZ) + 〈X +WH , λZ〉)−

])
≤ sup

H

(
EP
[
(U(X +WH))−

])
≤ sup

H

(
EP
[
(U(X +WH))+ − U(X +WH)

])
≤ sup

H

(
EP
[
(U(X +WH))+

])
− inf

H
(EP [U(X +WH)]) . (2.60)

101



Now use subadditivity of the function x 7→ x+ to check that

sup
H

(
EP
[
(U(X +WH))+

])
≤ sup

H

(
N∑
j=1

EP

[(
uj(X

j +W j
H)
)+
])

+ sup
z∈RN

(Λ(z))+

≤ sup
H

(
N∑
j=1

EP
[
uj
(
(Xj +W j

H)+
)])

+ sup
z∈RN

(Λ(z))

where in the last step we used Equation (2.6). We also have, Y1 being the first
element in the maximizing sequence of Theorem 2.5.1, infH (EP [U(X +WH)]) ≥
EP [U(X + Y1)] by construction. Thus, continuing from (2.60), we get using (2.3)

sup
H

(
EP
[
(V (λZ) + 〈X +WH , λZ〉)−

])
(2.61)

≤ sup
H

(
N∑
j=1

EP
[
uj
(
(Xj +W j

H)+
)])

+ sup
RN

Λ− EP [U(X + Y1)]

≤ sup
RN

Λ + max
j=1,...,N

(
duj
dxj

(0)

)
sup
H

(
N∑
j=1

EP
[
(Xj +W j

H)+
])
− EP [U(X + Y1)] < +∞

(2.62)

since the sequence WH is bounded in (L1(P))N (see (2.50)) and EP [U(X + Y1)] > −∞.
From (2.58), (2.59), (2.62) we conclude that

EP

[(
V (λZ) +

〈
X + Ŷ , λZ

〉)+
]
< +∞ .

To sum up, for Z ∈ QV and λ s.t. EP [V (λZ)] < +∞

〈X,λZ〉 , V (λZ),
(
V (λZ) +

〈
X + Ŷ , λZ

〉)+

,
(
V (λZ) +

〈
X + Ŷ , λZ

〉)−
∈ L1

which gives
〈
Ŷ , Z

〉
∈ L1(P), ∀Z ∈ QV .

Remark 2.5.10. Theorem 2.5.9 shows that
∑N

j=1 Ŷ
j dQj

dP ∈ L
1(P) ∀Q ∈ QV . However,

we do not know yet if

EP

[
N∑
j=1

Ŷ j dQj

dP

]
≤ 0 ∀Q ∈ QV . (2.63)

This will hold under some additional conditions, as shown below in Proposition 2.5.14.

2.5.3 Optimization with fixed Q ∈ QV

The following is a counterpart to Theorem 2.5.9 when a probability measure Q ∈ QV
is fixed.
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Proposition 2.5.11. Let X ∈MΦ and Q ∈ QV be fixed. Then

+∞ > πQ
0 (X) := sup

{
EP [U(X + Y )] | Y ∈MΦ,

N∑
j=1

EQj
[
Y j
]
≤ 0

}
(2.64)

= min
λ≥0

(
λ

N∑
j=1

EQj
[
Xj
]

+ EP

[
V

(
λ

dQ
dP

)])
. (2.65)

Furthermore if (2.64) is strictly smaller than V (0) then the minimum in (2.65) can
be taken over (0,+∞) in place of [0,+∞).

Proof. πQ
0 (X) < +∞ follows from Remark 2.3.6. The equality between (2.64) and

(2.65) follows from Theorem 2.5.3, and the fact that

C :=

{
Y ∈MΦ,

N∑
j=1

EQj
[
Y j
]
≤ 0

}
=⇒ (C0

1)+ =

{
dQ
dP

}
⊆ KΦ as Q ∈ QV .

Corollary 2.5.12. Let X ∈ MΦ be fixed and π0(·), πQ
0 (·) be as in (2.55), (2.64)

respectively. Then
π0(X) = min

Q∈QV

(
πQ

0 (X)
)
. (2.66)

Moreover, whenever (λ̂,Q̂) is an optimum for (2.56), then Q̂ is an optimum for (2.66).

Proof. We observe that in Theorem 2.5.9 the minima over Q can be substituted by
minima over QV , since supY ∈B0∩MΦ EP [U(X + Y )] < +∞ by Theorem 2.5.1. The
claims then follow applying Theorem 2.5.9 Item 1 together with Proposition 2.5.11.

Proposition 2.5.13. Let Q̂ ∈ QV . Then the following expression is strictly smaller
than +∞:

sup

{
EP [U(X + Y )] | Y ∈ (L0(P))N ,

N∑
j=1

Y j dQ̂j

dP
∈ L1(P), EP

[
N∑
j=1

Y j dQ̂j

dP

]
≤ 0

}
.

(2.67)

Suppose the optimization problem (2.67) admits an optimum Ŷ . Then Q̂ ∼ P and

EP

[
N∑
j=1

Ŷ j dQ̂j

dP

]
= 0 . (2.68)

Proof. Define

K :=

{
Y ∈ (L0(P))N |

N∑
j=1

Y j dQ̂j

dP
∈ L1(P) EP

[
N∑
j=1

Y j dQ̂j

dP

]
≤ 0

}
.

By Remark 2.4.8, supY ∈K EP [U(X + Y )] < +∞.
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We now prove that Q̂ ∼ P, using an argument inspired by [77] Remark 3.32: if this

were not the case then P(Ak) > 0, where Ak := {dQ̂k
dP = 0}, for some component

k ∈ {1, . . . , N}. Then the vector Ỹ defined by Ỹ k := Ŷ k +1Ak , Ỹ
j := Ŷ j, j 6= k would

still satisfy
N∑
j=1

Ỹ j dQ̂j

dP
∈ L1(P), EP

[
N∑
j=1

Ỹ j dQ̂j

dP

]
≤ 0

and by monotonicity EP

[
U(X + Ỹ )

]
≥ EP

[
U(X + Ŷ )

]
. Thus Ỹ would be another

optimum, different from Ŷ , contradicting uniqueness from Proposition 2.5.2 (which
applies by finiteness of the supremum in (2.67)).

We now show (2.68): if this were not the case we would have EP

[∑N
j=1 Ŷ

j dQ̂j
dP

]
< 0 so

that adding 0 < ε sufficiently small to each component of Ŷ would give a vector still
satisfying the constraints but having a corresponding expected utility strictly grater
that the supremum, which is a contradiction.

2.5.4 Refined results: Existence of the optimizers

The two main Theorems in this Section show that Theorem 2.4.9 holds true, when
A = 0, and consequently all the results in Section 2.4.3 hold true as well (note that
equation (2.94) and Section 2.5.6 complete the proof of Theorem 2.4.9).
On the one hand we will provide sufficient conditions to guarantee that not only∑N

j=1 Y
j dQj

dP ∈ L1(P), but also Ŷ j dQj
dP ∈ L1(P), for every j = 1, . . . , N and every

Q ∈ QV or, at least, for Q = Q̂ (the optimum in the minimax expression (2.56)). We
will rely on Theorem 2.5.1, ideally continuing the proof of it. On the other hand, in
setup C, we will weaken the requirements on B, especially the one regarding closedness
under truncation.
First we show that Assumption 2.3.2 guarantees that condition (2.63) holds true for

the Ŷ from Theorem 2.5.1.

Proposition 2.5.14. Under Assumption 2.3.2, if Y ∈ B0 then

N∑
j=1

Y j dQj

dP
∈ L1(P) ∀Q ∈ QV =⇒ EP

[
N∑
j=1

Y j dQj

dP

]
≤ 0 ∀Q ∈ QV .

Proof. Observe that Ym in Definition 2.3.1 satisfies∣∣∣∣∣
N∑
j=1

Y j
m

dQj

dP

∣∣∣∣∣ ≤ max

(∣∣∣∣∣
N∑
j=1

Y j dQj

dP

∣∣∣∣∣ ,
N∑
j=1

∣∣cjY ∣∣ dQj

dP

)
∈ L1(P)

and
N∑
j=1

Y j
m

dQj

dP
→m

N∑
j=1

Y j dQj

dP
P− a.s.

hence by Dominated Convergence Theorem

0 ≥ EP

[
N∑
j=1

Y j
m

dQj

dP

]
→m EP

[
N∑
j=1

Y j dQj

dP

]
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where the inequality for LHS comes from the fact that Ym ∈ B0 ∩ (L∞)N ⊆ B0 ∩MΦ

and Q ∈ QV , so that by definition of QV ⊆ Q (see (2.14)) EP

[∑N
j=1 Y

j
m

dQj
dP

]
=∑N

j=1 EQj [Y j
m] ≤ 0 .

We prove now that, by virtue of Proposition 2.5.14 and Theorem 2.5.9, an (extended-
sense) optimum exists in LV under Assumption 2.3.2 alone. The Proposition 2.5.15
will be applied also in setup B, where Assumption 2.3.2 does not hold, and so it
is formulated directly with condition (2.63), instead of assuming closedness under
truncation.

Proposition 2.5.15. Suppose that condition (2.63) holds true. In the notation of
Theorem 2.5.9 we have

sup
Y ∈LV

EP [U(X + Y )] = EP

[
U(X + Ŷ )

]
. (2.69)

Moreover Ŷ ∈ B0 ∩ LV , it is the unique optimum for the extended maximization
problem expressed by (2.69) and can be taken in such a way that

∑N
j=1 Ŷ

j = 0 P−a.s.

Proof. Theorem 2.5.9 Item 3, together with (2.63), show that Ŷ ∈ B0 ∩ LV ⊆ LV .
Taking C = B0 in Theorem 2.5.1, we have

sup
Y ∈LV

EP [U(X + Y )]
(2.55)
= sup

Y ∈B0∩MΦ

EP [U(X + Y )]

(2.49)

≤ EP

[
U(X + Ŷ )

] Ŷ ∈LV
≤ sup

Y ∈LV
EP [U(X + Y )] .

Thus we get (2.69) and optimality of Ŷ . Uniqueness of optima to the problem in
(2.69) follows from Proposition 2.5.2 for K = LV .
As to the last claim, observe that the sequence (WH) in Theorem 2.5.1 comes from
a maximizing sequence (Ynh)h (see (2.50)) for EP [U(X + ·)] over B0 ∩MΦ. We show

that the sequence can be taken in such a way that
∑N

j=1 W
j
H = 0 for all H, which

then implies the claim since we have (2.50). It is enough to check that the maximizing
sequence (Ynh) can be taken with componentwise sum equal to 0, which can be reduced
to proving

sup
Y ∈B0∩MΦ

EP [U(X + Y )] = sup
Y ∈B∩MΦ∑N
j=1 Y

j=0

EP [U(X + Y )] .

Inequaliy (≥) follows from a trivial set inclusion, while (≤) can be seen as follows:
given any Y ∈ B0∩MΦ with

∑N
j=1 Y

j < 0, we can add to each component an ε > 0 in
such a way that the componentwise sum becomes equal to 0, and the corresponding
expected systemic utility is strictly increased.
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Setup A and Setup B

Theorem 2.5.16.
In either Setup A or B the following hold:

1.

+∞ > sup
Y ∈B0∩MΦ

EP [U(X + Y )] = sup
Y ∈LV

EP [U(X + Y )] (2.70)

= min
Q∈QV

min
λ≥0

(
λ

N∑
j=1

EQj
[
Xj
]

+ EP

[
V

(
λ

dQ
dP

)])
. (2.71)

Every optimum (λ̂, Q̂) of (2.71) satisfies λ̂ > 0 and Q̂ ∼ P. Moreover, if U is

differentiable, (2.71) admits a unique optimum (λ̂, Q̂), with Q̂ ∼ P.

Furthermore there exists a random vector Ŷ ∈ (L0(P))N such that:

2. Ŷ ∈ B0∩LV and it is the unique optimum to the following extended maximization
problem:

sup
Y ∈LV

EP [U(X + Y )] = EP

[
U(X + Ŷ )

]
. (2.72)

3. Ŷ satisfies: for any optimizer (λ̂, Q̂) of (2.71)

Ŷ j dQ̂j

dP
∈ L1(P) ∀ j = 1, . . . , N , (2.73)

N∑
j=1

EQ̂j

[
Ŷ j
]

= 0 =
N∑
j=1

Ŷ j , (2.74)

Ŷ j dQj

dP
∈ L1(P) ∀Q ∈ QV ,∀ j = 1, . . . , N and

N∑
j=1

EQj
[
Ŷ j
]
≤ 0 ∀Q ∈ QV .

(2.75)

Proof. We split the proof for the two sets of assumptions.

Setup A (Assumptions 2.3.2 and 2.3.3)
Item 1: Equations (2.70) and (2.71) follow from Theorem 2.5.9 Item 1, observing
that minima over Q can be substituted with minima over QV since the expression
in LHS of (2.70) is finite by Theorem 2.5.1. Again by Theorem 2.5.1, we have that
the hypotheses of Proposition 2.5.2 are met with K = B0 ∩MΦ, hence by Theorem
2.5.9 Item 2 any optimum (λ̂, Q̂) of (2.71) satisfies λ̂ > 0. The proof of Q̂ ∼ P is
postponed after Item 2. Now we consider the uniqueness of the optimum for (2.71)
under the additional differentiability assumption. In the notation of Theorem 2.5.3
take C := B0 ∩MΦ, and observe that (2.71) can be rewritten, by (2.53), as

min

{
N∑
j=1

EP
[
XjZj

]
+ EP [V (Z)] | Z 6= 0 ∈ (C1

0)+,EP [V (Z)] < +∞

}
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which from strict convexity of V (·) (Lemma 2.6.5 Item 2) admits a unique optimum

0 ≤ Ẑ 6= 0. We then get that, since λ̂ = EP

[
Ẑ
]
, dQ̂

dP = Ẑ

EP[Ẑ]
(again by (2.53)),

uniqueness for optima in (2.71) follows.

Item 2: We take the vector Ŷ from Theorem 2.5.1 and Theorem 2.5.9. By Item 3 The-

orem 2.5.9, we may apply Proposition 2.5.14 to Ŷ and deduce that E
[∑N

j=1
dQj
dP Ŷ

j
]
≤

0 for all Q ∈ QV , which is condition (2.63). Now Proposition 2.5.15 yields that

Ŷ ∈ B0 ∩ LV is the unique optimum for (2.69), that is for (2.72):

π0(X) := sup
Y ∈B0∩MΦ

EP [U(X + Y )] = sup
Y ∈LV

EP [U(X + Y )] = EP

[
U(X + Ŷ )

]
(2.76)

We claim that when Q̂ is the optimizer of (2.71), then Ŷ is also an optimizer of (2.67)

so that Q̂ ∼ P, by Proposition 2.5.13. First notice that Ŷ satisfy the constraint in
(2.67), as Ŷ ∈ LV . Moreover, as Ŷ is an optimizer of (2.70),

EP

[
U(X + Ŷ )

]
= sup

Y ∈LV
EP [U(X + Y )] (2.77)

≤ sup

{
EP [U(X + Y )] | Y ∈ (L0(P))N ,

N∑
j=1

Y j dQ̂j

dP
∈ L1(P), EP

[
N∑
j=1

Y j dQ̂j

dP

]
≤ 0

}
(2.78)

≤ inf
λ≥0

(
λ

(
N∑
j=1

EQ̂j
[
Xj
])

+ EP

[
V

(
λ

dQ̂
dP

)])
(2.79)

= πQ̂
0 (X) = π0(X) = EP

[
U(X + Ŷ )

]
, (2.80)

where the inequalities follow from (2.23), (2.24), (2.26) and the equalities in (2.80)

come respectively from (2.65), (2.66) and (2.76). We conclude that Ŷ is an optimizer
of (2.67).
Item 3: We claim that

Ŷ j dQj

dP
∈ L1(P) ∀ j = 1, . . . , N, Q ∈ QV . (2.81)

Once this is shown, then: (2.73) holds true; the first equality in (2.74) is implied

by (2.68) and the fact, just proved, that Ŷ is the optimizer of (2.67); the second
equality in (2.74) follows from Proposition (2.5.15); the inequality in (2.75) holds true
by Proposition 2.5.14.
We show (2.81): by Proposition 2.2.5 Item 3 QV ⊆ LΦ∗1 × · · · × LΦ∗N . Recall that
in the proof of Theorem 2.5.1 we had extracted from a maximizing sequence a se-
quence of Césaro means (WH)H converging to a Ŷ almost surely (equation (2.50)),
and that the sequence (WH)H satisfies: (X + WH)H is bounded in (L1(P))N and
infH EP [U(X +WH)] > −∞. We prove that this implies

γ := sup
H

N∑
j=1

EP
[
Φj((X

j +W j
H)−)

]
< +∞ . (2.82)
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To see this, observe that

U(X +WH) =
N∑
j=1

uj(X
j +W j

H) + Λ(X +WH)

=
N∑
j=1

uj((X
j +W j

H)+) +
N∑
j=1

uj(−(Xj +W j
H)−) + Λ(X +WH) .

This implies

−
N∑
j=1

uj(−(Xj+W j
H)−) ≤ max

j=1,...,N

(
duj
dxj

(0)

) N∑
j=1

(Xj+W j
H)++ sup

z∈RN
Λ(z)−U(X+WH)

where in the last line we used (2.3). By taking expectations on both sides we obtain
(2.82). Indeed, supH

∑N
j=1 EP

[
(Xj +W j

H)+
]
< +∞ by boundedness of (WH)H in

(L1(P))N , and supH(−EP [U(X +WH)]) = − infH EP [U(X +WH)] < +∞.
By Fatou Lemma

N∑
j=1

EP

[
Φj((X

j + Ŷ )−)
]
≤ sup

H

N∑
j=1

EP
[
Φj((X

j +W j
H)−)

] Eq.(2.82)
< +∞ .

and hence (X + Ŷ )− belongs to LΦ1 × · · · × LΦN . Take now 0 ≤ Z ∈ LΦ∗1 × · · · ×
LΦ∗N , Z ∈ QV . We will show that (Xj + Ŷ j)±Zj =

(
(Xj + Ŷ j)Zj

)±
∈ L1(P) for all

j = 1, . . . , N , which implies that condition (2.81) holds. Since again (X+Ŷ )− belongs

to LΦ1×· · ·×LΦN , we have 0 ≤ (Xj + Ŷ j)−Zj ≤
∑N

j=1(Xj + Ŷ j)−Zj ∈ L1(P) for each

j = 1, . . . , N . We need now to work on the positive parts (Xj+ Ŷ j)+Zj, j = 1, . . . , N .
Applying Fatou Lemma together with the trivial relation x+ = x+ x− we have

N∑
j=1

EP

[
(Xj + Ŷ j)+Zj

]
≤ lim inf

H

(
N∑
j=1

EP
[
(Xj +W j

H)+Zj
])

≤ sup
H

(
N∑
j=1

EP
[
(Xj +W j

H)Zj
])

+ sup
H

(
N∑
j=1

EP
[
(Xj +W j

H)−Zj
])

Thus, to prove (Xj + Ŷ j)+Zj ∈ L1(P), j = 1, . . . , N it is enough to show that both
suprema in the previous line are finite.
To see that

sup
H

(
N∑
j=1

EP
[
(Xj +W j

H)−Zj
])

< +∞ , (2.83)

observe that (Xj + W j
H)− ∈ LΦj , j = 1, . . . , N (Assumption 2.3.3), hence we have by

the generalized Hölder Inequality ([65] Proposition 2.2.7)

N∑
j=1

EP
[
(Xj +W j

H)−Zj
]
≤ 2

N∑
j=1

∥∥(Xj +W j
H)−

∥∥
Φj

∥∥Zj
∥∥

Φ∗j

108



≤ 2

(
sup

j=1,...,N

∥∥Zj
∥∥

Φ∗j

)
sup
H

(
N∑
j=1

∥∥(Xj +W j
H)−

∥∥
Φj

)
.

Clearly, if we show that for γ defined by (2.82)

sup
H

(
N∑
j=1

∥∥(Xj +W j
H)−

∥∥
Φj

)
≤ N max(1, γ) < +∞ , (2.84)

then (2.83) follows.
Splitting between the cases γ ≤ 1 and γ > 1, and using convexity of univariate utility
functions in the latter, from equation (2.82) we infer that

N∑
j=1

EP

[
Φj

(
1

max(1, γ)
(Zj

n)−
)]
≤ 1 .

Then, just by definition of the Luxemburg norm (in the univariate case),∥∥(Xj +W j
H)−

∥∥
Φj
≤ max(1, γ) , j = 1, . . . , N

which yields (2.84), that is: the sequence (X + WH)− is bounded in the norm∑N
j=1 ‖·‖Φj

on LΦ1 × · · · × LΦN .

Going back to the optimizing sequence (WH)H in Theorem 2.5.1, it satisfies (WH)H ⊆
B0 ∩MΦ, so that for every Z ∈ QV

sup
H

(
N∑
j=1

EP
[
(Xj +W j

H)Zj
])
≤

N∑
j=1

EP
[
XjZj

]
< +∞ (2.85)

by Proposition 2.5.8.
To sum up, we proved that (Xj + Ŷ j)±Zj ∈ L1(P) for all j = 1, . . . , N , which implies
that the condition (2.81) holds.

Setup B (Assumptions 2.3.3 and 2.3.4)
Observe that Proposition 2.5.13 and Proposition 2.5.15 still apply, but Proposition
2.5.14 does not help anymore, since Assumption 2.3.2 does not hold. We will prove
that (2.81) holds, and also that

EP

[
N∑
j=1

Ŷ j dQj

dP

]
=

N∑
j=1

EQj
[
Ŷ j
]
≤ 0 ∀Q ∈QV . (2.86)

As a consequence of (2.81) and (2.86), the proofs of Items 1, 2 and 3 turns then out
to be identical to the one for Setup A.
In the current setup, similarly to what was done in the previous part of the proof,
we can see that the sequence (X + WH)H of Theorem 2.5.1 is bounded in (L1(P))N

and (2.84) holds. Now we apply Propositions 2.4.17 and 2.6.10. Given the sequences
(Xj +W j

H)−, j = 1, . . . , N , a diagonalization argument yields a common subsequence
such that ((Xj + W j

H)−)H converges in σ
(
LΦj ,MΦ∗j

)
on Lφj for every j. Call such

limit Zj. Almost sure convergence

(Xj +W j
H)− → (X + Ŷ )− P− a.s.
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implies Z = (X + Y )−. Indeed, if this were not the case assume without loss of
generality P(Zj > (Xj + Y j)−) > 0 for some j. On a measurable subset D of
the event {Zj > (Xj + Y j)−}, P(D) > 0, the convergence is uniform (by Egoroff’s
Theorem, Theorem 10.38 in [5]). Consequently, by Dominated Convergence Theorem
plus σ

(
LΦ(F),MΦ∗(F)

)
convergence and the fact that L∞ ⊆ Mφ∗j , j = 1, . . . , N we

get EP [Zj1D] = EP [(Xj + Y j)−1D], which is a contradiction. Since by Proposition
2.4.17

QV ⊆ KΦ = MΦ∗1 × · · · ×MΦ∗N

we get for any Q ∈ QV :

N∑
j=1

EP

[
(Xj +W j

H)−
dQj

dP

]
→H

N∑
j=1

EP

[
(Xj + Ŷ j)−

dQj

dP

]
. (2.87)

By Fatou Lemma and x+ = x+ x−

N∑
j=1

EP

[
(Xj + Ŷ j)+ dQj

dP

]
≤ lim inf

H

N∑
j=1

EP

[
(Xj +W j

H)+ dQj

dP

]

≤ lim inf
H

(
EP

[
N∑
j=1

W j
H

dQj

dP

]
+

N∑
j=1

EP

[
Xj dQj

dP

]
+

N∑
j=1

EP

[
(Xj +W j

H)−
dQj

dP

])
Prop.2.5.8

≤ lim inf
H

(
N∑
j=1

W j
H +

N∑
j=1

EP

[
Xj dQj

dP

]
+

(
N∑
j=1

EP

[
(Xj +W j

H)−
dQj

dP

]))

= lim
H

(
N∑
j=1

W j
H

)
+

N∑
j=1

EP

[
Xj dQj

dP

]
+ lim

H

(
N∑
j=1

EP

[
(Xj +W j

H)−
dQj

dP

])
.

where we used Equation (2.87) and the fact that
∑N

j=1W
j
H is a numeric sequence con-

verging (a.s.) to
∑N

j=1 Ŷ
j to move from lim inf to the sum of limits. As a consequence

N∑
j=1

EP

[
(Xj + Ŷ j)+ dQj

dP

]
≤

N∑
j=1

Ŷ j +
N∑
j=1

EP

[
Xj dQj

dP

]
+

N∑
j=1

EP

[
(Xj + Ŷ j)−

dQj

dP

]
.

(2.88)
We get Y ∈ L1(Q) and rearranging terms in (2.88)

N∑
j=1

EP

[
(Xj + Ŷ j)

dQj

dP

]
≤

N∑
j=1

Ŷ j +
N∑
n=1

EP

[
Xj dQj

dP

]
.

In particular, since Ŷ ∈ B0, (2.86) follows.

Setup C

Theorem 2.5.17. In the Setup C we have:

1. Equations (2.70) and (2.71) hold. Moreover (2.71) admits a unique optimum

(λ̂, Q̂), with λ̂ > 0 and Q̂ ∼ P.
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Set Ŷ := −X −∇V
(
λ̂dQ̂

dP

)
. Then λ̂dQ̂

dP = ∇U(X + Ŷ ) and

2. Item 2 of Theorem 2.5.16 holds true.

3. Properties (2.73) and (2.74) hold true.

Proof. We will proceed as follows: first we will establish for any optimum (λ̂, Q̂) in

Equation (2.71) that λ̂ > 0 and the equivalence Q̂ ∼ P. We will then establish all

the stated properties of Ŷ and deduce a posteriori the uniqueness of the optimum in
Equation (2.71).

STEP 1: λ̂ > 0 and Q̂ ∼ P.

By Proposition 2.5.2, we can apply Item 2 of Theorem 2.5.9 to guarantee that for any
optimum (λ̂, Q̂), λ̂ 6= 0.
We now partially follow the proof of [38] Proposition 3.9. Observe that

P

(
λ̂

dQ̂
dP
∈ {V = +∞}

)
= 0

otherwise we would get a contradiction with (2.49): supY ∈B0∩MΦ EP [U(X + Y )] <
+∞. Recall from Theorem 2.5.3 that in fact the minimizations in the dual problem
of supY ∈B0∩MΦ EP [U(X + Y )] are over (B0 ∩MΦ)0 and that by Remark 2.5.7 there

exists a strictly positive vector Z := dQ
dP ∈ KΦ with EP

[
V
(

dQ
dP

)]
<∞. Call Ẑ = λ̂dQ̂

dP .
By Assumption 2.3.5 then for all α ≥ 0

EP

[
V
(
Ẑ + αZ

)]
≤ 1

2
EP

[
V (2Ẑ)

]
+

1

2
EP [V (2αZ)] < +∞

and clearly for all α ≥ 0 again Ẑ + αZ ∈ (B0 ∩ MΦ)0. Define for α ≥ 0 να :=

V
(
Ẑ + αZ

)
. Observe that να−ν0

α
is monotonically decreasing as α ↓ 0 (by convexity

of V and since Z, Ẑ ≥ 0). Applying Monotone Convergence Theorem we get for any
measurable set A:

EP

[
1A
να − ν0

α

]
↓ EP

[
1A lim

α↓0

1

α

(
V
(
Ẑ + αZ

)
− V

(
Ẑ
))]

.

Choose now the set

A :=

{
λ̂

dQ̂
dP
∈
(
{V < +∞} ∩ ∂((0,+∞)N)

)}

and assume by contradiction that P(A) > 0. Since

1A
να − ν0

α
= 1A

(
N∑
j=1

∂V

∂xj
(Ẑ + α̃Z)Zj

)
for some 0 ≤ α̃ ≤ α

we have by Lemma 2.6.6 that 1A
να−ν0

α
↓α −∞1A. As a consequence EP

[
1A

να−ν0

α

]
↓α

−∞ which in turns yields EP
[
να−ν0

α

]
↓ −∞ .
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At the same time we can rewrite EP [να − ν0] as

EP

[〈
X, Ẑ − (Ẑ + αZ)

〉]
+

+
{(

EP

[〈
X, Ẑ + αZ

〉]
+ EP

[
V (Ẑ + αZ)

])
−
(
EP

[〈
X, Ẑ

〉]
+ EP

[
V (Ẑ)

])}
≥ EP

[〈
X, Ẑ − (Ẑ + αZ

〉]
= −αEP [〈X,Z〉]

where the inequality comes from the fact that Ẑ, Ẑ+αZ ∈ (B0∩MΦ)0 and Ẑ minimizes

Z 7→ EP [〈X,Z〉] + EP [V (Z)] , Z ∈ (B0 ∩MΦ)0 ,

so that the term {. . . } is nonnegative. Clearly then we also get EP
[
να−ν0

α

]
≥ −EP [〈X,Z〉]

which is a contradiction. We conclude that P(A) = 0, and from the observations at
the beginning of the proof that

P

(
λ̂

dQ̂
dP
∈ ∂((0,+∞)N)

)
= 0 .

This can be restated as Q̂1, . . . , Q̂N ∼ P.

STEP 2: Ŷ ∈ LV .

By Lemma 2.6.5 Item 2 V is differentiable through (0,+∞)N . By STEP 1 λ̂ > 0

and dQ̂
dP ∈ (0,+∞)N a.s. so that Ŷ is well defined. Now λ̂ minimizes, for Q = Q̂, the

function

(0,+∞) 3 γ 7→ ψ(γ) :=
N∑
j=1

(
γEQj

[
Xj
])

+ EP

[
V

(
γ

dQ
dP

)]
which is real valued and convex. Also we have by Monotone Convergence Theorem
and Lemma 2.6.7 Item 1 that the right and left derivatives, which exist by convexity,
satisfy

d±ψ

dγ
(γ) =

N∑
j=1

EP

[
Xj dQ̂j

dP

]
+

N∑
j=1

EP

[
∂V

∂xj

(
γ

dQ̂
dP

)
dQ̂j

dP

]

hence the function is differentiable. Since λ̂ is a minimum for ψ, this implies ψ′(λ̂) = 0,
which can be rephrased as

N∑
j=1

(
EP

[
Xj dQ̂j

dP

]
+ EP

[
∂V

∂xj

(
λ̂

dQ̂
dP

)
dQ̂j

dP

])
= 0 . (2.89)

At this point minimize over

Q 7→
N∑
j=1

(
λ̂EQj

[
Xj
])

+ EP

[
V

(
λ̂

dQ
dP

)]

where λ̂ is given above and Q varies in QV . Let again Q̂ be optimum and take
another Q ∈ QV (which implies by our standing assumption 2.3.5 that the expression
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EP
[
V
(
λdQ

dP

)]
is finite for all choices of λ). Define η̂ and η to be their Radon-Nikodym

derivatives with respect to P. Take a convex combination of the two: for 0 ≤ x ≤ 1
set ξx := (1− x)η̂ + xη. By optimality of η̂ the function

x 7→ ϕ(x) :=
N∑
j=1

(
λ̂EP

[
Xjξjx

])
+ EP

[
V
(
λ̂ξx

)]
has a minimum at 0, thus the right derivative of ϕ at 0 must be non negative:

0 ≤
N∑
j=1

d

dx

∣∣∣
0

(
(1− x)λ̂EP

[
Xj η̂j

]
+ xλ̂EP

[
Xjηj

])
+

d

dx

∣∣∣
0
EP

[
V
(

(1− x)λ̂η̂ + xλη
)]

.

(2.90)
Differentiation in the first summation is trivial. As to the second term observe that
by convexity and differentiability of V we have

λ̂

N∑
j=1

ηj
∂V

∂xj

(
λ̂η̂
)
≤ λ̂

N∑
j=1

η̂j
∂V

∂xj

(
λ̂η̂
)

+ V
(
λ̂η
)
− V

(
λ̂η̂
)

so that by Lemma 2.6.7, Assumption 2.3.5 and Q̂,Q ∈ QV we conclude(
N∑
j=1

ηj
∂V

∂xj

(
λ̂η̂
))+

∈ L1(P) . (2.91)

Define H(x) := V
(

(1− x)λ̂η̂ + xλ̂η
)

and observe that as x ↓ 0

0 ≤
(
H(1)−H(0)− 1

x
(H(x)−H(0))

)
↑

(
H(1)−H(0)− λ̂

N∑
j=1

∂V

∂xj

(
λ̂η̂
)
ηj + λ̂

N∑
j=1

∂V

∂xj

(
λ̂η̂
)
η̂j

)
.

Thus we have by Equation (2.90) and Monotone Convergence Theorem

+∞ > EP [H(1)−H(0)] +
N∑
j=1

λ̂EP
[
Xj
(
ηj − η̂j

)]
≥

≥ EP

[(
H(1)−H(0)− λ̂

N∑
j=1

∂V

∂xj

(
λ̂η̂
)
ηj + λ̂

N∑
j=1

∂V

∂xj

(
λ̂η̂
)
η̂j

)]
=

EP

( N∑
j=1

λ̂
∂V

∂xj

(
λ̂η̂
)
ηj

)−
− λ̂

(
N∑
j=1

∂V

∂xj

(
λ̂η̂
)
ηj

)+

+R(η̂, λ̂)


for

R(η̂, λ̂) := H(1)−H(0) + λ̂

N∑
j=1

∂V

∂xj

(
λ̂η̂
)
η̂j .

113



This implies that

0 ≤

(
N∑
j=1

λ̂
∂V

∂xj

(
λ̂η̂
)
ηj

)−
∈ L1(P)

since we recall that, together with (2.91), we have the following:

(H(1)−H(0)) ∈ L1(P) by Assumption 2.3.5 and Q̂,Q ∈ QV ,
N∑
j=1

λ̂
∂V

∂xj

(
λ̂η̂
)
η̂j ∈ L1(P) by Lemma 2.6.7 Item 1 .

We conclude that
∑N

j=1
∂V
∂xj

(
λ̂dQ̂

dP

)
dQj
dP ∈ L

1(P), hence also
∑N

j=1 Ŷ
j dQj

dP ∈ L
1(P) holds

for all Q ∈ QV .
Moreover, in view of the integrability property we just proved, Equation (2.90) can
be rewritten as:

0 ≤
N∑
j=1

λ̂EP
[
Xj
(
ηj − η̂j

)]
+ λ̂EP

[
N∑
j=1

∂V

∂xj

(
λ̂η̂
) (
ηj − η̂j

)]
. (2.92)

Now rearrange the terms in (2.92) as follows

0 ≤ −λ̂

(
N∑
j=1

EP
[
Xj η̂j

]
+ EP

[
N∑
j=1

∂V

∂xj

(
λ̂η̂
)
η̂j

])
+

+
N∑
j=1

λ̂

(
EP
[
Xjηj

]
+ EP

[
N∑
j=1

∂V

∂xj

(
λ̂η̂
)
ηj

])

and use (2.89):

0 ≤ 0− λ̂

(
EP

[
N∑
j=1

(
−Xj − ∂V

∂xj

(
λ̂η̂
))

ηj

])
= −λ̂EP

[
N∑
j=1

Ŷ j dQj

dP

]
.

This proves that Ŷ ∈ LV .

STEP 3: Integrability under optimal measure.

Ŷ j dQ̂j
dP ∈ L

1(P)∀ j = 1 . . . , N follows from X ∈MΦ, Remark 2.5.5, Lemma 2.6.7 Item

1 and the fact that λ̂ > 0.

STEP 4 Optimality of Ŷ .

Observe that V and −U(−•) are convex functions conjugate to each other in the sense
of Fenchel-Moreau Theorem, hence in the Legendre sense (see [119] Chapter V) on the
interior of their respective domains, by [119], Theorem 26.5. Also (∇(−U(−•)))−1 =
∇V ([119], Theorem 26.5 again) on (R++)N , which is the interior of dom(V ) by the
fact that V is finite on (R+)N by Remark 2.1.6 and equal to +∞ on RN \ (R+)N

by Lemma 2.6.5 Item 1. Consequently, we get for y ∈ (R++)N and by definition of
Legendre conjugate

V (y) =
〈
(∇(−U(−•)))−1 (y), y

〉
−
(
−U

(
− (∇(−U(−•)))−1 (y)

))
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= 〈∇V (y), y〉+ U(−∇V (y)) .

Equivalently U(−∇V (y)) = −〈∇V (y), y〉+ V (y) for all y ∈ (R++)N .
Observe now that as a consequence

U(X + Ŷ ) = U

(
−∇V

(
λ̂

dQ̂
dP

))
= −λ̂

N∑
j=1

∂V

∂xj

(
λ̂

dQ̂
dP

)
dQ̂j

dP
+ V

(
λ̂

dQ̂
dP

)
.

Taking expectations on both sides (both are integrable by previous arguments) we get

EP

[
U
(
X + Ŷ

)]
= λ̂EP

[
−

N∑
j=1

∂V

∂xj

(
λ̂

dQ̂
dP

)
dQ̂j

dP

]
+ EP

[
V

(
λ̂

dQ̂
dP

)]
.

