

DR MASSIMO DEL FABBRO (Orcid ID : 0000-0001-7144-0984)

Article type : Short Communication

Effectiveness of dental implants placed into microvascular free flaps

Funda Goker¹, Alessandro Baj^{1, 2}, Alessandro Remigio Bolzoni^{1, 2}, Carlo Maiorana^{1, 2}, Racco Pierpaolo², Silvio Taschieri^{1, 3, 4}, Paola Beretta¹, Giada Beltramini^{1, 2}, Gianni Aldo Bruno^{1, 2}, Massimo Del Fabbro^{1, 3}

Funda Goker e-mail: funda.goker@unimi.it, ORCID: 0000-0002-2354-361x Alessandro Baj e-mail: alessandro.baj@unimi.it Alessandro Remigio Bolzoni e-mail: alessandroremigio.bolzoni@gmail.com Carlo Maiorana e-mail: carlo.maiorana@unimi.it Pierpaolo Racco e-mail: pierpaolo.racco@yahoo.it Silvio Taschieri e-mail: silviotaschieri@gmail.com Paola Beretta e-mail: pb19942@gmail.com Giada Beltramini e-mail: giada.beltramini@hotmail.it Aldo Bruno Gianni e-mail: aldo.gianni@unimi.it Massimo Del Fabbro e-mail: massimo.delfabbro@unimi.it, ORCID: 0000-0001-7144-0984 ¹University of Milano, Department of Biomedical, Surgical and Dental Sciences, Milan, Italy ² Dental and Maxillo-Facial Surgery Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Via Francesco Sforza 35, Milan, Italy ³ IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi, 4, 20161 Milano, Italy. ⁴ Department of Oral Surgery, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.

Corresponding author: Funda Goker e-mail: funda.goker@unimi.it Address: University of Milano, Department of Biomedical, Surgical and Dental Sciences, Via Commenda 10, Milan, Italy. Telephone: +39 02 50319950

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> <u>10.1111/ODI.13451</u>

This article is protected by copyright. All rights reserved

Keywords: Dental implants, maxillofacial surgery, reconstructive surgery, microvascular free flaps, oral rehabilitation **Conflicts of interest**

None to declare

INTRODUCTION

The reconstruction of hard and soft tissue defects, mainly after ablative oncologic surgery in the maxillofacial region, is a challenging and strongly evolving topic in the field of medicine (Takushima, et al., 2005; Bak, et al., 2010; Gerressen, et al., 2013). In modern medicine, the reconstruction of large defects in the maxillofacial region with free autologous tissue transplants and microvascular anastomosis is described as the gold standard with established protocols (Wong et al., 2010; Thiele, et al., 2014; Kessler, et al., 2013). Currently there is still a growing interest for use of microvascular free flaps for head and neck reconstruction: a PubMed search in September 2019 for "free flap maxillofacial" yielded as many as 1774 medical articles, with a range of different options for maxillofacial reconstructive surgery.

The aim of this retrospective study was to evaluate the survival rates of oral implants in a group of patients who underwent maxillofacial reconstructive surgery with microvascular free flaps.

MATERIALS AND METHODS

The study population included patients that were treated between 15/01/2008 and 15/09/2019 at the Department of Oral Science and Maxillofacial surgery, University of Milan. A signed informed consent form was obtained from all subjects for the medical and surgical procedure and for the use of data in the research. The protocol was approved by the Ethics Committee of Milano Area B (Act 478/2017).

The inclusion criterion was patients who needed oral reconstruction and rehabilitation with dental implants after ablative surgery. No exclusion criterion was set. A standardized follow-up protocol, including clinical and radiographic examinations was planned as 1 month, 3, 6, 12 months and then every 6 months for following years.

All the patients underwent resections in the head and neck region and received simultaneous microvascular reconstructions with distant free flaps. Implant survival was taken as primary outcome of the study. The complications following implant, reconstructive surgeries and prosthesis delivery were assessed as secondary outcomes.

