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Abstract

Atomic force microscopy (AFM) is a powerful tool to investigate interaction forces at

the micro and nanoscale. Cantilever stiffness, dimensions and geometry of the tip

can be chosen according to the requirements of the specific application, in terms of

spatial resolution and force sensitivity. Colloidal probes (CPs), obtained by attaching

a spherical particle to a tipless (TL) cantilever, offer several advantages for accurate

force measurements: tunable and well-characterisable radius; higher averaging capa-

bilities (at the expense of spatial resolution) and sensitivity to weak interactions; a

well-defined interaction geometry (sphere on flat), which allows accurate and reliable

data fitting by means of analytical models. The dynamics of standard AFM probes

has been widely investigated, and protocols have been developed for the calibration

of the cantilever spring constant. Nevertheless, the dynamics of CPs, and in particular

of large CPs, with radius well above 10 μm and mass comparable, or larger, than the

cantilever mass, is at present still poorly characterized. Here we describe the fabrica-

tion and calibration of (large) CPs. We describe and discuss the peculiar dynamical

behaviour of CPs, and present an alternative protocol for the accurate calibration of

the spring constant.
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1 | INTRODUCTION

Atomic force microscopy (AFM) is a powerful tool to investigate molecu-

lar interactions at bio-interfaces, as well as their mechanical properties,

with nanometric spatial resolution and 1 to 10 pN force resolution.1,2

The force sensing capability of AFM is provided by the use of

probes consisting of an elastic microlever (cantilever) with an inter-

acting tip at his apex. A deflection Δz of the cantilever as small as

1/10 of a nanometre can be detected by means of an optical beam

deflection,3 and translated into a tip-sample force F according to

Hook's law: F = kappΔz. The value of the spring constant of the cantile-

ver can be selected in the range 0.01 to 100 N/m. Here an apparent

spring constant kapp is used because due to the cantilever tilt θ (usu-

ally θ = 10�-15�, see Figure 1I) both the force F and the measured

deflection Δz are perpendicular to the sample surface, rather than to

the cantilever axis. The intrinsic spring constant k in turn relates the

deflection and the force normal to the cantilever axis.

While sharp AFM tips are mandatory when high spatial resolution

is necessary, large spherical probes, also known as colloidal probes

(CPs),4-7 can be advantageous when one or more of the following

requirements are important: a well-defined interaction geometry

(sphere on flat) and reduced stress and strain in mechanical tests; a

good spatial averaging; a broader and smoother surface for probe

functionalization. The well-defined interaction geometry makes CPs a

suitable tools for the investigation of mechanical properties of soft or

biological samples8-11; the larger contact area allows to detect weak

interaction forces12,13 and generally CPs provide an easier interpreta-

tion of data in terms of theoretical models.8,11,14,15
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The obvious price to pay when using CPs is the dramatic reduc-

tion of the spatial resolution, although the optimal spatial resolution

clearly depends on the typical length scale of the physical phenomena

under investigation. For example, as long as one is interested in char-

acterizing the average rigidity of mesoscopic cellular regions (cell body

vs periphery), tissues or extracellular matrices, CPs provide enough

spatial resolution despite their micrometric radii.9,16-18

Large CPs, where the radius R can be far larger than 10 μm, are

very useful to study extremely weak interaction forces, or the

mechanics of samples over a wide range of contact area, averaging

nanoscale inhomogeneities and local variations of the sample (eg, in

the case of the mechanical response of tissues). Large CPs allow to

better compare the results obtained by AFM to those obtained by

other indenters19-22 and in principle to bridge nano- and microscale

mechanics to macroscale mechanics.23,24

Despite the many advantages of CPs, some issues related to the

calibration of these probes must be addressed in order to exploit their

full potential, especially in the case of large CPs.25 In particular, cali-

bration of AFM probes require the determination of the intrinsic and

apparent spring constants k and kapp and of the static deflection sensi-

tivity Sz (in nm/V), also known as inverse optical lever sensitivity

(invOLS), which converts the raw output ΔV of the photodetector

(in Volts) into a deflection Δz (in nm) normal to the sample surface:

Δz = SzΔV.26 The force F is then calculated as:

F = kappSzΔV ð1Þ

The calibration of both k (kapp) and Sz for CPs presents issues,

which become more important as the probe radius increases.

The issues related to the calibration of CPs arise when the radius

and mass of the attached sphere are comparable to the length and

mass of the cantilever, respectively. In order to describe the effect of

the attached sphere on the cantilever dynamics, two dimensionless

parameters can be introduced (see also Section 2)27: the reduced mass

~m is the ratio of the mass of the sphere mS to the mass of the cantile-

ver mC; the reduced gyration radius of the sphere ~r is proportional to

the ratio of the radius R of the sphere to the length L of the cantilever.

The basic cantilever calibration parameters, such as the resonant fre-

quency ν0, the quality factor Q, the deflection sensitivity Sz, the spring

constant k, depend on ~m and ~r.

In this report, we discuss some critical aspects of CP production

and calibration, and present methods to minimize their impact on the

accuracy of AFM measurements.

2 | METHODS

2.1 | Fabrication of the CPs

We have produced eight monolithic glass probes following an

established custom protocol28 (see Table 1).

We used borosilicate glass spheres (Thermo Fisher Scientific,

series 9000 glass particles) with radius R = 2, 5, 10 μm (probes CM1-3

and TM1-3), and soda-lime spheres (Polyscience, glass beads Amine,

N� 23 584-10) with nominal radius R = 30 μm (probes CM4 and TM4);

we could not find on the market borosilicate glass spheres with radius

above 10 μm. These latter spheres are of far better quality than soda-

lime glass spheres, in terms of surface roughness and morphology.

