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Abstract

Background

Osteoporosis is an asymptomatic disease of high prevalence and incidence, leading to

bone fractures burdened by high mortality and disability, mainly when several subsequent

fractures occur. A fragility fracture predictive model, Artificial Intelligence-based, to identify

dual X-ray absorptiometry (DXA) variables able to characterise those patients who are

prone to further fractures called Bone Strain Index, was evaluated in this study.

Methods

In a prospective, longitudinal, multicentric study 172 female outpatients with at least one ver-

tebral fracture at the first observation were enrolled. They performed a spine X-ray to calcu-

late spine deformity index (SDI) and a lumbar and femoral DXA scan to assess bone

mineral density (BMD) and bone strain index (BSI) at baseline and after a follow-up period

of 3 years in average. At the end of the follow-up, 93 women developed a further vertebral

fracture. The further vertebral fracture was considered as one unit increase of SDI. We

assessed the predictive capacity of supervised Artificial Neural Networks (ANNs) to distin-

guish women who developed a further fracture from those without it, and to detect those var-

iables providing the maximal amount of relevant information to discriminate the two groups.

ANNs choose appropriate input data automatically (TWIST-system, Training With Input

Selection and Testing). Moreover, we built a semantic connectivity map usingthe Auto

Contractive Map to provide further insights about the convoluted connections between the

osteoporotic variables under consideration and the two scenarios (further fracture vs no fur-

ther fracture).
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Results

TWIST system selected 5 out of 13 available variables: age, menopause age, BMI, FTot

BMC, FTot BSI. With training testing procedure, ANNs reached predictive accuracy of

79.36%, with a sensitivity of 75% and a specificity of 83.72%.

The semantic connectivity map highlighted the role of BSI in predicting the risk of a further

fracture.

Conclusions

Artificial Intelligence is a useful method to analyse a complex system like that regarding

osteoporosis, able to identify patients prone to a further fragility fracture. BSI appears to be

a useful DXA index in identifying those patients who are at risk of further vertebral fractures.

Introduction

Osteoporosis is a metabolic bone disease characterised by a reduction in bone mass and deteri-

oration in texture and architecture of bone, leading to fragility fractures [1]. Osteoporotic fra-

gility fractures cause significant morbidity and mortality in the elderly population. Whereas

hip fractures almost inevitably lead to hospitalisation, vertebral fractures may even be asymp-

tomatic, but patients present a clinical disability that is correlated with the number and the

severity of the fractures [2]. The diagnosis of osteoporosis is based on the measurement of the

Bone Mineral Density (BMD) by Dual X-ray Absorptiometry (DXA) [3]. Areal BMD (the

bone mineral content measured by DXA and divided by the bone area in square centimeters)

is responsible for about two-thirds of bone strength, and fracture risk increases proportionally

with the reduction of BMD [4]. However, assessment of BMD does not completely detect frac-

tured patients, because there is an overlap of BMD in patients with or without fractures, being

the fractured ones more numerous in the normal/osteopenic than in the osteoporotic group

[5]. This finding raises the question of the clinical assessment of fracture risk with BMD alone

due to its lack of sensitivity [6]. So there is a need for other tools that can predict fracture risk

in addition to BMD, for the evaluation of bone micro-architectural and textural structure [7].

Its direct examination can be done invasively by bone biopsy and histomorphometry or indi-

rectly by some imaging techniques as high-resolution peripheral quantitative computed

tomography or magnetic resonance imaging [8]. These procedures are, however, expensive or

with high ionising radiation dose to the patient, and therefore not accessible for screening. For

these reasons other DXA indexes have been developed for bone texture analysis. The Trabecu-

lar Bone Score (TBS) is a tool correlated with histomorphometric bone parameters and can be

performed during a lumbar spine DXA scan [9] to evaluate local variations in grey levels from

the image. Previous studies showed that TBS could predict the fracture risk partially indepen-

dently from BMD [10].

A new DXA-based parameter has been recently created, with the name of Bone Strain

Index (BSI) [11]. This tool represent the analysis of a deformation index that is obtained by the

use of finite element analysis from DXA images, and it is consistent with the mathematical

model called Finite Element Model (FEM) [12]. Finite Element Models are based on the idea

that a complex object can be divided in smaller and simpler elements to simplify the problem-

solving. In bone structural analysis FEM can be used to solve mechanical problems and iden-

tify the bone area most prone to higher stresses, the bone strains and fracture risk. Many mod-

els have been proposed to describe the mechanical behaviour of bones [13, 14] depending
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mainly on base image type, anatomical site, material properties assigned to the bone and load-

ing conditions.