Use now the expression in (2.89) to substitute in the first term in RHS:

EP

[
U
(
X + Ŷ

)]
= λ̂

(
EP

[
N∑
j=1

Xj dQ̂j

dP

])
+ EP

[
V

(
λ̂

dQ̂
dP

)]
.

Recognizing in RHS the optimum value in the minimax expressions of Equation (2.56)
in Theorem 2.5.9, we conclude that

sup
Y ∈LV

EP [U(X + Y )] = EP

[
U(X + Ŷ )

]
= sup

Y ∈B0∩MΦ

EP [U(X + Y )] .

Notice that from ∇V = (∇(−U(−•)))−1 = −(∇U)−1 and X + Ŷ = −∇V
(
λ̂dQ̂

dP

)
we

obtain:

λ̂
dQ̂
dP

= ∇U(X + Ŷ ).

STEP 5: Ŷ ∈ B0.

The following properties hold for K := B0∩MΦ. K ⊆MΦ is a convex cone such that
for all i, j ∈ {1, . . . , N} ei − ej ∈ K. If SeV ⊆ KΦ is defined as

SeV :=

{
Q | Q ∼ P,

dQ
dP
∈ KΦ, EP

[
V

(
dQ
dP

)]
< +∞,

N∑
j=1

EQj
[
kj
]
≤ 0 ∀k ∈ K

}

then (use Assumption 2.3.5) SeV = QV ∩ {[Q1, . . . ,QN ] |Qj ∼ P ∀j = 1, . . . , N}. Also

for (λ̂, Q̂) and Ŷ as above:

1. Q̂ ∈ SeV and [
Ŷ j dQ̂j

dP

]N
j=1

∈ (L1(P))N ,
N∑
j=1

EP

[
Ŷ j dQ̂j

dP

]
= 0

(STEP 4 and (2.89)).
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2. for all Q ∈ SeV
N∑
j=1

Ŷ j dQj

dP
∈ L1(P), EP

[
N∑
j=1

Ŷ j dQj

dP

]
≤ 0

(since more in general Ŷ ∈ LV by STEP 2).

As a consequence, by Theorem 2.6.13, Ŷ is in the closure under convergence in prob-
ability P of K, hence in B0 (which is closed in probability by Standing Assumption
II).

STEP 6: uniqueness of (λ̂, Q̂).

If (λ̂, Q̂), (λ,Q) are two optima for Equation (2.56) with λ, λ̂ > 0, then Ŷ and Y
defined correspondingly as above will coincide by Proposition 2.5.2. At the same time

∇V is invertible (see [119] Theorem 26.5), hence λ̂dQ̂
dP = λdQ

dP . Taking expectations we

get λ̂ = λ and dQ̂
dP = dQ

dP follows trivially.

STEP 7:
∑N

j=1 Ŷ
j = 0 = EP

[∑N
j=1 Ŷ

j dQ̂j
dP

]
.

We proved in STEP 5 that Ŷ ∈ clQ̂(B0 ∩ MΦ). As a consequence, there exists a

sequence (kn)n ⊆ B0 ∩MΦ such that kn →n Ŷ in L1(Q̂) and P-a.s. (since Q̂ ∼ P).
Thus, we have

0
(2.89)
=

N∑
j=1

EQ̂j

[
Ŷ j
]

= lim
n

N∑
j=1

EQ̂j
[
kjn
] Prop. 2.5.8

≤ lim
n

N∑
j=1

kjn =
N∑
j=1

Ŷ j
Y ∈B0

≤ 0

where we used STEP 5 for last inequality.

2.5.5 Working on (L∞(P))N

The following result is a counterpart to Theorems 2.5.16 and Theorem 2.5.17 when
working in ((L∞(P))N , (L1(P))N) in place of (MΦ, KΦ).

Theorem 2.5.18. If B is closed under truncation the following holds:

sup
Y ∈B0∩(L∞(P))N

EP [U(X + Y )] = min
Q∈QV

min
λ≥0

(
λ

(
N∑
j=1

EQj
[
Xj
])

+ EP

[
V

(
λ

dQ
dP

)])
.

(2.93)

Proof. To check (2.93) we can apply the same argument used in proving (2.55) and
(2.56), by replacing Theorem 2.5.3 with Theorem 2.5.4.
What is left to prove then is that for C = B0 ∩ (L∞(P))N , the set

N := (C0
1)+ ∩

{
Z ∈ (L1(P)+)N | EP [V (λZ)] < +∞ for some λ > 0

}
is in fact QV . To see this, observe that as consequence of Lemma 2.6.9 we have
N ⊆ KΦ. From this, by closedness under truncation we have for any Y ∈ B0 ∩MΦ
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a sequence (Yn)n ⊆ B0 ∩ (L∞(P))N such that for each Q ∈ N ,for each j = 1, . . . , N
Y j
n →n Y

j Qj-a.s. and the convergence is dominated. Thus for any Y ∈ B0 ∩MΦ we
have by Dominated Convergence Theorem that

∑N
j=1 EQj [Y j] ≤ 0. This completes

the proof that N = QV .

Corollary 2.5.19. In Setup A we have

sup
Y ∈B0∩(L∞(P))N

EP [U(X + Y )] = sup
Y ∈B0∩MΦ

EP [U(X + Y )] . (2.94)

Proof. By Theorem 2.5.16 Item 1 and Theorem 2.5.18, both LHS and RHS of (2.94)
are equal to the minimax expression

min
λ≥0,Q∈QV

(
λ

(
N∑
j=1

EQj
[
Xj
])

+ EP

[
V

(
λ

dQ
dP

)])
.

2.5.6 General case: total wealth A ∈ R
In this section we extend previous results to cover the case in which the total wealth
A might not be equal to 0.
For A ∈ R and Q ∈ QV we define

πA(X) := sup

{
EP [U(X + Y )] | Y ∈ B ∩MΦ,

N∑
j=1

Y j ≤ A

}
,

πQ
A(X) := sup

{
EP [U(X + Y )] | Y ∈MΦ,

N∑
j=1

EQj
[
Y j
]
≤ A

}
.

It is possible to reduce the maximization problem expressed by πA(X) (and similarly
πQ
A(X)) to the problem related to π0(·) (respectively, πQ

0 (·)).
Take any a = [a1, . . . , aN ] ∈ RN with

∑N
j=1 a

j = A. Then

πA(X) = sup

{
EP [U (X + Y + a− a)] | (Y − a) ∈ B ∩MΦ,

N∑
j=1

(
Y j − aj

)
≤ 0

}
=

= sup
{
EP [U (X + Z + a)] | Z ∈ B0 ∩MΦ

}
= π0(X + a)

where last line holds since RN + B = B under Standing Assumption II. We recognize
then that πA(X) is just π0(·), with different initial point (X + a) in place of X.
The same technique adopted above can be exploited to show that for any a ∈ RN

with
∑N

j=1 a
j = A

sup
{
EP [U(X + Y )] | Y ∈ L(A)

V

}
= sup {EP [U(X + a+ Z)] | Z ∈ LV } .

The argument above shows how to generalize Proposition 2.5.11, Theorem 2.5.16,
Theorem 2.5.17, Theorem 2.5.18, Corollary 2.5.19 to cover the case A 6= 0, exploiting
the same results with X + a in place of X.
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Thus the statements of Proposition 2.5.11, Theorem 2.5.16, Theorem 2.5.17, Theorem
2.5.18, Corollary 2.5.19 remain true replacing 0, B0, LV with A, BA, L(A)

V respectively,
and Equation (2.65) (similarly for (2.52), (2.56), (2.71), (2.93)) with

min
λ≥0

(
λ

(
N∑
j=1

EQj
[
Xj
]

+ A

)
+ EP

[
V

(
λ

dQ
dP

)])
. (2.65A)

We will not go through all the proofs again, but only provide a hint about the method-

ology to be followed to obtain the results. To show that −X −∇V
(
λ̂dQ̂

dP

)
is in L(A)

V ,

for example, we can use the fact that −(X + a) − ∇V
(
λ̂dQ̂

dP

)
is in LV by Theorem

2.5.17 and then move the term A =
∑N

j=1 a
j to LHS in

EP

 N∑
j=1

(
−(X + a)−∇V

(
λ̂

dQ̂
dP

))j
dQj

dP


= EP

 N∑
j=1

(
−X −∇V

(
λ̂

dQ̂
dP

))j
dQj

dP

− N∑
j=1

aj ≤ 0 .

2.6 Appendix to Chapter 2

Throughout all this Appendix, we work under Standing Assumptions I and II without
further mention.

2.6.1 Superdifferentials

Proposition 2.6.1. Let u : RN → R be concave, nondecreasing and null in 0. Let
z ∈ RN . Then:

1. Any element in ∂u(z) is nonnegative.

2. For N = 1 d±u
dx

(z) ∈ ∂u(z) where d±u
dx

(z) are the left and right derivatives of u
at x0.

3. For N = 1, if

lim
x→−∞

u(x)

x
= +∞ and lim

x→+∞

u(x)

x
= 0

we have

lim
z→−∞

d−u

dx
(z) = +∞ and lim

z→+∞

d+u

dx
(z) = 0 .

Proof.
Item 1: It follows from the fact that by definition u(x)−u(z) ≤

∑N
j=1 ν

j(xj− zj) for

all x ∈ RN for any ν ∈ ∂u(z). If for some index k νk < 0, we would get a contradiction
considering x = z + nek ≥ z and taking the limit as n grows to +∞.
Item 2: It follows from Theorem 23.2 in [119].
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Item 3: We observe that by concavity for any ε > 0

u(z)

z
≥ u(z + ε)− u(z)

ε
for z > 0 and

u(z)

z
≤ u(z)− u(z − ε)

ε
for z < 0

taking the limit as ε ↓ 0 yields

d+u

dx
(z) ≤ u(z)

z
for z > 0 and

d−u

dx
(z) ≥ u(z)

z
for z < 0 .

2.6.2 Additional properties of Multivariate Utilitity Func-
tions

Lemma 2.6.2. There exist a > 0, b ∈ R such that

U(x) ≤ a
N∑
j=1

xj + a

N∑
j=1

(−(xj)−) + b ∀x ∈ RN .

Proof. We start recalling that by Remark 2.1.3 for any concave f : RN → R and for
any z ∈ RN

f(x) ≤ 〈∇f(z), (x− z)〉+ f(z) ∀x ∈ Rm .

We can thus write, for every k ∈ R

U(x) =
N∑
j=1

uj
(
(xj)+

)
+

N∑
j=1

uj
(
−(xj)−

)
+ Λ(x)

≤
N∑
j=1

(
duj
dz

(0)((xj)+ − 0) + uj(0)

)
+

N∑
j=1

(
duj
dz

(k)(−(xj)− − k) + uj(k)

)
+

+
N∑
j=1

∂Λ

∂xj
(0)(xj − 0) + Λ(0)

= f(k) +
N∑
j=1

duj
dz

(0)(xj)+ +
N∑
j=1

duj
dz

(k)(−(xj)−) +
N∑
j=1

∂Λ

∂xj
(0)((xj)+ − (xj)−)

= f(k) +
N∑
j=1

(
duj
dz

(0) +
∂Λ

∂xj
(0)

)
(xj)+ +

N∑
j=1

(
duj
dz

(k) +
∂Λ

∂xj
(0)

)
(−(xj)−) .

Set now

a := max
j

(
duj
dz

(0) +
∂Λ

∂xj
(0)

)
Prop.2.6.1.1

≥ 0

and observe that since Inada conditions hold, by Proposition 2.6.1 Item 3 we can
choose elements in the supergradients in such a way that

min
j

(
duj
dz

(k)

)
−−−−→
k→−∞

+∞ .
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Hence for some k̂ < 0 we have

min
j

(
duj
dz

(k̂)

)
+ min

j

(
∂Λ

∂xj
(0)

)
≥ 2a .

As a consequence

U(x) ≤ f(k̂) + a

N∑
j=1

(xj)+ + 2a
N∑
j=1

(−(xj)−) = a

N∑
j=1

xj + a

N∑
j=1

(−(xj)−) + b

once we set f(k̂) = b.

Lemma 2.6.3. For every ε > 0 there exist a constant bε such that

U(x) ≤ 2ε
N∑
j=1

(xj)+ + bε ∀x ∈ RN . (2.95)

Proof. Fix ε > 0. From the fact that the Inada conditions hold, again by Proposition
2.6.1 Item 3 we can choose elements in the supergradients in such a way that

max
j

(
duj
dx

(k)

)
−−−−→
k→+∞

0 .

As a consequence, given ε > 0, we have for some function ψ : R→ R and some kε > 0
that ∀x ∈ RN

N∑
j=1

uj
(
xj
)
≤

N∑
j=1

uj((x
j)+) ≤ max

j

(
duj
dx

(k)

) N∑
j=1

(xj)+ψ(kε) ≤ ε
N∑
j=1

(xj)+ + ψ(kε).

(2.96)
The concavity of Λ implies that for any fixed z ∈ RN and any x ∈ RN , by Remark
2.1.3,

Λ(x) ≤
N∑
j=1

∂Λ

∂xj
(z)(xj − zj) + Λ(z) ≤

≤
N∑
j=1

∂Λ

∂xj
(z)(xj)+ +

N∑
j=1

∂Λ

∂xj
(z)(−(xj)−) +

N∑
j=1

∂Λ

∂xj
(z)(−zj) + Λ(z) .

Since Λ is nondecreasing each element in its supergradient is componentwise nonneg-
ative (Proposition 2.6.1 Item 1) and so

∑N
j=1

∂Λ
∂xj

(z)(−(xj)−) ≤ 0. Also, for any ε > 0
we can now take zε as in Standing Assumption I and reformulate what we found as

Λ(x) ≤
N∑
j=1

∂Λ

∂xj
(zε)(x

j)+ + ξ(zε) ≤ ε

(
N∑
j=1

(xj)+

)
+ ξ(zε) ∀x ∈ RN (2.97)

for some function ξ : RN → R. We conclude from (2.96) and (2.97) that

U(x) =
N∑
j=1

uj
(
xj
)

+ Λ(x) ≤ 2ε
N∑
j=1

(xj)+ + ξ(zε) + ψ(kε) ∀x ∈ RN .

When ε > 0 is fixed ξ(zε) + ψ(kε) =: bε is a constant and we find (2.95).

120



Lemma 2.6.4. Let (Zn)n be a sequence of random variables taking values in RN such
that EP [U(Zn)] ≥ B for all n, for some B ∈ R.

1. If supn

∣∣∣∑N
j=1 EP [Zj

n]
∣∣∣ < +∞ then supn

∑N
j=1 EP [|Zj

n|] <∞.

2. If Zn → Z a.s. and supn
∑N

j=1 EP [(Zj
n)+] < +∞ then EP [U(Z)] ≥ B.

Proof.
Item 1. Suppose that

sup
n

(
N∑
j=1

EP
[∣∣Zj

n

∣∣]) = sup
n

(
N∑
j=1

EP
[
(Zj

n)+
]

+
N∑
j=1

EP
[
(Zj

n)−
])

= +∞ .

From the boundedness of

N∑
j=1

EP
[
Zj
n

]
=

N∑
j=1

EP
[
(Zj

n)+
]
−

N∑
j=1

EP
[
(Zj

n)−
]

we conclude that supn
∑N

j=1 EP [(Zj
n)−] = +∞. Select a, b as in Lemma 2.6.2 . Then

we have

B ≤ EP [U(Zn)] ≤ a
N∑
j=1

EP
[
Zj
n

]
− a

N∑
j=1

EP
[
(Zj

n)−
]

+ b

which is clearly a contradiction.
Item 2. For ε > 0 define the function Γε as

Γε(x) := 2ε

(
N∑
j=1

(xj)+

)
+ bε − U(x)

where the coefficient bε is the one in Lemma 2.6.3. Then Γε ≥ 0 and by Fatou Lemma
we have

2ε

(
N∑
j=1

EP
[
(Zj)+

])
+ bε − EP [U(Z)] = EP [Γε(Z)] ≤ lim inf

n
EP [Γε(Zn)]

= lim inf
n

(
2ε

(
N∑
j=1

EP
[
(Zj

n)+
])

+ bε − EP [U(Zn)]

)

≤ −B + bε + 2ε lim inf
n

(
N∑
j=1

EP
[
(Zj

n)+
])

.

As a consequence

EP [U(Z)] ≥ B + 2ε

(
N∑
j=1

EP
[
(Zj)+

]
− sup

n

N∑
j=1

EP
[
(Zj

n)+
])

.

Since the term multiplying ε is finite by hypothesis and the inequality holds for all
ε > 0 we conclude that EP [U(Z)] ≥ B.
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2.6.3 Additional properties of Conjugates of Multivariate Util-
ity Functions

Lemma 2.6.5.

1. The conjugate V given in Definition 2.1.1 is convex and componentwise convex,
where by the latter we mean that for every given k ∈ {1, . . . , N} and y ∈ RN

the map over R defined by z 7→ V ([y[−k]; z]) is convex. Moreover V = +∞ on
RN \ [0,+∞)N .

2. If U is differentiable, V is strictly convex and differentiable on the interior of
its domain int(dom(V )) = (0,+∞)N . On (0,+∞)N , ∇V = −(∇U)−1 and
for every sequence (yn)n ⊆ int(dom(V )) converging to some element y in the
boundary of int(dom(V ))

lim
n→+∞

N∑
j=1

∣∣∣∣ ∂V∂xj (yn)

∣∣∣∣ = +∞ .

Proof. Item 1: convexity and componentwise convexity are trivial. As to V = +∞ on
RN \ [0,+∞)N , take y ∈ RN \ [0,+∞)N and let yk < 0 (this must happen for at least
one component). Then V (y) ≥ U(nek) − nyk ↑n +∞. The fact that the interior of
dom(V ) is (0,+∞)N follows from what we just proved and from Remark 2.1.6. As to
Item 2, differentiability, strict convexity and gradient property hold by [119] Theorem
26.5 applied to U , which is differentiable and strictly convex by assumption.

Lemma 2.6.6. If U is differentiable, the function V satisfies: for every b ∈ (0,+∞)N

and a ∈ ∂((0,+∞)N)

N∑
j=1

∂V

∂xj
(a+ λb) bj ↓ −∞ as λ ↓ 0 .

Proof. Follows from Lemma 26.2 in [119] setting ”x”=a, ”a”=a+b and observing that
V is differentiable. The fact that

∑N
j=1

∂V
∂xj

(a+ λb) bj decreases to −∞ monotonically
follows from convexity of λ 7→ V (a+ λb).

Lemma 2.6.7. Assume that U is differentiable and that for Q � P, dQ
dP ∈ KΦ we

have

EP

[
V

([
λ1

dQ1

dP
, . . . , λN

dQN

dP

])]
< +∞

for all λ1, . . . , λN > 0. Then the following hold:

1. ∂V
∂xj

([
λ1

dQ1

dP , . . . , λN
dQN
dP

])
dQj
dP ∈ L

1(P) for all λ1, . . . , λN > 0.

2. If g ∈ (L0
+(P))N is such that gj + 1

gj
∈ L∞+ (P), ∀ j = 1, . . . , N and Q ∼ P then

V

([
g1

dQ1

dP
, . . . , gN

dQN

dP

])
∈ L1(P) .
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Proof. Observe first that V is differentiable by lemma 2.6.5 Item 2.
Item 1: for every fixed y ∈ (R++)N , by componentwise convexity (see Lemma 2.6.5
Item 1)

∂V

∂xj
(y) ≤ V ([y[−j];αyj])− V (y)

(α− 1)yj
∀α ∈ (1,+∞) .

∂V

∂xj
(y) ≥ V ([y[−j];αyj])− V (y)

(α− 1)yj
∀α ∈ (0, 1] .

The result then follows multiplying each term by yj and replacing

y  

[
λ1

dQ1

dP
, . . . , λN

dQN

dP

]
.

Item 2: to begin with, observe that for any z ∈ (0,+∞)N and 0 < ε < M the
function α 7→ ϕ(α) := V ([α1z1, . . . , αNzN ]) on [ε,M ]N is convex and continuous. By
Bauer Maximum Principle (see [5] Theorem 7.69) ϕ has a maximum on an extreme
point of [ε,M ]N , which is a point belonging to the set {ε,M}N . We conclude that

sup
α∈[ε,M ]N

ϕ(α) ≤
∑

α∈{ε,M}N
ϕ(α) .

Now observe that by hypothesis there exist ε,M > 0 such that for every j = 1, . . . , N
ε ≤ gj ≤M P− almost surely. Hence

V

([
g1

dQ1

dP
, . . . , gN

dQN

dP

])
≤

∑
α∈{ε,M}N

V

([
α1 dQ1

dP
, . . . , αN

dQN

dP

])
.

The term in RHS has finite expectation by hypotheses and V is bounded from below

since U(0) < +∞, so that we conclude V
([
g1

dQ1

dP , . . . , gN
dQN
dP

])
∈ L1(P).

Lemma 2.6.8. Let u, ũ : R → R be convex, nondecreasing, differentiable on R and
such that u(0) = 0 = ũ(0). Assume u � ũ (see Section 2.4.5 for the definition). Let
d,D > 0 be given. Then there exist constants K1, K2, β, B > 0, b ∈ R such that, for v
the convex conjugate of u,

sup
x∈R

(u(x)− xy +Dũ(dx)) ≥


v ( y) 0 ≤ y ≤ K1

0 K1 ≤ y ≤ K2

B v (β y) + b y ≥ K2

. (2.98)

Proof. We first observe that

sup
x∈R

(u(x)− xy +Dũ(dx))

= max

(
sup
x≤0

(u(x)− xy +Dũ(dx)) , sup
x≥0

(u(x)− xy +Dũ(dx))

)
.

(2.99)

We work on the supremum over (−∞, 0]: since u � ũ, we have that for constants
h,H ≥ 0, b ∈ R

sup
x≤0

(u(x)− xy +Dũ(dx)) ≥ sup
x≤0

(u(x)− xy +DHu(dhx)) + b .
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Setting β1 := max(dh, 1) and B1 := max(DH, 1) with simple computations u(x) +
DHu(dhx) ≥ 2B1u(β1x)∀x ≤ 0. Hence

sup
x≤0

(u(x)− xy +Dũ(dx)) ≥ sup
x≤0

(2B1u(β1x)− xy) + b = sup
x≤0

(
2B1u(x)− x y

β1

)
+ b.

From concavity of u it is easy to see that 2B1u(x)− x y
β
≤ (2B1u

′(0)− y
β1

)x for every

x ∈ R, where u′(0) stands for the right derivative of u at 0 (which exists by concavity).
This in turns implies that for y ≥ 2β1B1u

′(0) =: K2 we have

sup
x≤0

(
2B1u(x)− x y

β1

)
= sup

x∈R

(
2B1u(x)− x y

β1

)
= Bv (βy)

where we set B := 2B1 and β = 1
β1B

.

We now move to the supremum over [0,+∞): by monotonicity and ũ(0) = 0 we have

sup
x≥0

(u(x)− xy +Dũ(dx)) ≥ sup
x≥0

(u(x)− xy) .

It is then clear that, similarly to what we did before, for y ≤ u′(0) =: K1

sup
x≥0

(u(x)− xy) = sup
x∈R

(u(x)− xy) = v(y) .

To sum up, from (2.99) we have then

sup
x∈R

(u(x)− xy +Dũ(dx)) ≥

{
v ( y) 0 ≤ y ≤ K1

B v (β y) + b y ≥ K2

.

To conclude the proof, we just observe that supx∈R (u(x)− xy +Dũ(dx)) ≥ 0 for any
y ∈ [K1, K2].

2.6.4 Results on Multivariate Orlicz Spaces

Proof of Proposition 2.2.4. We show that KΦ is a subspace of the topological dual of
LΦ and is a subset of (L1(P))N .
For Z ∈ KΦ consider the well defined linear map φ : LΦ → L1(P), X 7→

∑N
j=1X

jZj.

Suppose Xn → X in LΦ and φ(Xn) → W , then we can extract a subsequence
(Xnk) converging almost surely to X, since convergence in Luxemburg norm implies
convergence in probability (Lemma 2.2.2 Item 5). It is then clear that φ(Xnk) =∑N

j=1X
j
nk
Zj →k

∑N
j=1X

jZj = W P−a.s., thus the graph of φ is closed in LΦ×L1(P)
(endowed with product topology). By Closed Graph Theorem ([5] Theorem 5.20)
the map is then continuous, thus any vector in KΦ identifies a continuous linear func-
tional on LΦ. Finally since [sign(Zj)]Nj=1 ∈ (L∞(P))N ⊆MΦ ⊆ LΦ,

∑N
j=1 |Zj| ∈ L1(P)

yielding KΦ ⊆ L1(P).

Proof of Proposition 2.2.5 Item 1. We show that for any extended real valued vector
Z ∈ L0

(
(Ω,F ,P); [−∞,+∞]N

)
sup

X∈LΦ,‖X‖Φ≤1

EP

[
N∑
j=1

∣∣XjZj
∣∣] = sup

X∈MΦ,‖X‖Φ≤1

EP

[
N∑
j=1

∣∣XjZj
∣∣] . (2.100)
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and that, moreover

KΦ =

{
Z ∈ L0

(
(Ω,F ,P); [−∞,+∞]N

)
|

N∑
j=1

XjZj ∈ L1(P), ∀X ∈MΦ

}
.

Argue as in Proposition 2.2.8 of [65]: take any X ∈ LΦ and Z ∈ (L0(P))N and assume
w.l.o.g. both are componentwise nonnegative (multiplying by signum functions will
not affect Luxemburg norms by definition). Take sequences of simple functions (Y j

n )n,
j = 1, . . . , n each converging to Xj monotonically from below. Clearly ‖Yn‖Φ ≤ ‖X‖Φ

for each n and by Monotone Convergence Theorem

EP

[
N∑
j=1

∣∣XjZj
∣∣] = lim

n
EP

[
N∑
j=1

∣∣Y j
nZ

j
∣∣] .

This implies that

sup
X∈LΦ,‖X‖Φ≤1

EP

[
N∑
j=1

∣∣XjZj
∣∣]

≤ sup
X∈L∞,‖X‖Φ≤1

EP

[
N∑
j=1

∣∣XjZj
∣∣] ≤ sup

X∈MΦ,‖X‖Φ≤1

EP

[
N∑
j=1

∣∣XjZj
∣∣]

since (L∞(P))N ⊆ MΦ. The converse inequality is evident, so that (2.100) follows.
Now suppose

Z ∈

{
Z ∈ L0

(
(Ω,F ,P); [−∞,+∞]N

)
|

N∑
j=1

XjZj ∈ L1(P), ∀X ∈MΦ

}
.

Observe (by using |Xj| sgn(Zj) in place of Xj in RHS below) that

sup
X∈MΦ,‖X‖Φ≤1

EP

[
N∑
j=1

∣∣XjZj
∣∣] = sup

X∈MΦ,‖X‖Φ≤1

EP

[
N∑
j=1

XjZj

]
< +∞ .

where we used a Closed Graph Theorem argument similar to the one in the proof
of Proposition 2.2.4, with MΦ in place of LΦ, to show finiteness of RHS: since X 7→∑N

j=1X
jZj is well defined and continuous on MΦ it must have finite operator norm,

i.e. RHS. Now it follows that

sup
X∈LΦ,‖X‖Φ≤1

EP

[
N∑
j=1

∣∣XjZj
∣∣] (2.100)

= sup
X∈MΦ,‖X‖Φ≤1

EP

[
N∑
j=1

∣∣XjZj
∣∣] < +∞

which in turns provides Z ∈ KΦ.

Proof of Proposition 2.2.5 Item 2. We prove that the topological dual of (MΦ, ‖·‖Φ)
is (KΦ, ‖·‖∗Φ). By order continuity, for a given linear functional φ in the topological
dual of MΦ we have that A 7→ φ([0, . . . , 0, 1A, 0, . . . , 0]) defines a (finite) absolutely
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continuous measure with respect to P. This gives by Radon-Nikodym Theorem a
vector Z ∈ (L1(P))N satisfying: for every vector of simple functions s ∈ (L∞(P))N

φ(s) =
∑N

j=1 EP [sjZj] We now prove that Z belongs to KΦ: take X ≥ 0 and a
sequence (Yn)n of non negative simple functions (vectors of simple functions more
precisely) converging to X from below.
By order continuity of the topology on MΦ we have

N∑
j=1

EP
[
sgn(Zj)Y j

nZ
j
]

= φ
([
sign(Zj)Y j

n

]N
j=1

) ‖·‖Φ−−→
n

φ
([
sign(Zj)Xj

]N
j=1

)
< +∞ .

Thus by Monotone Convergence Theorem

+∞ > lim
n

N∑
j=1

EP
[
sgn(Zj)Y j

nZ
j
]

= lim
n

N∑
j=1

EP
[
Y j
n

∣∣Zj
∣∣] =

N∑
j=1

EP
[
Xj
∣∣Zj
∣∣] .

This proves that Z ∈ Kφ, since the argument above can be applied to any 0 ≤ X ∈MΦ

and subsequently to any X ∈MΦ. Finally, the norm we use on KΦ is exactly the usual
one for continuous linear functionals, so (KΦ, ‖·‖∗Φ) is isometric to the topological dual
of (MΦ, ‖·‖Φ).

Proof of Proposition 2.2.5 Item 3. We show that if we suppose

LΦ = LΦ1 × · · · × LΦN , (2.101)

then we have that KΦ = LΦ∗1 × · · · × LΦ∗N . To see this, observe that

KΦ :=

{
Z ∈ L0

(
(Ω,F ,P); [−∞,+∞]N

)
|

N∑
j=1

XjZj ∈ L1(P), ∀X ∈ LΦ

}

(2.101)
=

{
Z ∈ L0 (P; [−∞,+∞])N |

N∑
j=1

XjZj ∈ L1(P), ∀X ∈ LΦ1 × · · · × LΦN

}

=
{
Z ∈ L0 (P; [−∞,+∞])N | XjZj ∈ L1(P), ∀Xj ∈ LΦj , ∀j = 1 . . . , N

}
.

Now apply Corollary 2.2.10 in [65] componentwise.

Proof of Remark 2.2.9. To prove the claims, observe that MΦ ⊆ MΦ1 × · · · ×MΦN

follows from the fact that EP [Φj(λ |Xj|)] ≤ EP [Φ(λ |X|)], while the converse (⊇) is
trivial.
We now prove inequalities (2.12). First observe that for X ∈ MΦ and for every j =

1, . . . , N the functions γ 7→ EP

[
Φ( 1

γ
|X|)

]
and γ 7→ EP

[
Φj(

1
γ
|Xj|)

]
are continuous

by Dominated Convergence Theorem, hence for ‖X‖Φ 6= 0 and every j = 1, . . . , N

EP

[
Φj

(
1

‖Xj‖Φj

∣∣Xj
∣∣)] ≤ EP

[
Φ

(
1

‖X‖Φ

|X|
)]

= 1 .
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Since also for ‖X‖Φ = 0 we have X = 0 and as a consequence ‖Xj‖Φj
= 0, j =

1, . . . , N , we have ∥∥Xj
∥∥

Φj
≤ ‖X‖Φ j = 1, . . . , N . (2.102)

Moreover for X 6= 0 set λ := maxj

(
‖Xj‖Φj

)
. Then

EP

[
Φj

(
1

Nλ

∣∣Xj
∣∣)] ≤ 1

N
EP

[
Φj

(
1

λ

∣∣Xj
∣∣)] ≤ 1

N
.

Hence for X 6= 0

‖X‖Φ ≤ N max
j

(∥∥Xj
∥∥

Φj

)
and the same trivially holds for X = 0. In general then

‖X‖Φ ≤ N max
j

(∥∥Xj
∥∥

Φj

)
≤ N

N∑
j=1

∥∥Xj
∥∥

Φj
. (2.103)

Now inequalities (2.12) follow from inequalities (2.102) and (2.103) and the claims are
proved.

Lemma 2.6.9. Let Z ∈ (L1(P))N be such that for some λ > 0 EP [V (λZ)] < +∞.
Then Z ∈ KΦ.

Proof. By definition of V we have for any x, z ∈ RN −〈x, z〉 ≤ V (z) − U(X). Take

Z with EP [V (λZ)] < +∞ for some λ > 0. For any X ∈MΦ consider X̂ defined as

X̂j := −sgn(Xj)sgn(Zj)Xj, j = 1, . . . , N

and observe that X̂ ∈ MΦ. Moreover we have λ 〈|X| , |Z|〉 = −
〈
X̂, λZ

〉
≤ V (λZ)−

U(X̂). If X̂ ∈ MΦ then, by (2.10), EP

[
U(X̂)

]
> −∞. Since V (λZ) ∈ L1(P) by

hypothesis, we conclude that 〈X,Z〉 ∈ L1(P) for every X ∈MΦ, which in turns yields
Z ∈ KΦ by Proposition 2.2.5 Item 1.

Sequential w∗-compactness in Orlicz Spaces

The following is partly inspired by [55], page 26, Chap. II, proof of Theorem 24. A
similar result is stated in [111], proof of Theorem 1, with a more technical (even though
shorter) proof. Throughout Section 2.6.4 we will put more emphasis on sigma algebras
rather than on probability measures (we work under P). Thus, when considering Orlicz
spaces and Orlicz Hearts as well as Lebesgue spaces, we will explicitly mention the
underlying sigma algebra (F up to now, and we will introduce G ⊆ F soon).

Proposition 2.6.10. On a general probability space (Ω,F ,P), assume that Φ, Φ∗ are
(univariate) conjugate Young functions, both everywhere finite valued. Then the balls
in LΦ(F), endowed with Orlicz norm, are σ

(
LΦ(F),MΦ∗(F)

)
sequentially compact.
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Proof. First recall that under these assumptions L∞(F) ⊆ MΦ∗(F) 6= {0}, MΦ∗(F)
is order continuous and the norm dual of MΦ∗(F) is isometric to LΦ(F), endowed
with the Orlicz norm ‖ · ‖LΦ(F). Consider a ball

Br(F) :=
{
X ∈ LΦ(F) |‖ X ‖LΦ(F)≤ r

}
and a sequence (Xn)n ⊆ Br(F). Observe that, by Banach Alaoglu Theorem ([5]
Theorem 6.21) Br(F) is w∗-compact (i.e. σ

(
LΦ(F),MΦ∗(F)

)
-compact), hence Br(F)

is also w∗-closed, as (LΦ(F), σ
(
LΦ(F),MΦ∗(F)

)
is a Hausdorff topological space. We

now prove that there exists a subsequence of (Xn)n converging in the w∗-topology to
an element X ∈ LΦ(F), which then implies the thesis, as Br(F) is w∗-closed.
Set G := σ((Xn)n) and observe that G is countably generated ([55] page 10, Chap.
I, for definitions and page 26, Chap. 2, in the proof of Theorem 24). Then a stan-
dard argument yields that MΦ(G) and MΦ∗(G) are separable. Therefore, the w∗-
topology σ(LΦ(G),MΦ∗(G)) on balls Br(G) ⊆ LΦ(G), is metrizable (Theorem 6.30
[5]). Applying again the Banach Alaoglu Theorem, we deduce that the balls Br(G)
are also σ(LΦ(G),MΦ∗(G)) compact, hence sequentially σ(LΦ(G),MΦ∗(G))-compact,
by metrizability of the w∗-topology on Br(G) ([5] Theorem 6.30). As Φ is convex and
increasing on R+, by Jensen inequality we obtain

EP

[
Φ

(
1

λ
|EP [X|G]|

)]
≤ EP

[
Φ

(
1

λ
|X|
)]

and it follows that
‖EP [X|G]‖Φ(G) ≤ ‖X‖Φ(F) ,

where

‖X‖Φ(·) := inf

(
λ > 0 | EP

[
Φ

(
1

λ
|X|
)]
≤ 1

)
is the Luxemburg norm in LΦ(·). Consider the conditional operator T

T :
(
LΦ(F), ‖ · ‖LΦ(F)

)
→
(
LΦ(G), ‖ · ‖LΦ(G)

)
X 7→ T (X) := EP [X|G] .

By the equivalence of the Orlicz norm with the Luxemburg norm, T is then well
defined and norm-continuous:

‖ T (X) ‖LΦ(G)≤ K ‖ X ‖LΦ(F) (2.104)

for some positive constant K. As Xn ∈ LΦ(F) and Xn is G-measurable, Xn ∈ LΦ(G).
As Xn ∈ Br(F), then, Xn = EP [Xn|G] = T (Xn) ∈ BKr(G), by (2.104). By the
sequential compactness of BKr(G) proven above, we can extract a subsequence (Xnk)k
that is σ(LΦ(G),MΦ∗(G))-converging to some X ∈ LΦ(G).
Now for every W ∈ MΦ∗(F) we have that EP [W |G] ∈ MΦ∗(G) (because of the in-
equality EP [Φ∗ (λ |EP [W |G]|)] ≤ EP [Φ∗ (λ |W |)]), and from (Xnk)k → X with respect
to σ(LΦ(G),MΦ∗(G)) we obtain:

EP [XnkW ] = EP [EP [XnkW |G]] =

EP [XnkEP [W |G]]→n EP [XEP [W |G]] = EP [XW ] ,

so that
(Xnk)k → X in σ(LΦ(F),MΦ∗(F)).
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2.6.5 On Komlós Theorem

We now recall the original Komlós Theorem:

Theorem 2.6.11 (Komlós). Let (fn)n ⊆ L1(P) be a sequence with bounded L1(P)-
norms. Then there exists a subsequence (fnk)k and a g again in L1(P) such that for
any further subsequence the Césaro means satisfy:

1

N

∑
i≤N

fnki → g P− a.s. as N → +∞ .

