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ABSTRACT 
Cancer is characterized by pervasive epigenetic alterations with enhancer dysfunction as 

key driver of the tumor transcriptional deregulation and dependencies. In this work, we seek to 

unravel the chromatin landscape of human colorectal cancer (CRC) by exploiting the organoid 

model in order to identify a common epigenetic blueprint and investigate its relevance in other 

types of cancers. 

To this extent, we generated a library of patient derived organoids (PDOs) from different 

subtypes of CRC representing the heterogeneity of this type of tumor. We reconstructed the 

epigenetic landscape of CRC and retrieved a catalogue of regulatory elements using a complete 

panel of the most common histone modifications. Next, we identified a conserved and tumor-

specific enhancerome that is cancer cell intrinsic and independent of interpatient tumor 

heterogeneity. Interestingly, we also identified the transcriptional co-activator YAP and TAZ as 

key regulators of the conserved CRC gained enhancerome. Reaching beyond CRC, we took 

advantage of ATAC-seq data of diverse tumor malignancies to demonstrate that our CRC-

enhancer blueprint was a conserved feature of epigenetic deregulation in human cancer pathology. 

We next sought to depict the cancer epigenetic deregulation at single-cell resolution demonstrating 

the specificity of our cancer regulatory blueprint for malignant cells in different types of cancer, 

suggesting a key role of the cancer regulatory blueprint in tumorigenesis and maintenance of the 

cancer cell state.  

Despite the considerable genetic and clinical heterogeneity of CRC, our work suggests a 

common layer of YAP/TAZ-mediated epigenetic deregulation in cancer and provides a detailed 

epigenetic resource of critical importance for identifying therapeutic targets with enhanced 

precision. 
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1. Introduction 

1.1  Cancer 
Cancer represents the second leading cause of death worldwide1. It is the result of the 

accumulation of genetic and epigenetic alterations leading to changes in cell functions. Specific 

patterns of alterations are associated with environmental factors, such as tobacco smoke, 

mutagenic chemicals, ultraviolet light, viruses and bacteria2. These changes occur mainly in genes 

that positively (proto-oncogenes) or negatively (tumor suppressor genes, TSG) regulate cell 

division and are involved in DNA repair mechanisms (DNA repair genes). The dysfunction of 

these genes is responsible of alterations in cell cycle and apoptosis resulting in an uncontrolled cell 

proliferation1. The abnormal growth of cells leads to the formation of masses of tissue called 

tumors. One of the main characteristics of tumors is the phenotypic and functional heterogeneity 

which is caused by genetic alterations and environmental stimuli. Both intra-tumor (tumor by 

tumor) and inter-tumor (within a tumor) heterogeneity makes cancer difficult to diagnose and treat 

efficiently3,4. 

1.1.1 The hallmarks of cancer 

In the last years, the puzzling complexity and heterogeneity underlying cancer have raised 

a number of questions pointing in the same direction. Are there specific features shared by all types 

of tumors? Which is the relationship between the surrounding microenvironment and the tumor? 

An initial answer to these questions was offered with the influential reviews by Hanahan and 

Weinberg in 2000 and 2011, in which they described the “Hallmarks of cancer”5–8 (Figure 1). 

During the long process of tumor development and malignant progression, tumors acquire eight 

essential features that support uncontrolled cell proliferation, escape from cell death and 

invasiveness. So far, the known hallmarks of cancer include:  

Self-sufficiency in growth signals: is the capability of tumor cells to generate growth signal factors, 

overexpress transmembrane receptors and change the type of extracellular matrix receptors, 

acquiring independency from normal tissue stimuli and disrupting homeostatic balance.  

Insensitivity to anti-growth signals: is the capability to circumvent anti-growth signalling circuits.  

Evading apoptosis: it is an acquired ability of cancer to escape regulatory and effector components 

of programmed cell death signalling circuits (apoptosis). 

Limitless replicative potential: It is the ability to avoid cell-autonomous programs that restrain 

cell-multiplication in order for a clone to expand in macroscopic fashion. This is the result of the 

previous mentioned capability and it is related to telomere maintenance. 
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Sustained angiogenesis:  The limitless ability of cancer cells to proliferate requires continue supply 

of fuel (oxygen and nutrients) that is guaranteed by the growth of new blood vessels. 

Tissue invasion and metastasis: primary tumors produce pioneer cells that escape the primary sites 

invading adjacent tissues with the purpose of reaching distant nutrient-rich sites and create new 

colonies (metastasis). The accomplishment of this step depends upon all the previous acquired 

features. 

Deregulating cellular energetics: It is the ability of a tumor to reprogram and increase the 

production of energy according to cell proliferation. 

Avoiding immune destruction: The immune system has emerged as a powerful barrier to obstruct 

tumor progression. However, tumor cells acquire the ability to reprogram the immune cells in 

charge of destroying them. 

The acquisition of all these functional capabilities is enabled by genome instability and 

inflammation. Genome instability results in mutation of hallmark- key genes while inflammation 

caused by immune cells induces wound healing. One of the possible benefits of the hallmark of 

cancer is to identify common functional layers in tumor malignancies that can lead to new potential 

therapeutic targets5–8. 

 
Figure 1 | Schematic representation of the eight specific features (hallmarks) necessary to manifest 

malignant disease (adapted from Hanahan & Weinberg, 20178). 

1.2  Colorectal cancer 
1.2.1 Epidemiology and carcinogenesis 

Colorectal cancer (CRC) is a heterogeneous class of malignant epithelial tumors 

originating in the colon or rectum. The term “malignant” is attributed when the mass penetrates 

through the muscular mucosa layer and reaches the submucosa. CRC is the third cause of death 

due to malignant neoplasia worldwide and its incidence is rising in developing countries, affecting 
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approximately one million of people per year9. Despite the decreased mortality rate in the last 

decades, due to new therapeutic approaches, the CRC incidence and the age of onset are 

aggravating but the reasons are not completely clear. The incidence of CRC has a strong 

correlation with male sex and age. However, both environmental (i.e. obesity, sedentary lifestyle, 

tobacco smoke and alcohol) and hereditary risks (i.e. hereditary predisposition, bowel 

inflammatory disease and polyps) play a fundamental role in the development of CRC. The 

acquisition of genetic and epigenetic alterations in epithelial cells confer them a selective 

advantage resulting in tumor formation. These hyper-proliferative cells give rise to benign 

adenoma, which eventually can evolve in carcinoma and potentially also metastasis. CRC can be 

classified in three main groups according to its origin and expression: 

Sporadic type accounts for 60-80% of CRC cases and is not associated to family risk. The onset 

of this CRC type is associated with environmental risk factors directly involved in tumorigenesis. 

Familial type represents 20-40% of CRC cases, which have a family member of primary 

consanguinity affected by CRC10. 

Hereditary type concerns the remaining 5% of cases with inherited predisposition to CRC. It is 

characterized by the loss of function of key tumor suppressors genes and DNA repair genes. 

Usually, these genes are recessive and thus they need both alleles to be altered to give rise to the 

pathology; indeed, a mutated copy is inherited and, eventually, a somatic event induces the 

alteration also in the second allele, giving rise to the tumor (Loss of heterozygosity, LOH). This 

type has two tumor variants that can be distinguished by a person’s predisposition to develop 

adenomatous polyps or not. In the FAP (familial adenomatous polyposis) and MAP (MUTYH 

(MYH)-associated polyposis)11 category patients present multiple polyps which should be 

surgically removed to avoid cancer development. On the contrary, HNPCC (hereditary 

nonpolyposis CRC, or Lynch syndrome) is not associated with polyps. The HNPCC syndrome can 

be caused by mutations in DNA mismatch repair genes, including MLH1, MSH2, MSH6, PMS2, 

MLH3, PMS1, and TGFBR.  

The progression of CRC from adenoma to carcinoma proceeds in a multi-step fashion, 

leading to the accumulation of genetic and epigenetic alterations in three fundamental gene 

categories orchestrating epithelial development and cellular differentiation: i) tumor suppressor 

genes, including adenomatous polyposis coli (APC), DCC, TP53, SMAD2, SMAD family member 

4 and p16INK4. ii) proto-oncogenes, such as K-ras and N-ras and iii) DNA repair genes, such as 

MMR and MUTYH. As clinical and histopathological studies suggest, the vast majority of CRCs 

are generated from polyps of small dimension that gradually progress increasing the degree of 

dysplasia from early, middle and late adenomas to carcinoma (Figure 2). During the tumorigenic 
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process, cells acquire proliferative and expansion capabilities compared to normal cells, generating 

a clone of altered epithelial cells. Inside each clonal population, there is a subsequent accumulation 

of alterations that confer further selective advantages. This results in a mosaic of genetically and 

phenotypically heterogeneous cells, each one characterised by specific differentiation degree, 

invasiveness, drug resistance and proliferation rate. The model of progressive transition from 

adenoma to carcinoma12  has provided early support for the role of driver genetic aberrations in 

tumor suppressor genes and oncogenes spurring large-scale sequencing analyses that have 

enriched the list of recurrently mutated genes in CRC13,14. 

 

Figure 2 | Schematic representation of CRC progression. The figure reports the genes and growth 

factor pathways driving the progression. Adapted from Walther et al., 200915. 

1.2.2  CRC classification 

“Colorectal cancer is not just colorectal cancer” 16, this sentence from Blank at al. in 2018 

is of major importance to highlight one of the most important feature of CRC: tumor heterogeneity. 

CRC is characterized by diverse clinical and pathological features that have an impact on tumor 

progression, drug responses and resistance. For this reason, one of the main questions associated 

to the study of CRC is the identification of a class of tumors that share phenotypic and molecular 

features in order to design specific drug targets. Different types of classification have been 

developed in the past: the clinical classification (based on tumor location and histology), the Tumor 

Node Metastasis (TNM) classification (based on size and tumor microenvironment) and the 

canonical classification (based on the genetic background). However, with the advent of Next 

Generation Sequencing (NGS) technology the efforts are increasingly oriented toward the 

development of gene expression-based classifications, involving the analyses of transcriptomic 

data with clustering, neuronal network and other machine learning techniques. The interesting 

paradox is that even if there are a number of classification systems based on genetics and gene 
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expression, the consistency between them is limited17. This incongruence highlights the urgent 

need to consider epigenetic events and mechanisms in the classification of cancers. Another 

important issue is that despite the quality and reliability of classification systems, which are 

improving together with analytical methods and technologies, it is becoming more and more clear 

that tumors do not fall within defined and compartmentalized subtypes, but they are instead 

characterized by a continuum of subtypes18. There is a plethora of different classification systems 

extensively discussed in a review published by Wang et al. 201919. For the purpose of this thesis, 

the next paragraphs describe the CRC classification systems used in this work to stratify patients 

in specific groups. 

1.2.2.1 Clinical classification 

CRC can be divided based on the site of tumor origin into i) right-sided (originated from 

colon sections proximal to splenic flexure, i.e. caecum, ascending and transverse colon), ii) left-

sided (originated distal from splenic flexure, i.e. descending colon and sigmoid colon), and iii) 

rectum (arise within 15 cm of the anal sphincter)9. The first two classes usually metastasize in liver 

and have better prognosis compared to the third class, which has higher rates of loco-regional 

relapse and lung metastases. The majority of CRC are classified as adenocarcinoma and 

subdivided in low-grade and high-grade. Some CRC can also be characterized by rare histological 

features, such as mucinous adenocarcinoma, adeno-squamous carcinoma, signet-cell carcinoma 

and medullary carcinoma20. 

1.2.2.2 Tumor, Node, Metastasis staging system 

The first version of the Tumor, Node, Metastasis (TNM) classification was published in 

1977 by the American Joint Committee on Cancer (AJCC) tumor-node-metastasis (TNM). The 

aim of this classification is to identify prognostic values fundamental for appropriate therapeutic 

decisions and clinical treatment. They evaluate three aspects using different parameters: 

T parameter: describes the size of primary tumor (how deep the primary tumor has grown into the 

bowel lining). This parameter is described by five degrees of size, from T0 to T4. 

N parameter: considers the possible involvement of lymph nodes. The starting value for this 

parameter is N0, a condition in which the regional lymph nodes are not affected. The parameter 

increases (N1, N2 ..Nn) with the degree of tumor spread to regional or more distant lymph nodes.  

M parameter: refers to the presence of distal metastasis. If the parameter is M0 metastases are not 

present, otherwise the number increases. 
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Another reported parameter is the grade (G), which describes how closely cancer cells resemble 

healthy cells when viewed under a microscope. For this parameter there are 4 degrees of severity: 

from G1, where cells are differentiated, to G4, where cells are very undifferentiated21,22. 

1.2.2.3 Canonical classification  

One of the earliest classification systems, also called “canonical classification”, describes 

CRC according to its genetic instability. The three features used to explain CRC development are: 

chromosomal instability (CIN), microsatellite instability (MSI) and CpG island methylator 

phenotype (CIMP).  

Chromosomal instability (CIN): described by Fearon and Vogelstein12, is characterized by 

cytogenetic changes, loss of allelic heterozygosity and mutation of tumor suppressor genes. This 

category includes the FAP tumours and 80% of sporadic tumours. The series of the events are 

initiated by the mutation or loss of APC (TSG), followed by mutations in the proto-oncogene 

KRAS (transition to adenoma), TP53 (transition from adenoma to carcinoma) and DCC 

(epithelial/mesenchymal interactions) (Figure 2). 

Microsatellite instability (MSI): this category includes Lynch syndrome tumours and 

approximately 15% of the sporadic tumours. It is characterized by mutations in genes involved in 

mismatch error repairs (MMR) which lead to a state of genomic instability resulting in a 

hypermutator phenotype or microsatellite instability. The alteration of MMR genes causes the 

onset of new alterations predominantly located in repetitive DNA sequences generating the 

instability of microsatellite markers and promoting the contraction, insertion or deletion of 

repetitive elements. These events cause the activation of genes involved in the regulation of 

apoptosis (e.g. BAX and Caspasa-5), cellular growth (e.g. TGFBRII, IGFIIR) or MMR itself (e.g. 

MSH3, MSH6)23. 

Epigenetic alterations: More recently, epigenetic alterations have also been described as a key 

element in CRC tumorigenesis24. The inactivation of TGS, MSI or CIN repair genes generate 

epigenetic changes that create instability25. There are two types of epigenetic alterations: in the 

first type, CpG island methylator phenotype (CIMP), the widespread DNA hypermethylation of 

promoter-associated CpG islands is achieved though the addition of a methyl group (-CH3) to 

DNA nucleotides leading to the silencing of specific DNA regions and genes, including a range of 

tumor suppressor and DNA repair genes (e.g. MLH1, one of the MMR genes). The second type of 

changes can modify the acetylation of histone proteins with the addition of acetyl group (-

CH3CHO) to the histone core promoting chromatin accessibility and thus increasing gene 

expression24,25. 
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1.2.2.4 CRCassigner classification 

The Sadanandam et al.26 classification was one of the first classifications based on gene 

expression profiles. In particular, the authors considered the gene expression of 445 CRC patients 

from two public datasets. They identified six CRC subtypes using consensus non negative matrix 

factorization (NMF) clustering technique and created subtypes based on predominant cellular 

types that compose the crypt-like structure of CRC. The validation of their findings was done on 

seven independent studies and 51 cell lines. The six subgroups were defined as: 

• Goblet-like: Goblet-marker genes (MUC2 and TFF3) are highly expressed. They are 

related to a crypt top signature and associated with a good prognosis. 

• Enterocyte: Enterocyte genes are highly expressed. They have an intermediate disease-free 

survival (DFS). 

• Stem-like: stem cell and WNT-signalling marker genes are highly expressed. They are 

related to a bottom crypt signature and associated to the shortest DFS. 

• Inflammatory: High expression of chemokines and interferon (INF)-related genes. Usually 

enriched in MSI type and with intermediate DFS. 

• Transient amplifying: They are characterized by patients with heterogeneous molecular 

features and are enriched for the MSS type. 

The authors also reported subtype-specific sensitivity to drug therapies for CRC. Beneficial 

responses to FOLFIRI treatment were associated with patients classified to the stem-like and 

inflammatory subtypes, whereas cetuximab and cMET inhibitors could be effective for the 

transient-amplifying subtypes in metastatic settings. 

1.2.2.5 Consensus molecular subtypes classification  

The consensus molecular subtype (CMS) classification system was published in 2015 by 

Guinney et al.27 with the support of the CRC Subtyping Consortium (CRCSC) and, so far, is the 

most widely-used by the scientific community. The CMS classification used a network based 

approach, based on six previous classification systems, to classify 18 datasets including 4151 

primary tumors19 (Figure 3). The result of this approach identified four distinct sub-groups which 

share molecular features and clinical characteristics:  

CMS1– MSI Immune subtype (∼14%): It is characterized by samples associated with MSI, high 

expression of DNA repair proteins, low prevalence of somatic copy number alterations (SCNAs), 

and mutations in the proto-oncogene BRAF. It is defined as the “immune” subtype since it shows 

an increase expression of immune-related genes, mainly associated with Th1 and cytotoxic T 
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lymphocytes. The tumors usually derive from serrated lesions, located in the proximal regions of 

the colon. The patients in this class are associated with worse survival after relapse. 

CMS2 – Canonical subtype (∼37%): It is defined as canonical because it shows epithelial 

differentiation and up-regulation of WNT and MYC signalling pathways, classically involved in 

CRC. It is characterized by elevated CIN and tumors originate predominantly from tubular lesions 

located in the distal region of colon. 

 

Figure 3 | Schematic overview of CMS system. The figure reports the six studies used to perform 

the network-based meta-analysis and identify the four CMS classes. Each slice of the circle plot 

also reports the molecular and phenotypical characteristics of the corresponding CMS, together 

with frequencies and DFS. From Wang et al. 201919. 

CMS3 – metabolic subtype (∼13%): It is characterized by enrichment in pathways involved in 

cellular metabolism and mutations in proto-oncogene KRAS that induce metabolic adaptation. It 

is represented by CIN tumors that show a distinctive genomic and epigenomic profile, such as 

lower levels of SCNAs and high prevalence of the TCGA-defined CIMP-low (CIMP-L) cluster. 

These are localized in the proximal and distal segments of the colon. They are associated with 

intermediate prognosis. 

CMS4 –mesenchymal subtype (∼23%): It is characterized by up-regulation of genes involved in 

epithelial to mesenchymal transition (EMT) and of multiple pathways involved in TGF-β 
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signalling, matrix remodelling, angiogenesis and complement system. These tumours derived from 

serrated precursor lesions and are localized in the distal segments of colon. They tend to be 

diagnosed at later stages (III/IV) and are associated with worse relapse free and overall survival.  

The CMS classification has been used in multiple studies to classify different pre-clinical 

models, including cell lines28,29, patient-derived xenografts (PDX) and patient-derived organoids 

(PDOs). However, its reliability and sensitivity are slightly affected when assessing patient-

derived models compared to primary tissues30.  

1.2.2.6 CRC intrinsic subtypes classification 

The vast majority of gene expression classification systems are based on bulk RNA-seq 

data of primary tumor tissues, which represent a mixture of cell types, including stromal cells. The 

largest part of the stromal cells is composed by cancer-associated fibroblasts (CAFs) and their 

presence is directly correlated with tumor aggressiveness, with a dramatic effect on patient 

prognosis. Another important aspect is that stromal contamination can be a major source of gene 

expression variability, affecting also the CRC classification. For example, the gene signature of 

CMS4 could be severely affected by the expression of stromal- rather than cancer-related genes31–

33. Furthermore, several models used to study cancer, such as cell lines, PDX and PDOs, lack the 

stromal component and thus their classification can be dramatically affected. In 2017, Isella et al.31 

developed a new classification system, using gene expression profiles of PDX, known as CRIS 

(ColoRectal cancer Intrinsic Signature). The use of PDX enabled a classification that was not 

influenced by stroma-derived transcripts but relied instead on cancer-cell intrinsic signatures. The 

authors defined five subtypes, characterized by different functional and phenotypic features: 

CRISA: The majority of the tumors in this subtype are MSI and are characterized by mutations in 

BRAF or KRAS (proto-oncogenes). They show a secretory/mucinous histology with sustained 

inflammatory attributes and glycolytic metabolism. CRISA tumors show sensitivity to anti-

metabolic therapies. 

CRISB: These tumors are generally poorly differentiated and characterized by TGF-β signalling 

and EMT features. 

CRISC: The tumors grouped in this subtype are distinguished by chromosomal instability and are 

KRAS wild-type. They show high activity of ERBB/EGFR pathway and have copy number gains 

of the MYC proto-oncogene (focal amplification of chromosome 8q.24.21). They have sensitivity 

to anti-EGFR antibodies. 

CRISD: This group of tumors show a stem-like phenotype and high activity of WNT signalling 

pathway, coupled with strong enrichment of IGF2 amplification/overexpression and autocrine 

stimulation. These tumors do not have sensitivity to anti-EGFR therapies. 
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CRISE display WNT-related features, however in this case they are associated with TP53-mutated 

genotype and Paneth-like phenotypes. 

The authors suggested that the CRIS system outperforms the CMS system in the 

assignment of samples to specific subtypes which due to the removal of stromal contamination are 

characterized by newly described cancer-intrinsic features. Overall, there is limited agreement 

between the CRIS and CMS classification systems. Most CMS1 samples were assigned to CRISA 

and B; CMS2 tumors were separated across CRISC, D and E; CMS3 contributed mostly to CRISA; 

and, finally, CMS4 samples were equally distributed across all five CRIS subgroups31 (Figure 4).  

 
Figure 4 | Correspondence between samples classified with CMS and CRIS classification. 

Heatmaps report the expression levels of genes associated with endothelial cells (E), cancer-

associated fibroblasts (C) and leucocytes (L). Adapted from Isella et al. 201731. 

1.3  Organoids model 
In the last decades, advancements in the anti-cancer field have resulted in the development 

of new therapeutic agents and improved patient survival. However, many of the developed 

treatments include conventional drugs aimed to treat the majority of patients. These conventional 

therapies have limitations due to the intrinsic heterogeneity of tumors which affects tumor growth 

rate, invasion, drug sensitivity and prognosis. To meet the urgent need for personalized anti-cancer 

treatments, a large number of pre-clinical models have been proposed. In the past years, most 

biomedical and cancer-related research involving human specimens has focused on two-

dimensional (2D) cultured cell lines. Classical cell lines have low costs and have been extensively 

used for high-throughput screening of drugs34,35 and cancer biomarkers36. However, cell lines can 

be created only from a reduced number of cancer subtypes, their initial establishment is difficult 
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and leads to a dramatic genetic and phenotypic adaptation to the culture conditions37. In the 2D 

model, the heterogeneity of the tumor of origin is gradually lost because of genetic and epigenetic 

drifts during long-term culture. Furthermore, cell lines lack the normal counterpart that should be 

used as control. An alternative model system in cancer research is the PDX in which the tumor 

tissue is transplanted in an immunodeficient mouse. The PDX model preserves the tumor 

heterogeneity and the genomic stability across different passages. This model can also reproduce 

the cancer-stromal and cancer-matrix interactions. However, PDX are more efficiently generated 

for aggressive tumors38, they are expensive and labour intensive. In addition, the creation of PDX 

can last four months making them difficult to use for personalized medicine and high-throughput 

screening39,40. 