BSI calculation is obtained using a triangular mesh designed on the bone segmented by the

DXA software. Mechanical properties are assigned at each element depending on local BMD

and anatomical site, according to Morgan et al. formulas [15]. In case of the lumbar spine the

loading force applied to each vertebra is calculated following simulation data provided by Han

study in standing conditions [16] and uniformly distributed on the upper facet of each verte-

bra, whereas the lower side is used as a constraint. In the case of hip scans, the loading and the

constraints were characterized by head and distal femur forces applied on the greater trochan-

teric area [17].

In both cases, BSI represents the average equivalent strain in the regions of interest identified

by DXA software (e.g. vertebra regions for lumbar scans; neck, trochanteric and intertrochan-

teric regions for hip scans). BSI can provide a quantitative description of the strain distribution

inside the considered bone segment that is not offered by the other cited DXA indexes, BMD

and TBS. Being BSI an index of the strain concentration, higher values indicate a significant risk

condition, whereas lower values indicate a protected status. In recent clinical studies, BSI

appeared to be useful to identify osteoporotic patients with higher fracture risk [18], to charac-

terise patients affected by secondary osteoporosis [19, 20] and to predict fracture [16].

Osteoporosis is a multi-factorial pathology, in which the physician has to take into account

several factors that are linked between each other in a complex network; this setting may result

not easy to investigate using the classical statistical analysis. In order to face such complex sce-

nario, a new mathematical methodology based on an Artificial Neural Network Analysis

(ANNs) named Auto Contractive Map has been applied to analyse a database of osteoporotic

patients [18, 15]. ANNs represents adaptive computational procedures inspired by human

brain working processes, specifically arranged to figure out non-linear questions and unveil

faint associations among variables [21]. Using a learning process based on adaptive ways

(obtaining from existing data the information needed to complete a particular aim and gener-

alizying the knowledge acquired), the ANNs represent a strong tool for data analysis even

when samples are relatively small. The use of Auto-CM approach has growth in recent years

and has been applied to several diseases, showing its potential in the identification of strong

connection among clinical, laboratory and new "omics" biomarkers [18, 22–24].

In this paper, we have used a combination of two ANNs approaches, one (TWIST system,

see S1 File) aiming to develop a predictive model to be applied at the individual level to predict

the future development of vertebral fractures and the second (the Auto Contractive Map—

Auto-CM) [25, 26] to provide additional knowledge regarding the intricate biological connec-

tions among the densitometric variables we examined and the two conditions (further fracture

vs not fracture), with a particular focus on BSI.

Materials and methods

Patients

This work is a prospective longitudinal multicentric study conducted at Fondazione IRCCS

Ca’ Granda Ospedale Maggiore Policlinico of Milan, IRCCS Istituto Ortopedico Galeazzi in

Milan, and IRCCS Policlinico San Donato, San Donato Milanese, Italy. Among the outpatients

ongoing to the cited hospitals for osteoporosis, 172 consecutive women found to have a verte-

bral fracture were enrolled. Inclusion criteria were having a spine X-ray and a femur and spine

DXA scan. Exclusion criteria were the presence of bone diseases or pharmacological treat-

ments that may interfere with bone metabolism, as well as previous traumatic and pathological

fractures. Treatment for osteoporosis was not an exclusion criterion.
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All patients had lumbar and femoral DXA scans every two years to obtain data about femo-

ral and lumbar BMC, BMD and BSI, plus a spine X-ray for spine deformity index (SDI). The

presence of vertebral fractures was evaluated by means lateral x-rays using the Genant’s semi-

quantitative approach. A radiologist with 10 years of experience in the imaging of osteoporosis

assessed the presence of fractures. SDI was calculated by summing the semi-quantitative score

(from 0 to 3) of each vertebra from T4 to L4 (minimum score = 0, maximum score = 39) [27].

The presence of an incident re-fracture was defined in case of a one point increase of SDI

value observed at follow-up. Patients performed both DXA scan and X-ray spine exam at each

clinical check.

