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Abstract

A dual hybrid Virtual Element scheme for plane linear elastic problems is pre-
sented and analysed. In particular, stability and convergence results have been
established. The method, which is first order convergent, has been numerically
tested on two benchmarks with closed form solution, and on a typical microelec-
tromechanical system. The numerical outcomes have proved that the dual hybrid
scheme represents a valid alternative to the more classical low-order displacement-
based Virtual Element Method.

1 Introduction

The Virtual Element Method (VEM) is a recent methodology to approximate partial
differential equation problems. Introduced in [10], it is a Galerkin method which can
be considered as an evolution of the Finite Element Method (FEM). In contrast to
FEM, VEM is able to naturally manage several mesh complexities, such as polytopal
shapes or hanging nodes. In addition to this flexibility, it has been realized that VEM is
also able to efficiently deal with other non-trivial situations, for instance problems with
internal constraints (incompressibility for solids and fluids is an example), or problems
with high-continuity requirements (the fourth-order Kirchhoff plate is an example).
The price to pay is that the shape functions are not explicitly known and thus they
are called virtual. However, the available information on them is sufficient to form the
stiffness matrix and the right-hand side of the discretized problem. For the analysis of
the VEM technique for the basic second-order elliptic problems, we refer to [10, 8, 14].

Focusing on the linear elasticity problem, the VEM philosophy has been already
conjugated in several ways. In the easiest framework, the displacement-based varia-
tional formulation, VEMs have been considered in [7, 3, 22], and a procedure to recover
an accurate stress field has been proposed in [6]. For nearly-incompressible materials,
the VEM schemes proposed in [11] for the Stokes problem has been applied in connec-
tion with the displacement/pressure formulation, see for example [23, 30]. Furhermore,
the Hellinger-Reissner variational principle has been recently employed to develop Vir-
tual Element Methods with approximated stresses exhibiting, a priori, symmetry and
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inter-element traction continuity features, see [4, 5]. Among other works regarding lin-
ear elasticity problems, also concerning incompressible materials or plate structures, as
well as non-conforming schemes or different variational frameworks, we here mention
[1, 16, 33, 17, 9, 25, 34, 18, 31, 32].

In the present contribution, we explore the possibility to develop VEM schemes in
the framework of the so-called dual hybrid formulation, see [12] for instance. Thus,
we are concerned with a variational setting where the unknowns are both the stress
and the displacement fields. Once the computational domain is partitioned into (poly-
topal) elements, the stress field is assumed to a priori satisfy the equlibrium equation
locally on each element. It is then required to locally maximize the complementary
energy; the displacement field enters into play only on the interelement boundaries and
plays the rôle of the Lagrange multiplier for the traction continuity constraint. For
Finite Elements, this variational approach has been used in [28, 27], for example. In
our VEM scheme, the local stress space is borrowed from the one introduced in [4],
while the standard low-order nodal Virtual Element space is essentially used for the
displacement field. As usual for VEMs, a local polynomial projection is introduced as
a basic ingredient to form the stiffness matrix of the method. Specifically, here, given a
virtual stress, the VEM projection returns a suitable computable polynomial stress. In
this paper we present and numerically investigate two different projections, the second
of which is a low-cost improvement of the first one (already used in [4]). We remark
that hybrid formulations for the linear elastic problem are not only interesting per se,
but also they may be used as a building block for other more complex situations, for
instance plate problems (see [21]).

A brief outline of the paper is as follows. In Section 2 we present the (2D) elastic
problem together with its dual hybrid variational formulation. Section 3 describes the
Virtual Element approximation we propose. In Section 4 we develop the stability and
convergence analysis, by using a suitable mesh-dependent norm for the stress field. The
mumerical results, which confirm the theoretical predictions, are detailed in Section 5,
while some concluding remarks are drawn in Section 6.

Throughout the paper, given two quantities a and b, we use the notation a . b to
mean: there exists a constant C, independent of the mesh-size, such that a ≤ C b. If
a . b and b . a, we will write a ≈ b. Moreover, we use standard notations for Sobolev
spaces, norms and semi-norms (cf. [24], for example). Finally, given a subset ω ⊆ R2,
we will denote with Pk(ω) (k ≥ 0) the space of polynomials of degree up to k and
defined on ω.

2 The elasticity problem in the dual hybrid form

In this section we briefly present the linear elasticity problem in dual hybrid form. More
details about the dual hybrid formulations of second-order problems can be found in
[12]. We start by considering the strong form of the problem we are interested in:

Find (σσσ,u) such that
− div σσσ = f in Ω
σσσ = Cεεε(u) in Ω
u|∂Ω = 0,

(1)

where Ω ⊂ R2 is a polygonal domain, σσσ and u are the unknown stress and displacement
fields, respectively. Moreover, f represents the body force density, C is the elasticity
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tensor and εεε(·) is the usual symmetric gradient operator. We consider only the clamped
case along the whole boundary, but other boundary conditions can be treated in stan-
dard ways (see [12], for instance).

Let now {Th} be a sequence of decompositions of Ω into general polygonal elements
E with

hE := diameter(E), h := sup
E∈Th

hE .

Given Th, let us denote with Eh =
⋃
E∈Th

∂E the skeleton of Th. The dual hybrid
formulation of Problem (1) is a variation approach for which:

• the stress field σσσ a-priori satisfies the equilibrium equation in each element E ∈
Th;

• the displacement field u enters into play essentially only on the skeleton Eh, where
it acts as a Lagrange multiplier for the continuity of the tractions σσσn.

More precisely, defining with (·, ·)E the scalar product in L2(E), and aE(σσσ, τττ ) :=
(Dσσσ, τττ )E , with D the compliance tensor (i.e. the inverse of the tensor C), the dual hybrid
formulation stems from considering the critical points of the following functional:

E(τττ ,v) = −1
2
∑
E∈Th

aE(τττ , τττ ) +
∑
E

∫
∂E
τττn · v τττ ∈ Σf , v ∈ U0. (2)

Above, the spaces Σf and U0 are defined by:
Σf =

∏
E∈Th

Σf (E),

U0 = H1
0 (Ω)2,

(3)

where

Σf (E) =
{
τττ ∈ H(div;E)s : div τττ + f = 0

}
(4)

and
H(div;E)s =

{
τττ ∈ L2(E)2×2 : τττ is symmetric, div τττ ∈ L2(E)2

}
.

