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Abstract. Limited diversity has long been seen as a source of threats to the credibility of causal 

ascription in Qualitative Comparative Analysis. To rule out such threats, strategies have been 

developed that question the counterfactual nature of unobserved configurations, their 

explanatory merit, and the causal structure entailed in the algorithm for ascription. A lesser 

explored line considers limited diversity to be the consequence of model overspecification. In 

contributing to this latter line, this article builds on the established theoretical criteria that a 

distribution must meet for an explanatory claim to be held true, and it advances two gauges – 
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mold proper models before analysis. Their application in prominent studies suggest solutions 

from Standard Analysis may be more sound than is often conceded. 
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Introduction 

Capital accumulation, industrialization, urbanization, and education are the steps of the path 

along which democracies have been historically proven to thrive. Alone, however, these “social 

requisites” of democracies (Lipset 1959) cannot warrant their survival. As the case of interwar 

Germany showed, endurance also requires stable institutions. The hypothesis, by nature, is 

configurational and justifies a Boolean treatment. An established adaptation of Lipset’s theory 

to interwar Europe (Berg-Schlosser and De Meur 1994, Rihoux and De Meur 2009) thus 

expected the survival of democracy in wealthy (W), industrialized (I), urbanized (U), literate 

(L) social systems with stable (S) governments. However, the results brought forth a 

discomforting puzzle. Although L was shared by all the positive cases, the Boolean procedure 

minimized it away as irrelevant. Further applications confirmed that indeed, when running a 

Qualitative Comparative Analysis, conditions that are “empirically necessary” to the outcome 

may disappear from solutions (Schneider and Wagemann 2012; Ragin 2008; Ragin and Sonnett 

2004). Moreover, conditions may enter solutions despite lacking a direct causal connection to 

the outcome (Baumgartner and Thiem 2015a).  

These pitfalls have contributed to undermining the belief that the technique can correctly 

ascribe causation. Configurational scholars have long diagnosed these issues as a consequence 

of limited diversity. When the mismatch between observed and possible configurations in a 

truth table is large, the solutions from minimizations with and without “logical remainders” 

can diverge. To improve the credibility of such results, strategies along four separate lines have 

been advanced over time: two of them focus on the counterfactual use of unobserved 

configurations (Ragin and Sonnett 2004; Schneider and Wagemann 2012, 2013; Baumgartner 

2008, 2009; Baumgartner and Thiem 2015b); the other two instead question the complexity of 
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the model (Schneider and Wagemann 2006, 2012; Baumgartner 2012; Baumgartner and Thiem 

2015a; De Meur and Berg-Schlosser 2009; Goertz 2006). 

This article advances the fourth line. With Goertz (2006), it maintains theoretical relevance 

or previous knowledge can lead to overly complex explanatory models: conditions may be 

included that have no actual import nor are essential to the explanation. It reasons that 

conditions’ import and essentiality instead depend on their empirical relationship with the cases 

at hand and with the other conditions in the model and that they may not be properly assessed 

by Quine-McCluskey minimizations. It therefore introduces two gauges to test the importance 

and essentiality of single conditions and, on this basis, to determine whether to include them in 

the model before running the Standard Analysis. The expectation is that “correct” models 

provide evidence for adjudicating on the actual capacity of Standard Analysis to yield credible 

findings and, eventually, for fixing it. 

The structure of the article is simple. Section 1 discusses the four main strategies for 

confronting limited diversity and highlights the diagnoses and prescriptions that they entail for 

better QCA solutions. Section 2 narrows in on the understanding of limited diversity as 

overspecification, building on the requisites of set-theoretical causation to elaborate two 

indexes, “import” and “essentiality”, that allow the explanatory power of single conditions to 

be ascertained and the model to be fine-tuned to the cases at hand. Section 3 applies these new 

gauges to models from recognized empirical studies and investigate how correct models lead 

to different results. Section 4 discusses the replications and outlines provisional considerations 

about the credibility of the findings of Standard Analysis. 

As a matter of clarification, the article adopts a conventional QCA lexicon and notation 

with minimal adjustments. Explanatory conditions and outcomes are each a single property-

set, of which cases are observed instances from a given population 𝓟. 𝓜 indicates a model-
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set, of which whole conditions are elements. Bold standard letters indicate conditions 

independent of their gauge and state. When the gauge is relevant, slanted uppercase signifies 

presence and slanted lowercase signifies absence unless otherwise specified. Subscript i means 

that the condition is instantiated by the i-th observation from 𝓟. A dot or no sign signals set 

intersection and Boolean conjunction; a plus sign indicates set union and disjunction; and a 

backslash is for set difference and complement in disjuncts. Configurations are intersections 

and conjunctions; those listed in a truth table are “primitives.” Stars are for unobserved 

configurations in 𝓟. Arrows indicate a set relationship and always point toward the super-set. 

Double headed arrows are for overlapping sets. Finally, “N-cons” and “S-cons” are used as 

short labels for the Standard parameters of consistency of, respectively, necessity and 

sufficiency, respectively. 

 

1. One problem, four strategies 

Scarcely populated truth tables arise from the gap between hypothesized diversity and observed 

diversity in a population. At the description level, this gap exposes the special ordering 

imparted by causation to diversity while unfolding in the real world. Inference, however, 

weakens if unobserved heterogeneity is not treated properly (Ragin 2008). Over time, the issue 

has been given four different solutions. Each entails specific and occasionally diverging 

recommendations for sounder results, and their arguments are summarized below. 

Strategy #1. Sound counterfactuals only 

The first solution addresses limited diversity as the source of disappearing conditions. It 

stipulates that models themselves are given and explanatory and that unobserved heterogeneity 
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improves minimizations’ leverage when used for counterfactual reasoning. Accordingly, 

results’ pitfalls must depend on their usage in Standard minimizations.  

Ragin and Sonnett (2004; Ragin 2008, Schneider and Wagemann 2012) focused on the 

nature and purpose of unobserved configurations and maintained that sound results could only 

follow “plausible” counterfactuals. Plausibility, however, has a special meaning in QCA due 

to the particular rationale of the algorithm used for ascription. Indeed, the Quine-McCluskey 

reverses the mainstream statistical understanding of counterfactual. Its minimizations do not 

ascertain the ceteris paribus covariation of a factor and an outcome in a causally homogeneous 

sample; instead, they pinpoint the invariant parts of explanatory complexes across dissimilar 

cases sharing outcome within a scope condition. The technique still entails the falsifiability of 

the starting hypothesis by testing whether the factor “makes a difference” to the strength of the 

causal relationship (Lewis 2001). However, given its focus on invariance, it defines as plausible 

counterfactual the unobserved configuration that would have led to the outcome if observed. 