More recently, three dimensional (3D) organoid models have been generated to overcome 

the series of disadvantages related to cell lines and PDX. The term “organoid” was first introduced 

in 1946 to describe a cystic teratoma41. Organoids are three-dimensional structures, derived from 

mammalian stem cells and grown in vitro, which are able to self-organize and recapitulate the key 

features of the in vivo original tissue42. The organoid model can represent tissue heterogeneity 

since it is able to maintain the complex spatial organization of the different cell types present in 

each tissue and to mimic the specific function of the derived organ. Organoids can be generated at 

relatively low cost, in as early as four weeks and they grow on micro-plates making them a perfect 

tool for high-throughput screening and personalized medicine. Organoids can be derived from 

embryonic stem cells (ESC), induced pluripotent stem cells (iPSC) and adult stem cells (ASC)43. 

Both PSC- and ASC- derived organoids need a source of extracellular matrix that acts as basal 

lamina for cultured cells. One of the most used mediums is the laminin- and collagen-rich Matrigel. 

Yet major differences exist between PSC- and ASC-derived organoids:  

PSC-derived organoids: They can re-create tissue structures through processes specific to the 

embryonic development, making them a feasible tool for the study of in vivo development, embryo 

growth and cellular differentiation. Generally, PSC are expanded and undergo multi-step 

differentiation using step-specific growth factor cocktails, until they are totally differentiated. 

PSC-derived organoids can be generated in two or three months. They can be composed by 

mesenchymal, epithelial and even endothelial cells. This model is usually used to study 

development, genetic diseases, organs with partially regenerator capacity (i.e. brain and renal 

glomerulus) and infectious diseases. PSC-organoids can also provide a mechanistic vision of stem 

cell development and their related niche and, at the same time, their lineage commitment into 

differentiated states. In past, this model was used to elucidate the development of stomach, brain 

and pancreas44,45 (Figure 5). 
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Figure 5 | Schematic representation of differentiation from pluripotent stem cell (PSC) toward 

each of the three germ layers (endoderm, mesoderm, and ectoderm). Specific growth factor 

cocktails are used to obtain PSC-derived organoids from the tissue of interest. Adapted from 

Schutgens & Clevers, 201940. 

ASC-derived organoids: They recapitulate the adult tissue repair and can be generated from any 

tissue with regenerative capacity. They only represent epithelial cells, thus lack the stromal, nerves 

and vascular compartments. ASC-derived organoids mimic the structure and functions of the tissue 

of origin and they have a less complex organization compared to PSC-derived organoids. This 

model can be generated from both normal and tumor tissues in approximately seven days. This is 

of major importance because it is possible to have matched tumor and normal counterparts from 

the same patient in a short period of time, making them a powerful technique for personalized 

medicine (Figure 6). 

Nowadays, organoid models have been generated for a number of different healthy tissues 

and tissue conditions. For example, various PDOs have been generated from normal and malignant 

epithelial tissues, such as colon46,47, liver48,49, pancreas50 and prostate51. 

 

Figure 6 | ASC are obtained from biopsies or tissue resection during surgical operation on healthy 

tissue or tumours from different organs, such as liver, colon, pancreas. Obtained ASCs proliferate 

in semisolid matrices and can generate both normal and tumor derived organoid cultures. Adapted 

from Schutgens & Clevers, 201940. 
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1.3.1 Organoids as experimental tool 

Although animal models are essential in biomedical research and cell lines are still 

extensively used for high-throughput screening, organoid models are emerging as a new tool acting 

as a bridge between cell lines and in vivo approaches in the study of cellular processes and gene 

functions in tumor and developmental biology. Both PSC- and ASC-derived organoids are 

promising technologies in translational research. Their applications in the general field of biology 

and developmental studies have been extensively reviewed elsewhere42,52. Here, I will focus on 

their application in cancer-related studies39 and specifically in CRC. Cancer is a multi-step disease 

that occurs through temporal accumulation of cancer-specific alterations in normal cells. The 

organoid model coupled with gene-editing strategies, such as CRISPR-Cas9 gene-editing 

technologies or lentiviral and retroviral infections, has offered detailed insights into the genetic 

mutations that favour the tumor initiation and progression53–55. This 3D model has also been used 

to investigate the complex relationship between genetic changes and niche factors during cancer 

development33. Another fundamental process to understand in the cancer field is the invasion of 

cells from the primary tumor site to distal sites, known as metastasis. Using the organoids model 

it is possible to investigate the mechanisms involved in the initiation and inhibition of cancer 

invasion56–60. 

The research fields of major relevance for the study of tumors, where organoid models 

have been applied are: anoikis, the apoptosis state induced by the lack of cancer-matrix 

interactions47, and tumor dormancy, the state in which cells stop to divide but survive in a quiescent 

state waiting for favourable conditions to start again their proliferation61. As mentioned above, the 

cancer field requires an appropriate/physiological tool to study tumor biology and develop new 

approaches taking into consideration the patient-to-patient heterogeneity, at both genetic and 

epigenetic level. All together these efforts have the potential to lead to the development of 

personalized anti-cancer therapies exploiting the organoids model to perform drug screening of 

different types of cancer62–65. For instance, hepatocellular carcinoma (HCC) derived organoids 

have been used to test patient-specific sensitivity to Sorafenib which is the only treatment option 

for advanced HCC63. In 2018, Sachs et al.64 generated a living biobank of breast cancer organoids 

(>100 primary and metastatic breast cancers) representing the tumor heterogeneity and they used 

it to study the dose-response of a set of drugs targeting the HER signalling pathway. Yet another 

work, published by Yao et al., 202066, where they generated a biobank of 80 tumor organoids from 

treatment-naive CRC patients and demonstrated that the usage of this model could improve 

patient-specific treatments and determine which patient is sensitive to irradiation, 5-Fu, or CPT-

11 treatment. Moreover, the possibility to co-culture organoids with other cell populations 
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constituting the tumor microenvironment, such as fibroblasts67,68 and in particular immune system 

cells69–71, could provide new insight into immunotherapeutic studies. Finally, the organoids model 

has also been used for clinical trials (https://clinicaltrials.gov)72. 

1.3.2 Intestinal organoids 

1.3.2.1 Intestine cells functions and composition 

The intestine has a high turnover rate, making it perfect to study mechanisms associated to 

proliferation and cellular differentiation. It is organized in different parts that guarantee the 

efficiency of the intestinal function which is to digest and absorb nutrients. This organ contains 

also a barrier against genotoxic substances, bacterial flora and related metabolites. The small 

intestine (SI) is the first part of the intestinal track and it is characterized by finger-like protrusion, 

which are called villi, surrounded by depressions, which are called crypts. Since the SI tract is 

responsible for the absorption of nutrients, below the epithelium there is a complex network of 

capillaries and lymphatic vessels which deliver the nutrients first to the liver and then to the whole 

body. The following track, the large intestine (LI) is composed by the cecum, different tracts of 

the colon, sigma, rectum and anus. Since the function of the LI is to compact and secrete stools, it 

does not present villi structure, but the internal epithelium is disposed in order to form multiple 

crypts associated to a flat surface. Both tracts of the intestine have shared functions and thus 

cellular organization of the crypts, which show three distinct zones comprising different epithelial 

cell types: multipotent intestinal stem cell zone (ISC, historically known as crypt base columnar 

cells - CBCs), proliferative zone and differentiated compartment. The intestinal epithelium is one 

of the most actively cycling; it is estimated that intestinal epithelial cells (IEC) are completely 

replaced every 4/5 days, through a process of renewal and differentiation. The high turnover of the 

crypts is driven by gene Leucine-rich repeat containing G protein-coupled receptor 5 positive cells 

(LGR5+) which are localized in the ISC zone. LGR5+ are located at the bottom of the crypt and 

have a key role in the maintenance and regeneration of the intestinal epithelium. ISC are the 

precursors of cycling progenitor cells, also known as transiently-amplifying (TA). TA cells have 

the highest proliferative rate and they go through 4-5 cell divisions before differentiating into one 

of the epithelium-specific lineages. The differentiation process is orchestrated upon the activation 

of different signalling pathways and moves from the bottom to the apex of the crypts generating 

IEC lineages which are characterized by specialized functions. The maintenance of the stem cell 

compartment and the regulation of differentiation are controlled by the WNT, Notch, bone 

morphogenetic protein (BMP) and epithelial growth factor (EGF) pathways. Two major groups of 

differentiated lineages are generated: absorptive type (i.e. Enterocytes and M cells) and secretory 

type (i.e. Goblet, Paneth, enteroendocrines and tuft cells) (Figure 7). 
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Figure 7 | Schematic representation of the intestinal cell lineage development. Adapted from 

Gehart & Clevers, 201973. CBC: crypt base columnar, BMP: bone morphogenetic protein, EEC: 

enteroendocrine cell, RANKL: receptor activator of nuclear factor κ-B (RANK) ligand, FGF: 

fibroblast growth factor. 

Enterocytes are columnar basal cells involved in the absorption of nutrients and water. They are 

the most prominent cell type in the crypt-villus axis in the small intestine and also in the colon, 

where they are called colonocytes. They can secrete antimicrobial peptides. IECs, and in particular 

enterocytes, express a variety of innate immune system receptors, including Toll-like receptors 

(TLRs). These cells are polarized and the TLRs are disposed on the basolateral and apical surface. 

The TLRs expressed on the surface allow the enterocytes to recognize microbes and their 

components and to trigger immune responses to the site of infection. Furthermore, enterocytes can 

act themselves as physical barrier and they can also be expelled to prevent pathogens breaching 

the epithelial barrier74,75. 

M cells are involved in antigen uptake and delivery to the immune cells. They are exclusively 

present in the small intestine and are localized to the follicle-associated epithelium (FAE) 

overlying Payer’s paches74,75. Payer’s patches are lymphoid follicles enriched is B cells, T cells 

and mononuclear cells distributed along the intestine. 

Goblet cells: play a fundamental role in the establishment of intestinal tolerance and in prompting 

the mucosal immune response. Goblet cells facilitate luminal antigen delivery to dendritic cells 

(DC) by uptaking small molecular weight antigens and delivering them directly to DC via the 

goblet associated passage (GAP)76. The GAP system allows goblet cells to maintain intestinal 

tolerance to the microbiota. Another function of goblet cells is to secrete mucins (such as MUC2) 

and other antimicrobial proteins (AMP, such as Agr2, ZG16, CCLA1) in order to build the outer 

and inner mucous layers which constitute a protective barrier. This type of cells is present both in 

small intestine and colon74,75. 
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Paneth cells: they are localized at the bottom of the crypt and do not migrate to the top. Paneth 

cells are involved in two main functions, intestinal defence and maintenance of the stem cell niche. 

In fact, Paneth cells secrete abundant antimicrobial proteins (i.e. defensins, cryptidins, lysozyme) 

that mix with Goblet- derived mucus to actively counteract bacterial infections. At the bottom of 

the crypts, Paneth cells surround stem cells providing them WNT ligands, EGF and Notch stimuli 

for stemness maintenance. Paneth cells are present in the small intestine but are instead missing in 

the colon track74,75. However, cells with analogous function and presenting an intermediate genetic 

signature between Paneth and Goblet cells have been identified also in the large intestine77 and are 

known as deep crypt secretory cells marked by the regenerating family member 4 (REG4)78. 

Enteroendocrine cells: are cells involved in hormone secretion upon stimulation. This population 

is subdivided in multiple types according to the secreted hormones, including enterochromaffin 

cells (5-HT/serotonin), D cells (somatostatin) and G cells (gastrin)79. Enteroendocrine cells are 

present along the entire intestinal tract. 

Tuft cells are very rare cells with a fundamental role in the elimination of helminths and the 

expansion of type 2 innate cells. They can be subdivided in two classes according to the expression 

of different genes (one type expresses the epithelial cytokine TSLP and the other the immune 

marker CD45)80. 

Intestinal crypts have a hierarchical organization that renders them a perfect stem cell 

model to study the signalling pathways orchestrating stem cell niche maintenance. The 

comprehension of this complex network of pathways promoted the efficient generation of 3D 

organoid models from this tissue. All together these pathways are tightly regulated by 

microenvironmental stimuli, deriving from the epithelium itself but also from external 

mesenchymal cells (fibroblasts, immune cells, enteric neurons, etc.) (Figure 8). A plethora of 

epithelial secreted molecules, growth factors and cytokines control ISCs proliferation and 

differentiation. The activity of ISCs can be modulated by external perturbation, including 

inflammation, toxins, radiations and chemotherapy, to compensate cellular loss and enable 

epithelial regeneration. 
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Figure 8 | Schematic representation of the crypt-villi axis in the small intestine and colon. Stem 

cells and the six different cell lineages are reported together with surrounding microbiota, stromal 

and immune cells. Adapted from Peterson & Artis, 201474. 

1.3.2.2 Development of intestinal organoids 

The comprehensive study of the mechanisms and composition of the intestinal crypts were 

fundamental for the creation of in vitro mini gut. In fact, Sato et al.81 were the first to develop 

ASC-derived organoid cultures accurately reproduce in vitro intestinal epithelium able to self-

renew for more than one year. The development of this system was the result of three key 

discoveries: i) In 1998, Korinek et al.82 demonstrated that the WNT pathway is essential for the 

maintenance of the stem niche in the small intestine. ii) In 2007, Barker et al.83 identified the LGR5 

as the marker for intestinal and colonic stem cells and a target of WNT. Their results demonstrated 

that in vivo stem cells are able to proliferate and have an unlimited self-renewal capability. iii) The 

ectopic expression of R-spondin, which is a unique agonist of WNT and a ligand of LGR5, was 

shown to induce hyperplasia on mouse crypts84. Together these findings have led to the first serum-

free 3D organoid culture derived from Lgr5+ stem cells from mouse small intestine. Interestingly, 

this system needs few essential factors: an extracellular laminin-rich matrix (Matrigel, which 

mimics extracellular matrix functions), R-spondin, EGF and Noggin, an inhibitor of BMP 

signalling pathway. These organoids were able to recapitulate the architecture of the intestinal 

epithelium: first, single stem cells create “villus-like” cystic structures with a single central lumen; 

then, this cyst projects some “crypt-like” structure toward the outside85. Importantly, the 

localization of each cell type resembles their respective localization in vivo. Therefore, ISC and 

Paneth cells are located in the lower part of the buds (crypt-like), whilst mature enterocytes migrate 
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to the central area of the cyst. Paneth and goblet cells secrete their products in the internal lumen. 

In 2011, Sato et al. published also the protocol to establish long-term organoids derived from 

human intestinal, adenoma and adenocarcinoma46 (Figure 9). 

 

Figure 9 | Organoid culture from normal or tumor colon epithelium. The different structures and 

the niche factors required for their growth are reported. Adapted from Otha and Sato, 201485. 

These organoids need other factors in addition to the previously mentioned: p38 and TGF-

β inhibitors and the addition of Wnt3a, a ligand relevant for Wnt pathway activation. Below there 

is a brief report of the components for the culture of colon organoids86 (Figure 10):  

Wnt3a/R-spondin: Wnt pathway has a key role in the stemness maintenance, proliferation rate and 

Paneth cell differentiation. Wnt ligands, which are secreted by Paneth cells and mesenchymal cells 

in vivo, trigger an intracellular signalling cascade upon the binding between Frizzled and LRP5/6 

receptors. This results in an accumulation of β-catenin in the cytoplasm followed by the 

translocation inside the nucleus where it binds to TCF transcription factors activating a cellular 

program that maintains ISC in an undifferentiated state. R-spondin is a secreted protein that binds 

to LGR5 receptor and inhibits the degradation of Wnt receptors, thus enhancing Wnt signalling. 

Colon organoids require the addiction of Wnt3a and R-spondin because of the lack of Paneth cells 

that produce them physiologically. 

Noggin: Noggin is a secreted glycoprotein which is an antagonist of the BMP family members. 

The inhibition of BMP proteins, using Noggin or Gremlin, increments the number of ISCs present 

in vivo and it is essential for long-term culture organoids85. 

EGF: Intestinal organoids require the activation of KRAS and PI3K/Akt pathway mediated by 

EGF to sustain their formation and growth. EGF can also be substituted by HB-EGF or IGI1 since 

they activate the same pathways87. 
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ALK4/5/7. TGF-β hampers organoid proliferation. For this reason, the production of TGF-β must 

be inhibited using a family of type I receptors of TGF-β that inhibit the function of the ligand. 

Notch signalling: ISCs require a constant engagement of Notch ligands (DII1 and DII4) expressed 

on nearby cells. The inhibition of Notch results in the up-regulation of these ligands. To generate 

intestinal organoids, ISCs need a constant connection with cells expressing ligands of Notch88. 

Normal and malignant intestinal organoids require the same protocol to grow, except for 

Wnt3 and R-spondin which is not needed for tumor organoids46. In fact, most of CRCs are 

characterized by the presence of mutations in the APC gene that constitutively activate the Wnt 

signalling pathway. The use of this 3D model allowed to recreate in vitro tumors that recapitulate 

their original morphological, structural and functional composition. 

 

Figure 10 | Signalling pathways regulating intestinal stem cells (ISCs). Adapted from Hong, Dunn, 

Stelzner, & Martín, 201789 

1.4  The Epigenetics 
Epigenetics is a branch of biology which studies potentially stable and heritable changes 

that alter gene activities without changing the underlying DNA sequence90,91. Many types of 

epigenetic processes have been identified including DNA-methylation, histone modifications, cis-

regulatory elements, nucleosomes remodelling and non-coding RNAs (miRNA, siRNA, piRNA, 

lncRNA). All these mechanisms are essential for physiological cell fate transition and maintenance 

of tissue specific gene expression. The next sessions will focus on the specific epigenetic processes 

studied in this project (i.e. histone modifications and cis-regulatory elements). 
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1.4.1 Chromatin structure and organization in normal cells 
Chromatin is a regulated macromolecular complex composed by repetition of nucleosome 

units (Figure 11) made by a DNA segment of ~146 bp wrapped around an octamer core of four 

histone proteins (H2A, H2B, H3, H4). Gene activity can be modified through the interaction 

between chromatin and regulatory factors92. The interaction between the DNA and the core histone 

modifications is guaranteed by non-covalent bonds between the phosphate residues located in the 

minor groove and lysine, arginine side chain and main chain amide nitrogen of the proteins. Core 

histones display structurally undefined and evolutionary conserved “tail” domains93. The amino 

terminal portion of the histones contains specific residues subjected to post-translational 

modifications, such as methylation, acetylation, ubiquitylation, sumoylation and phosphorylation 

that correlate with changes in transcriptional regulation94. The interplay of these modifications 

creates an “epigenetic landscape” that can define cellular identity, different developmental stages 

and disease conditions, including cancer.  

 

Figure 11 | Schematic representation of nucleosome structure. 

1.4.2 Histone modifications 
The combinatorial pattern of histone modifications, also known as “histone code”, affects 

chromatin organization and activity by determining its accessibility and the recruitment of 

epigenetic modifiers. 

The plethora of the epigenetic players are classified in writers, which are enzymes involved 

in the addition of covalent modifications; readers, which are able to interpret the histone code and 

erasers, which can remove the chemical modifications95 (Figure 12). These enzymes can also be 

classified in two main categories; one involved in epigenetic activation and the other in repression, 

depending on the type and the position of the modifications. 
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Figure 12 | Overview of proteins actively involved in the addition, interpretation and removal of 

post-translational modifications. In particular, the upper panel reports proteins involved in 

acetylation and the bottom panel the proteins involved in methylation. 

1.4.2.1 Histone acetylation 

The balance of histone acetylation and deacetylation is a key process associated with 

several regulatory mechanisms, such as transcription, chromatin dynamics, DNA repair and 

differentiation. Histone acetyltransferases (HATs, writers) catalyse histone acetylation whereas 

histone deacetylases (HDACs, eraser) perform the reverse reactions (Figure 12). Histone 

acetylation occurs by the enzymatic addition of an acetyl group (-COCH3) from an Acetyl-CoA, 

mediated by HATs96. The acetylation of histones mediated by HATs leads to a reorganization of 

the chromatin which becomes more accessible and available for transcription factor binding. HATs 

are classified into type A and type B according to cellular localization. Type A are found 

predominantly in the nucleus and they catalyse gene expression processes. Type A can be further 

subdivided into five families according to conformational structures and amino-acid sequence 

homology, such as GNAT, CBP/p300, MYST, TAF1, p60097. Type B are found in the cytoplasm 

and acetylate newly translated histones but not those already deposited onto chromatin. Acetylated 

lysine residues can be specifically bound by the reader of acetyl-lysine binding domain: 

Bromodomain (BRD). BRD4 is recruited by other transcriptional regulators at the promoters and 

enhancers of many genes boosting their expression98. BET inhibitors, such as JQ1, are able to 

dissociate BRD4 from the acetylated histone of promoters and enhancers leading to 

downregulation of gene transcription98,99. Dysfunction of BRD proteins has been associated with 

several diseases and also with cancer onset100. A plethora of specific acetylated sites have been 

identified in each of the core histones, mainly located toward the N-terminal. This work is focused 

in particular on the most known acetylated histone, the acetylation of the 27th lysine residue of H3. 

H3K27ac is localized in the proximity of the transcription start site (TSS) of actively transcribed 

genes in the co-presence of H3K4me3. Distal regulatory elements (i.e. enhancers) also show 

increased levels of H3K27ac in combination with mono-methylation of H3K496 (Figure 13). 
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1.4.2.2 Histone methylation 

During methylation events an alkylation reaction occurs, replacing a methyl group to a 

hydrogen atom. This reaction is catalysed by methyltransferases (MT, writers) which use a high 

energy methyl donor, the S-adenosylmethionine (SAM). Writers cooperate with histone 

demethylases (HDM, eraser) to remove methyl group, and methyl readers to recognise them101. 

Histone lysine methyltransferases (HKMTs) are classified in two main groups based on the 

presence or absence of the SET (Su(var)3–9, Enhancer of Zeste, and Trithorax) catalytic 

domain102, which harbours the enzymatic activity. HDM is composed by two families, the LSD1 

family and JmJC domain-containing family. Histone methylation adds a level of complexity 

inducing structural changes and influencing the chromatin folding via electrostatic mechanism. 

Usually, methylation occurs mainly on the side chains of Lysine and Arginine residues. Lysine 

can be mono (me1), di (me2), tri-methylated (me3) and Arginine can be mono– and di– 

methylated101. Unlike acetylation, none of these modifications change the electric charge of the 

histone proteins. Therefore, the main methylation functions are accomplished by effector 

molecules that specifically recognise the methylated sites. The methylation readers are classified 

in different classes, including PHD, chromo, Tudor, PWWP, WD40, BAH, ADD, ankyrin repeat, 

MBT and zn-CW domains102 (Figure 12). Histone methylation can be associated with activation 

or repression according to the position of the modified residues (Figure 13).  