Anagraphic, anthropometric and clinical data were collected. Written informed consent

was signed by all patients for the management of their sensitive data for scientific research

each time they entered the hospital. Local Ethical Committees approval was obtained (Comi-

tato Etico Milano Area 2. Protocol N 2.0 BQ. 265_2017, 13th June 2017 for IRCCS Fondazione

Ca’ Grande Ospedale Maggiore Policlinico, Milan, Italy. Comitato Etico San Raffaele. Studio

clinico 2.0 BQ, version 4.0, 8th August 2019, for IRCCS Istituto Ortopedico Galeazzi, Milan

and IRCCS Policlinico San Donato, San Donato Milanese, Italy).

Methods

DXA data acquisition. Bone density was assessed with DXA, using a Hologic Discovery

A for Fondazione IRCCS Ca’ Grande Ospedale Maggiore Policlinico and IRCCS Policlinico

San Donato, and a Hologic QDR-Discovery W for IRCCS Istituto Ortopedico Galeazzi.

DXA-dedicated technicians with experience in the technique performed all exams in accor-

dance to the International Society for Clinical Densitometry (ISCD) official positions [28]. All

patients were scanned by DXA both at lumbar spine and at proximal femur. Fractured verte-

brae were not considered in the analysis. BMD was obtained automatically as the ratio between

BMC (g) and the scanned area (cm2); BSI was automatically derived with a dedicated external

software from the same area of spine scans.

BSI software generates a Finite Element Analysis on DXA images sent through DICOM

protocol and provides the Bone Strain Index in less than 10 seconds. The triangular mesh is

created relying on bone segmentation performed by the operator on the DXA software. The

calculation of material properties is based on experimental formulas provided by Morgan et al.

2003 [29], whereas the definition of boundary conditions depends on the anatomic site. For

the lumbar region, standing condition are simulated [30] and force is automatically applied to

the upper surface of each vertebra, while the lower surface is constrained. For the femoral

region, the force is calculated in falling condition [17] and applied to the greater trochanter,

whereas constraints are placed on the head and the lower femoral shaft. TBS is automatically

calculated form the lumbar scan (Medimaps, Geneva, Switzerland). Fig 1 swows an example of

the three images obtained at lumbar spine; from left to right a DXA scan (BMD total

value = 0.83), a TBS scan (TBS L1-L4 = 1.240) and a BSI scan (Lumbar BSI = 2.01).

X-ray data acquisition. Patients underwent an anteroposterior and lateral X-ray of the

spine to investigate the presence of vertebral fractures (VFs) at the first baseline examination

and at the end of the follow-up. The SDI was calculated using the semi-quantitative approach

[27, 31] in order to obtain a correct definition of osteoporotic vertebral fracture [32].

Predictive analysis with supervised Artificial Neural Networks (ANNs). In this study

we applied novel intelligent system, by combining artificial neural to evolutionary algorithms.

Supervised ANNs [33] was used to create a model with the ability to predict the diagnostic

class (further fracture vs not) starting from the densitometric data alone, with high degree of

accuracy. Supervised ANNs are networks that are capable to learn about a condition using
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examples, with a training phase in which they calculating an error function and therefore cor-

recting the connection strengths to minimise the error. The learning method of the supervised

ANNs is able to make their output coincide with a pre-established target. In general, the math-

ematic formula of ANNs is y = f(x,w�), in which w� represents the set of parameters that

approximate the function at its best.

Pre-processing of our data was done with the use of a re-sampling system called “TWIST”,

created by the Semeion Research Centre (see S1 File). The TWIST system combines two sys-

tems: the T&T and the IS [34]. The T&T system relies on a data re-sampling technique capable

of arranging the reference sample into various sub-samples that hold a similar density function

probability. With this approach, data under analysis are separated into two or more sub-sam-

ples, with the purpose of more effective train, test and validation of the ANN models. The IS is

an evolutionary system capable of reducing the quantity of data while preserving the most

important information contained within the dataset. The combination of these two systems

helps in solving two frequent problems when using Artificial Neural Networks: from one side

the best splitting of training and testing subsets, which contains a balanced distribution of out-

liers; from the other side, the best selection of variables containing the highest amount of infor-

mation that are relevant to the investigated problem. Both T&T and IS are based on a Genetic

Algorithm called the Genetic Doping Algorithm (GenD), which was created at Semeion

Research Centre [35]. The TWIST system has already been applied to different medical scenar-

ios [36–40], and we describe it more in detail in the S1 File. After this, the most relevant fea-

tures are selected and, simoultaneously, the training-testing set are developed with a function

of probability distribution comparable to those who provided the best classification results. A

supervised Multi-Layer Perceptron, based on four hidden units, was subsequently used for

performing the classification.