Descriptive statistics was done using mean values and standard deviation (SD) for quantitative variables normally distributed. Normality of distributions was assessed using the d'Agostino and Pearson omnibus test. The effect of the different variables (gender, patients' condition, flap type, site, radiotherapy, chemotherapy, type of prosthesis, smoking habits) on implant survival was evaluated by using the Fisher's exact test, given the low incidence of failures in each group. The implant was the unit of analysis. P=0.05 was considered as the significance threshold. Statistical

analysis was performed using GraphPad Prism 5.03 (GraphPad Software, Inc., La Jolla, CA, USA).

RESULTS

The study population consisted of 23 patients (11 male/12 female). Mean age at surgery was 57.04 (SD 17.95) years. A total of 87 implants were inserted. The average post-reconstructive surgery follow-up period was 55.3 (SD 24.2) months, range 20-140 months. The average post-implant surgery follow-up period was 21.4 (SD 9.4) months, range 6-39 months. The average interval between reconstructive surgery and implant placement was 28.0 (SD 17.3) months, range 5-66 months.

Detailed data concerning type of pathology in head and neck region, type of microvascular flap utilized, characteristics of surgery, treatment modality are listed in Table 1. Post reconstructive surgery complications were seen in 10 patients and are listed on Table 2 with treatment modalities. Two patients developed radionecrosis and they received additional FFF reconstructive surgeries (1 FFF, 1 forearm FF).

Implant survival rates for comparing different characteristics are listed on table 3. The overall implant survival rate was 97.7%. Eight Toronto bridges, five fixed bridges, and one removable prosthesis were delivered. Five prosthetic rehabilitations are still at temporary phase and 4 patients have received no prosthesis yet.

DISCUSSION

The outcome of the maxillofacial reconstruction after ablative surgery protocol can vary from patient to patient due to the biology of the disease and general health status of the patient (Kademani, et al., 2016, Urken, et al., 1991). Restoration of oral functions does not only require the reconstruction of the maxillofacial defect, but also facial and dental rehabilitation of the patient with implants and prosthesis in terms of function and esthetics (Chiapasco, et al., 2006; Wijbenga, et al., 2016; Chen, et al., 2019, Bodard, et al., 2015).

In most cases, the use of dental implants to retain prostheses, as part of rehabilitation for head and neck cancer patients, is a common treatment approach (Pellegrino, et al., 2018; Laverty, et al., 2004; Schoen, et al., 2004). However, this can be challenging, because the bone into which the implants are placed is grafted and has often underwent irradiation (Barber, et al., 2011, Harrison, et al., 2003).

Several factors might influence implant survival such as; the experience of the surgeon, bone

quality, and technical aspects such as implant length, diameter and primary stability, bone topography and applied radiation dose, general health, diminished oral hygiene, smoking and alcohol abuse and each play pivotal roles (Pompa, et al., 2015). The location of implant placement (maxilla versus mandible) was evaluated by various authors in literature (Pompa, et al., 2015, Schoen, et al. 2004). In this study, no relation was found between implant survival and the location of placement (maxilla versus mandible).

Radiotherapy might be an important factor in implant failure (Pompa, et al., 2015, Sammartino, et al., 2011). Some authors recommend implant insertion before radiation therapy because of the initial osseointegration takes place before irradiation and there is a reduced risk of late complications (Colella, et al., 2007, Pompa, et al., 2015; Laverty, et al., 2018). According to the results of this study, the implant survival was not influenced by radiotherapy.

In our study, delayed loading protocol for prosthetic phase was applied with a period of at least 6 months in order to provide effective dental rehabilitation for implant osseointegration, and stability. Most of patients had Toronto bridges as final prosthesis and no specific superstructure was found to be particularly favorable in terms of implant survival.

CONCLUSION:

Oral rehabilitation with implant-supported prostheses after maxillofacial reconstruction with microvascularized free flaps can be accepted as a safe procedure with successful aesthetic and functional outcomes.

