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Abstract:
Motivation: Clinical applications of genome re-sequencing technologies typically generate large amounts of 
data that need to be carefully annotated and interpreted to identify genetic variants potentially associated with 
pathological conditions. In this context, accurate and reproducible methods for the functional annotation and 
prioritization of genetic variants are of fundamental importance. Results: In this paper, we present VINYL, a 
flexible and fully automated system for the functional annotation and prioritization of genetic variants. Extensive 
analyses of both real and simulated datasets suggest that VINYL can identify clinically relevant genetic variants 
in a more accurate manner  compared to equivalent state of the art methods, allowing a more  rapid and effective  
prioritization of genetic variants in different experimental settings.  As such we believe that VINYL can establish 
itself as a valuable tool to assist healthcare operators and researchers in clinical genomics investigations. 
Availability: VINYL is available at http://beaconlab.it/VINYL and https://github.com/matteo14c/VINYL.
Contact: matteo.chiara@unimi.it
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 

Applications of modern high throughput genome sequencing technologies 
to healthcare and clinical practice are driving a major breakthrough in 
medical science (Saudi Mendeliome Group 2015, UK10K Consortium 
2015, Kowalski et al 2019).  The unprecedented ability to interrogate the 
(more than) 3 billion pairs of nucleotides that compose our genome in a 
systematic and reliable manner, provides a formidable tool for the 
characterization and functional annotation of the human variome, the 
complete set of genetic variants in the human population (Gurdasani et al 
2015, Kowalski et al 2019, Nagasaki et al 2015).  The capacity to link 
genetic variants with phenotypic traits, pathological conditions, and/or 
positive or adverse reactions to therapies and medications is of 
instrumental importance for the development of informed approaches to 
medical science, such as precision medicine (Lu et al, 2014), that is the 
ability to treat patients based on their genetic background, or predictive 
medicine (Kotze et al, 2015) where risk factors for various diseases can be 
accounted beforehand and suitable measures instituted to prevent a future 
condition or mitigate its severity. Accordingly, numerous countries and 
institutions worldwide are already undertaking or are planning to launch 
large-scale projects aiming to sequence an increasing proportion of their 
population. These include, among the others, the UK10K project in the 
United Kingdom (UK10K Consortium et al, 2015), the All of Us research 

program by the NIH (All of Us Research program investigators, 2019), 
the French Plan for Genomic medicine funded by the French Ministry of 
Health (Lethimonnier and Levy, 2018), and the European '1+ Million 
Genomes' initiative promoted by the European Community (Saunders et 
al 2019). 
While this push to sequence an unprecedented number of human genomes 
is driving a new revolution in medical science, the need to handle, analyze 
and interpret large collections of “big” genomic data is posing major 
challenges which at present remain unresolved (Alyass et al 2015, Klein 
et al 2017, Horowitz et al, 2019, Stark et al 2019). The limitations are both 
technical, due to the need to develop dedicated infrastructures for the 
handling, sharing and processing of sensitive human  data (Saunders et al, 
2019); and methodological, due to the need to integrate multiple 
bioinformatics tools into complex analytical workflows, which require a 
substantial effort for their set up and optimization (Canzoneri et al 2019, 
Ginsburg and Phillips 2018, Servant et al 2014). 
A typical Next Generation Sequencing assay can detect in the order of tens 
of thousands or even millions of genetic variants, all of which need to be 
carefully annotated and evaluated to identify genetic traits potentially  
associated with a pathological condition (Elbeck et al 2017).  However, 
the large majority of these variants are likely to represent standing genetic 
variation and are not relevant from a clinical perspective (Pickrell et al, 
2014, Wilson et al, 2014).  Variant prioritization is a simple procedure, 
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commonly used in clinical studies, to reduce the number of genetic 
variants that need to be evaluated manually. Briefly, a series of filters and 
criteria are established based on the predicted functional effects of the 
variants, their overall prevalence in the human population and other 
relevant considerations, in order to retain only variants of potential clinical 
relevance (Eilbeck et al, 2017). Subsequently, these variants are subjected 
to careful manual evaluation by  expert clinicians to identify candidate 
causative variants potentially involved in the molecular pathogenesis of 
the disease.  Although conceptually simple, “variant prioritization”, 
represents a delicate and fundamental step in the application of genomics 
in clinical settings (Frebourg et al 2014, Jalali et al 2017). Excessively 
stringent criteria might result in the exclusion of interesting candidate 
variants, conversely lenient criteria, can significantly impact turn-around 
times and subsequent analyses.  Additionally, although rigorous expert 
designed guidelines for the interpretation and analysis of genetic variants 
in clinical settings are currently available, it is not uncommon for different 
operators to apply slightly different criteria and filters when performing 
variant prioritization, thus limiting the overall reproducibility of the results 
of this type of analysis (Pabinger et al 2014).  For example, several studies 
apply approaches  based on  the calculation of composite scores  that 
integrate different types of resources and information for the identification 
of variants of potential clinical relevance. However, the exact procedure 
used in the calculation of these scores, and the relative importance of their 
different components are not set in a clear, systematic and reproducible 
manner (Eilbeck et al, 2017). Preventing the re-application of these 
methods and/or their adaptation to a different case of study.   
In this paper, we present VINYL, a novel system for the prioritization of 
genetic variants.  As suggested by guidelines and recommendations 
derived from clinical practice (Richards et al, 2015), VINYL computes a 
variant prioritization score that aggregates different sources of evidence 
and annotations obtained from publicly available resources. Several 
studies (Cirulli et al 2015, Lee et al 2014, Moutsianas et al 2015, Guo et 
al 2016, Li et al 2008) have reported that cohorts of affected individuals 
harbor an excess of deleterious or slightly deleterious variants at disease-
associated loci with respect to unaffected controls. VINYL applies this 
logic to identify high scoring variants that are more likely to be associated 
with a pathological condition.  Different scoring systems are compared by 
evaluating genetic profiles of a population of affected individuals and a 
population of matched controls. The scoring system that maximizes the 
number of high scoring, potentially pathogenic, variants in affected 
individuals and that results in a reduced number of high scoring variants 
in the population of matched controls is selected.    Finally an automatic 
procedure based on “survival analysis”, an analytical procedure that 
evaluates the enrichment in high scoring variants associated with scores 
above a certain cut-off, is applied to derive an optimal score threshold for 
the identification of variants of potential clinical relevance. VINYL is 
completely flexible and allows the design of customized scoring systems 
based on different levels of functional annotations, that can be 
adapted/optimized to different use cases and scenarios.  
Extensive simulations based on publicly available data show that VINYL 
is capable of identifying clinically relevant genetic variants in a more 
efficient manner with respect to equivalent state-of-the-art methods.  
Similarly, by applying our method to a cohort of 38 patients with a 
diagnosis of cardiomyopathy (Forleo et al,2017) and to a large collection 
of 200 exome trios, from a cohort of patients affected by developmental 
disorders (Deciphering Developmental Disorders Study, 2015),  we  show 
that our tool is capable of  identifying the large majority of the variants 
that were previously classified as Pathogenic/Likely Pathogenic by careful 
expert manual curation on the same datasets, while prioritizing only a 
limited number of variants in populations of unaffected individuals. 
We believe that by providing a rapid, systematic and reproducible 
approach for the prioritization of genetic variants, VINYL can represent a 
practical tool to assist clinicians in variant prioritization in large scale 
clinical studies. The tool is currently available at: 
http://beaconlab.it/VINYL. To facilitate its usage and to improve the 
reproducibility of the analyses VINYL is incorporated into a dedicated 
instance of the popular Galaxy workflow manager (Afgan et al, 2018), 
along with a highly curated collection of tools and resources for the 
annotation of genetic variants.