Consistent with the theory-driven nature of the method, Ragin and Sonnett (2004) make 

plausibility claims resting on “directional expectations”. Before running the analysis of 

sufficiency, the researcher defines the state under which a condition is expected to contribute 

to the outcome. Thus, if the theory states that A contributes to Y, then the unobserved 

configuration aBC* is an implausible match with the observed configuration ABC because it 

implies, against theory, that in a hypothetical twin world BC could have generated Y despite a.  

Barring implausible counterfactuals from minimizations warrants unbiased results and 

restores disappearing necessary conditions in solutions (Ragin 2008). However, Wagemann 

and Schneider (2012, 2013) noted how plausible counterfactuals do not rule out all threats to 

credible results. To them, directional expectations cannot ensure that each and every 

counterfactual is used (a) non-contradictorily; (b) in a way that does not embody any logical 

impossibility; and (c) such that findings are perfectly true to observations. Given these many 
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threats, their Enhanced Standard Analysis (ESA) identifies the different nature of each logical 

remainder and establishes consistent minimization rules for each type. Applications show the 

ESA yields different parsimonious solutions but the same intermediate solutions as the 

Standard Analysis (Schneider and Wagemann 2012). This conclusion has struck a blow for 

intermediate solutions with plausible counterfactuals as the robust and, therefore, credible 

finding to discuss. 

Strategy #2. Changing the algorithm 

The credibility of plausible minimizations has been fiercely questioned by Baumgartner 

(2008, 2009) and Baumgartner and Thiem (2015b), who developed a different epistemology of 

causal complexity and rejected the Quine-McCluskey as the proper minimization algorithm.  

Their understanding provides no room for counterfactual reasoning. To them, observed 

configurations are the only configurations to be analyzed, as they render those mechanisms that 

obtained in the real world; logical remainders are, “notwithstanding their truth, not amenable 

to a causal interpretation” (Baumgartner 2008:332, Baumgartner and Thiem 2015b). However, 

observed configurations are redundant portrayals such that correct causal ascription requires 

minimizations – but inevitably different from those in Standard Analysis. The latter ascribes 

causation through a backward falsifying strategy, as it disproves that a condition is essential by 

showing its removal does not affect the sufficiency of the configuration. In Baumgartner and 

Thiem’s reversed epistemology, the strategy instead runs forward and confirms that a factor is 

a cause as far as it qualifies as an “INUS” condition (Mackie 1965) – that is, as an insufficient 

but necessary constituent of an unnecessary but sufficient configuration. The procedure for 

identification is, therefore, the mirror-image of the Quine-McCluskey: instead of sufficiency, 

it narrows on necessity; implicants are found by adding factors to increase the complexity of 

disjuncts, instead of pruning conjuncts, until the relationship vanishes. As it retrieves any 
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structure that fits observations, this “super-/sub-set analysis” is also claimed to improve results 

upon the Quine-McCluskey. The latter’s minimizations treat each condition as it if has a direct 

causal connection to the outcome – i.e., as a “set-theoretically independent” element in a causal 

complex – and do not report implicants that are perfectly implied, or “dominated”, by other 

conditions. In so doing, Standard Analysis fails to recognize that causation may be structured 

and that “alternative causes of an outcome frequently correspond to dominated conditions” 

(Baumgartner and Thiem 2015b:11) – which the super-/sub-set analysis fully reports instead. 

The super-/sub-set analysis dismisses any consideration of plausibility from inference, 

emphasizing only the requirement of formal correctness in ascription. As a consequence, it 

often retrieves a large number of implicants and leaves their adjudication to ex-post theorizing. 

The problem of credible causal ascription thus resurfaces as “too many fitting solutions.” 

However, Baumgartner and Thiem’s proposal unveils the limitation of Standard Analysis, 

suggesting it could not achieve correct results when the starting model includes conditions 

linked in dependency relationships. 

Strategy #3. Layering explanatory complexity 

That the Quine-McCluskey may mishandle hierarchical causation was first recognized by 

Schneider and Wagemann (2006, 2012). They consider explanations to be convincing when 

complete, and completeness often requires the inclusion of both “remote” structural factors and 

“proximate” efficient causes of an outcome. However, remote and proximate factors are 

chained, and the usual flat model misrepresents this structure while escalating unobserved 

diversity. They thus advance a “two-step” protocol that restrains complexity and better renders 

causal ontology. The protocol prescribes that the sufficiency analysis is run in step 1 on remote 

conditions to find the parsimonious solution, then in step 2 on proximate conditions, 

supplemented each time with a different remote term, to find the conservative results. A 
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recognized limit of the two-step proposal lays in the classification of factors into remote and 

proximate causes, which is mainly left to the discretion of the researcher. Indeed, criteria have 

been advanced for identifying the factors’ nature, such as the spatiotemporal contiguity to the 

occurrence of the outcome. However, these criteria cannot rely on empirical probation with 

Standard analysis: Schneider and Wagemann (2006:760, 2012) posit the remote-proximate 

classification cannot be expected to overlap the necessity-sufficiency distinction as gauged by 

consistency parameters. 

The empirical probation of functional dependencies among explanatory conditions is the 

special aim of a different kind of configurational technique. Again developed by Baumgartner 

(2012), “coincidence analysis” (CNA) probes the existence of subset relationships between all 

factors in a model. As opposed to Schneider and Wagemann, this proposal is data-driven and 

again relies on a different algorithm than the Quine-McCluskey. The latter assumes a direction 

in causation, whereas in CNA each factor is in turn treated as it could be the outcome – the 

“endogenous” factor – of any other (Baumgartner and Thiem 2015a:177). The Quine-

McCluskey only minimizes configurations that overlap on all but one term, while CNA 

intentionally relaxes this “one-different restriction” (Baumgartner 2012:6). Moreover, CNA 

compares configurations across outcomes, rather than within the same outcome, and establishes 

dependencies between any complex ϕ and one endogenous factor A whenever ϕ is not observed 

in conjunction with a. As a result, the researcher is provided with “causal structures” that can 

be arranged in chained models. However, again, the evidence is rarely final. The analysis does 

not tell whether the conditions unrelated to the outcome are a byproduct or an antecedent in a 

causal chain. Moreover, the analysis again generates multiple “complex solution formulas that 

fare equally well with respect to all parameters of model fit” (Baumgartner and Thiem 2015a: 

180). Further, the analysis stems from the assumption that any observed truth table is saturated 

due to the dependencies among factors (Baumgartner 2012:11). The assumption may not be 
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tenable, though, as it may mistake the effect of missing observations for that of a causal 

dependency.  

