Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab resource: Stem Cell Line

A CRISPR-strategy for the generation of a detectable fluorescent hESC reporter line (WAe009-A-37) for the subpallial determinant GSX2

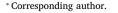
Dario Besusso, Andrea Cossu, Ayat Mohamed, Manuel Cernigoj, Paolo Codega, Maura Galimberti, Ilaria Campus, Paola Conforti, Elena Cattaneo*

Department of Biosciences, University of Milan, Milan 20122, Italy Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan 20133, Italy

ABSTRACT

GSX2 is a homeobox transcription factor (TF) controlling the specification of the ventral lateral ganglionic eminence and its major derivative, the corpus striatum. Medium spiny neurons (MSNs) represent the largest cell component of the striatum and they are primarily affected in Huntington disease (HD). Here, we used CRISPR technology to generate a pluripotent GSX2-reporter human embryonic stem cell (hESC) line that can be leveraged to monitor striatal differentiation in realtime and to enrich for MSN-committed progenitors.

1. Resource Table:


Unique stem cell line identifier	WAe009-A-37
Alternative name(s) of stem cell line	H9-GSX2-tTA:GFP
Institution	University of Milan and INGM
Contact information of distributor	Dario Besusso, dario.besusso@unimi.it
Type of cell line	ESC
Origin	human
Additional origin info	Age: N/A
	Sex: female
	Ethnicity if known: N/A
Cell Source	H9 WA-09 hESC line
Method of reprogramming	N/A
Associated disease	N/A
Gene/locus	GSX2 (GS homeobox 2)/ 4q12
Method of modification	CRISPR/Cas9 and lentivirus
Gene correction	YES
Name of transgene or resistance	tTA-Advanced and EGFP
Inducible/constitutive system	TRE-EGFP (tetO-GFP)
Date archived/stock date	10/07/2010
Cell line repository/bank	N/A
Ethical approval	N/A

2. Resource utility

MSNs can be generated in vitro starting from hESCs with an efficiency currently not greater than 40% (Arber et al., 2015; Carri et al., 2013). In this context, a GSX2 reporter line could be leveraged to monitor and isolate MSN-committed progenitors to generate highlypure MSNs culture for cell replacement therapy.

3. Resource details

HD is a neurodegenerative disorder caused by the loss of striatal medium spiny projection neurons (MSNs) of the corpus striatum (Bates et al., 2015). Cell replacement using hESC-derivatives represent a promising disease-modifying therapy, but current in vitro protocols are limited by poor efficiency. In this context, GSX2 expression could be leveraged to isolate subpallial-committed progenitors through the generation of a fluorescent reporter cell line. To this aim, we used Cas9assisted targeting to modify the endogenous GSX2 locus of the hESC line RC17 by replacing the GSX2 stop codon with the sequence coding for the self-cleaving peptide GT2A followed by the fluorescent protein turboGFP (tGFP), to avoid protein fusion (Fig. 1A). First, the best performing gRNA was selected through a surveyor assay (Fig. 1B) and then gRNA3 (Fig. 1D) was used in the form of synthetic RNA in complex with recombinant w.t. Cas9 to achieve GSX2 specific targeting (RC17 GSX2tGFP). After nucleofection and antibiotic selection, the surviving clones were screened using PCR primer sets spanning the insertion junctions (Fig. 1A, Table 2). For all positive clones, locus specific recombination was observed in only one of the two alleles (heterozygous). Since, GSX2 is a silent gene in self-renewal state and its expression can only be initiated with 20-30 days of in vitro differentiation, we designed a set of gRNAs for dCas9-mediated transcriptional activation of the endogenous locus (dCas9-VPR). After selecting optimal gRNAs for GSX2 activation (Fig. 1C), the RC17 GSX2-tGFP clone was nucleofected with dCas9-VPR together with selected gRNA plasmids to trigger GSX2 transcription and cells analysed by flow cytometry after 48 hrs. This confirmed GSX2specific tGFP expression, therefore functional targeting of the cells (Fig. 1E). To asses GT2A cleavage efficiency, we performed western blot

https://doi.org/10.1016/j.scr.2020.102016

Received 6 August 2020; Received in revised form 9 September 2020; Accepted 26 September 2020 Available online 01 October 2020