2 Methods

 2.1 Implementation of VINYL
VINYL is implemented as a Laniakea (Tangaro et al, 2018) Galaxy 
(Afgan et al, 2018) instance based on Galaxy release 18.05.  Annotation 
of VCF files is performed by the Annovar software (Wang et al, 2010), 
using a collection of “standard” resources maintained by the Annovar 
developers along with a selection of custom annotation tracks.  These 
include the OregAnno database (Griffith et al 2008), the Ensembl 
regulatory build annotation (Zerbino et al 2016),  the NHGRI-EBI GWAS 
catalog (Buniello et al, 2019) and the ncER score, which provide fine-
grained annotations of non-coding and regulatory genomic elements 
(Wells et al 2019).  A complete list of the annotations that are currently 
supported by VINYL along with a brief description is reported in 
Supplementary Table S1.  
VINYL is implemented as a collection of Perl and R scripts and  is 
composed of 3 main modules:

● the optimizer, which derives the best scoring system 
● the threshold optimizer, that calculates the ideal score 

threshold for the prioritization of  variants
● and the score calculator, the main tool which computes the 

scores by integrating different types of annotations.

VINYL is currently available from http://beaconlab.it/VINYL. The source 
code is available at https://github.com/matteo14c/VINYL. A detailed 
manual to the usage of VINYL is provided at 
http://beaconlab.it/VINYL/manual.    

2.1.1 Computation of the pathogenicity score
VINYL computes its score directly from annotated VCF files. Annotations 
that should be considered for the computation of the score can be specified 
by a plain text configuration file.  This can include both annotations that 
are provided by Annovar, or equivalent tools for the annotation of genetic 
variants, but also custom annotations provided by the user (See 
Supplementary Materials and Methods).  Currently VINYL can 
discriminate between 12 different types of functional annotations, 
including -among the others- databases of human genetic variation (RV), 
the predicted functional effects of the variants (FE) and/or their 
presence/absence in databases of clinically relevant genetic variants (DB). 
A complete list is reported in Supplementary Table S2 (and in the online 
manual).   The score itself is computed as a linear aggregation of the 
different types of functional annotations by the following  formula: 

Pat Score= 
wdbDB+wrvRV+wfeFE+wnsNS+worOR+weqeQ+wadAD+wmimi+wRegReg+w
TfTF+wGWGW+wSpSp.  

Where wdb, wrv, wfe, wns, wor , weq, wad, wmi, wReq, wTf, wGw and wSp, represent 
the weights (the relative importance) of each component of the score. 
Single components of the score are computed according to the following 
rules:

● DBs of pathogenic variants (DB): the score is incremented 
for variants reported to be Pathogenic or Likely Pathogenic in 
publicly available resources of clinically relevant variants. The 
score is decreased for variants that are reported as “Benign” or 
“Likely Benign”. Users can provide a description of the disease 
and its symptoms using a simple configuration file.  Only 
entries that match these keywords are considered for the 
computation of the score.  In the current implementation of 
VINYL the Clinvar (Landrum et al, 2014) database is used as 
the main source for the annotation of disease-associated 
genetic variants

● Rare Variants (RV): the score is increased if a genetic variant 
shows a  Minor Allele Frequency (MAF) lower than a user-
defined cutoff -typically the prevalence of the disease- in 
public databases of human genetic variation

● Functional effect of the variant (FE): the score is increased 
if the variant is predicted to have a deleterious functional effect 
(i.e. splicing variants, stop-gain, frameshift variants).  

● Disruptive non-synonymous (NS): the score is incremented 
for NS variants that are predicted to have a disruptive effect. 
Tools to be considered for the evaluation of the effect of NS 
variants can be specified at runtime. Predictions are derived 
from the dbNFSP database (Liu et al, 2016) version 3.5a. 

● Overrepresentation (OR): if a genetic variant with MAF 
≤0.01 (the frequency cut-off that is normally considered for the 
definition of “common” SNPs) is found in N or more affected 
individuals the score is incremented. The value of N is 
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specified at runtime. Default value is set to 10% of the cohort 
size (which corresponds to a odds ratio of 10 or more).

● eQTLs (eQ):  the score is incremented by this value when a 
variant is associated with an eQTL according to the GTEx 
study (GTEx Consortium, 2013). A list of relevant tissues for 
the annotation of eQTLs can be provided by users in the form 
of a simple text file.