Proof. See [103] Theorem 1a.

Corollary 2.6.12. Let a sequence (Yn)n be given in L1(P1)× · · · ×L1(PN) such that
for probabilities P1, . . . ,PN � P

sup
n

N∑
j=1

EP

[∣∣Y j
n

∣∣ dPj
dP

]
<∞ .

Then there exists a subsequence (Ynh)h and an Ŷ ∈ L1(P1) × · · · × L1(PN) such that
every further subsequence (Ynhk )k satisfies

1

K

K∑
k=1

Y j
nhk
→ Ŷ j Pj − a.s. ∀ j = 1, . . . N as K → +∞ .

Proof. We suppose N = 2, the argument can be iterated. The result follows from
a diagonal argument: take the first component, we have a subsequence and an Ŷ 1

s.t. each further subsequence has P1−a.s. converging Césaro means as in Theorem
2.6.11. Now take this sequence in place of the one we began with, and do the same
for the second component. Notice that in the end we get a subsequence for the second
component too, and the corresponding indices yield a subsequence of the one we
extracted for the first component. The claim follows.

2.6.6 Integrability Issues

The following is a variant of Theorem 1.5.4 in Chapter 1.

Theorem 2.6.13. Under Standing Assumption I and Assumption 2.3.5, let K ⊆MΦ

be a convex cone such that for all i, j ∈ {1, . . . , N} ei−ej ∈ K and consider the subset
of KΦ defined by

SeV :=

{
Q | Q ∼ P,

dQ
dP
∈ KΦ, EP

[
V

(
dQ
dP

)]
< +∞,

N∑
j=1

EQj
[
kj
]
≤ 0 ∀k ∈ K

}
.

Suppose Ŷ ∈ (L0(P))N satisfies:

1. for some Q̂ ∈ SeV[
Ŷ j dQ̂j

dP

]N
j=1

∈ (L1(P))N ,
N∑
j=1

EP

[
Ŷ j dQ̂j

dP

]
= 0 .
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2. for all Q ∈ SeV
N∑
j=1

Ŷ j dQj

dP
∈ L1(P), EP

[
N∑
j=1

Ŷ j dQj

dP

]
≤ 0 .

Then Ŷ is in the L1(Q̂1) × · · · × L1(Q̂N)-norm closure of K. In particular, Ŷ is in
the closure of K under convergence in probability P .

Proof. We first prove by contradiction that Ŷ belongs to the L1(Q̂)-norm closure of

K − L∞+ (Q̂) = K − (L∞+ (P))N (equality holds by equivalence of the probabilities).

Suppose this were not the case. Then Ŷ /∈ clQ̂
(
K − (L∞+ (P))N

)
, which is norm closed

and convex (being closure of a convex sets). By convexity, clQ̂
(
K − (L∞+ (P))N

)
is also

closed in the topology induced on L1(Q̂1)× · · · × L1(Q̂N) by the pairing(
L1(Q̂1)× · · · × L1(Q̂N), L∞(Q̂1)× · · · × L∞(Q̂N)

)
.

As a consequence, we can apply Hahn-Banach Separation Theorem to get a ξ ∈
L∞(Q̂) = (L∞(P))N with

0 = sup
k∈K−(L∞+ (P))N

EP

[
N∑
j=1

ξjkj
dQ̂j

dP

]
< EP

[
N∑
j=1

ξjŶ j dQ̂j

dP

]
. (2.105)

We now work componentwise. First observe that

[−1ξj<0]Nj=1 ∈ 0− (L∞+ (P))N ⊆ K − (L∞+ (P))N

so that ξj ≥ 0 Q̂j (hence P)-a.s. for every j = 1, . . . , N . Hence ξj dQ̂j
dP ≥ 0 P-a.s. for

every j = 1, . . . , N .
Moreover since ei − ej ∈ K for all i, j ∈ {1, . . . , N} we have

EP

[
ξ1 dQ̂1

dP

]
= · · · = EP

[
ξN

dQ̂N

dP

]
. (2.106)

It follows that for every j = 1, . . . , N

P

(
ξj

dQ̂j

dP
> 0

)
> 0

since, if this were not the case, one of the values in the chain in Equation (2.106)
would be 0, hence all of them would be 0. Non negativity would then imply that

ξ1 dQ̂1

dP = · · · = ξN dQ̂N
dP = 0, which yields a contradiction with strict inequality in

Equation (2.105). We conclude that the vector

dQj
1

dP
:=

1

EP

[
ξj dQ̂j

dP

]ξj dQ̂j

dP
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is well defined and identifies a vector of probability measures Q1 = [Q1
1, . . . ,QN

1 ]� P.

Observe that ξ ∈ (L∞(P))N and dQ̂
dP ∈ KΦ implies

dQ1

dP
∈ KΦ .

Equations (2.105) and (2.106) yield

sup
k∈K

(
N∑
j=1

EP

[
kj

dQj
1

dP

])
≤ 0 < EP

[
N∑
j=1

Ŷ j dQj
1

dP

]
. (2.107)

We observe that if we could prove Q1 ∈ SeV , we would get a contradiction with Item 2
in the hypothesis. However this needs not to be true, and some more work is necessary,
as shown in the subsequent arguments.
Let us now fix k ∈ {1, . . . , N}, and observe that since Q̂ ∈ SeV we have Q̂ ∼ P, and

for Q1 above we have Qk
1 � Q̂k,

dQk1
dQ̂k

= ξk ∈ L∞(Q) = (L∞(P))N . Take λ ∈ [0, 1) and

define Qλ ∼ P via

dQk
λ

dP
:= (1− λ)

dQ̂k

dP
+ λ

dQk
1

dP
.

It is easy to check that

0 < 1− λ ≤ dQk
λ

dQ̂k
≤ λ

dQk
1

dQ̂k
+ (1− λ) .

Apply Lemma 2.6.7 Item 2 with gk =
dQkλ
dQ̂k

and gk dQ̂k
dP =

dQkλ
dP , k = 1, . . . , N , to deduce

from EP

[
V
(

dQ̂
dP

)]
< +∞ that

EP

[
V

(
dQλ

dP

)]
< +∞, ∀λ ∈ [0, 1) .

Moreover by Q̂ ∈ SeV and Equation (2.107)

N∑
j=1

EP

[
kj

dQj
λ

dP

]
≤ 0 ∀k ∈ K, ∀λ ∈ [0, 1)

which yields Qλ ∈ SeV , ∀λ ∈ [0, 1). At the same time

EP

[
N∑
j=1

Ŷ j dQj
λ

dP

]
= (1− λ)EP

[
N∑
j=1

Ŷ j dQ̂j

dP

]
+ λEP

[
N∑
j=1

Ŷ j dQj
1

dP

]

−−→
λ→1

EP

[
N∑
j=1

Ŷ j dQj
1

dP

]
Eq.(2.105)
> 0 ,

which is a contradiction (with Item 2 in the hypotheses).
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Now we prove that in fact Ŷ ∈ clQ̂(K): observe that there exists sequences (kn)n ⊆ K

and (fn)n ∈ (L∞+ (P))N such that (kn − fn)→ Ŷ in L1(Q̂)-norm and P-almost surely.
Now we have

EP

[
N∑
j=1

kjn
dQ̂j

dP

]
− EP

[
N∑
j=1

f jn
dQ̂j

dP

]

= EP

[
N∑
j=1

(
kjn − f jn

) dQ̂j

dP

]
→n EP

[
N∑
j=1

Ŷ j dQ̂j

dP

]
= 0

(2.108)

by Item 1 in the hypothesis. As Q̂ ∈ SeV the first sum in LHS of (2.108) is non
positive, while the second summation is non negative (fn ∈ (L∞+ (P))N). We then get
that both these summations tend to zero. In particular

EP

[
N∑
j=1

f jn
dQ̂j

dP

]
= EP

[
N∑
j=1

∣∣f jn∣∣ dQ̂j

dP

]
→ 0 as n→ +∞ .

Thus fn →n 0 in L1(Q̂)-norm, which gives us that Ŷ is the L1(Q̂)-norm limit of a

sequence in K. Finally, Ŷ is in the closure under convergence in probability P of K:
just extract a subsequence (knh)h with kjnh → Ŷ j Q̂j − a.s. for every j = 1, . . . , N and

notice that Q̂j ∼ P for each j = 1, . . . , N .
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Chapter 3

Dynamic Systemic Risk Measures

In Chapter 3 we investigate to which extent the relevant features of (static) Systemic
Risk Measures can be extended to a conditional setting. After providing a general
dual representation result of the form

ρ(X) = max
Q∈M1

Q=[Q1,...,QN ]

(
N∑
j=1

EQj
[
−Xj

∣∣G]− ρ∗(−Q)

)
X ∈ (L∞(Ω,F ,P))N

where

ρ∗(−Q) = sup
X∈(L∞(Ω,F ,P))N

(
N∑
j=1

EQj
[
−Xj

∣∣G]− ρ(X)

)
we analyze in greater detail Conditional Shortfall Systemic Risk Measures. In the
particular case of exponential preferences, we provide explicit formulas that also al-
low us to show a time consistency property. Finally, we provide an interpretation of
the allocations associated to Conditional Shortfall Systemic Risk Measures as suit-
ably defined equilibria. Conceptually, the generalization from static to Conditional
Systemic Risk Measures can be achieved in a natural way, even though the proofs
become more technical than in the unconditional framework.
As to the structure of Chapter 3, in Section 3.1 we recap some results for the static
setup and present the general conditional setup in Section 3.2, where we also show
a general dual representation result (Theorem 3.2.9). In Section 3.3 we recall some
previously obtained results on multivariate utility functions and Orlicz spaces, while
Section 3.4 collects definitions and results on Conditional Shortfall Systemic Risk
Measures (Definition 3.4.3 and Theorem 3.4.4). The case of exponential utility func-
tions is treated in Section 3.5, where we provide explicit formulas (Theorem 3.5.6)
and we study time consistency properties (Theorem 3.5.8). Finally, in Section 3.6
we generalize mSORTE to the conditional setup and study its relations with Con-
ditional Shortfall Systemic Risk Measures and its time consistency properties in the
exponential case. Section 3.7 is the Appendix to Chapter 3.

3.1 Static Setup

We fix a probability space (Ω,F ,P). We take two vector subspaces of (L1(Ω,F ,P))N ,
call them LF , L

∗.
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Definition 3.1.1. We say that a proper convex functional F : LF → R is nicely
representable if Fenchel-Moreau Theorem holds for F with respect to the σ(LF , L

∗)
topology and in the representation of F the supremum is a maximum, that is

F (X) = max
Y ∈L∗

(
N∑
j=1

EP
[
XjY j

]
− F ∗(Y )

)
∀X ∈ LF

where

F ∗(Y ) = sup
X∈LF

(
N∑
j=1

EP
[
XjY j

]
− F (X)

)
Y ∈ L∗ .

Remark 3.1.2. Some sufficient conditions for nice representability are:

1. LF = (L∞(Ω,F ,P))N L∗ = (L1(Ω,F ,P))N , F (·) is monotone, convex, monetary
and satisfies the Lebesgue property: see [77], Corollary 4.35 for N = 1 and
Theorem 3.1.4 for N > 1.

2. LF = MΦ 6= ∅, L∗ = LΦ∗ (see Section 2.2 for the definitions), F (·) is monotone,
convex, monetary: in this case F is real valued and Extended Namioka-Klee
Theorem of [23] applies.

We will now extend classical results to our systemic setup. Only slight modifications
are needed in the proofs, but we add them for sake of completeness.

Definition 3.1.3. A functional ρ : (L∞(Ω,F ,P))N → R will be called (static) Sys-
temic Risk Measure if it satisfies: Monotonicity, that is X ≤ Y componentwise
⇒ ρ(X) ≥ ρ(Y ) , Convexity, that is 0 ≤ λ ≤ 1 ⇒ ρ(λX + (1 − λ)Y ) ≤
λρ(X) + (1 − λ)ρ(Y ) and Monetary property (or Cash Additivity), that is X ∈
(L∞(Ω,F ,P))N , c ∈ RN ⇒ ρ(X + c) = ρX −

∑N
j=1 c

j.

We will denote by ba1 the set of N -dimensional vectors of finitely additive functionals
on F taking values in [0, 1] and taking value 1 on Ω, and by M1 the set of vectors
of probability measures {Q = [Q1, . . . ,QN ] | Q� P}.We can now state the following
Theorem, which generalizes well known results in the one dimensional case (see [77]).

Theorem 3.1.4. Let ρ : (L∞(Ω,F ,P))N → R be a (static) Systemic Risk Mea-
sure. Suppose additionally that ρ is continuous from below, that is Xn ↑n X ∈
(L∞(Ω,F ,P))N for a sequence (Xn)n ∈ (L∞(Ω,F ,P))N implies ρ(X) = limn ρ(Xn).
Then ρ has the following dual representation:

ρ(X) = max
Q∈M1

(
N∑
j=1

EQj
[
−Xj

]
− ρ∗(−Q)

)
X ∈ (L∞(Ω,F ,P))N (3.1)

where

ρ∗(−Q) = sup
X∈(L∞(Ω,F ,P))N

(
N∑
j=1

EQj
[
−Xj

]
− ρ(X)

)
.

Proof. See Section 3.7.2.
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Corollary 3.1.5. For Y ∈ (L1(Ω,F ,P))N we set

ρ∗(Y ) := sup
X∈(L∞(Ω,F ,P))N

(EP [XY ]− ρ(X)) .

In the hypotheses and notation of Theorem 3.1.4, we have

ρ(X) = max
Y ∈(L1(Ω,F ,P))N

(EP [XY ]− ρ∗(Y )) .

Proof. See Section 3.7.2.

3.2 Conditional Systemic Risk Measures

3.2.1 Setup and Notation

We let G ⊆ F be a sub sigma algebra. Throughout all Chapter 3 we will often need
to change underlying sigma algebras. In order to avoid unnecessarily heavy notation,
we will explicitly specify the one or the other only when some confusion might arise.
For example, L∞(F), L∞(G) stand for L∞(Ω,F ,P) and L∞(Ω,G,P) respectively.

Remark 3.2.1. In the following (MON) and (DOM) are references to Monotone and
Dominated Convergence Theorem respectively. (cMON) and (cDOM) refer to their
conditional counterparts. We will use without explicit mention the properties of
essential suprema (and essential infima) collected in Section 3.7.1.

Definition 3.2.2. LF is G-decomposable if (L∞(F))N ⊆ LF and for any vectors
Y ∈ (L∞(G))N and X ∈ LF , the vector Z defined as Zj = XjY j, j = 1, . . . , N
belongs to LF .

Remark 3.2.3. Observe that by decomposability whenever A ∈ G and X, Y ∈ LF we
also have X1A+Y 1Ac ∈ LF . We stress the fact that G-decomposability is a very mild
requirement, which is clearly satisfied for example if LF = (Lp)N for some p ∈ [1,+∞]
or LF is an Orlicz space (see Section 2.2).

Definition 3.2.4. A subset C ⊆ LF is:

• G−conditionally convex if for any λ ∈ L0(G), 0 ≤ λ ≤ 1 and any X, Y ∈ C
λX + (1− λ)Y ∈ C.

• a G−conditional cone if for any 0 ≤ λ ∈ L∞(G) and any X ∈ C, λX ∈ C.

• closed under G− truncation if for any Y ∈ C there exists kY ∈ N and a
ZY ∈ L∞(F) such that

∑N
j=1 Z

j
Y =

∑N
j=1 Y

j and for any k ≥ kY , k ∈ N

Y(k) := Y 1⋂
j{|Y j |≤k} + ZY 1⋃

j{|Y j |>k} ∈ C. (3.2)

We will explicitly specify the sigma algebra (G in the notation above) with respect to
which the properties are required to hold only when some confusion might arise.

Definition 3.2.5. A map ρG (·) : LF → L1(G) is a Conditional Systemic Risk
Measure (CSRM) if it satisfies
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1. Monotonicity, that is

X ≤ Y componentwise P− a.s. ⇒ ρG (X) ≥ ρG (Y ) P− a.s. (3.3)

2. Conditional Convexity, that is for every X, Y ∈ LF

0 ≤ λ ≤ 1, λ ∈ L∞(G) ⇒ ρG (λX + (1− λ)Y ) ≤ λρG (X)+(1−λ)ρG (Y ) P−a.s.
(3.4)

3. Conditional G-Additivity (or conditional Monetary property), that is

X ∈ (L∞(F))N , Y ∈ (L∞(G))N ⇒ ρG (X + Y ) = ρG (X)−
N∑
j=1

Y j P− a.s.

(3.5)

Definition 3.2.6. For the particular choice LF = (L∞(F))N we say that a CSRM
ρG (·) : (L∞(F))N → L0(G) is

• continuous from above if for any sequence (Xn)n ⊆ (L∞(F))N and X ∈
(L∞(F))N such that for each j = 1, . . . , N Xj

n ↓n Xj we have ρG (Xn) ↑n
ρG (X) P−a.s.

• continuous from below if for any sequence (Xn)n ⊆ (L∞(F))N and X ∈
(L∞(F))N such that for each j = 1, . . . , N Xj

n ↑n Xj we have ρG (Xn) ↓n
ρG (X) P−a.s.

• Lebesgue continuous (or that ρG (·) has the Lebesgue property) if for any se-
quence (Xn)n ⊆ (L∞(F))N and X ∈ (L∞(F))N such that for each j = 1, . . . , N
supn ‖Xj

n‖∞ < +∞ and Xj
n →n X

j P−a.s. we have ρG (Xn)→n ρG (X) P−a.s.

Remark 3.2.7. Observe that continuity from above and continuity from below of a
CSRM ρG (·) yield the Lebesgue property. This can be seen, analogously to the
classical case N = 1, as follows: assuming continuity from above and from below
(c.a. and c.b. respectively in short), take a sequence (Xn)n ⊆ (L∞(F))N and X ∈
(L∞(F))N such that for each j = 1, . . . , N supn ‖Xj

n‖∞ < +∞ and Xj
n →n X

j P−a.s.
Then we have

lim inf
n

ρG (Xn) ≥ lim
n
ρG

(
sup
N≥n

XN

)
c.a.
= ρG

(
inf
n

sup
N≥n

XN

)
= ρG (X)

where the suprema and infima for vectors are taken componentwise. Similarly using
c.b. we get ρG (X) ≥ lim supn ρG (Xn). These inequalities together yield

ρG (X) ≥ lim sup
n

ρG (Xn) ≥ lim inf
n

ρG (Xn) ≥ ρG (X)

and the convergence follows. Also, the norm boundedness of the sequence together
with (3.5) implies that the convergence ρG (Xn)→n ρG (X) is dominated in L∞(G).
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3.2.2 Dual Representation of Conditional Systemic Risk Mea-
sures

This section follows the lines of the scalarization procedure in [57] and [112].

Assumption 3.2.8. We assume that LF is G-decomposable and that
∑N

j=1X
jZj ∈

L1(F) for any X ∈ LF , Z ∈ L∗.

Theorem 3.2.9. Suppose Assumption 3.2.8 holds and ρG (·) : LF → L1(G) satisfies
Monotonicity, Conditional Convexity and Conditional Additivity (that is, ρG (·) is a
CSRM). Suppose ρ0(·) := EP [ρG (·)] : LF → R is nicely representable.
Define

ρ∗G(Y ) := ess sup
X∈LF

(
N∑
j=1

EP
[
XjY j

∣∣G]− ρG (X)

)
. (3.6)

Then ρG (·) admits the following dual representation:

ρG (X) = ess sup
Y ∈L∗

(
N∑
j=1

EP
[
XjY j|G

]
− ρ∗G(Y )

)
. (3.7)

Furthermore, there exists Ŷ ∈ L∗ such that

Ŷ j ≤ 0, EP

[
Ŷ j
∣∣∣G] = −1 ∀ j = 1, . . . , N ,

ρG (X) =
N∑
j=1

EP

[
XjŶ j

∣∣∣G]− ρ∗G(Ŷ ) . (3.8)

Proof.
STEP 1: ρG (·) has the local property, i.e. for any A ∈ G and X ∈ LF ρG (X) 1A =
ρG (1AX) 1A.
Observe that

ρG (1AX)
(3.4)

≤ ρG (X) 1A + ρG (0) 1Ac

(3.4)

≤ 1A (ρG (1AX) 1A + ρG (X1Ac) 1Ac) + ρG (0) 1Ac = ρG (1AX) 1A + ρG (0) 1Ac ,

then multiply by 1A.

STEP 2: for every Y ∈ L∗ the set {
∑N

j=1 EP [XjY j|G]− ρG (X) , X ∈ LF} is upward
directed.
This can be checked directly using STEP 1: for X,Z ∈ LF we set

ξX :=
N∑
j=1

EP
[
XjY j

∣∣G]− ρG (X) , ξZ :=
N∑
j=1

EP
[
ZjY j

∣∣G]− ρG (Z)

A := {ξX ≥ ξZ} , W := X1A + Z1Ac .

By Remark 3.2.3 W ∈ LF and by STEP 1

ρG (W ) 1A = ρG (W1A) 1A = ρG (X1A) 1A = ρG (X) 1A
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and an analogous argument can be applied with Z and Ac. It is then immediate to
see that

N∑
j=1

EP
[
W jY j

∣∣G]− ρG (W ) = ξX1A + ξZ1Ac = max(ξX , ξY )

proving the claim.
Observe that as a consequence there exists a sequence (Xn)n in LF such that

N∑
j=1

EP
[
Xj
nY

j
∣∣G]− ρG (Xn) ↑n ess sup

{
N∑
j=1

EP
[
XjY j

∣∣G]− ρG (X) , X ∈ LF

}

and in particular

EP

[
ess sup

{
N∑
j=1

EP
[
XjY j

∣∣G]− ρG (X) , X ∈ LF

}]

(MON)
= lim

n
EP

[
N∑
j=1

EP
[
Xj
nY

j
∣∣G]− ρG (Xn)

]
≤ sup

X∈LF

(
N∑
j=1

EP
[
XjY j

]
− EP [ρG (X)]

)
.

This allows us to state that

EP
[
ρ∗G(Y )

]
≤ ρ∗0(Y ) ∀Y ∈ L∗ . (3.9)

STEP 3: dual representation for ρ0(·) := EP [ρG (·)].

Consider the conjugate of ρ0:

ρ∗0(Y ) := sup
X∈LF

(
N∑
j=1

EP
[
XjY j

]
− ρ0(X)

)
.

By nicely representability assumption

ρ0(X) = max
Y ∈L∗

(
N∑
j=1

EP
[
XjY j

]
− ρ∗0(Y )

)
=

N∑
j=1

EP

[
XjŶ j

]
− ρ∗0(Ŷ ) .

STEP 4: EP
[
ρ∗G
]

= ρ∗0 on L∗.

By (3.9) we have EP
[
ρ∗G
]
≤ ρ∗0. At the same time ρ∗G(Y ) ≥

∑N
j=1 EP [XjY j|G]−ρG (X)

for all X ∈ LF . Taking expectations and a supremum over X ∈ LF in RHS of the
expression above, we get the inequality EP

[
ρ∗G
]
≥ ρ∗0.

STEP 5: we prove (3.7) and (3.8).

Observe that trivially ρG (X) ≥ ess supY ∈L∗
(∑N

j=1 EP [XjY j|G]− ρ∗G(Y )
)

by defini-

tion of ρ∗G. In particular then

ρG (X) ≥
N∑
j=1

EP

[
XjŶ j

∣∣∣G]− ρ∗G(Ŷ ) . (3.10)
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Additionally we have for Ŷ obtained in STEP 3 (which obviously depends on X)

EP [ρG (X)]
STEP 3

=
N∑
j=1

EP

[
XjŶ j

]
− ρ∗0(Ŷ )

STEP 4
= EP

[
N∑
j=1

EP

[
XjŶ j

∣∣∣G]− ρ∗G(Ŷ )

]
.

This, together with (3.10), proves the claim.

STEP 6: Ŷ j ≤ 0 and EP

[
Ŷ j
∣∣∣G] = −1 for every j = 1, . . . , N .

Recall that ek is the k−th element of the canonical basis of RN . By definition of ρ∗G
and (3.3) we have

ρ∗G(Ŷ ) ≥ λ
N∑
j=1

EP

[
1{Ŷ j≥0}Ŷ

j
∣∣∣G]− ρG (0) , ∀ 0 ≤ λ ∈ L∞(G)

and by (3.5)

ρ∗G(Ŷ ) ≥
N∑
j=1

EP

[
(γejk)Ŷ

j|G
]
− ρG (γek) = γ

(
EP

[
Ŷ k
∣∣∣G]+ 1

)
− ρG (0) , ∀ γ ∈ L∞(G) .

By (3.8) ρ∗G(Ŷ ) =
∑N

j=1 EP

[
XjŶ j

∣∣∣G] − ρG (X) ∈ L1, hence from the inequalities

above we get a contradiction unless for every j = 1, . . . , N we have Ŷ j ≤ 0 and

EP

[
Ŷ j
∣∣∣G] = −1.

Corollary 3.2.10. Under the hypotheses of Theorem 3.2.9, assume additionally that
ρG (X) ∈ LF for any X ∈ LF . Define the set

QG :=

{
Q = [Q1, . . . ,QN ]� P | dQj

dP
∈ L∗, EP

[
dQ
dP

∣∣∣∣G] = 1 ∀ j = 1, . . . , N

}
(3.11)

and set

α(Q) := ess sup
X∈LF ,ρG(X)≤0

N∑
j=1

EQj [−X|G] , X ∈ LF . (3.12)

Then ρG (·) admits the following dual representation:

ρG (X) = ess sup
Q∈QG

(
N∑
j=1

EQj
[
−Xj

∣∣G]− α(Q)

)
. (3.13)

Furthermore, there exists Q̂ ∈ QG such that ρG (X) =
∑N

j=1 EQ̂j [−Xj|G]− α(Q̂).

Proof. For a given X ∈ LF we see that setting dQ̂
dP := −Ŷ for Ŷ provided in Theorem

3.2.9 we have Q̂ ∈ QG and

N∑
j=1

EQ̂j [−X|G]− ρ∗G

(
−dQ̂

dP

)
STEP 6

=
N∑
j=1

EP

[
XjŶ j

∣∣∣G]− ρ∗G(Ŷ )
STEP 5

= ρG (X)
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(3.7)

≥ ess sup
Q∈QG

(
N∑
j=1

EP

[
Xj

(
−dQj

dP

)∣∣∣∣G]− ρ∗G (−dQ
dP

))
≥

N∑
j=1

EQ̂j [−X
j|G]−ρ∗G

(
−dQ̂

dP

)
.

Also, for every Q ∈ QG

ρ∗G

(
−dQ

dP

)
:= ess sup

X∈LF

(
N∑
j=1

EP

[
Xj

(
−dQj

dP

)∣∣∣∣G]− ρG (X)

)

Def.QG
= ess sup

X∈LF

(
N∑
j=1

EP

[
Xj

(
−dQj

dP

)∣∣∣∣G]+
N∑
j=1

EP

[
1

N
ρG (X)

(
−dQj

dP

)∣∣∣∣G]
)

= ess sup
X∈LF

(
N∑
j=1

EP

[(
Xj +

1

N
ρG (X)

)(
−dQj

dP

)∣∣∣∣G]
)

≤ ess sup
Z∈LF ,ρG(Z)≤0

(
N∑
j=1

EP

[
Zj

(
−dQj

dP

)∣∣∣∣G]
)

≤ ess sup
Z∈LF ,ρG(Z)≤0

N∑
j=1

(
EP

[
Zj

(
−dQj

dP

)∣∣∣∣G]− 1

N
ρG (Z)

)

≤ ess sup
Z∈LF

(
N∑
j=1

EP

[
Zj

(
−dQj

dP

)∣∣∣∣G]− ρG (Z)

)
= ρ∗G

(
−dQ

dP

)
.

This implies that

α(Q) := ess sup
X∈LF ,ρG(X)≤0

N∑
j=1

EQj
[
−Xj

∣∣G]
= ess sup

Z∈LF ,ρG(Z)≤0

(
N∑
j=1

EP

[
Zj

(
−dQj

dP

)∣∣∣∣G]
)

= ρ∗G

(
−dQ

dP

) (3.14)

for all Q ∈ QG, and the proof of the corollary is complete.

The assumption ρG (·) ∈ LF in Corollary 3.2.10 is satisfied by the Conditional Shortfall
Systemic Risk Measure (see Definition 3.4.3 and Theorem 3.4.4).

3.3 Multivariate Utility Functions and Induced Or-

licz Spaces

3.3.1 Multivariate Utility Functions

For the properties and technical results on multivariate utility functions and multi-
variate Orlicz spaces we will greatly rely on the work in Sections 2.1, 2.2 and 2.6 of
Chapter 2.
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The following assumption, which is the same of Standing Assumption I in Chapter 2,
holds true throughout Chapter 3 without further mention.

Standing Assumption I. We will consider multivariate utility functions in the form

U(x) :=
N∑
j=1

uj(x
j) + Λ(x) (3.15)

where u1, . . . , uj : R → R are univariate utility function and Λ : RN → R is con-
cave, increasing with respect to the partial componentwise order and bounded from
above. Inspired by Asymptotic Satiability as defined in Definition 2.13 [38] we will
furthermore assume that for every ε > 0 there exist a point zε ∈ RN and a selection
νε ∈ ∂Λ(zε), such that

∑N
j=1 |νε| < ε .

We also assume the Inada conditions

lim
x→+∞

uj(x)

x
= 0 and lim

x→−∞

uj(x)

x
= +∞ ∀ j = 1, . . . , N

and that, without loss of generality, uj(0) = 0 ∀ j = 1, . . . , N .

Observe again that such multivariate utility function is split in two components: the
sum of single agent utility functions and a universal part Λ. As Λ is not necessarily
strictly convex nor strictly increasing, we may choose Λ ≡ 0, which corresponds to
the case analyzed in [20] for the non conditional case.

3.3.2 Multivariate Orlicz Spaces

We recall that (see Definition 2.2.1) a function Φ : (R+)N → R is said to be a
multivariate Orlicz function if it null in 0, convex, continuous, increasing in the usual
partial order and satisfies: there exist A > 0, b constants such that Φ(x) ≥ A ‖x‖ −
b ∀x ∈ (R+)N .

For a given multivariate Orlicz function Φ we define, as in [7], the Orlicz space and
the Orlicz Heart respectively (recall Section 2.2).

LΦ :=
{
X ∈ L0

(
(Ω,F ,P); [−∞,+∞]N

)
| ∃λ ∈ (0,+∞),EP [Φ(λ |X|)] < +∞

}
MΦ :=

{
X ∈ L0

(
(Ω,F ,P); [−∞,+∞]N

)
| ∀λ ∈ (0,+∞),EP [Φ(λ |X|)] < +∞

}
where |X| := [|Xj|]Nj=1 is the componentwise absolute value. We recall the Luxemburg
norm as the functional

‖X‖Φ := inf

{
λ > 0 | EP

[
Φ

(
1

λ
|X|
)]
≤ 1

}
defined on L0

(
(Ω,F ,P); [−∞,+∞]N

)
and taking values in [0,+∞].
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3.4 Conditional Shortfall Systemic Risk Measures

on (L∞(F))N

Given a sub sigma algebra G ⊆ F we introduce the set

DG :=

{
Y ∈ (L0(Ω,F ,P))N |

N∑
j=1

Y j ∈ L0(Ω,G,P)

}
. (3.16)

We would like to consider as the set of admissible allocations a subset

BG ⊆ DG

satisfying appropriate conditions (see the Standing Assumption II).
At the same time, we observe that the constraints in (3.16) can be interpreted saying
that the risk can be shared by all the agents in the single group I := {1, · · · , N}. This
can be generalized by introducing the set of constraints corresponding to a cluster of
agents conditional on the information in G, inspired by an example in [20] for the
static case.

Definition 3.4.1. For h ∈ {1, · · · , N} , let I := (Im)m=1,...,h be some partition of
{1, · · · , N}. Then we set

B(I)
G :=

{
Y ∈ (L0(F))N | ∃ d = (d1, · · · , dh) ∈ (L0(G))h |

∑
i∈Im

Y i = dm,m = 1, · · · , h

}
,

(3.17)

B(I),∞
G :=

{
Y ∈ (L0(F))N | ∃ d = (d1, · · · , dh) ∈ (L∞(G))h |

∑
i∈Im

Y i = dm,m = 1, · · · , h

}
.

(3.18)

We stress that the family B(I)
G admits two extreme cases:

(i) when we have only one group h = 1 then B(I)
G = DG is the largest possible class,

corresponding to risk sharing among all agents in the system;

(ii) on the opposite side, the strongest restriction occurs when h = N, i.e., we

consider exactly N groups, and in this case B(I)
G = (L0(G))N corresponds to no

risk sharing.

Suppose now a partition I has been fixed. We will consider a subset

BG ⊆ B(I)
G

and note that each component of Y ∈ BG is required to be F -measurable, while the

sums
∑N

i∈Im Y
i are G-measurable, and so is consequently

∑N
j=1 Y

j. Thus BG ⊆ B(I)
G ⊆

DG.
We define

CG := BG ∩ B(I,∞)
G ∩ (L1(Ω,F ,P))N . (3.19)

We add this second Standing Assumption, which again holds true throughout Chapter
3 without further mention.
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Standing Assumption II. BG is closed in probability, it is conditionally convex and
it is a conditional cone. Moreover BG+(L0(G))N = BG and the set CG is closed under
G-truncation. We finally consider a B ∈ L∞(G) with ‖B‖∞ < supz∈RN U(z) ≤ +∞.

Example 3.4.2. It is easily seen that taking BG = B(I)
G and consequently CG = B(I,∞)

G ∩
(L1(Ω,F ,P))N Standing Assumption II is satisfied. Closedness under truncation in
particular is verified as follows: for Y ∈ CG, for j ∈ Im we can take Zj

Y = 1
|Im|
∑

i∈Im Y
i

where |Im| is the cardinality of Im. Then it is easily verified that Y(k) defined as in
(3.2) satisfies for every m = 1, . . . , h

∑
i∈Im

Y i
(k) =

(∑
i∈Im

Y i

)
1⋂

j{|Y j |≤k} +

(∑
i∈Im

(
1

|Im|
∑
i∈Im

Y i

))
1⋃

j{|Y j |>k} =
∑
i∈Im

Y i ∈ L∞G

which proves that Y(k) ∈ B(I),∞
G = CG and that also

N∑
j=1

Y j
(k) =

h∑
m=1

∑
i∈Im

Y i
(k) =

h∑
m=1

∑
i∈Im

Y i =
N∑
j=1

Y j .

Finally, we point out that we can cover the setup of [20] in our framework (clearly,
here we work with bounded positions and not in an Orlicz setup). Indeed, we may
take the trivial partition I = {{1, . . . , N}} and, to cover the static case, we may
choose G = {∅,Ω}. Then we select the set BG equal to the set C0, defined in [20],
which is assumed to be closed under truncation in the sense of [20] Definition 4.18.
Then our assumptions here are satisfied as well.

Definition 3.4.3. We define the functional

ρ∞G (·) : (L∞(Ω,F ,P))N → L0 ((Ω,G,P); [−∞,+∞])

as

ρ∞G (X) := ess inf

{
N∑
j=1

Y j | Y ∈ CG ∩ (L∞(F))N ,EP [U (X + Y )|G] ≥ B

}
(3.20)

which we call Conditional Shortfall Systemic Risk Measure associated to the
multivariate utility function U and the set of allocations CG.

We state now our main result concerning Conditional Shortfall Systemic Risk Mea-
sures. The proof, which is quite lengthy, is split in separate results in the following
Section 3.4.1.

Theorem 3.4.4. The functional ρ∞G (·) satisfies:

1. ρ∞G (X) ∈ L∞(G) for all X ∈ (L∞(F))N . ρ∞G (·) is monotone (3.3), conditionally
convex (3.4) and conditionally monetary (3.5). It is also continuous from above
and from below in the sense of Definition 3.2.6.
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2. For every X ∈ (L∞(F))N we have

ρ∞G (X) = ess inf

{
N∑
j=1

Y j | Y ∈ CG,EP [U (X + Y )|G] ≥ B

}
=: ρG (X) (3.21)

and the essential infimum in the central expression is attained.