Data set preprocessing for semantic connectivity map. We transformed the thirteen

input variables in 26 input variables constructing for each of them, scaled from 0 to 1, its com-

plement. Consider, for example, the variable LBMD. Absolute natural values range from 0.521

to 1.3. In transformation 1.3, the highest value, becomes 1 and 0.521 becomes 0. All the

remaining values are scaled in such new range, so, for example, the value 0.64 becomes 0.15;

the value 0.93 becomes 0.53, and so on. The projection of the variable LBMD in the map needs

Fig 1. Example of a DXA image showing the three parameters that we used: BMD, TBS and BSI analysis.

https://doi.org/10.1371/journal.pone.0245967.g001
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an adequate transformation in order to avoid fuzzy position of variables xin the map. In the

complement transformation, by subtracting the scaled value from 1 (e.g. 0 becomes 1), we per-

mit the system to point out and project the fuzzy position of the variable also according to its

lower values. This is important because, in non-linear systems, there is a non necessarily sym-

metric position of high and low values related to a given variable. Therefore, the projection of

the original variables usually showed high values, whereas the complement transformation

showed low values. In the map, we called these two forms as "high" and "low". This pre-pro-

cessing scaling is needed to proportionally compare all the variables and to identify the links

between each variable when their values tend to be high or low.

In our study we decided to rely on the minimum spanning tree (MST) algorithm as a base

to perform variables clustering, creating a semantic connectivity map with the aim to discover

hidden relationships not necessarily detectable with other clustering approaches. A detailed

description of the working process of MST algorithm is provided in the S1 File. The MST was

applied to a similarity matrix obtained with prior probability equation. Prior probability (PP)

algorithm takes into account the ratio of probabilistic concordance/discordance between a

couple of variables (see S1 File for a detailed description of PP algorithm). Auto-CM algorithm

is a fourth-generation ANN, designed at the Semeion Research Center [21, 26]. Finally, at the

last part of the training phase the weights of the connections among variables are taken as simi-

larity measures to form the distance matrix.

Results

Table 1 shows the characteristics of the population studied. Follow up ranged 1–11 years

(mean 3.28, SD 2.14, median 4.95).

Table 2 shows the characteristics of the two groups of patients developing (93 pts) and not

developing (79 pts) a further vertebral fracture (VF) during the follow-up period. The mean

values of the following variables resulted significantly different among women developing a

VF in comparison to women without VFs during the follow up: LBMD, LBSI, Neck_BMC,

Neck_BMD, Neck_BSI, FTot_BMC, FTot_BMD, Ftot_BSI.

Fig 2 shows the linear correlation values between the studied variables and the presence of a

VF at follow up. As expected, BSI predisposes to VF at variance with bone mineral contents

parameters. In any case, the absolute value of Pearson R is rather low, and this offers a further

rationale for the application of ANNs.

Table 1. Characteristic of the studied population.

Characteristic Mean SD Min Max

Menopause age 48.49 4.92 33.00 58.00

SDI 3.78 3.43 1.00 20.00

Age 69.35 8.53 44.00 87.00

BMI 24.41 4.42 14.67 42.46

LBMC 35.70 9.69 12.55 60.50

LBMD 0.74 0.12 0.40 1.20

LBSI 2.34 0.63 1.11 4.59

Neck BMC 2.90 0.41 1.72 3.90

Neck BMD 0.58 0.08 0.32 0.81

Neck BSI 1.98 0.46 1.13 3.42

FTot BMC 23.69 4.06 13.48 35.94

FTot BMD 0.69 0.10 0.40 0.98

Ftot BSI 1.73 0.35 1.04 2.96

https://doi.org/10.1371/journal.pone.0245967.t001
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The TWIST system selected the following variables which took part in the modelling by

artificial neural networks: Menopause age, age, BMI, FTot BMC, Ftot BSI.