Tri-methylation of H3K4 is predominantly spread around the TSS of active genes and 

promotes transcription through interaction with RNA polymerase II (RNA pol II) (Figure 13). The 

distribution of H3K4me3 is highly correlated with unmethylated CpG islands. SET1 family and 

MLL proteins are involved in the regulation of H3K4me3103.  

Mono-methylation of H3K4 is spread inside genic regions or in intergenic regions (Figure 

13) and is recognised by MLL3/MLL4. The occurrence of H4K4me1 determines the presence of 

putative enhancer regions (primed enhancers). The co-localization of H3K4me1 and H3K27ac or 

H3K27me3 indicates the presence of active or poised enhancers, respectively104.  

Tri-methylation of H3K36 tends to spread along the gene body and to increase toward the 

3’ of the gene (Figure 13). H3K36me3 is regulated by the SETD2 methyltransferase which is 

recruited by RNA Pol II during transcriptional elongation. In fact, the H3K36me3 level is higher 

on exons of actively transcribed genes supporting the transcriptional machinery and preventing 

spurious transcription105.  
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Tri-methylation of H3K27 is spread along the gene body of repressed genes (Figure 13) 

and it is regulated by the Polycomb group (PcG) of proteins. PcG antagonizes transcriptional 

activation, therefore H3K27ac and H3K27me3 are mutually exclusive at the promoter level106. 

1.4.3 Nucleosome free regions 

The regulation of gene activity is further influenced by chromatin organization and 

nucleosome remodelling. Transcriptional regulatory elements, such as promoters and enhancers, 

show low nucleosome occupancy resulting in nucleosome free regions (NFR)107 (Figure 13). The 

modulation of accessible regulatory sites is orchestrated by ATP-dependent chromatin remodelling 

complexes which can shift and remove nucleosomes. The increased accessibility of regulatory 

regions is tightly correlated with gene activation since it facilitates transcriptional machinery 

assembly and the binding of transcription factors108. 

 

Figure 13 | Schematic overview of a genic region (grey box). Each line reports the name and the 

role of a histone modification, followed by the accessible regions detected by ATAC-seq, and 

finally the profile of a representative transcription factor (TF). 

1.4.4 Enhancer regulatory elements 

Enhancers are key non-coding regulatory elements orchestrating gene regulation in human 

development, homeostasis and disease. They can be located in genic or intergenic regions and their 

role is to enhance the transcription of cis-located targets (Figure 14). Genes can have multiple 

enhancers and each enhancer can act in different ways to modulate the transcriptional rates 

according to environmental stimuli. Their action is independent of the orientation of the enhancing 

region. This cis-acting regulatory elements are nucleosome free regions flanked by histones 

carrying H3K27ac and H3K4me1 modifications. Inside each enhancer there is a cluster of 

transcription factor binding motifs on which regulatory factors specifically bind to accomplish 
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their activity109. The distance between an enhancer and its cognate promoter can be from a few to 

ten Kb and their interaction is achieved by a loop in the 3D space (Figure 14), making them 

difficult to map. For this reason, chromosome conformation capture techniques (i.e. 3C, 4C, Hi-

C) are used to systematically annotate the interaction between regulatory sequences and their target 

promoters110,111. 

 

Figure 14 | Schematic representation of enhancer-promoter regulation. The enhancer element is 

bound by a cluster of transcription factors and it loops in the 3D space to interact with its target 

gene.  

Enhancers are characterized by high heterogeneity between tissues and species, 

highlighting their importance in gene regulation. To delineate their role, several consortiums have 

been created in order to collect information about regulatory elements across a wide range of 

tissues and species, such as the Encyclopaedia of DNA elements (ENCODE)112, the Roadmap 

epigenomic project113,114, the Blueprint epigenome115 and the TCGA consortiums116. 

1.4.5 Epigenetics in cancer 

Cancer has been typically considered as a genetic disease characterized by mutations in 

genes that control cell proliferation and apoptosis. In “The hallmarks of cancer”5, it was assumed 

that malignant mechanisms are fundamentally rooted in genetic alteration5,6. However, epigenetic 

deregulation has recently emerged as a new paradigm of cancer influencing cancer initiation and 

progression (Figure 15). The epigenetic mechanisms can contribute in different ways to each 

hallmark: global changes in DNA methylation, chromatin states and cis-regulatory elements, as 

well as genetic aberrations in chromatin proteins characterize more than 50% of human 
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cancers117,118. Enhancers, identified primarily via global mapping of histone modifications, are 

critical cis-regulatory elements for cell fate determination and tissue-specific gene regulation119. 

Gains and losses of cell-type specific enhancer activity contribute to cell reprogramming towards 

tumor growth and metastasis120,121, rendering enhancer dysfunction a promising biomarker of 

diagnosis and a critical target for therapeutic intervention122. For instance, Roe et al. in 2017, 

exploiting the organoids model, illustrated how the metastasis transition in pancreatic ductal 

adenocarcinoma (PDA) was mediated by massive alteration of the enhancer activity that was in 

turn driven by the pioneer factor FOXA1123. A plethora of different studies were published in order 

to identify both “private” enhancer regions specific for different tumor subtypes124 as well as 

conserved enhancers across diverse tumor subtypes125,126 and the putative transcription factors 

orchestrating their aberrant activities. 

 

Figure 15 | Each classic hallmark of cancer can be caused by chromatin aberration. Taken from 

(Flavahan, Gaskell, & Bernstein, 201792). 

1.4.6 Transcriptional addiction 

Transcription factors (TFs) are families of proteins that recognise and bind specific DNA 

sequences (motifs) creating a cooperative network to synergistically regulate chromatin 

organization and gene transcription. This complex regulatory network is usually orchestrated by a 

“master” regulator which is located at the top of the regulatory hierarchy and regulates multiple 

downstream genes either directly or through a cascade of gene expression changes127. The correct 

regulation of master transcription factors themselves is fundamental for the maintenance of normal 

development and homeostatic conditions128. Changes in TF expression can lead to the onset of 

several pathologies, including cancer129. The role of TFs, and of master regulators in particular, is 

also of interest in light of the emerging paradigm of transcriptional addiction in cancer130 (Figure 



 
 

32 

16). This concept describes the dependence of cancer cells on transcriptional regulators, including 

chromatin regulators and TFs, as a result of their uncontrolled proliferation and growing need for 

the basal transcriptional machinery98,130,131.  

 

Figure 16 | Schematic representation of cancer transcriptional addiction. The high demand of 

chromatin regulators boosts the transcriptional rate of target genes. 

1.5  Multi-omics approach to integrate transcriptomic and 
epigenomic data 

Understanding how epigenomics and which specific epigenetic alterations can mediate the 

aberrant transcriptional programs of cancer cells can be greatly facilitated by the investigation of 

omics data and the development of integrated multi-omics approaches. Many of the available 

omics methods are based on the advent of next generation sequencing (NGS), one of the most 

important technological revolutions that kicked off modern biology. NGS, also known as high-

throughput sequencing, is a term that comprehends a number of different modern sequencing 

technologies that have revolutionized the study of genomics and molecular biology over the last 

two decades. The low cost, high speed and rapid improvement of NGS technologies make them 

the perfect tool to study the functional annotation of the human genome, boosting the genetic, 

transcriptomic and epigenomic fields of research. The pioneers of sequencing technologies were 

Maxam and Gilbert132 in 1977 with the creation of the chemical chain termination method for 

DNA sequencing, followed by Sanger’ dideoxy method133. Sanger sequencing is considered as the 

first generation of sequencing and it has been used for more than thirty years. In 1990, the creation 

of these new methods led to the initiation of the largest international scientific research project 

known as the Human Genome Project promoted by the National Institutes of Health (NIH) in USA. 

This project lasted for thirteen years with a cost of three billion dollars and its aim was to 



 
 

33 

reconstruct the entire human genome sequence and catalogue the position and functions of all the 

genes in the genome. 

In 2004, the National Human Genome Research Institute (NHGRI) promoted a program to 

reduce the cost of the human genome sequencing to one thousand dollars over ten years. In the 

next few years, a series of second-generation DNA sequencing technologies have arisen with the 

capability to perform a large number of parallel sequencing reactions on a micrometer scale. They 

included 454 Life Science (later purchase by Roche), Solexa/Illumina sequencing platform by 

Illumina and SOLiD by Applied Biosystem (now Life Technologies). The advantages of these new 

systems were that they didn’t require bacterial cloning of the fragments and electrophoretic 

technology platforms. Nowadays, the most widely-used technologies are Illumina platforms (also 

used in this study) and the costs have been dramatically reduced. 

However, despite the major impact in biology, NGS technologies have also some limitations: 

• Relatively short reads. NGS read refers to the number of base pairs of DNA 

fragment which are sequenced and converted into a string of letters. Along the human 

genome there are repeated sequences which are longer than the length of NGS reads 

causing misassembling and gaps. 

• Larger structural variations (SV) are difficult to characterize. This is a major 

limitation since SV are implicated in a large number of genetic diseases. 

• NGS methods rely on PCR amplifications. This can be a problem with GC rich 

regions since they are inefficiently amplified. 

To fill these gaps, a third-generation sequencing (TGS) or long read sequencing has been 

developed. The characteristic of TGS is to sequence single molecules without DNA amplification 

and to obtain longer reads (up to 10 Kb long reads). One of the first TGS technologies developed 

was the single molecule real time (SMRT) platform from by Pacific Biosciences in 2011 and more 

recently (2014) the nanopore sequencing from by Oxford Nanopore Technologies (ONT). 

1.5.1 Transcriptomic profile 

1.5.1.1 Bulk RNA-seq 

Transcriptomics refers to the study of the abundance and composition of the cells’ 

transcriptome. The mRNA transcribed is highly dynamic and varies across different cell types, cell 

states and regulatory mechanisms. The advent of whole-transcriptome sequencing has provided 

many advantages in transcriptome quantification over existing approaches, such as hybridization-

based techniques also known as microarrays134. One of the advantages of RNA-seq is that is has 

very low background noise and no upper limit in quantification, unlike microarrays that lack 



 
 

34 

sensitivity for very lowly expressed genes (due to low fluorescence signal detection) or highly 

expressed ones (due to probe saturation). In fact, with RNA-seq it is possible to detect a large 

dynamic range of expression levels, up to 8000-fold dynamic range135. The rapid development of 

new approaches in transcriptomic studies (i.e. unique molecular identifier136, PCR-free 

techniques137) further expands the potential applications of this technology. Moreover, in the last 

few years, the cost for the preparation and sequencing of RNA-seq samples has been dramatically 

reduced. This provides the possibility to sequence a larger number of samples at higher depth with 

a reduced cost. Depending on the sequencing technology and bioinformatic methods being 

employed, RNA-seq has applications that reach beyond the mere quantification of gene expression 

levels: 

Splicing alternative: pair-ended RNA sequencing can reveal connectivity among multiple exons, 

providing information on splicing and alternative splicing events, which characterize complex 

transcriptomes.  

De novo transcript assembly: RNA-seq can also be used to discover new transcripts that have not 

been identified yet, including small RNAs, lincRNAs, circular RNA etc138. 

Epitranscriptomic: RNA modifications could control the function of different class of RNAs, such 

as mRNA, small RNAs, linc-RNAs, and such modifications can also affect gene expression139,140. 

Disease classification: With the advent of high throughput techniques, it has become possible to 

stratify a disease condition according to gene expression subtypes27,141, as described in section 

1.2.2 for CRC. 

Integration: Cancer cells are characterized by aberrant transcriptional profiles which can be the 

result of genetic and epigenetic changes. Understanding how and which epigenetic alterations can 

affect the gene expression programs of cancer cells can be greatly facilitated by the investigation 

of omics data and the development of integrated multi-omics approaches. Transcriptomic studies 

have facilitated the investigation of different biological mechanisms and the study of a plethora of 

diseases, including cancer. In recent years, the field of cancer NGS transcriptomics has rapidly 

evolved leading to scientific collaborations, or consortia, with the aim to deeply characterize the 

transcriptional profiles across different types of cancer. Among the projects that mainly 

contributed to the profiling of cancer transcriptome, the most renowned are the Genotype–Tissue 

Expression (GTEx) project and the Human Protein Atlas (HPA) for the sequencing of normal 

tissues; The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium 

(ICGC) for the sequencing of different types of tumor tissues and finally the Encyclopedia of DNA 

Elements (ENCODE) and Genentech for the sequencing of cell lines. 
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1.5.1.2 Single cell RNA-seq 

Recently, a new technology able to detect the transcriptome of single cells in a tissue has 

been developed. Previously, RNA-seq was typically performed in “bulk”; each library was 

capturing different populations of cells and thus the data represented the average gene expression 

profile of thousands of diverse cell types belonging to the sampled population. To perform a 

targeted study there was the need to select a specific population, e.g. by cell sorting, leading to 

several challenges due to the limited amount of starting material. To address these limitations, a 

technology, termed single cell RNA-seq (scRNA-seq) was developed that is able to capture the 

variability of gene expression inside heterogeneous populations. With scRNA-seq we are now able 

to detect and analyse the transcriptome of each single cell present in a heterogeneous tissue. 

Currently there are several protocols which vary according to the quantification method and cell 

capture. The scRNA-seq platforms can be split in two main groups: i) full-length transcript 

sequencing approaches, i.e. SMART-seq2142, and ii) 3’end sequencing approaches, i.e. CEL-

seq137 and Drop-seq143, Chromium144. Commercial kits are also available, such as the 10X 

Genomic Chromium platform which has been used in this study. The higher noise of scRNA-seq 

data compared to bulk-RNA-seq data has raised new computational challenges in bioinformatics 

analysis. For instance, although the primary analysis of scRNA-seq145 includes the basic steps and 

tools used for bulk RNA-seq (Quality control, alignment and quantification), the downstream 

analyses require the adaptation of existing methods or the development of new ones146. 

1.5.2 Epigenomic profile 

1.5.2.1 ChIP-seq, ATAC-seq and ChIPmentation 

The increasing power of NGS technologies has encouraged the development of several 

approaches for the study of key regulatory elements, including the post-translational modification 

of histone proteins (indicative of the presence of promoter, enhancer, or repressed regions) and 

transcription factor binding. One of the most commonly-used techniques to untangle the epigenetic 

landscape of different cell populations, such as cancer, is chromatin immunoprecipitation followed 

by sequencing (ChIP-seq). Briefly, chromatin is immuno-precipitated subsequently to the binding 

of an antibody targeting a specific post-translational modification of histones or a DNA-bound 

transcription factor, as extensively described in this review147. A major limitation of this technique 

is the need of a large amount of starting cells to perform the protocols. The limited number of cells 

for some populations (i.e. human primary cells) raised the need to create new methods that require 

low input material (500-50,000 cells). Among these, one of the first applications to be designed in 

the epigenetic field was ATAC-seq (Assay for Transposase-Accessible Chromatin)148. This 
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technique allows to map the chromatin accessibility patterns similar to DNAse-seq and MNase-

seq but using less cells. ATAC-seq takes advantage of a hyperactive enzyme, Transposase 5 (Tn5), 

which is able to directly insert sequencing adapters in open chromatin regions and nucleosome 

free regions proving information on the accessibility of the chromatin. This kicks off a plethora of 

new epigenetic techniques, such as ChIPmentation149, which exploited the hyperactive Tn5 

solution to get post-translational modification of histones or transcription factor binding 

information from a limited amount of starting material. Overall, these epigenomic techniques are 

qualitative approaches and not quantitative. They require a very careful experimental design, and 

the selection of the correct concentrations, material, number of replicates and sequencing depth. 

Since these technologies are extremely challenging the field of single cell epigenomics is starting 

to grow albeit at a slow pace150. 
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2. Aims of the project 

 

Figure 17 | Graphical representation of the work. 

CRC is, historically, the leading paradigm of the concept of "cancer as genetic disease". 

And yet what remains largely unclear in this "mutation centered" view are the downstream 

transcriptional effects of the CRC mutations. Also unclear is how the CRC genetic complexity 

converges to just few transcriptional subtypes that exist despite the observed heterogeneity in 

tumor phenotypic states. These outstanding issues highlight the need of a paradigm shift: re-

assessing inter-patient variability through the prism of a shared regulatory architecture and 

associated underlying mechanisms. 

With this background in mind, in this work, we seek to unravel the chromatin landscape of 

human CRC by exploiting the organoid model in order to identify a common epigenetic blueprint 

and investigate its relevance in other types of cancers (Figure 17).  

The project aims to develop an integrated multi-omics approach in order to pursue the following 

specific goals: 

• Generate a balanced ex vivo library of PDOs that reflects the different clinical and 

molecular subtypes of CRCs.  
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• Generate and combine several chromatin maps for multiple histone modifications to 

unravel, for the first time, the epigenetic mosaic of CRC, accurately defining both active 

and repressed regulatory elements through de novo chromatin state discovery 

• Exploit the interpatient variability inherent in our balanced PDOs library, to identify an 

aberrant CRC enhancerome largely shared by different CRCs, irrespectively of tumor 

subtype. 

• Identify the master transcription factor orchestrating this shared regulatory architecture. 

• Verify if a fraction of the CRC aberrant enhancers could be shared also by other types of 

cancers resulting in a targetable pan-cancer epigenetic fil rouge at the roots of cancer cell 

transcriptional addiction and tumor maintenance. 

• Investigate at single cell resolution the specificity in malignant cells of the genes regulated 

by the core regulatory blueprint. 
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3. Methods 

3.1  Human specimen 
Primary CRC tissues were obtained from San Gerardo Hospital (Department of Surgery), 

Monza and UO Chirurgia Epatobiliopancreatica e Digestiva Ospedale San Paolo, Milan following 

ethical approval from their Institutional Review Boards. Informed consent was obtained from all 

patients prior to acquisition of the samples. Clinical details on patients are reported in Table 1. 

Samples were confirmed to be tumor or normal based on pathologist assessment and were obtained 

prior to treatment. MSI-MSS status was determined according to standard experimental 

procedures151. 

 

Table 1 | Clinical information of patients used in the study. Location abbreviation. A: ascending 

colon; T: transversal colon; S: sigmoid colon; R: rectum. Histology abbrev. mod: moderately 

differentiated adenocarcinoma; muc: mucinous adenocarcinoma; ulc: ulcerated; angio: 

angioinvasive; na: not available. Sex abbrev. M: male; F: female. Microsatellite status abbrev.  

MSI: Microsatellite instable; MSS: Microsatellite stable. 

3.1.1 Isolation of human primary tissues 

Primary colonic normal and tumoral tissues were processed according to a previously 

published protocol152. The detailed experimental protocol and materials used for this procedure 

are reported in the Appendix. 

3.2  Patient derived colorectal cancer organoids culture 
PDOs were established and maintained as previously described152. The detailed 

experimental protocol and materials used for this procedure are reported in the Appendix. 
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3.2.1  Whole mount staining of PDOs 

Isolated organoids embedded in Matrigel in µ-Plate Angiogenesis 96 Well (Ibidi) were 

fixed in 4% paraforlmaldehyde in PBS for 1 hour, at 4°C. The whole mount staining protocol was 

performed as previously described153, with some modifications. The detailed experimental 

protocol and materials used for this procedure are reported in the Appendix. 

3.2.2  Immunohistochemistry and in situ hybridization 

CRC primary tissues and PDOs were immunohistochemically stained on formalin-fixed, 

paraffin-embedded or on fresh OCT-embedded tissue and PDOs sections as previously 

described155. anti-YAP (13584-I-AP; Spring Bioscience) and anti-WWTR1/TAZ (HPA007415; 

Sigma) were used as primary polyclonal antibodies. RNAscope Duplex Detection Kit 

(Chromogenic) was used to process RNA in situ detection from tissue sections (formalin fixed, 

paraffin embedded) according to the manufacturer’s instructions (Advanced Cell Diagnostics). 

RNAscope probe was FOXQ1 (NM_033260.3, region 694 - 2197), which was detected using the 

HRP-based Green detection reagent. 

3.3  RNA-seq and ChIP-seq preparation 
3.3.1  RNA isolation and bulk RNA-seq library construction 

To perform RNA-seq analysis, CRC PDOs, primary normal and tumor tissues were lysed 

in TRIzol reagent (Thermo Fisher) and processed for total RNA extraction with PureLink™ RNA 

Mini Kit (Thermo Fisher), according to manufacturer’s instructions. The PDOs samples were 

collected at different time points, from early (<5 splits) to late passages (>5 splits). The quality of 

RNA was checked using RNA Integrity Number (RIN) value with RNA6000 assay (Agilent). In 

this study, only samples with RIN > 7.0 were used. RNA-seq libraries were constructed according 

to the TruSeq mRNA Stranded preparation kit (Illumina, San Diego, USA) and sequenced at 

HiSeq2500. 

3.3.2  Chromatin Immunoprecipitation (ChIP) assay and library 
construction 

For ChIP experiments, matrigel droplet containing ∼0.3 x 106 organoid cells/well was 

dissolved using Cell Recovery Solution (Matrisperse Cell Recovery Solution - Sacco-L004419 

CPB40253), following the indicated procedure. Organoids pellet was fixed rocking at room 

temperature and quenched. PBS-washed organoid pellets were lysed and incubated for at 4°C. 

Lysed chromatin was sheared at 200–500 bp fragments using Covaris® M220 focused-

ultrasonicator. For organoids and crypts chromatin was incubated with antibody overnight at 4 °C 
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on wheel. Antibody/antigen complexes were recovered and washed, followed by reverse 

crosslinking overnight. The washed immunocomplexes were incubated with ChIP elution buffer 

for reverse crosslinking. The immunoprecipitated DNA was then purified and eluted. The detailed 

experimental protocol and materials used for this procedure are reported in the Appendix. ChIP-

seq libraries were constructed with TruSeq ChIP Library Preparation Kit (Illumina), according to 

the manufacturer’s instructions and sequenced on the Illumina HiSeq2500 platform. 

3.3.3  ChIPmentation assay and library preparation 

ChIPmentation was carried out as previously described149 with small modifications in cell 

lysis and washes after recovering. Briefly, the crosslinked pellet was lysed in buffer I in ice. The 

pellet was recovered and lysed with buffer II at room temperature and sonicated in lyses buffer III 

using Covaris® M220 focused-ultrasonicator. Sonicated chromatin was incubated with anti-

WWTR1 (Sigma Aldrich, HPA007415) or anti-YAP1 (abcam 52771) overnight at 4 °C on the 

wheel. For control libraries, an immunoprecipitation with nonspecific IgG rabbit antibody was 

used. Antibody/antigen complexes were recovered with blocked ProteinG-Dynabeads (Invitrogen) 

and washed with low salt wash buffer (twice), high salt buffer (twice) and once with Tris pH8. 

Beads were then resuspended and incubated in tagmentation reaction containing Tagment DNA 

Enzyme from the Nextera DNA Sample Prep Kit (Illumina). Beads were then washed and 

incubated with elution buffer plus Proteinase K (NEB) to revert formaldehyde cross-linking. The 

detailed experimental protocol and materials used for this procedure are reported in the Appendix. 

Library preparation for ChIPmentation was performed using custom Nextera primers as described 

for ATAC-seq and enriched libraries were purified using 1.8V of SPRI AMPure XP beads and 

sequenced with Illumina HiSeq2500. 

