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a b s t r a c t

In this paper we establish an optimal Lorentz estimate for the Riesz potential in
the L1 regime in the setting of a stratified group G: Let Q ≥ 2 be the homogeneous
dimension of G and Iα denote the Riesz potential of order α on G. Then, for every
α ∈ (0, Q), there exists a constant C = C(α, Q) > 0 such that

∥Iαf∥LQ/(Q−α),1(G) ≤ C∥XI1f∥L1(G) (0.1)

for all f ∈ C∞
c (G) such that XI1f ∈ L1(G), where X denotes the horizontal

gradient.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A now classical result of S. Sobolev [17] concerns the mapping property of the Riesz potentials on
Euclidean space: For every α ∈ (0, d) and p ∈ (1, d/α) there exists a constant C = C(p, α, d) > 0 such
hat

∥Iαf∥Ldp/(d−αp)(Rd) ≤ C∥f∥Lp(Rd) (1.1)

or all f ∈ Lp(Rd). Here we use Iαf to denote the Riesz potential of order α of the function f , defined in
uclidean space by

Iαf(x) := 1
Γ (α/2)

∫ ∞

0
tα/2−1f ∗ pt(x) dt

here pt(x) := 1/(4πt)d/2exp(−|x|2/4t) is the heat kernel.
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While this inequality does not hold in the case p = 1, there are several possible replacements. For example,
with the assumption f ∈ L1(Rd), one has the weak-type estimate

sup
t>0

t|{|Iαf | > t}|(d−α)/d ≤ C ′∥f∥L1(Rd),

hich has been pioneered by A. Zygmund in his 1956 paper [21]. In order to recover an analogous conclusion
o the inequality (1.1), one can strengthen the hypothesis, as for example in the work of E. Stein and G.
eiss [20] which implies the inequality

∥Iαf∥Ld/(d−α)(Rd) ≤ C ′′
(

∥f∥L1(Rd) + ∥∇I1f∥L1(Rd;Rd)

)
.

More recently this estimate has been refined by the third author, in collaboration with Armin Schikorra
nd Jean Van Schaftingen, in [16] where it was proved that if d ≥ 2, then for every α ∈ (0, d), there exists
constant C = C(α, d) > 0 such that

∥Iαf∥Ld/(d−α)(Rd) ≤ C∥∇I1f∥L1(Rd;Rd) (1.2)

or all f ∈ C∞
c (Rd) such that ∇I1f ∈ L1(Rd;Rd).

An analogue of the inequality (1.1) has been established for the Heisenberg group by G. Folland and
. Stein [7] and in the more general setting of stratified groups by G. Folland [6], while the Hardy space
xtension to p = 1 has been proved in the former setting by the first author in [12] and in the latter by
. Folland and E. Stein in [8].
One of the main goals of this paper is to extend the inequality (1.2) to this more general setting. However,

second aspect of our paper is to prove optimal inequalities on the finer Lorentz scale. Here let us recall that
. O’Neil’s work on convolution estimates in Lorentz spaces implies that one has the following sharpening of

he inequality (1.1) (see [14]): For every α ∈ (0, d) and p ∈ (1, d/α) there exists a constant C = C(p, α, d) > 0
such that

∥Iαf∥Lq,p(Rd) ≤ C∥f∥Lp(Rd) (1.3)

or all f ∈ Lp(Rd), where
1
q

= 1
p

− α

d
.

The endpoint p = 1 is forbidden in R. O’Neil’s paper [14], and it was work by the third author in [18] which
obtained the sharpening of the inequality (1.2) on this Lorentz scale: Let d ≥ 2. For every α ∈ (0, d), there
xists a constant C = C(α, d) > 0 such that

∥Iαf∥Ld/(d−α),1(Rd) ≤ C∥∇I1f∥L1(Rd;Rd) (1.4)

for all f ∈ C∞
c (G) such that ∇I1f ∈ L1(Rd;Rd).