● Disease-associated genes (AD): the score is incremented if a 
genetic variant is associated with genes previously implicated 
in the disease or in similar pathological conditions. Users can 
provide a list of disease-related genes by a simple text file

● miRNA binding site (mi): the score is increased if the variant 
is associated with a known miRNA binding site.

● Regulatory element (Reg): the score is incremented if the 
variant is part of a genomic regulatory element (promoter, 
enhancer, silencer), according to the OregAnno database 
(Griffith et al 2008) or the Ensembl regulatory build annotation 
(Zerbino et al 2016)

● TF binding site (TF): the score is increased if the variant is 
associated with a transcription factor binding site, according to 
the OregAnno database (Griffith et al 2008) or the Ensembl 
regulatory build annotation (Zerbino et al 2016)

● GWAS (GW): the score is incremented if the variant is 
associated with a phenotypic trait relevant to the pathological 
condition according to one or more GWAS studies. Similar to 
the DB score, only entries matching a user-specified list of 
keywords are considered for the computation of this score  

● Splicing variants (Sp): the score is incremented if the variant 
is reported to have a deleterious effect on a splice site 
according to the  dbscsnv11 (Jian et al, 2014) database.

Users can configure the behavior of VINYL by additional parameters and 
configuration files that specify a disease model (Autosomal Dominant, 
Autosomal Recessive or X-linked), a list of symptoms associated with the 
disease, define a set of genes implicated with the pathological condition 
of interest and/or list tissues to be considered for the evaluation of 
expression quantitative trait loci (eQTLs). When a disease model is 
specified, scores associated with genotypes that are not compatible with 
the model of inheritance of the disease get a linear penalization of 40%.  
See Supplementary Figure 1 a detailed description of conceptual 
workflow implemented by VINYL. 

 2.1.2 Optimization of the pathogenicity score
Genetic algorithms, as implemented in the genalg (Willighagen and 
Ballings, 2015) R library, are used to identify optimal weights for the 
components of the pathogenicity score, by performing a search on the 
parameter space. As illustrated in Supplementary Figure S1, score 
distributions are computed for a population of affected individuals (A) and 
a population of healthy controls (C).  The optimal scoring system and the 
corresponding threshold for the identification of potentially pathogenic 
variants are established by comparing scores distributions by means of an 
iterative survival analysis based on the Wang Allison method (Wang et al, 
2004).  Cut-off values spanning from the maximum score to the minimum 
score, with an interval of 0.5, are evaluated for every scoring system, and 
the number of  potentially clinically relevant  variants as identified in the 
A and C populations are recorded.  A Fisher’s exact test is subsequently 
used to evaluate the over-representation of clinically relevant variants  in 
A with respect to C. 
The scoring system (and the corresponding threshold value) that 
maximizes the difference between the number of potentially clinically 
relevant  variants in A and that-at the same time- minimizes the number 
of potentially pathogenic variants identified in the C is selected. The 
following equation is used to define the optimality criterion: 

Optimal Score=argmax< 0.2*-log10 (Fpv) +0.6*log2(Ffc)  -0.2 *PC >

Fpv= p-value for the over-representation of likely pathogenic variants in 
A according to the Fisher’s exact Test. Ffc= ratio between the proportion 
of likely pathogenic variants identified in A and C respectively. PC= 
number of potentially pathogenic variants identified in C. The coefficients 
of the equation have been derived empirically, to obtain a reasonable 
balance between the maximization of the number of potentially 
pathogenic variants identified in A, and the minimization of the, likely 
false positive, pathogenic variants identified in C.
 
2.1.3 Utilities for the post-processing of VINYL’s output 
All the utilities for the post-processing of VINYL’s output files are 
implemented in the form of standalone R scripts. Principal Component 

Analysis is performed by means of the prcomp R function from the stats 
package (R Core Team 2018). Graphical representation of the results 
using the R ggplot2 package (Wickham 2016). 
 
2.2 Simulated dataset
Disease-causing genetic variants were simulated by means of the Hapgen2  
(Su et al 2011)  program, using the haplotype files of the TSI (Toscani in 
Italia) population from the 1000G study. 
The latest version of Hapgen2 was obtained from 
https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/hapgen2.html, 
while haplotype files from the 1000G project were obtained from 
https://mathgen.stats.ox.ac.uk/impute/impute_v1.html#Using_IMPUTE_
with_the_HapMap_Data. 
Three different distributions of Odds Risk Ratios, with an average of 3, 10 
and 20 respectively, were simulated using the rnorm function in R. 
Standard deviation was set to 10% of the average.
To simulate different sequencing strategies, cohorts of different size (25, 
50 and 100 affected individuals and matched number of controls) and each  
including a variable number of polymorphic positions (1000, 5000 and 
10000) were simulated, for a total of 9 (3x3) distinct datasets.    Disease-
associated variants have been simulated by randomly selecting a fixed 
number of 75 rare variants (Minor Allele Frequency ≤0.001), with 
equivalent proportion of variants associated with different predicted 
functional effects, including: splice site variants, variants in promoter 
regions, frameshift variants, variants in miRNA target regions, stop-
gain/stop-loss variants. To test the ability of the variant prioritization 
methods applied in this study to identify  both “novel” clinically relevant 
variants (i.e variants not already associated with a pathological condition), 
and variants already associated with a pathological condition at every 
iteration, a small number (between 5 and  10) of variants already 
implicated in a known pathological condition according to the ClinVar 
database were selected. Lists of genes associated with the “simulated” 
pathological condition and related phenotypic terms were derived 
accordingly. 

2.3 Real datasets
Genetic profiles of the 38 unrelated cardiomyopathy patients included in  
Forleo et al (Forleo et al, 2017) and of 1133 family trios of individuals 
affected by developmental disorders, as recruited by the DDD 
(Deciphering Developmental Disorders Study, 2015) study were retrieved 
from the EGA database under the EGAS00001002506 and 
EGAD00001001413 accession respectively.  Candidate likely pathogenic 
variants for the 38 cardiomyopathy patients were obtained directly from 
Table 1 of Forleo et al. (2017).  For the DDD study pathogenic and/or 
likely pathogenic variants were obtained from the DECIPHER (Firth et al, 
2009) database. In this case, only 200 subjects affected by autosomal 
dominant developmental disorders and for which one or more pathogenic 
or likely pathogenic variants were already reported in DECIPHER were 
considered in our analyses. 