3. Define for every Q = [Q1, . . . ,QN ]� P

α1(Q) := ess sup
Z∈(L∞(F))N ,
EP[U(Z)|G]≥B

(
N∑
j=1

EQj
[
−Zj

∣∣G]) . (3.22)

Then ρG (·) admits the following dual representation:

ρG (X) = ess sup
Q∈Q1

G

(
N∑
j=1

EQj
[
−Xj

∣∣G]− α1(Q)

)
, ∀X ∈ (L∞(F))N , (3.23)

where

Q1
G :=

Q ∈ QG

∣∣∣∣∣∣∣∣
α1(Q) ∈ L1(G) and

N∑
j=1

EQj
[
Y j
∣∣G] ≤ N∑

j=1

Y j, ∀Y ∈ CG ∩ (L∞(G))N

 . (3.24)

Furthermore, for every X ∈ (L∞(F))N there exists Q̂ ∈ Q1
G such that

ρG (X) =
N∑
j=1

EQ̂j
[
−Xj

∣∣G]− α1(Q̂) .

3.4.1 Proof of Theorem 3.4.4

In the notation (3.21), the expression EP [U (X + Y )|G] ≥ B stands for a shortened
version of the following set of conditions: U(X+Y ) ∈ L1(Ω,F ,P) and the conditional
expectation EP [U (X + Y )|G], which is well defined, is not smaller than B P−a.s.
Recall also that for any random variable W , taking values in [0,+∞], EP [W |G] is
always well defined via the Radon-Nikodym Theorem (see [11], Theorems 17.10-11),
and in this case the notation EP [W |G] will be used with this meaning.
For technical reasons we first study the functional ρG (·) defined in (3.21). We will
first prove all the properties in Theorem 3.4.4 Item 1, made exception for continuity
from below, and existence of an allocation for ρG (·) (Claim 3.4.5). We will then show
that ρG (·) ≡ ρ∞G (·) on (L∞(F))N (Claim 3.4.6), which yields Theorem 3.4.4 Item 2,
and move on proving continuity from below (Claim 3.4.7). Finally, in Claim 3.4.8 we
prove Theorem 3.4.4 Item 3.
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Claim 3.4.5. The functional ρG (·) on (L∞(F))N takes values in L∞(G), the infi-

mum is attained by a Ŷ ∈ CG, it is monotone (3.3) conditionally convex (3.4) and
conditionally monetary (3.5). Furthermore, it is continuous from above in the sense
of Definition 3.2.6.

Proof.
STEP 1: the functional takes values in L∞(G).
First we see that the set over which we take the essential infimum defining ρG (·) is
nonempty. We have by monotonicity (for m an N -dimensional deterministic vector)
EP [U (X +m)|G] ≥ U(−‖X‖∞+m) where ‖X‖∞ stands for the vector [‖X1‖∞ , . . . ,∥∥XN

∥∥
∞] ∈ RN . Since by assumption

sup
m∈RN

U(−‖X‖∞ +m) = sup
z∈RN

U(z) > ‖B‖∞ ,

for some m ∈ RN we have consequently EP [U (X +m)|G] ≥ B.
We claim that the set over which we take the essential infimum is downward directed.
To show this, suppose that Z, Y ∈ (L1(F))N are such that

∑N
j=1 Y

j,
∑N

j=1 Z
j ∈

L∞(G) and

EP [U (X + Y )|G] ≥ B,EP [U (X + Z)|G] ≥ B .

Define the set A := {
∑N

j=1 Y
j ≤

∑N
j=1 Z

j} ∈ G and the random variable W :=

1AY +1AcZ ∈ (L1(F))N ∩BG (observe that it belongs to BG since BG is conditionally
convex, thus local). It is easy to see that

∑N
j=1W

j = 1A
∑N

j=1 Y
j + 1Ac

∑N
j=1 Z

j =

min
(∑N

j=1 Y
j,
∑N

j=1 Z
j
)
∈ L∞(G), so that the set is downward directed. Furthermore

EP [U (X +W )|G] = EP [U (X +W )|G] 1A + EP [U (X +W )|G] 1Ac =

= EP [U (X + Y )|G] 1A + EP [U (X + Z)|G] 1Ac ≥ B1A +B1Ac = B

which concludes the proof of our claim.
Since the set is downward directed, there exists a minimizing sequence (Yn)n ⊆ CG
such that

∑N
j=1 Y

j
n ↓n ρG (X) and, having ρG (X) ≤

∑N
j=1 Y

j
1 ∈ L∞, we conclude that

‖(ρG (X))+‖∞ < +∞. Suppose now by contradiction that for a sequence kn ↑ +∞
we had P (ρG (X) ≤ −kn) > 0 for all n. Then, since {ρG (X) ≤ −kn} ∈ G, we would
have for all M ∈ N

−‖B‖∞ P (ρG (X) ≤ −kn) ≤ EP
[
U (X + YM) 1{ρG(X)≤−kn}

]
Cor.3.7.4

≤
N∑
j=1

EP
[(
a
(
Xj + Y j

M

)
+ b
)

1{ρG(X)≤−kn}
]

≤

(
a

N∑
j=1

∥∥Xj
∥∥
∞ + b

)
P (ρG (X) ≤ −kn) + aEP

[
N∑
j=1

Y j
M1{ρG(X)≤−kn}

]
.

Consequently

−‖B‖∞ P (ρG (X) ≤ −kn)
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≤

(
a

N∑
j=1

∥∥Xj
∥∥
∞ + b

)
P (ρG (X) ≤ −kn) + a lim

M
EP

[
N∑
j=1

Y j
M1{ρG(X)≤−kn}

]

(MON)
=

(
a

N∑
j=1

∥∥Xj
∥∥
∞ + b

)
P (ρG (X) ≤ −kn) + aEP

[
ρG (X) 1{ρG(X)≤−kn}

]
≤

(
a

N∑
j=1

∥∥Xj
∥∥
∞ + b

)
P (ρG (X) ≤ −kn)− knaP (ρG (X) ≤ −kn) .

Dividing by P (ρG (X) ≤ −kn) and sending n to infinity we would get a contradic-
tion. This proves that ‖(ρG (X))−‖∞ < +∞. Recalling that we already proved
‖(ρG (X))+‖∞ < +∞, we obtain ρG (X) ∈ L∞(G).

STEP 2: the infimum is attained.
For the minimizing sequence (Yn)n, from the budget constraint EP [U (X + Y )|G] ≥ B
and the fact that

∑N
j=1 EP [Xj + Y j

n ] is bounded in n because of what we just proved

(L∞(G) 3 ρG (X) ≤
∑N

j=1 Y
j
n ≤

∑N
j=1 Y

j
1 ∈ L∞(G)) , we obtain that the sequence

(Yn)n is bounded in (L1(F))N using Lemma 2.6.4 Item 1.

Applying Corollary 2.6.12 we can find a subsequence and a Ŷ ∈ (L1(F))N such that

WH :=
1

H

H∑
h=1

Ynh
P−a.s.−−−→
H→∞

Ŷ .

Furthermore
∑N

j=1 Y
j ∈ L1(G), WH ∈ BG by convexity of the set and Ŷ ∈ BG since

this set is closed in probability. Additionally we have that

L∞(G) 3 ρG (X) ≤
N∑
j=1

Ŷ j = lim
H

1

H

H∑
h=1

N∑
j=1

Y j
nh
≤ 1

H

H∑
h=1

N∑
j=1

Y j
n1

=
N∑
j=1

Y j
n1
∈ L∞(G)

which yields that also
∑N

j=1 Ŷ
j ∈ L∞(G). To prove that Ŷ ∈ CG we need to show that∑

i∈Im Ŷ
i ∈ L∞(G) for every m = 1, . . . , h. This will be a consequence of Proposition

3.7.6, once we show that EP

[
U
(
X + Ŷ

)∣∣∣G] ≥ B. Hence we now focus on the latter

inequality. We observe now that setting ZH := X + 1
H

∑H
h=1 Ynh and Z = X + Ŷ

Items 2 and 3 in Lemma 3.7.5 are satisfied. Moreover if we take

N∑
j=1

EP
[
Zj
H

∣∣G] =
N∑
j=1

Xj +
1

H

H∑
h=1

N∑
j=1

Y j
nh

we see that the first term in the sum in RHS does not depend on H, while the Césaro
means almost surely converge. Hence also Item 1 in Lemma 3.7.5 is satisfied, and we

get that EP [U (Z)|G] = EP

[
U
(
X + Ŷ

)∣∣∣G] ≥ B. As mentioned above, we now get

also Ŷ ∈ CG. We finally observe that

N∑
j=1

Ŷ j = lim
H

1

H

H∑
h=1

N∑
j=1

Y j
nh

Rem.3.7.3
= lim

h

N∑
j=1

Y j
nh

= ρG (X)
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so that the infimum is in fact attained at Ŷ , which satisfies the constraints for ρG (X).

STEP 3: equations (3.3), (3.4), (3.5).
These have to be checked directly using definition of ρG (·). We start with (3.3): if
X ≤ Z componentwise a.s. then, for all Y ∈ (L1(P))N such that EP [U (X + Y )|G] ≥
B, we have automatically (by monotonicity of U) that

EP [U (Z + Y )|G] ≥ EP [U (X + Y )|G] ≥ B

so that

{
N∑
j=1

Y j | Y ∈ CG,EP [U (X + Y )|G] ≥ B

}

⊆

{
N∑
j=1

Y j | Y ∈ CG,EP [U (Z + Y )|G] ≥ B

}

and taking essential infima equation (3.3) follows.
As to (3.4), fix 0 ≤ λ ≤ 1, λ ∈ L∞(G) and X,Z ∈ (L∞(F))N . For Y,W ∈ CG such
that EP [U (X + Y )|G] ≥ B, EP [U (Z +W )|G] ≥ B we then have by concavity of
utilities and G-measurability of λ

EP [U (λX + (1− λ)Z + λY + (1− λ)W )|G]

= EP [U (λ(X + Y ) + (1− λ)(Z +W ))|G]

≥ λEP [U (X + Y )|G] + (1− λ)EP [U (Z +W )|G]

≥ λB + (1− λ)B = B .

Moreover obviously λY + (1− λ)W ∈ CG, so that by definition

ρG (λX + (1− λ)Z) ≤ λ
N∑
j=1

Y j + (1− λ)
N∑
j=1

W j .

Taking essential infima in RHS over Y and W yields equation (3.4).
Finally we come to (3.5). For Y ∈ (L∞(G))N the assumption (see Standing Assump-
tion II) BG + L0(G) = BG implies that W := Z + Y ∈ CG for all Z ∈ CG. Hence

ρG (X + Y ) = ess inf

{
N∑
j=1

Zj | Z ∈ CG, EP [U (U(X + Y + Z))|G] ≥ B

}

= ess inf

{
N∑
j=1

(W j − Y j) | W ∈ CG, EP [U (U(X +W ))|G] ≥ B

}

= ρG (X)−
N∑
j=1

Y j .
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STEP 4: continuity from above.
Take Xn ↓ X and first fix n. We can take a minimizing sequence such that

∑N
j=1 Y

j
k ↓k

ρG (Xn). By (MON) we have that
∑N

j=1 EP
[
Y j
k

]
↓k EP [ρG (Xn)], hence we can assume

without loss of generality that
∑N

j=1 EP
[
Y j

1

]
− EP [ρG (Xn)] < 1. Furthermore, by

Egorov Theorem (see Theorem 3.7.2) we can select a set An ∈ G, P(An) ≤ 1
2n

and an
element in the sequence, which we will call Yn (even if it is not necessarily the n−th
element) such that ∥∥∥∥∥

(
N∑
j=1

Y j
n − ρG (Xn)

)
1(An)c

∥∥∥∥∥
∞

<
1

n
.

Observe that
ρG (X1) ≤ ρG (Xn)→n lim

n
ρG (Xn) ≤ ρG (X) (3.25)

(which proves that limn ρG (Xn) ∈ L∞) and by Borel Cantelli Lemma almost all ω ∈ Ω
lie definitely in (An)c: if we set BK :=

⋂
n≥K(An)c (BK ∈ G) we have

P

(⋃
K

BK

)
= 1 (3.26)

which implies (by Borel Cantelli Lemma we know that for almost every ω ∈ Ω∣∣∣∑N
j=1 Y

j
n (ω)− ρG (Xn) (ω)

∣∣∣ ≤ 1
n

definitely in n) that

N∑
j=1

Y j
n

P-a.s.−−−−→
n→+∞

lim
n
ρG (Xn) . (3.27)

Observe that by construction we have∣∣∣∣∣
N∑
j=1

EP
[
Y j
n

]
− EP [ρG (Xn)]

∣∣∣∣∣ < 1 for each n. (3.28)

Take B1 and observe that by definition of it and (3.25) we have that the sequence(
N∑
j=1

EP
[(
Xj
n + Y j

n

)
1B1

])
n

is bounded and EP [EP [U (Xn + Yn)|G] 1B1 ] ≥ −‖B‖∞ P(B1). In fact (only the first
claim is non trivial),∣∣∣∣∣

N∑
j=1

EP
[(
Xj
n + Y j

n

)
1B1

]∣∣∣∣∣ =

∣∣∣∣∣EP

[
N∑
j=1

(
Xj
n + Y j

n

)
1B1

]∣∣∣∣∣
≤ EP

[(∣∣∣∣∣
N∑
j=1

Xj
n

∣∣∣∣∣+

∣∣∣∣∣
N∑
j=1

Y j
n − ρG (Xn)

∣∣∣∣∣+ |ρG (Xn)|

)
1B1

]

≤ sup
n

(
N∑
j=1

∥∥Xj
n

∥∥
∞ + P(B1) + sup

n
‖ρG (Xn)‖∞

)
< +∞ .
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Thus we can apply Lemma 2.6.4 and Corollary 2.6.12 to find a subsequence such that
Césaro means of any further subsequence converge a.s. on B1 to a (common) random
variable Y1. Now take B2 (B1 ⊆ B2) and replicate the argument, taking the first
subsequence we extracted in place of the one we began with. Observe that in this way
the Césaro means will converge to a new random Y2 on B2, and that Y21B1 = Y11B1 .
Iterating and applying a diagonal argument yields a Y ∈ L0(F) with

∑N
j=1 Y

j ∈ L0(G)
and a subsequence such that

1

H

H∑
h=1

Ynh1Bk →H YK1BK = Y 1BK ∀K, P− a.s.

From P(
⋃
K BK) = 1 we obtain

1

H

H∑
h=1

Ynh →H Y P− a.s.

Equations (3.25) and (3.27) together with Remark 3.7.3, yield

N∑
j=1

Y j = lim
n
ρG (Xn) ∈ L∞(G) .

Observe now that

sup
n

∣∣∣∣∣
N∑
j=1

EP
[
Xj
n + Y j

n

]∣∣∣∣∣ ≤ sup
n

N∑
j=1

∥∥Xj
n

∥∥
∞+

+ sup
n

∣∣∣∣∣
N∑
j=1

EP
[
Y j
n

]
− EP [ρG (Xn)]

∣∣∣∣∣+ sup
n
‖ρG (Xn)‖∞ < +∞

(3.29)

using (3.28) and the fact that (Xn)n is norm bounded (by definition), and so is
(ρG (Xn))n as a consequence (by monotonicity).
We stress the fact that the “pasting over subsets”procedure we used to obtain Y does
not guarantee integrability of Y , which we prove now. We will show that setting

ZH :=
1

H

H∑
h=1

(Xj
nh

+ Y j
nh

)

we have supH
∑N

j=1

∥∥Zj
H

∥∥
1
< +∞, which in turns yields

∑N
j=1 ‖Xj + Y j‖1 < +∞

(Fatou lemma) and finally (from X ∈ (L∞(F))N)
∑N

j=1 ‖Y j‖1 < +∞. To see

supH
∑N

j=1

∥∥Zj
H

∥∥
1
< +∞, observe that

sup
H

∣∣∣∣∣
N∑
j=1

EP
[
Zj
H

]∣∣∣∣∣ ≤ sup
H

1

H

H∑
h=1

∣∣∣∣∣
N∑
j=1

EP
[
Xj
nh

+ Y j
nh

]∣∣∣∣∣ Eq.(3.29)
< +∞

149



and that

EP [U(ZH)] ≥ 1

H

H∑
h=1

EP [U(Xnh + Ynh)] ≥ B ∀H

thus we can apply Lemma 2.6.4 Item 1 and the required norm boundedness follows.
We conclude that Y ∈ (L1(F))N , and we also know that Y ∈ BG since Y is an
a.s. limit of convex combinations of elements of CG, which is convex and closed in
probability. We now prove that EP [U (X + Y )|G] ≥ B applying Lemma 3.7.5 to

ZH →H Z := X + Ŷ . Lemma 3.7.5 Item 2 and 3 are readily verified. As to Lemma
3.7.5 Item 1 we see that

sup
H

∣∣∣∣∣
N∑
j=1

EP
[
Zj
H

∣∣G]∣∣∣∣∣ ≤ sup
H

∣∣∣∣∣ 1

H

H∑
h=1

N∑
j=1

EP
[
Xj
nh

∣∣G]+
1

H

H∑
h=1

N∑
j=1

EP
[
Y j
nh

∣∣G]∣∣∣∣∣
≤ sup

H

1

H

H∑
h=1

sup
n

(
N∑
j=1

∥∥Xj
n

∥∥
∞

)
+ sup

H

∣∣∣∣∣ 1

H

H∑
h=1

N∑
j=1

EP
[
Y j
nh

∣∣G]∣∣∣∣∣
≤ sup

n

(
N∑
j=1

∥∥Xj
n

∥∥
∞

)
+ sup

H

∣∣∣∣∣ 1

H

H∑
h=1

EP

[
N∑
j=1

Y j
nh

∣∣∣∣∣G
]∣∣∣∣∣

= sup
n

(
N∑
j=1

∥∥Xj
n

∥∥
∞

)
+ sup

H

∣∣∣∣∣ 1

H

H∑
h=1

N∑
j=1

Y j
nh

∣∣∣∣∣ < +∞ P− a.s.

using in the last steps the fact that
∑N

j=1 Y
j
nh
∈ L∞(G) and that

∑N
j=1 Y

j
nh
→h ρG (X)

a.s. Thus all the assumptions of Lemma 3.7.5 are satisfied and we conclude that
EP [U (X + Y )|G] = EP [U (Z)|G] ≥ B. Consequently, since Y satisfies the constraints
for ρG (X), we conclude that

ρG (X) ≤
N∑
j=1

Y j = lim
n
ρG (Xn) ≤ ρG (X)

which proves continuity from above.

Claim 3.4.6. We have that ρ∞G (X) = ρG (X) for every X ∈ (L∞(F))N .

Proof. It is clear that

ρG (X) ≤ ess inf

{
N∑
j=1

Y j | Y ∈ CG ∩ (L∞(F))N ,EP [U (X + Y )|G] ≥ B

}

since the infimum on RHS is taken over a smaller set.
We prove now the reverse inequality: by Claim 3.4.5 an allocation exists, call it Y .
Use closedness under truncation to see that for k ≥ kY Y(k) ∈ CG where Y(k), de-
fined as in (3.2), satisfies Y(k) →k Y a.s.. We want to show that the convergence
U
(
X + Y(k) + ε1

)
→k U (X + Y + ε1) is dominated, where 1 is the N−components
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vector with all components equal to 1. To see this observe that |U (X + Y + ε1)| and
|U (X + ZY + ε1)| are integrable:

L1(F) 3 a

(
N∑
j=1

(Xj + Y j)

)
+ aNε+ b

Cor.3.7.4

≥ U (X + Y + ε1) ≥ U(X + Y ) ∈ L1(F)

while integrability of |U (X + ZY + ε1)| is trivial by boundedness of the vectors X,ZY
and continuity of U . Moreover∣∣U (X + Y(k) + ε1

)∣∣ =
∣∣U (X + Y + ε1) 1∩j{|Y j |≤k} + U (X + ZY + ε1) 1∪j{|Y j |>k}

∣∣ ≤
max (|U (X + Y + ε1)| , |U (X + ZY + ε1)|) ≤ |U (X + Y + ε1)|+|U (X + ZY + ε1)| .

Applying(cDOM) we then get that for all ε > 0

EP
[
U
(
X + Y(k) + ε1

)∣∣G]→k EP [U (X + Y + ε1)|G] > B .

From the last expression we infer that

P

(
ΓK :=

⋂
k≥K

{
EP
[
U
(
X + Y(k) + ε1

)∣∣G] ≥ B
})
↑K 1 . (3.30)

Fix K and take αK ∈ RN with

U
(
−‖X‖∞ −

∥∥Y(K)

∥∥
∞ + ε1 + αK

)
≥ ‖B‖∞

where again ‖X‖∞ denotes the vector [‖X1‖∞ , . . . ,
∥∥XN

∥∥
∞] and similar notation

is used for
∥∥Y(K)

∥∥
∞. Notice that such an αK exists since supz∈RN U(z) > ‖B‖∞.

Define ZK by Zj
K := Y j

(K) + ε+ αK1ΓcK
, j = 1, . . . , N and observe that since ΓK ∈ G,

ZK ∈ CG ∩ (L∞(F))N . Furthermore

EP [U (X + ZK)|G] = EP [U (X + ZK)|G] 1ΓK + EP [U (X + ZK)|G] 1ΓcK

and

EP [U (X + ZK)|G] 1ΓK = EP
[
U
(
X + Y(K) + ε1

)∣∣G] 1ΓK ≥ B1ΓK

by definition of ΓK and the fact that 1ΓK can be moved inside conditional expectation.
Moreover by definition of αK

EP [U (X + ZK)|G] 1ΓcK
= EP

[
U
(
X + Y(K) + ε1 + αK

)∣∣G] 1ΓcK
≥ B1ΓcK

.

Hence we have that ZK ∈ CG ∩ (L∞(F))N , EP [U (X + ZK)|G] ≥ B, and we conclude
that

ρ∞G (X) ≤
N∑
j=1

Zj
K . (3.31)

Now, by (3.30), for almost all ω ∈ Ω there exists a K(ω) ∈ N such that ω ∈ ΓK for
all K ≥ K(ω), which implies for all j = 1, . . . , N Zj

K(ω) = Y j
(K)(ω) + ε ∀K ≥ K(ω).
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By definition Y(K) →K Y a.s., so that by (3.31) we can write for almost all ω ∈ Ω:

ρ∞G (X) ≤ lim inf
K→+∞

N∑
j=1

Zj
K = lim inf

K→+∞

(
N∑
j=1

(
Y j

(K) + ε
))

= lim
K→+∞

N∑
j=1

Y j
(K) +Nε = ρG (X) +Nε .

It is then straightforward to see that ρ∞G (X) ≤ ρG (X) a.s., which implies ρ∞G (X) =
ρG (X) a.s.

Claim 3.4.7. The functional ρG (·) on (L∞)N is continuous from below.

Proof. Consider a sequence Xn ↑n X and take any Y ∈ CG ∩ (L∞)N such that
EP [U (X + Y )|G] ≥ B. Then for any ε > 0

B < EP [U (X + Y + ε1)|G]
(cMON)

= lim
n

EP [U (Xn + Y + ε1)|G] .

Hence the sequence (AK)K , where

AK := {EP [U (Xn + Y + ε1)|G] ≥ B, ∀n ≥ K}

satisfies P(AK) ↑K 1. Take αK ∈ RN such that

U(−‖Xn‖∞ − ‖Y ‖∞ + ε1 + αK) ≥ ‖B‖∞ ∀n ≥ K

where the notation for ‖Xn‖∞ and ‖Y ‖∞ is the same as in the proof of Claim 3.4.6.
Define ZK ∈ (L∞(F))N by Zj

K := Y j + ε1 + αK1AcK for j = 1, . . . , N . Since AK ∈ G
we have Z ∈ CG. Furthermore for all n ≥ K

EP [U (Xn + ZK)|G] = EP [U (Xn + ZK)|G] 1AK + EP [U (Xn + ZK)|G] 1AcK
≥ B1AK + ‖B‖∞ 1AcK ≥ B .

Hence by definition of ρG (Xn)

ρG (Xn) ≤
N∑
j=1

Zj
K =

N∑
j=1

Y j +Nε+
N∑
j=1

αjK1AcK ,

lim
n
ρG (Xn) ≤ lim inf

K

(
N∑
j=1

Y j +Nε+
N∑
j=1

αjK1AcK

)
.

Recall now that P(AK)→K 1 and AK ⊆ AK+1. Hence almost all ω ∈ Ω are such that
1AcK (ω) = 0 definitely in K. As a consequence

lim inf
K

(
N∑
j=1

Y j +Nε+
N∑
j=1

αjK1AcK

)
= lim inf

K

(
N∑
j=1

Y j +Nε

)
=

N∑
j=1

Y j +Nε.
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It follows that

lim
n
ρG (Xn) ≤

N∑
j=1

Y j P− a.s.

and this holds for all Y ∈ CG such that EP [U (X + Y )|G] ≥ B. Taking essential
infimum on RHS for Y ∈ CG ∩ (L∞(F))N , EP [U (X + Y )|G] ≥ B by Claim 3.4.6 we
obtain

lim
n
ρG (Xn) ≤ ρG (X)

(3.3)

≤ lim
n
ρG (Xn) .

Theorem 3.2.9 yields a dual representation result for ρG (·) using LF := (L∞(F))N

and L∗ := (L1(G))N : since we have continuity from above (Claim 3.4.5) and from
below (Claim 3.4.7), we can apply Corollary 3.1.5 to prove nice representability of
EP [ρG (·)] : (L∞(F))N → R. However, in view of Claim 3.4.6, we can apply an
argument inspired by [84] Proposition 3.6 to get a more specific dual representation.
Observe that in this setup Corollary 3.2.10 applies and the set QG defined there takes
the form:

QG :=

{
Q� P :

dQ
dP
∈ (L1(F))N , EP

[
dQj

dP

∣∣∣∣G] = 1 ∀ j = 1, . . . , N

}
. (3.32)

Claim 3.4.8. Let ρG (·) : (L∞(F))N → L∞(G) be defined by (3.21) and take α1(·) as
in (3.22). Then the following are equivalent for fixed p ∈ {0, 1} and Q ∈ QG:

1. ρ∗G
(
−dQ

dP

)
∈ Lp(F),

2. α(Q) ∈ Lp(F), where α(·) is defined in (3.12) for LF = (L∞(F))N and L∗ =
(L1(F))N ,

3. α1(Q) ∈ Lp(F) and
∑N

j=1 EQj [Y j|G] ≤
∑N

j=1 Y
j for all Y ∈ CG ∩ (L∞(F))N .

Moreover ρG (·) admits the dual representation in (3.23) for Q1
G defined in (3.24) and

for every X ∈ (L∞(F))N there exists Q̂ ∈ Q1
G such that ρG (X) =

∑N
j=1 EQ̂j [−Xj|G]−

α1(Q̂).

Proof. Recall that in this specific setup we have by Claim 3.4.5 that ρG (·) ∈ L∞(G)
and that ρG (·) = ρ∞G (·) on (L∞(F))N by Claim 3.4.6. Hence using Corollary 3.2.10
and (3.14) we see that

α(Q) = ρ∗G

(
−dQ

dP

)
(3.33)

for all Q ∈ QG. Moreover we have:

ρ∗G

(
−dQ

dP

)
= ess sup

X∈(L∞(F))N

(
N∑
j=1

EQj
[
−Xj

∣∣G]− ρG (X)

)
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(3.33)
= ess sup

X∈(L∞(F))N

 N∑
j=1

EQj
[
−Xj

∣∣G]− ess inf
Y ∈CG∩(L∞(F))N

EP[U(X+Y )|G]≥B

(
N∑
j=1

Y j

)
= ess sup

X,Y ∈(L∞(F))N

Y ∈CG ,EP[U(X+Y )|G]≥B

(
N∑
j=1

EQj
[
−Xj

∣∣G]− N∑
j=1

Y j

)

= ess sup
Z,Y ∈(L∞(F))N ,

Y ∈CG ,EP[U(Z)|G]≥B

(
N∑
j=1

EQj
[
−(Zj − Y j)

∣∣G]− N∑
j=1

Y j

)
.

We conclude that

α(Q) = ess sup
Z∈(L∞(F))N ,
EP[U(Z)|G]≥B

(
N∑
j=1

EQj
[
−Zj

∣∣G])+ ess sup
Y ∈CG∩(L∞(F))N

(
N∑
j=1

EQj
[
Y j
∣∣G]− N∑

j=1

Y j

)
.

(3.34)
The equivalence between Item 1-2-3 is now clear, once we observe that for every
Q ∈ QG such that α(Q) ∈ L0(F) we must have

∑N
j=1 EQj [Y j|G]−

∑N
j=1 Y

j ≤ 0 P−a.s.

since CG ∩ (L∞(F))N is a conditional cone.

All the claims then follow from Corollary 3.2.10, observing that for the optimum Q̂
provided there we must have α(Q) ∈ L1(G) (since ρG (X) ∈ L∞(G)).

Remark 3.4.9. We stress the fact that by Claim 3.4.8 we have for every Y ∈ CG ∩
(L∞(F))N

N∑
j=1

EQj
[
Y j
∣∣G] ≤ N∑

j=1

Y j P− a.s. for all Q ∈ QG such that α(Q) ∈ L0(G) . (3.35)

3.4.2 Uniqueness and Integrability of optima of ρG (·)
Uniqueness

Assumption 3.4.10. The function U : RN → R satisfies:

{
X ∈ (L1(Ω,F ,P))N

(U(X))− ∈ L1(Ω,F ,P)
⇒ ∃ δ > 0 s.t. (U(X − ε1))− ∈ L1(Ω,F ,P)∀ 0 < ε < δ .

(3.36)

Observe that for example taking α1, . . . , αN , β1, . . . , βN > 0 the function

U(x) :=
N∑
j=1

(1− exp (−αjxj)) +

(
1− exp

(
−

N∑
j=1

βjxj

))

satisfies Assumption 3.4.10.
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Proposition 3.4.11. Under Assumption 3.4.10 ρG (X) admits a unique optimum in
CG in the extended sense of Theorem 3.4.4, for every X ∈ (L∞(F))N .

Proof. Suppose Ŷ1 6= Ŷ2 were two optima. Then clearly so is Ŷλ = λŶ1 + (1 − λ)Ŷ2

for λ ∈ R, 0 < λ < 1 by concavity of U . At the same time, we have that Γ :={
EP

[
U(X + Ŷλ)|G

]
> λEP

[
U(X + Ŷ1)|G

]
+ (1− λ)EP

[
U(X + Ŷ2)|G

]}
∈ G satisfies

P(Γ) = 1 by strict concavity: if this were not the case, from concavity and

EP

[
U(X + Ŷλ)1Γc

]
= λEP

[
U(X + Ŷ1)1Γc

]
+ (1− λ)EP

[
U(X + Ŷ2)1Γc

]
we would get that on Γc, which is not empty, U(X+ Ŷλ) = λU(X+ Ŷ1)+(1−λ)U(X+

Ŷ2) which contradicts strict concavity of U .

Now for some ε > 0, recalling that λEP

[
U(X + Ŷ1)

∣∣∣G]+ (1− λ)EP

[
U(X + Ŷ2)

∣∣∣G] ≥
B, we would have by monotonicity of U , Assumption 3.4.10, and Egorov Theorem
that definitely in H ∈ N by (cMON), on a set Ξ of positive measure,

EP

[
U

(
X + Ŷλ −

1

H
1Ξ1

)
|G
]
≥ B

(Ξ ∈ G can be taken as a set where EP [U (X + Y )|G] ≥ B + ε and the convergence

EP

[
U

(
X + Ŷλ −

1

H
1

)∣∣∣∣G] ↑H EP

[
U(X + Ŷλ)|G

]
is uniform, which exists by Egorov Theorem). But also Ŷλ − 1

H
1Ξ1 ∈ CG and by

definition ρG (X) 1Ξ ≤
(∑N

j=1 Ŷ
j
λ −N 1

H

)
1Ξ <

(∑N
j=1 Ŷ

j
λ

)
1Ξ which contradicts the

optimality of Ŷ (recall again that P(Ξ) > 0).

Integrability

Proposition 3.4.12. There exists an extension, ρΦ
0 , of ρ0(·) := EP [ρG (·)] to MΦ

which is convex, nondecreasing and ‖·‖Φ-continuous.

Proof. Observe that because of the downward directedness proved in STEP 2 of Claim
3.4.5, together with (MON), we have

ρ0(X) = inf

{
N∑
j=1

EP
[
Y j
]
| Y ∈ CG, EP [U(X + Y )|G] ≥ B

}
X ∈ (L∞(F))N .

Define now

ρΦ
0 (X) := inf

{
N∑
j=1

EP
[
Y j
]
| Y ∈ CG, EP [U(X + Y )|G] ≥ B

}
X ∈MΦ . (3.37)

We easily see that ρΦ
0 (X) < +∞ for every X ∈MΦ (since the set over which we take

infima in (3.37) is nonempty). Moreover ρΦ
0 (X) > −∞ since if this were the case,
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for a minimizing sequence (Yn)n we would have infn
∑N

j=1 EP [Y j
n ] = −∞. Now, by

Lemma 2.6.2

EP [B] ≤ EP [U(X + Yn)]

≤ a

N∑
j=1

EP
[
Xj
]

+ a

N∑
j=1

EP
[
Y j
n

]
− a

N∑
j=1

EP
[
(Y j

n )−
]

+ b

≤ const+ a
N∑
j=1

EP
[
Y j
n

]

which gives a contradiction. Clearly, mimicking what we did in the proof of Claim
3.4.5 Step 3, we can check that ρΦ

0 (·) is also convex and nondecreasing. Now by
Extended Namioka-Klee Theorem in [23]) it is also norm continuous.

Lemma 3.4.13. For any Z ∈ (L1(F))N we have that ρ∗G(Z) ∈ L1(G) if and only if
ρ∗0(Z) < +∞ and, if any of the two conditions is met, we have Z ∈ KΦ.

Proof. Observe that for any Z ∈ (L1(F))N we have ρ∗0(Z) = EP
[
ρ∗G(Z)

]
. The first

claim then follows. Suppose now ρ∗G(Z) ∈ L1(G). By [5] Theorem 5.43 Item 3 ρΦ
0 (·)

is bounded on a ball Bε (defined using the norm ‖·‖Φ) centered at 0. We have as a
consequence

+∞ > sup
X∈Bε

(
ρΦ

0 (X) + ρ∗0(Z)
)
.

Now we use the fact that ρΦ
0 (·), when restricted to (L∞(F))N , coincides with ρ0(·),

and continuity of ρΦ
0 (by Proposition 3.4.12) to see that

+∞ > sup
X∈Bε

(
ρΦ

0 (X) + ρ∗0(Z)
)
≥ sup

X∈Bε∩(L∞(F))N

(
ρΦ

0 (X) + ρ∗0(Z)
)

=

= sup
X∈Bε∩(L∞(F))N

(ρ0(X) + ρ∗0(Z)) ≥ sup
X∈Bε∩(L∞(F))N

(
N∑
j=1

EP
[
XjZj

])
where we used Fenchel inequality to obtain the last inequality. Furthermore, using
the fact that given Z, for any X ∈ Bε ∩ (L∞(F))N the vector X̂ defined by X̂j =
sgn(Zj) |Xj| still belongs to Bε ∩ (L∞(F))N , we have

sup
X∈Bε∩(L∞(F))N

(
N∑
j=1

EP
[
XjZj

])
= sup

X∈Bε∩(L∞(F))N

(
N∑
j=1

EP
[∣∣XjZj

∣∣]) .

To conclude, we observe that an approximation with simple functions yields:

sup
X∈Bε∩(L∞(F))N

(
N∑
j=1

EP
[∣∣XjZj

∣∣]) = sup
X∈Bε

(
N∑
j=1

EP
[∣∣XjZj

∣∣]) .

This completes the proof using Proposition 2.2.5 Item 1.
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Assumption 3.4.14. LΦ = LΦ1 × · · · × LΦN .

Assumption 3.4.14, which is the same of Assumption 2.3.3 in Chapter 2, is a re-
quest on the utility functions we allow for. It can be rephrased as: if for X ∈
(L0 ((Ω,F ,P); [−∞,+∞]))N there exist λ1, . . . , λN > 0 such that EP [uj(−λj |Xj|)] >
−∞, then there exists α > 0 such that EP [Λ(−α |X|)] > −∞. This request is rather
weak and there are many examples of choices of U and Λ that guarantee this con-
dition is met, see Section 2.4.5. Note again that however this is not a request on
the topological spaces, but just an integrability requirement, and it is automatically
satisfied if Λ ≡ 0.

Lemma 3.4.15. Suppose Assumption 3.4.14 holds. Let Z ∈ (L1(F))N be given and
suppose that EP [U(Z) | G] ≥ B. Then for any W ∈ KΦ we have

∑N
j=1(Zj)−W j ∈

L1(F).

Proof. Observe that EP [U(Z)] = EP [EP [U(Z) | G]] ≥ EP [B]. Furthermore

U(Z) =
N∑
j=1

uj(Z
j) + Λ(Z) =

N∑
j=1

uj((Z
j)+) +

N∑
j=1

uj(−(Zj)−) + Λ(Z) .