Soda-lime glass spheres present extended surface defects (including

craters, protrusions; see Figure 1C-F).

In order to span a wide range of reduced masses and gyration

radii, we used two different kinds of silicon tipless (TL) cantilevers:

tapping mode (TM; TL-NCH-50, Nanosensor) and contact mode (CM;

TL-CONT, Nanosensor).

After mounting the cantilever into the AFM (Bioscope Catalyst,

Bruker) tip holder, the beads were captured using the XY motorized

stage of the AFM. The AFM is integrated in an optical inverted micro-

scope (Olympus X71), which helps locating and capturing the beads.

Depending on the size of the spheres, environmental capillary adhe-

sion or Vaseline is exploited to attach the sphere to the tipless cantile-

ver. The cantilevers with the attached beads are then transferred into

a high-temperature oven (PXZ series, Fuji Electrics) already at the tar-

get temperature, and heated for 2 hours. We used different tempera-

tures for the different materials of the sphere: 780�C for borosilicate

F IGURE 1 SEM images of some CPs fabricated (see Table 1). A, CM1, borosilcate; B, CM1 at higher magnification; C and D, CM4, soda-lime;
E and F, TM4, soda-lime; G and H, TM3, borosilicate. I, Schematics of a CP, with the relevant parameters highlighted
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and 700�C for soda-lime glass, respectively. These temperatures are

slightly below the softening point of the materials, which is qualita-

tively defined as the temperature at which a solid object begins to col-

lapse under its own weight. After 2 hours, the microsphere is

covalently attached to the cantilever; the glass locally melts at the

sphere-cantilever interface, forming a neck, which is more or less

extended depending on curing time and temperature.

Besides being much smoother than the soda-lime spheres and

less dispersed in radius, borosilicate glass spheres present typically a

lower deformation after the heating procedure (compare Figure 1B,H

and Figure 1D,F). Moreover, the radius of soda-lime glass spheres can

differ significantly from the nominal one.

2.2 | Calibration of CPs

2.2.1 | Radius

1. R ≤ 10 μm. The characterization of the radius of the CP is obtained

by an AFM reverse imaging of the probe,5,29,30 as described in Ref-

erence 28. The CP is used to scan a spiked calibration grating31

(TGT1, Tips Nano). Spikes are separated by approximately 3 μm,

therefore a 20 μm × 20 μm image typically contains a hundred inde-

pendent replicas of the probe apical region. Upon collecting several

such images, the volume, projected area and height of each replica

are measured. By fitting a spherical cap model to the experimental

data, in the form, for example, of a volume vs height curve:

V = π
3h

2 3R−hð Þ , it is possible to determine the value of the sphere

radius R, with an accuracy as good as 1%. While the spherical cap

model adopted here allows using all data points from the three-

dimensional reverse AFM image, deconvolution methods32 are lim-

ited by the fact that only so-called certainty regions can be deter-

mined, corresponding to those points where the tip apex is

effectively in contact with the surface of the calibration sample, and

analytical formulas are limited to the study of single profiles.33 Since

the spikes are relatively close, the sphere can penetrate through

them by only a few hundred nanometres, at best. For this reason, as

long as gratings with sparser, and taller spikes are not available, the

application of this method is limited to relatively small spheres.

2. R = 30 μm. CPs with R > 10 μm are too large for the calibration by

reverse AFM imaging. The radius of these probes is measured opti-

cally, using a calibrated metallographic optical microscope equipped

with a calibrated 50× objective (AXIO, Zeiss). The error associated

to the optical characterization of the probe radius is 1 μm (standard

deviation). Since the nominal radius of the soda-lime spheres

attached to the tipless cantilevers is R = 30 μm, the relative error of

its characterization is approximately 3%. Alternatively, it is possible

to follow an AFM-based reverse imaging approach based on single

profiles, by scanning the large CP across a calibration grating with

well separated (>10 μm) and tall (> 1.5 μm) sharp steps. The radius

R can be obtained by fitting an arc of circumference to the AFM

profile. For a better characterization of R, we suggest to rotate the

calibration grating in order to obtain different nominally equivalent

profiles of the sphere, and average the different values.

2.2.2 | Nominal and reduced masses

We calculated the mass of the spheres ms using the nominal densities

of borosilicate glass ρBG = 2.23 g/cm3 and soda-lime glass

ρSLG = 2.52 g/cm3 and the calibrated radius R as: ms = ρBG=SLG
4
3πR

3.

The mass of the cantilever mc was evaluated assuming a rectangu-

lar section, using the nominal dimensions (length L, width w, thickness t)

and the silicon density ρSi = 2.33 g/cm3 as: mc = ρSiLwt. We ignored the

fact that some cantilevers have a trapezoidal cross section.

The total mass mp of the probe was evaluated by summing the

cantilever and the sphere masses: mp = mc + ms.

The reduced mass ~m and the reduced gyration radius ~r of the

sphere are defined as27:

~m=
ms

mc
,~r =

ffiffiffi
7
5

r
R
L

ð2Þ

We evaluated the effective mass m* of the cantilever, before and

after the attachment of the sphere, as the effective mass of a SHO,

TABLE 1 Properties of the CPs fabricated for this study

Probe

Bead

radius (nm)

Cantilever

length (μm)

Cantilever

width (μm)

Cantilever

thickness (μm) ~m ~r ΔL=L β

CM1 2189 450 50 2 9.76 × 10−4 5.7 × 10−3 0.048 0.817

CM2 4462 450 50 2 8.18 × 10−3 1.16 × 10−2 0.053 0.826

CM3 7696 450 50 2 4.24 × 10−2 2.02 × 10−2 0 0.849

CM4 36 130 125 30 2 7.02 9.5 × 10−2 0.088 1.018

TM1 1767 125 30 4 1.54 × 10−3 1.67 × 10−2 0 0.817

TM2 4292 125 30 4 2.21 × 10−2 4.06 × 10−2 0.112 0.836

TM3 7690 125 30 4 1.27 × 10−1 7.2 × 10−2 0.175 0.8768

TM4 31 752 125 30 4 9.62 3 × 10−1 0.501 1.111

Note: These probes were fabricated using two different kind of tipless cantilevers: Tapping mode (TM) and contact mode (CM).
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using the standard formula: m� = k=ω2
0 , where k is the spring constant

and ω0 is the angular frequency of the oscillator.