2.4 Execution of VINYL
The VINYL pipeline was executed with default parameters both for the 
analysis of real and simulated data.  In the analysis of the Forleo et al (2017) 
dataset the TSI (Toscani in Italia) population from the 1000G (The 1000 
Genomes Project Consortium, 2015) study was used as the “control” 
population.  In the analysis of the 200 subjects from the DDD cohort, 
parents were used as the control population.  Text files with the description 
of the symptoms associated with the pathological conditions under study 
were obtained simply by combining the most recurrent words (5 
occurrences or more) as reported in the original study, i.e Table S1, as 
available from Forleo et al for the cardiomyopathy dataset, and the 
EGAF00000883031.txt file as available from the EGA database for the 
DDD cohort.
For the DDD dataset, a modified keyword configuration file was created 
to instruct VINYL to incorporate annotations of allele frequency 
(DDD_AF) and of de-novo mutations (TEAM29_FILTER) according to 
Denovogear (Ramu et al, 2013) as provided by the DDD.  The cut-off 
frequency for rare alleles was consistently set to 10e-4.

2.5 Execution of Privar and KGGseq
The latest versions of KGGseq (Li et al 2012) and Privar (Zhang et al 2013) 
were obtained from http://grass.cgs.hku.hk/limx/kggseq/ and 
http://paed.hku.hk/genome/software.html,respectively.  Privar was 
executed using the “Literature-based strategy” with default parameters.   A 
custom list of disease-associated genes (identical to that used for VINYL) 
was provided by means of the  “-customlist” parameter. KGGseq was 
applied using the strategy illustrated in the e manual for the prioritization 
of genetic variants associated with rare Mendelian diseases; “the “--candi-
list” and “--phenotype-term” parameters were used to provide a list of 
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disease-associated genes and a list of symptoms of the disease under study, 
respectively.  In the analysis of the DDD data, the “--genotype-filter” was 
applied to identify de novo mutations. Both lists were completely identical 
to the lists used to provide equivalent information to VINYL. Consistent 
with the parameters used in VINYL, the cut-off frequency for rare alleles 
was set to 10e-4.

3 Results
3.1 VINYL: an automated tool for variant 

prioritization
VINYL provides a fully automated system for variant prioritization, which 
-according to the guidelines used in clinical practice- is  based on the 
integration of different types of functional annotations and resources.  By 
leveraging the Galaxy workflow manager, VINYL is made available 
through a powerful and user-friendly web-based graphical interface and 
allows collaborative and highly reproducible analysis of large amounts of 
data.  Encrypted data volumes are used to ensure data protection. Users 
can upload their data to VINYL in the form of plain VCF files. Variants 
annotation is performed by the Annovar software (Wang et al, 2010), 
which is available in VINYL along with an extensive collection of 
resources for the annotation of genetic variants (see Table S1). Additional 
information used for the computation of the pathogenicity score, including 
for example the symptoms and prevalence of the pathological condition 
under study, the model of inheritance of the disease, the type of predicted 
functional effects that should be considered deleterious, a list of tools used 
for the prediction of the functional effects of genetic variants, and custom 
annotation tracks (see below) can be specified by users at run-time using 
simple configuration files in plain text format (see Material and Methods, 
and Supplementary Materials).
  
The main output of VINYL consists of a tabular file, where variants are 
ranked according to their score.  A score threshold for the prioritization  
of variants that are more likely to be clinically relevant is derived 
automatically.  Additional utilities (see below) can be used to perform 
more fine-grained analyses for the identification of genes that display a 
significant over-representation of high scoring variants (burden analysis), 
the identification of variants with similar functional annotations, or for the 
stratification of patients in groups by dimensionality reduction techniques. 
Along with a carefully curated collection of tools and resources for the 
functional annotation of genetic variants, the VINYL Galaxy instance 
incorporates also a  collection of reference data, including VCF files of 26 
distinct human geographic populations from the 1000 Genomes study 
(The 1000 Genomes Project Consortium, 2015), which can provide a 
suitable background control population for most clinical studies.  The 
features contained in VINYL and the rationale used in the implementation 
of the tool are briefly outlined in Figure 1. 

3.2 Evaluation of VINYL on simulated data
To evaluate the ability of VINYL to identify genetic variants of clinical 
relevance, we performed extensive simulations of disease-associated 
variants derived from real human haplotypes. Different scenarios were 
simulated to evaluate the impact of cohorts of different size (25, 50 and 
100 individuals), the strength of the association of variants with  
pathological conditions (odd risk ratios of 3, 10 and 20), different 
functional effects (both on protein coding genes and on functional 
regulatory elements), and the total number of variants included in the call-
set (1000, 5000 and 10000): a proxy for the simulation  of different 
sequencing strategies (from targeted resequencing of a limited number of 
genes to  exome sequencing).  Results obtained by VINYL on these 
datasets were compared with those attained by two other popular methods 
for the prioritization of genetic variants:  Privar (Zhang et al, 2013) and 
KGGseq (Li et al, 2012).   As outlined in Supplementary Table S3 and 
Figure 2A, VINYL demonstrates an improved sensitivity in the 
prioritization of genetic variants potentially associated with a disease 
compared to both KGGseq and Privar, resulting in a significantly increase 
in AUC (area under the curve) in all the simulations performed in this 
study. These results suggest that the approach adopted by our method can 
outperform currently available state of the art methods in the prioritization 