It is an exercise in L. Grafakos’s book [10] to show that the inequality (1.3) extends to the setting of
a stratified Lie group, as R. O’Neil’s paper shows that such an embedding only relies on the structure of
the background space and the exponents. It is natural to conjecture that an analogue to the inequality
(1.4) holds in this setting as well. Indeed, the main result of our paper is the following. As it is well known
(see Section 2), the Lie algebra g of G is generated by the vector fields of the first stratus V1, and we call
them horizontal. Having fixed a basis {X1, . . . , Xn} of V1, we denote by Xf = (X1f, . . . , Xnf) the horizontal
gradient of a function (distribution) f . In this setting there is also a natural analogue of the Riesz potentials,
that we denote by Iα, for α > 0, where the heat kernel pt is replaced with the fundamental solution of the
subLaplacian; see again Section 2 for precise definitions.
2
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Theorem 1.1. Let Q ≥ 2 be the homogeneous dimension of G. For every α ∈ (0, Q), there exists a constant
= C(α, Q) > 0 such that

∥Iαf∥LQ/(Q−α),1(G) ≤ C∥XI1f∥L1(G), (1.5)

or all f ∈ C∞
c (G) such that XI1f ∈ L1(G), and X denotes the horizontal gradient.

The work of S. Chanillo and J. Van Schaftingen [3] obtains results in a similar spirit, for the case of vector-
alued differential operators more general than the horizontal gradient, though their results do not obtain
he optimal Lorentz space. In fact, very few optimal Lorentz estimates are known, other than the previously
entioned work of the third author and a recent work of the third author and J. Van Schaftingen [19].
The method of proof has been pioneered in [18], and in particular can be conveniently broken up into five

omponents.

1. Establish a pointwise inequality in terms of maximal functions.
2. Use Hölder’s inequality on the Lorentz scale.
3. Use the boundedness properties of the maximal function.
4. Apply to set functions u = χE and reabsorb the bound for the term involving χE by the isoperimetric

inequality.
5. Use the coarea formula to conclude the general case.

The verification of such a procedure in this more general framework is interesting, as with the abstract
definition of the Riesz potential we are led to more natural quantities to estimate. In place of the Hardy–
Littlewood maximal function we work with some maximal functions associated to the heat kernel pt for
he subLaplacian. Thus, for Item 1 in place of the pointwise maximal function estimate of Maz’ya and
haposhnikova [13], we obtain and utilize the inequality

|IαXju| ≤ C

(
sup
t>0

|Xju ∗ pt(x)|
)1−α (

sup
t>0

|u ∗
√

t(Xjpt)q|
)α

, (1.6)

ee Lemma 3.1 in Section 3. Item 2 then follows as before, while for Item 3 we now require estimates for
hese maximal functions. However, in the setting of stratified groups this is now well-understood: Cowling,
audry, Giulini, and Mauceri have shown in [5] that one has a weak-(1, 1) estimate for the map

M : f ↦→ sup
t>0

|f ∗ pt|(x),

hile the Lp-boundedness of
M1 : f ↦→ sup

t>0
|f ∗ t1/2√

t(Xjpt)q|(x)

ollows from either the theory of grand maximal functions in [8] or the same arguments as in [5], using the
aussian estimates for the heat kernel pt — see e.g. Appendix 1 in [4] and references therein. The Lorentz

pace result thus follows by interpolation. Finally for Items 4 and 5 the structure present in the stratified
ie group setting is sufficient to argue analogously to the Euclidean case.

The plan of the papers is as follows. In Section 2 we recall the requisite preliminaries concerning stratified
roups, Lorentz spaces, and functions of bounded variation. In Section 3 we prove a pointwise interpolation
nequality for the Riesz potentials in this more general setting. Finally in Section 4 we prove Theorem 1.1.

. Notation and preliminaries

We now define the notion of a stratified group G and the Riesz potential in this setting, as introduced by

. Folland in [6].

3
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A stratified group G is a nilpotent, simply connected Lie group whose Lie algebra g admits a vector space
decomposition such that

g = V1 ⊕ V2 ⊕ · · · ⊕ Vm

such that

[V1, Vk] = Vk+1 1 ≤ k < m,

[V1, Vm] = {0}.

ere we recall that in this setting g is a real finite dimensional Lie algebra equipped with a family of dilations
r = exp(A ln(r)) with A a diagonalizable linear transformation of g with smallest eigenvalue 1. The number
= trace(A) is the homogeneous dimension with respect to this family of dilations.
For such stratified groups, one can choose a basis {X1, X2, . . . , Xn} of V1 that we fix in the sequel, and

enote by Xf = (X1f, X2f, . . . , Xnf) the horizontal gradient. We then define the subLaplacian as the
operator

J := −
n∑

i=1
X2

i .