1873-5061/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

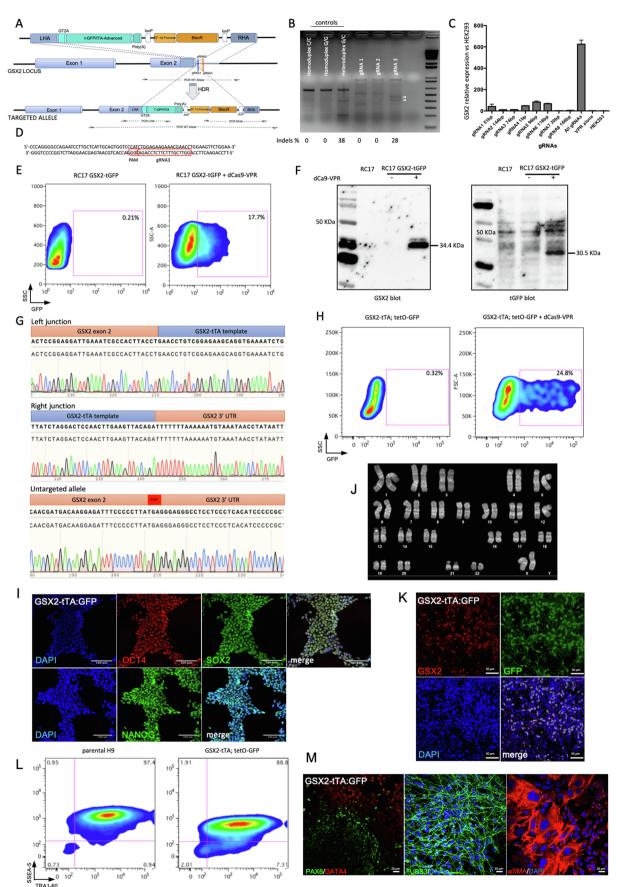


Fig. 1. Generation and characterisation of a detectable fluorescent hESC GSX2 reporter line.

Table 1

Characterization and validation.

Classification	ssification Test Result		Data	
Morphology	Photography	Visual record of the line: normal	Not shown but available with author	
Phenotype	Immunocytochemisty	Assess staining/expression of pluripotency markers: Oct4, Nanog, Sox2	Fig. 1 panel I	
	Flow cytometry	Assess pluripotency marker frequency: Tra 1–60: 96.1% SSEA-5: 90.7%	Fig. 1 panel L	
Genotype	g-Banding	Normal 46, XX	Fig. 1 panel J	
Identity	Microsatellite PCR (mPCR)	DNA Profiling not performed	N/A	
-	STR analysis	16 sites tested.	Not shown but available with author	
Mutation analysis (IF	Sequencing	heterozygous type of mutation	Fig. 1 panel G	
APPLICABLE)	Southern Blot OR WGS	Not performed	N/A	
Microbiology and virology	Mycoplasma	Negative	Fig. 1/supplementary	
Differentiation potential	e.g. Embryoid body formation OR Teratoma formation OR	POU5F1 (OCT-4) expressed	Fig. 1 panel M	
	Scorecard OR Directed differentiation	NANOG expressed		
		SOX2 expressed		
		TRA 1-60 expressed		
		SSEA-5 expressed		
		Differentiation potency:		
		Endoderm:		
		Expression of GATA4 by In vitro		
		spontaneous differentiation.		
		Ectoderm:		
		Expression of TUBB3 and PAX6 by In vitro		
		spontaneous differentiation.		
		Mesoderm:		
		Expression of ACTA2 (alphaSMA) by In vitro		
		spontaneous differentiation.		
Donor screening (OPTIONAL)	HIV 1 + 2 Hepatitis B, Hepatitis C	HIV 1: not tested	N/A	
		HIV 2: not tested		
		Hepatitis B: not tested		
		Hepatitis C: not tested		
Genotype additional info	Blood group genotyping	not tested	N/A	
(OPTIONAL)	HLA tissue typing	not tested	N/A	