In Σf we introduce the obvious norm:

||τττ ||Σ :=

 ∑
E∈Th

(||τττ ||20,E + ||div τττ ||20,E)

1/2

. (5)

Selecting a particular locally self-equilibrated symmetric stress solution σ̂σσf ∈ Σf , i.e.
such that (div σ̂σσf + f)|E = 0 for every E ∈ Th, the stress solution σσσ can be decomposed
as

σσσ = σσσ0 + σ̂σσf with σσσ0 ∈ Σ0. (6)

Consequently, stationarity of functional (2) leads to the variational problem for the
unknowns σσσ0 and u: 

Find (σσσ0,u) ∈ Σ0 × U0 such that
a(σσσ0, τττ 0) + b(τττ 0,u) = F (τττ 0) ∀τττ 0 ∈ Σ0

b(σσσ0,v) = G(v) ∀v ∈ U0,

(7)
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where Σ0 is defined according with (3) and (4), choosing f = 0. Above, for τττ 0 ∈ Σ0

and v ∈ U0, we have set: 

a(σσσ0, τττ 0) =
∑
E∈Th

aE(σσσ0, τττ 0),

b(τττ 0,v) = −
∑
E∈Th

∫
∂E
τττ 0n · v,

F (τττ 0) = −
∑
E∈Th

aE(σ̂σσf , τττ 0)

G(v) =
∑
E∈Th

∫
∂E
σ̂σσfn · v.

(8)

Once σσσ0 has been found, the stress solution σσσ is simply recovered by using (6). We
remark that u, part of the solution to Problem (7), is not unique, but it is defined up
to an element of the subspace

H =
{

v ∈ U0 : b(τττ ,v) = 0 ∀ τττ ∈ Σ0
}

=
{

v ∈ U0 : v|Eh
= 0

}
. (9)

Moreover, the following inf-sup condition holds (see [12]).

sup
τττ∈Σ0

b(τττ ,v)
||τττ ||Σ

& ||v||U0/H ∀v ∈ U0. (10)

In the sequel, we will also consider the following important subspace of Σ0:

K =
{
τττ ∈ Σ0 : b(τττ ,v) = 0 ∀v ∈ U0

}
=
{
τττ ∈ H(div; Ω) : div τττ = 0

}
. (11)

We remark that, on K, we have ||τττ ||Σ = ||τττ ||0,Ω (cf. (5)), and it holds:

a(τττ , τττ ) & ||τττ ||2Σ ∀τττ ∈ K. (12)

Obviously, Problem (7) is equivalent to:
Find (σσσ,u) ∈ Σf × U0 such that
a(σσσ, τττ 0) + b(τττ 0,u) = 0 ∀τττ 0 ∈ Σ0

b(σσσ,v) = 0 ∀v ∈ U0,

(13)

From (10) and (12), the general theory of mixed methods (see [12], for instance)
gives that Problem (7) has a unique solution (σσσ0,u) ∈ Σ0 × U0/H (with an abuse of
notation, we here use u to denote the equivalence class of the function u in U0/H).
Therefore, we infer that also Problem (13) has a unique solution (σσσ,u) ∈ Σ0 × U0/H.
The quotient space U0/H essentially means that in Problems (7) and (13) the displace-
ment field u enters only through its trace u|Eh

on the skeleton Eh, see (9). The following
result can be deduced using the discussion in [29], and justifies the variation framework
(7) (or (13)) for the elasticity Problem (1).

Proposition 2.1. Let (σσσ,u) be a sufficiently smooth solution to Problem (1). Then
(σσσ,u) ∈ Σ0 × U0/H is the solution of Problem (13).
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3 The Virtual Element Method

We now outline the Virtual Element Method we propose for the discretization of Prob-
lem (7). To develop the theoretical analysis of the scheme, we suppose that for all h,
each element E in Th fulfils the following assumptions:

• (A1) E is star-shaped with respect to a ball of radius ≥ γ hE ,

• (A2) the distance between any two vertexes of E is ≥ c hE ,

where γ and c are positive constants. We remark that the hypotheses above, though
not too restrictive in many practical cases, can be further relaxed, as noted in [10].

We suppose that the compliance tensor D is piecewise constant with respect to the
underlying mesh Th. The analysis for a general (sufficiently smooth) tensor D follows
from this case using the same arguments of [4]. In addition, we assume that the load
term f is piecewise constant with respect to the underlying mesh Th. If f is indeed
smooth, this modification introduces an O(h) perturbation on the solution which does
not spoil the convergence rate of our scheme.

3.1 The local spaces

Given a polygon E ∈ Th with nE edges, we first introduce the space of local infinitesimal
rigid body motions:

RM(E) =
{

r(x) = a + b(x− xC)⊥ a ∈ R2, b ∈ R
}
. (14)

Here above, given c = (c1, c2)T ∈ R2, c⊥ is the clock-wise rotated vector c⊥ =
(c2,−c1)T , and xC is the baricenter of E. For each edge e of ∂E, we introduce the
space

R(e) =
{

t(s) = c + d sn c ∈ R2, d ∈ R, s ∈ [−1/2, 1/2]
}
. (15)

Here above, s is a local linear coordinate on e, such that s = 0 corresponds to the
edge midpoint. Furthermore, n is the outward unit normal to the edge e. Hence, R(e)
consists of vectorial functions which are constant in the edge tangential direction, while
they are linear along the edge normal direction. Then, we set:

Σh(E) =
{
τττh ∈H(div;E) : ∃w∗ ∈ H1(E)2 such that τττh = Cεεε(w∗);

(τττh n)|e ∈ R(e) ∀e ∈ ∂E; div τττh ∈ RM(E)
}
.

(16)

Remark 1. Alternatively, the space (16) can be defined as follows.

Σh(E) =
{
τττh ∈H(div;E)s : curl curl(Dτττh) = 0;

(τττh n)|e ∈ R(e) ∀e ∈ ∂E; div τττh ∈ RM(E)
}
.

(17)

Here above, the equation curl curl(Dτττh) = 0 is to be intended in the distribution sense.