2.2.3 | Deflection sensitivity

The calibration of Sz is performed by engaging the AFM tip on a very

rigid surface and collecting a series of raw deflection vs z-piezo-

displacement curves. Assuming that neither the tip nor the surface is

deformed, the deflection sensitivity Sz is calculated as the inverse of

the slope of the curves.26 This sensitivity is referred to as the static

deflection sensitivity, and differs from the dynamic deflection sensitiv-

ity Sz,dyn
34,35; the latter sensitivity must be used when the cantilever

oscillates instead of being statically bent due to an end loading, as in

the application of the thermal noise method for the calibration of the

cantilever spring constant.

It must be noted that Sz strongly depends on the loading configu-

ration.36-38 In particular, the static sensitivity of a tilted tipless cantile-

ver differs from that of a standard tilted cantilever, with a sharp tip, or

a sphere, attached to its end.

In the case of a standard probe, the force is not applied at the can-

tilever end, but rather at the tip apex, which is some distance apart,

therefore a torque is generated. Moreover, because of the tilt angle θ,

during the standard operation of an AFM the interaction force is per-

pendicular to the sample surface, instead of the cantilever axis, while

during the thermally driven oscillation of the cantilever the effective

driving force is always perpendicular to the cantilever axis. The

corresponding cantilever displacement is therefore different from that

obtained by the application of the same force at the cantilever end.

Corrections for the deflection sensitivity Sz are necessary, to

account for the differences in the loading configuration of tipless and

tipped cantilevers in the different experimental conditions. Correction

factors are therefore used to determine both the intrinsic spring con-

stant k using the thermal noise method, and the apparent spring con-

stant kapp used to rescale the raw deflection signal into a force

(Equation 1). While the latter correction factor is discussed in Sec-

tion 2.2.5, the first factor is introduced in the following paragraphs.

As mentioned, during the thermal noise calibration, the cantilever

is driven by a distributed thermal force, which can be considered as

effectively located at the cantilever end, where it acts perpendicularly

to the cantilever axis. Assuming that the deflection sensitivity

depends on the parameters θ, R, L, ΔL introduced in Figure 1I, the cor-

rection factor is therefore ŝ= S0,0,L,0z =Sθ,R,L,ΔLz , where Sθ,R,L,ΔLz represents

the deflection sensitivity measured in a particular loading configura-

tion and S0,0,L,0z is the sensitivity in the thermal loading configuration.

According to Reference 37 (Equation 3 and other equations therein):

1=ŝ2 = 1−
ΔL
L

� �2 1− 3
2

R=L
1−ΔL

Lð Þtanθ
1−2 R=L

1−ΔL
Lð Þtanθ

2
64

3
75
2

cos2 θð Þ ð3Þ

The cos2(θ) term in Equation (3) accounts for the tilt θ of the cantile-

ver39; the term in square brackets accounts for the torque applied to the

cantilever because of the finite height of the tip; the first term (1 − ΔL/L)2

accounts for the fact that when the static deflection sensitivity is calibrated,

the deflection at the loading point, rather than at the end of the cantilever, is

measured.37,38 A special case of Equation (3) was first proposed byHutter38

under the hypothesisΔL = 0; in this case, Equation (3) simplifies to:

1=ŝ2 =
1− 3

2
R
L tan θð Þ

1−2R
L tan θð Þ

" #2

cos2 θð Þ ð4Þ

For standard AFM tips, the radius R of the sphere in Equations (3)

and (4) must be replaced by the tip height H.37

2.2.4 | Thermal noise and CPs

Several approaches have been developed to characterize the spring

constant of a cantilever,6,40-45 among which, the thermal noise

method40,41,46,47 is based on the equipartition theorem.

Under the assumption that the mass mt of the tip is negligible with

respect to the mass mc of the cantilever, the probe (cantilever + tip) can

be modelled as a point body with effective mass m*, bound to an ideal

spring with stiffness k, in thermal equilibrium with its environment.

Assuming that the tip oscillates only along the direction perpen-

dicular to the cantilever, and being z⊥ its displacement relative to the

equilibrium position, its average potential energy is U = ½k< z2⊥ > ,

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< z2⊥ >

q
is the thermally driven root mean square oscillation

amplitude of the free end of the cantilever, where the tip is located,

ranging from approximately 5 to 500 PM. According to the

equipartition theorem, U= ½kBT, where kB is the Boltzmann constant

and T is the local absolute temperature. It then follows:

1=2 k < z2⊥ > =1=2kBT ð5Þ

If < z2⊥ > is measured, the cantilever spring constant k is then cal-

culated from Equation (5) as:

k =
kBT

< z2⊥ >
ð6Þ

When the optical beam deflection method is used to measure the

cantilever deflection, with the laser aligned at the end of the cantile-

ver, Equation (6) is replaced by Equation (7)37,38,48:

k =
α̂

χ2
kBT

ŝSzð Þ2PV
ð7Þ

In Equation (7), PV = <ΔV2> is the area below the first resonant

peak in the power spectral density (PSD) of the raw deflection signal

(in units of V2/Hz).