3.3.4 10X based single cell library preparation 

Primary colonic tumoral tissues were processed as described above (Isolation of human 

primary tissues) and previously152. The tumoral tissue cell suspension was further reduced to 

single-cell level through incubation with TrypLE express (Thermo scientific) at 37°C, pipetting 

every 2-3 min, up to 20 min. Single-cell suspension was washed, filtered with a 40 μm cell strainer 

and then loaded into the Chromium System (10x Genomics), targeting 10,000 cells. Following the 

manufacturer instructions, barcoded sequencing libraries were generated using Chromium Single 

Cell 3’ v2 Reagent Kit and sequenced on an Illumina HiSeq 4000 platform. 

3.4  Scalability and reproducibility of bioinformatics pipelines 
To ensure the scalability and reproducibility of the bioinformatics pipelines used for the 

primary analysis of both RNA-seq and ChIP-seq data (including quality control of sequencing 
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data, alignment, quantification, peak calling and generation of coverage tracks), we developed our 

pipeline integrating Nextflow156 and container technologies, including Docker 

(https://docs.docker.com/) and Singularity (https://singularity.lbl.gov/) (Figure 18). Nextflow is a 

pipeline manager which guarantees the execution and reproducibility of custom and publicly 

available pipelines. Nextflow is able to work with pipelines written in different programming 

languages making it a flexible and powerful tool to package an entire scientific workflow. The 

integration of Nextflow with container technology allows full control of the computing 

environment, including consistency of the packages’ versions. In fact, Docker is able to produce 

an Image which includes all the libraries and data needed for the analysis. This Image can be 

shared with other users and can run on any major Linux operating system. Ultimately, the 

integration of this data-driven toolkit for computational analysis with the container solutions 

enable truly reproducible analyses. 

 

Figure 18 | Schematic representation of the bioinformatics workflow of this study for which 

Nextflow and container technologies were employed.  
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3.5  Transcriptomic data analysis 
3.5.1  Processing and quality control 

FastQC v0.11.769 and MultiQCv1.5 

(http://www.bioinformatics.babraham.ac.uk/projects/) were used to perform the quality control of 

the sequenced reads. The reads were trimmed using BBDuk (https://jgi.doe.gov/data-and-

tools/bbtools/bb-tools-user-guide/bbmap-guide/). The trimming step is executed to remove 

adapters and low-quality reads that can affect the alignment on the genome. Then, the reads were 

aligned to the human reference genome hg38 (GENCODE Release 25 basic gene annotation) using 

STARv2.5.3a157. The alignment is a key step that assigns each read to its exact location along the 

genome (Figure 19). featureCounts4-Subreadv1.6.2158 was used to perform the quantification of 

the reads. A raw count matrix that includes all the samples was created using a custom bash script 

(Figure 18). 

 

Figure 19 | STAR takes as reference the index of the genome build from a genome fasta file. The 

genome index is a compression of the reference genome obtained by applying Burrows–Wheeler 

transforms (BWT) which performs a reversible permutation of characters in a text. STAR 

algorithm is divided in two major steps: i) The “Seed Search”, a sequential search for a Maximal 

Mappable Prefix (MMP), which is defined as the longest substring of a read that perfectly matches 

one or more substrings of a reference genome. This will become the first seed to be placed on the 
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genome. Since, the algorithm will subsequently search only for the unmapped region of the read, 

this method increases the speed of the tool. ii) “Clustering, Stitching and Scoring”; the seeds are 

clustered together around a selected set of seeds, called “anchors”. If these seeds fall into a defined 

genomic window, they are stitched together through a frugal dynamic programming algorithm.  

The mitochondrial genes were removed from the downstream analyses. Normalization and 

differential analysis were performed using DESeq2 package159 (version 1.22.2) and R version 

3.5160. Principal component analysis was performed using the R function prcomp considering the 

500 most variable transcripts with the parameters center=TRUE, scale=TRUE. The 500 highly 

variable genes were manually inspected and immune infiltrate genes present were removed. Genes 

were considered differentially expressed with a padj ≤ 0.01. A single organoid for each patient 

was chosen for downstream differential expression analyses in order to keep even sample sizes 

across the three tissue populations. Heatmap and hierarchical clustering were performed using the 

pheatmap function with default parameters (clustering_distance_cols=”euclidean”, 

clustering_method=”complete”). Gene set enrichment analysis was performed using the 

GSEApy161 package using the pre-ranked module with default parameters 

(permutation_num=1000). For the visualization of RNA-seq tracks, the normalized coverage 

tracks were generated using the bamCoverage function of deeptools162. The command lines used 

for this analysis are reported in the Appendix. 

3.5.2 Tumor primary tissue classification 

The classification of CRC primary tissues was performed following the Consensus 

Molecular Subtype classification27, the CRC intrinsic subtypes classification31 and the 

Sadanandam26 classification. The classification of primary tumor samples was made using 

CMScaller163 R package (https://github.com/peterawe/CMScaller) using default parameters 

(FDR=0.5, seed=1). 

3.6  Epigenomic data analysis  
3.6.1  ChIP-seq processing and quality control 

The quality control of the reads was performed using FastQC v0.11.7164 and MultiQCv1.5 

(http://www.bioinformatics.babraham.ac.uk/projects/). The reads were aligned to the human hg38 

reference genome (GENCODE Release 25 basic gene annotation) using Bowtie v1.2.2165, sorted 

using SAMtoolsv1.8166 and directly converted into binary files (BAM). PCR duplicate reads were 

marked and removed using SAMtoolsv1.8. The peaks were called with MACS2 v2.1.0167 using 

matched input DNA as a control. Peaks overlapping ENCODE blacklisted regions hg38 were 

removed. Peaks found in un-placed and un-localized scaffolds were removed. For the visualization 
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of ChIP-seq tracks, Bedgraph tracks were generated using MACS2 bdgcmp function, converted 

into bigwig using UCSC bedClip and bedGraphToBigWig functions. The pyGenomicTrack168 tool 

was used for the visualization of the tracks (Figure 18). The command lines used for this analysis 

are reported in the Appendix. 

3.7 Analysis of publicly available data  
3.7.1 Histone modifications for normal and tumor CRC tissues 

ChIP-seq datasets (Errore. L'origine riferimento non è stata trovata.) of normal and 

tumor colon tissues (GSE77737), and CRC cell lines HCT116 and Caco2 (ENCODE) were 

reanalysed and processed using the same pipeline described above. These data were subsequently 

used for ChromHMM analysis. 

 

Table 2 | Details of publicly available ChIP-seq samples used for ChromHMM analysis. 

3.7.2 Capture-HiC of CRC 

Capture Hi-C performed on the human colon cancer HT29 cell line and published by 

Orlando et al.169 was used to annotate enhancer regions to their target genes; available at the 

European Genome-phenome Archive (EGA) under the accession code EGAS00001001946. In this 

work they used capture Hi-C (CHi-C) to catalogue the regulatory landscape of CRC through 19023 

promoter fragments. 

3.7.3 ATAC-seq data from TCGA consortium 

To identify potential pan-cancer regulatory regions, pan-cancer ATAC-seq peaksets from 

the TCGA consortium116 were used (https://gdc.cancer.gov/about-data/publications/ATACseq-

AWG/). The data were not re-analysed; the consensus peakset, coverage tracks and count table 

were directly downloaded from the portal and used. 
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3.7.4 H3K27ac data from various types of cancer 

ChIP-seq data of H3K27ac occupancy derived from different primary tumor types (Table 

3) were re-analysed as described before and used to further validate the YAP/TAZ regulated pan-

cancer core of enhancers. See method session “Analysis of publicly available H3K27ac ChIP-seq 

datasets” for further details.  

 

Table 3 | H3K27ac ChIP-seq samples of primary tumors and normal tissues used in the analysis 

of pan-cancer regions. 

3.7.5 scRNA-seq from primary CRC and LUAD tissues 

Two single cell RNA sequencing studies from primary CRC170 and Lung 

Adenocarcinoma (LUAD)171 tissues were used in this work to confirm our finding on the 

epigenetic regulation at single cell resolution. Raw filtered count matrix and cell annotation were 

downloaded directly from Gene Expression Omnibus (GEO) using the GSE132465 and 

GSE131907 project, respectively. The raw data were imported in Scanpy172 and analysed as 

extensively described later on in the methods. 

 
 

 
 

 

 

Organism_part Disease Sampling_site Individual Material_type Developmental_stage Histone_mark Associated_Input_id Reference study
tumor_gastric gastric tumor Tumor tissue CHG018 tissue not applicable H3K27Ac GSM1252273 GSE51776
tumor_gastric gastric tumor Tumor tissue CHG026 tissue not applicable H3K27Ac GSM1252281 GSE51776
tumor_gastric gastric tumor Tumor tissue CHG034 tissue not applicable H3K27Ac GSM1252289 GSE51776
tumor_gastric gastric tumor Tumor tissue CHG093 tissue not applicable H3K27Ac GSM1252313 GSE51776
normal_gastric gastric tumor Healty adjacent tissue CHG022 tissue not applicable H3K27Ac GSM1252277 GSE51776
normal_gastric gastric tumor Healty adjacent tissue CHG030 tissue not applicable H3K27Ac GSM1252285 GSE51776
normal_gastric gastric tumor Healty adjacent tissue CHG038 tissue not applicable H3K27Ac GSM1252293 GSE51776
normal_gastric gastric tumor Healty adjacent tissue CHG089 tissue not applicable H3K27Ac GSM1252309 GSE51776
normal_gastric gastric tumor Healty adjacent tissue CHG097 tissue not applicable H3K27Ac GSM1252317 GSE51776
breast breast tumor Tumor tissue B1_H3K27ac_FA tissue not applicable H3K27Ac GSM3149117 GSE114737
breast breast tumor Tumor tissue B2_H3K27ac_FA tissue not applicable H3K27Ac GSM3149117 GSE114737
breast breast tumor Tumor tissue B3_H3K27ac_FA tissue not applicable H3K27Ac GSM3149117 GSE114737
breast breast tumor Tumor tissue B4_H3K27ac_FA tissue not applicable H3K27Ac GSM3149117 GSE114737
endometrium endomitrium tumor Tumor tissue E1_H3K27ac_FA tissue not applicable H3K27Ac GSM3149119 GSE114737
endometrium endomitrium tumor Tumor tissue E2_H3K27ac_FA tissue not applicable H3K27Ac GSM3149119 GSE114737
endometrium endomitrium tumor Tumor tissue E3_H3K27ac_FA tissue not applicable H3K27Ac GSM3149119 GSE114737
bone osteosarcoma Tumor tissue Patient_27252-1_H3K27ac tissue not applicable H3K27Ac GSM2870621 GSE74230
bone osteosarcoma Tumor tissue Patient_33010-1_H3K27ac tissue not applicable H3K27Ac GSM2870627 GSE74230
bone osteosarcoma Tumor tissue Patient_P10_H3K27ac tissue not applicable H3K27Ac GSM2870639 GSE74230
bone osteosarcoma Tumor tissue Patient_P2_H3K27ac tissue not applicable H3K27Ac GSM2870645 GSE74230
uterus not applicable Healty tissue uterus_female_adult_53yrs tissue not applicable H3K27Ac GSM2701786 Encode
liver not applicable Healty tissue male_adult_32years_liver_tissue tissue not applicable H3K27Ac GSM1059458 Roadmap
adrenal gland not applicable Healty tissue male_adult_34years_adrenal_gland_tissue tissue not applicable H3K27Ac GSM896167 Roadmap
adrenal gland not applicable Healty tissue female_adult_30years_adrenal_gland_tissue tissue not applicable H3K27Ac GSM1013168 Roadmap
pancreas not applicable Healty tissue female_adult_30years_pancreas_tissue tissue not applicable H3K27Ac GSM1013172 Roadmap
pancreas not applicable Healty tissue male_adult_34years_pancreas_tissue tissue not applicable H3K27Ac GSM906419 Roadmap
pancreas not applicable Healty tissue female_adult_53years_body_of_pancreas_tissue tissue not applicable H3K27Ac GSM2701039 Encode
thyroid gland not applicable Healty tissue female_adult_53years_thyroid_gland_tissue tissue not applicable H3K27Ac GSM2700106 Encode
thyroid gland not applicable Healty tissue male_adult_37years_thyroid_gland_tissue tissue not applicable H3K27Ac GSM2534428 Encode
thyroid gland not applicable Healty tissue male_adult_54years_thyroid_gland_tissue tissue not applicable H3K27Ac GSM2527552 Encode
uterus not applicable Healty tissue female_adult_51year_uterus_tissue tissue not applicable H3K27Ac GSM4051146 Encode
body of pancreas not applicable Healty tissue male_adult_54years_body_of_pancreas_tissue tissue not applicable H3K27Ac GSM2527460 Encode
body of pancreas not applicable Healty tissue female_adult_51year_body_of_pancreas_tissue tissue not applicable H3K27Ac GSM4250622 Encode
body of pancreas not applicable Healty tissue male_adult_37years_body_of_pancreas_tissue tissue not applicable H3K27Ac GSM2534589 Encode
thyroid gland not applicable Healty tissue female_adult_51year_thyroid_gland_tissue tissue not applicable H3K27Ac GSM4247353 Encode
adrenal gland not applicable Healty tissue male_adult_37years_adrenal_gland_tissue tissue not applicable H3K27Ac GSM2534395 Encode
adrenal gland not applicable Healty tissue male_adult_54years_adrenal_gland_tissue tissue not applicable H3K27Ac GSM2534495 Encode
liver not applicable Healty tissue female_adult_53years_liver_tissue tissue not applicable H3K27Ac GSM2527674 Encode
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3.8  HePIC: web genome browser 

 

Figure 20 | Hepic Logo 

HePIC (Human EPigenetic CRC) is a web app developed for the interrogation of the omic 

data produced in this work (it will be available at http://hepic.homic.eu following publication of 

the current work) (Figure 20). This web app consists of a web genome browser 

(https://github.com/igvteam/igv.js/) that allows interactive visualization and integration of the 

epigenomic (ChIP-seq on histone marks and ChromHMM tracks) and transcriptomic (RNA-seq) 

data analysed in this study. This application was build integrating a web server (NGINX) with a 

container technology (Docker). 

3.9  Downstream analyses 
3.9.1 Density and heatmap plot for each histone modification 

Filtered and sorted BAM files were used to generate normalized coverage tracks using the 

bamCoverage function from deepTools162 suite. The average signal profile and the heatmap plot 

along the genebody were calculated using computeMatrix scale-regions with default parameters 

and GENCODE Release 25 basic gene annotation. The command lines used for this analysis are 

reported in the Appendix. 

3.9.2 Correlation analysis of histone marks 

To obtain the correlation heatmap of all the histone modifications among the ten PDOs, a 

consensus peakset was generated using DiffBind v2.6.6173 and merging together only peaks 

detected in at least two tracks. Then, a count matrix of 180250 peaks x 48 samples was created by 

counting the number of reads per peak for each sample using the dba.count function with default 

parameters. The correlation heatmap and the PCA were produced using dba.plotHeatmap 

(distMethod="pearson") and dba.plotPCA respectively, with default parameters. 

3.9.3 De novo chromatin state characterization 

De novo chromatin stated characterization of all PDOs was performed using a multivariate 

Hidden Markov Model approach (ChromHMM v1.12174) (Figure 18, Figure 21) considering five 

histone modifications (H3K4me3, H3K27ac, H3K4me1, H3K36me3 and H3K27me3) across 10 
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PDOs and publicly available data (Errore. L'origine riferimento non è stata trovata.), using 

default parameters. The datasets were down-sampled to a maximum depth of 45 million reads (the 

median read depth over all samples considered in this analysis). The read counts for all the 

considered samples were computed in non-overlapping 200-bp bins across the entire genome. The 

binarization was performed comparing ChIP-seq read count to corresponding input DNA as 

control to reduce the technical noise. Several models were trained in parallel considering 8, 10 and 

12 number of states. The 8-state model was chosen for downstream analysis since it captured the 

key interaction between histone marks and because it was the model with minimal redundancy. 

The command lines used for this analysis are reported in the Appendix. 

 

Figure 21 | ChromHMM pools together multiple epigenomes and it is able to summarize the 

combinatorial pattern of different HMs across different cell populations. ChromHMM uses Hidden 

Markov Model approach which is a machine learning technique able to reconstruct a model based 

on the probability distribution of a series of observations. 

3.9.4 Overlap of ChromHMM states and COAD ATAC-seq from 
TCGA 

To validate our model, the probability of detecting previously reported open chromatin 

regions for colon cancer within each chromatin state was estimated. To this end, ATAC-seq data 

for colon adenocarcinoma (COAD) was downloaded from the TCGA site 

(https://gdc.cancer.gov/about-data/publications/ATACseq-AWG/). The number of ATAC-seq 

peaks inside each ChromHMM state was defined by overlapping the regions of each ChromHMM 

state with the ATAC-seq peak summits. Since each ATAC-seq peak was reduced to the summit 

of the peak, the length of each ATAC-seq peak corresponded to 1 bp. Then, a conditional 

probability was calculated to estimate the probability of identifying open chromatin regions in 
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each chromatin state across the ten PDOs. The probability p(A│B) is the probability that the event 

A will occur given the knowledge that an event B has already occurred. The conditional probability 

of A given B is defined as the quotient of the probability of the joint event A and B (both events 

A and B occur together) and the probability of B. 

𝑝(𝐴|𝐵) =
𝑝(𝐴	 ∩ 	𝐵)
𝑝(𝐵)  

For i= 1..n where n is the numbers of chromatin states, 

p(A), p(B) and p(A ∩B) were defined as follows: 

p(A) = total length of ATAC-seq peaks / total length of the genome 

p(B) = total length of ChromHMMi state / total length of the genome 

p(A ∩ B) = total length of ATAC-seq peaks overlapping ChromHMMi state/total length of the 

genome 

With p(A|B) defined as the probability of finding ATAC-seq peaks in each ChromHMM state:  

p(A|B) = total length of ATAC-seq peaks overlapping ChromHMMi state/total length of 

ChromHMMi state. 

3.9.5 Identification of highly active enhancers 

To identify the highly active enhancer elements, all the “Active Enhancer” and “Flanking 

Active Enhancer” regions from the ten PDOs and the five normal colon tissue ChromHMM states 

were selected. These two states are defined by the co-presence of high levels of H3K27ac and 

H3K4me1 signal. The pool of active enhancer regions was filtered excluding all the regions with 

a length less than 200 bp and all the regions that fall within a window of 5 kb around (upstream 

and downstream) the TSS (considering known genes annotated in GENCODE Release 25 basic 

gene annotation). Then, a consensus peakset was built using DiffBind, as previously described 

(Correlation analysis of histone marks).  The number of H3K27ac reads in the consensus peakset 

was counted generating a count matrix of 33131 regions X 15 samples. Differential analysis was 

performed using DESeq2 package175 (version 1.22.2) considering as differentially activated all the 

regions with a padj ≤ 0.01 and a |log2FC| ≥ 2. 

3.9.6 Enhancer conservation across patients 

A master list of enhancer regions across all the ten PDOs samples was produced merging 

together the “Active Enhancer” and “Flanking Active Enhancer” (Identification of highly active 

enhancers) states using BEDTools176. Enhancer regions found only in one patient were considered 



 
 

50 

in this analysis. To assess if an enhancer was conserved among different patients the enhancerome 

of each patient was intersected with the master list of enhancers (n=33,131) as described above. A 

matrix of presence/absence for each region across PDOs was created by a custom script in Python. 

The matrix reported in one dimension the number of PDOs lines and in the other dimension the 

number of enhancers. The correspondence between an enhancer for a patient and the enhancer in 

the master list is reported as “1” and the absence as “0”. To assess conservation, enhancers were 

stratified according to their frequency across PDOs and further filtered for enhancers differentially 

activated (gained) in PDOs compared to normal tissues. 

3.9.7 Motif binding discovery 

Motif binding discovery was performed within the accessible regions of the conserved 

gained enhancers. First, the ATAC-seq peakset for colon adenocarcinoma (COAD) was 

downloaded from the TCGA site (https://gdc.cancer.gov/about-data/publications/ATACseq-

AWG/). To identify putative open chromatin regions inside the most conserved enhancers, gained 

enhancer regions, conserved in at least 80% of the patients (n=486), were overlapped with the 

COAD ATAC-seq peaks. The HOMER177 findMotifsGenome function was used to evaluate the 

enrichment of known motifs in the exact size of the accessible regions (setting region size 

parameter to “given”). Transcription factor binding motifs encompassing the summit of TAZ 

peaks were identified with HOMER and MEME-chip178 on 500 bp windows centred around TAZ 

peak summits. 

3.9.8 Annotation of differentially activated enhancers 

Differentially activated enhancers were annotated using chromosome conformation 

capture data on human CRC HT29 cell line from Orlando et al.169. To annotate the remaining 

differentially activated enhancers we extracted and merged all the “Active TSS” and “Flanking 

active TSS” regions from the ChromHMM states of the ten PDOs and the five normal tissues. 

Then, we created a txdb object using makeTxDbFromGFF (GenomicFeatures v1.30.321) 

including all the protein coding genes (GENCODE Release 25 basic gene annotation) with an 

active promoter (n=13802). Finally, we used the annotatePeakInBatch (output="both", 

PeakLocForDistance="middle") function of ChIPpeakAnno v3.12.7179 to annotate the active 

enhancers to their nearest protein coding gene with an active promoter. 

3.9.9  Functional enrichment analysis 

We used over-representation analysis based on Fisher's exact test to assess the functional 

enrichment of biochemical and signalling pathways in the list of 495 tumor-upregulated genes 

annotated to gained enhancers. Functional enrichment analysis was conducted in R using the 
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fisher.test function of the stats package on the 321 gene sets of the KEGG collection (downloaded 

from ConsensusPathDB; http://cpdb.molgen.mpg.de/) considering a genomic background of 

21,528 unique gene symbols (given by the union of the 19,950 protein coding genes of the human 

hg38 reference GENCODE Release 25 and of the genes of all KEGG gene sets). P-values have 

been adjusted (i.e., False Discovery Rate) using the p.adjust function of R stats package and the 

threshold for statistical significance set at FDR < 5%. The visualization of the functional 

enrichment analysis results was obtained in Cytoscape180 using its EnrichmentMap and 

AutoAnnotate applications (with default parameters). 

3.9.10  ChIPmentation data processing and quality control 

The processing of ChIPmentation data was performed as previously described (ChIP-seq 

processing and quality control), with the difference that the adapters were removed before the 

alignment of the reads using BBDuk (command line parameters: ktrim=r k=23 mink=11 hdist=1). 

Peaks were called using MACS2 v2.1.0, with the associated ChIPmentation on the input as control 

(-p 0.001). Density plots and heatmaps were produced as described above (Density and heatmap 

plot for each histone modification), considering as regions all the promoter in GENCODE 

Release 25 basic gene annotation and the active enhancer ranges identified (n = 33,131). The 

command lines used for this analysis are reported in the Appendix. 