REFERENCES

Bak, M., Jacobson, A.S., Buchbinder, D., Urken, M.L. (2010). Contemporary reconstruction of the mandible. *Oral Oncol*, 46(2), 71-76.

Barber, A.J., Butterworth, C.J., Rogers, S.N. (2011). Systematic review of primary osseointegrated dental implants in head and neck oncology. Br J Oral Maxillofac Surg, 49(1), 29–36. Bodard, A.-G., Salino, S., Desoutter, A., & Deneuve, S. (2015). Assessment of functional improvement with implant-supported prosthetic rehabilitation after mandibular reconstruction with a microvascular free fibula flap: A study of 25 patients. *J Prosthet Dent*, 113(2), 140-145. Chen, J., Yin, P., Li, N., Wu, L., Jian, X., & Jiang, C. (2019). Functional mandibular reconstruction with double-barrel fibular flap and primary osseointegrated dental implants improve facial esthetic outcome. *J Oral Maxillofac Surg*, 77(1), 218-225. https://doi.org/10.1016/j.joms.2018.08.008 Chiapasco, M., Biglioli, F., Autelitano, L., Romeo, E., & Brusati, R. (2006). Clinical outcome of dental implants placed in fibula-free flaps used for the reconstruction of maxillo-mandibular defects following ablation for tumors or osteoradionecrosis. *Clin Oral Implants Res* 17(2), 220-228.

Colella, G., Cannavale, R., Pentenero, M., & Gandolfo, S. (2007). Oral implants in radiated patients: a systematic review. *Int J Oral Maxillofac Implants*, 22(4), 616–622.

Gerressen, M., Pastaschek, C.I., Riediger, D., Hilgers, R.D., Hölzle, F., Noroozi, N, & Ghassemi, A. (2013). Microsurgical free flap reconstructions of head and neck region in 406 cases: a 13-year experience. *J Oral Maxillofac Surg*, 71(3), 628-35. doi: 10.1016/j.joms.2012.07.002. Epub 2012 Aug 29.

Harrison, S.J., Stratemann, S., & Redding, W.S. (2003). Dental implants for patients who have had radiation treatment for head and neck cancer. *Spec Care Dentist*, 23(6), 223–9.

Kademani, D. & Tiwani, P. Implant rehabilation and maxillomandibular free flap reconstruction: Atlas of oral & maxillofacial surgery. (2016), (1st ed.) Elsevier.

Kessler, P., Poort, L., Böckmann, R., & Lethaus, B. (2013) Definition of quality indicators in microsurgery in head and neck reconstruction based on a 5-year follow-up without a loss. *J Craniomaxillofac Surg*, 41(1), 2-6. doi: 10.1016/j.jcms.2012.05.004.

Laverty, D.P., Kelly, R. & Addison, O. (2018). Survival of dental implants placed in autogenous bone grafts and bone flaps in head and neck oncology patients: a systematic review. *International Journal of Implant Dentistry*, 19. https://doi.org/10.1186/s40729-018-0131-9

Pellegrino, G., Tarsitano, A., Ferri, A., Corinaldesi, G., Bianchi, A., & Marchetti, C. (2018).
Long-term results of osseointegrated implant-based dental rehabilitation in oncology patients reconstructed with a fibula free flap. Clin Implant Dent Relat Res. 20(5), 852–859. doi: 10.1111/cid.12658. Epub 2018 Aug 24.

Pompa, G., Saccucci, M., Di Carlo, G., Brauner, E., Valentini, V., Di Carlo, S., Gentile, T., Guarino G., & Polimeni (2015). A Survival of dental implants in patients with oral cancer treated by surgery and radiotherapy: a retrospective study. *BMC Oral Health*, 15(5). doi: 10.1186/1472-6831-15-5.