This implies

−
N∑
j=1

uj(−(Zj)−) ≤ max
j=1,...,N

(
duj
dxj

(0)

) N∑
j=1

(Zj)+ + sup
z∈RN

Λ(z)− U(Z)

where in the last line we used (2.3). It then follows that
∑N

j=1 (−uj(−(Zj)−)) ∈ L1(F),

which in turns yields (Z)− ∈ LΦ1 × · · · × LΦN . Since by Proposition 2.2.5 we have
W ∈ LΦ∗1 × · · · × LΦ∗N , we get by [65] Proposition 2.2.7 that (Zj)−W j ∈ L1(F) for
every j = 1, . . . , N , and the last claim is proved.

Proposition 3.4.16. Suppose Assumption 3.4.14 is fulfilled. Then for any Q ∈ Q1
G

(defined in (3.24)) the optimum Ŷ from Theorem 3.4.4 satisfies Ŷ ∈ L1(Q1) × · · · ×
L1(QN) and

N∑
j=1

EQj
[
Ŷ j
∣∣∣G] ≤ N∑

j=1

Ŷ j P− a.s.

Proof. By Lemma 3.4.13 we get that for any Q ∈ Q1
G we have dQ

dP ∈ KΦ, so that by

Lemma 3.4.15 we have for any Q ∈ Q1
G that [(Ŷ 1)−, . . . , (Ŷ N)−] ∈ L1(Q1) × · · · ×

L1(QN). Moreover, given Ŷ(k) using (3.2) for k ≥ kŶ , by Fatou Lemma we have for
any Q ∈ Q1

G.
N∑
j=1

EQj
[
(Ŷ j)+

∣∣∣G] Q∈QG
=

N∑
j=1

EP

[
(Ŷ j)+ dQj

dP

∣∣∣∣G]

≤ lim inf
k

N∑
j=1

EP

[
(Ŷ j

(k))
+ dQj

dP

∣∣∣∣G] Q∈QG
= lim inf

k

N∑
j=1

EQj
[
(Ŷ j

(k))
+
∣∣∣G]
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≤ lim inf
k

(
N∑
j=1

EQj
[
Ŷ j

(k)

∣∣∣G]+
N∑
j=1

EQj
[
(Ŷ j

(k))
−
∣∣∣G])

Q∈QG
≤ lim inf

k

(
N∑
j=1

Ŷ j
(k) +

N∑
j=1

EQj
[
(Ŷ j

(k))
−
∣∣∣G]) .

We conclude that

N∑
j=1

EQj
[
(Ŷ j)+

∣∣∣G] ≤ N∑
j=1

Ŷ j + lim
k

N∑
j=1

EQj
[
(Ŷ j

(k))
−
∣∣∣G] (cDOM)

=

N∑
j=1

Ŷ j +

N∑
j=1

EQj
[
(Ŷ j)−

∣∣∣G]

where we used in the last step that Y(k) → Ŷ P− a.s. and that (Ŷ )− ∈ L1(Q1)× · · ·×
L1(QN) to apply (cDOM): (Ŷ j

(k))
− ≤ max

(
(Ŷ j)−, (Zj

Y )−
)
∈ L1(Qj), j = 1, . . . , N .

This yields both integrability and the fact that, rearranging terms,

N∑
j=1

EQj
[
Ŷ j
∣∣∣G] ≤ N∑

j=1

Ŷ j .

3.4.3 Optimization with a fixed measure Q ∈ Q1
G

We will now need to change underlying probability measures. Thus from now on,
given a vector of probability measures Q = [Q1, . . . ,QN ] and a number p ∈ {0, 1,∞},
we set

Lp(F ,Q) := Lp(Ω,F ,Q1)× · · · × Lp(Ω,F ,QN) .

Similarly, when some confusion might arise, we will write explicitly also the measure
P, that is we will use Lp(F ,P) := Lp(Ω,F ,P) in place of the shortened Lp(F). Define
the following optimization problem for a given Q ∈ Q1

G:

ρQG (X) := ess inf
Y ∈(L∞(F ,P))N

EP[U(X+Y )|G]≥B

N∑
j=1

EQj
[
Y j
∣∣G] . (3.38)

Proposition 3.4.17. The following holds for any Q ∈ Q1
G:

ρQG (X) =
N∑
j=1

EQj
[
−Xj

∣∣G]− α1(Q) . (3.39)

Moreover for any X ∈ (L∞(F ,P))N we have

ρG (X) = max
Q∈Q1

G

ρQG (X) = ρQ̂G (X) for any optimum Q̂ = Q̂X of (3.23). (3.40)
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Proof. We first prove (3.39): observe that by (3.22) we have for any Q ∈ Q1
G

α1(Q) = ess sup
W∈(L∞(F ,P))N

EP[U(W )|G]≥B

N∑
j=1

EQj
[
−W j

∣∣G]

= − ess inf
W−X∈(L∞(F ,P))N

EP[U(X+(W−X))|G]≥B

{
N∑
j=1

EQj
[
(W j −Xj)

∣∣G]+
N∑
j=1

EQj
[
Xj
∣∣G]}

=

N∑
j=1

EQj
[
−Xj

∣∣G]− ess inf


N∑
j=1

EQj
[
Zj
∣∣G] | Z ∈ (L∞(F ,P))N , EP [U (X + Z)|G] ≥ B

 .

As a consequence by definition of α1(·) in (3.22) and of ρQG (X) in (3.38)

α1(Q) =
N∑
j=1

EQj
[
−Xj | G

]
− ρQG (X) .

Observe now that by Theorem 3.4.4 Item 3 ρG (X) ≥
∑N

j=1 EQj [−Xj | G]−α1(Q) for

every Q ∈ Q1
G(Q), and equality holds for any optimum Q̂ of (3.39). Direct substitution

yields then (3.40).

Proposition 3.4.18. Suppose Assumption 3.4.14 is fulfilled. Then for any Q ∈ Q1
G

we have

ρQG (X) = ess inf
Y ∈L1(F ,Q)∩(L1(F ,P))N

EP[U(X+Y )|G]≥B

N∑
j=1

EQj
[
Y j
∣∣G] . (3.41)

Proof. Clearly the inequality (≥) is trivial, since we are enlarging the set over which
we take the essential infimum. As to the converse (≤), observe that whenever Y ∈
L1(F ,Q) ∩ (L1(F ,P))N is given with EP [U (X + Y )|G] ≥ B, we have

EP [U (X + Y + ε1)|G] > B P− a.s.

by monotonicity of U . Hence, given Y(k) as in (3.2), k ≥ kY , defining

ΓK :=
⋂
k≥K

{
EP
[
U
(
X + Y(k) + ε1

)∣∣G] ≥ B
}
∈ G

we have that ΓK ⊆ Γk+1 and P(∪KΓK) = 1: the argument is similar to the one in
the proof of Claim 3.4.6. As a consequence, outside of a set E0 of zero P-measure, we
have

1ΓcK
= 0 definitely in K P− a.s. (3.42)

Take for each K a vector αK ∈ RN such that

U(−‖X‖∞ −
∥∥Y(K)

∥∥
∞ + ε1 + αK) ≥ ‖B‖∞
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where the notation for the vectors ‖X‖∞ ,
∥∥Y(K)

∥∥
∞ is the same used in the proof of

Claim 3.4.6 and define

ZK := Y(K) + ε1 + αK1ΓcK
∈ (L∞(F ,P))N .

Then clearly

EP
[
U
(
X + Y(K)

)∣∣G] 1ΓK + EP
[
U
(
Y(K) + ε1 + αK1ΓcK

)∣∣G] 1ΓcK
≥ B

which implies EP [U (X + ZK)|G] ≥ B. Hence

ρQG (X) ≤ lim inf
K

N∑
j=1

EQj
[
Zj
K

∣∣G]
= lim inf

K

((
N∑
j=1

EQj
[
Y j

(K)

∣∣∣G]) 1ΓK +

(
N∑
j=1

αjK

)
1ΓcK

)
+Nε

= lim
K

N∑
j=1

EQj
[
Y j

(K)

∣∣∣G]+ lim
K

(
N∑
j=1

αjK1ΓcK

)
+Nε

(3.42)
(cDOM)

=
N∑
j=1

EQj
[
Y j
∣∣G]+Nε .

Taking essential infimum in RHS over Y ∈ L1(F ,Q) ∩ (L1(F ,P)N such that the
budget constraint EP [U (X + Y )|G] ≥ B holds, then over ε > 0 we get the desired
inequality.

Theorem 3.4.19. Suppose Assumption 3.4.14 is fulfilled. Then for any optimum Q̂
of (3.23), the optimum Ŷ ∈ CG of Theorem 3.4.4 is an optimum for ρQ̂G (X) in the

following extended sense: Ŷ ∈ L1(F ,Q) ∩ (L1(F ,P))N ,EP

[
U
(
X + Ŷ

)∣∣∣G] ≥ B and

ρQ̂G (X) = ess inf
Y ∈L1(F ,Q)∩(L1(P,F))N

EP[U(X+Y )|G]≥B

N∑
j=1

EQ̂j
[
Y j
∣∣G] =

N∑
j=1

EQ̂j

[
Ŷ j
∣∣∣G] .

Moreover,

ρG (X) = ρQ̂G (X).

Proof. By Proposition 3.4.16 we have that Ŷ ∈ L1(F , Q̂)∩(L1(F ,P))N . We also know

that EP

[
U
(
X + Ŷ

)∣∣∣G] ≥ B. Hence we have ρQ̂G (X) ≤
∑N

j=1 EQ̂j [Ŷ
j|G]

Prop.3.4.16

≤∑N
j=1 Ŷ

j. We also know, by optimality of Ŷ for ρG (X) and (3.40), that
∑N

j=1 Ŷ
j =

ρG (X) = ρQ̂G (X). We then conclude jointly optimality in the extended sense of Ŷ for

ρQ̂G (X) and the remaining claim.

Corollary 3.4.20. Under the same assumptions of Theorem 3.4.19, we have also

that Ŷ ∈ (L1(F ,P))N ∩
⋂

Q∈Q1
G
L1(F ,Q), EP

[
U
(
X + Ŷ

)∣∣∣G] ≥ B and hence ρQ̂G (X)
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coincides with

ess inf


N∑
j=1

EQ̂j
[
Y j
∣∣G] | Y ∈ (L1(F ,P))N ∩

⋂
Q∈Q1

G

L1(F ,Q), EP [U (X + Y )|G] ≥ B


(3.43)

and Ŷ attains the essential infimum in (3.43).

Proof. It is enough to observe that
N∑
j=1

EQ̂j
[
Y j
∣∣G] | Y ∈ (L1(F ,P))N ∩

⋂
Q∈Q1

G

L1(F ,Q), EP [U (X + Y )|G] ≥ B


is a subset of{

N∑
j=1

EQ̂j
[
Y j
∣∣G] | Y ∈ (L1(F ,P))N ∩ L1(F ,Q), EP [U (X + Y )|G] ≥ B

}

for every Q ∈ Q1
G and apply at this point Theorem 3.4.19.

3.5 The exponential case

Throughout the whole Section 3.5 we take uj(x) = −e−αjx, j = 1, . . . , N for real
numbers α1, . . . , αN > 0 and Λ ≡ 0. MΦ in this setup takes the form MΦ = MΦ1 ×
· · · ×MΦN where for every j = 1, . . . , N

MΦj = M exp = {X ∈ L0(Ω,F ,P) | EP [exp(λ |X|)] < +∞∀λ > 0} .

We also introduce the following constants:

β :=
N∑
j=1

1

αj
; Ak :=

1

αk
log

(
1

αk

)
; A :=

N∑
j=1

Aj . (3.44)

Finally, we consider the case BG = DG (recall (3.16) and (3.19)).

3.5.1 Explicit formulas

Finitely generated G

Remark 3.5.1. Consider G = σ(E1, . . . , EP ) for some finite partition of Ω. Define on
Ek the conditioned probability as usual and denote by EPk [. . . ] the expectation with
respect to it. If Z is a random variable on Ω, EPk [Z] will denote the expectation of its
restriction to Ek with the induced sigma algebra and conditioned probability. Observe
that EP [Z|G] =

∑P
k=1 EPk [Z] 1Ek . We will use below the non conditional explicit

formulas obtained in [20] Theorem 6.2, observing that to move from utilities of the
form uj(x) = − 1

αj
exp(−αjx) to the ones we are to use here, it is enough to substitute

X in the formulas of [20] Theorem 6.2 with Xj − 1
αj

log
(

1
αj

)
, j = 1, . . . , N . The
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formulas we use here, obtained with the substitution above, are the ones that can be
found in Biagini et al, ”On fairness of Systemic Risk Measures”, arXiv:1803.09898v3,
2018, Section 6.

Theorem 3.5.2. Take G = σ(E1, . . . , EP ), B =
∑P

k=1Bk1Ek ∈ L∞(G) with Bk ∈ R
and ‖B‖∞ < 0. Define the functional

ρG (X) := ess inf


N∑
j=1

Y j |
N∑
j=1

Y j ∈ L∞(G), Y ∈ (L∞(F))N ,
N∑
j=1

EP
[
uj
(
Xj + Y j

)∣∣G] ≥ B


on MΦ. Then ρG takes values in L∞(G) and satisfies ρG (X) =
∑P

k=1 d
k
G(X)1Ek for

dkG(X) := inf

{
N∑
j=1

Y j |
N∑
j=1

Y j ∈ R, Y ∈ (L∞(Ek))
N ,

N∑
j=1

EPk
[
uj(X

j + Y j)
]
≥ Bk

}

= β log

(
− β

Bk

EPk

[
exp

(
−X
β

)])
− A where X :=

N∑
j=1

Xj .

Moreover the following is an optimum for ρG (X):

Y j = −Xj +
1

βαk
X +

1

βαk
ρG (X) +

(
1

βαk
A− Ak

)
.

As to the conjugate of ρG (·) we have

ρG (X) = ess sup
Y ∈(L1(P,F))N

(
N∑
j=1

EP
[
XjY j

∣∣G]− ρ∗(Y )

)
=

N∑
j=1

EQj
[
−Xj

∣∣G]− ρ∗G (−dQ
dP

)
for

dQj

dP
=

P∑
k=1

e−
X
β

EPk
[
e−

X
β

]1Ek ∀ j = 1, . . . , N (3.45)

and

ρ∗G(Y ) =
P∑
k=1

dkG(Y |Ek)∗1Ek

denoting by dkG(·)∗ the conjugate of dkG(·) as a functional on (L∞(Ek,F|Ek ,Pk))
N under

the duality
(

(L∞(Ek,F|Ek ,Pk))
N , (L1(Ek,F|Ek ,Pk))

N
)

.

Proof. Observe that for G = σ(E1, . . . , EP ) we have

DG =

{
Y ∈ (L∞(F))N |

N∑
j=1

Y j ∈ L∞(G)

}
and

ess inf

{
N∑
j=1

Y j | Y ∈ CG,
N∑
j=1

EP
[
uj(X

j + Y j) | G
]
≥ B

}
=
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P∑
k=1

inf

{
N∑
j=1

Y j | Y ∈ CR(Ek), Y ∈ (L∞(Ek))
N

N∑
j=1

EPk
[
uj(X|Ek + Y j)

]
≥ Bk

}
1Ek

(3.46)
where

CR(Ek) =

{
Y ∈ (L∞(Ek,Pk))N |

N∑
j=1

Y j ∈ RPk − a.s.

}
.

Based on the fact that CR(Ek) is closed under truncation in the deterministic sense
(see [20] Definition 4.18), we see that for any X ∈MΦ

ρk(X|Ek) := inf

{
N∑
j=1

Y j | Y ∈ CR(Ek) ∩ (L∞(Ek))
N ,

N∑
j=1

EPk
[
uj(X|Ek + Y j)

]
≥ Bk

}

= inf

{
N∑
j=1

Y j | Y ∈ CR(Ek), Y ∈MΦ(Ek),
N∑
j=1

EPk
[
uj(X|Ek + Y j)

]
≥ Bk

}
.

(3.47)
Furthermore, by norm density of (L∞(Ek))

N in MΦ(Ek), we have

ρ∗k(Z|Ek) = sup
X∈(L∞(Ek))N

(
N∑
j=1

EPk
[
XjZ|Ek

]
− ρk(Xj)

)
.

Each ρk can be treated individually as a Systemic Risk Measure as defined in [20]
on the probability space (Ek,F|Ek ,Pk). All the results in [20] can be applied, in
particular Theorem 6.2. This proves the formulas for dkG(·) which in turns yield the
formula for ρG (X), and the optimality of Y as defined in the statement. Observe
furthermore that an analogous argument can be applied for the conjugate ρ∗G, which
can be expressed as

ρ∗G(Z) =
P∑
k=1

ρ∗k(Z|Ek)1Ek Z ∈ KΦ

(recall Definition 2.9). This implies that in fact any optimum for the dual representa-
tion of ρk in the dual pair (MΦ(Ek), KΦ(Ek)) is an optimum for the dual representa-
tion of the restriction ρk|(L∞(F))N which coincides to the k−th coefficient of the sum
in (3.46). We then conclude the optimality of Q in (3.45).
This concludes the proof.

Remark 3.5.3. We can also see from [20] Example 4.14 or by direct computation that

ρ∗G

(
−dQ

dP

)
=

N∑
j=1

1

αj
EP

[
dQj

dP
log

(
dQj

dP

)∣∣∣∣G]+
N∑
j=1

1

α j
log

(
− B

βαj

)

= βEP

[
dQj

dP
log

(
dQj

dP

)∣∣∣∣G]+A+β log

(
−B
β

)
=

N∑
j=1

EQj [−Xj|G]− ρG (X) . (3.48)
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Countably generated G: explicit formulas

For X ∈ (L∞(F))N and a filtration of sigma algebras (Ft)t∈N which are finitely gen-
erated set G :=

∨
tFt. Take B ∈ L∞(G), ‖B‖∞ < 0 and define ρFt (·) using EP [B|Ft]

in place of B.

Lemma 3.5.4. The following limits hold, if notation for parameters is used as in
(3.44)

lim
t↑+∞

ρFt (X) = lim
t↑+∞

[
β log

(
− β

EP [B|Ft]
EP

[
exp

(
−X
β

)∣∣∣∣Ft])− A]

= β log

(
− β
B
EP

[
exp

(
−X
β

)∣∣∣∣G])− A ,
lim
t↑+∞

[
−Xk +

1

βαk

(
X + ρFt (X) + A

)
− Ak

]
= −Xk +

1

βαk

(
X + ρG (X) + A

)
− Ak =: Y k

∞ .

Also,
Y∞ ∈ (L∞(F))N ,

N∑
j=1

Y j
∞ = β log

(
− β
B
EP

[
exp

(
−X
β

)∣∣∣∣G])− A ∈ L∞(G) ,

N∑
j=1

EP
[
exp

(
−αj

(
Xj + Y j

∞
))∣∣G] = B .

Proof. Existence of the limits reduces to a convergence argument for uniformly inte-
grable martingales. The formulas can be checked by hand.

Proposition 3.5.5. For a countably generated G, we have that

ρG (X) = β log

(
− β
B
EP

[
exp

(
−X
β

)∣∣∣∣G])− A
and Y∞ is an optimal allocation for ρG (X). Moreover

dQ̂j

dP
=

dQ̂
dP

:=
exp

(
−X

β

)
EP

[
exp

(
−X

β

)∣∣∣G] j = 1, . . . , N

defines an optimum for the dual representation of ρG (X).

Proof. From Lemma 3.5.4 it is clear, since Y∞ satisfies the constraints in the definition
of ρG (·), that

ρG (X) ≤ β log

(
− β
B
EP

[
exp

(
−X
β

)∣∣∣∣G])− A .
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We need to prove the opposite inequality. We will proceed showing first that for every
Ŷ ∈ (L∞(F))N such that

N∑
j=1

Ŷ j ∈ L∞(G)

N∑
j=1

EP

[
uj

(
Xj + Ŷ j

)∣∣∣G] > B

it holds that

lim
t
ρFt (X) ≤

N∑
j=1

Ŷ j .

The claim in the proposition will then follow by minor refinements.
STEP 1: to prove what we just mentioned, let us observe that we can write Ŷ N = Z−∑N−1

j=1 Ŷ j for some Z ∈ L∞(G), and that we can define the vector Yt by Y j
t = Ŷ j, j =

1, . . . , N − 1, Y N
t = EP [Z|Ft] −

∑N−1
j=1 Ŷ j, in such a way that

∑N
j=1 Y

j
t ∈ L∞(Ft).

Also, it is clear that Yt →t Ŷ a.s. and that supt
∑N

j=1

∥∥Y j
t

∥∥
∞ <∞.

Using the properties of the exponential we observe that we can rewrite

N∑
j=1

EP
[
− exp

(
−αj

(
Xj + Y j

t

))∣∣Ft]
as

N−1∑
j=1

EP

[
− exp

(
−αj

(
Xj + Ŷ j

))∣∣∣Ft]+

+ EP

[
− exp

(
−αN

(
XN + EP [Z|Ft]−

N−1∑
j=1

Ŷ j

))∣∣∣∣∣Ft
]

=
N−1∑
j=1

EP

[
− exp

(
−αj

(
Xj + Ŷ j

))∣∣∣Ft]+

+ exp (−αN (EP [Z|Ft]))EP

[
− exp

(
−αN

(
XN −

N−1∑
j=1

Ŷ j

))∣∣∣∣∣Ft
]
.

Take now the limit as t→∞. We get:

N−1∑
j=1

EP

[
− exp

(
−αj

(
Xj + Ŷ j

))∣∣∣G]+

exp (−αN (Z))EP

[
− exp

(
−αN

(
XN −

N−1∑
j=1

Ŷ j

))∣∣∣∣∣G
]

=
N−1∑
j=1

EP

[
− exp

(
−αj

(
Xj + Ŷ j

))∣∣∣G]+

+ EP

[
− exp

(
−αN

(
XN + Z −

N−1∑
j=1

Ŷ j

))∣∣∣∣∣G
]
.

165



Thus we have:

lim
t↑+∞

N∑
j=1

EP
[
− exp

(
−αj

(
Xj + Y j

t

))∣∣Ft] =
N∑
j=1

EP

[
− exp

(
−αj

(
Xj + Ŷ j

))∣∣∣G] > B.

From the latter inequality we conclude that setting

Θt :=

{
N∑
j=1

EP
[
− exp

(
−αj

(
Xj + Y j

t

))∣∣Ft] ≥ EP [B|Ft]

}

we have that, almost surely, 1Θct
is null definitely in t (i.e. for almost all ω there exist

a T (ω) such that this indicator is null for t ≥ T (ω)). This holds since EP [B|Ft] →t

EP [B|G] = B ∈ L∞(G). Observe also that Θc
tn ∈ Ftn and there exists a constant K

such that

N∑
j=1

exp

(
−αj

(
−
∥∥Xj

∥∥
∞ − sup

t

∥∥Y j
t

∥∥
∞ +K

))
≥ EP [B|Ft] .

We conclude that we can set W j
t = Y j

t +K1Θt , j = 1, . . . , N obtaining an element of
(L∞(F))N satisfying:

N∑
j=1

W j
t ∈ L∞(Ft) ,

N∑
j=1

EP
[
− exp

(
−αj

(
Xj +W j

t

))∣∣Ft] ≥ EP [B|Ft] .

This yields

ρFt (X) ≤
N∑
j=1

W j
t

and also

lim
t
ρFt (X) = lim sup

t
ρFt (X) ≤ lim inf

t

N∑
j=1

W j
t = lim inf

t

N∑
j=1

Y j
t =

N∑
j=1

Ŷ j .

STEP 2: refinement in proving inequality.
For any Y ∈ (L∞(F))N such that

∑N
j=1 Y

j ∈ L∞(G) and

N∑
j=1

EP
[
− exp

(
−αj

(
Xj + Y j

))∣∣G] ≥ B (3.49)

it clearly holds that Ŷ j = Y j + ε, j = 1, . . . , N satisfies

N∑
j=1

Ŷ j ∈ L∞(G) ,
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N∑
j=1

EP

[
uj

(
Xj + Ŷ j

)∣∣∣G] > B

for all ε > 0. An easy limiting argument then gives us: limt ρFt (X) ≤
∑N

j=1 Y
j for

Y ∈ (L∞(F))N such that
∑N

j=1 Y
j ∈ L∞(G) and (3.49) holds so that by definition of

ρG (X) and of essential infimum we get limt ρFt (X) ≤ ρG (X).
STEP 3: optimality of Y∞. From the first part of this proof we have an explicit
formula for ρG (X), now optimality can be checked just by summing the explicit
formulas for Y∞ we got in Lemma 3.5.4.
STEP 4: optimality of Q̂. By Theorem 3.5.2 we have an explicit expression (3.45).
A limiting argument can then be repeated as above using martingale convergence
Theorem: observe that using (3.48), together with the fact that X ∈ (L∞(F))N , we
get

βEP

[
dQj

t

dP
log

(
dQj

t

dP

)∣∣∣∣∣Gt
]

+ A+ β log

(
−EP [B|Ft]

β

)
→t

→t βEP

[
dQ̂j

dP
log

(
dQ̂j

dP

)∣∣∣∣∣G
]

+ A+ β log

(
−B
β

)
where Qt is defined as in (3.45) for Ft is place of G. The same computations of Remark
3.5.3, using the explicit formula for ρG (X) we obtained above, show that

βEP

[
dQ̂j

dP
log

(
dQ̂j

dP

)∣∣∣∣∣G
]

+ A+ β log

(
B

β

)
=

N∑
j=1

EQ̂j [−X
j|G]− ρG (X) . (3.50)

As can directly be checked, Q̂ ∈ Q1
G, and by the proof of Claim 3.4.8 we get as a

consequence that α1(Q̂) = ρ∗G

(
−dQ̂

dP

)
. Consequently, by definition of ρ∗G and using

(3.50),

α1(Q̂)≥βEP

[
dQ̂j

dP
log

(
dQ̂j

dP

)∣∣∣∣∣G
]

+ A+ β log

(
B

β

)
. (3.51)

We now prove the converse inequality in (3.51). To do so, observe that by Fenchel
inequality for any λ ∈ L∞(G) with a ≤ λ a.s. for some a ∈ (0,+∞) we have

α1(Q̂) = ess sup
W∈(L∞(F))N

EP[U(W )|G]≥B

N∑
j=1

EQj
[
−W j | G

] Q̂∈Q1
G

= ess sup
W∈(L∞(F))N

EP[U(W )|G]≥B

N∑
j=1

λEP

[
−W j

(
1

λ

dQ̂
dP

)∣∣∣∣∣G
]

≤ ess sup
W∈(L∞(F))N

EP[U(W )|G]≥B

(
λEP

[
V

(
1

λ

dQ̂
dP

)∣∣∣∣∣G
]
− λEP [U(W )|G]

)
≤ λEP

[
V

(
1

λ

dQ̂
dP

)∣∣∣∣∣G
]
− λB

=
N∑
j=1

1

α j
log

(
1

αj

)
−

N∑
j=1

1

αj
+

N∑
j=1

1

αj
EP

[
dQ̂
dP

log

(
dQ̂
dP

)∣∣∣∣∣G
]

+
N∑
j=1

1

αj
log

(
1

λ

)
− λB
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= A− β + β log

(
1

λ

)
− λB + βEP

[
dQ̂
dP

log

(
dQ̂
dP

)∣∣∣∣∣G
]
.

We can now choose λ = − β
B

and obtain that

α1(Q̂) ≤ A− β + β log

(
−B
β

)
−
(
− β
B

)
B + βEP

[
dQ̂
dP

log

(
dQ̂
dP

)∣∣∣∣∣G
]

= βEP

[
dQ̂
dP

log

(
dQ̂
dP

)∣∣∣∣∣G
]

+ A+ β log

(
−B
β

)
which proves the converse inequality to (3.51). Combining now (3.50) and (3.51) we
conclude

α1(Q̂) =
N∑
j=1

EQ̂j [−X
j|G]− ρG (X)

which, since as we already mentioned Q̂ ∈ Q1
G, proves the optimality of Q̂ in the dual

representation of ρG (X).

General G

Theorem 3.5.6. Take a general sub sigma algebra G ⊆ F , X ∈ (L∞(F))N , B ∈
L∞(G), ‖B‖∞ < 0. Then ρG (X) = β log

(
− β
B
EP

[
exp

(
−X

β

)∣∣∣G]) − A and Y∞ is an

optimal allocation for ρG (X). Moreover dQ̂
dP :=

exp
(
−X
β

)
EP
[
exp
(
−X
β

)∣∣∣G] defines an optimum for

the dual representation of ρG (X).

Proof. Fix G and argue as in [129] Section 14.13 Step II to see that there exists a
sequence of countably generated sigma algebras (Ft)t such that

EP

[
exp

(
−X
β

)∣∣∣∣Ft] L1(F)−−−−→
t→+∞

EP

[
exp

(
−X
β

)∣∣∣∣G] .
For each of such Ft Proposition 3.5.5 applies and the argument of existence of limits in
Lemma 3.5.4 can be replicated. The proof of Proposition 3.5.5 can be then replicated
in a step-by-step way.

Remark 3.5.7. We covered for the explicit formulas the case BG = DG. We believe
that similar formulas can be obtained for the cluster cases in Example 3.4.2, using
the corresponding deterministic formulas in [20] and substituting expectations with
conditional expectations. We believe the proof can be obtained in a step by step way
similarly to the case we treated, with a more complicated notation.

3.5.2 Time consistency

We consider now two sub sigma algebras H ⊆ G ⊆ F . In this subsection we will need
to exploit explicitly the dependence of optimal allocations and minimax measures
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given by Theroem 3.5.6 on initial datum and sub sigma algebras. To fix notation,
given X ∈ (L∞(F))N and G ⊆ F we define:

Ŷ k (G, X) := −Xk +
1

βαk

(
N∑
j=1

Xj + ρG (X) + A

)
− Ak , (3.52)

dQ̂k (G, X)

dP
=

exp
(
−X

β

)
EP

[
exp

(
−X

β

)∣∣∣G] , (3.53)

âk (G, X) = EQ̂k(G, X)[Ŷ
k (G, X) | G] , (3.54)

ρG (X) = β log

(
− β
B
EP

[
exp

(
−X
β

)∣∣∣∣G])− A =
N∑
j=1

Ŷ j (G, X) =
N∑
j=1

âj (G, X) .

(3.55)

Theorem 3.5.8. The following time consistency property holds whenever B ∈ L∞(H)
is given: for every k = 1, . . . , N

Ŷ k
(
H, −Ŷ (G, X)

)
= Ŷ k (H, X) + Ŷ k (H, 0) , (3.56)

dQ̂k

dP
(G, X)

dQ̂k

dP

(
H, −Ŷ (G, X)

)
=

dQ̂k

dP
(G, X)

dQ̂k

dP
(H, −â (G, X)) =

dQ̂k

dP
(H, X) ,

(3.57)

âk (H, −â (G, X)) = âk (H, X) + âk (H, 0) . (3.58)

Proof.
Equation (3.56): we start observing that a straightforward computation yields

Ŷ k (G, X) = Ŷ k (H, X) +
1

βαk
(ρG (X)− ρH (X)) ∀ k = 1, . . . , N . (3.59)

We also have, recalling
∑N

j=1 Ŷ
j (G, X) = ρG (X) and fixing k, that

Ŷ k
(
H, −Ŷ (G, X)

)
= Ŷ k (G, X) +

1

βαk

(
−ρG (X) + ρH

(
−Ŷ (G, X)

))
+

1

βαk
A− Ak

Eq.(3.59)
= Ŷ k (H, X) +

1

βαk
(−ρH (X)) +

1

βαk

(
ρH

(
−Ŷ (G, X)

)
− ρH (0)

)
+

1

βαk
(ρH (0) + A)− Ak .

It is then enough to show that ρH

(
−Ŷ (G, X)

)
= ρH (X) +ρH (0), since Ŷ k (H, 0) =

1
βαk

(ρH (0) + A)− Ak. A direct computation yields

ρH

(
−Ŷ (G, X)

)
= β log

(
− β
B

)
−A+ β log

EP

exp

− 1

β

− N∑
j=1

Ŷ j (G, X)

∣∣∣∣∣∣H
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Eq.(3.55)
= β log

(
− β
B

)
− A+ β log

(
−A
β

)
+

+ β log

(
EP

[
exp

(
β

β
log

(
− β
B
EP

[
exp

(
− 1

β
X

)∣∣∣∣G]))∣∣∣∣H])
= ρH (0)− A+ β log

(
− β
B
EP

[
EP

[
exp

(
− 1

β
X

)∣∣∣∣G]∣∣∣∣H]) .

Hence we have
ρH

(
−Ŷ (G, X)

)
= ρH (0) + ρH (X) . (3.60)

Equation (3.57): we have by (3.53) and using (3.55) that

dQ̂k

dP
(G, X)

dQ̂k

dP

(
H, −Ŷ (G, X)

)
=

exp
(
−X

β

)
EP

[
exp

(
−X

β

)∣∣∣G]
exp

(
ρG(X)
β

)
EP

[
exp

(
ρG(X)
β

)∣∣∣H] .
(3.61)

We now see, just using (3.55), that

exp

(
ρG (X)

β

)
=

(
− β
B

)
exp

(
−A
β

)
EP

[
exp

(
−X
β

)∣∣∣∣G] ,
EP

[
exp

(
ρG (X)

β

)∣∣∣∣H] =

(
− β
B

)
exp

(
−A
β

)
EP

[
exp

(
−X
β

)∣∣∣∣H] .
Direct substitution in (3.61) yields

dQ̂k

dP
(G, X)

dQ̂k

dP

(
H, −Ŷ (G, X)

)
=

exp
(
−X

β

)
EP

[
exp

(
−X

β

)∣∣∣H] Eq.(3.53)
=

dQ̂k

dP
(H, X) .

Equation (3.57): by definition (3.54) and using the fact that

EP

[
dQ̂k

dP

(
H, −Ŷ (G, X)

)∣∣∣∣∣H
]

= 1 ∀ k = 1, . . . , N

we have

âk (H, −â (G, X)) = EP

[
Ŷ k (H, −â (G, X))

dQ̂k

dP
(H, −â (G, X))

∣∣∣∣∣H
]

= E+F+G+H

where

E := EP

[
− (−â (G, X) k)

dQ̂k

dP
(H, −â (G, X))

∣∣∣∣∣H
]
,

F := EP

[
1

βαk

N∑
j=1

(
−âj (G, X)

) dQ̂k

dP
(H, −â (G, X))

∣∣∣∣∣H
]
,
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G := EP

[
1

βαk
ρH (−â (G, X))

dQ̂k

dP
(H, −â (G, X))

∣∣∣∣∣H
]
,

H := EP

[(
1

βαk
A− Ak

)
dQ̂k

dP
(H, −â (G, X))

∣∣∣∣∣H
]

=
1

βαk
A− Ak .

We now work separately on each of the above random variables:

• considering E, by (3.54) and observing that dQ̂k
dP (H, −â (G, X)) is in L∞(G) we

have

E = EP

[
EP

[
Ŷ k (G, X)

dQ̂k

dP
(G, X)

∣∣∣∣∣G
]

dQ̂k

dP
(H, −â (G, X))

∣∣∣∣∣H
]

= EP

[
Ŷ k (G, X)

dQ̂k

dP
(G, X)

dQ̂k

dP
(H, −â (G, X))

∣∣∣∣∣H
]

Eq.(3.57)
= EP

[
Ŷ k (G, X)

dQ̂k

dP
(H, X)

∣∣∣∣∣H
]

Eq.(3.59)
= EP

[[
Ŷ k (H, X) +

1

βαk
(ρG (X)− ρH (X))

]
dQ̂k

dP
(H, X)

∣∣∣∣∣H
]
.

Using now the fact that ρH (X) ∈ L∞(H) and (3.54) we get

E = âk (H, X) +
1

βαk
EP

[
ρG (X)

dQ̂k

dP
(H, X)

∣∣∣∣∣H
]
− 1

βαk
ρH (X) . (3.62)

• We now move to F . First let us compute dQ̂k
dP (H, −â (G, X)):

dQ̂k

dP
(H, −â (G, X)) =

exp
(
− 1
β

(∑N
j=1−âj (G, X)

))
EP

[
exp

(
− 1
β

(∑N
j=1−âj (G, X)

))∣∣∣H]
Eq.(3.55)

=
exp

(
ρG(X)
β

)
EP

[
exp

(
ρG(X)
β

)∣∣∣H]
= computations similar to the ones for (3.57)

=
exp

(
−A

β

)
exp

(
−A

β

) exp
(
β
β

log
(
− β
B
EP

[
exp

(
−X

β

)∣∣∣G]))
EP

[
exp

(
β
β

log
(
− β
B
EP

[
exp

(
−X

β

)∣∣∣G]))∣∣∣H]
=
− β
B

− β
B

EP

[
exp

(
−X

β

)∣∣∣G]
EP

[
EP

[
exp

(
−X

β

)∣∣∣G]∣∣∣H] .
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In conclusion

dQ̂k

dP
(H, −â (G, X)) =

EP

[
exp

(
−X

β

)∣∣∣G]
EP

[
exp

(
−X

β

)∣∣∣H] . (3.63)

Now we have as a consequence

F = EP

[
1

βαk

N∑
j=1

(
−âj (G, X)

) dQ̂k

dP
(H, −â (G, X))

∣∣∣∣∣H
]

=
1

βαk
EP

[
−ρG (X)

dQ̂k

dP
(H, −â (G, X))

∣∣∣∣∣H
]

=
1

βαk
EP

−ρG (X)
EP

[
exp

(
−X

β

)∣∣∣G]
EP

[
exp

(
−X

β

)∣∣∣H]
∣∣∣∣∣∣H


=
1

βαk

EP

[
EP

[
−ρG (X) exp

(
−X

β

)∣∣∣G]∣∣∣H]
EP

[
exp

(
−X

β

)∣∣∣H]
=

1

βαk

EP

[
EP

[
−ρG (X) exp

(
−X

β

)∣∣∣G]∣∣∣H]
EP

[
exp

(
−X

β

)∣∣∣H]
=

1

βαk
EP

−ρG (X)
exp

(
−X

β

)
EP

[
exp

(
−X

β

)∣∣∣H]
∣∣∣∣∣∣H
 .