With such a definition, J is hypoelliptic (a result due to Hörmander which is presented as Proposition (0.1)
in [6], p. 161). In this setting one can define the Riesz kernel as (see p. 185 in [6])

Iα(x) := 1
Γ (α/2)

∫ ∞

0
tα/2−1pt(x) dt

here pt(x) is the fundamental solution of ∂pt
∂t + J , i.e.

∂pt

∂t
+ J pt = 0 in G × R+

and p0(x) = δx, suitably interpreted. In turn, the Riesz potential is defined via the convolution on the right

Iαf(x) := f ∗ Iα(x) =
∫

f(xy−1)Iα(y) dy.

ere and in the sequel we use dy (or else dx, dz, etc.) to denote the bi-invariant Haar measure on G, which
s the lift of the Lebesgue measure on g via the exponential map. Putting these several facts together we
nd a useful expression for the Riesz potential in

Iαf = 1
Γ (α/2)

∫ ∞

0
tα/2−1f ∗ pt dt.

emark 2.1. When pt is the standard heat kernel on Euclidean space, one has

Iαf(x) = Iαf(x) ≡ 1
γ(α)

∫
Rd

f(y)
|x − y|d−α

dy,

or an appropriately defined γ(α), which is a perhaps a more well-known formula. Our choice to utilize the
eat kernel as the definition, instead of replacing the Euclidean distance |x − y| with a metric distance in

G, in line with Stein and Folland [7,8] and Folland [6], reflects the fact that the structural relationship as
the inverse of the (sub)Laplacian is preserved in our definition.

Let us now recall some results concerning the Lorentz spaces Lq,r(G). We follow the convention of R.
O’Neil in [14], who proves various results for these spaces under the assumption that (G, dx) is a measure
space. We begin with some definitions related to the non-increasing rearrangement of a function.
4
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Definition 2.2. For f a measurable function on G, we define

m(f, y) := |{|f | > y}|.

s this is a non-increasing function of y, it admits a left-continuous inverse, called the non-negative
earrangement of f , and which we denote f∗(x). Further, for x > 0 we define

f∗∗(x) := 1
x

∫ x

0
f∗(t) dt.

With these basic results, we can now give a definition of the Lorentz spaces Lq,r(G).

efinition 2.3. Let 1 < q < +∞ and 1 ≤ r < +∞. We define

∥f∥Lq,r(G) :=
(∫ ∞

0

[
t1/qf∗∗(t)

]r dt

t

)1/r

,

nd for 1 ≤ q ≤ +∞ and r = +∞
∥f∥Lq,∞(G) := sup

t>0
t1/qf∗∗(t).

For these spaces, one has a duality between Lq,r(G) and Lq′,r′(G) for 1 < q < +∞ and 1 ≤ r < +∞,
here

1
q

+ 1
q′ = 1

1
r

+ 1
r′ = 1.

his implies that one has

∥f∥Lq,r(G) = sup
{⏐⏐⏐⏐∫

G

fg dx

⏐⏐⏐⏐ : g ∈ Lq′,r′
(G) , ∥g∥

Lq′,r′ (G) ≤ 1
}

,

ee, for example, Theorem 1.4.17 on p. 52 of [10].
Let us observe that, with this definition,

∥f∥L1,∞(G) = ∥f∥L1(G)

∥f∥L∞,∞(G) = ∥f∥L∞(G),

here the spaces L1(G) and L∞(G) are intended in the usual sense. It will be important for our purposes
o have different endpoints than these, which is only possible through the introduction of a different object.
n particular, for 1 < q < +∞, one has a quasi-norm on the Lorentz spaces Lq,r(G) that is equivalent to
he norm we have defined. What is more, this quasi-norm can be used to define the Lorentz spaces without
uch restrictions on q and r. Therefore let us introduce the following definition.

efinition 2.4. Let 1 ≤ q < +∞ and 0 < r < +∞ and we define

|||f |||
L̃q,r(G) :=

(∫ ∞

0

(
t1/qf∗(t)

)r dt

t

)1/r

.

Then one has the following result on the equivalence of the quasi-norm on L̃q,r(G) and the norm on
Lq,r(G) (and so in the sequel we drop the tilde):

Proposition 2.5. Let 1 < q < +∞ and 1 ≤ r ≤ +∞. Then

|||f |||
L̃q,r(G) ≤ ∥f∥Lq,r(G) ≤ q′|||f |||

L̃q,r(G).
5
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The proof for 1 ≤ r < +∞ can be seen by an application of Lemma 2.2 in [14], while the case r = +∞
s an exercise in calculus (see also [11], Eq. (2.2) on p. 258).