Interestingly, the system also selected variables with low linear correlation index like meno-

pause age (-0.033), which would have been almost certainly discarded by linear modelling

Table 2. Characteristics of the two groups of patients, fractured vs not fractured.

Not re-fractured Re-fractured

Characteristic Mean SD Mean SD P value

Menopause age 48.63 3.90 48.30 5.61 N.S.

SDI 3.89 3.73 3.58 3.04 N.S.

Age 68.38 7.51 70.35 8.95 N.S.

BMI 23.66 4.43 24.91 4.35 N.S.

Lumbar BMC 35.04 9.86 36.11 9.39 N.S.

Lumbar BMD 0.75 0.11 0.74 0.11 N.S.

Lumbar BSI 2.23 0.56 2.43 0.67 N.S.

Neck BMC 2.88 0.39 2.93 0.43 N.S.

Neck BMD 0.58 0.08 0.58 0.08 N.S.

Neck BSI 2.01 0.42 1.95 0.49 N.S.

Total Femur BMC 23.14 3.43 24.14 4.51 N.S.

Total Femur BMD 0.68 0.09 0.7 0.11 N.S.

Total Femur BSI 1.75 0.31 1.71 0.37 N.S.

https://doi.org/10.1371/journal.pone.0245967.t002

Fig 2. Linear correlation index between patients characteristics and the presence of a further fracture.

https://doi.org/10.1371/journal.pone.0245967.g002
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approaches. A global dataset of 5 inputs and two target attributes was thus generated. After

that, two optimal subsets were created to apply the training and testing procedure described in

the materials and methods section. Table 3 shows the results obtained by the application of a

backpropagation artificial neural networks with eight hidden nodes to the variables selected by

TWIST system.

The performance of artificial neural network resulted remarkable, with an overall predictive

accuracy shown in Table 3 and Fig 3 near to 80%.

The main data set has been divided into two parts (Table 3): a subset A consisting of 90 rec-

ords (49 with further fractures and 41 without further fractures) and a subset B consisting of

82 records (44 with further fractures and 38 without further fractures). This optimal subdivi-

sion has been carried out using an evolutionary algorithm named T&T that builds two sets, Set

A and Set B, trying to approximate the same probability density function. Traditional tech-

niques, such as cross-validation, leave-one-out variant and bootstrapping, do not guarantee

good results when the global dataset is limited or complex, whose data is hyper-point of an

unknown non-linear function: the sub-samples extracted are not always representative of the

Table 3. Predictive results using artificial intelligence systems. The results refer to two testing experiments with training-testing A-B and B-A sequence.

ANN Records Fracture YES Fracture NO Sensitivity (%) Specificity (%) Overall Accuracy (%) AUC

Feed forward back propagation AB 99 56 43 67.86 83.72 75.79 0.782

Feed forward back propagation BA 99 56 43 82.14 83.72 82.93 0.896

Sum/mean 198 112 86 75 83.72 79.36 0.83

https://doi.org/10.1371/journal.pone.0245967.t003

Fig 3. Semantic connectivity map of the studied variables.

https://doi.org/10.1371/journal.pone.0245967.g003
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phenomenon. They do not show the same density function probability. The division into

training and testing sets on a random basis not only does not consider the problem of outliers

but has consequences in terms of variability of results.

Training and testing validation protocol have been used to compare the classification tasks.

It consists of the execution of two independent procedure. The first one, named a-b, uses as

training set the previously built subset A and the subset B as a testing set. The second, named

b-a, reverses roles using subset B as a training set and subset A as testing. The pair of predic-

tions is then averaged to get a final value. Evaluating the results considering both classifications

a-b and b-a prevents the possibility of selecting a particularly favourable sample.

Fig 3 shows the semantic connectivity maps developed by Auto-CM system, illustrating the

connections among variables in the not fracture area (no further fracture) and the fracture

area (further fracture). Observing the map in Fig 2 with only minimum spanning tree filter we

can appreciate which variables act as predisposing factors for further fractures and specifically:

high values of BMI, advanced age and high values of LBSI. All three variables are directly con-

nected with the node representing further fracture. On the other hand, protective variables, i.e.

variables directly connected with no further fracture are low age, and low values of LBSI.