The factor α̂ in Equation (7) takes into account the fraction of the

total oscillation amplitude stored in the first normal mode of the canti-

lever, when one goes beyond the single harmonic oscillator (SHO)
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approximation.46 For the first normal mode of a tipless rectangular

cantilever, α̂� α̂1 = 0.971.

The factor χ34,35,48 corrects for the differences between the static

(which is typically measured) and dynamic deflection sensitivities:

χ = Sz,dyn/Sz.
46,49 Indeed, as pointed out by Butt and Jaschke in their

seminal work,46 the cantilever inclination, rather than its vertical dis-

placement, is measured using the optical beam deflection apparatus;

the slope of the free end of the statically loaded cantilever differs

from those of the modal shapes of the oscillating cantilever.46,48,50

For the first normal mode of a tipless rectangular cantilever, assuming

a negligibly small laser spot aligned at the end of the cantilever,

χ ≡ χ1 = 1.09. For the general case, the reader is referred to Refer-

ences 37 and 50 for the calculation of χ.

The factor ŝ represents the correction to the deflection sensitivity

due to the change in the loading condition of the cantilever

(Equations 3 and 4).

In principle, the thermal noise method could be applied to higher

normal modes, in which case Equation (7) should be rewritten in terms

of the parameters PV,i, α̂i, χi, where the index i = 1, 2, 3, … refers to the

i-th normal mode. In practice, due to the finite laser spot size, which

causes an averaging of different cantilever inclinations across a finite

area, the first normal mode has to be preferred35; moreover, the first

normal mode typically provides the largest oscillation amplitude, that

is, the largest signal to noise ratio.

The factors α̂ and 1/χ2 can be merged in a single parameter β = α̂

/χ2. For the first normal mode of an ideal rectangular cantilevers,

β = β0 = 0.817.

The implementation of the thermal noise model for AFM cantile-

vers assumes that the mass of the cantilever is uniformly distributed.

For this statement to be valid, the mass of the tip must be negligible

compared to the mass of the cantilever. When large spheres are

attached at the end of a cantilever, this hypothesis is not always satis-

fied. Since the mass of the microsphere scales up with the cube of

radius R, it can easily reach values comparable to the mass of the can-

tilever. This typically happens for a radius R > 10 μm, for a 200 μm

long, silicon nitride cantilever, and a glass sphere.

2.2.5 | Loading point and spring constant

For tipless cantilevers, the loading point is located at the free end of

the lever. For sharp tips, the loading point corresponds to the location

of the tip apex along the cantilever. For CPs, the loading point is

located at the sphere apex, that is, approximately a distance ΔL from

the cantilever end (Figure 1I).

The attachment of the sphere to the tipless cantilever is not

expected to change the intrinsic spring constant of the probe. Since

the determination of the deflection sensitivity Sz can be critical for

CPs (see discussion in Section 3.6), it can be convenient to calibrate

the intrinsic spring constant kTL of the tipless cantilever, before the

attachment of the sphere, and then correct its value to determine the

intrinsic spring constant kLPTL of the tipless cantilever at the loading point

of the CP; the latter spring constant can be supposed to be equal to

the spring constant of the CP at the loading point, that is, kLPTL = k
LP
CP.

The spring constant kLPTL of the tipless cantilever corresponding to

the loading point of the CP is calculated as51,52:

kLPTL =
L

L−ΔL

� �3

kTL ð8Þ

In Equation (8), ΔL is the distance of the loading point of the CP

from the cantilever free end. In the case of rectangular, axisymmetric

and relatively long cantilevers, Equation (8) is valid for arbitrary offset

ΔL, not only in the limit ΔL/L � 1.52

Alternatively, the thermal noise method can be applied directly to

the CP, provided the measured spring constant kCP is corrected first

by Equation (8) (to obtain kLPCP), and then by Equation (11), to take into

account the peculiar dynamics of the CP, as described in the Results.

When the optical beam deflection method is used to measure the

cantilever deflection, in order to rescale deflections into forces per-

pendicular to the sample surface, an apparent spring constant kapp

must be used, instead of the intrinsic spring constant k.37 The relation

between the apparent and the intrinsic spring constants, assuming the

sphere is located at the cantilever end, is:

kapp = 1−
3
2
R
L
tanθ

� �
cos2 θð Þ

� �−1

k ð9Þ

where the correction factor accounts for the tilt of the cantilever θ

and the torque applied on the cantilever because of the finite tip

height; it was proposed by Heim et al,40 and later corrected by

Hutter38 and generalized by Edwards et al37 and Wang.53 For stan-

dard AFM tips, the radius R of the sphere in Equation (9) must be rep-

laced by the tip height (and not by half that value), as reported in

Reference 37.

Following the approach of Edwards et al,37 for CPs obtained from

tipless cantilevers, assuming a sphere on cantilever configuration and

considering a back-shift ΔL of the loading point, Equations (8) and (9)

can be combined as:

kLPCP,app = 1−
3R=L

2 1−ΔL=Lð Þtanθ
� �

cos2 θð Þ
� �−1 L

L−ΔL

� �3

kTL

= 1−
3R=L

2 1−ΔL=Lð Þtanθ
� �

cos2 θð Þ
� �−1

kLPCP ð10Þ

Equation (10) allows to calculate the apparent spring constant, at

the loading point, of the CP from the intrinsic spring constant of the

previously calibrated tipless cantilever.