It will be useful for our purposes to observe an alternative formulation of this equivalent quasi-norm in
erms of the distribution function. In particular, Proposition 1.4.9 in [10] implies the following.

roposition 2.6. Let 1 < q < +∞ and 0 < r < +∞. Then

|||f |||Lq,r(G) ≡ q1/r

(∫ ∞

0

(
t|{|f | > t}|1/q

)r dt

t

)1/r

.

With either definition one can check the following scaling property that will be useful for our purposes
cf. Remark 1.4.7 in [10]):

||| |f |γ |||Lq,r(G) = |||f |||γLγq,γr(G).

With these definitions, we are now prepared to state Hölder’s and Young’s inequalities on the Lorentz
cale. In particular on this scale one has a version of Hölder’s inequality (Theorem 3.4 in [14]).

heorem 2.7. Let f ∈ Lq1,r1(G) and g ∈ Lq2,r2(G), where
1
q1

+ 1
q2

= 1
q

< 1

1
r1

+ 1
r2

≥ 1
r

,

or some r ≥ 1. Then
∥fg∥Lq,r(Rd) ≤ q′∥f∥Lq1,r1 (G)∥g∥Lq2,r2 (G)

We also have the following generalization of Young’s inequality (Theorem 3.1 in [14]):

heorem 2.8. Let f ∈ Lq1,r1(G) and g ∈ Lq2,r2(Rd), and suppose 1 < q < +∞ and 1 ≤ r ≤ +∞ satisfy
1
q1

+ 1
q2

− 1 = 1
q

1
r1

+ 1
r2

≥ 1
r

.

hen
∥f ∗ g∥Lq,r(G) ≤ 3q∥f∥Lq1,r1 (G)∥g∥Lq2,r2 (G).

Here we utilize certain estimates for functions of bounded variation and sets of finite perimeter which
ontinue to hold in the setting of stratified groups (see [9]).

We define the space of functions of bounded variation as

BV (G) :=

⎧⎨⎩u ∈ L1(G) : sup
Φ∈B

∫
G

u

n∑
j=1

X∗
j Φj dx < +∞

⎫⎬⎭ ,

here
B =

{
Φ ∈ C1

c (G;Rn), ∥Φ∥L∞(G;Rn) ≤ 1
}

,

nd {X∗
1 , . . . , X∗

n} denotes the right invariant vector fields which agree with the fixed basis of V1,
X1, . . . , Xn}, at zero. Then, the above definition implies that Xju is a Radon measure with finite total

variation, for j = 1, . . . , n. This in turn is equivalent to the fact that |Xu| =
(∑n

j=1(Xju)2)1/2 is a Radon
measure with finite total variation:

|Xu|(G) =
∫

d|Xu| < +∞.

G

6



S.G. Krantz, M.M. Peloso and D. Spector Nonlinear Analysis 202 (2021) 112149

F

P
h

3

s

L

f

G
a
g

P

F

w

We say that a set E ⊂ G has finite perimeter if |E| < +∞ and χE ∈ BV (G). In particular, this implies that

|XχE |(G) = sup
Φ∈B

∫
G

χE

n∑
j=1

X∗
j Φj dx < +∞

or these functions, the coarea formula holds true (see [9] p. 1090):

roposition 2.9. For u ∈ BV (G), the set {u > t} has finite perimeter for almost every t ∈ R and for every
orizontal vector field X we have

|Xu|(G) =
∫ ∞

−∞
|Xχ{u>t}|(G) dt

. Pointwise interpolation estimates for the Riesz potentials

The goal of this section is establish an analogue of the pointwise interpolation inequality in the setting of
tratified groups. Denoting by qh the function qh(x) = h(x−1), in particular we will show that

emma 3.1. Let α ∈ (0, 1). There exists a constant C = C(α) > 0 such that

|IαXju(x)| ≤ C

(
sup
t>0

|Xju ∗ pt(x)|
)1−α (

sup
t>0

|u ∗
√

t(Xjpt)q|
)α

or all u ∈ C∞
c (G) and Xj ∈ V1.