Recognizing the explicit expression of dQ̂
dP (H, X) (see (3.53)) we get

F = − 1

βαk
EP

[
ρG (X)

dQ̂k

dP
(H, X)

∣∣∣∣∣H
]
. (3.64)

• To computeG we first see that by an easy check ρH (−â (G, X)) = ρH

(
−Ŷ (G, X)

)
.

We can thus exploit (3.60) to see that ρH (−â (G, X)) = ρG (0) + ρH (X). Using
also (3.63) we get

G =
1

βαk

ρH (0) + EP

ρH (X)
EP

[
exp

(
−X

β

)∣∣∣G]
EP

[
exp

(
−X

β

)∣∣∣H]
∣∣∣∣∣∣H


ρH(X)∈L∞(H)
=

1

βαk
(ρH (0) + ρH (X)) .

(3.65)

• Recalling (3.54) we have âk (H, 0) = H + 1
βαk

ρH (0) hence

H = âk (H, 0)− 1

βαk
ρH (0) . (3.66)
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Summing (3.62), (3.64), (3.65), (3.66) most terms simplify and we get

âk (H, −â (G, X)) = E + F +G+H = âk (H, X) + âk (H, 0) k = 1, . . . , N .

3.6 Conditional Shortfall Systemic Risk Measures

and equilibrium: Dynamic mSORTE

In Chapter 1 and Chapter 2 the equilibrium concepts of Systemic Optimal Risk Trans-
fer Equilibrium (SORTE) and of its multivariate extension Multivariate Systemic Op-
timal Risk Transfer Equilibrium (mSORTE) were introduced and analyzed in a static
setup. Here we show that a generalization to the conditional setting is possible and
prove the existence of a time consistent family of dynamic mSORTE in the exponen-
tial setup. Consider a multivariate utility function U . For each j = 1, ..., N consider
a vector subspace Lj with L∞(G) ⊆ Lj ⊆ L0(Ω,F ,P) and set

L:=L1 × ...× LN⊆(L0(Ω,F ,P))N .

With
M⊆ QG

we will denote a subset of probability vectors.

Remark 3.6.1. We impose the condition M⊆ QG in order to guarantee that

(L1(G,P))N = L1(G,Q) .

For (Y,Q, α, A) ∈ (L ∩ L1(F ,Q))×M×(L1(G,P))N×L∞(G) define for j = 1, . . . , N

Y [−j] := [Y 1, . . . , Y j−1, Y j+1, . . . , Y N ] ∈ L0(F ,P)N−1,

[Y [−j];Z] := [Y 1, . . . , Y j−1, Z, Y j+1, . . . , Y N ], Z ∈ L0(F ,P),

UY [−j]

j (Z) := EP
[
uj(X

j + Z)
∣∣G]+ EP

[
Λ(X + [Y [−j];Z])

∣∣G] , Z ∈ L0(F ,P) , (3.67)

UQj ,Y [−j]

j (αj) := ess sup
{
UY [−j]

j (Z) | Z ∈ Lj ∩ L1(Ω,F ,Qj), EQj [Z|G] ≤ αj
}
,

(3.68)
and

TQ(α) := ess sup
{
EP [U(X + Y )|G] | Y ∈ L ∩ L1(F ,Q), EQj

[
Y j|G

]
≤ αj, ∀j

}
,

(3.69)

SQ(A) := ess sup

{
TQ(α) | α ∈ (L1(G,P))N ,

N∑
j=1

αj ≤ A

}
. (3.70)

Obviously, all such quantities depend also on X, but as X will be kept fixed through-
out most of the analysis, we may avoid to explicitly specify this dependence in the
notations. As u1, . . . , uN ,Λ, U are increasing we can replace, in the definitions (3.68),
(3.69), (3.70), the inequalities in the budget constraints with equalities.
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Definition 3.6.2. The triple (YX ,QX , αX) ∈ L×M×(L1(G,P))N with Y ∈ L1(F ,QX)
is a Dynamic Multivariate Systemic Optimal Risk Transfer Equilibrium
(Dynamic mSORTE) with budget A ∈ L∞(G) if

1. (YX , αX) is an optimum for

ess sup
α∈(L1(P,G))N∑N

j=1 αj=A

 ess sup
Y ∈L∩L1(F ,QX)

E
Qj
X

[Y j |G]≤αj , ∀j

EP [U(X + Y )|G]

 (3.71)

2. YX ∈ CG and
∑N

j=1 Y
j
X = A P- a.s.

Theorem 3.6.3. Suppose Assumption 3.4.10 and Assumption 3.4.14 hold. Let Ŷ be
the optimum from Theorem 3.4.4 and let Q̂ be an optimum of (3.23). Define α̂j :=

EQ̂j [Ŷ
j|G]. Then (Ŷ , Q̂, α̂) is a Dynamic mSORTE for Q := Q1

G, L := (L1(F ,P))N ∩⋂
Q∈Q1

G
L1(F ,Q), A := ρG (X).

Proof.

STEP 1: Item 2 of Definition 3.6.2 is satisfied. We start observing that by Theorem
3.4.4, Ŷ ∈ CG and trivially being an optimum it satisfies

∑N
j=1 Ŷ

j = ρG (X) =: A.

STEP 2: we prove that for any optimum Q̂ ∈ Q1
G of (3.23), the optimization problem

πG,QA (X) := ess sup

EP [U (X + Y )|G]

∣∣∣∣∣∣∣∣∣∣
Y ∈ (L1(F ,P))N ∩

⋂
Q∈Q1

G

L1(F ,Q) and

N∑
j=1

EQ̂j [Y
j|G] ≤ A

 .

(3.72)

satisfies πG,Q̂A (X) = B.

We start showing that the optimal allocation Ŷ for ρG (X) provided by Theorem 3.4.4
satisfies

∑N
j=1 EQ̂j [Y

j|G] = A (directly from Theorem 3.4.19) and

EP

[
U
(
X + Ŷ

)∣∣∣G] = B .

To see the latter equality, observe that we already know that EP

[
U
(
X + Ŷ

)∣∣∣G] ≥ B.

If on a set Ξ of positive measure we had that the inequality is strict, we would have for

some N > 0 that ΞN := {EP

[
U
(
X + Ŷ

)∣∣∣G] > B + 1
N
} ∈ G has positive probability.

By Assumption 3.4.10 we have using (cDOM)

EP

[
U

(
X + Ŷ − 1

H

)∣∣∣∣G] ↑H EP

[
U
(
X + Ŷ

)∣∣∣G] on ΞN .
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On a G-measurable subset ΘN ∈ G of ΞN , P(ΘN) > 0, the convergence is uniform

(in H) by Theorem 3.7.2. Hence definitely in H EP

[
U
(
X + Ŷ − 1

H
1ΘN

)∣∣∣G] ≥ B.

Clearly then ρG (X) ≤
∑N

j=1 Ŷ
j − N

H
1ΘN , since

Ŷ − 1

H
1ΘN1 ∈ CG, EP

[
U
(
X + Ŷ − ε1ΘN1

)∣∣∣G] ≥ B .

We then get a contradiction, since Ŷ is supposed to be an optimum for ρG (X).

Now we prove that πG,QA (X) = B: for Ŷ as before, which we stress satisfies Ŷ ∈
(L1(F ,P))N by Theorem 3.4.4 and Ŷ ∈ L1(F ,Q) for every Q ∈ Q1

G by Proposition

3.4.16, we have as we showed above that
∑N

j=1 EQ̂j [Y
j|G] = A and EP

[
U
(
X + Ŷ

)∣∣∣G] =

B. Hence by (3.72) we have πG,QA (X) ≥ B. Let now (Yn)n be a maximizing sequence

for πG,QA (X) such that
∑N

j=1 EQ̂j [Y
j
n |G] = A (w.l.o.g.), which exists since the set over

which we take essential supremum to define πG,QA (X) is upward directed. Suppose for
∆ := {πGA(X) > B} we had P(∆) > 0. Then setting ∆N := {πGA(X) > B + 1

N
} ∈ G

we have P(∆N) > 0 for some N big enough . By Theorem 3.7.2, we have that

on a subset ∆̃N of ∆N , having positive probability, the pointwise convergence of
EP [U (X + Yn)|G] to the essential supremum is uniform. Hence given ε > 0 small

enough, for n big enough and for Ỹn = Yn − ε1∆̃N
1 ∈ CG ∩ (L∞(P,F))N we have

EP

[
U
(
X + Ỹn

)∣∣∣G] ≥ B. Clearly
∑N

j=1 EQ̂j [Ỹ
j
n |G] < A with positive probability,

by definition of Ỹn. Now we use (3.41) for Q = Q̂ and obtain that with positive

probability (i.e. on ∆̃N)

ρQ̂G (X) ≤
N∑
j=1

EQ̂j [Ỹ
j
n |G] < A .

We then get a contradiction to A := ρG (X), since by (3.40) we would have ρG (X) =

ρQ̂G (X).

STEP 3: the optimal allocation Ŷ for ρG (X) given in Theorem 3.4.4 (which is an

optimum by Theorem 3.4.19) is an optimum for RHS of (3.72), for the given Q = Q̂.

This follows trivially from the arguments in the previous steps: Ŷ ∈ (L1(F ,P))N

by Theorem 3.4.4 and Ŷ ∈ L1(F ,Q) for every Q ∈ Q1
G by Proposition 3.4.16,∑N

j=1 EQ̂j [Y
j|G] = A, thus Ŷ satisfies the constraints of RHS of (3.72) Moreover

we proved in STEP 1 that EP

[
U
(
X + Ŷ

)∣∣∣G] = B = πG,QA (X).

STEP 4: conclusion. We easily see Ŷ is an optimum for

ess sup

{
EP [U (X + Y )|G] | Y ∈ L,

N∑
j=1

EQ̂j [Y |G] ≤ A

}
=

ess sup
α∈(L1(P,G))N∑N

j=1 αj=A

(
ess sup

{
EP [U (X + Y )|G] | Y ∈ L,EQ̂j [Y |G] ≤ αj ∀ j = 1, . . . , N

})
.

(3.73)
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Hence (Ŷ , α̂) are optimum for (3.71), and also Item 1 of Definition 3.6.2 is satisfied.
This completes the proof.

Corollary 3.6.4. For the exponential utilities there exists a time consistent family of
Dynamic mSORTEs.

Proof. Follows from Theorem 3.5.8 and Theorem 3.6.3.

3.7 Appendix to Chapter 3

3.7.1 Essential suprema and infima

In this Section 3.7.1 we write L0(Ω,F ,P; [−∞,+∞]) for the set of (equivalence classes
of) [−∞,+∞]-valued random variables. L0(Ω,F ,P; [0,+∞)) is defined analogously.

Proposition 3.7.1. Let A,B ⊆ L0(Ω,F ,P; [−∞,+∞]) be nonempty, 0 ≤ λ ∈
L0(Ω,F ,P), f : A× B → L0(Ω,F ,P; [−∞,+∞]), g : A → L0(Ω,F ,P; [−∞,+∞]), a
sequence (αn)n ⊆ A be given. Then:

1.

ess sup
(α,β)∈A×B

(α + β) = ess sup
α∈A

α + ess sup
β∈B

β = ess sup
α∈A

(
α + ess sup

β∈B
β

)
,

2.
ess sup

(α,β)∈A×B
f(α, β) = ess sup

α∈A
ess sup
β∈B

f(α, β) = ess sup
β∈B

ess sup
α∈A

f(α, β) ,

3.
ess sup
α∈A

λg(α) = λ ess sup
α∈A

g(α) ,

4.
ess sup
α∈A

α ≥ lim sup
n

αn ,

5.
ess sup
α∈A

−g(α) = − ess inf
α∈A

g(α) .

3.7.2 Proofs: Static Systemic Risk Measures

Proof of Theorem 3.1.4. Apply Namioka-Klee Theorem in [23] together with a stan-
dard argument regarding Monetary property, to see that

ρ(X) = max
µ∈ba1

(
N∑
j=1

µj(−Xj)− ρ∗(−µ)

)
=

N∑
j=1

µ̂j(−Xj)− ρ∗(−µ̂) (3.74)

for a µ̂ ∈ ba1. We follow the lines of [77], Theorem 4.22 and Lemma 4.23.
Fix any c > −ρ(0) and define the set

Λc := {µ ∈ ba1 s.t. ρ∗(−µ) ≤ c} .

Take any sequence (Xn)n in L∞ such that
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1. 0 ≤ Xn ≤ 1 ∀ j ∈ {1, . . . , N}, ∀n,

2. ρ(λXne
k)→n ρ(λek) for each λ ≥ 1 and k ∈ {1, . . . , N}.

Then infµ∈Λc µ
k(Xn)→n 1 for all k ∈ {1, . . . , N} (using the notation µ = [µ1, . . . , µN ]).

To see this, observe that by definition of ρ∗ for any Y ∈ L∞ and fixed k ∈ {1, . . . , N}
c ≥ ρ∗(−µ) ≥ EQ

[
(−λY )ek

]
− ρ(λY ek)

which implies

inf
µ∈Λc

µ(Y ek) = inf
µ∈Λc

µk(Y ) ≥ 1

λ

(
−c− ρ(λY ek)

)
.

Now consider a sequence as above and observe that, by what we just saw,

lim inf
n

(
inf
µ∈Λc

µk(Xn)

)
≥ lim

n

1

λ

(
−c− ρ(λXne

k
)

=
1

λ

(
−c− ρ(λek)

) Monet. prop.
= 1− c

λ
.

Letting λ→ +∞ we see that

inf
µ∈Λc

µk(Xn)→n 1, k = 1, . . . , N .

Now take any optimum µ̂ in the dual representation (3.74) and c > −ρ(0) big enough,
so that µ̂ belongs to Λc. For any sequence of sets (An)n in F increasing to Ω we
have by continuity from below that for the sequence (Xn := 1An)n Items 1 and 2
are satisfied, and we conclude that µ̂k(An) →n 1 for every k = 1, . . . , N . Since this
happens for any sequence (An)n in F increasing to Ω, we conclude σ-additivity holds
for the functional A 7→ µ̂k(1A) for k = 1, . . . , N .
We proved that any optimum of (3.74) belongs to M1, which as a consequence can
replace ba1 in (3.74).

Proof of Corollary 3.1.5. By monotonicity and Monetary property we have that con-
dition ρ∗(Y ) < +∞ implies that Y j ≤ 0,EP [Y j] = −1 for every j = 1, . . . , N . The
claim then follows from Theorem 3.1.4 since by Radon-Nikodym Theorem we have a
one to one correspondence between {Y | ρ∗(Y ) < +∞} and M1.

3.7.3 Miscellaneous Results

Theorem 3.7.2 (Egorov). Let (Xn)n be a sequence in L0(Ω,F ,P) almost surely con-
verging to an X ∈ L0(Ω,F ,P). For every ε > 0 there exists Aε measurable, P(Aε) < ε
such that ∥∥(Xn −X) 1(Aε)c

∥∥
∞ →n 0 .

Proof. See [5] Theorem 10.38.

Remark 3.7.3. Observe that for any sequence of real numbers (an)n converging to an
a ∈ R and for any sequence (Nh)h ↑ +∞ we have 1

Nh

∑
j≤Nh aj →h a. This can be

seen as follows: for ε > 0 fixed take K s.t. |aj − a| ≤ ε for all j ≥ K. Take h big
enough to have Nh >> K. Then∣∣∣∣∣ 1

Nh

∑
j≤Nh

aj − a

∣∣∣∣∣ ≤ 1

Nh

∑
j≤Nh

|aj − a| ≤
K

Nh

sup
j≤K
|aj − a|+

Nh −K
Nh

ε

and we can send h to infinity.
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3.7.4 Additional properties of multivariate utility functions

In this Section 3.7.4 we work under Standing Assumption I.

Corollary 3.7.4. There exist a > 0, b ∈ R such that

U(x) ≤ a

N∑
j=1

xj + b ∀x ∈ RN .

Proof. Use Lemma 2.6.2 and observe that

a

N∑
j=1

xj + a

N∑
j=1

(−(xj)−) + b ≤ a

N∑
j=1

xj + b .

Lemma 3.7.5. Suppose (Zn)n is a sequence in (L1(Ω,F ,P))N . Suppose furthermore
that the following conditions are met for some B ∈ L∞(Ω,G,P):

1. supn

∣∣∣∑N
j=1 EP [Zn|G]

∣∣∣ < +∞ P−a.s.

2. infn EP [U (Zj
n)|G] ≥ B P−a.s.

3. Zn →n Z P−a.s.

Then EP [U (Z)|G] ≥ B P−a.s.

Proof.

STEP 1: supn

(∑N
j=1 EP [(Zj

n)+|G]
)
< +∞ P−a.s.

Define the sets

A+ :=

{
sup
n

N∑
j=1

EP
[
(Zn)+

∣∣G] = +∞

}
A− :=

{
sup
n

N∑
j=1

EP
[
(Zn)−

∣∣G] = +∞

}
.

We prove that P(A−) = 0 : suppose by contradiction that P(A−) > 0. Apply Item 2
together with the fact that A− is G measurable to see that for some a > 0, b ∈ R

B1A− ≤ EP
[
U
(
Zj
n

)∣∣G] 1A−
Lemma 2.6.2

≤

(
a

N∑
j=1

EP
[
Zj
n | G

]
− a

N∑
j=1

(Zj
n)− + b

)
1A−

which is a contradiction, by definition of A− and boundedness of B. Hence P(A−) = 0.
By Item 1, together with

N∑
j=1

EP [Zn|G] =
N∑
j=1

EP
[
(Zn)+

∣∣G]− N∑
j=1

EP
[
(Zn)−

∣∣G]
we have that the symmetric difference A+∆A− is P-null (equivalently 1A+ = 1A−), so
that from P(A−) = 0 we get P(A+) = 0, and the claim follows.
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STEP 2: Fatou Lemma and conclusion.
By Lemma 2.6.3 for every ε > 0 there exist bε > 0 such that Γε(x) := −U(x) +
2ε
∑N

j=1(xj)+ + bε ≥ 0 for all x ∈ RN . By Fatou Lemma (Γε is continuous) we have
that

−EP [U (Z)|G] + ε

N∑
j=1

EP
[
(Zj)+

∣∣G]+ bε = EP [Γε(Z)|G] = EP

[
lim inf

n
Γε(Zn)

∣∣∣G]

≤ lim inf
n

EP [Γε(Zn)|G] = lim inf
n

(
−EP [U (Zn)|G] + ε

N∑
j=1

EP
[
(Zj

n)+
∣∣G]+ bε

)
.

This chain of inequalities yields, since bε disappears on both sides:

−EP [U (Z)|G] + ε

N∑
j=1

EP
[
(Zj)+

∣∣G] ≤ lim inf
n

−EP
[
U
(
Zjn
)∣∣G]+ ε

N∑
j=1

EP
[
(Zjn)+

∣∣G]
 .

We can thus exploit Item 2 in RHS to get

−EP
[
U
(
Zj
)∣∣G]+ ε

N∑
j=1

EP
[
(Zj)+

∣∣G] ≤ (−B + ε sup
n

(
N∑
j=1

EP
[
(Zj

n)+
∣∣G])) .

The latter inequality might be rewritten as

−EP
[
U
(
Zj
)∣∣G] ≤ −B + ε

(
N∑
j=1

EP
[
(Zj)+

∣∣G]+ sup
n

(
N∑
j=1

EP
[
(Zj

n)+
∣∣G]))

which holds P−a.s. for all ε > 0. We observe now that the term multiplying ε in
the last expression is a.s. finite by Item 3 and STEP 1. hence a standard limiting
procedure over a decreasing sequence of values for ε yields the desired inequality
−EP [U (Zj)|G] ≤ −B.

Proposition 3.7.6. Suppose the vectors X ∈ (L∞(F))N and Y ∈ (L1(F))N satisfy∑N
j=1 Y

j ∈ L∞(G) and

EP [U(X + Y ) | G] ≥ B .

Suppose
∑

i∈I Y
i ∈ L0(G) for some family of indexes I ⊆ {1, . . . , N}. Then

∑
i∈I Y

i ∈
L∞(G).

Proof. Set AH := {
∑

i∈I Y
i < −H} ∈ G for H > 0 and suppose P(AH) > 0 for all

H > 0. Then we have by Lemma 2.6.2 and EP [U (X + Y )|G] ≥ B that

B1AH ≤ a

(
N∑
j=1

Xj +
N∑
j=1

Y j + b

)
1AH − a

(∑
i∈I

(X i + Y i)−

)
1AH . (3.75)

At the same time from
∑N

j=1 Y
j ∈ L∞(G) we must have for some index k ∈ I (depend-

ing on H) that AkH := {Y k < − 1
N+1

H} ∩ AH ⊆ AH satisfies P(AkH) > 0 (otherwise
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we would get that
∑

i∈I Y
i ≥ − N

N+1
H on AH , which is a contradiction). From (3.75)

and H big enough we also have

B1AkH ≤ a

(
N∑
j=1

Xj +
N∑
j=1

Y j + b

)
1AkH + a(−(Xk + Y k)−)1AkH

≤ a

(
N∑
j=1

Xj +
N∑
j=1

Y j + b

)
1AkH + a(−(

∥∥Xk
∥∥
∞ + Y k)−)1AkH .

Hence

B1AkH ≤ a

∥∥∥∥∥
N∑
j=1

Xj +
N∑
j=1

Y j

∥∥∥∥∥
∞

+ b

 1AkH + a

(∥∥Xk
∥∥
∞ −

H

N + 1

)
1AkH . (3.76)

Possibly taking an even bigger H, in (3.76) we then get a contradiction.
Now set BH := {

∑
i∈I Y

i > H}. Assume that P(BH) > 0 for all H > 0. Then from∑N
j=1 Y

j ∈ L∞(G) we get that

P

({∑
i/∈I

Y i <
N∑
j=1

Y j −H

})
> 0 .

The argument in the first part of the proof can then be replicated, since
∑

i/∈I Y
i ∈

L0(G), yielding a contradiction.
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Chapter 4

Entropy Martingale Optimal
Transport

In Chapter 4 we develop the duality

A := inf
Q∈Mart(Ω)

(EQ [c] +DU(Q)) = sup
∆∈H

sup
ϕ∈Φ∆(c)

SU (ϕ) := B

between the Entropy Martingale Optimal Transport problem (A) and an associated
optimization problem (B). Problem (A) is inspired by Entropy Optimal Transport
(EOT) of of Liero et al. [108]. As customary in Martingale Optimal Transport
(MOT) theory, we take the infimum of the cost functional over martingale probability
measures and we consider fairly general penalty terms DU , which may not have a
divergence formulation, unlike in [108]. In (B) the objective functional is related to the
term DU via Fenchel conjugacy and is not linear in general, in contrast to the classical
theory of Optimal Transport (OT) or MOT. We provide several examples of such
functionals and associated penalty terms, from those induced by utility functions to
those determined by penalization with market prices. Our results allow us to establish
a novel nonlinear and robust pricing-hedging duality, which covers many known results
as special cases. The setup we consider for hedging is rather general, and allows in
principle for considering semistatic trading strategies with path dependent options,
beyond the classical vanilla ones.
We summarize the introductory discussion in Section I.4 in the following Table 4.1
and we point out that in Chapter 4 we develop the duality theory sketched in the
last row of the Table. Differently from rows 1, 2, 5, 6, in rows 3, 4, 7, 8, the financial
market is present and martingale measures are involved in the dual formulation. In
rows 1, 2, 3, 4 we illustrate the classical setting, where the conditions in the functional
form hold P-a.s., while in the last four rows Optimal Transport is applied to treat the
robust versions, where the inequalities holds for all elements of Ω.
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Table 4.1: Prob(Ω) is the set of all probabilities on Ω; P(P) = {Q ∈ Prob(Ω) | Q� P};
Mart(Ω) is the set of all martingale probabilities on Ω; M(P) = Mart(Ω) ∩ P(P); Π(Q1,Q2) =
{Q ∈ Prob(Ω) with given marginals}; Mart(Q1,Q2) = {Q ∈ Mart(Ω) with given marginals};
Meas(Ω) is the set of all positive finite measures on Ω; Sub(c) is the set of static parts of semistatic
subhedging strategies for c; U is a concave proper utility functional and SU is the associated Gener-
alized Optimized Certainty Equivalent.

;

FUNCTIONAL FORM SUBLINEAR CONVEX

1 - Coherent R.M. − inf{m | c+m ∈ A}, A cone inf
Q∈Q⊆P(P)

EQ [c]

2 - Convex R.M. − inf{m | c+m ∈ A}, A convex inf
Q∈P(P)

(EQ [c] + αA(Q))

3 Subreplic. price sup
{
m | ∃∆ : m+ I∆(X) ≤ c

}
inf

Q∈M(P)
EQ [c]

4 Indiff. price sup {m | U(c−m) ≥ U(0)} inf
Q∈M(P)

(EQ [c] + αU (Q))

5 O.T. sup
ϕ+ψ≤c

(
EQ1

[ϕ] + EQ2
[ψ]
)

inf
Q∈Π(Q1,Q2)

EQ [c]

6 E.O.T. sup
ϕ+ψ≤c

U(ϕ,ψ) inf
Q∈Meas(Ω)

(EQ [c] +DU (Q))

7 M.O.T. sup
[ϕ,ψ]∈Sub(c)

(
EQ1

[ϕ] + EQ2
[ψ]
)

inf
Q∈Mart(Q1,Q2)

EQ [c]

8 E.M.O.T. sup
[ϕ,ψ]∈Sub(c)

SU (ϕ,ψ) inf
Q∈Mart(Ω)

(EQ [c] +DU (Q))

Chapter 4 is structured as follows: in Section 4.1, after introducing the necessary
notation and setup, we state and prove our main results, namely Theorem 4.1.3 and
Theorem 4.1.4. In Section 4.2 we analyze in detail the case of additive penalizations
and valuation functionals. Section 4.3.1 collects various applications of our main
results to the problems of nonlinear subhedging and superhedging. In particular we
present the cases of valuation and divergences induced by utility functions (Corollaries
4.3.3 and 4.3.5), and valuation induced by penalization with market prices (Propo-
sition 4.3.9). In Section 4.3.2 we present a dual representation for Generalized OCE
associated to the indirect utility function (Theorem 4.3.13). Section 4.4 collects some
auxiliary results.

4.1 A Generalized Optimal Transport Duality

For unexplained concepts on Measure Theory we refer to the Section 4.4.1. We let Ω
be a Polish Space and define the following sets:

ca(Ω) := {γ : B(Ω)→ (−∞,+∞) | γ is finite signed Borel measures on Ω} ,
Meas(Ω) := {µ : B(Ω)→ [0,+∞) | µ is a non negative finite Borel measures on Ω},
Prob(Ω) := {Q : B(Ω)→ [0, 1] | Q is a probability Borel measures on Ω},
Cb(Ω,RM) := (Cb(Ω))M = {ϕ : Ω→ RM | ϕ is bounded and continuous on Ω}.

We let E ⊆ Cb(Ω;RM+1) be a vector subspace, U : E → [−∞,+∞) be a proper
concave functional and set

V (ϕ) := −U(−ϕ).
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We define D : ca(Ω)→ (−∞,+∞] by

D(γ) := sup
ϕ∈E

(
U(ϕ)−

M∑
m=0

∫
Ω

ϕmdγ

)
= sup

ϕ∈E

(
M∑
m=0

∫
Ω

ϕmdγ − V (ϕ)

)
, γ ∈ ca(Ω).

(4.1)
D is a convex functional and is σ(ca(Ω), E)- lower semicontinuous, even if we do not
require that U is σ(E , ca(Ω))-upper semicontinuous.
The following Assumption will hold throughout all Chapter 4 without further mention.

Standing Assumption 4.1.1. D is proper, i.e.

dom(D) = {γ ∈ ca(Ω) | D(γ) < +∞} 6= ∅.

Remark 4.1.2. Another way to introduce our setting, that will be used in Subsection
4.3.1, is to start initially with a proper convex functional D : ca(Ω) → (−∞,+∞]
which is σ(ca(Ω), E)-lower semicontinuous for some vector subspace E ⊆ Cb(Ω,RM+1).
By Fenchel-Moreau Theorem we then have the representation

D(γ) = sup
ϕ∈E

(
M∑
m=0

∫
Ω

ϕm dγ − V (ϕ)

)
,

where now V is the Fenchel-Moreau (convex) conjugate of D, namely

V (ϕ) := sup
γ∈ca(Ω)

(
M∑
m=0

∫
Ω

ϕm d γ −D(γ)

)
. (4.2)

Setting
U(ϕ) := −V (−ϕ), ϕ ∈ E , (4.3)

we get back that D satisfies (4.1) and additionally that U is σ(E , ca(Ω))-upper semi-
continuous. In conclusion, a pair (U,D) satisfying (4.1) might be defined either pro-
viding a proper concave U : E → [−∞,+∞), as described at the beginning of this
section, or assigning a proper convex and σ(E , ca(Ω))-lower semicontinuous functional
D : ca(Ω)→ (−∞,+∞] as explained in this Remark.

We set
dom(U) := {ϕ ∈ E | U(ϕ) > −∞} . (4.4)

Theorem 4.1.3. Let c : Ω → (−∞,+∞] be proper lower semicontinuous with com-
pact sublevel sets and assume the following holds:

There exists a sequence (kn)n ⊆ RM+1 with

lim sup
n

M∑
m=0

knm = +∞ such that U(−kn) > −∞ ∀n .
(4.5)

Then

inf
µ∈Meas(Ω)

(∫
Ω

c dµ+D(µ)

)
= sup

ϕ∈Φ(c)

U(ϕ) ,

where

Φ(c) :=

{
ϕ ∈ dom(U) |

M∑
m=0

ϕm(x) ≤ c(x) ∀x ∈ Ω

}
. (4.6)
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Proof. We start applying (4.1) to get that∫
Ω

c dµ+D(µ) =

∫
Ω

c dµ+ sup
ϕ∈E

(
U(ϕ)−

M∑
m=0

∫
Ω

ϕm dµ

)
.

We then consider L : Meas(Ω)× dom(U)→ (−∞,+∞] defined by

L(µ, ϕ) :=

∫
Ω

(
c−

M∑
m=0

ϕm

)
dµ+ U(ϕ)

and we set M := {µ ∈ Meas(Ω) |
∫

Ω
c dµ < +∞}. We observe that L is real valued on

M×dom(U) and for any µ ∈ Meas(Ω)\M we have L(µ, ϕ) = +∞ for all ϕ ∈ dom(U)
(since c is bounded from below). We also see that setting C := dom(U)

inf
µ∈Meas(Ω)

(∫
Ω

cdµ+D(µ)

)
= inf

µ∈Meas(Ω)
sup
ϕ∈C
L(µ, ϕ) = inf

µ∈M
sup
ϕ∈C
L(µ, ϕ). (4.7)

The aim is now to interchange sup and inf in RHS of (4.7), using Theroem 4.4.8.
To this end, without loss of generality we can assume α := supϕ∈C infµ∈Meas(Ω) L(µ, ϕ) <
+∞ and we have to find ϕ ∈ C and C > α such that the sublevel set µC :=
{µ ∈ Meas(Ω) | L(µ, ϕ) ≤ C} is weakly compact. The functional c is proper, lower
semicontinuous and has compact sublevel sets, hence it attains a minimum on Ω.
Therefore, for any ε > 0 we can choose, by Assumption (4.5), a deterministic vec-
tor ϕ ∈ C having all components ϕm equal to some constant −knm < 0, such that
ϕ ∈ dom(U) and

inf
x∈Ω

(
c(x)−

M∑
m=0

ϕm(x)

)
> ε > 0.

For such choice of ϕ and for a sufficiently big constant C > α there exists another
constant D := C − U(ϕ) ≥ 0, independent of µ, such that

µC =

{
µ ∈ Meas(Ω) |

∫
Ω

(
c−

M∑
m=0

ϕm

)
dµ ≤ D

}

=

{
µ ∈ Meas(Ω) |

∫
Ω

(
c−

M∑
m=0

ϕm − ε

)
dµ+ εµ(Ω) ≤ D

}
.

(4.8)

Consequently, the set µC is:

1. Nonempty, as the measure µ ≡ 0 belongs to µC .

2. Narrowly closed. Indeed, for each ϕ ∈ C the function c−ϕ is lower semicontinu-
ous on Ω, and so it is the pointwise supremum of bounded continuous functions
(cn)n ⊆ Cb(Ω). For each n, µ 7→

∫
Ω
cn dµ is narrowly lower semicontinuous on

Meas(Ω), by definition. Hence by Monotone Convergence Theorem the map

µ 7→
∫

Ω

(
c−

∑M
m=0 ϕm

)
dµ is the pointwise supremum of narrowly lower semi-

continuous functions, and is lower semicontinuous with respect to the narrow
topology itself. We conclude that for each ϕ ∈ C the functional L( · , ϕ) is nar-
rowly lower semicontinuous, and has closed sublevel sets. This implies that in
particular µC is narrowly closed, using the central expression in (4.8).
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3. Bounded: having a sequence of measures in µC with unbounded total mass
would result in a contradiction with the constraint in the last item of (4.8),
taking into account that c−

∑M
m=0 ϕm − ε ≥ 0 and ε > 0.

4. Tight: let 0 ≤ f := c−
∑M

m=0 ϕm − ε. Since εµ(Ω) ≥ 0 for all µ ∈ Meas(Ω), by
the central expression of (4.8) the inclusion µC ⊆ {µ ∈ Meas(Ω) |

∫
Ω
fdµ ≤ D}

holds. Now it is easy to check that for all µ ∈ µC and α > 0

D ≥
∫

Ω

fdµ ≥
∫
f>α

fdµ ≥ αµ({f > α}) .

Observing that the sublevels of f are compact, by lower semicontinuity of c and
compactness of its sublevel sets, we see that {f > α} are complementaries of
compact subsets of Ω and can be taken with arbitrarily small measure, just by
increasing α, uniformly in µ ∈ µC . Thus tightness follows.

5. A subset of M.

These properties in turns yield narrow compactness of µC in Meas(Ω), by Theorem
4.4.6, and therefore σ(Meas(Ω), Cb(Ω)) compactness (recalling that weak and narrow
topology coincide in our setup). As a consequence, by Item 5 , µC is compact in the
relative topology σ(Meas(Ω), Cb(Ω))|M . We now may apply Theorem 4.4.8. Indeed,
L is real valued on M × C. Items 1 and 2 of Theorem 4.4.8 are fulfilled for: A = M
endowed with the topology σ(Meas(Ω), Cb(Ω))|M ; B = C; and C taken as above. We
only justify explicitly lower semicontinuity σ(Meas(Ω), Cb(Ω))|M for Item 1, which can
be obtained arguing as in Item 4 above and observing that narrow topology and weak
topology coincide in our setup (see Proposition 4.4.4). Hence we may interchange sup
and inf in RHS of (4.7), obtaining

inf
µ∈M

sup
ϕ∈C
L(µ, ϕ) = sup

ϕ∈C
inf
µ∈M
L(µ, ϕ) = sup

ϕ∈C
inf

µ∈Meas(Ω)
L(µ, ϕ) (4.9)

where the last equality follows from the fact that L(µ, ϕ) = +∞ on the complementary
of M in Meas(Ω) for every ϕ ∈ C. It is now easy to check that for every ϕ ∈ C

inf
µ∈Meas(Ω)

L(µ, ϕ) =

{
U(ϕ) if

∑M
m=0 ϕm(x) ≤ c(x)∀x ∈ Ω

−∞ otherwise
,

thus
sup
ϕ∈C

inf
µ∈Meas(Ω)

L(µ, ϕ) = sup
ϕ∈Φ(c)

U(ϕ)

which concludes the proof, given (4.7) and (4.9).