The intrinsic spring constants are calibrated using the thermal

noise method.41,46 Some details of the implementation of the thermal

noise method for CPs are discussed in Section 3. The cantilever

deflection signal is extracted from the AFM using a signal access mod-

ule (intermodulation products) and sampled using an external ADC

board (NI-DAQ PCI-6115). Signal acquisition and processing is
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performed using custom software (LabView, National Instruments;

see Reference 48 for practical indications). Alternatively, the Sader

method can be used to calibrate the intrinsic spring constant of the

cantilevers.45,54 The spring constant of a probe can be measured in

different configurations (tipless cantilever vs CP) and it is always

related to the loading point of the probe. For CPs, the loading point

(LP) is located at the point where the tip/probe is attached to the can-

tilever; for TL cantilever, the LP is located at the cantilever free end.

In Table 2 we summarize all the possible spring constant evaluated in

this work, with the corresponding abbreviations.

3 | RESULTS

3.1 | Impact of the added mass on the dynamics
of CPs

The laser doppler vibrometry (LDV) and in general interferometric

techniques47,55-57 permit to measure with great accuracy the cantile-

ver deflection instead of inclination, also in the case of oscillating can-

tilevers, including for the calibration of the spring constant by the

thermal noise method. Interferometric techniques offer the advantage

of not requiring the calibration of deflection sensitivity.

Using interferometric approaches it was recently demonstrated

that the cantilever oscillation dynamics changes if a mass is attached

to the free end.27,58 In particular Laurent et al27 have measured the

shape of first five eigenmodes along the profile of a rectangular canti-

lever, as a function of the reduced mass of the sphere ~m , and of the

reduced gyration radius of the sphere ~r, introduced in Section 2. Apart

from causing a decrease of the resonant frequency, the large attached

mass of the sphere induces a shift of the normal mode nodes towards

the free end of the cantilever, with the progressive shift of the centre

of mass towards the cantilever free end and the increase of the con-

tribution of the first normal mode to the total oscillation amplitude. As

a consequence, both factors α̂ and χ are expected to be influenced by

the presence of a large sphere at the end of the cantilever. It turned

out indeed that the factor β0 calculated for an ideal tipless cantilever

is no longer accurate, and leads to an underestimation of the spring

constant measured by the thermal noise method.27

Figure 2 shows the values of the factor β calculated according to the

procedure described in Reference 27 based on the modified modal shape

functions for a sphere-loaded cantilever, for both ~m and ~r varying over a

broad range, considerably extending the previously reported results.

Once the spring constant kCP,0 of the CP has been calibrated by

the thermal noise method using the standard prefactor β0, the correct

spring constant kCP is calculated according to the formula:

kCP =
β

β0
kCP,0 ð11Þ

Representative curves β ≡ β(~m ) for different values of ~r are

reported in Figure 2. In order to facilitate the application of Equa-

tion (11), Table 3 reports the values of the correction factor β for typi-

cal values of ~m and ~r.

3.2 | A survey of CPs from the literature and the
present study

CPs are fabricated with different cantilever and microsphere-relative

dimensions and masses. Figure 3 reports the results of a literature sur-

vey about the values of ~m and ~r of CPs used in the experiments. Most

of the CPs have relatively small spheres attached to the cantilevers,

resulting in a reduced mass ~m on the order of 0.01 or even

below.10,59-61 Nevertheless, very large CPs are also used,10,62-65 with

~m values as large as 5, up to 10.

In order to study how ~m and ~r of CPs affect the cantilever dynam-

ics, we fabricated several CPs with different dimensions in order to

cover the whole range shown in Figure 3. In particular, we produced

eight probes, using both shorter and rigid tapping mode (TM), and lon-

ger and soft contact mode (CM) cantilevers. The properties of the CPs

TABLE 2 Descriptions and abbreviations of the spring constants
considered in this study

Spring constant

name Description

kTL Measured in the tipless configuration and related

to the free end of the cantilever

kLPTL Measured in the tipless configuration and related

to the selected loading point of the probe

kLPCP Measured with the attached sphere and related

to the loading point of the probe

corresponding to the position of the centre of

the sphere

kapp Apparent spring constant due to the tilt and

torque of the cantilever in the standard

experimental configuration
F IGURE 2 Scaling of the factor β (see Section 2.2.4) as function
of ~m, for different ~r, calculated according to the procedure described
in Reference 27 based on the modified modal shape functions for a
sphere-loaded cantilever
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produced for this study are reported in Table 1 and also in Figure 3

(red crosses). We characterized the spring constant and the dynamics

of our probes before and after the attachment of the microsphere.

3.3 | Shift of the resonant frequency of CPs

Figure 4 shows the thermal noise spectrum, that is, the raw PSD PV in

units of V2/Hz, of the first resonant peak of the original tipless cantile-

vers, and of the CPs obtained upon attachment of the glass bead. Not

surprisingly, as a consequence of the added mass, we observe a

decrease of the resonant frequency. These results confirm that a shift

in the resonant frequency ν0 is present even if the reduced mass is as

small as ~m = 9.76×10−4 (Figure 5). This drop of the resonant fre-

quency reaches a factor of 5 for largest masses (Figure 4D,H). These

trends are in agreement with previous works.66,67

Figure 4 shows that the increase of the full width at half maxi-

mum (FWHM) and of the oscillation amplitude are associated to the

shift of the resonant peaks towards lower frequencies. For large CPs

(Figure 4D,H), the peak is 30 times higher and 20 times narrower

compared to the corresponding tipless cantilever case. These observa-

tions may be somewhat unexpected for probes whose mass is signifi-

cantly increased. For instance, a reduction of the oscillation amplitude

and a widening of the resonant peak is typically observed when the

thermal noise spectrum is acquired in liquid, another case where the

effective mass of the cantilever is increased significantly, due to the

liquid viscosity that causes the cantilever to drag a finite volume of

liquid during oscillation. As we will discuss later, this observation can

be explained in terms of a combination of effects due to the increase

of the inertial mass of probe67 and the storage of a greater fraction of

total oscillation in the first mode.27

3.4 | Quality factor

The quality factor Q represents the ratio between the energy stored

in the oscillation and the energy dissipated per cycle because of the

viscous damping. For a single-mode oscillator, Q is defined as:

Q=
m�ω0

γ
=2π

m�ν0
γ

ð12Þ

In Equation (12), γ is the damping coefficient, that is, the proportion-

ality factor between the tip velocity and the viscous force. Q is related to

TABLE 3 Values of the correction factor β (Equation 11) for different values of ~m and ~r

~r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

~m 0 0.817 0.817 0.817 0.817 0.817 0.817 0.817 0.817 0.817 0.817 0.817

0.001 0.818 0.818 0.818 0.819 0.819 0.820 0.821 0.822 0.823 0.824 0.826

0.002 0.819 0.819 0.820 0.820 0.821 0.823 0.825 0.827 0.829 0.832 0.834

0.005 0.821 0.822 0.823 0.825 0.827 0.831 0.835 0.840 0.846 0.852 0.859

0.01 0.825 0.826 0.828 0.832 0.837 0.844 0.852 0.861 0.872 0.884 0.897

0.02 0.832 0.834 0.838 0.845 0.855 0.868 0.883 0.900 0.920 0.941 0.963

0.05 0.851 0.854 0.864 0.879 0.901 0.927 0.957 0.990 1.024 1.059 1.093

0.1 0.875 0.880 0.896 0.921 0.954 0.994 1.036 1.079 1.121 1.158 1.190

0.2 0.905 0.913 0.936 0.972 1.018 1.068 1.117 1.161 1.199 1.230 1.254

0.5 0.945 0.956 0.988 1.035 1.090 1.144 1.191 1.228 1.257 1.278 1.292

1 0.968 0.981 1.016 1.068 1.124 1.177 1.220 1.253 1.276 1.292 1.304

2 0.983 0.996 1.034 1.087 1.144 1.195 1.236 1.265 1.285 1.299 1.309

5 0.993 1.007 1.046 1.100 1.157 1.207 1.245 1.272 1.291 1.303 1.312

10 0.996 1.011 1.050 1.105 1.162 1.211 1.248 1.275 1.293 1.305 1.313

F IGURE 3 CPs used by the authors of publications as from a
literature survey (blue circles) and CPs fabricated during this study
(red crosses) represented according to their reduced mass ~m and
gyration radius ~r. The background colour highlights the region where
corrections to the spring constant according to Equation (11) are
negligible (green), and the region where the influence of the added
mass becomes relevant (deviation larger than approximately 10%)
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the width of the resonant peak: at fixed mass m* and frequency ν0, the

higher is Q, the smaller is the FWHM, since FWHM ≈ ν0/Q.

Figure 6 shows the relative increase of the quality factor Q of the

CPs compared to the one measured in the tipless configuration. It is

evident that the value of Q of CPs increases, rather than decreasing,

with respect to the tipless cantilevers, and that the relative increase is

larger for higher values of ~m.

To better understand the behaviour of Q upon the attachment of

the sphere to the tipless cantilever, we calculated the effective mass

m� = k=ω2
0 for each probe, before and after the attachment of the

bead. The ratio between the measured effective mass m* and the

nominal mass of the probe mp (for both tipless probes and CPs) is

shown in Figure 7A. The measured ratio m*/mp for the tipless cantile-

vers is 0.24±0.02 (mean+ standard deviation of the mean), in agree-

ment with the theoretical value of 0.25 for the rectangular

cantilever.42 A similar value is measured for those CPs with the

smallest reduced mass, where the contribution of the cantilever mass

is dominant (see Figure 7A). As ~m increases, the effective mass m�
c

becomes larger than 0.25mc. For large CPs, m* becomes similar to mp,

which is in turn very similar to ms, the mass of the sphere; in this limit,

the mass of the sphere is dominant.

Equation (13) represents a simple model for the effective mass

m�
CP of a CP; the concentrated mass of the sphere, located at the free

end of the cantilever, is added to the effective mass of the tipless

cantilever26:

m�
CP =m

�
c +ms ð13Þ

Equation (13) clearly highlights that the cantilever and the sphere

contribute differently to the inertia of the probe. The cantilever mass,

which is uniformly distributed along the cantilever length, is strongly

underestimated in the sum, being weighted by a factor of 1/4; the mass

of the sphere, instead, being truly concentrated at the free end of the

cantilever, is fully represented with weight 1. Figure 7B shows the

correlation between the measured m* and the values of the effective

F IGURE 4 The measured PSD PV at the first normal mode of the
cantilever before (black) and after (red) the attachment of the
microsphere for contact mode CPs. A-D, CMs; E-H, TMs. The mass of
the attached sphere increases from top (CM1 (A)-TM1 (E)) to bottom
(CM4 (D)-TM4 (H))

F IGURE 5 The relative shift of the measured resonant frequency
ν0 vs the reduced mass ~m. As shown in Figure 4, ν0 decreases as ~m
increases

F IGURE 6 Relative shift of the measured quality factor Q vs the
reduced mass ~m
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mass predicted by Equation (13). The slope of the straight line fitting

the experimental data in Figure 7B is 1.052 ± 0.005. In the case of the

first six probes (data highlighted in Figure 7C), a better correlation is

found, the slope being 1.027 ± 0.008.