We remark that, once (τττh n)|e = ce + desn is given for all e ∈ ∂E, cf. (15), the
quantity div τττh ∈ RM(E) is determined. Indeed, denoting with ϕϕϕ : ∂E → R2 the
function such that ϕϕϕ|e := ce + desn, the integration by parts formula
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∫
E

div τττh · r =
∫
∂E
ϕϕϕ · r ∀r ∈ RM(E) (18)

allows to compute div τττh using the ce’s and the de’s. More precisely, setting (cf (14))

div τττh = αααE + βE(x− xC)⊥, (19)

from (18) we infer


αααE = 1

|E|

∫
∂E
ϕϕϕ = 1

|E|
∑
e∈∂E

∫
e

ce

βE = 1∫
E |x− xC |2

∫
∂E
ϕϕϕ · (x− xC)⊥ = 1∫

E |x− xC |2
∑
e∈∂E

∫
e
(ce + desn) · (x− xC)⊥.

(20)
We now define the affine space for the local approximation of the stress field:

Σf
h(E) =

{
τττh ∈ Σh(E) : div τττh + f = 0

}
. (21)

The space Σ0
h(E) is defined according with (21), choosing f = 0.

The local approximation space for the displacement field is defined as follows:

Uh(E) =
{

vh ∈ H1(E)2 : vh|e ∈ P1(e)2 ∀e ∈ ∂E
}
. (22)

We notice that Uh(E) is an infinite dimensional space. However, this will not lead to
any computational trouble, since only vh|∂E , the trace of vh ∈ Uh(E) on ∂E, enters
into play in the discrete formulation. Therefore, we may think that the degrees of
freedom for Uh(E) are linear functionals which uniquely determine vh ∈ Uh(E) on ∂E.
For instance, one may take the point values of vh at the vertices of E.

3.1.1 Computation of Σf
h(E)

We now show how the space Σf
h(E) can be described, i.e. how a suitable set of degrees

of freedom can be selected. We first number the edges of ∂E as e1, e2 . . . , enE , once
and for all. We recall that we have supposed f|E ∈ P0(E). The following result holds.

Lemma 3.1. Let f|E ∈ P0(E). Then, the space Σf
h(E) is characterised by:

Σf
h(E) =

{
τττh ∈ Σh(E) : cnE = − 1

|enE |

(
|E| f|E +

nE−1∑
i=1

∫
ei

ci
)
,

dnE = − 1∫
enE

sn · (x− xC)⊥
( nE∑
i=1

∫
ei

ci · (x− xC)⊥

+
nE−1∑
i=1

∫
ei

disn · (x− xC)⊥
)}
,

(23)

where we have set ci = cei and di = dei.

Proof. We notice, see [4], that
∫
enE

sn · (x − xC)⊥ 6= 0. Hence, the right-hand side of
(23) is well-defined. Now, the proof easily follows by a direct computation from (19)
and (20).
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Remark 2. Obviously, the space Σ0
h(E) is defined by (23) by choosing f|E = 0. In

addition, using the results in [4], we infer that Σf
h(E) and Σ0

h(E) are completely char-
acterised once the quantities ci and di are given, for i = 1, . . . , nE − 1. Therefore, the
dimension of both the spaces is 3nE − 3.

3.2 The local bilinear forms

Given E ∈ Th, we first notice that, for every τττh ∈ Σh(E) and vh ∈ Uh(E), the term∫
∂E
τττhn · vh (24)

is computable from the knowledge of the degrees of freedom. Therefore, there is no
need to introduce any approximation in the structure of the terms b(τττ 0,u) and b(σσσ0,v)
in problem (7). Instead, the term

aE(σσσh, τττh) =
∫
E
Dσσσh : τττh (25)

is not computable for a general couple (σσσh, τττh) ∈ Σh(E)×Σh(E). As usual in the VEM
approach (see [10], for instance), we then need to introduce a suitable approximation
ahE(·, ·). We first define the projection operator

ΠE : Σh(E)→ P∗(E)2×2
s

τττh 7→ ΠEτττh

aE(ΠEτττh, πππ) = aE(τττh, πππ) ∀πππ ∈ P∗(E)2×2
s ,

(26)

where P∗(E)2×2
s is a suitable space of polynomial symmetric tensors. We then set

ahE(σσσh, τττh) = aE(ΠEσσσh,ΠEτττh) + sE ((Id−ΠE)σσσh, (Id−ΠE)τττh)

=
∫
E
D(ΠEσσσh) : (ΠEτττh) + sE ((Id−ΠE)σσσh, (Id−ΠE)τττh) ,

(27)

where sE(·, ·) is a suitable stabilization term. We propose the following:

sE(σσσh, τττh) := κE hE

∫
∂E
σσσhn · τττhn, (28)

where κE is a positive constant to be chosen (for instance, any norm of D|E). A variant
of (28) is provided by

sE(σσσh, τττh) := κE
∑
e∈∂E

he

∫
e
σσσhn · τττhn. (29)

Morevover, we will make two different choices for P∗(E)2×2
s , namely:

P∗(E)2×2
s = P0(E)2×2

s (constant symmetric tensor functions) (30)
and

P∗(E)2×2
s = P1(E)2×2

s (linear symmetric tensor functions). (31)

Remark 3. We remark that choice (31) leads to a VEM projection onto a reacher
space than choice (30). Although we do not have any improvement in the convergence
rate, we nonetheless expect more accurate discrete solutions when selecting (31) instead
of (30). This behaviour is generally confirmed by the numerical experiments presented
in Section 5.
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3.3 The local term aE(σ̂σσf , τττ )
In order to discretise F (τττ ), see (7), we need to consider the term, see (8):

aE(σ̂σσf , τττ ). (32)

To this aim, we will proceed in two steps:

1. we first choose σ̂σσh,f , which may be considered as a suitable approximation of σ̂σσf ;

2. we then consider a ãhE(·, ·), which may be considered as a suitable approximation
of aE(·, ·), and we finally form ãhE(σ̂σσh,f , τττh) to discretise (32).

In particular, recalling that f|E ∈ P0(E), we define σ̂σσh,f as:

(σ̂σσh,f )|E = −
(

(f|E)1(x− xC)1 0
0 (f|E)2(x− xC)2

)
. (33)

Above, for a given vector v, (v)i denotes its i-th component. Furthermore, we set

ãhE(σ̂σσh,f , τττh) := aE(σ̂σσh,f ,ΠEτττh). (34)

Remark 4. A different option could be to select σ̂σσh,f ∈ Σf
h(E), exploiting (23) and

Remark 2. For instance, we may set:

ci = 0 , di = 0 ∀ i = 1, . . . , nE − 1, (35)

and compute cnE and dnE according to (23). However, other choices can be made (more
balanced among the polygon edges). To approximate (32), we could consider:

ãhE(σ̂σσh,f , τττh) := ahE(σ̂σσh,f , τττh), (36)

where ahE(·, ·) is defined as in Section 3.2.