4.1.1 The Entropy Martingale Optimal Transport Duality

In order to describe a suitable theory to develop the Entropy Optimal Transport du-
ality in a dynamic setting, in this Section we will adopt a particular product structure
of the set Ω.
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To this end, in addition to the notations already introduced in Section 4.1, we consider
T ∈ N, T ≥ 1, and

Ω := K0 × · · · ×KT (4.10)

for K0, . . . , KT ⊆ R. We denote with X0, . . . , XT the canonical projections Xt : Ω→
Kt and we set X = [X0, . . . , XT ] : Ω → RT+1, to be considered as discrete-time
stochastic process. We denote with:

Mart(Ω) := {Martingale measures for the canonical process of Ω}.

When µ ∈ Meas(K0 × · · · ×KT ), its marginals will be denoted with: µ0, . . . , µT .
We recall, respectively from (I.37) and (I.38), that H is the set of admissible trading
strategies and I is the set of elementary stochastic integral. We take E = E0×· · ·×ET
where Et ⊆ Cb(K0 × · · · ×Kt) is a vector subspace, for every t = 0, . . . , T . Then E is
clearly a vector subspace of Cb(Ω;RT+1), and in the stochastic processes interpretation
its elements are processes adapted to the natural filtration of the process (Xt)t.
We suppose that U : E → [−∞,+∞) is proper and concave, D : Meas(Ω) →
(−∞,+∞] is defined in (4.1) and, as in (I.50),the Generalized Optimized Cer-
tainty Equivalent (Generalized OCE) associated to U is

SU(ϕ) := sup
ξ∈RT+1

(
U(ϕ+ ξ)−

T∑
t=0

ξt

)
, ϕ ∈ E .

Theorem 4.1.4. Assume that Ω := K0× · · ·×KT for compact sets K0, . . . , KT ⊆ R,
that c : Ω → (−∞,+∞] is lower semicontinuous, that D : Meas(Ω) → (−∞,+∞] is
lower bounded on Meas(Ω) and proper. Suppose also U satisfies (4.5), and that

N :=

{
µ ∈ Meas(Ω) ∩ dom(D) |

∫
Ω

c dµ < +∞
}
6= ∅, dom(U) + RT+1 ⊆ dom(U) .

(4.11)
Then the following holds:

inf
Q∈Mart(Ω)

(EQ [c(X)] +D(Q)) = sup
∆∈H

sup
ϕ∈Φ∆(c)

SU (ϕ) (4.12)

where for each ∆ ∈ H

Φ∆(c) :=

{
ϕ ∈ dom(U) |

T∑
t=0

ϕt(xt) +
T−1∑
t=0

∆t(x0, . . . , xt)(xt+1 − xt) ≤ c(x) ∀x ∈ Ω

}
.

(4.13)

Proof. The first part of the proof in inspired by [14] Equations (3.4)-(3.3)-(3.2)-(3.1).

inf
Q∈Mart(Ω)

(EQ [c(X)] +D(Q)) (4.14)

= inf
Q∈Mart(Ω)

sup
∆∈H

(
EQ

[
c(X)−

T−1∑
t=0

∆t(X0, . . . , Xt)(Xt+1 −Xt)

]
+D(Q)

)
(4.15)

= inf
Q∈Prob(Ω)

sup
∆∈H

(
EQ

[
c(X)−

T−1∑
t=0

∆t(X0, . . . , Xt)(Xt+1 −Xt)

]
+D(Q)

)
(4.16)
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= inf
Q∈Prob(Ω)

sup
∆∈H
λ∈R

(
EQ

[
c(X)−

T−1∑
t=0

∆t(X0, . . . , Xt)(Xt+1 −Xt) + λ

]
− λ+D(Q)

)
(4.17)

= inf
µ∈Prob(Ω)

sup
∆∈H
λ∈R

(∫
Ω

[
c(x)− I∆(x) + λ

]
dµ(x)− λ+D(µ)

)
(4.18)

= inf
µ∈Meas(Ω)

sup
∆∈H
λ∈R

(∫
Ω

[
c− I∆ + λ

]
dµ− λ+D(µ)

)
(4.19)

= inf
µ∈Meas(Ω)

sup
∆∈H

λ∈RT+1

(∫
Ω

[
c− I∆ +

T∑
t=0

λt

]
dµ−

T∑
t=0

λt +D(µ)

)
. (4.20)

The equality chain above is justified as follows: (4.14)=(4.15) is trivial; (4.15)=(4.16)
follows using the same argument as in [14] Lemma 2.3, which yields that the inner
supremum explodes to +∞ unless Q is a martingale measure on Ω; (4.16)=(4.17) and
(4.17)=(4.18) are trivial; (4.18)=(4.19) follows observing that the inner supremum
over λ ∈ R explodes to +∞ unless µ(Ω) = 1; (4.19)=(4.20) is trivial.
We define now K : Meas(Ω)× (H× RM)→ (−∞,+∞] as

K(µ,∆, λ) :=

∫
Ω

[
c− I∆ +

T∑
t=0

λt

]
dµ−

T∑
t=0

λt +D(µ) .

From (4.11), we observe that K is real valued onN×(H×RT+1) and that K(µ,∆, λ) =
+∞ if µ ∈ Meas(Ω) \N , for all (∆, λ) ∈ H×RT+1. This, together with our previous
computations, provides

inf
Q∈Mart(Ω)

(EQ [c(X)] +D(Q)) = inf
µ∈Meas(Ω)

sup
∆∈H

λ∈RT+1

K(µ,∆, λ) = inf
µ∈N

sup
∆∈H

λ∈RT+1

K(µ,∆, λ) .

(4.21)
As in the proof of Theorem 4.1.3, we wish to apply the Minimax Theorem 4.4.8 in
order to interchange inf and sup in RHS of (4.21) and without loss of generality we can
assume that α := sup ∆∈H

λ∈RT+1
infµ∈N K(µ,∆, λ) < +∞. The functional K is real valued

on N × (H×RT+1) and convexity in Item 1, concavity in Item 2 of Theorem 4.4.8 are
clearly satisfied. We have to find ∆ ∈ H, λ ∈ RT+1 and C > α such that the sublevel
set MC := {µ ∈ Meas(Ω) | K(µ,∆, λ) ≤ C} is weakly compact. Fix a ε > 0. As the
functional c is lower semicontinuous on the compact Ω, it is lower bounded on Ω and
we can take ∆ = 0 and λ sufficiently big in such a way that infx∈Ω(c(x)+

∑T
t=0 λt) > ε.

For such a choice of (∆, λ) we have that MC is a subset of{
µ ∈ Meas(Ω) |

∫
Ω

[
c+

T∑
t=0

λt − ε

]
dµ(x) + εµ(Ω) ≤ C +

T∑
t=0

λt − inf
µ∈Meas(Ω)

D(µ) =: D

}

where D ∈ R since D(·) is lower bounded by hypothesis. By (4.11) and for large
enough C, the set MC is nonempty, and the same arguments in Items 2, 3 and 4 of
the proof of Theorem 4.1.3 can be applied to conclude that the set MC is narrowly
closed, bounded and tight, hence narrowly and σ(Meas(Ω), Cb(Ω))-compact. Moreover
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we see that MC ⊆ N , hence it is also compact in the topology σ(Meas(Ω), Cb(Ω))|N .
We finally verify σ(Meas(Ω), Cb(Ω))|N -lower semicontinuity of K(·,∆, λ) on N for
every (∆, λ) ∈ (H × RT+1). To see this, observe that arguing as in Item 2 of

the proof of Theorem 4.1.3 we get that µ 7→
∫

Ω

[
c− I∆ +

∑T
t=0 λt

]
dµ −

∑T
t=0 λt

is σ(Meas(Ω), Cb(Ω))|N -lower semicontinuous, while D is by definition σ(ca(Ω), E)|N
lower semicontinuous (being supremum of linear functionals each continuous in such
a topology). Since sum of lower semicontinuous functions is lower semicontinuous,
the desired lower semicontinuity of K(·,∆, λ) follows. All the hypotheses of Theorem
4.4.8 are now verified, and we may then interchange sup and inf in RHS of (4.21) and
obtain

inf
µ∈N

sup
∆∈H

λ∈RT+1

K(µ,∆, λ) = sup
∆∈H

λ∈RT+1

inf
µ∈N
K(µ,∆, λ)

(?)
= sup

∆∈H
λ∈RT+1

inf
µ∈Meas(Ω)

K(µ,∆, λ)

= sup
∆∈H

λ∈RT+1

inf
µ∈Meas(Ω)

(∫
Ω

[
c− I∆ +

T∑
t=0

λt

]
dµ+D(µ)

)
−

T∑
t=0

λt, (4.22)

where in (?) we used the fact that K(µ,∆, λ) = +∞ on the complementary of N in
Meas(Ω), for every (∆, λ) ∈ H × RT+1 .
We apply now Theorem 4.1.3 to the inner infimum with the cost functional c− I∆ +∑T

t=0 λt, observing that, since we are assuming dom(U)+RT+1 = dom(U) (see (4.11)),
the condition (4.5) is satisfied. We get that

(4.22) = sup
∆∈H

λ∈RT+1

sup
ϕ∈Φ∆,λ(c)

(
U(ϕ)−

T∑
t=0

λt

)

where Φ∆,λ(c), which depends on ∆, λ ∈ H × RT+1, is defined according to (4.6) by

Φ∆,λ(c) =

{
ϕ ∈ dom(U),

T∑
t=0

ϕt(x) ≤ c(x)− I∆(x) +
T∑
t=0

λt ∀x ∈ Ω

}
.

From (4.11), (ϕt − λt)t ∈ dom(U) and we can absorb λ in ϕ obtaining

Φ∆,λ(c) = Φ∆(c) + λ, ∀λ ∈ RT+1,∆ ∈ H ,

with Φ∆(c) given in (4.13), so that

(4.22) = sup
∆∈H

λ∈RT+1

sup
ϕ∈Φ∆(c)

(
U(ϕ+ λ)−

T∑
t=0

λt

)
= sup

∆∈H
sup

ϕ∈Φ∆(c)
sup

λ∈RT+1

(
U(ϕ+ λ)−

T∑
t=0

λt

)
.

We now recognize the expression in (I.50) and we conclude that

inf
µ∈Meas(Ω)

sup
∆∈H

λ∈RT+1

K(µ,∆, λ) = (4.22) = sup
∆∈H

sup
ϕ∈Φ∆(c)

SU (ϕ) ,

and consequently, recalling our minimax argument,

inf
Q∈Mart(Ω)

(EQ [c(X)] +D(Q))
Eq.(4.21)

= (4.22) = sup
∆∈H

sup
ϕ∈Φ∆(c)

SU (ϕ) .
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Remark 4.1.5. (i) The assumptions of Theorem 4.1.4 are reasonably weak and are
satisfied, for example, if: dom(U) = E , there exists a µ̂ ∈ Meas(Ω) ∩ ∂U(0) such
that c ∈ L1(µ̂), and c is lower semicontinuous. Indeed, for all µ ∈ Meas(Ω), D(µ) ≥
U(0) − 0 > −∞. Clearly dom(U) + RT+1 = dom(U). Finally, µ̂ ∈ N , because
c ∈ L1(µ̂) and −∞ < U(0) ≤ D(µ̂) ≤ 0, by definition of D.
(ii) The step (4.15)=(4.16) is the crucial point where compactness of the sets K0, . . . ,
KT ⊆ R is necessary for a smooth argument, since integrability of the underlying
stock process is in this case automatically satisfied for all Q ∈ Prob(Ω), not only
for Q ∈ Mart(Ω). Also, compactness is key in guaranteeing that the cost functional
c− I∆ +

∑
t λt is bounded from below, in order to apply Theorem 4.1.3.

Proposition 4.1.6. Suppose that LHS of (4.12) is finite and that D|Meas(Ω) is lower
semicontinuous with respect to the topology σ(Meas(Ω), Cb(Ω)). Then, under the same
the assumptions of Theorem 4.1.4, the problem in LHS of (4.12) admits an optimum.

Proof. Similarly to what we argued in Item 2 of the proof of Theorem 4.1.3, the map
µ 7→

∫
Ω
c dµ is σ(Meas(Ω), Cb(Ω))-lower semicontinuous, and we deduce the lower

semicontinuity of

Q 7→ J (Q) := EQ [c] +
T∑
t=0

D(Q), Q ∈ Mart(Ω) .

Moreover for C big enough the sublevel {Q ∈ Mart(Ω) | J (Q) ≤ C} is nonempty
(since we are assuming LHS of (4.12) is finite), hence J is proper on Mart(Ω).
Since K0, ..., KT are compact, Prob(Ω) is σ(Meas(Ω), Cb(Ω))-compact (see [5] The-
orem 15.11), and Mart(Ω) is σ(Meas(Ω), Cb(Ω))-closed because, arguing as in [14]
Lemma 2.3,

Mart(Ω) =
⋂

∆∈H

{
Q ∈ Prob(Ω) |

∫
Ω

(
T−1∑
t=0

∆t(x0, . . . , xt)(xt+1 − xt)

)
dQ(x) ≤ 0

}
.

We conclude that Mart(Ω) is σ(Meas(Ω), Cb(Ω))-compact, and J is lower semicontin-
uous and proper on it, hence it attains a minimum.

Remark 4.1.7. The lower semicontinuity assumption in Proposition 4.1.6 is satisfied
in many cases, as it will become clear in Section 4.2.

4.1.2 A useful rephrasing of Theorem 4.1.4

We now rephrase our findings in Theorem 4.1.4, with minor additions, to get the
formulation in Corollary 4.1.8 which will simplify our discussion of Section 4.3. In
particular, this reformulation will come in handy when dealing with subhedging and
superhedging dualities in Corollaries 4.3.3-4.3.8 and Proposition 4.3.9.
For a given proper concave U : E → R, we recall the definition of SU in (I.50)

SU(ϕ) := sup
ξ∈RT+1

(
U(ϕ+ ξ)−

T∑
t=0

ξt

)
, ϕ ∈ E
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and, for V (·) = −U(−·), we define dom(V ) := {ϕ ∈ E | V (ϕ) < +∞} = −dom(U)
and

SV (ϕ) := inf
λ∈RT+1

(
V (ϕ+ λ)−

T∑
t=0

λt

)
= −SU(−ϕ), ϕ ∈ dom(V ) .

Furthermore, given functions c : Ω → (−∞,+∞], d : Ω → [−∞,+∞) we introduce
the sets

Ssub(c) :=

{
ϕ ∈ dom(U) | ∃∆ ∈ H s.t.

T∑
t=0

ϕ(xt) + I∆(x) ≤ c(x) ∀x ∈ Ω

}
,

(4.23)

Ssup(d) :=

{
ϕ ∈ dom(V ) | ∃∆ ∈ H s.t.

T∑
t=0

ϕ(xt) + I∆(x) ≥ d(x) ∀x ∈ Ω

}
.

(4.24)

Corollary 4.1.8. Suppose that the assumptions in Theorem 4.1.4 are satisfied, that
d : Ω → [−∞,+∞) is upper semicontinuous and that {µ ∈ Meas(Ω) ∩ dom(D) |∫

Ω
d dµ > −∞} 6= ∅. Then the following hold

inf
Q∈Mart(Ω)

(EQ [c(X)] +D(Q)) = sup
ϕ∈Ssub(c)

SU (ϕ) , (4.25)

sup
Q∈Mart(Ω)

(EQ [d(X)]−D(Q)) = inf
ϕ∈Ssup(d)

SV (ϕ) . (4.26)

Proof. Equation (4.25) is an easy rephrasing of the corresponding (4.12). As to (4.26),
we observe that for c := −d we get from (4.25)

sup
ϕ∈Ssub(−d)

SU (ϕ) = inf
Q∈Mart(Ω)

(EQ [−d(X)] +D(Q)) = − sup
Q∈Mart(Ω)

(EQ [d(X)]−D(Q)) .

Observing that
Ssup(d) = −Ssub(−d)

and that SV (·) = −SU(−·) on dom(V ) we get

sup
ϕ∈Ssub(−d)

SU (ϕ) = − inf
ϕ∈Ssup(d)

SV (ϕ) .

This completes the proof.

4.2 Additive structure

In Section 4.1, we did not require any particular structural form of the functionals
D, U . Here instead, we will assume in addition to (4.10) also an additive structure of
U and, complementarily, an additive structure of D. In the whole Section 4.2 we take
for each t = 0, . . . , T a vector subspace Et ⊆ Cb(Kt) such that Et + R = Et and set
E = E0× · · · × ET . Observe that we automatically have E +RT+1 = E . It is also clear
that E is a subspace of Cb(Ω,RT+1), if we interpret E0, . . . , ET as subspaces of Cb(Ω).
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4.2.1 Additive Structure of U

Setup 4.2.1. For every t = 0, . . . , T we consider a proper concave functional Ut :
Et → [−∞,+∞). We define Dt on ca(Kt) similarly to (4.1) as

Dt(γt) := sup
ϕt∈Et

(
Ut(ϕt)−

∫
Kt

ϕt dγt

)
γt ∈ ca(Kt)

and observe that Dt can also be thought to be defined on ca(Ω) using for γ ∈ ca(Ω)
the marginals γ0, ..., γT and setting Dt(γ) := Dt(γt). We may now define, for each
ϕ ∈ E, U(ϕ) :=

∑T
t=0 Ut(ϕt) and define D on ca(Ω) using (4.1) with M = T . Recall

from (I.50)

SU(ϕ) := sup
ξ∈RT+1

(
U(ϕ+ ξ)−

T∑
t=0

ξt

)
, ϕ ∈ E ,

SUt(ϕt) := sup
α∈R

(Ut(ϕt + α)− α) , ϕt ∈ Et .

Lemma 4.2.2. In Setup 4.2.1 we have

D(γ) =
T∑
t=0

Dt(γ) =
T∑
t=0

Dt(γt), ∀ γ ∈ ca(Ω), SU(ϕ) =
T∑
t=0

SUt(ϕt) for all ϕ ∈ E ,

(4.27)
and for all ϕ ∈ E

SU(ϕ+ β) = SU(ϕ) +
T∑
t=0

βt, for β ∈ RT+1, SUt(ϕt + d) = SUt(ϕt) + d, for d ∈ R.

Proof. See Section 4.4.2.

4.2.2 Duality for the general Cash Additive setup

Theorem 4.2.3. Suppose for each t = 0, . . . , T Et ⊆ Cb(Kt) is a vector subspace
satisfying Idt ∈ Et and Et + R = Et and that St : Et → R is a concave, cash additive
functional null in 0. Consider for every t = 0, . . . , T the penalizations

Dt(Qt) := sup
ϕt∈Et

(
St(ϕt)−

∫
Kt

ϕt dQt

)
for Qt ∈ Prob(Kt),

and set D(Q) :=
∑T

t=0Dt(Qt). Let c : Ω → (−∞,+∞] be lower semicontinu-
ous and let D(c) and P(c) be defined respectively in (I.42) and (I.47). If N :={
µ ∈ Meas(Ω) ∩ dom(D) |

∫
Ω
c dµ < +∞

}
6= ∅ then P(c) = D(c).

Proof. Set E = E0 × · · · × ET and U(ϕ) :=
∑T

t=0 St(ϕt), for ϕ ∈ E , and let D defined

as in (4.1) for M = T . For any µ ∈ Meas(Ω) we have D(µ) ≥
∑T

t=0 St(0) − 0 = 0
hence D is lower bounded on Meas(Ω). Observe that dom(U) = E , which implies
dom(U) +RT+1 = dom(U), and that we are in Setup 4.2.1. Lemma 4.2.2 tells us that
SU(ϕ) =

∑T
t=0 S

Ut
t (ϕt) =

∑T
t=0 St(ϕt), since S0, . . . , ST are Cash Additive, and that

D coincides on Mart(Ω) with the penalization term Q 7→
∑T

t=0Dt(Qt), as provided
in the statement of this Theorem. Since all the assumptions of Theorem 4.1.4 are
fulfilled, we can apply Corollary 4.1.8, which yields exactly D(c) = P(c).
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4.2.3 Additive Structure of D.
The results of this subsection will be applied in Subsection 4.3.1. In the spirit of
Remark 4.1.2, we may now reverse the procedure taken in the previous subsection:
we start from some functionals Dt on ca(Kt), for t = 0, . . . , T , and build an additive
functional D on ca(Ω). Our aim is to find the counterparts of the results in Section
4.2.1.

Setup 4.2.4. For every t = 0, . . . , T we consider a proper, convex, σ(ca(Kt), Et)-
lower semicontinuous functional Dt : ca(Kt) → (−∞,+∞]. We can then extend the
functionals Dt to ca(Ω) by using, for any γ ∈ ca(Ω), the marginals γ0, . . . , γT . If
γ ∈ ca(Ω), we set

Dt(γ) := Dt(γt) and D(γ) :=
T∑
t=0

Dt(γ) =
T∑
t=0

Dt(γt) .

We define V (ϕ) for ϕ ∈ E and Vt(ϕt) for ϕt ∈ Et, for t = 0, . . . , T similarly to (4.2),
as

V (ϕ) := sup
γ∈ca(Ω)

(∫
Ω

(
T∑
t=0

ϕt

)
dγ −D(γ)

)
and Vt(ϕt) := sup

γ∈ca(Kt)

(∫
Kt

ϕt dγ −Dt(γ)

)
.

We define on E the functional U(·) = −V (−·), as in (4.3), and similarly Ut(·) =
−Vt(−·) on Et, for t = 0, . . . , T . Finally, SU(ϕ), SU0(ϕ0), . . . , SUT (ϕT ) are defined as
in Setup 4.2.1.

Lemma 4.2.5. In Setup 4.2.4 we have:

1. D0, . . . ,DT , as well as D, are σ(ca(Ω), E)-lower semicontinuous.

2. Under the additional assumption that dom(Dt) ⊆ Prob(Kt) for every t = 0, . . . , T ,
for any ϕ = [ϕ0, . . . , ϕT ] ∈ E0 × · · · × ET

U(ϕ) =
T∑
t=0

Ut(ϕt) =
T∑
t=0

−Vt(−ϕt) , (4.28)

SU(ϕ) =
T∑
t=0

SUt(ϕt) . (4.29)

Proof. See Section 4.4.2.

4.2.4 Divergences induced by utility functions

Assumption 4.2.6. We consider concave, upper semicontinuous nondecreasing func-
tions u0, . . . , uT : R → [−∞,+∞) with u0(0) = · · · = uT (0) = 0, ut(x) ≤ x ∀x ∈ R
(that is 1 ∈ ∂u0(0) ∩ · · · ∩ ∂uT (0)). For each t = 0, . . . , T we define vt(x) :=
−ut(−x), x ∈ R and

v∗t (y) := sup
x∈R

(xy − vt(x)) = sup
x∈R

(ut(x)− xy)), y ∈ R . (4.30)
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We observe that vt(y) = v∗∗t (y) = supx∈R(xy− v∗t (y)) for all y ∈ R by Fenchel-Moreau
Theorem and that v∗t is convex, lower semicontinuous and lower bounded on R.

Example 4.2.7. Assumption 4.2.6 is satisfied by a wide range of functions. Just to
mention a few with various peculiar features, we might take ut of the following forms:
ut(x) = 1 − exp(−x), whose convex conjugate is given by v∗t (y) = −∞ for y < 0,
v∗t (0) = 0, v∗t (y) = (y log(y) − y + 1) for y > 0; ut(x) = αx1(−∞,0](x) for α ≥ 1,
so that v∗t (y) = +∞ for y < 0, v∗t (y) = 0 for y ∈ [0, α], v∗t (y) = +∞ for y > α;
ut(x) = log(x + 1) for x > −1, ut(x) = −∞ for x ≤ −1, so that v∗t (y) = +∞ for
y ≤ 0, v∗t (y) = y−log(y)−1 for y > 0; ut(x) = −∞ for x ≤ −1, ut(x) = x

x+1
for x > −1

so that v∗t (y) = −∞ for y < 0, v∗t (y) = y− 2
√
y+ 1 for y ≥ 0; ut(x) = −∞ for x < 0,

ut(x) = 1− exp(−x) for x ≥ 0, so that v∗t (y) = +∞ for y < 0, v∗t (y) = y log(y)−y+ 1
for 0 ≤ y ≤ 1, v∗t (y) = 0 for y > 1.

Fix µ̂t ∈ Meas(Kt). We pose for µ ∈ Meas(Kt)

Dv∗t ,µ̂t(µ) :=

{∫
Kt
v∗t

(
dµ
dµ̂t

)
dµ̂t if µ� µ̂t

+∞ otherwise
. (4.31)

In the next two propositions, whose proofs are postponed to the Section 4.4.2, we
provide the dual representation of the divergence terms.

Proposition 4.2.8. Take u0, . . . , uT satisfying Assumption 4.2.6, and suppose

dom(u0) = · · · = dom(uT ) = R.

Let µ̂t ∈ Meas(Kt) and vt(·) := −ut(−·), t = 0, . . . , T . Then for every µ ∈ Meas(Kt)

Dv∗t ,µ̂t(µ) = sup
ϕt∈Cb(Kt)

(∫
Kt

ϕt(xt) dµ(xt)−
∫
Kt

vt(ϕt(xt)) dµ̂t(xt)

)
. (4.32)

Set:

(v∗t )
′
∞ := lim

y→+∞

v∗t (y)

y
, t = 0, . . . , T .

As dom(u) ⊇ [0,+∞), (v∗t )
′
∞ ∈ [0,+∞]. Let Q̂t ∈ Prob(Kt) and, for µ ∈ Meas(Kt),

let µ = µa+µs be the Lebesgue Decomposition of µ with respect to Q̂t, where µa � Q̂t

and µs ⊥ Q̂t. Then we can define for µ ∈ Meas(Kt)

Ft(µ | Q̂t) :=

∫
Kt

v∗t

(
dµa

dQ̂t

)
dQ̂t + (v∗t )

′
∞µs(Kt)

where we use the convention ∞× 0 = 0, in case (v∗t )
′
∞ = +∞, µs(Kt) = 0. Observe

that the restriction of F(· | Q̂t) to Meas(Kt) coincides with the functional in (2.35) of

[108] with F = v∗t , and that whenever dom(ut) = R we have (v∗t )
′
∞ = limy→+∞

v∗t (y)

y
=

+∞ and Ft(· | Q̂t) coincides with Dv∗t ,Q̂t(·) (see (4.31)) on Meas(Kt).
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Proposition 4.2.9. Suppose that u0, . . . , uT : R → [−∞,+∞) satisfy Assumption

4.2.6 and vt(·) := −ut(−·). If Q̂t ∈ Prob(Kt), t ∈ {0, . . . , T}, has full support then
for every µ ∈ Meas(Kt)

Ft(µ | Q̂t) = sup
ϕt∈Cb(Kt)

(∫
Kt

ϕt(xt) dµ(xt)−
∫
Kt

vt(ϕt(xt)) dQ̂t(xt)

)
. (4.33)

Example 4.2.10. The requirement that Q̂0, . . . , Q̂T have full support is crucial for
the proof of Proposition 4.2.9. We provide a simple example to the fact that (4.33)
does not hold in general when such an assumption is not fulfilled. To this end,
take K = {−2, 0, 2}, Q̂ = 1

2
δ{−2} + 1

2
δ{+2}, µ = δ{0}, u(x) := x

x+1
for x ≥ −1 and

u(x) = −∞ for x < −1. It is easy to see that the associated v∗ via (4.30) is defined
by v∗(y) = 1 + y − 2

√
y for y ≥ 0 and v∗(y) = −∞ for y < 0, so that (v∗t )

′
∞ = 1. It is

also easy to see that µ ⊥ Q̂, hence in the Lebesgue decomposition with respect to Q̂,
µa = 0 and µs = µ. Hence F(µ | Q̂) = 1 + 1µ(K) = 2. At the same time we see that
taking ϕN ∈ Cb(K) defined via ϕN(−2) = ϕN(2) = 0, ϕN(0) = −N (observe that for
N sufficiently large u(ϕN) /∈ Cb(K)) we have

sup
ϕ∈Cb(K)

(∫
K

ϕ dµ−
∫
K

v(ϕ) dQ̂
)

= sup
ϕ∈Cb(K)

(∫
K

u(ϕ) dQ̂−
∫
K

ϕ dµ

)
≥ sup

N

(∫
K

u(ϕN) dQ̂−
∫
K

ϕN dµ

)
≥ sup

N

(
(0)

1

2
+ (0)

1

2
− (−N)

)
= +∞.

4.3 Applications of the Main Theorems of Section

4.1

In this Section 4.3 we suppose the following requirements are fulfilled:

Standing Assumption 4.3.1. Ω := K0×· · ·×KT for compact sets K0, . . . , KT ⊆ R
and K0 = {x0}; the functional c : Ω → (−∞,+∞] is lower semicontinuous and

d : Ω → [−∞,+∞) is upper semicontinuous; Mart(Ω) 6= ∅; Q̂ ∈ Mart(Ω) is a given

probability measure with marginals Q̂0, . . . , Q̂T ; c, d ∈ L1(Q̂).

4.3.1 Subhedging and Superhedging

As it will become clear from the proofs, in all the results in Section 4.3.1 the functional
U is real valued on the whole E , that is dom(U) = E . Thus we will exploit Theorem
4.1.4 and Corollary 4.1.8, in particular (4.25) and (4.26), in the case dom(U) =
dom(V ) = E .
We set for ϕt ∈ Cb(Kt)

UQ̂t(ϕt) = sup
α,λ∈R

(∫
Kt

ut(ϕt(xt) + αIdt(xt) + λ)dQ̂t(xt)− (αx0 + λ)

)
, (4.34)

VQ̂t(ϕt) = −UQ̂t(−ϕt) = inf
α,λ∈R

(∫
Kt

vt(ϕt(xt) + αIdt(xt) + λ)dQ̂t(xt)− (αx0 + λ)

)
.
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We observe that Assumption 4.2.6 does not impose that the functions ut are real
valued on the whole R. Nevertheless, for the functionals UQ̂t , VQ̂t we have:

Lemma 4.3.2. Under Assumption 4.2.6, for each t = 0, . . . , T

1. UQ̂t and VQ̂t are real valued on Cb(Kt) and null in 0.

2. UQ̂t and VQ̂t are concave and convex respectively, and both nondecreasing.

3. UQ̂t and VQ̂t are stock additive on Cb(Kt), namely for every αt, λt ∈ R and

ϕt ∈ Cb(Kt).

UQ̂t(ϕt+αtIdt+λt) = UQ̂t(ϕt)+αtx0 +λt, VQ̂t(ϕt+αtIdt+λt) = VQ̂t(ϕt)+αtx0 +λt .

Proof. Since VQ̂t(ϕt) = −UQ̂t(−ϕt), w.l.o.g. we prove the claims only for UQ̂t . Clearly
UQ̂t(ϕt) > −∞, as we may choose λt ∈ R so that (ϕt+0Idt+λt) ∈ dom(u) ⊇ [0,+∞).
Furthermore,

UQ̂t(ϕt)
1∈∂Ut(0)

≤ sup
α,λ∈R

(∫
Kt

(ϕt + αIdt + λ) dQ̂t − (αx0 + λ)

)
Q̂∈Mart(Ω)

= sup
α,λ∈R

(∫
Kt

ϕt dQ̂t + (αx0 + λ− αx0 − λ)

)
≤ ‖ϕt‖∞ .

Finally, 0 =
∫
Kt
u (0) dQ̂t ≤ UQ̂t(0) ≤ ‖0‖∞.

Item 2: trivial from the definitions. Item 3: we see that

UQ̂t(ϕt + αtIdt + λt)

= sup
α∈R
λ∈R

(∫
Kt

ut (ϕt(xt) + (α + αt)xt + (λ+ λt)) dQ̂t(xt)− (αx0 + λ)

)
+ αtx0 + λt+

+ = sup
α∈R
λ∈R

(∫
Kt

ut (ϕt(xt) + (α + αt)xt + (λ+ λt)) dQ̂t(xt)− ((αt + α)x0 + (λt + λ))

)

in which we recognize the definition of UQ̂t(ϕt) + αtx0 + λt.

As in [14], in the next two Corollaries we suppose that the elements in Et represent
portfolios obtained combining call options with maturity t, units of the underlying
stock at time t (xt) and deterministic amounts, that is Et consists of all the functions
in Cb(Kt) with the following form:

ϕt(xt) = a+ bxt +
N∑
n=1

cn(xt − kn)+, for a, b, cn, kn ∈ R, xt ∈ Kt

and take E = E0 × · · · × ET . As shown in the proof, one could as well take E =
Cb(K0)× · · · × Cb(KT ) preserving validity of (4.35), (4.36), (4.37) and (4.38).
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Corollary 4.3.3. Take u0, . . . , uT satisfying Assumption 4.2.6, and suppose

dom(u0) = · · · = dom(uT ) = R .

Then the following equalities hold:

inf
Q∈Mart(Ω)

(
EQ [c(X)] +

T∑
t=0

Dv∗t ,Q̂t(Qt)

)
= sup

{
T∑
t=0

UQ̂t(ϕt) | ϕ ∈ Ssub(c)

}
, (4.35)

sup
Q∈Mart(Ω)

(
EQ [d(X)]−

T∑
t=0

Dv∗t ,Q̂t(Qt)

)
= inf

{
T∑
t=0

VQ̂t(ϕt) | ϕ ∈ Ssup(d)

}
. (4.36)

Proof. We prove (4.35), since (4.36) can be obtained in a similar fashion. Set U(ϕ) =∑T
t=0 UQ̂t(ϕt) for ϕ ∈ E . We observe that Et consists of all piecewise linear functions

on Kt, which are norm dense in Cb(Kt). By Lemma 4.3.2 for each t = 0, . . . , T the
monotone concave functional ϕt 7→ UQ̂t(ϕt) is actually well defined, finite valued,
concave and nondecreasing on the whole Cb(Kt). Hence, by the Extended Namioka-
Klee Theorem (see [23]) it is norm continuous on Cb(Kt) and we can take E = Cb(Kt)×
· · · × Cb(KT ) in place of E0× · · · × ET in the RHS of (4.35) and prove equality to LHS
in this more comfortable case (notice that Ssub(c) depends on E). We also observe
that in this case we are in Setup 4.2.1. Define D as in (4.1) with M = T . Using the
facts that if ϕt ∈ Et, α, λ ∈ R then (ϕt + αIdt + λ) ∈ Et, that Q ∈Mart(Ω) and that
vt(·) := −ut(−·) one may easily check that

D(Q) := sup
ϕ∈E

(
U(ϕ)−

T∑
t=0

∫
Kt

ϕt dQt

)

= sup
ϕ∈E

(
T∑
t=0

∫
Kt

ut(ϕt(xt)) dQ̂t(xt)−
T∑
t=0

∫
Kt

ϕt dQt

)

=
T∑
t=0

sup
ψt∈Et

(∫
Kt

ψt dQt −
∫
Kt

vt(ψt(xt)) dQ̂t(xt)

)

=
T∑
t=0

Dv∗t ,Q̂t(Qt), ∀Q ∈ Mart(Ω)

where the last equality follows from Proposition 4.2.8 Equation (4.32). The Standing
Assumption 4.1.1 is satisfied. Indeed, from Assumption 4.2.6 we have

v∗0(1), . . . , v∗T (1) < +∞ ,

hence Dv∗t ,Q̂t(Q̂t) =
∫
Kt
v∗t

(
dQ̂t
dQ̂t

)
dQ̂t < +∞ and therefore Q̂ ∈ dom(D). Recalling

that c ∈ L1(Q̂), this in turns yields

Q̂ ∈ N =

{
µ ∈ Meas(Ω) ∩ dom(D) |

∫
Ω

c dµ < +∞
}
.

Moreover, by Lemma 4.3.2 Item 1, dom(U) = E , and for every µ ∈ Meas(Ω) D(µ) ≥
U(0)− 0 = 0, hence D is lower bounded on the whole Meas(Ω). We conclude that U
and D satisfy the assumptions of Theorem 4.1.4.
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Using Lemma 4.2.2 and the fact that UQ̂0
, . . . , UQ̂T are cash additive we get SU(ϕ) =∑T

t=0 S
UQ̂t (ϕt) =

∑T
t=0 UQ̂t(ϕt) = U(ϕ), and by Corollary 4.1.8 Equation (4.25) we

obtain

inf
Q∈Mart(Ω)

(
EQ [c(X)] +

T∑
t=0

Dv∗t ,Q̂t(Qt)

)
= sup

{
T∑
t=0

UQ̂t(ϕt) | ϕ ∈ Ssub(c)

}
.

Remark 4.3.4. At this point we can add some more discussion on the compactness
condition of the underlying sets K0, . . . , KT in Assumption 4.3.1. In the classical
non-robust setup the requirement of (essential) boundedness of the underlying stock
is quite common. We observe that in our canonical setup for the underlying space,
compactness is essentially tantamount to requiring that the stock (Idt)t is bounded
(everywhere). But we can actually say more: when D is taken as in Corollary 4.3.3,

we automatically have that Qt � Q̂t, whenever D(Q) < +∞. If the marginals

Q̂t, for every t = 0, . . . , T , satisfy Idt ∈ L∞(Q̂t) we then get automatically that
Idt ∈ L∞(Qt), with ‖Idt‖L∞(Qt) ≤ ‖Idt‖L∞(Q̂t), for any Q ∈ dom(D). Thus, it is
possible to reformulate the hypotheses in Corollary in 4.3.3 using K0 = · · · = KT = R
but requesting that the marginals Q̂0, . . . , Q̂T have compact support. A version of
Corollary 4.3.3 should hold even without the compactness requirement in Assumption
4.3.1, but it is a delicate issue. It would require a modification of the settings, as the
set of continuous functions would not work well any more, and a generalization of
[108] Theorem 2.7, which is not trivial. We leave these interesting issues for future
research.