Figure 7B shows that Equation (13) represents a good model for

the effective mass of CPs, which in turn confirms the accuracy of the

description of (large) CPs as effective SHOs with the total mass con-

centrated at the loading point. Indeed, as the radius R of the sphere

increases, the mass of the sphere increases rapidly, scaling as R3, and

the CP becomes more and more equivalent to an SHO with a concen-

trated mass equal to the sphere mass. Deviations for the largest CPs

can be attributed to uncertainties in the determination of the sphere

mass, due both to the uncertainties in the sphere density or in the

sphere volume. SEM images (Figure 1) show indeed that soda-lime

glass spheres possess many defects, which could also be present in

the inner volume, as voids, or segregated phases with different den-

sity. Moreover, upon softening in the oven, the spheres deform to

some extent in the region close to the cantilever. This process is sup-

posed to conserve the volume of the sphere, but could alter the mea-

surement of the radius, which is inferred from the transversal

section of the sphere; as a consequence, errors in the volume estima-

tion are likely.

The increase of the quality factor is in turn explained by Equa-

tion (12). Q is proportional indeed to the resonant frequency ν0 and the

effective mass m*. Since ν0 drops by a factor of 5 (Figure 5), while m*

increases by a factor of 40 (it passes from 0.24 mc to approximately

10 mc), the latter change dominates and Q increases (considerably).

Eventually, Figure 7B,C and Figure 6 explain why the amplitude

of the resonant peak of the first normal mode is enhanced, as shown

in Figure 4. Indeed, large CPs are well described by a single-mode har-

monic oscillator model, because the higher-order modes provide a less

and less important contribution to the tip motion, as their last node

approaches the free cantilever end27; as the quality factor Q increases

significantly, the constraint of energy conservation causes the ampli-

tude to increase.

In conclusion, Equations (12) and (13) and the observed trends of

both resonant frequency and quality factor explain the peculiarity of

the thermal noise spectra of CPs with a large microsphere attached to

their free end, in particular the fact that these probes, despite a marked

reduction of the resonant frequency, have extremely sharp resonant

peaks, with large Q and amplitude. The apparent anomaly of CPs can

be attributed to the fact that, in the AFM community, an increase of

the effective mass and a drop in the resonant frequency of the cantile-

ver are typically observed when operating a soft cantilever in

liquid,68-70 and they are associated to a marked drop of the quality fac-

tor Q due to the viscous damping. With (large) CPs in air, however, the

factor γ in Equation (12) does not change significantly, while the dra-

matic increase of the mass is not counterbalanced by the reduction of

the resonant frequency. A recent study confirms that the added mass

mechanism described in this work dominates the effects related to

energy dissipation and viscous drag also in the case of large CPs in liq-

uid, where the attachment of large beads to the cantilever is exploited

to enhance the quality factor and the force sensitivity of the probes.67

3.5 | Spring constant of CPs

Figure 8A shows a comparison of the spring constants kLPTL , calibrated

for the tipless cantilevers before the attachment of the glass beads,

and then corrected for the shift of the loading point (Equation (8)),

with the spring constants kLPCP of the CPs calibrated after the

F IGURE 7 A Ratio of the effective mass m* (calculated using
Equation 12) to the nominal mass mp of the fabricated probe as a
function of the reduced mass ~m for tipless cantilevers (diamonds) and
CPs (filled circles). B, Effective mass m* of the CPs (calculated as
m� = k=ω0

2) as a function of m�
CP (defined in Equation 13), with linear

fit (y = mx+ b, m = 1.052±0.005, b = −1.14×10−12 ± 1.27×10−13).
C, Zoom on the data presented in (B) for m�

CP < 30 ng highlighted in
the drawn box, with the linear fit (y = mx+ b, m = 1.027±0.008,
b = −1.14×10−12 ± 5.37×10−13)
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attachment of the spheres, corrected for the loading point shift, and

eventually for the added mass effect (Equation 11). A linear regression

of the data provides a slope of 1.0090±0.0006, which confirms the

effectiveness of the correction procedures.

Figure 8B,C shows the relative difference between the spring

constant kLPTL and the spring constant kLPCP as a function of ~m and ~r ,

respectively. The spring constant values are shown before (red) and

after (black) the β-factor correction according to Equation (11).

As shown in Reference 27, the effect of the added concentrated

mass of the sphere is to induce an underestimation of the spring con-

stant, if the standard thermal noise formula (Equation 7) is used, with

β = β0 = 0.817. When ~m and ~r are larger than approximately 0.1, the

spring constant starts to decrease, reaching a maximum relative devia-

tion from kLPTL of about 25% (Figure 8B,C, red filled diamonds); these

deviations are effectively corrected by Equation (11) (Figure 8B,C,

black filled circles). For ~m<0.1, the correction is not very relevant, and

falls below the typical noise level.

The small differences between kLPTL and kLPCP reported in Figure 8

could be due, among other factors, to errors in the determination of

the deflection sensitivity of the CPs, as discussed below in Section 3.6,

in the determination of the loading point, as well as in the possible

rigidification effect of the cantilever, due to the attachment of the

sphere, which could influence the dynamics of the last part of the

cantilever.

3.6 | Deflection sensitivity and CPs

When big spheres are attached to the cantilever, the standard

approach for the calibration of the deflection sensitivity Sz (described

in Section 2) can be inaccurate, due to phenomena occurring during

the loading phase of the force curve.

In particular, the cantilever tilt angle θ towards the surface may

determine a tangential force component, which is due to friction,

between the sphere and the substrate. As in the case of normal

forces,37,38 also tangential friction forces applied at the loading point

of the cantilever induce a torque53,65,66,71-73; this torque in turn

induces a modification of the cantilever curvature that impacts on the

measurement of Sz.
72-74

The friction-related effect is stronger in the high-friction limit, when

the probe is pinned on the surface instead of sliding.75 The friction, and

therefore the torque, is stronger when the effective tip height is larger,

as in the case of large CPs, and when the normal force is higher, as in

the case stiffer cantilevers are used. Noticeably, for mechanical mea-

surements stiffer cantilevers can be used, in combination with large

spheres, in order to achieve reasonably high indentations.