Strategy #4. Questioning the complexity of the model 

A further array of methodological refinements has been inspired by the doubt that limited 

diversity stems from a model that faithfully renders the theoretical hypothesis but in so doing 

includes more conditions than the diversity of the population requires. Marx (2010) emphasizes 

how an overly rich truth table may entail a confirmatory bias in results due to the increased 

probability of consistent primitives. He considers that highly complex models tend to 

pigeonhole observations and allow consistency to be decided by single instances. To increase 

the results’ credibility, he calls for truth tables in which the consistency of observed 

configurations is high, even if the ratio of instances to configurations makes their inconsistency 

possible. He therefore suggests two routes for securing sounder truth tables. The first recalls 

the solution to power issues in sampling for statistical analysis and requires increasing the 

number of instances. If this is unviable due to a strict scope condition, the starting model can 

be tailored to the cases at hand before ascription – which calls for criteria for dropping 

conditions. 

Berg-Schlosser and De Meur (2009) suggest that the rows in a truth table can be reduced 

by using “superconditions” that synthesize two or more single factors that have been shown to 

correlate consistently. However, this method of reduction may only alleviate the problem if the 

number of conditions remains disproportionate to the number of cases. Goertz (2006) identifies 

“trivialness” as a criterion for selection and first develops the concept in relation to necessity. 

He defines as a trivial and necessary factor as one “that is present in all cases in the universe 

of analysis, both when the dependent variable is present and absent” (ivi:90). He also 

emphasizes that trivial conditions can be considered an operationalization of the scope 



 

10 

condition (2006:94), so their inclusion in the model may be justified by a theoretical interest in 

the contribution of contexts to the production of the outcome. With the Quine-McCluskey, 

however, these conditions generate a truth table in which half the rows are counterfactuals 

without this background condition. This raises an interesting puzzle and compels 

considerations of the external validity of Standard minimizations. This argument becomes 

clearer through a fictional example in which a constant is added to a saturated distribution with 

known solution, as follows:  

Let 𝓟1 be a population of 8 instances i such that their distribution across the possible 

intersections of two conditions A, B generates the solutions A+B → Y and ab → y; and let C 

be a constant. 𝓟1 is compatible with the dataset in Table 1.a, and with the truth table of Table 

1.b.  

-- TABLE 1 -- 

If we do not question the model, with a conventional inclusion cutoff at 0.80, the 

parsimonious solution explains Y with the disjunction A+B, whereas the complex and the 

intermediate minimizations alike find the disjunction AC + BC – the latter, under the directional 

expectations that A, B and C all contribute to Y when present. With the same inclusion cutoff, 

the complex solution to y overlaps with the only observed negative primitive, abc, whereas the 

parsimonious solution use the logical remainders and ascribes causation to ab. However, the 

intermediate solution changes depending on the directional assumptions about the contribution 

of C to y in this unobserved twin world. The intermediate solution overlaps the complex if we 

expect the twin world and the observed world to share the very same background conditions. 

Thus, C is always necessary, and contributes to y. However, intermediate minimizations find 

the parsimonious solution if we concede that in such a twin world C may variate and, hence, 

be sufficient to y. The ambiguity cannot be fully addressed by analyzing individual consistency 
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scores. As Table 2 shows, observations suggest that C is fully necessary to both the outcome 

and its negation, but its sufficiency values are undetermined.  

-- TABLE 2 -- 

This ambiguity shows how trivial conditions push the explanatory power of solutions 

beyond the validity limits of counterfactual thinking. Further, when the model includes the 

constant, the solutions display the same S-cons values as those solutions obtained from the 

model without it, which indicates that the constant does not add explanatory power to the 

results. These considerations support Goertz’s recommendation that trivially necessary 

conditions are dropped before ascription.  

As trivialness makes especially clear, QCA cannot claim external validity for its findings: 

the results hold true strictly within the scope condition, which provides the necessary yet 

untested background to the explanatory hypothesis engrained in the model. Its strength as a 

method lies instead in the internal validity of its causal ascription. Dismissing trivial conditions 

before minimizations contributes to better results, as it reduces the complexity of the 

explanatory models to primitives with knowable import in 𝓟. However, as Baumgartner 

suggests, trivial conditions may only be an extreme example of the wider category of 

empirically unjustified conditions. Some further testing is therefore required to establish 

whether all theoretical conditions have a local explanatory power. 

 

2. Gauging import and essentiality  

QCA understands the explanatory relevance of single conditions as their set-theoretical 

relationship of necessity and sufficiency to the outcome. In its popular version, a factor has 

import in 𝓟 when it impresses a “triangular” shape into the distribution of its instances against 
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the outcome in contingency tables or XY-plots. Standard parameters assess the fit to this shape 

by gauging the consistency and coverage of sufficiency and necessity (Ragin 2006, 2008; 

Schneider and Wagemann 2012). The parameters convey clear information about the 

conditions’ shaping power when the values are extreme – that is, when individual conditions 

display a fully in/consistent set-relation to the outcome or an undetermined one. Apart from 

such revealing boundaries, the ambiguity of their information increases as different meaningful 

shapes become compatible with the same consistency value. This special weakness affects the 

analysis with fuzzy scores more than that with crisp scores (Schneider and Grofman 2006; 

Schneider and Wagemann 2012). Fuzzy scores allow subset and superset relationships to be 

understood as inequalities: sufficiency occurs when wi < yi, and necessity occurs when wi  > yi 

-- wi being the fuzzy membership scores of i to the explanatory property-set; and yi the fuzzy 

membership scores of i to the explanandum. As a consequence, fuzzy scores are understood to 

rotate the key axes of the analytic space: misfitting to sufficiency are those distributions whose 

instances fall below yi = wi; trivial distributions are those whose instances fall in the regions 

where ~wi > yi > wi , ~ reading ‘not’ and indicating the complement. However, the rotation 

blurs the original requisites underlying the triangular shape, which instead makes sense in an 

analytic space where the origin is translated to the (0.5; 0.5) point. 

Recall from Ragin (1987, 2008) that the basic set-theoretic approach to necessity and 

sufficiency confines the distribution of instances by an explanans W and an outcome Y within 

four intersections in a non-rotated analytic space – namely, WiYi, Wiyi, wiyi, and wiYi. The 

distribution establishes that, in 𝓟, Wi is  

- sufficient to the outcome Yi when Wi → Yi, and the requisites [R.] hold that  

WiYi ≠ Ø [R.1],   Wiyi = Ø [R.2]; 

- necessary to the outcome Yi when Wi ← Yi, and the requisites [R.] hold that  

WiYi ≠ Ø [R.1],   wiYi = Ø [R.3]; 
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- necessary and sufficient to Yi when Wi ↔ Yi, and the requisites [R.] hold that  

WiYi ≠ Ø [R.1],   wiYi = Ø [R.3],   Wiyi = Ø [R.2]. 

Goertz adds that non-trivial necessity and sufficiency follows when 

wiyi ≠ Ø [R.4]. 

Each of these requisites plays a unique role in establishing a causal relation. [R.1] demands 

the joint observation of cause and effect. [R.4] imposes certainty of variation in the outcome. 