analysis after GSX2 induction and found no evidence of protein fusion, but the presence of only the expected 30 (left panel) and 34 (right panel) KDa bands for GSX2 and tGFP, respectively (Fig. 1F). Despite correct targeting, when positive clones were subject to in vitro striatal differentiation, no reporter signal was detected by flow cytometry in the expected time window, even though GSX2 and tGFP were detectable by qPCR (data not shown). Since, many TFs are characterized by low expression levels (Bao et al., 2019), we decided to adopt a molecular strategy that enables the amplification of the downstream signal. To this aim, we replaced the tGFP sequence of the targeting construct with the improved tetracycline-controlled transactivator (tTA-Advanced) and repeated the editing in the hESC line H9. The best positive clone (H9 GSX2-tTA) was selected by PCR/Sanger screening of targeted and w.t. alleles (Fig. 1G), infected with a lentivirus carrying a tetracycline responsive element followed by GFP (tetO-GFP), further subcloned and validated using the dCas9-VPR approach (H9 GSX2-tTA; tetO-GFP, Fig. 1H). This new clone was tested for mycoplasma contamination (Table 1), normal karyotype (Fig. 1J), expression of pluripotency markers (Fig. 1I and 1L), potency (Fig. 1M) and then was subjected to striatal in vitro differentiation to validate reporter expression after 27 days. Although, overall proportion of GFP expressing cells resulted lower than expected suggesting sporadic silencing, positive cells showed expected overlap between GFP and GSX2 by ICC (Fig. 1K), confirming the validity of the adopted strategy for the generation of detectable fluorescent reporter of weakly expressed TFs.

4. Materials and methods

4.1. Cell culture

The hESC RC17 p20 (Roslin CT) were maintained in StemPro medium (ThermoFisher) while H9 p37 (WiCell) were cultured using mTESR (StemCell Technology) and both passaged once a week using EDTA dissociation.

4.2. Immunocytochemistry

Cells were fixed in 4% (vol/vol) PFA for 15 min at RT, blocked and permeabilized using 5% normal goat serum (NGS; Vector), with 0.1% Triton X-100 in PBS for 1 h at room temperature. After washing, cells were incubated overnight at 4 °C with primary antibodies (see Table 2). Next, Alexa Fluor secondary antibodies (ThermoFisher scientific) were used 1:500 in PBS for 1 h RT, followed by 3X washes with PBST and 5 min incubation at RT with 1:10000 of DAPI (ThermoFisher scientific) in PBS.

4.3. GSX2 editing

pUC57-GSX2-tTA-BleoR donor plasmid was synthesized by Genscript and sgRNAs were designed and tested by Surveyor Assay