of disease-associated genetic variants.  As expected, since these methods 
are  not devised for the prioritization of genomic variants in non coding 
genomic elements, VINYL is more effective than than either of Privar or 
KGGseq in the identification of variants associated with this type of 
genomic elements (Supplementary Figure S2A). However, a marginal, but 
significant, improvement in the correct prioritization of variants 
associated with protein coding genes (Supplementary Figure S2A) is also 
observed. More importantly, (Supplementary Figure S2B) we observe that 
while recovering a larger proportion of the variants  associated with a 
pathological condition in our simulations, the lists of variants prioritized 
by VINYL is in general more compact if compared to those derived by 
KGGseq and Privar.  Suggesting that the approach adopted by VINYL can 
be highly effective in decreasing  the number of clinically relevant variants 
that should be subjected to manual evaluation.  As expected the 
performances of VINYL are strongly influenced by the composition and 
the size of the input dataset, as we observe an increase in sensitivity when 
large cohorts of patients are analyzed (Table S3). Moreover (see 
Supplementary Table S4 and Supplementary materials), since unlike other 
similar methods, VINYL requires a population of matched controls to 
optimize its scoring system, we observe that the choice/availability of the 
“correct” background population has major implications on the overall 
accuracy.  In fact,  (Supplementary Table 4, and Supplementary Materials) 
the use of a “mismatched” control population, can often result in the 
incorrect prioritization of a consistent number of population biased alleles.  
To mitigate this issue for studies where genetic profiles of a matched 
control population are not available, VCF files filtered from population 
biased alleles have been incorporated in the main Galaxy VINYL instance 
to serve as an alternative reference.

3.3 Evaluation of VINYL on real data 

3.3.1 Cardiomyopathy dataset 
VINYL was applied to a dataset composed of 38 Italian patients affected 
by different types of cardiomyopathies, which were previously subjected 
to genotyping by targeted resequencing of a panel of 115 genes. As 
described in Forleo et al (Forleo et al, 2017) expert manual curation 
identified a total of 27 likely pathogenic variants in 26 out of 38 patients.  
VINYL prioritized a total of  50 variants (4.02%) on this dataset, notably, 
all the 27 variants selected by manual curation were recovered (Figure 2B).  
Only 1 out of 3739 genetic variants in the control population was 
prioritized by VINYL (Figure 2B).  Notably although the number of 
variants prioritized Privar and KGGseq on the same dataset was 
consistently higher: 84 and 83 (compared to 50) respectively neither Privar 
nor KGGseq were able to recover the complete collection of the 27 
variants identified by manual curation (19 and 21 for Privar and KGGseq, 
respectively).  Conversely, if compared to VINYL, both KGGseq and 
Privar identified an increased number of potentially clinically relevant 
variants: 21 and 22 respectively, in the population of unaffected controls 
(Figure 2B).  Taken together these observations suggest that- at least on 
this dataset- VINYL can provide a more accurate prioritization of 
clinically relevant variants compared with equivalent state-of-the-art 
methods.  Interestingly, similar to our observations on simulated data, 
genetic variants prioritized by VINYL, but not identified as potentially 
relevant by KGGseq and Privar, are substantially enriched for functional 
annotations related to regulatory elements, and/or non protein coding 
genomic elements (Supplementary figure S3A). For example, we observe 
that 10 (43%) out the 23  variants prioritized by VINYL, but not included 
in the list of likely pathogenic variants identified by Forleo et al, are 
associated with mutations in regulatory sequences and or/miRNA target 
regions. Since annotation of non coding genetic elements was not included 
in the criteria for the prioritization of genetic variants in the original work, 
it is unsurprising that those variants were not considered by Forleo et al.  
Further interpretation of the clinical relevance of these variants, would 
require careful examination by expert teams of clinicians, and lies outside 
the scope of the current work.   On the other hand, it is interesting to notice 
that variants prioritized by Privar and KGGseq but not by VINYL are 
highly enriched in rare, missense variants. Importantly, (Supplementary 
Figure S3B) we observe that only a limited (≤2 out of 18) number of the 
methods for the evaluation of the effects of missense variants included in 
the  dbFNSP database predict a potentially deleterious effect for these 
variants. Additionally, (Supplementary Figure S3C) highly variable 
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estimates of Minor Allele Frequency (MAF) are observed when different 
databases of human genetic variation (ExAC, gnomad, 1000G) are 
considered. With the majority of the variants prioritized exclusively by 
KGGseq and Privar showing a difference of more than 5 fold between the 
smallest and largest value of  MAF as reported in public databases.

3.3.2 Developmental Disorders dataset 
The DDD (Deciphering Developmental Disorders) study (Deciphering 
Developmental Disorders Study, 2015) is one of the most complete and 
highly curated resource of genetic profiles of individuals affected by a 
pathological condition, matched with phenotypic data and annotations of 
pathogenic and likely pathogenic variants, as reviewed  by expert teams 
of clinicians. Along with the genotypes of 13,462 individuals affected by 
developmental disorders, DDD also incorporates genome and exome 
sequences of their parents (Trio sequencing), and fine grained annotations 
of phenotypic traits of all the subjects included in the study according to 
the HPO ontology (Robinson et al, 2008).   To evaluate the performance 
of our method, we applied VINYL to a collection of exome sequencing 
data of 200 patients affected by autosomal dominant disorders as 
described in Deciphering Developmental Disorders Study  
(EGAD00001001413) and for which at least one pathogenic or likely 
pathogenic variant was already reported in the DECIPHER database (Firth 
et al, 2009).  Genetic profiles of the parents were used to provide a 
matched control population.
VINYL assumes that individuals affected by a pathological condition 
should display an excess of potentially pathogenic variants at disease 
associated loci with respect to a population of healthy controls. To 
corroborate this hypothesis we compared distributions of the top 3 highest 
scoring variants for every individual, as obtained by applying VINYL to 
the 200 trios described above, on: 

● S1: 94 genes displaying a significant enrichment in disruptive 
de-novo mutations in individuals affected by developmental 
disorders (Deciphering Developmental Disorders Study, 2015); 

● S2: 983 genes associated with autosomal dominant 
developmental disorders according to the DDG2P database 
(Wright et al, 2015); 

● S3: all the (16454) human genes that are not reported to be 
associated with developmental disorders according to the 
DDG2P.