3.4 The discrete scheme

We are now ready to introduce the discrete scheme. We introduce global approximation
spaces, see (3), (21) and (22):

Σf
h =

∏
E∈Th

Σf
h(E),

U0
h =

( ∏
E∈Th

Uh(E)
)
∩H1

0 (Ω)2,
(37)

Furthermore, given a local approximation of aE(·, ·), see (27), we set

ah(σσσh, τττh) :=
∑
E∈Th

ahE(σσσh, τττh). (38)

The method we consider is then defined by
Find (σσσ0

h,uh) ∈ Σ0
h × U0

h such that
ah(σσσ0

h, τττ
0
h) + b(τττ 0

h,uh) = Fh(τττ 0
h) ∀τττh ∈ Σ0

h

b(σσσ0
h,vh) = Gh(vh) ∀vh ∈ U0

h .

(39)
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Above, Fh(·) is given by, see (8), (33) and (34):

Fh(τττh) = −
∑
E∈Th

aE(σ̂σσh,f ,ΠEτττh) (40)

while Gh(vh) reads, see (8):

Gh(vh) =
∑
E∈Th

∫
∂E
σ̂σσh,fn · vh. (41)

Introducing the bilinear form Ah : (Σ0
h × U0

h)× (Σ0
h × U0

h)→ R defined by

Ah(σσσ0
h,uh; τττ 0

h,vh) := ah(σσσ0
h, τττ

0
h) + b(τττ 0

h,uh) + b(σσσ0
h,vh), (42)

problem (39) can be written as{
Find (σσσ0

h,uh) ∈ Σ0
h × U0

h such that
Ah(σσσ0

h,uh; τττ 0
h,vh) = Fh(τττ 0

h) +G(vh) ∀(τττ 0
h,vh) ∈ Σ0

h × U0
h .

(43)

4 Theoretical analysis using a mesh-dependent norm
A significant part of the theoretical analysis follows the guidelines developed in [4].
Hence, in many points we limit to state the results. However, we develop here an error
analysis using a mesh-dependent norm for the stresses, which turns out to be a flexible
tool in our case. In addition, we remark that the inf-sup condition of Proposition 4.9
is new, and therefore its proof is given in full details.

According to the assumption f|E ∈ P0(E), we select the locally self-equilibrated
solution σ̂σσf as

(σ̂σσf )|E = −
(

(f|E)1(x− xC)1 0
0 (f|E)2(x− xC)2

)
. (44)

Therefore, we have σ̂σσf = σ̂σσh,f , see (33). As a consequence, we get (cf. (8), (40) and
(41))

Fh(τττh)− F (τττh) =
∑
E∈Th

(aE(σ̂σσf , τττh)− aE(σ̂σσf ,ΠEτττh)) =
∑
E∈Th

aE(σ̂σσf −ΠE σ̂σσf , τττh)

Gh(vh)−G(vh) = 0.
(45)

4.1 Stability conditions

We introduce the following mesh-dependent quantity in Σh :=
∏
E∈Th

Σh(E):

||τττh||2h :=
∑
E∈Th

||τττhn||2h,∂E where ||τττhn||h,∂E := h
1/2
E ||τττhn||0,∂E . (46)

It is easily seen that (46) defines a norm on Σh, see (16) along with (19) and (20).
Moreover, we have the following lemma.

Lemma 4.1. Under assumptions (A1) and (A2), it holds:

||τττh||0,Ω . ||τττh||h . ||τττh||0,Ω ∀ τττh ∈ Σh. (47)

9



Proof. Fix E ∈ Th. Using Lemma 5.1 of [4] we get

||τττh||0,E . hE ||div τττh||0,E + h
1/2
E ||τττhn||0,∂E . (48)

Recalling that div τττh ∈ RM(E), an integration by parts, the Agmon inequality (see
for instance [2]) and an inverse estimate on polygons (see Lemma 6.3 of [8]) give:

||div τττh||20,E =
∫
E

div τττh · div τττh =
∫
∂E
τττhn · div τττh . ||τττhn||0,∂E ||div τττh||0,∂E

. ||τττhn||0,∂E
(
h
−1/2
E ||div τττh||0,E + |div τττh|1,E

)
. ||τττhn||0,∂E h

−1/2
E ||div τττh||0,E .

(49)

Hence it holds

||div τττh||0,E . h
−1/2
E ||τττhn||0,∂E . (50)

Combining (48) with (50) we obtain

||τττh||0,E . h
1/2
E ||τττhn||0,∂E , (51)

from which the first estimate of (47) follows.
We now prove the second estimate in (47). For every edge e in E, let us denote

with be the function defined on ∂E such that: on e it is the quadratic bubble with
sup be = 1, and be = 0 elsewhere. One has:

||τττh · n||20,∂E .
∫
∂E
τττh · n ·

( ∑
e⊂∂E

beτττh · n
)
≤ ||τττh · n · ||−1/2,∂E

∣∣ ∑
e⊂∂E

beτττh · n
∣∣
1/2,∂E

. ||τττh · n · ||−1/2,∂E h
−1/2
E

∣∣∣∣ ∑
e⊂∂E

beτττh · n
∣∣∣∣

0,∂E

. h
−1/2
E ||τττh · n||−1/2,∂E ||τττh · n||0,∂E ,

(52)
where we have also used a 1D inverse estimate. Hence, after exploiting a scaled trace
inequality (cf. [8]), we get

h
1/2
E ||τττh · n||0,∂E . ||τττh · n||−1/2,∂E . ||τττh||0,E + hE ||div τττh||0,E . (53)

Now, using the technique of Lemma 6.3 in [8], we obtain

||div τττh||0,E . h−1
E ||τττh||0,E .

Therefore, we have:

h
1/2
E ||τττh · n||0,∂E . ||τττh||0,E , (54)

from which the second inequality in (47) follows.