Antibodies used for immunocytochemistry/flow-citometry

	Antibody	Dilution	Company Cat # and RRID	
Pluripotency Markers (IC)	Mouse anti-OCT4	1:500	Santa Cruz Biotechnology, INC. Cat# sc-5279, RRID:AB_628051	
Pluripotency Markers (IC)	Rabbit anti-Sox2	1:500	Millipore, Cat# AB5603, RRID:AB_2286686	
Pluripotency Markers (IC)	Rabbit anti-Nanog	1:500	Abcam, Cat# ab21624, RRID:AB_446437	
Differentiation Marker	Mouse anti-alpha SMA	1:500	Sigma-Aldrich, Cat# A2547, RRID:AB_476701	
Differentiation Marker	Mouse anti-GATA 4	1:200	Santa Cruz Biotechnology, Cat# sc-25310, RRID:AB_627667	
Differentiation Marker	Rabbit anti-PAX6	1:2500	BioLegend, Cat# 901302, RRID:AB_2749901	
Differentiation Marker	Rabbit anti-beta III Tubulin (TUBB3)	1:1000	BioLegend, Cat# 802001, RRID:AB_2564645	
Secondary antibodies	Alexa Fluor® 488 goat anti-rabbit IgG	1:500	Invitrogen, Cat# A11008, RRID:AB_143165	
Secondary antibodies	Alexa Fluor® 568 goat anti-mouse IgG	1:500	Invitrogen, Cat# A11004, RRID:AB_2534072	
Pluripotency Markers (FACS)	Anti-TRA-1-60-PE	1:11	Miltenyi Biotec Cat# 130-100-347	
			RRID:AB_2654227	
Pluripotency Markers (FACS)	Anti-SSEA-5-VioBlue	1:11	Miltenyi Biotec Cat# 130-106-657	
			RRID:AB_2653536	
Primers				
	Target	Forward/Reverse primer (5'-3')		
Left Homology Arm-Template junction (PCR)	GSX2-tTA edited locus	FW: 5'-TGTCTCGACTCCGGAGGATT-3' RV: 5'-ACGTCCCCGCATGTTAGAAG-3'		
Right Homology Arm-Template junction (PCR)	GSX2-tTA edited locus	FW: 5'-GACGCCCGCCCTTAATATAACT-3'		
		RV: 5'-TGAAAGAGAGTAGGGATGGGGA-3'		
W.T. Allele/Untargeted Allele (PCR)	GSX2	FW: 5'-TGTCTCGACTCCGGAGGATT-3'		
C		RV: 5'-ACCAACCCTGTTTTTCCTCTGTT-3'		
Sequencing WT Allele	GSX2	5'-TGTCTCGACTCCGGAGGATT-3'		
Sequencing left Homology Arm (LHA)	Targeted GSX2	5'-TGTCTCGACTCCGGAGGATT-3'		
Sequencing right Homology Arm (RHA)	Targeted GSX2	5'-TGAAAGAGAGTAGGGATGGGGA-3'		

using T7 endonuclease I (NEB). 2 \times 10⁶ cells were nucleofected with 1 µg of donor plasmid and 20 pmol of equimolar w.t. Cas9 and sgRNA RNP complex using Nucleofector kit (Lonza). After nucleofection, cells were plated in mTeSR (StemCell Technology) with 1:1000 of 10 µM RI and 1 µM of SCR7 for 24 h. Positive clones were selected using 100 µg/mL of Zeocin 3 days post nucleofection. Single clones were manually picked and expanded. Genomic DNA of each clones were extracted using NucleoSpin Tissue kit (Macherey Nagel). PCRs for genomic DNA were performed using Q5[®] High-Fidelity DNA Polymerase (NEB). Positive clones were then plated in low confluency in a 6-well plate and infected using 1 µl of lentivirus (1.9 \times 10⁴ TU/µl) carrying the sequence TRE-EGFP with 0.8 µg/ml Polybrene.

4.4. dCas9-VPR induction

GSX2 expression was induced in hESC through dCas9-VPR (Addgene plasmid #63798). 2×10^6 cells were nucleofected with 2 µg of dCas9-VPR plasmid and 4 plasmids carrying gRNA (each at 200 ng). Cells were dissociated with Accutase with 10 µM Rock kinase Inhibitor (RI), electroporated using Nucleofector kit (Lonza) and plated with mTSeR with RI in a 60 mm dish coated with Cultrex (Trevigen). Expression was evaluated 48hrs after nucleofection.

4.5. Striatal differentiation protocol

Cells were differentiated into striatal projection medium spiny neuron (MSNs) using a protocol previously described by Delli Carri et al. (2013). Briefly 6×10^5 cell were plated in each well of 6-well plate 2 days before neuronal induction. At day 0, the medium was replaced with DMEM/F12 plus N2 (1X), B27 (without Retinoic Acid 0.5X, Life Technology), with 10 μ M SB431542 and 500 nM LDN. At day 3, cells were split 1:2 and at day 5, 200 ng/ml SHH and 100 ng/ml DKK-1 (Preprotech) were added to the medium. At day 11, cells were detached and re-plated in 1 drop of medium containing 4x10⁵ cells in a 12-well plate. From day 11, the medium was composed by DMEM/F12 plus N2, B27, 200 ng/ml SHH, 100 ng/ml DKK-1 and 30 ng/ml BDNF until day 26. From day 27 to day 50, the medium was replaced with DMEM/F12 plus N2, B27 and 30 ng/ml BDNF.

