
Differentiated Assessments for Advanced Courses that Reveal
Issues with Prerequisite Skills: a Design Investigation
Greg L. Nelson∗

University of Washington
Paul G. Allen School of Computer

Science & Engineering
Seattle, Washington
glnelson@uw.edu

Filip Strömbäck∗
Linköping University

Department of Computer and
Information Science
Linköping, Sweden

filip.stromback@liu.se

Ari Korhonen∗
Aalto University

Department of Computer Science
Espoo, Finland
archie@cs.hut.fi

Marjahan Begum
Copenhagen Business School

Department of Management, Society
and Communication

Copenhagen, Denmark
mbe.msc@cbs.dk

Ben Blamey
Uppsala University

Department of Information
Technology

Uppsala, Sweden
ben.blamey@it.uu.se

Karen H. Jin
University of New Hampshire

Department of Applied Engineering
and Sciences

Manchester, New Hampshire
karen.jin@unh.edu

Violetta Lonati
Università degli Studi di Milano
Department of Computer Science
Lab. CINI "Informatica & scuola"

Milan, Italy
lonati@di.unimi.it

Bonnie MacKellar
St John’s University

Division of Computer Science, Math
and Science

Queens, New York
mackellb@stjohns.edu

Mattia Monga
Università degli Studi di Milano
Department of Computer Science
Lab. CINI "Informatica & scuola"

Milan, Italy
mattia.monga@unimi.it

ABSTRACT
Computing learners may not master basic concepts, or forget them
between courses or from infrequent use. Learners also often strug-
gle with advanced computing courses, perhaps from weakness with
prerequisite concepts. One underlying challenge for researchers
and instructors is determining the reason why a learner gets an ad-
vanced question wrong. Was the wrong answer because the learner
lacked prerequisite skills, has not mastered the advanced skill, or
some combination of the two? We contribute a design investigation
into how to create differentiated questions which diagnose prereq-
uisite and advanced skills at the same time. We focused on tracing
and related skills as prerequisites, and on advanced object-oriented
programming, concurrency, algorithm and data structures as the
advanced skills. We conducted an inductive qualitative analysis
of existing assessment questions from instructors and from a con-
cept inventory with a validity argument (the Basic Data Structures
Inventory). We found dependencies on a variety of prerequisite
knowledge and mixed potential for diagnosing difficulties with
prerequisites. Inspired by this analysis, we developed examples

∗Leaders

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE-WGR ’20, June 17–18, 2020, Trondheim, Norway
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8293-9/20/06. . . $15.00
https://doi.org/10.1145/3437800.3439204

of differentiated assessments and reflected on design principles
for creating/modifying assessments to better assess both advanced
and prerequisite skills. Our example differentiated assessment ques-
tions andmethods help enable research into how prerequisites skills
affect learning of advanced concepts. They also may help instruc-
tors better understand and help learners with varying prerequisite
knowledge, which may improve equity of learning outcomes. Our
work also raises theoretical questions about what assessments re-
ally assess and how separate advanced topics and prerequisite skills
are.

CCS CONCEPTS
•Applied computing→ Education; • Theory of computation
→ Concurrency; Design and analysis of algorithms; • Information
systems → Data structures.

KEYWORDS
computer science education, assessment, prerequisite skills, con-
currency, data structures and algorithms, advanced object-oriented
programming, tracing, educational design research, differentiated
assessment

ACM Reference Format:
Greg L. Nelson, Filip Strömbäck, Ari Korhonen, Marjahan Begum, Ben
Blamey, Karen H. Jin, Violetta Lonati, Bonnie MacKellar, and Mattia Monga.
2020. Differentiated Assessments for Advanced Courses that Reveal Issues
with Prerequisite Skills: a Design Investigation . In 2020 ITiCSE Working
Group Reports (ITiCSE-WGR ’20), June 17–18, 2020, Trondheim, Norway.ACM,
New York, NY, USA, 55 pages. https://doi.org/10.1145/3437800.3439204