3.9.11  Analysis of TAZ ChIPmentation data 

To assess the preferential binding of TAZ along the genome, TAZ peaks were overlapped 

with the previously-defined ChromHMM states using BEDTools. Permutation analysis was 

performed to assess the enrichment of TAZ occupancy in gained CRC enhancers compared to a 

random distribution of enhancers. The BEDTools shuffle function was used to generate 1000 

shuffle tracks of the gained enhancers, preserving the size of each gained enhancer in the input 

BED file. TAZ peaks were subsequently overlapped with i) all gained enhancers identified in 

PDOs, ii) the gained enhancers conserved in at least 5 patients, iii) those conserved in at least 8 

patients, and finally iv) the shuffled tracks (control). In counting enhancer regions, a single count 

was considered for regions that overlapped multiple TAZ peaks. Finally, a Fisher exact test was 

performed considering as significantly enriched the comparisons with a P-value < 0.001. 

3.9.12  Analysis of TCGA pan-cancer ATAC-seq data 

To identify potential pan-cancer regulatory regions, pan-cancer ATAC-seq peaksets from 

the TCGA consortium116 were used (https://gdc.cancer.gov/about-data/publications/ATACseq-

AWG/). The pan-cancer peakset was overlapped with the YAP/TAZ-bound gained enhancers 

conserved in at least 8 patients (n=195). When multiple ATAC-seq peaks were assigned to a 
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specific enhancer only the ATAC-seq peak with the highest normalized enrichment score was 

considered. Then, the normalized ATAC-seq insertion counts of the pan-cancer peaksets was 

downloaded from TCGA site (https://gdc.cancer.gov/about-data/publications/ATACseq-AWG/) 

and was used to produce a heatmap (pheatmap; clustering_distance_cols=euclidean, 

clustering_method=complete) of all the TCGA patients and the 195 enhancer regions of interest. 

To identify pan-cancer accessible regions, we performed hierarchical clustering with 

cluster_rows=TRUE directly using pheatmap package. 

3.9.13  Analysis of H3K27ac ChIP-seq datasets from different 
cancer types 

ChIP-seq data for H3K27ac were obtained from the Gene Expression Omnibus (Table 3). 

Raw sequencing reads were processed as described above (ChIP-seq processing and quality 

control). The detailed command lines used for this analysis are also reported in the Appendix. 

For each sample, the number of H3K27ac reads in the consensus peakset of ~33K active enhancers 

(Identification of highly active enhancer) was counted in DiffBind. Read counts across samples 

were normalized and corrected for potential batch effects using ComBat181. For each of the primary 

tumor and normal tissue samples, the mean H3K27ac normalized counts across all 46 pan-cancer 

enhancer regions was calculated and wilcoxon rank sum test was performed to determine the 

difference in H3K27ac intensities between primary tumors and normal tissues. 

3.10  Single cell RNA-seq analysis 
3.10.1 Single-cell RNA-seq data processing and quality control 

The fastq files of primary CRC tissue were processed by the Cell Ranger software pipeline 

(version 3.0.1) provided by 10X Genomics. Alignment with STAR (human genome GRCh38 

version 25), multiplexing, UMIs and cell filtering were performed using default parameters 

creating one count matrix of 19,702 genes across 4,299 cells. The matrix was then processed using 

the python package Scanpy (v1.4.2)172. First, genes detected in less than 0.1% of the total cells and 

cells with fewer than 200 expressed genes were removed. Low quality cells and outliers based on 

percentage of mitochondrial (MT) and ribosomal (RB) genes, total number of genes, and gene 

counts were detected according to the median absolute deviation (MAD)182. Cells were removed 

if the value for any of the above features was greater than the number of selected MAD above the 

median, with the number of MAD set to four for MT percentage, two for RB percentage, two for 

the gene number and three for count number. Furthermore, the immune cells were filtered out 

based on the detection of canonical marker genes. More in details, three groups of cells expressing 

high levels of natural killer (NK) cell marker genes (NKG7 and KLRB1), CD8+ T lymphocytes 
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marker genes (CD8A and CD8B) and B lymphocytes marker genes (IGHG3 and IGLC3) were 

removed. The remaining 3,044 cells together with 19,460 genes constitute the matrix used for the 

downstream analysis. The matrix was normalised considering a scaling factor of 104 and log-

transformed using scanpy.pp.normalize_per_cell (data, counts_per_cell_after=1e4) and 

scanpy.pp.log1p (data). Highly variable genes (HVG) were selected based on specific thresholds 

for mean expression and dispersion using scanpy.pp.highly_variable_genes (min_mean=0.08, 

max_mean=4, min_disp=0.7) and excluding mitochondrial and ribosomal genes. The cell cycle 

phase of each cell was evaluated by scoring individual cells for their expression of G1-, S-, and 

G2M-phase genes183. 

3.10.2  Dimensionality reduction and clustering 

PCA was performed on scaled and centred values considering 1219 HVG. Unwanted 

sources of variation (i.e. number of detected counts and genes per cell, the percentages of 

mitochondrial and ribosomal counts and the cell cycle phase) were evaluated and regressed out 

using a linear regression as implemented in scanpy (scanpy.pp.regress_out). Initially, a K-Nearest 

Neighbour graph was constructed based on Euclidean distance in PCA space, thus refining the 

weight of the edges between two cells using Jaccard similarity (scanpy.pp.neighbors with 

n_neighbors=15, n_pcs=13). Finally, the Leiden algorithm was used to perform unsupervised 

clustering of the cells, with a resolution of 0.6 (scanpy.tl.leiden). Leiden-defined clusters were 

labelled based on previously reported marker genes for colonic epithelial cells184 Progenitors cells 

were partitioned into two clusters (early and late) on the basis of decreasing expression levels of 

stem marker genes (OLFM4, SOX4) and increasing levels of marker genes for differentiated 

epithelial cells (FABP1, CA2). 

3.10.3 Data visualization and trajectory analysis 

Uniform Manifold Approximation and Projection (UMAP) and Force-directed graph were 

used for visualization of the data. The number of PCs used to calculate the embedding were the 

same as those used for the clustering. The force-directed graph was obtained using 

scanpy.tl.draw_graph with ForceAtlas2 as layout. Partition-based graph abstraction (PAGA) 

connectivity is based on the previously estimated clusters using Leiden algorithm and is calculated 

with default parameters using scanpy.tl.paga function. 

3.10.4  Identification of differentially expressed genes 

Differentially expressed genes (DEG) for each cluster against all other clusters were 

identified using scanpy.tl.rank_genes_groups implemented by Scanpy with default parameters. 

Upregulated DEG lists were used as ranked gene lists to perform GSEA as previously described 
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(RNA-seq QC and data analyses). Signature gene lists reported in Wang et al.184 were used to 

verify the presence of normal-like epithelial cell populations. 

3.10.5  Copy number variation analysis 

To identify malignant cells in CRC primary tissue, large-scale CNVs were inferred from 

RNAseq data using the inferCNV package (https://github.com/broadinstitute/inferCNV) with 

default parameters (k_obs=2). CNVs are inferred for each cell based on a moving averaged pattern 

of expression profiles across large chromosomal intervals in comparison to a reference cell 

population as previously described185. 

3.10.6  Scoring cells using signature gene sets  

Gene signature scores were calculated given a cell by gene expression matrix (M) and a 

geneset (g). For each cell in M, the fraction of genes from g that are expressed (expression levels 

>0) is computed. Similarly, an expression score for each cell in M is evaluated by summing up the 

expression levels of genes from g and dividing by the total sum of gene expression levels for all 

genes in the same cell. The two scores are then multiplied together to yield a combined score for 

each cell in M and the reciprocal of the negative logarithm of the combined score is computed. 

Following the mathematical equation: 

Given a cell C as a vector of gene expression values [gi, …, gc] 

And a geneset G={ gi, …, gG} 

A co-expression score is computed as: 

𝑐_𝑠𝑐𝑜𝑟𝑒 =
∑ [𝐶𝑔 > 0]!	∈$

|𝐺|  

and an expression score is defined as 

𝑒_𝑠𝑐𝑜𝑟𝑒 =
∑ 𝐶𝑔!	∈$

∑𝐶  

The two scores are then combined to yield a combined score 

Combined_score=c_score * e_score 

Combined scores were created for a stemness gene set and the gene set related to the 46 

pan-cancer enhancers. 
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3.10.7  Dendrogram 

For each cell the average expression of the 46 genes associated to the pan-CRC enhancers was 

calculated. A correlation (method='kendall') on the average expression vectors of these genes and 

hierarchically clustering of the previously mentioned Leiden clusters was performed using python 

function scipy.cluster.hierarchy.linkage (method='complete', metric='euclidean'). 

3.10.8  scRNA-seq analysis of diverse primary tumor tissues  

ScRNA-seq of primary CRC170 and LUAD171 samples were analysed as described above. For 

reproducibility, we used the clustering annotation reported by their reference papers170,171. 

3.11 Data availability 
The RNA-seq and ChIP-seq generated during this study will be available, after the publication 

of the work, at the European Nucleotide Archive with accession numbers E-MTAB-8448 and E-

MTAB-8416 respectively. 
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4. Results 

4.1  Establishment of a balanced PDOs library representing 
colon tumor heterogeneity 

In order to characterize the epigenetic landscape of human CRC we collected and generated 

several three-dimensional organoids from primary tumor surgical resection of patients with 

different clinical and molecular phenotypes. We then performed a histopathological and molecular 

characterization of PDOs, demonstrating the robustness of this model as surrogate of the primary 

tumor of origin, and finally we established their genome-wide epigenetic landscape (Figure 22 

A). To obtain a pool of heterogeneous PDOs, we performed RNA-sequencing (RNA-seq) analysis 

of our primary tumors and classified them into distinct CRC molecular subtypes. To this end, we 

used markers for microsatellite instability and three recently published gene expression-based 

classification systems26,27, including the classifier of the CRC intrinsic signatures (CRIS)31 (Figure 

22 B). Upon primary tumor analysis, we selected ten CRC organoid lines creating a diverse and 

balanced library that resembles the molecular diversity of the primary tumors. To determine the 

possible exploitation of this library as a model to study the CRC epigenomic landscape we 

characterized the PDOs at molecular level.  

First, we evaluated whether our PDOs preserve the morphological characteristics and the 

deregulated architecture of crypt/villus-like structures typical of human colon cancer using 3D-

immunofluorescence whole mount analysis. CRC PDOs showed disorganized epithelium polarity 

(Epcam and F-actin staining respectively, Figure 22 C, first lane), random distribution of cell 

proliferation (Ki67, Figure 22 C, first lane), displaced localization of enterocytes (FABP1, Figure 

22 C, second lane) and presence of cytokeratin 20 positive cells (KRT20, Figure 22 C, third and 

fourth lane), faithfully recapitulating the common dysplastic features of human CRC. The presence 

of chromogranin A, a marker of enteroendocrine cells, specifically in PDO24 (Figure 22 C, third-

fourth lane) but not in other PDOs (Figure 22 C, second lane) further indicated the heterogeneity 

of our library. Likewise, goblet-specific mucin 2 is absent in most organoids PDOs but massively 

produced in the organoid derived from the mucinous adenocarcinoma of patient 13 (Figure 22 C 

third and fourth lane), consistent with the histopathological features of the clinical specimen 

(Table 1).  
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Figure 22 | Establishment of a heterogeneous PDOs library as a model of CRC that 

recapitulates the in vivo architecture of the primary tumors. (A) Graphical representation of 

the work. (B) Sankey plot showing the classification (MSI/MSS, CMS27, CRIS31 and CRCassigner 

of Sadanandam26) of the primary tumor tissues. (C) Representative confocal images of 3D-

Immunofluorescence whole-mount analysis on CRC PDOs. Different markers of colon cell types 

are shown: polarity and structure (F-Actin, first lane), epithelium (EpCAM, first lane), 

proliferation (Ki67, first lane), absorptive cells (FABP1, second lane), enteroendocrine cells 

(ChgA, second and third lane), goblet cells (Muc2, third lane), and top epithelial crypt cells 

(KRT20, third lane). The fourth lane provides an enlargement of the boxed area in the third lane. 

Scale bars, 100 µm.  
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We then continued with the transcriptomic characterization of PDOs performing Principal 

Component Analysis (PCA) on all samples. We found that normal mucosa tissues derived from 

the same CRC patients are transcriptionally homogeneous and distinct from the nearby tumor 

tissues (Figure 23 A). On the contrary, the patient-driven heterogeneity of tumor tissues, evident 

on the second principal component (PC2), is preserved in PDOs which share the same PC2 spatial 

localizations as their parental tissues. Notably, multiple organoids from the same patient were 

grouped together indicating that PDOs remain transcriptionally stable during prolonged culture. 

Indeed, we showed the absence of significant gene expression alterations between early and late 

passage organoids (Figure 23 B), consistent with the lack of changes in culture morphology and 

proliferation rate. Focusing on the transcriptional comparison between PDOs and parental tumors, 

we found that 84% of expressed genes were concordant between PDOs and tumors (Figure 23 C, 

Venn diagram) with the expression levels across genes being well correlated (Figure 23 C, 

correlation plot). Using differential expression (DE) analysis between tumor and normal tissues, 

we identified the transcriptional changes associated to cancer development (tumor-related 

signature). To assess whether these are preserved in the organoids, we performed hierarchical 

clustering analysis revealing that the tumor-related signature groups PDOs together with primary 

tumors and separately from normal colon mucosa (Figure 23 D). To further validate whether the 

transcriptional profile of PDOs recapitulates that of tumor tissues, we performed gene set 

enrichment analysis (GSEA) using previously reported gene expression data sets from colon 

carcinoma patients152, and showed that PDOs were significantly enriched for transcripts that were 

upregulated in colon carcinoma and downregulated in normal mucosa (Figure 23 E). We next 

evaluated whether the transcriptomic differences between primary tumors and PDOs are primarily 

due to the lack of a stromal component in PDOs. Focusing on the genes expressed in tumors but 

not in PDOs (Figure 23 C, Venn diagram, n=3,412), we found that they were enriched for gene 

signatures of stromal cells31(Figure 23 F). We then investigated the expression distribution of the 

separate gene signatures for cancer-associated fibroblasts, endothelial cells and leucocytes31 in 

PDOs and tumors. Consistent with previous reports31,33, tumor tissues showed a prominent stromal 

component compared to PDOs. These findings indicate that PDOs retained the CRC gene signature 

but were deprived of stromal contamination, providing an advantage in deciphering the CRC 

molecular profiles inherent to cancer cells (Figure 23 G). Taken together, this data demonstrated 

that the histological subtypes and transcriptional signature of human CRC were conserved in our 

balanced library of PDOs, rendering it suitable for deciphering the common epigenetic blueprints 

of the colon cancer-cell intrinsic phenotype. 
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Figure 23 | PDOs library recapitulates the transcriptional profile of the primary tumors. (A) 

PCA on normalised gene counts from RNA-seq data distinguished normal colon mucosa, primary 

tumors and PDOs along the principal component 1. (B) MA plot of log2 mean gene expression 

over log2 fold-change showing the lack of differentially expressed genes between early and late 

passages of organoids. (C) Correlation between log2 mean normalized gene counts between 

primary tumors and PDOs. Venn diagram showing the concordance of genes expressed between 

tumors and PDOs.  
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(D) Hierarchical clustering analysis using differentially expressed genes (DEG) between tumor 

and normal colon tissues clustered PDOs together with parental tumors. Z-score normalized counts 

of DEG are represented as a heatmap. Tissue populations and patients are represented by color-

coded bars above the heatmap. (E) GSEA showing enrichment of DEGs between PDOs and 

normal colon tissue in gene signatures that are up- (top) or down- (bottom) regulated in colon 

carcinoma clinical specimen compared to normal mucosa152. Normalized enrichment score (NES) 

and p-value are reported. (F) Genes expressed in primary tumors but not in PDOs (n=3,412), are 

enriched for gene signatures of stromal cells31. (G) Heatmap of Z-score normalized gene counts 

for stromal-related gene signatures31 across primary tumors and PDOs. Tissue populations and 

patients are represented by color-coded bars above the heatmap. Stromal cell gene signatures are 

shown on the left side of the heatmap.  

4.2  De novo chromatin state discovery reveals the epigenetic 
landscape of human CRC 

Taking advantage of our molecularly diverse PDOs library, we sought to provide a 

systematic characterization of human CRC at the epigenomic level. The first step toward this aim 

was to perform a multi-factorial integrative analysis of genome-wide chromatin 

immunoprecipitation sequencing (ChIP-seq) for a core set of five histone modifications 

(H3K4me3, H3K27ac, H3K4me1, H3K36me3, and H3K27me3) on all PDOs. Consistent with a 

good enrichment signal, the genome-wide distribution of histone modifications (Figure 24 A) 

reflected their expected localization in relation to the gene body as well as TSS and end (TES) 

sites. Correlation analyses confirmed the clustering of the same histone marks for different patients 

and showed the clear separation between the branches relating to the repressive marker 

H3K27me3, the elongation marker H3K36me3, and the block of histone marks defining active 

regulatory regions (H3K4me3, H3K27ac, and H3K4me1) (Figure 24 B). To capture the 

epigenomic layer of CRC complexity in a systematic manner rather than based on a single 

epigenomic feature, we implemented machine learning approaches to perform de novo chromatin 

state characterization on the complete ChIP-seq data for our PDOs, including additional ChIP-seq 

data for five normal colon tissue, six primary colon tumors and two CRC cell lines (Errore. 

L'origine riferimento non è stata trovata.). Using ChromHMM174, we explored the 

combinatorial patterns of the five histone marks in an 8-state model and predicted specific genomic 

features with high resolution and robustness across our samples. Figure 24 C reports the histone 

marks emission probability heatmap which represents the frequency in which different histone 

modifications are co-present in the same genomic region. The annotation term for each state was 

chosen according the Roadmap Epigenomics Consortium nomenclature186. In detail, two states 
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were annotated as promoter states (“Flanking Active TSS - FlnkActTSS” and “Active TSS - 

ActTSS”) since they showed enrichment for both H3K4me3 and H3K27ac. The two states with a 

strong enrichment of H3K4me1 and H3K27ac were defined as “Flanking Active Enhancers - 

FlnkActEnh” and “Active Enhancers - ActEnh”. The state characterized by the presence of 

H3K4me1 alone was defined as “Weak Enhancers - WkEnh”. The “Elongation – Elong” and 

“Repression - Repr” were characterized by the presence of H3K36me3 and H3K27me3, 

respectively. “Quiescence” state marks regions without any significant enrichment of histone 

marks. Interestingly, the promoter and enhancer states were 11% and 30%, respectively, of the 

total chromatin states identified while the repressed states represented only the 7% (Figure 24 D). 

To further confirm the robustness of our results we verified that the proportion of each chromatin 

state was comparable across PDOs (Figure 24 E). We then compared our ChromHMM data with 

chromatin accessibility levels for colon adenocarcinoma using ATAC-seq (Assay for Transposase 

Accessible Chromatin with high-throughput sequencing) datasets obtained from The Cancer 

Genome Atlas (TCGA). The chromatin states identified in PDOs remarkably concur with 

chromatin accessibility, with active states displaying the highest and more inactive regions the 

lowest ATAC-seq signals, respectively (Figure 24 F). This provides further support that PDOs 

preserve the regulatory networks of primary tumors and thus represent a faithful resource to 

investigate the epigenetic landscape of CRC. Importantly, the ChromHMM-defined chromatin 

states of CRCs constitute a precise atlas of genome-wide regulatory elements that enables the 

functional interpretation of ATAC-seq-defined open chromatin regions. 

 

Figure 24 | Epigenomic landscape of CRC using de novo chromatin state discovery. (A) 

Representative density plots (top) of average intensity and corresponding heatmaps (bottom) 
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displaying the relative distribution of H3K4me3 (red), H3K27ac (pink), H3K4me1 (yellow), 

H3K36me3 (green), and H3K27me3 (grey) signals at regions surrounding +/- 3kb of the gene body 

for all the genes present in GENCODEv25. (B) Pearson correlation heatmap of ChIP-seq data for 

the complete set of five histone modifications across all PDOs. (C) Combinatorial pattern of 

histone marks in an 8-state model using ChromHMM. The heatmaps show the frequency of the 

histone modifications found in each state (Emission). (D) Average proportion of each chromatin 

state over all PDOs. The chromatin segments for active/flanking TSS and active/flanking enhancer 

states are merged into the promoter and enhancer functional elements, respectively. (E) 

Distribution of the eight ChromHMM states for each PDOs. FlkActTSS: Flanking Active TSS, 

ActTSS: Active TSS, FlkActEnh: Flanking Active Enhancers, ActEnh: Active Enhancers, 

WkEnh: Weak Enhancers, Elong: Elongation, Repr: Repression, Quies: Quiescence. (F) Spider 

plot showing the probability of each ChromHMM-defined chromatin state overlapping ATAC-seq 

regions for TCGA colon adenocarcinoma samples. Probabilities for each PDOs are represented by 

different colors.  

The histone modification pattern of FABP1, a marker of enterocytic differentiation, is an 

example of an open and active chromatin profile that favours gene expression (Figure 25 A). As 

shown in the immunofluorescence analysis (Figure 22 C, second lane), the expression of the 

FABP1 protein is abundant in all PDOs consistent with the increased RNA-seq levels across all 

samples, regardless of their molecular subtype. This conservation is also reflected in the epigenetic 

level as shown by the presence of active histone marks (H3K4me3/H3K4me1/H3K27ac) at the 

promoter and flanking region, and of H3K36me3 in the gene body. Regulatory variability across 

PDOs was observed in the gene encoding for laminin subunit α-5 (LAMA5) (Figure 25 B), a 

marker of cell adhesion and migration reported to be involved in metastasis187. Active transcription 

in PDO11 is indicated by a ChromHMM profile that associates with active states around the TSS 

and with an elongation state along the gene body. On the contrary, LAMA5 is actively silenced in 

PDO18 evident by the loss of H3K36me3 and the accumulation of the H3K27me3 repressive mark 

at the promoter and throughout the gene body. Interestingly, the effect of opposite epigenetic 

profiles at LAMA5, and also at the MUC2 gene, was confirmed at the protein level by 3D 

immunofluorescence analysis in PDO11 and PDO18 (Figure 25 C). PDO11 showed an active 

chromatin profile at both loci supporting the transcription of the MUC2 and LAMA5 genes; at the 

protein level we can clearly see that both proteins are present. The abundant expression of the 

goblet cell-specific marker MUC2 in PDO11 also suggests a mucinous phenotype that is consistent 

with the MSI status of this tumor188. On the contrary, the LAMA5 and MUC2 proteins are not 

detected in PDO18 consistent with the repressed chromatin profile of their genomic loci. To 
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encourage and facilitate the interrogation of the identified regulatory elements, we created a web 

browser (available at http://hepic.homic.eu) that enables the visualization of our comprehensive 

epigenetic resource of human CRC.   