Since the AFM optical lever detection scheme is sensitive to the

inclination of the cantilever rather than to its deflection, it turns out

that the measurement of Sz can be particularly inaccurate for large

CPs, especially in conditions of strong adhesion and friction (as in air).

In addition, larger adhesion related to the larger radius of CPs in gen-

eral makes the acquisition of force curves in air, but also in liquid,

critical.76

The direct calibration of the deflection sensitivity of large CPs

by the standard method based on the acquisition of force curves can

therefore be problematic. In this case, alternative approaches should

be adopted. One possibility is to consider the mean of the slope the

loading and unloading portion of the force curve to effectively sub-

tract the deflection artefact, and then inverting the mean slope to

obtain the invOLS, as proposed by Chung et al.76 The same authors

proposed an electrostatic method to calibrate the deflection

F IGURE 8 A, Spring constant kLPCP of CPs corrected according to
Equations (8) and (11) vs the reference spring constant kLPTL of the
tipless cantilever calculated at the loading point (Equation 8),
measured before the sphere attachment. The dashed line represents a
linear regression of the data, with slope 1.0090±0.0006. B and C,
The relative difference between kLPCP and kLPTL as a function of the
reduced mass and radius of the CP, respectively, without (red filled
diamonds) and with (black filled circles) the correction by
Equation (11). The shaded area represents the ±5% interval
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sensitivity, which however requires to build a dedicated micro-

device and the metallization of the CP.76 In the following sections,

we will propose an alternative method to overcome these

limitations.

4 | BEST PRACTICES FOR THE
CALIBRATION OF (LARGE) CPS

In summary, the thermal noise method can be applied directly to the

CP, according to the following rules:

1. Sz is measured carefully, neglecting the initial region of the FC after

the contact point, as the inverse of the mean of the slopes of the

loading and unloading curves, to minimize friction-related effects,

as proposed by Chung et al.76

2. The deflection signal of the cantilever is sampled over time with

sufficient resolution and number of points, in order to obtain,

when applying the thermal noise method, a well-defined peak in

the Fourier space; this will allow to accurately estimate the power

PV, despite the typical peak sharpness in air. Alternatively, the ther-

mal noise calibration can be carried out in water, in order to obtain

a wider resonance peak. In this case, also the deflection sensitivity

must be characterized in water.

3. The β-factor correction (Equation 11) must be applied to the intrin-

sic spring constant calculated by Equation (7). To this purpose, the

sphere radius, the cantilever dimensions, and therefore the

reduced mass ~m and the reduced gyration radius ~r , must be accu-

rately determined.

4. The corrected intrinsic spring constant kCP is transformed into the

apparent spring constant, including also the effect of the shift of

the loading point, using Equation (10) (with kCP in place of kTL).

According to the results reported in the present study, we sug-

gest an alternative accurate and reliable approach for the calibration

of CPs, and especially of large CPs. This approach can be applied

when the CP is produced in house, using tipless cantilevers. In this

case, the following procedure can be followed:

1. The intrinsic spring constant kTL of the tipless cantilever, before

the attachment of the sphere, is calibrated by the thermal noise

method, measuring the deflection sensitivity in the standard way,

that is, from a FC acquired on a hard substrate, or using a deflec-

tion sensitivity-free approach, like LDV (and thermal noise)56 or

the Sader method.45,54,77

2. Once the sphere is attached, measure the position of the loading

point using an optical microscope and correct the intrinsic spring

constant kTL into the apparent kLPCP,app, using Equation (10).

It must be considered that, while the interferometric approaches

can be used, together with Equation (11), to calibrate CPs (in fact,

LDV is a technique of choice for calibrating the spring constant of

AFM probes, but at present it relies on expensive instrumentation),

the applicability of the global calibration initiative launched by

Sader45 should be checked. This approach is based indeed on the

statistical assessment of the hydrodynamic function for a given can-

tilever geometry and may not account for the contribution of the

large attached sphere. The general Sader method for the calibration

of cantilever of arbitrary shape and dimensions54 could in turn work

well, provided the calibration of the hydrodynamic function is per-

formed in house.

Once the intrinsic spring constant kCP of a CP has been accurately

calibrated, the deflection sensitivity Sz of the current experiment can

be calculated assuming that the thermal noise method, through Equa-

tion (7), must provide the known value of kCP (see References 78 and

79 and the SNAP procedure8).

5 | CONCLUSIONS

Colloidal probes are used in a wide range of experimental conditions.

Their dynamical behaviour presents peculiar aspects,27 which also

pose issues for their calibration, since the modal shapes are signifi-

cantly affected.

In this work, we have demonstrated that the addition of a large

mass to a tipless cantilever concentrated at its end, besides signifi-

cantly decreasing the resonant frequency, boosts the quality factor

and the amplitude of the first resonant peak, so that a large CP mimics

a single-mode mass-on-a-spring system better than a standard AFM

probe. These findings may have an impact on the application of CPs in

spectroscopic dynamical applications.

Despite the relevant modifications of the cantilever dynamics of

CPs, the accuracy of the calibration of CPs is not severely affected

until the added mass of the sphere becomes comparable to that of

the cantilever, which typically happens for diameters of the glass

sphere of about 10 μm.

In the case of large CPs, it is possible to accurately calibrate

the spring constant by applying a correction factor (Equation 10)

to the value obtained according to the equipartition theorem for

an ideal tipless rectangular cantilever. We present two alterna-

tive detailed procedures, including one allowing to minimize the

impact of the inaccurate determination of the deflection

sensitivity.
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