As it is well-known (see for instance [12] or [13]), stability for problems with the
format as in (42), is implied by the satisfaction of two conditions: the ellipticity-on-
the-kernel condition, and the inf-sup condition. As far as the first one is concerned, we
first prove that it holds:
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||τττh||2Σ . ah(τττh, τττh) ∀ τττh ∈ Kh. (55)

Above Kh ⊆ Σ0
h is the discrete kernel, defined by:

Kh =
{
τττh ∈ Σ0

h : b(τττh,vh) = 0 ∀vh ∈ U0
h

}
. (56)

Estimate (55) is a consequence of the following stronger result.

Lemma 4.2. Suppose that assumptions (A1) and (A2) are fulfilled. Then it holds:

||τττh||2Σ = ||τττh||20,Ω . ah(τττh, τττh) ∀ τττh ∈ Σ0
h. (57)

Proof. By the norm definition (5) and the space definition (21), we immediately infer

||τττh||Σ = ||τττh||0,Ω ∀ τττh ∈ Σ0
h. (58)

Using (47) and standard VEM arguments as in [10], we get

||τττh||20,Ω . ah(τττh, τττh) . ||τττh||20,Ω ∀ τττh ∈ Σ0
h. (59)

Estimate (55) follows from (58) and (59).

From Lemma 4.2 and (47) we infer the coercivity property:

||τττh||2h . ah(τττh, τττh) ∀ τττh ∈ Σ0
h. (60)

The following lemma will be useful to prove the inf-sup condition.

Lemma 4.3. Suppose that assumptions (A1) and (A2) are fulfilled, and fix E ∈ Th.
Take any w ∈ E, node of Th. Then it holds:

hE

|vh(w)|2 +
∑

m∈Mh(E)
|vh(m)|2

 & ||vh||20,∂E ∀vh ∈ Uh(E), (61)

whereMh(E) is the set of edge mid-points of E.

Proof. Denote with {w = w1,w2 . . . ,wnE} the set of nodes for Th on ∂E, ordered
counter-clockwise. Furthermore, let ei = [wi,wi+1] (i = 1, . . . , nE) be the edges of E
(here we have set wnE+1 = w1), and let mi be the midpoint of ei. Fix vh ∈ Uh(E); by
using the Cavalieri-Simpson rule, we get∫

∂E
|vh|2 =

nE∑
i=1

|ei|
6
[
|vh(wi)|2 + 4 |vh(mi)|2 + |vh(wi+1)|2

]
. (62)

Due to assumption (A2), we get∫
∂E
|vh|2 ≈ hE

nE∑
i=1

[
|vh(wi)|2 + 4 |vh(mi)|2 + |vh(wi+1)|2

]
≈ hE

(
nE∑
i=1
|vh(wi)|2 +

nE∑
i=1
|vh(mi)|2

)
.

(63)

We now notice that, since each component of vh is a piecewise linear and continuous
function on ∂E, it follows that for i = 2, . . . , nE , the quantity vh(wi) is uniquely
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determined by vh(w1) and {vh(m1), . . . ,vh(mi−1)}. Indeed, a direct computation
shows that

vh(wi) = 2
i−1∑
k=1

(−1)i−1−kvh(mk) + (−1)i−1vh(w1) i = 2, . . . , nE .

Hence, assumption (A1) and (A2) implies that

|vh(wi)|2 . |vh(w1)|2 +
nE∑
i=1
|vh(mi)|2 i = 1, . . . , nE . (64)

Estimate (61) now follows from a combination of (63) and (64).

Remark 5. It is easy to see that, if nE is odd, then the values vh(wi) (1 ≤ i ≤ nE) can
be determined without using vh(w), but only the midpoint values {vh(m1), . . . ,vh(mnE )}.

We now prove the following local inf-sup condition.

Lemma 4.4. Suppose that assumptions (A1) and (A2) are fulfilled. Then, there exists
β > 0 such that

sup
τττ h∈Σh(E)

bE(τττh,vh)
||τττhn||0,∂E

≥ β ||vh||0,∂E ∀vh ∈ Uh(E), (65)

where the bilinear form bE(·, ·) is defined by (cf. (8)):

bE(τττ ,v) = −
∫
∂E
τττn · v ∀ (τττ ,v) ∈ Σ(E)× U(E). (66)

Proof. Fix vh ∈ Uh(E) and choose τττh ∈ Σh(E) such that:

(τττhn · n)|e = −(vh · n)|e (τττhn · t)|e = −(vh · t)(me) ∀ e ∈ Eh. (67)

Due to (16), the above choice is admissible. Thus, using also the mid-point rule, we
get:

bE(τττh,vh) =
∫
∂E
|vh · n|2 +

∑
e∈Eh(E)

|e| |(vh · t)(me)|2. (68)

Applying to vh · n the same argument as in (62)-(63), from (68) we infer

bE(τττh,vh) ≈ hE

(
nE∑
i=1

[
|(vh · n−i )(wi)|2 + |(vh · n+

i )(wi)|2
]

+
nE∑
i=1
|vh(mi)|2

)
. (69)

Above, n−i and n+
i are the two normals to the edges which share wi as a common

vertex. We now notice that, due to assumptions (A1) and (A2), there exists a node
wm (1 ≤ m ≤ nE), for which |(vh · n−m)(wm)|2 + |(vh · n+

m)(wm)|2 ≈ |vh(wm)|2.
Therefore, from (69) we get

bE(τττh,vh) & hE

|vh(wm)|2 +
∑

m∈Mh(E)
|vh(m)|2

 . (70)

Applying Lemma 4.3 we thus infer
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bE(τττh,vh) & ||vh||20,∂E . (71)

Furthermore, from (67) we immediately get

||τττhn||0,∂E . ||vh||0,∂E . (72)

Estimate (65) is now a consequence of (71) and (72).

Introducing the local discrete kernel Kh(∂E) defined by:

Kh(∂E) =
{
τττhn|∂E : τττh ∈ Σh(E) , bE(τττh,vh) = 0 ∀vh ∈ Uh(E)

}
, (73)

Lemma 4.4 implies the following result (cf. [12]).

Lemma 4.5. Suppose that assumptions (A1) and (A2) are fulfilled. Then, there exists
β > 0 such that

sup
vh∈Uh(E)

bE(τττh,vh)
||vh||0,∂E

≥ β ||τττhn||L2(∂E)2/Kh(∂E) ∀ τττh ∈ Σh(E). (74)

We are now ready to prove the Proposition:

Proposition 4.6. Under assumptions (A1) and (A2), there exists a linear operator
πE : Σ(E)→ Σh(E) such that:

bE(πE τττ ,vh) = bE(τττ ,vh) ∀ τττ ∈ Σ(E) , ∀vh ∈ Uh(E),
||(πE τττ )n||h,∂E . ||τττ ||Σ(E).