 

Figure 25 | Genomic overview of two representative genes with open chromatin states and 

repressed states. Representative tracks of ChromHMM states for the FABP1 (A) and LAMA5 

(B) genomic loci in all PDOs. The expanded regions show H3K4me3, H3K27ac, H3K4me1, 
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H3K36me3 and H3K27me3 ChIP-seq profiles, along with RNA-seq signal and ChromHMM states 

for PDOs of different molecular subtypes. (C) The epigenetic and transcriptional profiles of the 

LAMA5 and MUC2 genes in PDO11 and PDO18 (right panel) are concordant with their protein 

expression levels as shown by confocal images of 3D immunofluorescence whole mount analysis 

on CRC PDOs 11 and 18 stained for MUC2 (green), LAMA5 (red), and F-Actin (white) (left 

panel). 

4.3  Definition of human CRC enhancerome 
Following the reconstruction of the epigenomic landscape of colon cancer, we sought to 

gain further insights into the human colon cancer enhancerome. Starting from our de novo 

chromatin discovery, we used the “Active Enhancers” and “Flanking Active Enhancers” 

ChromHMM states (Figure 24 C), characterized by the co-presence of H3K27Ac and H3K4me1, 

to select active distal enhancer regions for PDOs and normal colon tissues. We identified a total 

number of 33,131 enhancers identified in at least two PDOs and/or normal tissues and located 5 

kb away from TSS. The collection of all the active enhancer regions of human CRC covered the 

3% of the human genome. Unsupervised clustering based on the H3K27ac signals of the ~33K 

enhancers showed a clear distinction between the enhancerome of PDOs and normal colon tissues 

(Figure 26 A). To discriminate between tumoral versus normal colon active enhancers, we 

performed a differential activation analysis and we identified 7,828 enhancers that were 

differentially enriched (gained or lost) in H3K27ac of PDOs compared to normal colon mucosa 

(adjusted P-value < 0.01 and |log2FC| > 2) (Figure 26 B). Of those, 2,419 enhancers were 

specifically activated in PDOs whereas 5,409 active regulatory regions were upregulated in normal 

colon mucosa. The different number of detected enhancers was likely related to the low 

heterogeneity of normal colon tissues, consistent with their transcriptional profile (Figure 23 A, 

group of N tissues). To seek for common epigenetic blueprints across our human CRC library, we 

looked at the distribution of tumor enriched enhancers in the CRC PDOs. Notably, 20% of the 

identified gained enhancers was conserved in 8 to 10 CRC PDOs (n=486), and half of the total 

activated tumor-specific enhancers were shared in 5 out of 10 patients (Figure 26 C), 

independently on their original molecular and histological features (Table 1). The remaining 

enhancers, discovered in 1 to 4 PDOs, were likely related to patients’ heterogeneity and specific 

molecular features. The relatively even distribution of the non-shared enhancers across PDOs 

(Figure 26 D) along with the high number of conserved enhancers, indicates that there is no bias 

in the discovery of enhancers across PDOs.  
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Figure 26 | Human CRC enhancerome definition. (A) Unsupervised clustering and Pearson 

correlation heatmap of H3K27ac ChIP-seq data for the 33,131 ChromHMM-defined enhancers 

clearly divides PDOs and normal colon tissues. (B) Volcano plot of differentially enriched 

enhancer regions between PDOs and normal colon mucosa. Dotted lines indicate thresholds for 

FDR < 0.01 and |log2 fold-change| > 2 (C) Pie chart reporting the percentage of differentially 

gained enhancers in PDOs that were shared across different patients. (D) Stacked bar plot reporting 

the distribution of gained enhancers across PDOs. 
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We report here the genomic overview of PHLDA1 (Figure 27 A, red tracks), a gene 

upregulated in colon cancers189,190 and involved in tumor cell proliferation and migration191. In line 

with previous reports126, PHLDA1 displays a conserved epigenetic signature of regulatory regions 

located downstream the gene, with high levels of H3K27 acetylation shared among all CRC PDOs 

compared to the normal colon tissue reference track (Figure 27 A, blue tracks). Conversely, a 

common feature of tumors can be the loss of specific colon enhancer activity related to 

differentiation programs62 as underlined by the lack of H3K27 acetylation across and upstream the 

MUC4 gene region in our PDOs (Figure 27 B). Overall, by exploiting the de novo chromatin states 

reconstruction in PDOs we were able to characterize the CRC enhancerome, identify tumor-

specific active enhancers and reveal a novel layer of conserved regulation (consisting of 

approximately 500 active enhancers) that is independent of tumor diversity.  

 

Figure 27 | Genomic overview of gained and lost active enhancer regions in PDOs. (A-B) 

Representative tracks of H3K27ac and ChromHMM profiles, illustrating examples of a gained (A) 

and a lost (B) enhancer region in PDOs compared to normal colon mucosa. Shaded boxes indicate 

the presence or absence of H3K27ac peaks. The Capture Hi-C track highlights the promoter-

enhancer interactions within each genomic region. 

 

4.4  Identification of transcription factors involved in the CRC 
enhancerome regulation 

One of the essential steps to untangle the complex regulatory network orchestrating the 

CRC enhancerome is the study of transcription factor occupancy at the identified enhancer regions. 
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To this extent, we performed motif enrichment analysis within the accessible regions of the 

conserved gained enhancers. Interestingly, one of the enriched motifs in PDOs was that of the 

TEAD family transcription factors, suggesting a role for the YAP/TAZ transcriptional coactivators 

as putative transcriptional regulators of the conserved CRC enhancerome. The identification of 

YAP/TAZ as putative regulators of the CRC enhancerome is further supported by the identification 

of motifs for AP-1 factors (i.e., Jun and Fos family members) as highly enriched in the conserved 

CRC enhancers. Indeed, AP-1 has been recently established in various publications as an intimate 

partner of YAP/TAZ, co-occupying disproportionally and pervasively cis-regulatory regions also 

bound by YAP/TAZ and TEAD 192.  

To further validate the strength of this findings, we sought to determine which of the genes 

annotated to gained enhancers were upregulated in the majority of PDOs compared to normal 

tissues. To properly assign each of the 2,419 gained enhancers to a putative target gene, we 

integrated our ChIP-seq data with capture Hi-C data on human colon cancer169 and the remaining 

differentially activated enhancers were annotated using the nearest protein-coding gene 

overlapping a ChromHMM-defined active promoter state (see methods section). This analysis 

annotated our 2,419 CRC-specific gained enhancers to 1,932 genes. Then, we selected those genes 

that were differentially expressed in CRC PDOs versus normal tissue based on RNA-seq analysis 

(n=495, padj <0.05) (Figure 28 A). Next, we investigated the biological function of the tumor-

specific enhancerome target genes by performing a functional enrichment analysis. The results, 

plotted in Figure 28, show the most significantly enriched pathways, associated to our CRC-

specific enhancers. Overall, the biological relevance of all the detected pathways (Figure 28 B, 

C) confirm the tumor-specific nature of the identified CRC enhancerome. Interestingly, the 

presence of the Hippo signalling pathway as the first biological term suggests an involvement of 

the mechano-transducers YAP/TAZ in the activation of this tumor-specific epigenetic program. In 

summary, through integrative analyses of multi-omics datasets we characterized the CRC 

enhancerome highlighting a role for the YAP/TAZ co-activators in regulating the cancer-cell 

intrinsic active enhancers. 
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Figure 28 | Functional enrichment analysis of tumor-specific enhancerome regulated genes. 

(A) Normalized gene count distribution of the gained-enhancer associated genes in normal 

adjacent tissue and PDOs are reported in box plot. **** P < 0.0001 (Wilcoxon rank sum test). (B) 

Significantly enriched pathways related to gained enhancers in PDOs (g:SCS threshold < 0.05). 

The size of the circles corresponds to the number of gained-enhancer associated genes present in 

the geneset of a particular pathway (Gene Ratio). The dotted line indicates the threshold for 

significantly enriched pathways (false discovery rate < 0.05). (C) Network constructed considering 

the overlap between pathways enriched for tumor-specific genes regulated by gained enhancers. 

Circles represent pathway terms and the size of each circle is proportional to the number of genes 

present in the pathways’ genesets. The circles are coloured according to the enrichment P-value. 

4.5  YAP/TAZ as key regulators of the conserved CRC 
enhancerome 

The Hippo pathway transducers YAP/TAZ are stably activated in CRC and other types of 

cancer193 due to different functional194 and mechanical stimuli195. In order to decipher the role of 

YAP/TAZ in the regulation of CRC enhancer regions, we first inspected the expression level of 

the Hippo signalling transducers YAP and TAZ. The transcriptional profile of both YAP and TAZ 

showed an enrichment in the tumor counterpart, including both PDOs and tumor tissues, compared 

with the normal adjacent tissues (Figure 29 A). Interestingly, TAZ showed the largest difference 

in gene expression levels compared to the normal counterpart (log2FC > 7). This result was also 

confirmed at the protein level using immunohistochemistry analysis. YAP/TAZ were not detected 
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in the nucleus of normal tissue samples but, consistent with literature data194,196, they were instead 

mostly localized in the nucleus of primary tumors and PDOs (Figure 29 B, second and third rows), 

confirming the hyperactivation of this complex in CRC. We next sought to investigate the role of 

the transcriptional activators YAP/TAZ in the epigenetic regulation of CRC PDOs. During tumor 

progression, disturbed tissue architecture increases compression forces and alters the stiffening 

and composition of the extracellular matrix (ECM)195 favouring a stable activation of YAP/TAZ 

in a large fraction of cancer cells. Nevertheless, YAP/TAZ constantly shuttle between cytoplasm 

and nucleus, where they can bind to the DNA through the interaction with TEAD and other co-

factors197. The continuous exchange between cytoplasm and nucleus, the sensitivity to the tissue 

stiffness and the dependency to TEAD family for the DNA binding198 make YAP/TAZ extremely 

difficult to fix and immunoprecipitate. For this reason, to successfully perform a ChIP-seq 

experiment on YAP/TAZ a large quantity of material is required which is often difficult to obtain. 

To overcome this challenge, we set up and optimized a protocol to efficiently perform YAP/TAZ 

immunoprecipitation starting from a low amount of cells using the ChIPmentation protocol (see 

methods section). We generated a genomic map of TAZ recruitment to the chromatin showing the 

distribution of TAZ signals across ChromHMM-defined active enhancers (n=33,131) and all 

annotated promoters (Figure 29 C). We identified 14,878 statistically significant TAZ peaks, 

comparable with previous reports192. Figure 29 D shows the enrichment of TAZ at the promoter 

level of Hippo signalling canonical target genes.  

 

Figure 29 | YAP/TAZ transcripts and proteins are enriched in CRC tumors. (A) Violin plot 

shows an enrichment of YAP1 and WWTR1 normalized gene counts distribution in primary 

tumors and PDOs compared to normal colon tissues. ** P < 0.01, *** P < 0.001 (Wilcoxon rank 

sum test). (B) Representative immunohistochemistry images of a normal tissue, a primary tumor, 

and an organoid line stained for YAP1 and TAZ. The fourth row provides a magnification of the 

boxed area in the third row. Scale bars, 50 µm. (C) Signal density plot (top) and corresponding 
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heatmaps (bottom) displaying the relative distribution of TAZ peaks around enhancer and 

promoter regions. (D) Genomic overview of the YAP1/TAZ canonical targets CTGF (top) and 

CCND1 (bottom). Profiles for H3K4me3, H3K27ac, and H3K4me1, ChromHMM states and TAZ 

ChiP-seq signals are reported.  

Furthermore, the genomic profile of TAZ enrichment is also mirrored by the YAP 

immunoprecipitation profile (Figure 30 A). 

 

Figure 30 | Genomic overview of YAP/TAZ canonical targets. (A) Genomic overview of 

CCND1 (top left), BCL2L1 (top right), FAM83H (bottom left), and WWC2 (bottom right) 

showing the distribution of H3K4me3, H3K27ac, H3K4me1, TAZ, and YAP ChIP-seq signals 

along with ChromHMM states. 

Since TEAD family proteins are necessary for the binding of TAZ to the DNA, we 

confirmed their cooperative interaction in human CRC199 by searching for transcription factor 

binding motifs encompassing the summit of TAZ peaks and we found the TEAD family binding 

motif as the most enriched (Figure 31 A). To further confirm the active role of this transcriptional 

activator in CRC, we combined the CRC-specific ChromHMM states and the ChIP-seq data for 

TAZ to characterize its genomic occupancy. Interestingly, the majority of TAZ peaks were located 

at active regulatory regions with the 95% of peaks equally distributed across promoters and 

enhancers (Figure 31 B). Focusing on the gained CRC-enhancerome, we assessed the overlap of 

TAZ peaks with the total number of differentially activated enhancers (n=2,419, Figure 26 B) as 

well as those conserved in at least 50% or 80% of PDOs (Figure 26 C). Notably, TAZ enrichment 

increased with the level of enhancer conservation across PDOs (Figure 31 C), suggesting a role 

for TAZ in regulating the shared CRC enhancerome independent of patient-driven tumor diversity. 

TAZ bound 40% of highly conserved gained enhancers (n=195) compared to less than 20% of all 
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gained enhancers. This result indicates a key role of YAP/TAZ in the regulation of the CRC-

conserved enhancers. The core 195 enhancers shared by at least eight PDOs were assigned to their 

interacting promoter, through capture Hi-C data or the nearest active TSS, generating a CRC 

enhancerome signature of 211 TAZ-bound genes. 

 

Figure 31 | YAP/TAZ are key regulators of the conserved CRC enhancerome. (A) Enrichment 

of the TEAD binding motif around the summit of TAZ peaks. (B) Distribution of TAZ peaks 

across functional elements for active and inactive genomic regulatory regions defined in our 

ChromHMM de novo discovery analysis (pie chart). (C) Enrichment of TAZ in CRC-specific 

enhancers. **** P < 0.0001 (Fisher’s exact test). G.E.: Gained enhancers. 

Interestingly, TAZ itself was one of the signature genes shared by all PDOs. As shown by 

capture Hi-C data, its expression was regulated by a TAZ-bound intronic enhancer, marked by an 

“Active Enhancer” chromatin state and located almost 100 kb downstream the TSS (Figure 32 A, 

boxed area). The enrichment of TAZ at its promoter and the reinforcement performed by the 

possible TAZ-regulated enhancer suggests previously unreported feedback loop driving its 

transcriptional modulation. The CRC enhancerome signature also included the gene that encodes 

for epiregulin (EREG), a known ligand of the epidermal growth factor (EGF) receptor whose 

expression is increased in numerous human cancers200. Furthermore, EREG is a target of the Hippo 

signalling pathway and is involved in intestinal regeneration and YAP function196. The regulation 

of EREG is mediated by two long distant downstream enhancers detected thought capture Hi-C 

data (Figure 32 B). These TAZ-bound enhancers were enriched for H3K4me1, H3K27ac and 

H3K4me3. The enrichment of H3K4me3 and the high level of RNA-seq peaks further underlines 

the hyperactivation of these regulatory regions. 
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Figure 32 | Genomic overview of genes regulated by TAZ-bound conserved CRC enhancers. 

(A-B) Representative genomic regions of TAZ target genes displaying Capture Hi-C interactions 

between promoters and conserved CRC enhancers. The tracks show H3K4me3, H3K27ac, 

H3K4me1 and TAZ ChiP-seq signals along with RNA-seq and ChromHMM profiles for the TAZ 

(A) and EREG (B) genomic loci. 

Another key gene that was annotated to the TAZ-regulated conserved CRC enhancers was 

Forkhead box Q1(FOXQ1), which is involved in cell cycle regulation, cell signalling and 

tumorigenesis201. The enrichment of YAP/TAZ at the promoter and a highly active enhancer 

upstream of FOXQ1, in conjunction with an increased expression level of this gene, pinpoints 

FOXQ1 as a new possible YAP/TAZ target gene (Figure 33 A). To verify this finding, we 

performed in situ hybridization on normal and tumor tissues confirming that FOXQ1 gene 

expression is restricted to the CRC sections that express YAP in the nucleus (Figure 33 B). Taken 

together, these results revealed a conserved CRC-enhancerome core that is regulated by the Hippo 

signalling pathway effector TAZ independently of patient-to-patient tumor molecular diversity. 

This shared-enhancerome core offers new insights into CRC epigenetics by highlighting enhancer 

regions that are involved in tumor transcriptional deregulation and controlled by the Hippo 

transducer TAZ. 
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Figure 33 | FOXQ1 as a potentially new YAP/TAZ target gene. (A) Genomic overview of 

FOXQ1 showing the distribution of H3K4me3, H3K27ac, H3K4me1, TAZ, and YAP ChIP-seq 

signals along with RNA-seq levels and ChromHMM states. (B) FOXQ1 expression in the same 

tissues expressing YAP. Images of a human CRC (right) and nearby healthy colon mucosa (left) 

tissue within the same section. The graphs show: immunohistochemical (IHC) staining for YAP 

(upper and middle panels; scale bars, 250 and 50 mm, respectively) and RNA in situ hybridization 

(ISH) for FOXQ1 (bottom panel; scale bars, 50 mm). Nuclei were counterstained with 

hematoxylin. 

4.6  TAZ-regulated CRC enhancer blueprint is shared by 
various types of cancer 

After the identification of the YAP/TAZ-regulated CRC conserved enhancerome, we asked 

whether this core of enhancers was also shared in other cancer types. To investigate the relevance 

of the YAP/TAZ-regulated CRC enhancerome in human cancer pathology, we assessed the 

chromatin accessibility levels of the 195 core CRC-enhancers in 23 diverse cancer types using 

ATAC-seq data obtained from TCGA116 (Figure 34 A). The 195 CRC enhancer regions displayed 

a strong chromatin accessibility profile across all colon adenocarcinoma (COAD) TCGA samples 

(Figure 34 A, left part of the heatmap) validating their regulatory role and underlining the CRC-

specific nature of the TAZ-regulated conserved enhancerome detected in the PDOs library. 

Notably, 46 out of the 195 active regulatory elements (23%) were highly accessible in all cancer 

types (Figure 34, enhancer cluster in blue). We refer to these accessible and shared regulatory 

elements as “ultra-conserved” providing a core of pan-cancer enhancers, with a possible 

involvement in the molecular mechanisms at the basis of tumor biology and maintenance. To 

validate this finding, we analysed H3K27ac occupancy from several primary tumor and normal 

adjacent tissues (Table 3). Interestingly, we observed that there was an enrichment of H3K27ac 

signal at the pan-cancer enhancers in all primary tumors compared to normal tissues (**** P < 
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0.0001, Wilcoxon rank sum test, Figure 34 B), confirming the epigenetic activation of these 

enhancer regions in diverse cancer types. 

 

Figure 34 | Conserved CRC enhancers are shared by other types of cancer. (A) Chromatin 

accessibility profiles of the 195 conserved gained enhancers in 23 diverse primary human cancer 

types reveals a signature of 46 pan-cancer enhancers with highly conserved accessibility profiles 

across cancer types. The heatmap represents log2 normalized insertion counts of ATAC-seq data 

derived from TCGA. Colon adenocarcinoma (COAD) samples are the first cancer type reported 

on the left of the heatmap. ACC, Adrenocortical carcinoma; BLCA, Bladder Urothelial 

Carcinoma; BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell carcinoma and 

endocervical adenocarcinoma; CHOL, Cholangiocarcinoma; COAD, Colon adenocarcinoma; 

ESCA, Esophageal carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and Neck 

squamous cell carcinoma; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary 

cell carcinoma; LGG, Brain Lower Grade Glioma; LIHC, Liver hepatocellular carcinoma; LUAD, 

Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; MESO, Mesothelioma; PCPG, 

Pheochromocytoma and Paraganglioma; PRAD, Prostate adenocarcinoma; SKCM, Skin 

Cutaneous Melanoma; STAD, Stomach adenocarcinoma; TGCT, Testicular Germ Cell Tumors; 

THCA, Thyroid carcinoma; UCEC, Uterine Corpus Endometrial Carcinoma (B) H3K27ac signal 

intensities for the pan-cancer enhancers in primary tumors compared to normal tissues. ****P < 

0.0001, Wilcoxon rank sum test. 
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Among the genes annotated to the ultra-conserved enhancers, some are involved in cancer 

(e.g. MYC) and/or are known target genes of the Hippo signalling pathway (e.g. EREG, PHLDA1, 

FJX1)194, whereas for some genes (e.g. UBE2H) there are no previous reports of their role as 

YAP/TAZ target genes (Figure 35 A).  

 

Figure 35 | Circos plot of the CRC gained enhancerome layers. (A) Circos plot showing the 

genomic distribution of CRC-specific gained enhancers. The outer ring displays the chromosomes. 

Tracks are described from outside to inside. Track 1: Enhancers differentially activated in PDOs 

compared to normal colon tissue (n=2,419). Track 2: Gained enhancers shared by at least 5 PDOs 

(n=1,216). Track 3: Gained enhancers shared by at least 8 PDOs (n=486). Track 4: TAZ-bound 

gained enhancers shared by at least 8 PDOs (n=195). Track 5: TAZ-bound ultra-conserved pan-

cancer enhancer regions (n=46) with high chromatin accessibility profiles in diverse human 

cancers based on TCGA ATAC-seq data. The inner ring highlights some of the genes annotated 

to the 46 pan-cancer enhancers. The number of enhancers for each chromosome is balanced. The 

list of the 46 pan-cancer enhancers is reported on the right. 

Interestingly, the intronic enhancer of TAZ was part of the 46 pan-cancer enhancers bound 

by YAP/TAZ. Figure 36 A displays the genomic overview of the TAZ locus considering the 

epigenetic profile of normal adjacent tissue, PDOs and ATAC-seq data deriving from diverse types 

of tumors. The normal tissue displays a repressed configuration of the chromatin, lack of gene 
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expression (consistent with Figure 29 A) and lack of TAZ enrichment at both enhancer or 

promoter level. On the contrary, the chromatin profile in PDOs shows a highly active chromatin 

configuration together with high gene expression and TAZ enrichment. Considering the TCGA 

ATAC-seq profiles, we can observe the presence of multiple, highly accessible regions in all the 

tumors. One of the open chromatin regions coincides with the YAP/TAZ-bound CRC-conserved 

enhancer (Figure 36 A, boxed area), suggesting the functional role of this transcriptional activator 

in diverse human cancer types. Overall, through integrative multi-omics analyses of stroma-free 

PDOs we identified a YAP/TAZ-regulated CRC active enhancerome that is shared by all TCGA 

colon adenocarcinoma samples, demonstrating that this enhancer signature captures the epigenetic 

profile intrinsic to cancer-cells independent of stromal contribution. Extending the relevance of 

our findings to other cancer pathologies, we revealed a core of “ultra-conserved” pan-cancer 

enhancers that display an active chromatin profile in diverse solid tumors, suggesting a role for the 

Hippo signalling pathway effectors in the deregulation that characterizes the human cancer 

enhancerome. 
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Figure 36 | Genomic overview of the TAZ locus. (A) Genomic overview of the TAZ locus in 

representative samples of normal tissue and PDOs, and in TCGA cancer types. Upper panel shows: 

H3K27ac ChIP-seq profiles, ChromHMM states and RNA-seq signals in normal tissue; H3K27ac 

and TAZ ChIP-seq profiles, ChromHMM states, and RNA-seq signals in PDOs; and CRC capture 

Hi-C data. Bottom panel displays ATAC-seq profiles for 23 TCGA cancer types. 