As outlined in Figure 3A, a significant enrichment of highly scoring 
variants (Wilcoxon p-value 1e-46 and 1e-24, for S1 and S2 respectively) 
is observed in affected individuals at disease related genes, while no 
enrichment is observed at genes that should not be associated with the 
pathological conditions under study.  The number of genetic variants 
selected for prioritization by each of VINYL, KGGseq and Privar on this 
dataset is reported in Figure 3B.  Interestingly, and consistent with our 
previous findings, we observe that, while being more compact, the list of 
variants selected by VINYL includes a larger fraction (96% compared to 
89% and 91% for KGGseq and Privar respectively) of the variants that 
were identified as potentially pathogenic by expert manual curation on the 
same dataset.  Similar to our previous observations we notice (Figure 3C) 
that missense variants prioritized by KGGseq and Privar, but not by 
VINYL, show contrasting estimates of allele frequency in different 
databases of human genetic variation and are enriched for non 
synonymous substitutions that are predicted to be deleterious only by a 
limited number of the tools incorporated in the dbFNSP database. 
Conversely, we observe that genotypes prioritized by VINYL include a 
larger proportion of variants associated with an increased risk of defective 
developmental phenotypes according to GWAS studies (Supplementary 
Figure S4A). Unsurprisingly, considering that exome sequencing does not 
provide a systematic representation of non coding functional genomic 
elements, in this case we do not observe a strong enrichment of 
annotations associated with regulatory elements.  Notably (Supplementary 
Figure S4B) all the 3 methods identify a common set of 46 non-
synonymous variants that are not reported to be associated with 
development disorders according to the DDD; 95.6% (44) of these 
variants are reported as variants of unknown clinical significance in the 
DECIPHER database.   

3.3.3 Post-processing of the results
VINYL incorporates helper applications and utilities to facilitate the post-
processing of the data and the interpretation of the results. These include 
a dimensionality reduction analysis tool, based on Principal Component 
Analysis (PCA), which can be used to identify groups of patients with 
similar/related disease-associated mutations; a “burden analysis” utility 
which can assist in the identification of genes showing a significant 
increase of pathogenic or likely pathogenic variants; as well as helper 
methods for the graphical representation of the relative importance of the 
different components of the scoring systems derived by VINYL (barplot 
utility) and of their contribution to the final score assigned to single 
variants (heatmap utility). These utilities produce  explicative graphical 
outputs and accept tabular files generated by VINYL as their main input.  
An example of the application of PCA and burden test analysis to the 
Forleo et al dataset is depicted in Supplementary Figure S1. The PCA 
analysis displayed in Supplementary Figure S1A clearly separates 
controls from affected individuals. Interestingly 2 distinct groups of 
patients are observed: group 1 is formed exclusively by patients affected 
by DCM (dilated cardiomyopathy) while group 2 incorporates patients 
affected by ARVC (arrhythmogenic right ventricular cardiomyopathy) 
and HCM (hypertrophic cardiomyopathy).  As depicted in Supplementary 
Figure S1B, the output of VINYL’s burden test analysis consists of a panel 
where, for every gene the distribution  of VINYL pathogenicity scores 
observed in the cohort of affected individuals is compared to the 
corresponding distribution in the control population.  A Mann Whitney 
Wilcoxon test is used to identify genes showing a significant increase in 
the score.  Only genes with a p-values ≤ 0.15 are reported.  To facilitate a 
rapid comparison, score distributions are represented in the form of  
boxplots. Dotted lines are used to indicate the “pathogenicity” cut-off 
value as provided by the user. 
The barplot utility included in the Galaxy VINYL implementation 
(Supplementary Figure S6A) provides a quick and intuitive manner to 
evaluate the relative importance of different components of the score in 
the scoring system derived by VINYL.  For example, Supplementary 
Figure S6A illustrates a direct comparison of the scoring systems obtained 
by VINYL for the Forleo et al and the DDD dataset. The 2 scoring systems 
show important differences. In particular we notice that the components 
of the score associated with regulatory/non coding features have higher 
importance in the Forleo et al dataset.  Conversely, the components of the 
score associated with GWAS studies seems to be more relevant for the 
prioritization of genetic variants in the DDD dataset.  
Among its main outputs, VINYL provides a detailed breakdown of  score 
calculation for every single variant. As illustrated in Supplementary 
Figure S6B, heatmap representation of individual components of the score 
computed by VINYL can be used as a quick and effective tool to outline 
the main features of the variants that were prioritized by tool. For example, 
in Supplementary Figure S6B the e red square highlights a “cluster” of 
variants associated with regulatory genomic elements in the Forleo et al 
dataset.  