Sammartino, G., Marenzi, G., & Cioffi, I. (2011). Implant therapy in irradiated patients. *J Craniofac Surg*, 22(2), 443–445.

Schoen, P.J., Reintsema, H., Raghoebar, G.M., Vissink, A., & Roodenburg, J.L.N. (2004). The use of implant retained mandibular prostheses in the oral rehabilitation of head and neck cancer

This article is protected by copyright. All rights reserved

patients. A review and rationale for treatment planning. Oral Oncol, 40 (9), 862-71.

Takushima, A., Harii, K., Asato, H., Momosawa, A., Okazaki M., & Nakatsuka T. (2005). Choice of osseous and osteocutaneous flaps for mandibular reconstruction. *Int J Clin Oncol*, 10, 234–242. DOI 10.1007/s10147-005-0504-y

Thiele, O.C., Seeberger, R., Engel M., Freier, K., & Hoffmann, J. (2014) Development of the clinical use of distant flaps for head and neck reconstruction. *J Craniomaxillofac Surg*, 42(1), 79-83. https://doi.org/10.1016/j.jcms.2013.02.00

Urken, M.L., Buchbinder, D., Weinberg, H., Vickery, C., Sheiner, A., Parker, R., Schaefer, J., Som, P., Shapiro, A., Lawson, W., & Biller H.F. (1991). Functional evaluation following microvascular oromandibular reconstruction of the oral cancer patient: a comparative study of reconstructed and nonreconstructed patients. Laryngoscope, 101(9), 935-50.

Wijbenga, J.G., Schepers, R.H., Werker, P.M.N., Witjes, M.J.H., & Dijkstra, P.U. (2016). A systematic review of functional outcome and quality of life following reconstruction of maxillofacial defects using vascularized free fibula flaps and dental rehabilitation reveals poor data quality. *J Plast Reconstr Aesthet Surg*, 69(8), 1024-1036.

Wong, C. H., & Wei, F. C. (2010). Microsurgical free flap in head and neck reconstruction. *Head and Neck. Head Neck*, 32(9), 1236-1245. https://doi.org/10.1002/hed.21284

Patient N	Indication for Maxillofacial	Tumor location and resection site	Graft type
	surgery		
1	Chronica Sclerosing	Right mandible corpus and condyle	FFF Double barrel- Right sid
	Osteomyelitis		
2	Fusocellular Phleomorfic	Right madible	FFF Double barrel- left side
	Neoplasia		
3	MEC	Right mandible	FFF Double barrel- left side
4	SCC	Left madible from 33 till the angle	FFF right plus osteodistracti
5	Keratocystic odontogenic	Mandibula right (from 44 till mandibular	FFF Double barrel
	tumor	branch)	
6	SCC	Right mandible from tigone till mental	ALT Free flap
		foramen	
7	SCC	Half-base of the tongue and oral floor	ALT free flap
		(right) removal	
		,	

Table 1: Graft type and tumor location

8	Gorlin-Golz syndrome	Left mandible and right mandibular branch	FFF right
	(mutiple keratocystis)		
9	SCC	Half tongue left	Forearm free flap
10	Mandibular pseudoartrhosis	Left mandible	FFF left
	after SCC removal		
11	SCC	Oral pelvis and tongue right	Forearm free flap
12	SCC	Mandibular trigone, soft palate, anterior	ALT free flap
		tonsillar pillar	
13	SCC	Mandibular trigone left	FFF left
14	SCC	Mandible right body	FFF left
15	Odontogenic Mixoma	Mandible right	FFF Double barrel left
16	SCC	Mandible left from 41 till 35	FFF left
17	SCC	Mandible left and oral pelvis+ tongue left	FFF left
18	Ossifying fibroma	Mandible left from 33 till36	FFF right
19	SCC	Mandibular trigone, cheek, bone baguette	Forearm free flap
20	SCC	Mandibula left and cheek mucosa	Forearm free flap
21	SCC	Pelvis and tongue left	Forearm free flap
22	SCC	Upper maxilla crest (premaxilla area from	Medial femoral condyle free
		11 to 21	flap
23	SCC	Maxilla, right cheek mucosa and upper	ALT free flap
		right vestibule	

MEC= Mucoepidermoid Carcinoma, SCC= Squamous Cell Carcinoma, FFF= Free fibular flap, ALT= Antero-lateral thigh.