4.7  Single-cell landscape of the pan-cancer core of enhancers 
We next sought to investigate the epigenetic abberration at single cell resolution. To this 

extent, we investigated the distribution and expression of the signature genes regulated by the 

YAP/TAZ-bound pan-cancer core of enhancers at single cell resolution by performing single-cell 

RNA sequencing of a primary CRC tissue. Following quality control analyses to remove 

contaminants and low quality cells, we analyzed 3044 cells and 19460 genes. Graph-based 

clustering of the CRC tissue identified eleven clusters. Using previously reported 
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markers80,170,184,202, we were able to discriminate six normal-like clusters (Figure 37 A, B): stem 

cells (LGR5, SMOC2, RGMB, in lightgreen), early and late progenitors (in grey and orange, 

respectively) on the basis of decreasing level of stemness and cell-cycle genes and increasing level 

of terminally differentiated epithelial cells, enterocytes (CA1, KRT20, FABP1, in purple), goblet 

cells (SPINK4, REG4, TFF3, in darkgreen), and paneth cells (SPIB, CA7, BEST4, in azure). We 

further confirmed the identity of these clusters by performing geneset enrichment analysis (GSEA) 

of the ranked differentially expressed genes for each normal-like cluster against reference genesets 

of differentiated epithelial cells published in a previous study184 (Figure 37 C). 

 

Figure 37 | Identification of known intestinal subpopulations in CRC primary tumor. (A) 

UMAP visualization reporting the six known populations (Stem cells, early and late progenitors, 

Enterocytes, Goblet and Paneth cells) and five unknowns clusters (M1-M5) identified using 

unsupervised clustering of a CRC primary tumor. Each point depicts a single cell, colored 

according to the cluster it belongs to. (B) UMAP coloured by the log expression of known marker 

genes for differentiated epithelial cells: stem cells (LGR5, SMOC2, RGMB), enterocytes (CA1, 

KRT20, FABP1), goblet cells (SPINK4, REG4, TFF3), paneth cells (SPIB, CA7, BEST4). (C) 

Geneset enrichment analysis of differentially expressed genes in CRC primary tumor clusters 

using reference genesets of differentiated epithelial cells published in previous work184. 

We next focused on the five additional clusters with an undefined cell phenotype (M1 to 

M5) and a substantial deviation from the normal epithelium differentiation programs (Figure 37 

A). Copy number variation (CNV) inference from gene expression data185 confirmed the presence 

of genetic aberrations in these clusters and revealed intratumor heterogeneity (Figure 38 A). M1-

5 clusters display diverse CNV patterns compared to normal-like cell populations, suggesting the 
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existence of two distinct genetic clones (clone A and B) which are represented by clusters M1-M3 

and M4-M5, respectively (Figure 38 B). Despite their undefined phenotypes, the five malignant 

clusters were characterized by heterogeneous transcriptional states related to cancer; stemness in 

M1, ribosomal biogenesis in M2-M3, proliferation in M4, and hypoxia in M5 (Figure 38 C). 

 

Figure 38 | Characterization of the heterogeneous transcriptional state of the malignant 

clusters. (A) Heatmap of scRNAseq-inferred large-scale chromosomal CNVs for individual cells 

based on average expression intensity across chromosomal segments. CNVs amplifications and 

deletions are denoted in red and blue, respectively. Comparison to the reference normal-like cells 

of the primary CRC tissue reveals two main patterns of CNVs, indicative of different genetic 

clones. (B) UMAP plot depicting clone A and B cells based on inferred CNV patterns (left) and 

barplot showing the percentage of clone A and B cells within each malignant population (right). 

(C) Transcriptional states in malignant clusters M1 to M5. GSEA of M1 enrichment in stem 

signature (first column). UMAP plots depicting increased expression of ribosomal genes in M2 

and M3 (second column), cell-cycle genes in M4 (third column), and a hypoxic score (CA9, 

SLC2A3, SLC2A1, HIF1A, VEGFA, PFKP, HK2, BNIP3, PDK1) in M5 (fourth column). 

We then performed a pseudo-time analysis and identified a differentiation trajectory 

originating from the stem compartment, progressing through transient amplifying cells, and finally 

culminating in enterocytes, goblet cells and the malignant cluster M5 (Figure 39 A, B). Analysis 

using PArtition-based Graph Abstraction (PAGA) confirmed the existence of two main branches 

of differentiation within the primary CRC tissue (Figure 39 C). With stem cells at the root, 
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malignant clusters mark a trajectory of tumoral states from M1 to M5 that is divergent from the 

normal differentiation paths of non-malignant cells toward enterocytes, paneth or goblet cells. 

 

Figure 39 | Trajectory analysis of the primary CRC tissue. (A) Force-directed graph depicting 

the malignant and non-malignant clusters of a primary CRC tissue. (B) Pseudo-temporal ordering 

of all clusters with stem cells (depicted in red) as root cells. (C) Trajectory analysis based on cell 

connectivity (see Methods session, Data visualization and trajectory analysis, Partition based 

graph abstraction) distinguishes two main branches of non-malignant and malignant 

subpopulations. Nodes correspond to the distinct cell clusters with the node size being proportional 

to the number of cells in the cluster. The thickness of the edges denotes the strength of connectivity 

between two clusters. 

After the extensive characterization of the cell populations present in the CRC primary 

tumor, we investigated the cancer regulatory blueprint defined by genes annotated to the 

YAP/TAZ regulated pan-cancer core of enhancers (Figure 34 A). Hierarchical clustering analysis 

using the genes annotated to the YAP/TAZ-regulated pan-cancer enhancers (n=46) showed that 

the gene signature of this blueprint can distinguish between the malignant and non-malignant cell 

populations (Figure 40 A, B).  
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Figure 40 | Cancer regulatory blueprint distinguishes between malignant and non-malignant 

clusters. (A) Force-directed graph depicting the malignant and non-malignant clusters of a primary 

CRC tissue. (B) Hierarchical clustering analysis and resulting dendrogram of cell populations 

based on genes associated to the CRC conserved YAP/TAZ-bound enhancers distinguishes non-

malignant from malignant cell clusters. 

To evaluate the signal distribution and intensity of the gene signature we exploited a score 

based on the co-expression of genes within cells and their level of expression, hereinafter referred 

to as cancer regulatory blueprint score (CRB score, see methods for more details). We observed 

that the CRB score is mostly absent from non-malignant populations but highly enriched in the 

malignant clusters (Figure 41 A, B). Interestingly, the CRB score is equally enriched in both 

genetic clones regardless of the genetic and transcriptional differences that define them. Moreover, 

M1 and M5 showed the highest enrichment for the CRB score (Figure 41 B). M1 portraits as the 

most immature part of the tumor, enriched in stem markers LGR5+, SMOC2+, RGMB+ and it is 

the starting point of the cancer-related transcriptional trajectory. Instead, M5 displays high 

expression of differentiated colon epithelium markers (e.g. KRT20+ and FABP1+) and represents 

the end point of the tumor developmental branch. This widespread cellular distribution of the 

cancer regulatory blueprint across diverse parts of the tumor irrespective of the intratumoral 

genetic and transcriptional heterogeneity suggests the involvement of the YAP/TAZ-regulated 

pan-cancer enhancers in both cancer initiation and maintenance. Previous studies185,196 reported 

the role of YAP/TAZ in the promotion of stem-like properties, amongst a diverse array of 

downstream effects. We thus asked whether the epigenetically-driven deregulation could relate to 

stemness. Interestingly, we found that not all malignant cells with an active cancer regulatory 

blueprint displayed stem-like properties. For instance, M1 and M5, the tumoral clusters with the 

highest CRB score (Figure 41 B, D, E, F), had moderate and low stemness scores, respectively 

(Figure 41 C, E, F). Conversely, the normal-like stem compartment displayed low CRB scores 

(Figure 41 A, B, E, F), consistent with the specificity of the blueprint in the malignant cell 



 
 

82 

populations. This suggests that the blueprint is a feature of cancer that relates to YAP/TAZ-driven 

effects on tumoral functional states that reach beyond the acquisition of stemness. Collectively, 

we show that the cancer regulatory blueprint is enriched in the malignant cell populations despite 

their genetic and transcriptional heterogeneity, is not related to stemness per se, and is associated 

to an aberrant YAP/TAZ activation that is required for both tumorigenesis and maintenance of the 

cancer cell state. 

 

Figure 41 | Malignant cells display significantly higher CRB scores. (A) Boxplot reporting the 

distribution of the CRB score in all non-malignant (green) and malignant (brown) clusters, and 

separately in malignant cells of clone A (sapphire) and clone B (yellow). Boxplots describe the 

median and interquartile range with whiskers denoting the 1.5 x interquartile range. (B-C) UMAP 

representation of the epigenetic (B) and stemness (C) score across all cell clusters. Contour lines 

denote cells of the stem, M1 and M5 cell populations. (D) GSEA plots showing the enrichment of 

the cancer regulatory blueprint in the M5 (top) and M1 (bottom) malignant cell populations. (E) 

Enrichment of the CRB and stemness scores across the malignant and non-malignant clusters of 

the CRC primary tissue. Stars on the edges denote a statistically significant enrichment (FDR < 

0.05). (F) Violin plots of the top quantile of the CRB score in the stem, M1 and M5 clusters (top), 

and distribution of the stemness score calculated in the same cells (bottom). *** P < 0.001, **** 

P < 0.0001, Wilcoxon rank sum test. 
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4.8  Pan-cancer enhancers core signature is shared among 
diverse types of cancer at single cell resolution 

Considering the great heterogeneity of cancers, we next asked whether our findings can be 

confirmed in an independent CRC dataset or a different tumor type. To this end, we took advantage 

of  single cell RNA sequencing data of whole CRC170 and adenocarcinoma (LUAD)171 tissues, 

including normal tissue counterparts. Considering the extensive work for cell population 

identification and labelling, we decided to maintain the original cell annotation as published in the 

two studies.  

We re-analysed a total of 63,689 cells from normal and tumor tissues of 23 Korean patients 

affected by CRC170. Since the single cell experiment was performed on the whole tissues, it was 

possible to identify not only epithelial cells but also B cells, Mast cells, Myeloid, Stromal cells 

and T cells from both normal and tumor counterpart (Figure 42 A, B) Furthermore, the 23 

collected samples represented the heterogeneity of CRC; in fact the samples were previously 

classified according to CMS classification and the number of samples belonging to each of the 

CMS subtypes 1 to 3 was well-balanced. CMS4 samples consisted of only 11 epithelial cells, 

probably due to their highly mesenchymal nature. We found that the CRB score was largely absent 

in the non-epithelial cells but was highly enriched in epithelial cells (Figure 42 C, D). Focusing 

on the epithelial compartment we observed not only the specificity of the CRB score for cancer 

cells (Figure 42 E) but also an enrichment of the CRB score in the malignant cell populations 

despite the molecular and phenotypic differences due to the presence of different CMS groups 

(Figure 42 F). 
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Figure 42 | CRB-score is enriched in tumor epithelial cells of CRC from 23 patients. (A) 

UMAP visualization reporting the major cell populations identified in the analysis of 23 primary 

CRC tumor and normal tissues. (B) UMAP visualization showing the tissue of origin (Normal or 

Tumor) for each cell (C) UMAP representation of the epigenetic score (D) Boxplot reporting the 

distribution of the CRB score in the identified cell populations, Epithelial cells are reported in 

orange. Boxplots describe the median and interquartile range with whiskers denoting the 1.5 x 

interquartile range. **** P < 0.0001, Wilcoxon rank sum test. (E) Boxplot reporting the 

distribution of the CRB score in normal (darkgreen) and tumor (purple) epithelial cells**** P < 

0.0001, Wilcoxon rank sum test. (F) Boxplot reporting the distribution of the CRB score in normal 

cell sub-populations (i.e. Stem-like TA, Goblet cells, Intermediate, Enterocytes type 1, Enterocytes 

type 2) and tumor (CM1, CM2, CM3, CM4) epithelial cells. All pairwise comparisons between 

each CMS and the other sub-populations were statistically significant (**** P < 0.0001, Wilcoxon 

rank sum test). The only non-significant was the comparison between CMS1 and Stem-like/TA. 

CMS4 was not considered in this evaluation. 

To investigate the CRB in a different cancer type, we re-analysed scRNA-seq data of 

208,506 cells from 44 patients affected with LUAD. Besides epithelial cells, the LUAD dataset 

also contains B cells, Endothelial cells, Fibroblasts, MAST cells, Myeloid cells, NK cells, 

Oligodendrocytes, and T lymphocytes. In addition, it includes pleural fluids (PE), and lymph node 

(mLN) or (mBrain) brain metastases, as well as distant normal lymph nodes (nLN). Notably, we 
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noticed a strong enrichment of the cancer regulatory blueprint in epithelial cells compared to non-

epithelial cells deriving from all collected districts. Collectively, these findings suggest that the 

CRB score is specifically enriched in epithelial cells of solid tumors (Figure 43 A, B, C, D). 

Considering the variegated origin of the samples, which included also lymph nodes and metastasis, 

we decided to focus our attention on the epithelial cells deriving from normal and tumor 

counterpart of the lung tissue (Figure 43 B, cells coloured in green and magenta). As in CRC, we 

confirmed also in LUAD the specificity of the cancer regulatory blueprint for malignant cells 

deriving from tumor tissue compared to epithelial cells from normal tissue. (Figure 43 E). 

 

Figure 43 | CRB-score is enriched in diverse types of cancer. (A) UMAP visualization reporting 

the major cell populations identified in the analysis of 44 patients affected by LUAD. (B) UMAP 

visualization showing non-epithelial cells (in grey) and epithelial cells coloured according to 

tissues of origin: Cancer tissue-derived whole cells from primary sites (tLung and tL/B), pleural 

fluids (PE), lymph node (mLN), and brain metastases (mBrain), as well as normal tissues from 

lungs (nLung) (C) UMAP representation of the epigenetic score (D) Boxplot reporting the 

distribution of the CRB score in all cell populations identified. Epithelial cells are reported in dark 

green. Boxplots describe the median and interquartile range with whiskers denoting the 1.5 x 
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interquartile range. (E) Boxplot reporting the distribution of the CRB score in normal (nLung, in 

dark-green) and tumor (tLung, in purple) epithelial cells.  
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5. Discussion and conclusion 

Our study provides the epigenetic landscape of human CRC, unveiling the existence of an 

aberrant pan-CRC enhancerome core regulated by the transcriptional coactivators YAP/TAZ and 

active in more than 20 types of human malignancies. It is increasingly recognized that the 

deregulated epigenome is a universal feature of cancer, challenging the previously prevailing 

paradigm that cancer is a genetic disease5,6. Although mutations in epigenetic regulators are 

widespread among different cancer types117,118, the transcriptional and epigenetic changes that 

occur in tumors cannot be attributed solely to the spectrum of oncogenic mutations120. In fact, the 

dysfunctional epigenome in cancer is often preceded by a continuum of epigenetic alterations in 

healthy tissues as a direct consequence of age and tissue damage203,204. The current surge of interest 

in epigenomics is further fueled by the failures in translating genetic findings into novel 

therapeutics that work for the majority of patients. In this context, can tumor deconvolution at the 

epigenomic level lead to insights that may drive more effective cancer therapies? Motivated by 

these outstanding issues of key relevance to cancer biology, we sought to decipher the epigenetic 

landscape of human CRC using a heterogeneous library of patient-derived tumor organoids. 

Previous efforts to identify CRC-specific enhancers have focused on characterizing 

chromatin accessibility using ATAC-seq data116 or single epigenetic features predictive of specific 

functional elements126,205,206. Going beyond previous epigenetic analyses, our work employs a 

systematic de novo strategy to discover biologically-informative chromatin states, providing a 

global overview of all functional genomic elements207. By combining more than 60 chromatin 

maps we identified 8 different chromatin states, providing a comprehensive set of genome-wide 

regulatory regions including promoter and enhancer, as well as elongating and repressed genomic 

regions. This data generates an extensive functional annotation of the human genome in CRC 

allowing the interrogation of diverse modes of epigenetic regulation, including that of repressed 

promoters. Our dataset is composed by a large set of ChIP-seq and RNA-seq data from normal 

adjacent tissue and tumor samples deriving from the same patients, providing a comprehensive 

view of correlated activity patterns in human CRC and an essential resource for exploring not only 

the specific epigenetic programs that drive patient heterogeneity but also common epigenetic 

blueprints. To facilitate the use of these data we created a web application tool (available at 

http://hepic.homic.eu) that offers users the opportunity to browse the genome-wide maps of 

chromatin states and individual histone marks across the heterogeneous library of CRC PDOs.  

In the last few years, there was an increasing interest in the study of enhancers and their 

fundamental role in tumor development, progression and metastasis122,123. To this extent, we 

exploited a machine learning approach to provide a more robust characterization of different 
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classes of enhancers compared to regulatory elements predicted by individual histone 

marks174,186,208. The combinatorial pattern of histone modifications allowed to precisely 

discriminate active enhancers from other genomic elements within chromatin accessible regions. 

For instance, the epigenetic profile of TAZ gene locus (Figure 36 A), clearly shows the presence 

of multiple open chromatin regions across diverse tumor types corresponding to a small set of de 

novo active enhancers states. 

Human CRCs are characterized by ostensibly endless combinations of oncogenic lesions 

resulting in a high degree of intratumoral and intertumoral genetic heterogeneity13. Is the 

epigenetic level similarly complex or, rather, does it represent a much-simplified layer of 

integration of genetic and microenvironmental inputs into a restricted, shared set of transcriptional 

states? Based on ChromHMM-defined chromatin states, we found two main groups of enhancers 

that are differentially active in PDOs compared to normal mucosa. While half of these enhancers 

displayed low levels of conservation across PDOs, the remaining half was conserved in at least 

50% of the tumor organoids, including those displaying microsatellite instability (Figure 26 C). 

This comes in striking contrast with the reported recurrence of mutated genes in CRC; with the 

exception of few driver genes the vast majority of the recurrently mutated genes are shared by less 

than 10% of tumors. Thus, our findings indicate that despite the profound genetic heterogeneity, 

CRC is characterized by a common aberrant enhancerome. 

To provide an in-depth characterization of the shared CRC enhancerome, we sought to 

understand which transcription factors orchestrate the activation of these cis-regulatory elements. 

Motif discovery and functional enrichment analyses highlighted AP1 and TEAD families along 

with the Hippo pathway, pinpointing the YAP/TAZ transcriptional coactivators as major 

regulators of the human CRC enhancerome. YAP/TAZ are induced in the majority of solid 

tumors209, triggering several hallmarks of cancer such as proliferation, phenotypic plasticity, drug 

resistance and metastasis (Figure 44 A)193. These functions are exerted in the nucleus (Figure 44 

B) through interaction with other DNA-binding partners (primary TEAD) and occupancy of distal 

cis-regulatory elements, that are in touch with their cognate promoters through chromatin 

loops98,192,210,211. AP-1 family motifs are often found in close proximity to TEAD elements (Figure 

44 C), enabling the formation of a YAP/TAZ/TEAD/AP1 complex that is able to transcriptionally 

cooperate to regulate tumor cell proliferation and motility192,210,212,213. One of the most known 

mechanism of YAP/TAZ regulation is via Hippo signalling pathway197. However, it is becoming 

increasingly evident that YAP/TAZ activity is not only regulated by the Hippo cascade, but is also 

involved in a plethora of mechanisms, including cell-cell adhesions, epithelial cell polarity, 

microenvironment stiffness, metabolic pathways and extracellular growth factors (Figure 44 

D)197,214. 
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Figure 44 | (A) Schematic representation of YAP/TAZ functions in tumors (from Zanconato et 

al.193). (B) Hippo pathway signal cascade with all the factors involved in this pathway (from Liu 

et al. 215). (C) Example of two of the most studied co-factors of YAP/TAZ (D) Overview of the 

new mechanism emerging in YAP/TAZ regulation. 

 

In line with their pervasive activation in human epithelial tumors193, we confirmed the 

transcriptional upregulation and nuclear translocation of YAP/TAZ, and further unveiled the 

YAP/TAZ chromatin recruitment at distal enhancers in human CRC. In addition, we found an 

enrichment of TEAD and AP1 motifs at YAP/TAZ-bound genomic elements, supporting the 

involvement of these TFs as YAP/TAZ partners also in this type of cancer, as suggested by 

previous studies192,210,212,213.  

Strikingly, YAP/TAZ were most enriched in the highly conserved gained enhancers 

(Figure 31 C), highlighting these transcription factors as driving forces of the CRC deregulated 

enhancerome. The relevance of this epigenetic signature was extended to diverse malignancies of 

epithelial cells, suggesting a previously undescribed universal role for YAP/TAZ as master 

regulators of tumor-associated epigenetic shifts. In the light of the recently reported YAP/TAZ-

dependent transcriptional addiction in cancer98, we speculate that the core of 46 pan-cancer gained 

enhancers identified in our study could be at the roots of the cancer transcriptional addiction. 
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Therefore, they might represent a unique epigenetic “fil rouge” that can be exploited for potential 

therapeutic targets. It remains to be evaluated whether a subset of these highly conserved gained 

enhancers is active in metastatic tumors and/or premalignant lesions. 

Collectively, different aspects of our study design have enabled the identification of the 

pan-cancer YAP/TAZ-driven enhancerome. First, we interrogated chromatin states that define 

active enhancers with high resolution, as opposed to open chromatin regions that are indicative of 

diverse active regulatory elements. Second, by exploiting primary tissue-derived tumor organoids 

we were able to dissect the cancer cell-intrinsic epigenetic alterations devoid of the influence of 

stromal cells31,32,216 and reveal that this active enhancerome is shared amongst diverse cancer 

types. Finally, organoid cultures preserve the mechanical forces and stress of a 3D cellular 

architecture and organization, which is essential for maintaining YAP/TAZ activation in ex vivo 

models217,218.  

Recent scRNA-seq studies have revealed the complex transcriptional mosaic of tumors, 

characterized by a continuum of differentiation and the presence of diverse transcriptional states 

among cancer cell219,220. This heterogeneity is only partially determined by genetic events 

indicating that epigenetic programs may influence the emergence of cancer cell states. In line with 

these notions, we show that the YAP/TAZ-orchestrated deregulation, which is largely absent in 

normal cells, specifically underlies the cellular states of tumor cells regardless of their clonality or 

functional status. Moreover, we confirmed our findings considering two scRNA-seq datasets on 

primary CRC170 and LUAD171 demonstrating that the identified cancer regulatory blueprint is a 

specific feature of malignant cells across diverse types of cancer. 

Still, there are unaddressed questions regarding the regulation of YAP/TAZ. Depending on 

the molecularly distinct checkpoints to overcome, different tumor types can exploit intrinsic 

(oncogenic lesions, Hippo pathway alterations) or biomechanical cues to activate YAP/TAZ193. In 

addition, YAP/TAZ can employ self-sustaining positive loops to maintain their functions212,221. 