[R.3] and [R.2] establish the direction of the causal relation.  

Of them, however, [R.2] is especially crucial. The requisite entails that a factor is sufficient 

when contradictions do not occur. When met, this claim holds that the condition is a 

“difference-maker” and can thus be ascribed causal power. [R.2] provides Marx (2010) with 

the basis for his standards to assess the risk that a particular distribution is due to chance. 

Baumgartner and Thiem (2015a, 2015b) rely on this “negative existential claim” for 

pinpointing chained conditions, and their algorithm ascertains causation as the non-

contradictory relationship of any single factor or complex to another. Yamasaki and Rihoux 

(2009) and Schneider and Wagemann (2012, 2013) maintain that its violation makes 

inconsistent the use of counterfactuals. The very same distinction of hard and easy 

counterfactuals introduced by Ragin and Sonnett (2004) is only possible under assumption of 

non-contradictoriness. Rihoux and de Meur (2009) treat contradictions as unequivocal signals 

that the model is underspecified – or wrong. In a nutshell, non-contradictoriness is the key 

proof of causal set-theoretic power. By extension, the capacity of unraveling contradictions in 

𝓟 can be seen as evidence that a condition has an ordering effect on the population. 

When calculated based on single conditions, the Standard parameters of consistency 

provide a proxy of such “unraveling power.” N-cons is high when a condition isolates negative 

instances from the remaining population, and S-cons is high when it pinpoints positive 
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instances. These “told apart” instances contribute to the group of “better instances” that support 

the claim of the factor’s causal power and are particularly rewarded in consistency formulas 

(Ragin 2006). However, as already noted, the parameters become less precise as their scores 

come closer to 0.5. The difference-making criterion calls for a sharper assessment of 

conditions’ sorting power, which can be conceived of as a matter of numerosity rather than of 

overall fit. Even the most skewed condition must be recognized as having some power if it can 

unravel the last instance and prevent a contradiction in the truth table.  

.1. Import 

The first measure of explanatory power, import, rests on the number of instances with 

same outcome that a condition singles out of an unspecified population. The operation is almost 

banal.  

Let 𝓜 be a model explaining Y with 𝓴 specifying conditions, tested on a population 𝓟 of 

𝓝 instances. Let X be the 𝓴-th explanatory condition in 𝓜; 𝓶 X be a sub-model of 𝓜 such 

that 𝓶X = {X}; 𝓹X be the subpopulation of instances observed in non-contradictory primitives 

generated by 𝓶X; and 𝓷X the numerosity of 𝓹X. The import of X in 𝓟 is then given by the 

following ratio: 

importX =𝓷X / 𝓝 

The index can take values between 0 and 1. The highest score proves a condition to be 

necessary and sufficient to the outcome, as it can order the population in two non-contradictory 

clusters. Just the opposite, its lowest score proves the condition has no sorting power in 𝓟.  

Applied to our fictional example of trivialness, we see from Table 3.a and Table 3.b that 

both condition A and condition B generate a non-contradictory cluster of 4 instances out of 8, 

as 𝓹A={i3, i4, i5, i6} while 𝓹B={ i1, i2, i5, i6}. Therefore, importA = importB = 4/8 = 0.5. Table 
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3.c makes it clear that condition C actually has no sorting power, as it clusters all instances in 

a contradictory configuration. Thus, importC = 0/8 = 0. 

-- TABLE 3 -- 

.2. Essentiality 

Import can improve our knowledge of the explanatory power of single conditions but does 

not capture the whole of it. The other side of such a power is decided by the conjunction of 

each condition with the remaining explanatory factors – that is, by observed primitives. In each 

primitive there may be non-contradictory instances to which X is not decisive, as they would 

nevertheless be singled out; and instances that are non-contradictory due only to X – alone or 

in conjunction with another factor. Those instances that would fall into a contradictory 

primitive were the condition dropped, thus, provide the key test of its essentiality in the model. 

Essentiality can therefore be gauged as the difference in terms of contradictory instances 

between the full model and the same model without that condition.  

More precisely: let 𝓜 be the model explaining Y with 𝓴 specifying conditions, tested on 

population 𝓟 of 𝓝 instances. Let X be the 𝓴-th explanatory condition in 𝓜, and 𝓶′X be a 

sub-model of 𝓜, such that 𝓜\𝓶′X = {X}. Let 𝓠 be the subpopulation of contradictory 

instances from 𝓜; 𝓺′X be the subpopulation of contradictory instances from 𝓶′X; and 𝓺″X be 

the difference 𝓺′X \ 𝓠. When 𝓜 is truly overspecified, 𝓠 = {Ø}. If X is non-essential, then 𝓺′X 

= 𝓠 and 𝓺″X = {Ø}; if X is essential, then 𝓺′X > 𝓠 and 𝓺″X ≠ {Ø}. Thus, if we indicate with 

𝓷″X the numerosity of 𝓺″X, the essentiality of X reads: 

essentialityX = 𝓷″X /𝓝 

Again, the index spans from 1 to 0. Dropping a non-essential condition generates no new 

contradictions; if a condition is non-essential, its 𝓷″ takes the 0-value, and the ratio is null. 
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Dropping the only necessary and sufficient condition instead turns the entire population into a 

single contradiction, thus making its 𝓷″ = 𝓝 and giving the index the value of 1.  

When applied to our fictional model, we find again that C is non-essential, as its exclusion 

does not generate contradictions. We know that 𝓝=8. From Table 1.b, we learn that 𝓠 = {Ø} 

and, from Table 4.c, that 𝓺 ′C = {Ø}. Hence, 𝓷″C=0, and essentialityC =0/8=0. When we 

consider the model without A, Table 4.a tells us that 𝓺′A = 𝓺″A ={i3, i4, i7, i8}, so that 𝓷″A=4 

and essentialityA = 4/8 = 0.5. From Table 4.b we learn that B gets the same essentiality score, 

although it is based on partially different elements, as 𝓺′B = {i1, i2, i7, i8}. 

-- TABLE 4 -- 

The information about conditions’ essentiality can be further validated by a backward 

specification procedure. The protocol is almost intuitive, and consists of testing whether the 

dismissal of the non-essential conditions from the full model yields contradictions. Otherwise, 

the surviving model is less complex yet still capable of sound solutions.  

When applied to the fictional example, the backward specification of the model confirms 

the inessentiality of the constant based on the conditions’ unraveling power in 𝓟1. When 

condition A is dropped from the model (Table 4.a), the primitive BC is still consistent, while 

bC clusters together two positive instances, i3 and i4, and two negatives, i7 and i8. Similarly, 

when condition B is dropped (Table 4.b), AC is explanatory but aC becomes contradictory. 