https://doi.org/10.1145/3437800.3439204
https://doi.org/10.1145/3437800.3439204

1 INTRODUCTION
In computing education research (CER), we have initial evidence
that, when learners take advanced classes they have weaknesses
with prerequisite knowledge, which may negatively affect learn-
ing outcomes. A 2004 ITiCSE working group [44] suggested that
many students lack mastery of program tracing after CS1, which
contributes to their poor problem solving skills. Other studies show
this may continue into later courses. Valstar et al. showed that more
than 30% of students could not do questions on pointers or tracing
recursion at the start of an upper level data structures class, which
correlated with final exam scores [89]. Fisler et al. showed more
than 30% of 3rd and 4th year CS majors failed questions on scope,
parameter mutation, and/or variable mutation, suggesting knowl-
edge transfer requires explicit instruction and/or reinforcement of
prerequisites [14].

Clearly, assessments for advanced courses aim at assessing spe-
cific advanced topics, even though they often require prerequisite
knowledge or skills. In general, the cause for a learner to fail such
assessments may be related to 1) difficulties with the advanced
concept or 2) weaknesses with basic concepts that may lead to
incorrect application of the advanced concept. However, assess-
ments for advanced topics are not intended to assess prerequisites
explicitly, and may not be suited to support the right diagnosis.

For example, concept inventories for advanced topics seem un-
likely to already diagnose problems with prerequisites, for two
reasons. First, while concept inventories for advanced topics in-
clude distractors for misconceptions, they are designed by defini-
tion to cover misconceptions about the advanced concepts, not
the prerequisites. Second, most concept inventories are actually
never evaluated for how well they can diagnose student thinking
or give formative feedback to students; just because they measure
knowledge does not imply that measurement is useful for giving
feedback [11, 28, 55, 73, 74]. To our knowledge there has been no
analysis in computing education of whether the distractors for a
concept inventory might diagnose prerequisites.

Pre-exams are also a possible tool to identify issues with pre-
requisite at the beginning of an advanced course. The drawback is
that both administering pre-exams and addressing the identified
issues is time consuming, and may also result in “boring” activities
for students. Moreover pre-exams may not be enough to guarantee
that the prerequisite skills are at the level required to focus properly
on the new ones to be learned.

Finally, advanced topic assessments asking learners to “show
your work” can sometimes diagnose prerequisite issues but require
lengthy manual interpretation. Instructors can give advanced ques-
tions and ask students to “show your work”, an ancient and useful
technique, but it takes a lot of time and instructor expertise to grade
and write feedback.

In response to these drawbacks, our working group contributes
a new genre of assessment: differentiated assessments, which
are advanced topic assessment questions that also can diagnose
relevant prerequisite issues. The key idea is to expand the typical
scope we define for an assessment, to cover more of prerequisites.
Unlike pre-exams, differentiated questions would be easier for ad-
vanced course instructors to use because they serve both purposes.
Ideally, different incorrect answers would map to difficulties with

the advanced content and difficulties with prerequisites, and also
be easy to grade or even generate feedback for automatically.

The goal of our working group is to conduct a preliminary in-
vestigation into whether it is possible to design differentiated as-
sessments, and if so, how this might be achieved. More precisely,
we seek to contribute methods for both highlighting which prereq-
uisite skills are measured by existing assessments, and to revise
advanced assessments to make them more differentiated.

Differentiated assessments could be incorporated into advanced
courses, and help instructors give better formative feedback (and
potentially improve instructional design of courses by including
observed frequently weak prerequisite skills). The scope of pre-
requisite knowledge investigated by differentiated assessments is
necessarily limited, but can more narrowly focused on what is ac-
tually instrumental to the advanced topics. This might also help
students in making sense of what they learn. The more students
come in with varied backgrounds, especially in more advanced
degree programs, the more generic prerequisite knowledge assess-
ments can be problematic: having something clearly connected to
the learning objectives seems a good way of supporting student
diversity and equity.