(75)

Proof. Fix τττ ∈ Σ(E). Due to Lemma 4.4, the linear system in the first line of (75) is
solvable, and two solutions differ up to an element of Kh(∂E), cf. (73). To prove the
continuity estimate in (75), let us take πEτττ ∈ Σh(E) as the solution which minimizes
||(πEτττ )n||0,∂E . From (74) and the first of (75), we thus get:

||(πEτττ )n||0,∂E . sup
vh∈Uh(E)

bE(πEτττ ,vh)
||vh||0,∂E

= sup
vh∈Uh(E)

bE(τττ ,vh)
||vh||0,∂E

(76)

By recalling (66), a (scaled) duality estimate and a 1D inverse estimate for piecewise
linear polynomials, give:

bE(τττ ,vh) = −
∫
∂E
τττn · vh . ||τττn||−1/2,∂E

(
|vh|1/2,∂E + h

−1/2
E ||vh||0,∂E

)
. ||τττn||−1/2,∂E h

−1/2
E ||vh||0,∂E .

(77)

Therefore, from (76) and (77) we obtain

h
1/2
E ||(πEτττ )n||0,∂E . ||τττn||−1/2,∂E . (78)

The continuity estimate in (75) now follows from a trace estimate and definition (46).
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We notice that τττ ∈ Σ0(E) implies πEτττ ∈ Σ0
h(E), cf. (4) and (21). Indeed, by

definition (16), div(πEτττ ) ∈ RM(E). Since RM(E) ⊆ Uh(E), we can take vh =
div(πEτττ ) in (75), to obtain (using also the integration by parts):

∫
E
|div(πEτττ )|2 = −bE(πEτττ ,div(πEτττ )) = −bE(τττ ,div(πEτττ )) =

∫
E

div τττ ·div(πEτττ ) = 0.
(79)

This observation, together with Proposition 4.6, immediately leads to the following
result.

Corollary 4.7. Under assumptions (A1) and (A2), there exists a linear operator
πE : Σ0(E)→ Σ0

h(E) such that:

bE(πE τττ ,vh) = bE(τττ ,vh) ∀ τττ ∈ Σ0(E) , ∀vh ∈ Uh(E),
||(πE τττ )n||h,∂E . ||τττ ||Σ(E).

(80)

Recalling (3), we define the linear operator πh : Σ0 → Σ0
h by adding the local

contributions πE , i.e.:

πh|E := πE ∀E ∈ Th. (81)

Obviously, Corollary 4.7 and (8) give:

Proposition 4.8. Under assumptions (A1) and (A2), there exists a linear operator
πh : Σ0 → Σ0

h such that:

b(πh τττ ,vh) = b(τττ ,vh) ∀ τττ ∈ Σ0 , ∀vh ∈ U0
h ,

||πh τττ ||h . ||τττ ||Σ.
(82)

With Proposition 4.8 at hand, the following inf-sup condition is easily proved (it is
nothing but Fortin’s trick, see [12]).

Proposition 4.9. Under assumptions (A1) and (A2), we have:

sup
τττ h∈Σ0

h

b(τττh,vh)
||τττh||h

& ||vh||U0/H ∀vh ∈ U0
h/H. (83)

Proof. Fix vh ∈ U0
h . Using (82) and the inf-sup condition for the continuous problem

(see (10)), we infer

sup
τττ h∈Σ0

h

b(τττh,vh)
||τττh||h

≥ sup
τττ∈Σ0

b(πhτττ ,vh)
||πhτττ ||h

= sup
τττ∈Σ0

b(τττ ,vh)
||πhτττ ||h

& sup
τττ∈Σ0

b(τττ ,vh)
||τττ ||Σ

& ||vh||U0/H .

(84)

4.2 An interpolation operator for the stresses

We now recall the interpolation operator introduced in [4]. We first set, given r > 2:

W r(E) :=
{
τττ : τττ ∈ Lr(E)2×2 , τττ = τττT , div τττ ∈ L2(E)2

}
. (85)

To continue, we locally define the operator IE : W r(E) → Σh(E) as follows. Given
τττ ∈W r(E), IEτττ ∈ Σh(E) is determined by:
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∫
∂E

(IEτττ )n · ϕϕϕ∗ =
∫
∂E
τττn · ϕϕϕ∗ ∀ϕϕϕ∗ ∈ R∗(∂E), (86)

where

R∗(∂E) =
{
ϕϕϕ∗ ∈ L2(∂E)2 : ϕϕϕ∗|e = γγγe + δe(x− xC)⊥ γγγe ∈ R2, δe ∈ R, ∀e ∈ ∂E

}
.

(87)
If τττ is not sufficiently regular, the integral in the right-hsnd side of (86) is intended as
a duality between W−

1
r
,r(∂E)2 and W

1
r
,r′(∂E)2. If τττ is a regular function, the above

condition is equivalent to require:
∫
e
(IEτττ )n =

∫
e
τττn ∀e ∈ ∂E;∫

e
(IEτττ )n · (x− xC)⊥ =

∫
e
τττn · (x− xC)⊥ ∀e ∈ ∂E.

(88)

The global interpolation operator Ih : W r(Ω) → Σh is then defined by simply
glueing the local contributions provided by IE . More precisely, we set (Ihτ)|E := IEτττ |E
for every E ∈ Th and τττ ∈W r(Ω). It can be proved, see [4], that the commuting diagram
property:

div(Ihτττ ) = ΠRM (div τττ ) (89)

holds true, ΠRM being the L2-projection operator onto the space of local rigid body
motions. Furthermore, the following estimates have been proved in [4].

Proposition 4.10. Under assumptions (A1) and (A2), for the interpolation operator
IE defined in (88), the following estimates hold:

||τττ − IEτττ ||0,E . hE |τττ |1,E ∀τττ ∈ Σ̃(E) ∩H1(E)4
s. (90)

||div(τττ − IEτττ )||0,E . hE |div τττ |1,E ∀τττ ∈ Σ̃(E) ∩H1(E)4
s s.t. div τττ ∈ H1(E)2. (91)

4.3 Error estimates

We denote with P0(Th) the space of piecewise constant functions with respect to the
given mesh Th.