Both of these maximal functions admit Lp estimates for 1 < p < +∞, which can be found in the work of
. Folland and E. Stein [8], while the first of these maximal functions, which is the usual maximal function

ssociated with the heat kernel on the group, has a weak-(1, 1) bound because we work on a stratified Lie
roup (see Theorem 4.1 in Cowling, Gaudry, Giulini, and Mauceri [5]).

roof. We have

IαXju = 1
Γ (α/2)

∫ ∞

0
tα/2−1Xju ∗ pt dt

= 1
Γ (α/2)

∫ r

0
tα/2−1Xju ∗ pt dt + 1

Γ (α/2)

∫ ∞

r

tα/2−1Xju ∗ pt dt

=: I(r) + II(r).

or I(r), we have

|I(r)| =

⏐⏐⏐⏐⏐ 1
Γ (α/2)

∞∑
n=0

∫ r2−n

r2−n−1
tα/2−1Xju ∗ pt dt

⏐⏐⏐⏐⏐
≤ 1

Γ (α/2)

∞∑
n=0

(
r2−n−1)α/2 sup

t>0
|Xju ∗ pt(x)|

∫ r2−n

r2−n−1

dt

t

= C1rα/2 sup
t>0

|Xju ∗ pt(x)|,

here

C1 := ln(2)
Γ (α/2)

∞∑ (
2−n−1)α/2

.

n=0
7
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Meanwhile for II(r) we first observe that, qpt = pt since G is stratified (see e.g. [5]). Then, using the identity
Xju ∗ pt = −u ∗ (Xjpt)q, we have

|II(r)| =
⏐⏐⏐⏐ 1
Γ (α/2)

∫ ∞

r

tα/2−1Xju ∗ pt dt

⏐⏐⏐⏐
≤ 1

Γ (α/2)

∞∑
n=0

∫ r2n+1

r2n
tα/2−3/2|u ∗

√
t(Xjpt)q| dt

≤ 1
Γ (α/2) sup

t>0
|u ∗

√
t(Xjpt)q|

∞∑
n=0

(
r2n+1)α/2−1/2

∫ r2n+1

r2n

dt

t

= C2rα/2−1/2 sup
t>0

|u ∗
√

t(Xjpt)q|

here

C2 := ln(2)
Γ (α/2)

∞∑
n=0

(
2n+1)α/2−1/2

.

Combining these estimates we find

|IαXju| ≤ C1rα/2 sup
t>0

|Xju ∗ pt(x)| + C2rα/2−1/2 sup
t>0

|u ∗
√

t(Xjpt)q|,

hich with the choice of r such that

C1rα/2 sup
t>0

|Xju ∗ pt(x)| = C2rα/2−1/2 sup
t>0

|u ∗
√

t(Xjpt)q|

ields

|IαXju| ≤ C3

(
sup
t>0

|Xju ∗ pt(x)|
)1−α (

sup
t>0

|u ∗
√

t(Xjpt)q|
)α

ith
C3 := 2C1−α

1 Cα
2 . □

4. Proof of the main result

Proof of Theorem 1.1. We will prove the result for α ∈ (0, 1), the case α ∈ [1, Q) then follows by R.
’Neil’s convolution inequality and the semi-group property of the Riesz potentials (Theorem 3.15 on p. 182

n [6]).
We observe that it suffices to prove the existence of a constant C > 0 such that, for each j ∈ {1, . . . , n},

ne has the inequality
∥IαXju∥LQ/(Q−α),1(G) ≤ C∥Xu∥L1(G). (4.1)

or any vector field Xj of the fixed basis of V1, where Xu ∈ L1(G) denotes the horizontal gradient of u.
ndeed, the computation in the proof of Theorem 4.10 on p. 190 of [6] shows

J 1/2u = −
n∑

j=1
Xju ∗ J (Kj ∗ I1), (4.2)

here Kj = −X∗
j I2. Here we recall that kernels J (Kj ∗ I1) in the convolution

g ↦→ g ∗ J (K ∗ I ) (4.3)
j 1

8
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are of type zero. In particular, the maps (4.3) are bounded firstly on Lp(G), as established in Theorem 4.9
n p. 189, and secondly on LQ/(Q−α),1(G) by interpolation. Therefore, if we assume the validity of (4.1),
hese observations and a summation in j would enable us to conclude that

∥IαJ 1/2u∥LQ/(Q−α),1(G) ≤ C∥Xu∥L1(G).