4 Discussion
The application of genome sequencing technologies to clinical practice is 
promising a major advance in clinical sciences. However, the systematic 
integration of genomics in clinical applications poses several challenges, 
most of which remain unresolved at present.  The availability of rapid and 
effective methods for the accurate “prioritization” of clinically relevant 
genetic variants is certainly one of the most critical issues in this respect. 
Here we introduce VINYL, a fully automated, highly reproducible and 
customizable system for the annotation and prioritization of genetic 
variants.  The strategy adopted by VINYL is  based on well established 
guidelines and best practices that are currently applied in large scale 
studies.  VINYL calculates a composite score which combines different 
types of functional annotations. An optimization procedure based on the 
comparisons of the genetic profiles of a population of affected individuals 
with a matched control population, is then applied to derive the best 
scoring system and the ideal threshold for the identification of potentially 
clinically relevant variants The procedure is completely automatic and  the 
scoring system implemented by VINYL can be  easily  adapted to  
different use cases and scenarios.
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By performing extensive simulations of disease-associated variants and 
analysing real data derived from different disease models, we show how  
VINYL can be effectively applied for the identification of clinically 
relevant genetic variants in different experimental settings.  Importantly, 
all the comparisons performed in this study demonstrate that the lists of 
variants prioritized by our novel method, although being more compact,  
incorporate a larger proportion of the genetic variants that were selected 
by expert manual curation on the same datasets, with respect to other two 
state-of-the-art methods.  Moreover VINYL is designed to allow  high 
levels of flexibility and can be adapted to different experimental settings.   
For example, VINYL allows the incorporation  of customized  annotations 
a feature that to our knowledge is not incorporated in  other similar 
methods.  Additionally, different types of functional evidence can be 
included or removed from the computation of the score simply by 
editing/modifying plain configuration text files (see Supplementary 
Materials).  Finally, users can effectively limit or increase the importance 
of different types of genomic features in the calculation of the final score, 
allowing a complete customization of the scoring system. 
For example, the importance of components of the score associated with 
GWAS studies or eQTLs can be limited or reduced to 0 in 
clinical/diagnostic studies aiming to identify genetic variants associated 
with strictly monogenic disorders or, conversely,  increased if the aim of 
the study is to identify/characterize relatively common genetic variants 
that could be associated with an increased risk to develop a disorder. 
In this respect, we observe that the helper applications and tools 
incorporated in the Galaxy instance of VINYL (see Supplementary 
Figures S5 and S6 and Supplementary Materials) can be of great help for 
comparing different scoring systems, and for understanding which 
different types of functional genomic elements are associated with 
variants prioritized by our method.    Importantly, this approach is bound 
to increase its performance over time as it will greatly benefit from the 
growing number of publicly available data that are being deposited in 
dedicated databases of genotype-phenotype association  such as dbGAP 
(Mailman et al 2007) and EGA (Lappalainen et al 2015).  The availability 
of more data will help in the construction of more accurate scoring systems 
for specific diseases, which in turn could become applicable also to the 
analysis of single samples.
By building on the popular Galaxy workflow manager, VINYL is 
accessible through a simple yet powerful web interface, which enables 
collaborative work and facilitates the reproducibility of bioinformatics 
analyses.  A crucial consideration for a more effective analysis of large 
scale datasets, and for their integration.  Taken together, we believe that, 
in the light of the results presented in the current study, VINYL will 
represent a valuable resource to assist in the annotation and prioritization 
of genetic variants in clinical studies. 
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Figures and tables legends
Table1: Sensitivity and specificity on simulated data. Levels of 
sensitivity and specificity of VINYL, Privar and KGGseq on simulated 
data. A) Dataset with 1000 polymorphic sites. B) Dataset with 5000 
polymorphic sites. C) Dataset with 10000 polymorphic sites. Sizes of the 
simulated cohorts (25,50 or 100 individuals) are reported in the first 
column. Tools are indicated in the second column. Corresponding levels 
of sensitivity and specificity attained by each tool, are reported in the 
subsequent columns.  Columns 3 to 4, 5 to 6 and 7 to 8, report the values 
for the simulation of pathogenic variants with an odd Risk Ratio of 3, 10 
and 20 respectively. 

Figure 1: Outline of the variant prioritization strategy adopted  by 

VINYL. Genetic variants identified from a cohort of affected individuals 
(orange) and a cohort of healthy controls (purple) are subjected to variant 
annotation. A scoring algorithm is subsequently used to compute a 
pathogenicity score based on the predicted functional effect of the variants. 
Different scoring schemes are evaluated and distributions of pathogenicity 
scores are compared between the 2 cohorts (affected and controls). The 
scoring system that maximizes the difference of the  score distribution 
between the two populations is selected. The corresponding cut-off score 
for the identification of potentially pathogenic variants is identified by 
selecting the threshold that maximizes the number of potentially 
pathogenic variants in the cohort of affected individuals, while at the same 
time minimizing the number of potentially pathogenic variants in the 
control population.

Figure 2: Sensitivity and specificity of VINYL on simulated and read 
data. A) Distribution of AUC (Area Under the Curve) ROC values for 
KGGseq, VINYL and Privar in the detection of simulated pathogenic 
variants. Distributions of AUC are represented in the form of boxplots. 
Top, middle and lower panels indicate simulations with odd Risk Ratio 
values of 3, 10 and 20 respectively. B) Comparison of VINYL, Privar and 
KGGseq on real data. Left: proportion of variants in the population of 
affected individuals prioritized by each tool. Middle: Proportion of 
variants prioritized by each tool in the  control population. These are likely 
to represent false positive calls. Right: Proportion of manually curated 
pathogenic variants according to Forleo et al 2017 recovered by each tool. 
Orange=VINYL, Blue=KGGseq, Green=Privar.

Figure 3: Comparison of variant prioritization method on the DDD 
dataset. A) Boxplot of normalized VINYL scores distribution in affected 
and non-affected individuals in the DDD dataset on S1: 94 gene highly 
enriched in de-novo mutations in patients affected by developmental 
disorders, S2: 983 genes associated with monogenic, autosomal dominant 
developmental disorders according to DDG2P, S3: genes not associated 
with developmental disorders.  B) Comparison of VINYL, Privar and 
KGGseq on DDD data. For every tool, a bar plot is used to represent the 
total number of variants prioritized in this dataset (Tot), the total number 
of variants reported in DECIPHER recovered by each tool (Decip) and the 
total number of variants prioritized by each tool which are not reported as 
pathogenic or potentially in DECIPHER (notDecip). A dotted line is used 
to indicate the number (200) of pathogenic and/or potentially pathogenic 
variants reported in the DECIPHER database for this cohort. C) 
Evaluation of missense variants prioritized by VINYL, KGGseq and 
Privar, but not reported in DECIPHER. Top: histogram of the total number 
of tools as incorporated in the dbFNSP database, that support a deleterious 
effect for the variants. Bottom, proportion of variants associated with a 5 
fold difference in the Minor Allele Frequency reported by different 
resources of human genetic variation (1000 genomes, Exac, Gnomad and 
Topmed). 5Fold: proportion of  variants that show a 5fold difference or 
greater between MAF estimates provided by different databases of human 
genetic variation. No5fold: proportion of variants that do not show a 5 fold 
difference in MAF estimates. Orange=VINYL, Blue=KGGseq, 
Green=Privar.
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TABLES

Table1: Sensitivity and specificity on simulated data. Levels of sensitivity and specificity of VINYL, Privar and 
KGGseq on simulated data. A) Dataset with 1000 polymorphic sites. B) Dataset with 5000 polymorphic sites. C) 
Dataset with 10000 polymorphic sites. Sizes of the simulated cohorts (25,50 or 100 individuals) are reported in the 
first column. Tools are indicated in the second column. Corresponding levels of sensitivity and specificity attained 
by each tool, are reported in the subsequent columns.  Columns 3 to 4, 5 to 6 and 7 to 8, report the values for the 
simulation of pathogenic variants with an odd Risk Ratio of 3, 10 and 20 respectively. 