The procedure confirms the only distribution without contradictions is from the model without 

condition C (Table 4.c), which qualifies as the “correct” model to 𝓟1.  
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3. Road-testing import and essentiality 

When applied to actual data, these two simple ratios prove capable of detecting dependencies 

and offering interesting insights into the reasons for disappearing necessary conditions. 

.1. Shame and compliance to international regimes 

An illuminating example comes from Stokke’s analysis on the role of shaming in 

governments’ compliance with international fishery regimes (Stokke 2007). The original 

model maintains that shaming can improve compliance “by exposing certain practices to third 

parties whose opinion matters to the intended target of shaming” (Stokke 2007:503). The 

analysis then narrows on the conditions under which non-complying governments change their 

behavior in response to shaming pressures.  

The model pinpoints two factors related to regime design: A for advice, gauging “whether 

the shamers can substantiate their criticisms by referencing explicit advice by the regime’s 

scientific body”; and C for commitment, capturing “whether the target behavior violates 

commitments assumed under the regime.” Three additional conditions are related to the direct 

institutional environment of the government under analysis: I for inconvenience, meaning the 

costs of compliance; S for the shadow of the future, indicating the risk that shame will bring 

the government into international disrepute as a partner; and R for reverberation, referring to 

the shame echoed by strong domestic constituencies that can undermine consensus by the 

government. The model is tested on a population of 9 regimes implemented in three regions 

since the 1970s: Barents Sea, Northwest Atlantic, and Antarctic. 

-- TABLE 5 -- 

The data, displayed in Table 5.a, generate a truth table of 32 primitives, 8 of which are 

observed. The analysis of individual consistency (Table 5.b) pinpoints two necessary 



 

18 

conditions: A, for which it is true that A ← Y and that a → y, and I, for which it holds that i → 

Y and I ← y. Parsimonious minimizations rule out A from the solution to the positive outcome, 

in spite of the theoretical import that Stokke gives it; and the solution reads i + SR → Y. 

Plausible minimizations bring A back into positive results, turning the solution into A(i + SR) 

→ Y and thus making it truer to observations.  

While the puzzle of A’s disappearance has been widely scrutinized (Ragin 2008, Schneider 

and Wagemann 2012), it has seldom been considered in light of the treatment given to condition 

I. Indeed, I does not disappear from solutions despite its consistency scores being close to A’s. 

Its different stability is not justified by a different import, however: as displayed in Table 6, A 

and I both have a sorting power: the former, of negative instances; the latter, of positive ones. 

Instead, the difference rests on essentiality scores. The explanatory capacity of the model is 

independent on A, and highly dependent on I, without which contradictory configurations arise 

to cover 4 out of 9 instances.  

– TABLE 6 & TABLE 7 – 

From Table 7, we learn that C is also an inessential element in the model. Its lack of import 

accounts for its being dropped from Standard solutions. The population’s diversity, therefore, 

can be explained by the sole non-regime conditions S, I, and R. The “correct” truth table lists 

eight alternative configurations, and the distribution leaves two logical remainders for which 

directional expectations are still required. Parsimonious and intermediate minimizations find 

the same solution to the positive outcome, again reading i +SR → Y.  

.2. Democracy in interwar Europe 

The textbook example of disappearing necessary conditions remains Lipset’s hypothesis, 

as applied to the breakdown of democracy in the interwar Europe (Rihoux and De Meur 2009, 

Berg-Schlosser and De Meur 1994). With five conditions to gauge wealthy (W), industrialized 
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(I), urbanized (U), literate (L) social systems with stable (S) governments, the model generates 

32 primitives, of which the selected cases leave 23 unobserved, as displayed in Table 8.a. 

– TABLE 8 – 

As Table 8.b shows, individual consistency scores prove L is as necessary a condition to 

Y as are W and S. Nonetheless, parsimonious minimizations drop it from solutions, reading WS 

→ Y. When conditioned to directional expectations, minimizations restore L and the plausible 

solution reads WLS → Y. 

– TABLE 9 & TABLE 10 – 

Table 9 shows that, indeed, W, L, and S are the only conditions in the model with import. 

From Table 10, we learn that W and S are essential conditions that alone account for the entirety 

of the diversity. Moreover, they generate a fully specified truth table with a single solution, 

overlapping with parsimonious minimizations of the original model. 

 

.3. Independent regulators in policymaking 

An intentionally layered explanatory model is developed by Maggetti (2009) to account 

for the centrality of independent regulatory agencies in policymaking. He considers regulators’ 

centrality (Y) to depend on two remote factors: first, the duality (D) of political and the 

administrative decision-making, which should prevent regulators’ centrality; second, the 

professionalization (P) of the legislature, which again is expected to result in the 

marginalization of regulators. Three further proximate factors are added that concur with 

regulators’ centrality and complement or correct the remote factors: namely, the regulators’ 

technical expertise (E); their de facto independence from politicians in daily operations (O); 

and their de facto dependence on the regulated interests (I).  
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The model is tested on 6 agencies from two sectors – competition and financial services – 

in three small corporatist countries – Sweden, Switzerland and the Netherlands. The overall 

truth table, as from Table 11.a, again has 32 primitives and a severe problem of limited 

diversity, given that only 8 of them are observed. The analysis of individual consistency in 

Table 11.b reveals that – except for E – all of the conditions are necessary to the outcome with 

the expected sign. Moreover, P is proven a truly necessary and sufficient condition. 

– TABLE 11 – 

Following the two-step protocols, in the first round the sub-model with remote factors P, 

D is minimized for higher parsimony, finding that p → Y. In the second round, the solution 

term p is added to the proximate factors E, O, I. The new sub-model is run for conservative 

minimizations, and the solution reads pOi → Y.  

– TABLE 12 & TABLE 13 – 

When we apply the two gauges of import and essentiality, however, we see that not all 

theoretical diversity is empirically required. Indeed, the import scores from Table 12 show all 

explanatory conditions have import except for E. However, when essentiality is assessed, Table 

13 indicates P is the only condition required for accounting for all diversity. 

4. Discussion, and a final consideration 

The article has revolved around a twofold tenet: that QCA is for correct causal ascription and 

that Standard minimizations cannot correctly specify models while ascribing causation, and 

thus yield possibly flawed results.  

However, the many strategies developed to tackle this issue have not fully restored the 

technique’s credibility. A reliance on sound counterfactuals (Strategy #1) makes solutions truer 

to observations, yet cast doubts of confirmation bias. A change in the algorithm (Strategy #2) 
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ensures that the findings are correct yet not that they are meaningful or causal. Layered models 

(Strategy #3) seem equally unconvincing, as they either treat dependencies as unproven 

assumptions engrained in design or as data-driven sets of conjunctions again in need of a 

theory. Questioning the complexity of the model (Strategy #4) provides the most promising 

route but has, so far, resulted in protocols for compressing conditions and avoiding trivialness 

in explanations.  