We stress the fact that in Corollary 4.3.3 we assume that all the functions u0, . . . , uT
are real valued on the whole R. A more general result can be obtained when weakening
this assumption, but it requires an additional assumption on the marginals of Q̂.

Corollary 4.3.5. Suppose Assumption 4.2.6 is fulfilled. Assume Q̂0, . . . , Q̂T have full
support on K0, . . . , KT respectively. Then Equations (4.35), (4.36) hold true replacing

Dv∗t ,Q̂t(Qt) with Ft(Qt|Q̂t).

Proof. The proof can be carried over almost literally as the proof of Corollary 4.3.3,
with the exception of replacing the reference to Proposition 4.2.8 with the reference
to Proposition 4.2.9.

Remark 4.3.6. Observe that we are requesting the full support property on K0, . . . , KT

with respect to their induced (Euclidean) topology. In particular, this means that

whenever kt ∈ Kt is an isolated point, Q̂t({kt}) > 0. This is consistent with
our assumption K0 = {x0}, which implies Prob(K0) reduces to the Dirac measure,
Prob(K0) = {δ{x0}}.

We now take ut(x) = x for each t = 0, . . . , T , and get UQ̂t(ϕt) = VQ̂t(ϕt) = EQ̂t [ϕt].
Hence with an easy computation we have

Dv∗t ,Q̂t(Qt) =

{
0 if Qt ≡ Q̂t

+∞ otherwise
for all Q ∈ Mart(Ω).
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If Mart(Q̂1, . . . , Q̂T ) = {Q ∈ Mart(Ω) | Qt ≡ Q̂t ∀ t = 0, . . . , T}, from Corollary 4.3.3
we can recover the following result of [14] (under more stringent assumptions on the
underlying space).

Corollary 4.3.7 ([14] Theorem 1.1 and Corollary 1.2). The following equalities hold:

inf
Q∈Mart(Q̂1,...,Q̂T )

EQ [c] = sup

{
T∑
t=0

EQ̂t [ϕt] | ϕ ∈ Ssub(c)

}
, (4.37)

sup
Q∈Mart(Q̂1,...,Q̂T )

EQ [d] = inf

{
T∑
t=0

EQ̂t [ϕt] | ϕ ∈ Ssup(d)

}
. (4.38)

Superhedging and Subhedging without Options

Corollary 4.3.8. The following equalities hold:

inf
Q∈Mart(Ω)

EQ [c] = sup
{
m ∈ R | ∃∆ ∈ H s.t. m+ I∆ ≤ c

}
:= Πsub(c) , (4.39)

sup
Q∈Mart(Ω)

EQ [d] = inf
{
m ∈ R | ∃∆ ∈ H s.t. m+ I∆ ≥ d

}
:= Πsup(d) . (4.40)

Proof. We take E0 = · · · = ET = R and E = E0 × · · · × ET = RT+1. We first
focus on (4.39). For each ϕ ∈ E with ϕ = [m1, . . . ,mT ], m ∈ RT+1 we select
U(ϕ) :=

∑T
t=0 mt (we notice that when E = RT+1, ut(xt) = xt, t = 0, ..., T, and

Q̂ ∈ Mart(Ω), the functional UQ̂t defined in (4.34) is given by UQ̂t(mt) = mt and so

U(m) =
∑T

t=0 UQ̂t(mt) =
∑T

t=0mt for all m ∈ E). Then applying the definition of D
in (4.1) we get

D(γ) =

{
0 for γ ∈ ca(Ω) s.t. γ(Ω) = 1

+∞ otherwise.

In particular D(Q) = 0 for every Q ∈ Mart(Ω). Moreover we observe that SU(ϕ) =
U(ϕ) for every ϕ ∈ E . Applying Corollary 4.1.8 (whose assumptions are clearly
satisfied here), from Equation (4.25) we get that

inf
Q∈Mart(Ω)

EQ [c] = sup

{
T∑
t=0

mt | m0, . . . ,mT ∈ R s.t. ∃∆ ∈ H with
T∑
t=0

mt + I∆ ≤ c

}
.

We recognize in the RHS above the RHS of (4.39). Equation (4.40) can be obtained
in a similar way using Corollary 4.1.8 Equation (4.26).

Penalization with market prices

In this section we change our perspective. Instead of starting from a given U ,
we will give a particular form of the penalization term D and proceed in identi-
fying the corresponding U in the spirit of Remark 4.1.2. For each t = 0, . . . , T
we suppose that finite sequences (ct,n)1≤n≤Nt ⊆ R and (ft,n)1≤n≤Nt ⊆ Cb(Kt) are
given. The functions (ft,n)1≤n≤Nt ⊆ Cb(Kt) represent payoffs of options whose prices
(ct,n)1≤n≤Nt ⊆ R are known from the market. Furthermore, we consider penaliza-
tion functions Ψn,t : R → (−∞,+∞] which are convex, null in 0, symmetric in
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0, proper and lower semicontinuous. For such functions we define the conjugates
Ψ∗t,n : R→ (−∞,+∞] as Ψ∗t,n(y) = supx∈R(xy −Ψt,n(x)).
Define

Martt(Kt) = {γt ∈ Prob(Kt) | ∃Q ∈ Mart(Ω) with γt ≡ Qt} ⊆ ca(Kt)

and for γt ∈ ca(Kt)

DΨ
t (γt) :=

{∑Nt
n=1 Ψt,n

(∣∣∣∫Kt ft,n dγt − ct,n
∣∣∣) for γt ∈ Martt(Kt)

+∞ otherwise

Proposition 4.3.9. Suppose that the martingale measure Q̂ ∈ Mart(Ω) in Stand-

ing Assumption 4.3.1 also satisfies
∣∣∣∫Kt ft,n dQ̂t − ct,n

∣∣∣ ∈ dom(Ψt,n) for every n =

0, . . . , Nt, t = 0, . . . , T . Then setting for n = 1, . . . , Nt, t = 0, . . . , T gt,n := ft,n−ct,n ∈
Cb(Kt) we have
Subhedging Duality:

inf
Q∈Mart(Ω)

(
EQ [c] +

T∑
t=0

DΨ
t (Qt)

)
= sup

{
T∑
t=0

UΨ
t (ϕt) | ϕ ∈ Ssub(c)

}
, (4.41)

where

UΨ
t (ϕt) := sup

yt∈RNt

(
Πsub

(
ϕt +

Nt∑
n=1

yt,ngt,n

)
−

Nt∑
n=1

Ψ∗t,n(|yt,n|)

)
is stock additive and Πsub is given in (4.39).
Superhedging Duality:

sup
Q∈Mart(Ω)

(
EQ [d]−

T∑
t=0

DΨ
t (Qt)

)
= inf

{
T∑
t=0

V Ψ
t (ϕt) | ϕ ∈ Ssup(d)

}
, (4.42)

where

V Ψ
t (ϕt) = −UΨ

t (−ϕt) = inf
yt∈RNt

(
Πsup

(
ϕt −

Nt∑
n=1

yt,ngt,n

)
+

Nt∑
n=1

Ψ∗t,n(|yt,n|)

)

is stock additive and Πsup is given in (4.40).

Before providing a proof, we state an auxiliary result.

Lemma 4.3.10. Suppose K0, . . . , Kt ⊆ R are compact. Then Martt(Kt) is compact
in the topology σ(ca(Kt), Cb(Kt)).

Proof. We see that Mart(Ω) is a σ(ca(Ω), Cb(Ω))-closed subset of the σ(ca(Ω), Cb(Ω))-
compact set Prob(Ω) (which is compact since Ω is a compact Polish space, see [5]
Theorem 15.11), hence it is compact himself. Martt(Kt) is then the image of a com-
pact set via the marginal map γ 7→ γt which is σ(ca(Ω), Cb(Ω)) − σ(ca(Kt), Cb(Kt))
continuous, hence it is σ(ca(Kt), Cb(Kt))-compact.
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Proof of Proposition 4.3.9. We focus on (4.41) first.

STEP 1: for any t ∈ {0, . . . , T} we prove the following: the functional DΨ
t is

σ(ca(Kt), Cb(Kt))-lower semicontinuous and for every ϕt ∈ Cb(Kt) its Fenchel-Moreau
(convex) conjugate satisfies

V Ψ
t (ϕt) := sup

γt∈ca(Kt)

(∫
Kt

ϕt dγt −DΨ
t (γt)

)

= inf
yt∈RNt

(
Πsup

(
ϕt −

Nt∑
n=1

yt,ngt,n

)
+

Nt∑
n=1

Ψ∗t,n(|yt,n|)

)
,

and thus

UΨ
t (ϕt) := −V Ψ

t (−ϕt) = sup
yt∈RNt

(
Πsub

(
ϕt +

Nt∑
n=1

yt,ngt,n

)
−

Nt∑
n=1

Ψ∗t,n(|yt,n|)

)
. (4.43)

We observe thatDΨ
t is σ(ca(Kt), Cb(Kt))-lower semicontinuous (it is a sum of functions,

each being composition of a lower semicontinuous function and a continuous function
on Martt(Kt) which is σ(ca(Kt), Cb(Kt))-compact by Lemma 4.3.10). We now need
to compute

V Ψ
t (ϕt) = sup

γt∈ca(Kt)

(∫
Kt

ϕt dγt −DΨ
t (γt)

)
= sup

Qt∈Martt(Kt)

(∫
Kt

ϕt dQt −DΨ
t (Qt)

)
.

Recall now that from Fenchel-Moreau Theorem and symmetry

Ψt,n(|x|) = Ψt,n(x) = sup
y∈R

(xy −Ψ∗t,n(y)) = sup
y∈R

(xy −Ψ∗t,n(|y|)) .

Hence, setting gt,n = ft,n − ct,n,

V Ψ
t (ϕt) = sup

Qt∈Martt(Kt)

(∫
Kt

ϕt dQt −
Nt∑
n=1

sup
yt,n∈R

(
yt,n

∫
Kt

gt,n dQt −Ψ∗t,n(|yt,n|)
))

= sup
Qt∈Martt(Kt)

(∫
Kt

ϕt dQt −
Nt∑
n=1

sup
yt,n∈dom(Ψ∗t,n)

(
yt,n

∫
Kt

gt,n dQt −Ψ∗t,n(|yt,n|)
))

= sup
Qt∈Martt(Kt)

inf
yt∈dom

(∫
Kt

(
ϕt −

Nt∑
n=1

yt,ngt,n

)
dQt +

Nt∑
n=1

Ψ∗t,n(|yt,n|)

)
=: sup

Qt∈Mart(Kt)
inf

yt∈dom
T (yt,Qt),

where dom = dom(Ψ∗t,1)×· · ·×dom(Ψ∗t,Nt) ⊆ RNt . We now see that T is real valued on
dom×Martt(Kt), is convex in the first variable and concave in the second. Moreover,
{T (yt, ·) ≥ C} is σ(Martt(Kt), Cb(Kt))-closed in Martt(Ω) for every yt ∈ dom, and
Martt(Kt) is σ(Martt(Kt), Cb(Kt))-compact (by Lemma 4.3.10). As a consequence
T (yt, ·) is σ(Martt(Kt), Cb(Kt))-lower semicontinuous on Martt(Kt). We can apply
[124] Theorem 3.1 with A = dom and B = Martt(Kt) endowed with the topology
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σ(Martt(Kt), Cb(Kt)), and interchange inf and sup. From our previous computations
we then get

V Ψ
t (ϕt) = sup

Qt∈Martt(Kt)

inf
yt∈dom

T (yt,Qt) = inf
yt∈dom

sup
Qt∈Martt(Kt)

T (yt,Qt)

= inf
yt∈dom

(
sup

Qt∈Martt(Kt)

∫
Kt

(
ϕt −

Nt∑
n=1

yt,ngt,n

)
dQt +

Nt∑
n=1

Ψ∗t,n(|yt,n|)

)

= inf
yt∈dom

(
sup

Q∈Mart(Ω)

∫
Ω

(
ϕt −

Nt∑
n=1

yt,ngt,n

)
dQ +

Nt∑
n=1

Ψ∗t,n(|yt,n|)

)
(4.40)
= inf

yt∈dom

(
Πsup

(
ϕt −

Nt∑
n=1

yt,ngt,n

)
+

Nt∑
n=1

Ψ∗t,n(|yt,n|)

)

= inf
yt∈RNt

(
Πsup

(
ϕt −

Nt∑
n=1

yt,ngt,n

)
+

Nt∑
n=1

Ψ∗t,n(|yt,n|)

)
.

Equation (4.43) can be obtained with minor manipulations.
STEP 2: conclusion. We are clearly in the setup of Theorem 4.1.4 with D given as
in Setup 4.2.4 from DΨ

0 , . . . ,DΨ
T , and by definition dom(DΨ

t ) ⊆ Prob(Kt) for each t =
0, . . . , T . Using Lemma 4.2.5 Item 2, together with the computations in STEP 1 and
the fact that clearly SU

Ψ
t ≡ UΨ

t by Cash Additivity of UΨ
t , we get the desired equality

from Corollary 4.1.8 Equation (4.25): observe that our assumption on the existence

of the measure Q̂ ∈ Mart(Ω) guarantees, together with the fact that D is clearly
lower bounded on Meas(Ω), that the hypotheses of Theorem 4.1.4 are satisfied (hence
so is Standing Assumption 4.1.1). Equality (4.42) can now be obtained similarly to
(4.41).

Remark 4.3.11. Our assumption of existence of a particular Q̂ ∈ Mart(Ω) in Proposi-
tion 4.3.9 expresses the fact that we are assuming our market prices (ct,n)t,n are close
enough to those given by expectations under some martingale measure.

Remark 4.3.12. Proposition 4.3.9 covers a wide range of penalizations. For example,
we might use power-like penalizations, i.e. Ψt,n(x) = |x|pt,n

pt,n
for pt,n ∈ (1,+∞). In such

a case Ψ∗t,n(x) = |x|qt,n
qt,n

for 1
pt,n

+ 1
qt,n

= 1. Alternatively, we might impose a threshold

for the fitting, that is take into account only those martingale measure Q such that∣∣∫
Ω
ft,n dQt − ct,n

∣∣ ≤ εt,n for some εt,n > 0. To express this, we might take for x, y ∈ R

Ψt,n(x) =

{
0 if |x| ≤ εt,n

+∞ otherwise
=⇒ Ψ∗t,n(y) = εt,n |y| .

4.3.2 Beyond uniperiodal semistatic hedging

We now explore the versatility of Corollary 4.1.8, which can be used beyond the
semistatic subhedging and superhedging problems in Section 4.3.1. Note that in
Section 4.3.1 we chose for static hedging portfolios the sets Et, t = 0, . . . , T consisting
of deterministic amounts, units of underlying stock at time t and call options with

201



different strike prices and same maturity t. This affected the primal problem in
the fact that the penalty D turned out to depend solely on the (one dimensional)

marginals of Q̂. Nonetheless, Theorem 4.1.4 allows to choose for each t = 0, . . . , T a
subspace Et ⊆ Cb(K0×· · ·×Kt), potentially allowing to consider also Asian and path-
dependent options in the sets Et. We expect that this would translate in the penalty
D depending no more only on the one dimensional marginals of Q̂. The study of these
less restrictive, yet technically more complex cases is left for future research.
In the following we will treat a slightly different problem, which however helps un-
derstanding how also the extreme case Et = Cb(K0 × · · · × Kt), t = 0, . . . , T is of
interest.

Dual representation for Generalized OCE associated to the indirect utility
function

Theorem 4.1.4 yields the following dual robust representation of the Generalized Op-
timized Certainty Equivalent associated to the indirect utility function. We stress
here the fact that, again, Q̂ ∈ Mart(Ω) is a fixed martingale measure, but we will not
focus anymore on its marginals only, as will become clear in the following.

Theorem 4.3.13. Take u : R → R such that u0 = . . . , uT := u satisfy Assumption
4.2.6 and let v∗ be defined in (4.30) with u in place of ut. Let UH

Q̂
: Cb(Ω)→ R be the

associated indirect utility

UHQ̂ (ϕ) := sup
∆∈H

∫
Ω

u(ϕ+ I∆) dQ̂ .

and S
UH
Q̂ be the associated Generalized Optimized Certainty Equivalent defined accord-

ing to (I.50), namely

S
UH
Q̂ (ϕ) := sup

ξ∈R

(
UHQ̂ (ϕ+ ξ)− ξ

)
ϕ ∈ Cb(Ω) .

Then for every c ∈ Cb(Ω)

S
UH
Q̂ (c) = inf

Q∈Mart(Ω)

(∫
Ω

c dQ +DQ̂(Q)

)
where for µ ∈ Meas(Ω)

DQ̂(µ) :=

{∫
Ω
v∗
(

dµ

dQ̂

)
dQ̂ if µ� Q̂

+∞ otherwise
.

Proof. Take Et = Cb(K0 × · · · ×Kt) for t = 0, . . . , T . Define for ψ ∈ E = E0 × ...× ET
U(ψ) := UH

Q̂

(∑T
t=0 ψt

)
. Clearly U(ψ) > −∞ for any ψ ∈ E , and since Q̂ ∈ Mart(Ω)

and u(x) ≤ x for all x ∈ R we also have U(ψ) ≤
∑T

t=0 ‖ϕt‖∞ < +∞. Moreover it is
easy to verify that defining D as in (4.1) for any Q ∈ Mart(Ω) we have

D(Q) := sup
ψ∈E

(
U(ψ)−

∫
Ω

(
T∑
t=0

ψt

)
dQ

)
= sup

ϕ∈Cb(Ω)

(∫
Ω

u(ϕ) dQ̂−
∫

Ω

ϕ dQ
)

202



and arguing as in Proposition 4.2.8 we get D(Q) = DQ̂(Q). From the fact that
u(x) ≤ x for every x ∈ R we have v∗(1) < +∞, hence from Assumption 4.3.1

Q̂ ∈ dom(D). This and c ∈ L1(Q̂) in turns yields Q̂ ∈ N (see (4.11)). Moreover
dom(U) = E and by definition of D for any µ ∈ Meas(Ω) we have D(µ) ≥ U(0)−0 = 0,
hence D is lower bounded on the whole Meas(Ω). We conclude that U and D satisfy
the assumptions of Theorem 4.1.4. We then get

inf
Q∈Mart(Ω)

(
EQ [c(X)] +DQ̂(Q)

)
= inf

Q∈Mart(Ω)
(EQ [c(X)] +D(Q)) = sup

∆∈H
sup

ψ∈Φ∆(c)

SU (ψ) .

Observe now that SU satisfies

SU(ψ) := sup
λ∈RT+1

(
U(ψ + λ)−

T∑
t=0

λt

)
= sup

λ∈RT+1

(
UHQ̂

(
T∑
t=0

ψt +
T∑
t=0

λt

)
−

T∑
t=0

λt

)

= sup
ξ∈R

(
UHQ̂

(
T∑
t=0

ψt + ξ

)
− ξ

)
=: S

UH
Q̂

(
T∑
t=0

ψt

)
.

S
UH
Q̂ : Cb(Ω)→ R is (IA) and is nondecreasing, thus

sup
∆∈H

sup
ψ∈Φ∆(c)

S
UH
Q̂

(
T∑
t=0

ψt

)
= sup

∆∈H
sup

ψ∈Φ∆(c)

S
UH
Q̂

(
T∑
t=0

ψt + I∆

)
= S

UH
Q̂ (c)

by definition of Φ∆(c) and since c ∈ Cb(Ω).

4.4 Appendix to Chapter 4

4.4.1 Setting

Measures

We start fixing our setup and some notation. Let Ω be a Polish space and endow
it with the Borel sigma algebra B(Ω) generated by its open sets. A set function
µ : B(Ω) → R is a finite signed measure if µ(∅) = 0 and µ is countably additive.
A finite measure µ is a finite signed measure such that µ(B) ≥ 0 for all B ∈ B(Ω).
A finite measure µ such that µ(Ω) = 1 will be called a probability measure. Recall
from Section 4.1 the notations for ca(Ω), Meas(Ω), Prob(Ω). The following result is
well known, see e.g. [24] Theorem 1.1 and 1.3.

Proposition 4.4.1. Every finite measure µ on B(Ω) is a Radon Measure, that is
for every B ∈ B(Ω) and every ε > 0 there exists a compact Kε ⊆ B such that
µ(B \Kε) ≤ ε.

A measure µ ∈ Meas(Ω) has full support if µ(A) > 0 for every nonempty open set
A ⊆ Ω. We also introduce for M ∈ N, M ≥ 1 the sets

Cb(Ω) := Cb(Ω,R) = {ϕ : Ω→ R | ϕ is bounded, continuous},
Cb(Ω,RM) := (Cb(Ω))M = {ϕ : Ω→ RM | ϕ is bounded, continuous},

LSCb(Ω) := LSCb(Ω,R) = {ϕ : Ω→ R | ϕ is bounded, lower semicontinuous}.
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Given a vector subspace E ⊆ Cb(Ω,RM+1) we will consider the dual pair

(ca(Ω), Cb(Ω,RM+1))

with pairing given by the bilinear functional (γ, ϕ) 7→
∫

Ω

(∑M
m=0 ϕm

)
dγ. We will

induce on ca(Ω) the topology σ(ca(Ω), E), which is the coarsest topology on ca(Ω)

making the functional γ 7→
∫

Ω

(∑M
m=0 ϕm

)
dγ continuous for each ϕ ∈ E . Similarly,

we will induce on E the topology σ(E , ca(Ω)) which is the coarsest topology on E
making the functional γ 7→

∫
Ω

(∑M
m=0 ϕm

)
dγ continuous for each γ ∈ ca(Ω).

Weak and Narrow Topology

Definition 4.4.2. The Weak Topology on Meas(Ω) is the coarsest (Hausdorff)
topology for which all maps µ 7→

∫
Ω
ϕ dµ are continuous, for all ϕ ∈ Cb(Ω). The

Narrow Topology is the coarsest (Hausdorff) topology for which all maps µ 7→∫
Ω
ϕ dµ are lower semicontinuous, for all ϕ ∈ LSCb(Ω).

Remark 4.4.3. The weak topology on Meas(Ω) is the topology σ(Meas(Ω), Cb(Ω,R),
which is the relative topology σ(ca(Ω), Cb(Ω,R)|Meas(Ω) induced by σ(ca(Ω), Cb(Ω,R)
on Meas(Ω) ⊆ ca(Ω) (see [5] Lemma 2.53).

Proposition 4.4.4. When Ω is a Polish space, the weak and narrow topologies coin-
cide.

Proof. See [123] page 371.

Remark 4.4.5. Even though the two topologies coincide in our setting, because of
their different definitions we will find more convenient to exploit the one or the other
topology in our proofs.

We now turn our attention to compactness issues in Meas(Ω) under the narrow topol-
ogy. We recall first that a family Γ ⊆ Meas(Ω) is bounded if supµ∈Γ µ(Ω) < +∞ and
tight if for every ε > 0 there exists a compact Kε ⊆ Ω such that supµ∈Γ µ(Ω\Kε) ≤ ε.
The following generalization of Prokhorov’s Theorem holds:

Theorem 4.4.6. If a subset Γ ⊆ Meas(Ω) is bounded and tight, it is relatively compact
in the narrow topology.

Proof. See [123] Theorem 3 page 379.

4.4.2 Auxiliary Results and Proofs

Lemma 4.4.7. Take compact K1, . . . , KT ⊆ R, and suppose that K0 = {x0} and
card(Kt+1) ≥ card(Kt) for every t = 0, . . . , T − 1. Take E = E0 × · · · × ET for
vector subspaces Et ⊆ Cb(Kt) such that Idt ∈ Et and Et + R = Et, for t = 0, . . . , T .
Suppose there exist ϕ, ψ ∈ E and ∆ ∈ H, where H is defined in (I.37), such that∑T

t=0 ϕt =
∑T

t=0 ψt + I∆. Then there exist constants k0, . . . , kT , h0, . . . , hT ∈ R such
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that for each t = 0, . . . , T ψt(xt) = ϕt(xt) + ktxt + ht, ∀xt ∈ Kt. In particular for
St : Et → R, t = 0, . . . , T stock additive functionals we have

T∑
t=0

St(ϕt) =
T∑
t=0

St(ψt) ,

and for V :=
∑T

t=0 Et + I (see (I.38)) the map

v =
T∑
t=0

ϕt + I∆ 7→ S(v) :=
T∑
t=0

St(ϕt)

is well defined on V, (CA) and (IA).

Proof.
STEP 1: we prove that if

∑T
t=0 ϕt =

∑T
t=0 ψt + I∆ then ∆ = [∆0, . . . ,∆T−1] ∈ H is

a deterministic vector ∆ ∈ RT . If card(KT ) = 1 this is trivial. We can then suppose
card(KT ) ≥ 2 We see that

ϕT (xT )− ψT (xT ) =
T−1∑
t=0

(ψ(xt)− ϕt(xt)) +
T−2∑
t=0

∆t(x0, . . . , xt)(xt+1 − xt)+

+∆T−1(x0, . . . , xT−1)(xT − xT−1) = f(x0, . . . , xT−1) + ∆T−1(x0, . . . , xT−1)xT

for some function f . If ∆T−1 were not constant, on two points it would assume values
a 6= b, with corresponding values of f that we call fa, fb. Then fa + axT = fb + bxT
has a unique solution, contradicting the fact that all the equalities need to hold on
the whole K0, . . . , KT and in particular for two different values of xT . We proceed
one step backward. If card(KT−1) = 1, the claim trivially follows, given our previous
step. If card(KT−1) ≥ 2, similarly to the previous computation

ϕT−1(xT−1)− ψT−1(xT−1) =
∑
s 6=T−1

(ψs(xs)− ϕs(xs)) +
T−3∑
t=0

∆t(x0, . . . , xt)(xt+1 − xt)+

+∆T−2(x0, . . . , xT−2)(xT−1 − xT−2) + ∆T−1(xT − xT−1)

= f(xs, s 6= T − 1) + (∆T−2(x0, . . . , xT−2)−∆T−1)xT−1 .

An argument similar to the one we used in the previous time step shows that

∆T−2(x0, . . . , xT−2)−∆T−1

is constant, hence so is ∆T−2. Our argument can be clearly be iterated up to ∆0.
STEP 2: we prove existence of the vectors k, h ∈ RT+1, as stated in the Lemma. From
Step 1 it is clear that there exist constants k0, . . . , kT such that I∆(x) =

∑T
t=0 ktxt.

Hence
∑T

t=0 ϕt(xt) =
∑T

t=0(ψt(xt) + ktxt) for all x ∈ Ω, which yields for each t =
0, . . . , T that ϕt(xt) − (ψt(xt) + ktxt) does not depend on xt, hence is constant, call
it −ht. Then k0, . . . , kT , h0, . . . , hT ∈ R satisfy our requirements. The last claim∑T

t=0 S
U
t (ϕt) =

∑T
t=0 S

U
t (ψt) is then an easy consequence of Stock Additivity.

STEP 3: well posedness and properties of S. Observe that whenever ϕ, ψ ∈ E , ∆, H ∈
H are given with

∑T
t=0 ϕt+I

∆ =
∑T

t=0 ψt+I
H we have by Steps 1-2 that

∑T
t=0 S

U
t (ϕt) =∑T

t=0 S
U
t (ψt) . As a consequence, S is well defined. Cash Additivity is inherited from

S0, . . . , ST while Integral Additivity is trivial from the definition.
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Proof of Lemma 4.2.2. We will only focus on (4.27), since the remaining claims are
easily checked. We have that

D(γ) = sup
ϕ∈E

(
T∑
t=0

Ut(ϕt)−
T∑
t=0

∫
Kt

ϕt dγ

)
=

T∑
t=0

sup
ϕt∈Et

(
Ut(ϕt)−

∫
Kt

ϕt dγ

)

=
T∑
t=0

Dt(γt) =
T∑
t=0

Dt(γ) .

As to the second claim in (4.27), we observe that

sup
ξ∈RT+1

(
U(ϕ+ ξ)−

T∑
t=0

ξt

)
=

T∑
t=0

sup
ξ∈R

(Ut(ϕt + ξ)− ξ) =
T∑
t=0

SUt(ϕt).

Proof of Lemma 4.2.5.
Item 1. For each t = 0, . . . , T Dt(γ) = Dt◦πt(γ), where Dt is σ(ca(Kt), Et)-lower semi-
continuous and πt, the projection to the t-th marginal, is σ(ca(Ω), E)− σ(ca(Kt), Et)
continuous. Hence, for each t = 0, . . . , T γ 7→ Dt(γ) is σ(ca(Ω), E)-lower semicontin-
uous. Lower semicontinuity of D is then a consequence of the fact that the sum of
lower semicontinuous functions is lower semicontinuous.
Item 2, equation (4.28). We have that for ψ = −ϕ

− U(ϕ) = V (ψ) = sup
µ∈ca(Ω)

(∫
Ω

(
T∑
t=0

ψt

)
dµ−D(µ)

)

= sup
µ∈ca(Ω)

T∑
t=0

(∫
Kt

ψtdµ−Dt(µt)
)

(i)
= sup

{
T∑
t=0

(∫
Kt

ψtdγt −Dt(γt)
)
| γ ∈ ca(Ω) with γt ∈ Prob(Kt) ∀t = 0, . . . , T

}
(ii)
= sup

{
T∑
t=0

(∫
Kt

ψtdQt −Dt(Qt)

)
| [Q0, . . . ,QT ] ∈ Prob(K0)× · · · × Prob(KT )

}

=
T∑
t=0

sup
Qt∈Prob(Kt)

(∫
Kt

ψtdQt −Dt(Qt)

)
(iii)
=

T∑
t=0

sup
γt∈ca(Kt)

(∫
Kt

ψtdγt −Dt(γt)
)

=
T∑
t=0

Vt(ψt) =
T∑
t=0

−Ut(ϕt) .

Note that (i) follows from dom(D) ⊆ Z := {γ ∈ ca(Ω) | γt ∈ Prob(Kt) ∀t = 0, . . . , T}.
In (ii) we used the facts that any vector of probability measures (Q0, . . . ,QT ) with
Qt ∈ Prob(Kt), t = 0, . . . , T , identifies γ := Q0 ⊗ · · · ⊗ QT ∈ Z with D(γ) =∑T

t=0Dt(Qt) (note that this does not hold for a general vector of signed measures,
which is why we need the additional assumption on the domains of the penalization
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functionals for Item 2) and that for every γ ∈ Z, setting Qt := γt ∈ Prob(Kt), we
have D(γ) =

∑T
t=0Dt(Qt). Equality (iii) follows from dom(Dt) ⊆ Prob(Kt) for each

t = 0, . . . , T .
Item 2, equation (4.29). The argument is identical to the one in the proof of
Lemma 4.2.2, using the additive structure of U we obtained in the previous step of
the proof.

Proof of Proposition 4.2.8. We will use [108] Theorem 2.7 and [108] Remark 2.8. To
do so, let us rename F := v∗t ((see (4.30) for the definition of v∗), which implies
that F ◦(y) := −F ∗(−y) of [108] Equation (2.45) satisfies F ◦(y) := −F ∗(−y) =
−v∗∗t (−y) = −vt(−y) = ut(y), by Fenchel-Moreau Theorem. All the assumptions
of [108] Section 2.3 on F are satisfied, since for every y ≥ 0 F (y) ≥ ut(0)−0y = 0 and
F (1) = supx∈R(ut(x) − x) ≤ 0 (recall ut(x) ≤ x, ∀x ∈ R). Also, since dom(ut) = R,

limy→+∞
F (y)
y

= F ′∞ = +∞. We can then apply [108] Theorem 2.7 and [108] Remark

2.8, obtaining (4.32). We stress the fact that since ut is finite valued on the whole R,
it is continuous there and for every ϕt ∈ Cb(Kt), F

◦(ϕt) = ut(ϕt) ∈ Cb(Kt), hence the
additional constraint F ◦(ϕt) ∈ Cb(Kt) (below [108] (2.49)) would be redundant in our
setup.

Proof of Proposition 4.2.9. We will exploit again [108] Theorem 2.7 and [108] Remark
2.8 (with ut in place of F ◦) , as we explain now. Since ut is nondecreasing, either its
domain is in the form [M,+∞) or (M,+∞), with M ≤ 0. Given a ϕt ∈ Cb(Kt) and
a µ ∈ Meas(Kt)

• Either inf(ϕt(R)) > M , in which case ut(ϕt) ∈ Cb(Kt) since ut is continuous on
the interior of its domain.

• Or inf(ϕt(R)) < M , in which case {ϕt < M} is open nonempty and hence has

positive Q̂t measure, as Q̂t has full support. Thus
∫
Kt
ut(ϕt) dQ̂t = −∞.

• Or inf(ϕt(R)) = M in which case ut(ϕt) = limε↓0 ut(max(ϕt,M + ε)) (since ut
is nondecreasing and upper semicontinuous) ut(max(ϕt,M + ε)) ∈ Cb(Kt) (see
first bullet) and by Monotone Convergence Theorem∫

Kt

ut(ϕt) dQ̂t −
∫
Kt

ϕt dµ

= lim
ε↓0

(∫
Kt

ut(max(ϕt,M + ε)) dQ̂t −
∫
Kt

max(ϕt,M + ε) dµ

)
.

Then we infer that

sup
ϕt∈Cb(Kt)

(∫
Kt

ϕt dµ−
∫
Kt

vt(ϕt) dQ̂t

)
= sup

ϕt∈Cb(Kt)

(∫
Kt

ut(ϕt) dQ̂t −
∫
Kt

ϕt dµ

)
= sup

{∫
Kt

ut(ϕt) dQ̂t −
∫
Kt

ϕt dµ | ϕt, ut(ϕt) ∈ Cb(Kt)

}
, (4.44)

and from [108] Theorem 2.7, [108] Remark 2.8 and (4.44) we conclude the thesis.
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4.4.3 On Minimax Duality Theorem

The following theorem is stated, without the proof, in [108], Theorem 2.4. For the
sake of completeness and without claiming any originality, we here provide the short
proof.

Theorem 4.4.8 (Minimax Duality Theorem). Let A,B be nonempty convex subsets
of some vector spaces and suppose A is endowed with a Hausdorff topology. Let L :
A×B → R be a function such that

1. a 7→ L(a, b) is convex and lower semicontinuous in A for every b ∈ B,

2. b 7→ L(a, b) is concave in B for every a ∈ A.

When α := supb∈B infa∈A L(a, b) < +∞, suppose that there exist C > α and b? ∈ B
such that {a ∈ A | L(a, b?) ≤ C} is compact in A. Then

inf
a∈A

sup
b∈B

L(a, b) = sup
b∈B

inf
a∈A

L(a, b) . (4.45)

Proof. We start observing that in general infa∈A supb∈B L(a, b) ≥ supb∈B infa∈A L(a, b),
hence if α = +∞ then (4.45) trivially holds. We then assume α < +∞ and modify
the proof of [124] Theorem 3.1. Let b1, . . . , bN ∈ B be given and set b0 = b?. By
[124] Lemma 2.1.(a), using fi(·) := L(·, bi) we get constants λ0, . . . , λN ≥ 0 with∑N

i=0 λi = 1 such that

inf
a∈A

(
max

i=0,...,N
L(a, bi)

)
= inf

a∈A

(
N∑
i=0

λiL(a, bi)

)

≤ inf
a∈A

L

(
a,

N∑
i=0

λibi

)
≤ sup

b∈B
inf
a∈A

L(a, b) = α ,

where we used the concavity in B to obtain the first inequality. We now observe that
for all ε > 0 there exists an a ∈ A such that

a ∈
{

max
i=0,...,N

L(a, bi) ≤ α + ε

}
=

N⋂
i=0

{L(a, bi) ≤ α + ε}

=
N⋂
i=1

{L(a, bi) ≤ α + ε} ∩ {L(a, b?) ≤ α + ε} .

Hence for A? = {L(a, b?) ≤ α + ε} the family Aεb := {a ∈ A? | L(a, b) ≤ α + ε} is
a collection of closed subsets of A? having the finite intersection property. Now take
ε > 0 such that α+ ε < C. Then A? is Hasudorff and compact, being a closed subset
of the compact set {a ∈ A | L(a, b?) ≤ C}. As a consequence

⋂
b∈B A

ε
b 6= ∅. This

yields the existence of an a? such that a? ∈ A? and L(a?, b) ≤ α + ε ∀ b ∈ B. Hence

inf
a∈A

sup
b∈B

L(a, b) ≤ sup
b∈B

L(a?, b) ≤ ε+ α

and letting ε ↓ 0 we get

inf
a∈A

sup
b∈B

L(a, b) ≤ sup
b∈B

inf
a∈A

L(a, b) ≤ inf
a∈A

sup
b∈B

L(a, b) .
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