Once one has the stability conditions of estimate (60) and Proposition 4.9, along
with the interpolation estimates of Proposition 4.10, an error analysis can be derived
using the techniques of [15] or [4]. Indeed, one can prove:

Proposition 4.11. Suppose that assumptions (A1) and (A2) are fulfilled. The fol-
lowing error estimate holds:

||σσσ − σσσh||0,Ω + ||u− uh||U0/H ≤ C(Ω, σσσ,u)h, (92)

where (σσσ,u) ∈ Σf × U0/H is the solution to the continuous Problem 13, and (σσσh,uh)
is such that σσσh = σσσ0

h + σ̂σσh,f , (σσσh,uh) ∈ Σf
h × U0

h/H being the solution to the discrete
problem 39. Furthermore, C(Ω, σσσ,u) is independent of h but depends on the domain Ω
and on the Sobolev regularity of σσσ and u.
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Proof. We take σσσI ∈ Σf
h defined as σσσI = Ihσσσ, see section 4.2. Due to the splitting

σσσ = σσσ0 + σ̂σσf , with σσσ0 ∈ Σ0, we have

σσσI = Ihσσσ = Ihσσσ0 + Ihσ̂σσf := σσσ0
I + σ̂σσI,f . (93)

From (89), we get σσσ0
I ∈ Σ0

h and σ̂σσI,f ∈ Σf
h. We also take uI ∈ U0

h as the usual VEM
interpolant of u, see for example [10] or [8].

We now form (σσσh − σσσI ,uh − uI) ∈ Σ0
h × U0

h . Then, using the ellipticity-on-the-
kernel condition of estimate (60) and the inf-sup condition of Proposition 4.9, there
exists (τττh,vh) ∈ Σ0

h × U0
h such that (see [12] and [13], for instance):

||τττh||h + ||vh||U0/H . 1 (94)

and

||σσσh − σσσI ||h + ||uh − uI ||U0/H . Ah(σσσh − σσσI ,uh − uI ; τττh,vh). (95)

We have, considering the splitting σσσ = σσσ0 + σ̂σσf and (93), and using both (7) and
(43), together with (45):

Ah(σσσh − σσσI ,uh − uI ; τττh,vh) = Ah(σσσh,uh; τττh,vh)−Ah(σσσI ,uI ; τττh,vh)
= [a(σσσ, τττh)− ah(σσσI , τττh)] + b(τττh,u− uI) + b(σσσ − σσσI ,vh) + [Fh(τττh)− F (τττh)]
= T1 + T2 + T3 + T4.

(96)

For both the choices (30) and (31), the term T1 can be treated using the techniques
of [4], to obtain:

T1 . (||σσσ − σσσI ||0,Ω + ||σσσ − σσσπ)||0,Ω + h ||div σσσI ||0,Ω) ||τττh||h, (97)

where σσσπ is the L2-projection of σσσ onto P0(Th)2×2
s .

Regarding T2, using the Agmon’s trace inequality (see for example [2]), one has:

T2 = −
∑
E∈Th

∫
∂E
τττhn · (u− uI) .

∑
E∈Th

h
1/2
E ||τττh||0,∂Eh

−1/2
E ||u− uI ||0,∂E

.
∑
E∈Th

h
1/2
E ||τττh||0,∂E (hE ||u− uI ||0,E + |u− uI |1,E)

. ||u− uI ||U0 ||τττh||h.

(98)

Term T3 can be treated using standard trace inequalities, to obtain:

T3 . ||σσσ − σσσI ||H(div) ||vh||U0 . (99)

To estimate the term T4 we first recall that, see (45):

Fh(τττh)− F (τττh) =
∑
E∈Th

aE(σ̂σσf −ΠE σ̂σσf , τττh). (100)

If ΠE is selected according with (31), then ΠE σ̂σσf = σ̂σσf , and T4 vanishes. If ΠE is
selected according with (30), we have ΠE σ̂σσf = 0 (cf. (44)). Then we get, also using
(47):
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T4 = Fh(τττh)− F (τττh) .
∑
E∈Th

aE(σ̂σσf , τττh) .

 ∑
E∈Th

||σ̂σσf ||20,E

1/2 ∑
E∈Th

||τττh||20,E

1/2

.

 ∑
E∈Th

||σ̂σσf ||20,E

1/2

||τττh||h.

(101)
A direct computation taking into account (44) gives ||σ̂σσf ||0,E . hE ||f ||0,E . Therefore,
we obtain

T4 .

 ∑
E∈Th

h2
E ||f ||20,E

1/2

||τττh||h. (102)

From (95), (96), (97), (98), (99) and (102), we get:

||σσσh − σσσI ||h + ||uh − uI ||U0/H .
(
||σσσ − σσσI ||H(div) + ||σσσ − σσσπ)||0,Ω

+ h ||div σσσI ||0,Ω + ||u− uI ||U0 + h ||f ||0,Ω
)

(||τττh||h + ||vh||U0) .
(103)

Using (94), standard approximation results and estimates (90)-(91), we infer:

||σσσh − σσσI ||h + ||uh − uI ||U0/H ≤ C(Ω, σσσ,u)h, (104)

where C(Ω, σσσ,u) is independent of h but depends on the domain Ω and on the Sobolev
regularity of σσσ and u. We now use the triangle inequality and the estimate

||τττh||0,Ω . ||τττh||h ∀τττh ∈ Σh.

Exploiting (104), again standard approximation results and (90), we thus obtain:

||σσσ − σσσh||0,Ω + ||u− uh||U0/H ≤ ||σσσ − σσσI ||0,Ω + ||u− uI ||U + ||σσσI − σσσh||0,Ω + ||uI − uh||U
. ||σσσ − σσσI ||0,Ω + ||u− uI ||U + ||σσσI − σσσh||h + ||uI − uh||U
≤ C(Ω, σσσ,u)h.