Fig 3 shows some red links superimposed to the minimum spanning tree indicating areas

of the map in which internal loops indicate a high degree of complexity and interconnections

among various factors. All variables included in these two “diamonds” interact dynamically.

Fig 4 shows the same connectivity map with the superimposition of maximally regular

graph depicting a sort of diamond in which there are multiple interconnections among vari-

ables meaning the inherent complexity of the data structure.

Fig 4. Semantic connectivity map with maximally regular graph.

https://doi.org/10.1371/journal.pone.0245967.g004
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Discussion

Osteoporosis is characterized by an inherent complexity with many factors of different clinical

significance interacting towards the possible development of the fragility fracture. One of the

significant challenges in the management of the patient affected by possible osteoporotic frac-

ture is identifying, among the many variables related to the fracture risk, those of highest

weight in determining the path to the fracture or further fracture event, because the vast num-

ber of variables considered can complicate the comprehension of the clinical meaning of the

correlations found. For this reason, we used an innovative approach to statistical analysis of

our database, called Artificial Neural Network analysis (ANNs) with a robust data mining sys-

tem, Auto-CM.

In our population of fragility fractured women, we have applied supervised neural network

modelling on the baseline variables selected by TWIST system. The analysis highlights a high

performance of artificial neural networks that resulted remarkable, with an overall predictive

accuracy near to 80%.

In the medical field, the machine learning data mining represents a relatively new method

emerging with the advent of genomic and functional data. The available techniques offered by

classical statistics like principal component analysis or hierarchical clustering suffer from sev-

eral drawbacks due to the complexity of possible interactions between risk factors, their non-

linear influence on the disease occurrence and the essential stochastic components. Auto-Cm

network, a fourth-generation ANNs, arises just to overcome these limitations. Auto-CM has

been applied in different medical contexts with impressive results demonstrating the ANNs’

usefulness in easily "untangle the ball of yarn" of complex systems characterised by many vari-

ables with different significance [41].

We observed a complex relationship between bone quantity and quality DXA variables

with high adaptive weight among the connections (Figs 2 and 3) with the definition of two

well distinct clusters: one characterised by a degraded bone quantity (low LBMD) and quality

(high LBSI) and the presence of further vertebral fragility fracture (below the red line in the

Fig 2), and one characterised by a good bone quantity and quality and the absence of further

fracture. It is noteworthy that the first bone variable directly related to the event (further frac-

ture, no further fracture) is LBSI, indicating that degrading in bone strength (LBSI high) is a

significant risk factor for further VF, as ultimate step in the pathway leading to the event. This

confirms what reported in literature about the role of BSI in characterizing the pathway lead-

ing to fragility fracture in post-menopausal women [18]. Conversely, a good bone strength

(LBSI low) is a bone variable directly related to good bone status. The variable Age plays a sim-

ilar role in both the events too, confirming the fact that an increasing age is a significant risk

factor for fractures.

It is interesting to note that semantic connectivity map highlights two regions with a dense

network of connections, one in the area of no further fracture and another in the area of fur-

ther fracture. The first highly connected area links variables of high femoral bone quantity and

quality DXA indexes, while the other area links the femoral DXA indexes of degraded bone

status. It could be argued that for a healthy bone status, where further vertebral fractures

unlikely occur, it is necessary to have both lumbar and femoral bone tissue not compromised

in quantity and quality.

Limitations are to be noticed. ANNs analysis is particularly suitable for clinical context

characterised by vast samples with several variables of different clinical significances. The find-

ings of this study are to be also validated in this type of context. This work deals with the capa-

bility of BSI to predict further fragility fracture. An ad hoc study to validate the ability of BSI to

predict the first fragility fracture would complete the clinical validation trial.
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Some conclusions arise from this study: firstly, lumbar and femoral BSI appear to be a use-

ful index in characterising osteoporosis with fragility vertebral further fractures. It should be

utilised for the identification of those patients prone to fragility fracture together with femoral

and spine DXA indexes of low bone density. Secondly, ANNs Auto-CM is useful to under-

stand the complexity of a chronic multifactorial disease like osteoporosis and to ameliorate the

model of prediction of the severe consequences of osteoporosis, particularly further vertebral

fragility fractures.
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