1000
RiskRatio~3 RiskRatio~10 RiskRatio~20

A Sens Spec Sens Spec Sens Spec
VINYL 73.01 99.66 78.89 99.29 89.95 99.69
Privar 54.97 93.44 59.79 91.64 61.58 93.5725
KGGSeq 62.29 95,55 64.03 96.77 59.93 96.96
VINYL 78.64 99.52 86.14 99.36 94.35 99.72
Privar 56.66 94.01 58.60 90.04 59.95 90.7950
KGGSeq 63.92 95.05 66.37 96.60 65.90 94.56
VINYL 82.69 99.89 90.47 99.04 96.27 99.82
Privar 55.80 89.87 58.06 91.34 59.63 91.77100
KGGSeq 66.34 96.14 64.47 96.59 66.91 96.58

5000
RiskRatio~3 RiskRatio~10 RiskRatio~20

B
Sens Spec Sens Spec Sens Spec

VINYL 76.95 99.32 82.90 99.33 91.50 99.96
Privar 58.27 92.47 61.67 91.70 63.30 92.9925
KGGSeq 63.21 95.55 64.52 95.93 60.60 96.13
VINYL 80.75 99.41 87.12 99.54 96.03 99.26
Privar 56.84 93.54 58.84 89.80 62.40 90.3650
KGGSeq 63.68 94.42 69.78 95,94 67.35 94.10
VINYL 84.53 99.25 93,83 99,17 99.86 99.63
Privar 58.47 89.89 62.42 90,59 60.78 91.06100
KGGSeq 66.86 95.47 66.53 96.27 67.71 96.36

10000
RiskRatio~3 RiskRatio~10 RiskRatio~20

C
Sens Spec Sens Spec Sens Spec

VINYL 78.41 99.48 84.01 99.40 92.23 99.66
Privar 62.70 92.60 64.17 91.87 64.53 93.1125
KGGSeq 69.85 95.75 67.57 96.08 61.25 96.30
VINYL 82.95 99.55 88.44 99.63 98.29 99.45
Privar 59.84 93.69 62.06 89.87 65.02 90.5250
KGGSeq 65.59 94.59 73.40 96.07 68.64 94.27
VINYL 88.38 99.42 97.32 99.39 99.29 99.85
Privar 61.53 89.91 65.48 90.77 64.08 91.12100
KGGSeq 68.82 95.49 70.21 96.28 72.02 96.51
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Figure 1

Figure 1: Outline of the variant prioritization strategy adopted  by VINYL.  Genetic variants
identified from a cohort of affected individuals (orange) and a cohort of healthy controls (purple)
are  subjected  to  variant  annotation.  A scoring  algorithm  is  subsequently  used  to  compute  a
pathogenicity  score  based  on  the  predicted  functional  effect  of  the  variants.  Different  scoring
schemes are evaluated and distributions of pathogenicity scores are compared between the 2 cohorts
(affected and controls). The scoring system that maximizes the difference of the  score distribution
between  the   populations  is  selected.  The  corresponding  cut-off  score  for  the  identification  of
potentially  pathogenic  variants  is  identified  as  the  threshold  that  maximizes  the  number  of
potentially  pathogenic  variants  in  the  cohort  of  affected  individuals,  while  at  the  same  time
minimizing the number of potentially pathogenic variants in the control population.
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Figure 2

Figure 2: Comparison of variant prioritization methods on simulated and data and on the cardiomyopathy dataset. A) Distribution of AUC
(Area Under the Curve) ROC values for KGGseq, VINYL and Privar in the detection of simulated pathogenic variants. Distributions of AUC are
represented in the form of boxplots. Top, middle and lower panels indicate simulations with odd Risk Ratio values of 3, 10 and 20 respectively. B)
Comparison of VINYL, Privar and KGGseq on cardiomyopathy patients data. Left: proportion of variants in the population of affected individuals
prioritized by each tool. Middle: Proportion of variants prioritized by each tool in the control population. Right: Proportion of manually curated
pathogenic variants according to Forleo et al 2017 recovered by each tool. Orange=VINYL, Blue=KGGseq, Green=Privar.
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Figure 3
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Figure 3: Comparison of variant prioritization method on the DDD dataset. A) Boxplot of normalized VINYL scores distribution in affected and
non-affected individuals in the DDD dataset on S1: 94 gene highly enriched in de-novo mutations in patients affected by developmental disorders, S2:
983  genes  associated  with  monogenic,  autosomic  dominant  developmental  disorders  according  to  the  DDG2P,  S3:  genes  not  associated  with
developmental disorders.  B) Comparison of VINYL, Privar and KGGseq on DDD data. For every tool, a bar plot is used to represent the total number
of variants prioritized in this dataset (Tot), the total number of variants reported in DECIPHER recovered by each tool (Decip) and the total number of
variants prioritized by each tool which are not reported as pathogenic or potentially in DECIPHER (notDecip). A dotted line is used to indicate the
number (200) of pathogenic and/or potentially pathogenic variants reported in the DECIPHER database for this cohort. C) Evaluation of missense
variants prioritized by VINYL, KGGseq and Privar, but not reported in DECIPHER. Top: histogram of the total number of tools as incorporated in the
dbFNSP database, that support a deleterious effect for the variants. Bottom, proportion of variants associated with a 5 fold difference in the estimated
minor allele frequency, according to different resources of human genetic variation (1000 genomes, Exac, Gnomad and Topmed). Orange=VINYL,
Blue=KGGseq, Green=Privar.
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