The article adds two further concepts to this fourth strategy – import and essentiality – 

based on instances with same outcome that a condition can set apart from an unspecified 

population, and instances that are in contradictory configurations when the same condition is 

dropped from the original model, respectively. Far from substituting the Standard parameters 

of fit, these two gauges rather complement them. They share the same rationale – that a 

condition is empirically necessary when the instances without it agree in not displaying the 

outcome and is empirically sufficient when the instances with it agree in displaying the 

outcome – but neither assesses subset relationships nor ascribes causation. Import and 

essentiality are simple tests for model specification and are applied before minimizations to 

ascertain conditions’ difference-making power to the population. After the tests, we know 

which conditions have both import and essentiality, which have neither, and which have only 

one. The protocol is intuitive for conditions showing both or neither: we may definitely want 

the former included in the model and the latter excluded. The two remaining types require a 

decision, instead. If we stick to the requisites of set-theoretic causation and aim for a fully non-

contradictory truth table, we only need to include the essential conditions, so causal ascription 

is the only task left to the Quine-McCluskey. 

First applications to renowned studies show that essential models only include the 

conditions listed in the Standard parsimonious solution and retrieve the same results. However, 

the two gauges also show that additional conditions included in intermediate solutions from 
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overspecified models are non-essential with proven import. These clues only follow from three 

studies and thus require far more testing before being held as true. If they were confirmed, 

however, they would be quite consequential to the current methodological debate about the 

merits of Standard Analysis in treating limited diversity. 

The clues suggest that the Quine-McCluskey can retrieve the essential conditions from an 

overspecified model and unveil the structure of causation, which goes against this work’s 

starting tenet. Standard minimizations drop inessential conditions without import as irrelevant; 

keep the essential ones; and, after considering plausibility, can add inessential conditions with 

import to solutions. Import without essentiality entails a causal ordering of factors; therefore, 

the relationship between parsimonious and plausible intermediate solutions from the Standard 

Analysis of inessential models may mirror plausible chained causation. Should these clues be 

confirmed, essentiality and import would also give new meaning to the distinction between 

“core” and “peripheral” conditions in solutions (Fiss 2011): the former would overlap the 

essential factors, and the latter would converge with the non-essential yet “important” 

completers.  

These considerations compel a final note. Neither the Standard parameters of fit nor import 

and essentiality seem fully capable of addressing the vexing “garbage in-garbage out” issue of 

empirical research. Indeed, a model with only essential conditions can strengthen a claim that 

causal ascription is correct and its findings are credible. Adding inessential conditions with 

import may provide further evidence about a generative hypothesis when they are deemed as 

the “catalysts” of the essential chemical causation. However, their explanatory status can only 

be credibly claimed in a deductive design when the first condition selection is performed after 

a meaningful guess. When employed for explanatory purposes, as many other techniques QCA 

can only falsify a hypothesis about generating an outcome that must be credible in itself. A 
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data-driven analysis of a seriously overspecified model can hardly yield sound results because 

the causal story, as formally correct as it may be, could eventually make fairly little sense.  
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Tables 

Table 1. Dataset (a) from a constant C and fictional conditions A, B with single known solution A+B  Y and ab  y; and the related truth table(b). 

(a)      (b)        

instances A B C Y  A B C instances Y S-cons y S-cons 

i1 0.2 0.8 1.0 0.9  0 1 1 i1, i2 1 1.00 0 0.40 

i2 0.1 0.7 1.0 0.8  1 0 1 i3, i4 1 1.00 0 0.40 

i3 0.7 0.1 1.0 0.8  1 1 1 i5, i6 1 1.00 0 0.41 

i4 0.8 0.2 1.0 0.9  0 0 1 i7, i8 0 0.53 1 0.81 

i5 0.7 0.8 1.0 0.8  0 1 0      

i6 0.8 0.7 1.0 0.9  1 0 0      

i7 0.1 0.1 1.0 0.1  1 1 0      

i8 0.1 0.1 1.0 0.2  0 0 0      

 

Table 2. Consistency of necessity and of sufficiency: individual scores of conditions A, B, C against Y as in Table 1.a. 

 Outcome: Y  Outcome: y  

Conditions 
tested 

N-consistency 
S-coverage 

S-consistency 
N-coverage 

N-consistency 
S-coverage 

S-consistency 

N-coverage 

A 0.65 1.00 0.38 0.29 

a 0.54 0.64 1.00 0.58 

B 0.65 1.00 0.38 0.29 

b 0.54 0.64 1.00 0.58 

C 1.00 0.67 1.00 0.32 

c 0.00 1.#IND00 0.00 -1.#IND00 
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Table 3. Sorting power of (a) condition A, (b) condition B, and (c) condition C on the instances from Table 1. 

(a)     (b)     (c)    

A instances nr Y  B instances nr Y  C instances nr Y 

1 
i3, i4, 
i5, i6 

4 1  1 
i1, i2, 
i5, i6 

 1  1 
i1, i2, i3, i4, 
i5, i6, i7, i8 

8 Cd 

0 
i1, i2,  
i7, i8 

4 Cd  0 
i3, i4,  
i7, i8 

 Cd  0 -  1 

              

𝓹A = {i3, i4, i5, i6} 
𝓷A = 4; 𝓝 = 8 
importA = 𝓷A/ 𝓝 = 4/8 = 0.5 

 

𝓹B = {i1, i2, i5, i6} 
𝓷B = 4; 𝓝 = 8 
importB = 𝓷B/ 𝓝 = 4/8 = 0.5 

 

𝓹C = {Ø} 
𝓷C = 0; 𝓝 = 8 
importC = 𝓷C/ 𝓝 = 0/8 = 0 

 

 

Table 4. Truth tables obtained by dropping (a) A, (b) B, (c) C from the model in Table 1. 

(a)     (b)     (c)    

B C instances Y  A C instances Y  A B instances Y 

1 1 i1, i2, i5, i6 1  1 1 i3, i4, i5, i6 1  1 1 i5, i6 1 

0 1 i3, i4, i7, i8 Cd  0 1 i1, i2, i7, i8 Cd  1 0 i3, i4 1 

1 0    1 0    0 1 i1, i2 1 

0 0    0 0    0 0 i7, i8 0 

              

𝓠 ={ Ø },  𝓺′A ={ i3, i4, i7, i8 } 

𝓝=8;      𝓷″A = 4 

essentalityA = 𝓷″A /𝓝 = 0.5 

 

𝓠 ={ Ø },  𝓺′B ={ i1, i2, i7, i8 } 

𝓝=8;      𝓷″B = 4 

essentalityB = 𝓷″ B /𝓝 = 0.5 

 

𝓠 = 𝓺′C ={ Ø } 

𝓝=8;      𝓷″C = 0 

essentalityC= 𝓷″C /𝓝 = 0 
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Table 5. Stokke (2007): original model (a), and consistency of single conditions (b). 