(105)

5 Numerical results

The present section is devoted to validation of the proposed dual hybrid methods.
First, in section 5.1 convergence and accuracy are numerically assessed on a couple
of benchmarks having a closed-form solution. Subsequently, in section 5.2, an elastic
problem stemming from a simple electromechanical application is considered, proving
applicability of the method to the analysis and simulation of real structures. In all
presented tests reference is made for comparison to the standard displacement-based
linear Virtual Element Method detailed in [3].
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5.1 Convergence and accuracy assessment

A set of two boundary value problems on the unit square domain Ω = [0, 1]2 is con-
sidered, for which an analytical solution is available [20]. Material parameters are
assigned in terms of Lamé constants λ = 1, µ = 1, assuming plane strain and homo-
geneous isotropy conditions. The tests are defined by choosing a required solution and
deriving the corresponding body force f , as reported in the following:

• Test a 
u1 = x3 − 3xy2

u2 = y3 − 3x2y
f = 0

(106)

• Test b{
u1 = u2 = sin(πx) sin(πy)
f1 = f2 = −π2 [−(3µ+ λ) sin(πx) sin(πy) + (µ+ λ) cos(πx) cos(πy)] (107)

Test a has Dirichlet non-homogeneous boundary conditions, zero body force and a poly-
nomial solution; Test b has Dirichlet homogeneous boundary conditions, trigonometric
body force and a trigonometric solution.

The tests are run on two sets of structured [resp. unstructured] square, hexagon,
and concave quadrilateral [resp. triangle, quadrilateral, and Voronoi] simple polygonal
meshes, each type being represented and labeled in Fig. 1, for a sequence of five uniform
mesh refinements.

Numerical solutions for the above tests are sought with the proposed dual hybrid
method, with the two versions of projection operator Eq. (30) [resp. Eq. (31)], which
will be labeled DH P0 [resp. DH P1]. For comparison purposes, a further numerical
solution with the linear displacement based VEM presented in [3] is computed and
labeled DISP.

Convergence rate and accuracy level are investigated computing the following error
quantities:

• Discrete relative error quantity for the stress field:

Eσσσ :=
(∑

E∈Th

∫
E ||σσσh − σσσ||2∑

E∈Th

∫
E ||σσσ||2

)1/2

. (108)

• Discrete relative weighted error quantity for the inter-element traction field:

Etn :=
(∑

e∈Eh
|e|
∫
e ||tn,h − tn||2∑

e∈Eh
|e|
∫
e ||tn||2

)1/2

. (109)

where n is one outward unit normal to the edge e chosen once and for all. Quanti-
ties tn,h are the average of the two contributions stemming from the two elements
adjacent to edge e.

• Discrete H1-type error quantity for the inter-element displacement field:

Eu :=

∑
e∈Eh

|e|
∫
e

∣∣∣∣∣∣∣∣∂uh
∂e −

∂u
∂e

∣∣∣∣∣∣∣∣2
1/2

. (110)

where e is the unit tangent to the edge e chosen once and for all.
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Inspection of Figs. 2-5 confirms expected convergence rates for the three compared
methods. In terms of accuracy, for both tests and for all mesh types, dual hybrid virtual
element methods DH P0 and DH P1 outperform displacement based virtual element
method DISP, for stress and inter-element traction field, respectively. Comparatively,
DH P1 shows the highest edge on Test b (cf. also Remark 3). It is noted that the
three stress [resp. traction] fields coincide for Test a adopting triangles. Figs. 6-7 show
that DH P1 and DISP methods are fairly comparable in terms of displacement field
accuracy, for both tests and for all mesh types, with some selected cases in which DISP
presents the lowest error levels while DH P0 the highest ones. It is noted that the three
displacement fields coincide for Test a adopting structured quadrilaterals, and for both
tests adopting triangles.

5.2 Structural application: folded-beam suspension

A representative section of a typical microelectromechanical system (MEMS) [26], con-
sisting of two bulky portions connected with four slender beams (see Fig. 8), is consid-
ered, as a structural application on which we test the VEM methods described in the
previous section. As an electromechanical plate-like device, a two-dimensional linear
elastic analysis under plane stress assumption is carried out. Geometry, dimensions,
boundary conditions and loading are represented in Fig. 8. Material parameters are
E = 60 GPa, ν = 0.22; edge traction q = 10−2 N/m. The relevant half domain is
meshed with triangles, quadrilaterals, and Voronoi polygons as previously done. The
latter spatial discretization makes use of non-convex polygons in the zones surrounding
re-entering corners, which, given the particular geometry under consideration, further
enlights the broader mesh capability offered by VEM methods in respect with standard
FEM discretizations.

Progressively finer meshes are considered for DISP, DH P0, DH P1 method, respec-
tively, while a reference solution is computed with CPE4H hybrid element implemented
in COMSOL [19] on a very fine mesh. Results in terms of relative error on the vertical
displacement of target node A (cf. Fig. 8) against total number of degrees of freedom
are shown in Fig. 9, which confirms the efficiency of the proposed dual hybrid method
as a tool for structural analysis.
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6 Conclusions
We have presented a Virtual Element Method for 2D linear elastic problems, based
on a dual hybrid variational formulation. The scheme offers two variants, which differ
from each other according to the choice of the VEM stress projection. A stability
and convergence analysis has been developed, and several numerical tests have been
performed, confirming the theoretical predicitions. Our study shows that dual hybrid
VEMs represents a valid alternative to standard displacement-based VEM schemes,
especially if one is interested in an accurate description of the stress field. We finally
remark that hybrid elasticity methods have been used, in the FEM framework, to tackle
Structural Mechanics problems (e.g. plate problems, see [21]): our VEM scheme might
be fruitfully employed within that context as well.
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Figure 2: Test a - Eσσσ vs. h curves with branch slopes. Structured mesh - left. Un-
structured mesh - right.
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Figure 3: Test b - Eσσσ vs. h curves with branch slopes. Structured mesh - left. Un-
structured mesh - right.
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Figure 4: Test a - Etn vs. h curves with branch slopes. Structured mesh - left.
Unstructured mesh - right.
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Figure 5: Test b - Etn vs. h curves with branch slopes. Structured mesh - left.
Unstructured mesh - right.
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Figure 6: Test a - Eu vs. h curves with branch slopes. Structured mesh - left. Un-
structured mesh - right.
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Figure 7: Test b - Eu vs. h curves with branch slopes. Structured mesh - left. Un-
structured mesh - right.
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Figure 8: Folded-beam suspension. Geometry (quotes in µm), boundary conditions,
loading. Mesh types and labels for relevant half-domain depicted for coarsest discretiza-
tion adopted.
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