Interestingly, we found a tumor-specific epigenetic mechanism of TAZ regulation: a positive 

feedback loop between an intronic YAP/TAZ-bound active enhancer and TAZ promoter itself, 

shared by all CRC PDOs. This intronic enhancer was also observed in the TCGA panel of 23 tumor 

types, suggesting that the TAZ self-regulation is relevant to a wide range of cancers (Figure 36). 

This transcriptional feedback mechanism combined with the inhibition and persistent activation of 

the Hippo and Wnt pathways, respectively222, may provide a constant fuel of YAP/TAZ for 

uncontrolled proliferation of tumor cells, sustaining the recently reported YAP/TAZ-dependent 

transcriptional addiction in cancer98.  

The accumulative evidence pinpointing YAP/TAZ as key mediators of epigenetic 

reprogramming and transcriptional addiction in cancer, makes them appealing targets for 
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therapeutic intervention. This is corroborated by the association of YAP/TAZ activation with poor 

prognosis in human epithelial tumors193, and resistance to both chemotherapeutic drugs155,223 and 

molecularly targeted therapies224,225. Deeper understanding of the mechanisms by which 

YAP/TAZ exert their nuclear function can link the inhibition of these coactivators to an arsenal of 

potent epigenetic agents. For instance, YAP/TAZ-mediated transcriptional addiction is achieved 

through interaction with the bromodomain and extraterminal domain (BET) coactivator BRD4, 

demonstrating the rational use of BET inhibitors in impairing expression of YAP/TAZ-regulated 

genes and YAP/TAZ-induced oncogenic functions and drug resistance. Nuclear inhibitors of 

YAP/TAZ that act as competitors for TEAD binding have also been described as a valid strategy 

to constrain YAP/TAZ functions193. A different approach to control YAP/TAZ activity could arise 

from the epigenetic modulation of TAZ gene expression. The dispensability of YAP/TAZ for 

normal tissue homeostasis194,196 provides a further argument in favor of exploiting YAP/TAZ as 

master regulator of pan-cancer enhancerome to design therapeutic strategies that are of clinical 

relevance to a significant number of patients and in cancer pathologies beyond CRC. 

 

As previously discussed, organoids provide a powerful and versatile tool for the 

development of new therapeutic approaches targeting not only the cancer-intrinsic features but 

also the tumor microenvironment. Indeed, the long-term goals arising from this project are i) the 

validation of promoter-enhancer interaction using capture-HiC technique226,227 on different PDOs 

to confirm the correct target genes regulated by the shared core of YAP/TAZ bound enhancers,  ii) 

the epigenetic editing of the established promoter-enhancer interactions by CRISPR epigenetic 

editing228–230 (e.g., the generation of a specific dCas9-KRAB repressor complex) in order to shut 

down the function of single or multiple regulatory elements and evaluate how these perturbations 

affect the expression of their target genes and the functional state in malignant cells, and iii) the 

generation of a co-culture system69–71,231 between tumor infiltrating (TI) CD4+ Treg and PDOs to 

study the interplay and the mutual effects of TI-Treg and malignant cells. Together, these 

approaches provide the opportunity to untangle the complex regulatory network orchestrating 

human malignancy leading toward a new era of more precise and efficient therapeutic strategies.  
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7. Appendix 

7.1 Experimental protocols 
7.1.1  Isolation of human primary tissues 

MATERIALS 

REAGENTS: 

• PBS 

• Gentamicin (20 µg/ml) 

• PBS-EDTA (2.5 mM) 

PROCEDURE 

Primary colonic normal and tumoral tissues were processed according to a previously published 

protocol152. 

I. Surgically resected specimens were reduced to a size of 3-5 mm, extensively washed with 

cold PBS and gentamicin (20 µg/ml) and incubated with PBS-EDTA (2.5 mM) rocking on 

a wheel for 1 h at 4°C.  

II. After PBS-EDTA treatment, tissue samples were washed with cold PBS - 1% FBS to 

release normal crypts and tumoral counterpart.  

III. Cells suspension were collected by centrifuging at 400 g for 5 min at 4°C and used for 

transcriptomic and epigenomic analyses. 

7.1.2  Patient derived colorectal cancer organoids culture 

MATERIALS 

REAGENTS: 

• Matrigel® Growth Factor Reduced Basement Membrane Matrix, Phenol Red-Free 

(Corning) 

• Advanced DMEM/F12 (Life Technologies) 

• Penicillin/streptomycin (Euroclone) 

• HEPES (Life Technologies) 

• GlutaMAX (Life Technologies) 

• B27 (Life Technologies) 
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• N2 (Life Technologies) 

• N-Acetyl Cysteine (Sigma-Aldrich) 

• Nicotinamide (Sigma-Aldrich) 

• Human EGF (Peprotech) 

• Human Noggin (Peprotech) 

• Human Gastrin (Sigma) 

• A83-01 (Tocris) 

• SB202190 (Sigma) 

• TrypLETM Express Enzyme (12605010, Thermo Fisher) 

PROCEDURE 

PDOs were established and maintained as previously described152. 

I. Tumor cells suspension isolated from CRC biopsies were embedded in drops of Matrigel® 

Growth Factor Reduced Basement Membrane Matrix, Phenol Red-Free (Corning) to 

establish CRC PDOs libraries.  

II. Droplets of matrigel containing tumor cells suspension or established organoids were 

maintained in 24 well plate overlaid by 500 μl of the organoid culture medium (Advanced 

DMEM/F12 (Life Technologies)  supplemented with penicillin/streptomycin (Euroclone), 

10 mM HEPES (Life Technologies), 2 mM GlutaMAX (Life Technologies), 1X B27 (Life 

Technologies), 1X N2 (Life Technologies), 1 mM N-Acetyl Cysteine (Sigma-Aldrich), 10 

mM Nicotinamide (Sigma-Aldrich), 50 ng/ml human EGF (Peprotech), 100 ng/ml human 

Noggin (Peprotech), 10 nM human Gastrin (Sigma), 500 nM A83-01 (Tocris), 10 μM 

SB202190 (Sigma).  

III. The organoids were split once per week by mechanical disruption or enzymatic digestion 

using TrypLETM Express Enzyme (12605010, Thermo Fisher) and regularly checked for 

mycoplasma contamination. 

7.1.3  Whole mount staining of PDOs 

MATERIALS 

REAGENTS: 

• NH4Cl 
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• Triton X-100 (Sigma-Aldrich) 

• Donkey Serum or Normal Goat Serum (Sigma-Aldrich) 

• PBS 

• Hoechst 33342 

• NaN2 

ANTIBODIES: 

 

Table 4 | Primary and secondary antibodies/conjugates used for whole mount staining of PDOs. 

EQUIPMENT: 

• SP5 microscope (Leica Microsystems) 

• 10× (NA 0.3) or 20x (NA 0.7) dry objectives (TCS SP5; Leica) 

SOFTWARE: 

• ImageJ software 

PROCEDURES 

Isolated organoids embedded in Matrigel in µ-Plate Angiogenesis 96 Well (Ibidi) were fixed in 

4% paraforlmaldehyde in PBS for 1 hour, at 4°C. The whole mount staining protocol was 

performed as previously described153, with some modifications. 

I. After fixation, the auto-fluorescence was quenched with 50 mM NH4Cl for 30 minutes and 

the organoids were permeabilizated with 0,5% Triton X-100 (Sigma-Aldrich) for 1 h and 

blocked with 10% Donkey Serum or Normal Goat Serum (Sigma-Aldrich) in PBS with 

0.2% Triton X-100 overnight, at 4°C in mild shaking.  
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II. Primary and secondary antibodies were diluted in 5% of serum and applied respectively 

∼35 and ∼12 hours at 4°C, in mild shaking.  

III. Cell nuclei were stained with 20 μg/ml Hoechst 33342 in PBS with 0,2% Triton X-100 for 

2 hours and the organoids were stored in PBS with 0,02% NaN2 until the acquisition.  

IV. Fluorescence images were captured with confocal laser-scanning SP5 microscope (Leica 

Microsystems) equipped with eight laser lines and four PMT detectors, using 10× (NA 0.3) 

or 20x (NA 0.7) dry objectives (TCS SP5; Leica), 5 or 10 µm z-step interval and 

1024x1024 or 2048x2048 image format.  

V. For each acquired confocal z-stack field, maximum intensity projections (MIP) were 

generated using ImageJ software (National Institutes of Health)154. 

7.1.4  Chromatin Immunoprecipitation (ChIP) assay and library 
construction 

MATERIALS 

REAGENTS: 

• Cell Recovery Solution (Matrisperse Cell Recovery Solution - Sacco-L004419 CPB40253) 

• Formaldheyde (F8775 SIGMA) 

• PBS 

• Glycine 

• Sonication lysis buffer (10 mM Tris pH 8.0, 0.25% SDS, 2 mM EDTA, plus protease 

inhibitors) 

• ProteinG-Dynabeads (Invitrogen) 

• RIPA-LS  

• RIPA-HS  

• RIPA-LiCl  

• Tris 10mM pH8  

• TE 1x 

• Elution buffer (10 mM Tris-HCl pH 8.0, 5 mM EDTA pH 8.0, 300 mM NaCl, 0.4% SDS) 

Proteinase K  

• Qiagen MinElute kit (Qiagen) 



 
 

116 

• EB buffer 

ANTIBODIES: 

 

Table 5 | Antibodies used for ChIP-seq and ChIPmentation protocols. 

EQUIPMENT: 

Covaris® M220 focused-ultrasonicator (settings: duty factor 20%, peak incidence power 75 Watt, 

cycles per burst 200) 

PROCEDURES 

I. For ChIP experiments, matrigel droplet containing ∼0.3 x 106 organoid cells/well was 

dissolved using Cell Recovery Solution (Matrisperse Cell Recovery Solution - Sacco-L004419 

CPB40253), following the indicated procedure.  

II. PBS-washed organoids pellet was fixed as whole in Formaldheyde (F8775 SIGMA) PBS-

solution (final 1%), for 10 min rocking at room temperature and quenched with 0.125 M 

Glycine for 5 min. P 

III. BS-washed organoid pellets were lysed with 500 µl of 1X sonication lysis buffer (10 mM Tris 

pH 8.0, 0.25% SDS, 2 mM EDTA, plus protease inhibitors) and incubated for at least 10 min 

at 4°C. Lysed chromatin was sheared at 200–500 bp fragments using Covaris® M220 focused-

ultrasonicator (settings: duty factor 20%, peak incidence power 75 Watt, cycles per burst 200, 

8-15 minutes).  

IV. For organoids and crypts, ∼500 ng and ∼1000 ng respectively of sonicated chromatin was 

incubated with antibody (H3K27ac abcam 4729; H3K4me3 Millipore 07-473; H3K4Me1 

DIAGENODE C15410194; H3K36me3 DIAGENODE C15410192; H3K27me3 07449 

Millipore) overnight at 4 °C on wheel.  
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V. Antibody/antigen complexes were recovered with blocked ProteinG-Dynabeads (Invitrogen) 

for 2 h at 4 °C and washed with RIPA-LS (twice), RIPA-HS (twice), RIPA-LiCl (twice), once 

with Tris 10mM pH8 and once with TE 1x, followed by reverse crosslinking overnight. The 

washed immunocomplexes were incubated with ChIP elution buffer (10 mM Tris-HCl pH 8.0, 

5 mM EDTA pH 8.0, 300 mM NaCl, 0.4% SDS) supplemented with 0.8 mg/ml Proteinase K 

for 1 h at 55°C and overnight at 65°C, for reverse crosslinking.  

VI. The immunoprecipitated DNA was then purified by Qiagen MinElute kit (Qiagen) and eluted 

in 22 μl EB buffer. 

ChIP-seq libraries were constructed with TruSeq ChIP Library Preparation Kit (Illumina), 

according to the manufacturer’s instructions and sequenced on the Illumina HiSeq2500 platform. 

7.1.5  ChIPmentation assay and library preparation 

REAGENTS: 

• Lyses buffer I (50 mM HEPES, pH 7.5, 10 mM NaCl, 1 mM EDTA, 10% Glycerol, 0.5% 

NP-40, 0.25% Triton X-100, plus protease inhibitors) 

• Lyses buffer II (10 mM Tris-HCl pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 

plus protease inhibitors) 

• Lyses buffer III 

• Blocked ProteinG-Dynabeads (Invitrogen)  

• Wash buffer  

• Salt buffer  

• Tris pH8 

• Tagment DNA Enzyme from the Nextera DNA Sample Prep Kit (Illumina) 

• Nextera DNA Sample Prep Kit (Illumina) 

• Proteinase K (NEB) 

• SPRI AMPure XP beads 

ANTIBODIES: 

See Table 5. 
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EQUIPMENT: 

Covaris® M220 focused-ultrasonicator (settings: duty factor 10%, peak incidence power 75 Watt, 

cycles per burst 200) 

PROCEDURES 

ChIPmentation was carried out as previously described149 with small modifications in cell lysis 

and washes after recovering. 

I. The crosslinked pellet was lysed in buffer I (50 mM HEPES, pH 7.5, 10 mM NaCl, 1 mM 

EDTA, 10% Glycerol, 0.5% NP-40, 0.25% Triton X-100, plus protease inhibitors) in ice.  

II. The pellet was recovered and lysed with buffer II (10 mM Tris-HCl pH 8.0, 200 mM NaCl, 1 

mM EDTA, 0.5 mM EGTA, plus protease inhibitors) at room temperature and sonicated in 

lyses buffer III using Covaris® M220 focused-ultrasonicator (settings: duty factor 10%, peak 

incidence power 75 Watt, cycles per burst 200, 15 minutes).  

III. Sonicated chromatin was incubated with anti-WWTR1 (Sigma Aldrich, HPA007415) or anti-

YAP1 (abcam 52771) overnight at 4 °C on the wheel.  

IV. For control libraries, an immunoprecipitation with nonspecific IgG rabbit antibody was used.  

V. Antibody/antigen complexes were recovered with blocked ProteinG-Dynabeads (Invitrogen) 

and washed with low salt wash buffer (twice), high salt buffer (twice) and once with Tris pH8.  

VI. Beads were then resuspended and incubated in tagmentation reaction containing Tagment 

DNA Enzyme from the Nextera DNA Sample Prep Kit (Illumina).  

VII. Beads were then washed and incubated with elution buffer plus Proteinase K (NEB) to revert 

formaldehyde cross-linking.  

VIII. Library preparation for ChIPmentation was performed using custom Nextera primers as 

described for ATAC-seq and enriched libraries were purified using 1.8V of SPRI AMPure XP 

beads and sequenced with Illumina HiSeq2500. 
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7.2  Computational protocols 
7.2.1 RNA-seq data processing 

• RNA-seq reads were sequenced as paired-end reads on Illumina HiSeq2500 and analysed 

with a custom pipeline built using Nextflow156. 

• FastQC v0.11.769 (http://www.bioinformatics.babraham.ac.uk/projects/) was used to 

perform the quality control of the sequenced reads: 

>fastqc sample_name_R1.fastq sample_name_R2.fastq 

• To remove adapters and low quality reads, reads were trimmed using BBDuk 

(https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/): 

>bbduk.sh in1=sample_name_R1.fastq in2=sample_name_R1.fastq 

out1=tmp1.fastq.gz out2=tmp2.fastq.gz ref=list_of_adapters ktrim=r k=23 

mink=11 hdist=1 tpe tbo qin=33 

>bbduk.sh in1=tmp1.fastq.gz in2=tmp2.fastq.gz 

out1=sample_name_R1_trim.fastq.gz out2= sample_name_R2_trim.fastq.gz 

qtrim=rl trimq=20 minlen=50 qin=33 

• The reads were aligned to the human reference genome hg38 (GENCODE Release 25 basic 

gene annotation) using STARv2.5.3a157: 

>STAR --genomeDir STAR_index --readFilesIn sample_name_R1_trim.fastq.gz 

sample_name_R2_trim.fastq.gz --readFilesCommand zcat --genomeLoad 

LoadAndRemove --outFileNamePrefix sample_name --outReadsUnmapped Fastx 

--outSAMtype BAM SortedByCoordinate --alignIntronMax 1000000 --

quantMode GeneCounts --outFilterMismatchNmax 9 --outFilterMultimapNmax 

20 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --alignMatesGapMax 

1000000 

• FeatureCounts4-Subreadv1.6.2158 with default parameters was used to perform the 

quantification of the reads: 

>featureCounts -p -B -C -t exon -g gene_id -a genome.gtf -o 

sample_name_counts.txt -s 2 -T sample_name.bam  

• For the visualization of RNA-seq tracks, the normalized coverage tracks were generated 

using the bamCoverage function of deeptools162. Separate tracks for forward and reverse 

transcripts were generated for each independent sample. 

>bamCoverage -b sample_name.bam -o sample_name_forward.bw --

filterRNAstrand forward --normalizeTo1x 3049315783 --minMappingQuality 10  



 
 

120 

>bamCoverage -b sample_name.bam -o sample_name_reverse.bw --

filterRNAstrand reverse --normalizeTo1x 3049315783 --minMappingQuality 10  

7.2.2  ChIP-seq data processing 

• ChIP-seq reads were sequenced as single-end reads on Illumina HiSeq2500 and analysed 

with a custom pipeline built using Nextflow156. 

• FastQC v0.11.769 (http://www.bioinformatics.babraham.ac.uk/projects/) was used to 

perform the quality control of the sequenced reads: 

>fastqc sample_name_R1.fastq 

• The reads were aligned to the human reference genome hg38 (GENCODE Release 25 

basic gene annotation) using Bowtie v1.2.2165), sorted using SAMtoolsv1.8166 and 

directly converted into binary files (BAM). >bowtie -S -m 1 --best --strata -v 3 
>sbowtie_index | samtools view -bS - | samtools sort -n -T sample_name 

-O BAM -o sample_name.bam 

• PCR duplicate reads were marked and removed using SAMtoolsv1.8: 

>samtools fixmate -r -m sample_name.bam -| samtools sort -@ 4 - | 

samtools markdup -r -s - sample_name_no_dup.bam 

• For sharp histone modifications (H3K4me3 and H3K27ac) the peaks were called with 

MACS2 v2.1.0167 using matched input DNA as a control with the following command line: 

>macs2 callpeak -t sample_name_no_dup.bam sample_input_no_dup.bam -f 

BAM -g 3049315783 -n sample_name –nomodel –extsize 200 -B -q 0.01 

• For sharp histone modifications (H3K4me1, H3K36me3 and H3K27me3) the peaks were 

called with MACS2 v2.1.0167 using matched input DNA as a control with the following 

command line: 

>macs2 callpeak -t sample_name_no_dup.bam sample_input_no_dup.bam --broad 

-f BAM -g 3049315783 -n sample_name –nomodel –extsize 200 -B -q 0.01      

• Peaks overlapping ENCODE blacklisted regions (BL) hg38 (i.e. regions in the human 

genome with signal artefacts in NGS experiments, 

https://www.encodeproject.org/annotations/ENCSR636HFF/ ) were removed:  

>bedtools intersect -a sample_name_peak_file blacklisted_regions -v | 

grep chr > sample_name_peak_file_noBL 

• For the visualization of ChIP-seq tracks, Bedgraph tracks were generated using MACS2 

bdgcmp function, converted into bigwig using UCSC bedClip and bedGraphToBigWig 

functions: 
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>macs2 bdgcmp -t sample_name_pileup -c sample_name_control_lambda -o 

sample_name_FE.bdg -m FE 

>LC_COLLATE=C sort -k1,1 -k2,2n sample_name _FE.bdg > 

sample_name_FE_sort.bdg 

>bedGraphToBigWig sample_name_FE_sort.bdg chromosome_size_file 

sample_name_FE.bw 

7.2.3  Density and heatmap plot for each histone modification 

• Filtered and sorted BAM files were used to generate normalized coverage tracks using the 

bamCoverage function from deepTools162 suite: 

>bamCoverage -v -b sample_name.bam -o sample_name_norm.coverage.bw --

normalizeUsing RPGC –effectiveGenomeSize 3049315783 --extendReads 200 -

-binSize 1 

• The average signal profile and the heatmap plot along the genebody were calculated using 

computeMatrix scale-regions with default parameters and GENCODE Release 25 basic 

gene annotation:  

>computeMatrix scale-regions --regionsFileName annotation.gtf --

scoreFileName sample_name --outFileName sample_name.genebody.gz --

regionBodyLength 6000 --upstream 3000 --downstream 3000 --

missingDataAsZero 

>plotHeatmap --matrixFile sample_name.genebody.gz --outFileName 

sample_name.genebody.heatmap.col.pdf --colorList "#00004c,#0000ff, 

white,#F27F7F,#EC3F3F,#E60000" --zMin 0 --zMax 10 --heatmapHeight 20 --

dpi 300 --yMin 0 --yMax 30 

7.2.4  ChromHMM analysis 

• ChromHMM analysis was run with a custom pipeline built using Nextflow156 using all the 

samples available for the study and the public available samples as described in “De novo 

chromatin state characterization”. 

• The datasets were down-sampled to a maximum depth of 45 million reads (the median read 

depth over all samples considered in this analysis). 
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• First, the cellmarkfiletable was created to analyse all the available samples as multiple cell 

type to be treated concatenating them. The control data was used to adjust the binarization 

threshold locally. The cellmarkfiletable reports the name of the PDO in the first column, 

the histone modification type in the second column, the bam files without the duplicates in 

the third column and the bam file for the associated input in the fourth column. The 

columns were tab separated and the files were all collected in the same directory: 

PDO8 H3K4me3 sample_name_no_dup.bam input_no_dup.bam 

PDO8 H3K27Ac sample_name_no_dup.bam input_no_dup.bam 

PDO8 H3K4me1 sample_name_no_dup.bam input_no_dup.bam 

PDO8 H3K27me3 sample_name_no_dup.bam input_no_dup.bam 

PDO8 H3K36me3 sample_name_no_dup.bam input_no_dup.bam 

PDO10 H3K4me3 sample_name_no_dup.bam input_no_dup.bam 

PDO10 H3K27Ac sample_name_no_dup.bam input_no_dup.bam 

.... 

• The data binarization in which the genome is fractioned in contiguous bins of 200 bps was 

executed using the hg38 assembly: 

>java -Xmx4g -jar ChromHMM.jar BinarizeBam chromosome_length_file_hg38 

inputdir cellmarkfiletable output directory 

• Then, the Model learning was executed using the binarized data localized in the input 

directory. The LearnModel function calculates the probability that certain histone marks 

are present in the same genomic region and can be co-present with other histone marks. 

The combination of multiple histone modifications in the same bin over the genome is used 

to define an n number of states, defined by the use, in our case numstates=8,10,12: 

>java -Xmx4g -jar ChromHMM.jar LearnModel inputdir outputdir numstates 

hg38 

• To compare the models generated with different number of states and evaluate the best one 

the CompareModels function was run: 

>java -Xmx4g -jar ChromHMM.jar CompareModels 

emission_model_8,emission_model_10,emission_model_12 

directoy_to_compare outdir 

The 8-state model was chosen for downstream analysis since it captured the key interaction 

between histone marks and because it was the model with minimal redundancy. 

 