(a)        (b)     

         Out: Y  Out:y  

A C S I R instances Y   N-cons S-cons N-cons S-cons 

1 0 1 1 1 of 1  A 1.00 0.57 0.60 0.43 

1 0 0 1 0 m1 0  a 0.00 0.00 0.40 1.00 

1 0 0 1 1 m2 0  C 0.50 0.67 0.20 0.33 

0 0 0 1 0 lh,k1 0  c 0.50 0.33 0.80 0.67 

1 1 1 1 1 c 1  S 0.75 0.75 0.20 0.25 

1 1 1 1 0 EC1 0  s 0.25 0.20 0.80 0.80 

1 1 1 0 0 EC2 1  I 0.50 0.29 1.00 0.71 

1 0 0 0 0 kR 1  i 0.50 1.00 0.00 0.00 

        R 0.50 0.67 0.20 0.33 

     𝓠 ={ Ø }   r 0.50 0.33 0.80 0.67 
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Table 6.  Import of explanatory conditions in Stokke (2007). 

 (𝓝 =9) 

(a)    (b)    (c)    (d)    (e)   

A instances Y  C instances Y  S instances Y  I instances Y  R instances Y 

1 
of, m1,  
m2, cp,  
EC1, EC2, kR 

Cd  1 
cp, EC1, 
EC2 

Cd  1 
of, cp, 
EC1, EC2 

Cd  1 
of, m1, 
m2 ,lh, 
cp, EC1, k1 

Cd  1 
of, m2, 
cp 

Cd 

0 lh, k1 0  0 
of, m1,  
m2, lh,  
k1, kR 

Cd  0 
m1, m2, 
lh, k1, kR 

Cd  0 EC2, kR 1  0 
m1, lh, 
EC1, EC2, k1, 
 kR 

Cd 

                   

𝓹A  ={ lh, k1 }   𝓹C ={ Ø}   𝓹S ={ Ø}   𝓹I ={ EC2, kR }   𝓹R ={ Ø }  

 importA = 0.22    importC = 0    importS = 0    importC = 0,22    importR = 0  
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Table 7.  Essentiality of Stokke’s conditions. 

 (𝓝 =9, 𝓠=Ø) 

(a)   (b)   (c)   (d)   (e)  

condition tested: A   condition tested: C   condition tested: S   condition tested: I   condition tested: R  

C S I R inst Y  A S I R inst Y  A C I R inst Y  A C S R inst Y  A C S I inst Y 

0 1 1 1 of 1  1 1 1 1 of,cp 1  1 0 1 1 of,m2 Cd  1 0 1 1 of 1  1 0 1 1 of 1 

0 0 1 0 m1,lh,k1 0  1 0 1 0 m1 0  1 0 1 0 m1 0  1 0 0 0 m1,kR Cd  1 0 0 1 m1,m2 0 

0 0 1 1 m2 0  1 0 1 1 m2 0  0 0 1 0 lh,k1 0  1 0 0 1 m2 0  0 0 0 1 lh,kl1 0 

1 1 1 1 cp 1  0 0 1 0 lh,k1 0  1 1 1 1 cp 1  0 0 0 0 lh,k1 0  1 1 1 1 cp,EC1 Cd 

1 1 1 0 EC1 0  1 1 1 0 EC1 0  1 1 1 0 EC1 0  1 1 1 1 cp 1  1 1 1 0 EC2 1 

1 1 0 0 EC2 1  1 1 0 0 EC2 1  1 1 0 0 EC2 1  1 1 1 0 EC1,EC2 Cd  1 0 0 0 kR 1 

0 0 0 1 kR 1  1 0 0 0 kR 1  1 0 0 0 kR 1               

                                  

𝓺′A ={ Ø }   𝓺′C ={ Ø }   𝓺′S={ of, m2 }   𝓺′I ={ m1, kR, EC1, EC2 }   𝓺′R ={ cp, EC1 }  

essentalityA = 0   essentalityC = 0   essentalityS = 0.22   essentalityI= 0.44   essentalityR= 0.22  
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Table 8. Rihoux and De Meur (2009): original model (a), and consistency of single conditions (b). 

(a)        (b)     

         Out: Y  Out:y  

W I U L S instances Y   N-cons S-cons N-cons S-cons 

1 1 1 1 1 BEL, CZE, NLD, GBR 1  W 1.00 0.80 0.20 0.20 

1 0 0 1 1 FIN, IRL 1  w 0.00 0.00 0.80 1.00 

1 1 0 1 1 FRA, SWE 1  I 0.75 0.75 0.20 0.25 

0 0 0 0 0 GRC, PRT, ESP 0  i 0.25 0.20 0.80 0.80 

0 0 0 1 0 HUN, POL 0  U 0.50 0.80 0.10 0.20 

0 0 0 0 1 ITA, ROU 0  u 0.50 0.31 0.90 0.69 

1 1 0 1 0 AUT 0  L 1.00 0.61 0.50 0.38 

1 1 1 1 0 DEU 0  l 0.00 0.00 0.50 1.00 

0 0 0 1 1 EST 0  S 1.00 0.71 0.30 0.27 

     𝓠 ={ Ø }   s 0.00 0.00 0.70 1.00 
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Table 9.  Import of explanatory conditions in Rihoux and De Meur (2009). 

 (𝓝 =18) 

(a)    (b)    (c)    (d)    (e)   

W instances Y  I instances Y  U instances Y  L instances Y  S instances Y 

1 
AUT, BEL, CZE, FIN, 
FRA, DEU, IRL, NLD, 
SWE, GBR 

Cd  1 
AUT, BEL , CZE, 
FRA, DEU, NLD, 
SWE, GBR 

Cd  1 
BEL , CZE, DEU, 
NLD, GBR 

Cd  1 

AUT, BEL , CZE, 
EST, FIN, FRA, DEU, 
HUN, IRL, NLD, 
POL, SWE, GBR 

Cd  1 
BEL , CZE, EST, FIN, 
FRA, IRL, ITA, NLD, 
ROU, SWE, GBR 

Cd 

0 
EST, GRC, HUN, ITA, 
POL, PRT, ROU, ESP 

0  0 

EST, FIN, GRC, 
HUN, IRL, ITA, 
POL, PRT, ROU, 
ESP 

Cd  0 

AUT, EST, FIN, 
FRA, GRC, HUN, 
IRL, ITA, POL, 
PRT, ROU, ESP, 
SWE 

Cd  0 
GRC, ITA, PRT, 
ROU, ESP 

0  0 
AUT, DEU, GRC, 
HUN, POL, PRT, ESP 

0 

 ={EST, GRC, HUN, 
ITA, POL, PRT, ROU, 
ESP } 

                 

𝓹W   𝓹I ={Ø}   𝓹U ={Ø}   𝓹L 
={GRC, ITA, PRT, 
ROU, ESP} 

  𝓹S 
={AUT, DEU, GRC, 
HUN, POL, PRT, ESP} 

 

 importW = 0.44    importI= 0    importU = 0    importL = 0.28    importS = 0.39  
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Table 10. Essentiality of explanatory conditions in Rihoux and De Meur (2009). 