owever the conclusion of the theorem then follows by the choice of u = I1f , as one has the identity
1/2I1f = f .
Therefore we proceed to establish (4.1). In analogy with the Euclidean case [18], we next argue that it

uffices to prove the inequality (4.1) for all u = χE such that χE ∈ BV (G). To this end, we first express u

s integration of its level sets to obtain the pointwise formula

Xju =
∫ ∞

−∞
Xjχ{u>t} dt.

ere we observe that an interchange of the order of integration with the convolution yields

IαXju =
∫ ∞

−∞
IαXjχ{u>t} dt.

hus, Minkowski’s inequality for integrals, the inequality (4.1) applied to the set function χ{u>t}, and the
oarea formula imply

∥IαXju∥LQ/(Q−α),1(G) ≤
∫ ∞

−∞
∥IαXjχ{u>t}∥LQ/(Q−α),1(G) dt

≤ C

∫ ∞

−∞
|Xχ{u>t}|(G) dt

= C

∫
G

|Xu| dx,

hich thus would yield the conclusion of the theorem.
We therefore finally proceed to establish (4.1) for u = χE . We begin with the pointwise estimate from

emma 3.1, that if u ∈ C∞
c (G) one has the inequality

|IαXju(x)| ≤ C

(
sup
t>0

|Xju ∗ pt(x)|
)1−α (

sup
t>0

|u ∗
√

t(Xjpt)q|
)α

.

or convenience of display we contract these two maximal functions as

M(f) := sup
t>0

|f ∗ pt|

M1(f) := sup
t>0

|f ∗
√

t(Xjpt)q|.

y an application of Hölder’s inequality, we have

∥IαXju∥LQ/(Q−α),1(G) ≤ C∥(M(Xju))1−α∥L1/(1−α),∞(G)∥(M1(u))α∥Lr,1(G)

here r satisfies 1
Q/(Q − α) = 1

1/(1 − α) + 1
r

.

et us observe that a change to the equivalent quasi-norms results in the inequalities

∥(M(Xju))1−α∥L1/(1−α),∞(G) ≤ 1
α

|||(M(Xju))1−α|||L1/(1−α),∞(G),

∥(M (u))α∥ ≤ r′|||(M (u))α||| .
1 Lr,1(G) 1 Lr,1(G)

9
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Meanwhile, for these quasi-norms one has the scaling

|||(M(Xju))1−α|||L1/(1−α),∞(G) = |||(M(Xju))|||1−α
L1,∞(G),

|||(M1(u))α|||Lr,1(G) = |||M1(u)|||αLrα,α(G).

e now recall the boundedness of these two maximal functions, that one has

|||(M(Xju))|||L1,∞(G) ≤ C1∥Xju∥L1(G),

|||M1(u)|||Lrα,α(G) ≤ C2|||u|||Lrα,α(G).

he former follows from Theorem 4.1 in the paper of Cowling, Gaudry, Giulini, and Mauceri [5], while the
atter follows from the boundedness of this maximal function on Lp and interpolation (see Grafakos [10],
. 56, Theorem 1.4.19). Thus we deduce that

∥IαXju∥LQ/(Q−α),1(G) ≤ C ′∥Xju∥1−α
L1(G)|||u|||αLrα,α(G).

rom the preceding inequality we may pass to functions for which Xju is a measure by density, and so we
ake u = χE and make use of the fact that

|||χE |||αLrα,α(G) = C(α)|E|α(1−1/Q)

o deduce that
∥IαXjχE∥LQ/(Q−α),1(G) ≤ C ′′|XjχE |(G)1−α|E|α(1−1/Q)

.

ext, when we take into account the isoperimetric inequality

|E|1−1/Q ≤ C̃|XχE |(G),

e see that we have established the inequality

∥IαXjχE∥LQ/(Q−α),1(G) ≤ C ′′′|XχE |(G),

hich proves the claim and hence the result is demonstrated. □

. Final remarks

In this work we began the investigation of sharp L1 embedding in the subelliptic setting of a subLaplacian
n a stratified Lie group. Of course, it is natural to expect the same result to hold true on a Lie group of
olynomial growth. In this case the Haar measure is still doubling and the results in [5] should extend to
his situation. More challenging would be the case of a subLaplacian on a general Lie group, a case recently
tudied by the second author, see [15] and [1,2].
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