The distinction between prerequisite and advanced skills clearly
depends on the course context; prerequisite skills are those skills
that students are assumed to be familiar with before attending a
course, which are different from the new concepts the course aims
to teach. For example, as a student progresses through their educa-
tion, topics that were once new and difficult increasingly turn into
prerequisites for other topics in other courses. For the purposes of
our study, we consider as prerequisite skills or knowledge those that
pertain to basic programming, and that are typically expected as
learning outcomes of CS1. In particular we focus on the syntactical
and conceptual knowledge of basic programming constructs, and
on program comprehension skills including code tracing. While
there are many other and important prerequisite skills one might
consider, such as mathematics or basic literacy and writing skills,
we did not include those in our scope.

As advanced topics, that in the report will be referred to as course
topics, we chose algorithms and data structures, advanced object-
oriented programming, and concurrency, as these are compara-
tively well-studied in CER, and match the expertise and teaching
experiences of the working group members. In particular, we also
considered in our study questions from the Basic Data Structures In-
ventory (BDSI), a concept inventory for data structures [66], which
we chose because it is a recent, state of the art assessment with a
validity argument supported by empirical studies.

To aid our assessment design investigation, we asked the follow-
ing research questions:

RQ1: What prerequisite skills do advanced CS questions depend
on?

RQ2: To what extent can an existing concept inventory for data
structures with a validity argument – the BDSI [66] – also
diagnose difficulties with prerequisite skills?

RQ3: What are examples of differentiated assessments and princi-
ples for designing differentiated assessments?

It is worth noticing that the RQ3 actually comprises two subques-
tions (concerning examples of assessments, and principles for de-
signing assessments); however we merged them together because
they are strongly connected and the methods we use to address
them are interleaved, as will be presented in Section 3.
By answering these three research questions, we contribute:

• An inductive qualitative analysis of a selection of exist-
ing assessment questions for advanced courses, showing
which prerequisite skills they require;

• A code book with prerequisite topics and concepts from
the qualitative analysis;

• New differentiated assessment question designs that make
implicit prerequisite assessment more explicit, so we can
tell when the incorrect answers are caused by inadequate
prerequisite skills;

• A collection of designprinciples and strategies, PAPRIDA
(PAtterns and PRinciples for Differentiated Assessment) for
modifying existing questions for advanced course topics to
include more explicit assessment of prerequisite skills.

Empirical validity evidence that PAPRIDA and the examples of
differentiated assessments work in practice are left to future work.

The remainder of this paper is organized as follows. In Section 2
we present related work. Next, in Section 3, we present the method
used in the paper. The results are presented Sections 4 to 6, accord-
ing to the three research questions. In particular, in Section 4 we
present the results from our investigation on how prerequisite skills
are present in existing assessments, answering RQ1. In Section 5,
we explore how well the BDSI is able to differentiate between pre-
requisites and course topics answering RQ2. Lastly, in Section 6 we
present the questions modified while developing PAPRIDA, and the
patterns and principles in PAPRIDA itself, answering RQ3. Finally,
we present some limitations with our approach in Section 7, discuss
the results in Section 8 along with potential future work, and draw
some conclusions in Section 9.

2 RELATEDWORK
In this section we first consider skills related to basic programming
knowledge, that we consider here as prerequisite skills; in particular
in Section 2.1 we present three comprehensive works that identify
CS1 knowledge, then we focus on tracing skills in Section 2.2. In Sec-
tion 2.3 we present related works concerning the three advanced
courses considered in the report. Work on assessment design is
presented in Section 2.4.

2.1 Basic Programming Knowledge and Skills
In order to determine concepts that are prerequisites, it is important
to understand the space of computer science concepts taught in
typical undergraduate programs, and to determine which concepts
are considered to build on other concepts. There have been some
attempts at enumerating and ordering the standard concepts taught
in CS undergraduate programs. Three important references are pre-
sented here that identify basic programming knowledge: the ACM
2013 Curriculum Guide [27], Goldman at al’s list of core concepts
taught in CS1 [17, 18], and Sorva’s misconceptions catalogue [81].
Our group used these three lists as comparison standards for our

list of identified concepts. A table mapping our concepts to the con-
cepts from these three sources can be seen in Section 4.1, Tables 1
to 6.