 (𝓝 =18, 𝓠=Ø) 

(a)   (b)   (c)   (d)   (e)  

condition tested: W   condition tested: I   condition tested: U   condition tested: L   condition tested: S  

I U L S inst Y  W U L S inst Y  W I L S inst Y  W I U S inst Y  W I U L inst Y 

1 0 1 0 AUT 0  1 0 1 0 AUT 0  1 1 1 0 AUT, DEU 0  1 1 0 0 AUT 0  1 1 0 1 
AUT, FRA, 
SWE 

Cd 

1 1 1 1 
BEL , CZE, 
NLD, GBR 

1  1 1 1 1 
BEL, CZE,  
NLD, GBR 

1  1 1 1 1 
BEL, CZE, 
FRA, SWE 

NLD, GBR 
1  1 1 1 1 

BEL, CZE,  
NLD, GBR 

1  1 1 1 1 
BEL, CZE, 
DEU, NLD, 
GBR 

Cd 

0 0 1 1 
EST, FIN, 
IRL 

Cd  0 0 1 1 EST 0  0 0 1 1 EST 0  0 0 0 1 
EST, ITA, 
ROU 

0  0 0 0 1 
EST, HUN, 
POL 

0 

1 0 1 1 FRA, SWE 1  1 0 1 1 
FIN, IRL, 
FRA, SWE 

1  1 0 1 1 FIN, IRL 1  1 0 0 1 FIN, IRL 1  1 0 0 1 FIN, IRL 1 

1 1 1 0 DEU 0  1 1 1 0 DEU 0  0 0 0 0 
GRC, PRT, 
ESP 

0  1 1 0 1 FRA, SWE 1  0 0 0 0 
GRC, PRT, 
ESP, ITA, 
ROU 

0 

0 0 0 0 
GRC, PRT, 
ESP 

0  0 0 0 0 
GRC, PRT, 
ESP 

0  0 0 1 0 HUN, POL 0  1 1 1 0 DEU 0        

0 0 1 0 HUN, POL 0  0 0 1 0 HUN, POL 0  0 0 0 1 ITA, ROU 0  0 0 0 0 
GRC, PRT, 
ESP, HUN, 
POL 

0        

0 0 0 1 ITA, ROU 0  0 0 0 1 ITA, ROU 0                      

                                  

𝓺′A ={ EST, FIN, IRL }   𝓺′C ={ Ø }   𝓺′S={ Ø }   𝓺′I ={ Ø }   
𝓺′R ={ AUT, FRA, SWE, BEL, 

CZE, DEU, NLD, GBR } 
 

essentalityA = 0.17   essentalityC = 0   essentalityS = 0   essentalityI= 0   essentalityR= 0.44  
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Table 11. Maggetti (2009): full model (a), and consistency of single conditions (b). 

(a)        (b)     

         Out: Y  Out:y  

D P E O I instances Y   N-cons S-cons N-cons S-cons 

1 1 0 1 1 sweco 0  D 0.00 0.00 0.50 1.00 

0 0 0 1 0 swico 1  d 1.00 0.50 0.50 0.50 

0 1 0 0 1 netco 0  P 0.00 0.00 1.00 1.00 

0 0 1 1 0 swibk 1  p 1.00 1.00 0.00 0.00 

0 1 1 1 0 netbk 0  E 0.50 0.33 0.50 0.67 

1 1 1 0 1 swebk 0  e 0.50 0.33 0.50 0.67 

        O 1.00 0.50 0.50 0.50 

        o 0.00 0.00 0.50 1.00 

        I 0.00 0.00 0.75 1.00 

     𝓠 ={ Ø }   i 1.00 0.67 0.25 0.33 
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Table 12. Import of explanatory conditions in Maggetti (2009). 

 (𝓝 =6) 

(a)    (b)    (c)    (d)    (e)   

D instances Y  P instances Y  E instances Y  O instances Y  I instances Y 

1 sweco, swebk 0  1 sweco, netco, 
netbk, swebk 

0  0 sweco, swico, 
netco 

Cd  1 sweco, swico, 
swibk, netbk 

Cd  1 sweco, netco, 
swebk 

0 

0 swico, netco,  
swibk, netbk 

Cd  0 swico, swibk 1  1 swibk, netbk, 
swebk 

Cd  0 netco, swebk 0  0 swico, swibk, 
netbk 

Cd 

                   

𝓹D  
={sweco, 
swebk} 

  𝓹P 

={ sweco, 
netco, netbk, 
swebk, swico, 
swibk } 

  𝓹E ={ Ø}   𝓹O ={ netco, swebk }   𝓹I 
={ swico, swibk, 
netbk } 

 

 importA = 0.33    importC = 1    importS = 0    importC = 0.33    importR = 0.5  
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Table 13. Essentiality of conditions in Maggetti (2009). 

 (𝓝 = 6, 𝓠=Ø) 

(a)   (b)   (c)   (d)   (e)  

condition tested: D   condition tested: P   condition tested: E   condition tested: O   condition tested: I  

P E O I inst Y  D E O I inst Y  D P O I inst Y  D P E O inst Y  A C S I inst Y 

1 0 1 1 sweco 0  1 0 1 1 sweco 0  1 1 1 1 sweco 0  1 1 0 1 sweco 0  1 1 0 1 sweco 0 

0 0 1 0 swico 1  0 0 1 0 swico 1  0 0 1 0 swico, 
swibk 

1  0 0 0 0 swico 1  0 0 0 1 swico 1 

1 0 0 1 netco 0  0 0 0 1 netco 0  0 1 0 1 netco 0  0 1 0 1 netco 0  0 1 0 0 netco 0 

0 1 1 0 swibk 1  0 1 1 0 swibk, 
netbk 

C
d 

 0 1 1 0 netbk 0  0 0 1 0 swibk 1  0 0 1 1 swibk 1 

1 1 1 0 netbk 0  1 1 0 1 swebk 0  1 1 0 1 swebk 0  0 1 1 0 netbk 0  0 1 1 1 netbk 0 

1 1 0 1 swebk 0                1 1 1 1 swebk 0  1 1 1 0 swebk 0 

                                  

𝓺′D ={ Ø }   𝓺′P ={ swibk, netbk }   𝓺′E={ Ø }   𝓺′O ={ Ø }   𝓺′I ={ Ø }  

essentalityD = 0   essentalityP = 0.33   essentalityE = 0   essentalityO= 0   essentalityI= 0  
 

 

 

 