4.6. Spontaneous in vitro differentiation

For spontaneous *in vitro* differentiation, embryoid bodies (EBs) were formed using 10^3 cells/well in a V-bottom 96 wells plate (STAR LAB) with 150 µl/well of mTESR/RI and centrifugated at 800rmp for 1' at RT. Three days later, the medium was changed with DMEM/F12 (Gibco) with Penicillin (100 U/ml) and Streptomycin (100 µg/ml) (Euroclone), L-Glutamine (2 mM, Gibco), 20% KSR, (Gibco), NEAA (1:100, Gibco), 2-Mercaptoethanol (100 µM, Gibco). A week later, EBs were allowed to attach onto Matrigel-coated 24wells optical plates and left to spontaneously differentiate for further 7 days.

4.7. Karyotype

The karyotyping by g-banding analysis were performed by ISENET Biobanking service unit in Milan, Italy (www.isenetbiobanking.com).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was conducted under the sponsorship of CHDI Foundation (United States, grant ID A-558 11103) and was also supported by the European Union funded projects NeurostemcellRepair (European Union, FP7, 559 GA no. 602278, 2013-17) and NSC-Reconstruct (European Union, H2020, GA no 874758, 2020-23).

References

Arber, C., Precious, S.V., Cambray, S., Risner-Janiczek, J.R., Kelly, C., Noakes, Z., Fjodorova, M., Heuer, A., Ungless, M.A., Rodriguez, T.A., Rosser, A.E., Dunnett, S.B., Li, M., 2015. Activin A directs striatal projection neuron differentiation of human pluripotent stem cells. Development 142 (7), 1375–1386.

Bao, X., Adil, M.M., Muckom, R., Zimmermann, J.A., Tran, A., Suhy, N., Xu, Y., Sampayo, R.G., Clark, D.S., Schaffer, D.V., 2019. Gene editing to generate versatile human pluripotent stem cell reporter lines for analysis of differentiation and lineage tracing: tracing cell lineages in hPSCs with cre reporter. Stem Cells 37 (12), 1556–1566. Bates, G.P., Dorsey, R., Gusella, J.F., Hayden, M.R., Kay, C., Leavitt, B.R., Nance, M., Ross,

- Bates, G.P., Dorsey, R., Gusella, J.F., Hayden, M.R., Kay, C., Leavitt, B.R., Nance, M., Ross, C.A., Scahill, R.I., Wetzel, R., Wild, E.J., Tabrizi, S.J., 2015. Huntington disease. Nat Rev Dis Primers 1 (1). https://doi.org/10.1038/nrdp.2015.5.
- Rev Dis Primers 1 (1). https://doi.org/10.1038/nrdp.2015.5.
 Carri, A.D., Onorati, M., Lelos, M.J., Castiglioni, V., Faedo, A., Menon, R., Camnasio, S., Vuono, R., Spaiardi, P., Talpo, F., Toselli, M., Martino, G., Barker, R.A., Dunnett, S.B.,

Biella, G., Cattaneo, E., 2013. Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32⁺ medium-sized spiny neurons. Development 140 (2), 301–312.

Delli Carri, A., Onorati, M., Castiglioni, V., Faedo, A., Camnasio, S., Toselli, M., Biella, G., Cattaneo, E., 2013. Human Pluripotent Stem Cell Differentiation into Authentic Striatal Projection Neurons. Stem Cell Rev and Rep 9 (4), 461–474. https://doi.org/ 10.1007/s12015-013-9441-8.