This article is protected by copyright. All rights reserved

Acc

		Condition	Flap type	Complication
	1	SCC	FFF	Painful neuropathy of the lower face
				3 rd
	2	Chronic Sclerosing	FFF	oral bleeding for wound dehiscence at
P		Osteomyelitis		the inferior right fornix. Treated under
				general anesthesia with superficial
				temporary artery clip
	3	SCC	FFF	Cutaneous fistula during
1.00				osteodistraction; Treatment:
				Fistulectomia and distractor remove
	4	SCC	FFF	Mandibular right condyle dislocation
				and cutaneous fistula; Treatment:
				surgical revision and necrotic condyle
				removal
	5	SCC	ALT	SCC relapse in oral pelvis; Treatment:
				surgical removal
	6	Keratocystic odontogenic	ALT	cutaneous fistula; Treatment: surgical
		tumor		revision
	7	SCC	Free forearm flap	cutaneous fistula; Treatment:
				pectoralis flap reconstruction
	8	SCC	Free forearm flap	tumor relapse and mandibular
				pseudoarthrosis and
	5			osteoradionecrosis. FFF
				reconstruction
	9	SCC	Free forearm flap	intraoral small dehiscence of sutures;
				spinal nerve suffering with paresthesia
				of hand's first finger; Treatment:
				controls, solved by the time
	10	Gorlin-Golz syndrome	FFF	keratocystis relapse at maxilla and
		(mutiple keratocystis)		mandible; Treatment: keratocystis
				removal followed by Lefort 1
				maxillectomy after major
				reconstructive surgery due to
				malocclusion

Table 2: Post reconstructive surgery complications

MEC= Mucoepidermoid Carcinoma, SCC= Squamous Cell Carcinoma, FFF= Free fibular flap, ALT= Antero-lateral thigh.

Patient	Characteristics	Failed implants/Total no of Implants	Survival %	P-va
Gender	Male	0 /36	100	0.34
Gender	Female	2/51	96.1	0.5
	Chronica Sclerosing Osteomyelitis	0/3	100	
	SCC	2/67	97	0.59*
	Fusocellular Phleomorfic Neoplasia	0/3	100	
Condition assessed by histological	MEC	0/4	100	
analysis	Keratocystic odontogenic tumor	0/2	100	
	Odontogenic Mixoma	0/3	100	
1	Ossifying fibroma	0/2	100	
	Gorlin Gortz	0/3	100	
Site	Mandible	1/70	98.6	0.32
She	Maxilla	1/17	94.1	
	FFF (Free fibular flap)	1/38	97.4	
	FFF(Double barrel)	0 /12	100	
Flap type	Antero-lateral thigh (ALT) Free flap	0 /16	100	0.02
	Forearm free flap	0 /19	100	
	Medial femoral condyle free flap	1/2	50	
Radiotherapy	No rx therapy	2/54	96.3	0.38
Kauloulerapy	radiotherapy	0/33	100	0.5
Chemotherapy	No chemotherapy	2/76	97.4	0.70
	chemotherapy	0/11	100	

Table 3: Implant success rates for comparison of different characteristics

		Temporary	1/13	92.3	
		Toronto	0/45	100	0.06
	Type of prosthesis	Removable	0/4	100	
		Bridge	1/14	92.6	
		No prosthesis	0/11	100	
	Smoker	yes smoke	1/2 -	50	0.02**
		no smoke	1/85	98.8	

*SCC was compared to all other conditions taken together; **not relevant, given the disparity in sample size