ACM CC2013. The ACM 2013 Curriculum Guide [27] consists of
an enumeration of topics that correspond to a wide set of Knowl-
edge Areas (KAs) in computing. Its explicit purpose is to serve as a
standard for computer science programs. It is developed by a task
force over a two year period and subject to extensive external re-
view. As a result, the ACMCurriculumGuide is widely accepted as a
benchmark by universities developing computer science programs,
which means its set of KAs and associated topics match the content
of particular courses or course sequences in many programs. Thus,
it is a useful catalog of computer science topics that are commonly
taught in undergraduate computer science programs. Because of its
comprehensiveness and wide acceptance, our group chose to use it
as a basis of comparison with the topics that we identified during
the process of analyzing existing assignments (see Section 3).

KAs are divided into knowledge units, and ultimately into topics
for each knowledge unit (See Appendix A.1). The guide frequently
identifies which knowledge units are advanced and which are intro-
ductory. In particular, the Software Development Fundamentals KS
(SDF) is described as foundational to the other software oriented
KAs. Since we are focusing on prerequisite skills in programming
courses, Software Development Fundamentals (SDF) and Program-
ming Languages (PL) KAs are the most relevant to our study. Since
the advanced courses we included in our study are data structures,
advanced object-oriented programming and concurrency, the fol-
lowing topics are also particularly important: SDF/Fundamental
Programming Concepts, SDF/Fundamental Data Structures, and
SDF/Development Methods as well as PL/Object-Oriented Program-
ming, and PL/Basic Type Systems. The topics are described at a
very a high level of abstraction. The related skills and knowledge
are not based on any particular programming language; CC2013
refers to these essential skills as a lingua franca in which other
computer science concepts can be described.

Core concepts identified by experts. Goldman et al. [17, 18] set out
to create a concept inventory for introductory computing subjects.
An important part of this process was to investigate which core
concepts are typically covered in introductory courses, and which
of those are perceived to be important and difficult. This investi-
gation was done by consulting experts (i.e., instructors) using a
Delphi process. Three panels were assembled [18], one for each of
the three subjects examined: programming fundamentals, discrete
math and logic design. Each panel consisted of around 20 experts
that were either instructors or authors of learning material in the
subject. The authors concluded that the Delphi process was useful
for reaching consensus; there were, however, some concepts where
a good consensus was not reached. Since the concepts listed in this
paper are specifically identified as introductory, it is likely they are
typically prerequisites to more advanced courses. For this reason,
we considered this list as a possible starting point when analyzing
existing assessment (see Section 3).

A summary of the final concepts for programming fundamentals
is reported in Appendix A.2.

Misconception catalogue. Misconceptions can be caused by a lack
of knowledge of how a particular syntactical construct behaves, i.e.,
due to an incorrect or incomplete understanding of the notional
machine [13, 20].

Several misconceptions in introductory programming have been
identified and addressed in the literature [38, 61, 67, 82]. For exam-
ple, a classic misconception is the use of an assignment operator
(=) instead of the comparison operator (==); another example of a
misconception is that a variable can hold more than one value, this
is manifested in the task of swapping two variables. Sorva collected
a wide catalogue of misconception in [81], grouped under 11 topics
(See Appendix A.3). Although it gives examples of novice program-
mers’ misconceptions about the content of introductory program-
ming courses in general, it leans towards misconceptions found
in courses taking the object-oriented approach. In this research
misconceptions relevant to the advanced courses are highlighted
in Section 2.3.

2.2 Tracing Skills
Although introductory programming education traditionally fo-
cuses on writing programs, there is a large body of research on
reading, tracing and understanding programs, suggesting tracing
knowledge is critical for learningwriting skills [26, 46]. The relation-
ship between student skill of reading, writing, tracing, and explain-
ing, as identified by assessments, is well studied in the BRACElet
project, reported in [6], that originate after an ITiCSE working
group in 2004 [44]. In particular the project started the ‘Explain
in plain English” style of questions and used Bloom and SOLO
taxonomies to analyse them [91].

Tracing can be defined as the step by step execution of code,
following the control flow path. This can be done with pencil-
and-paper, mentally, using a debugger, or with the help of specific
interactive visualization tools. Tracing tasks can include, for exam-
ple, predicting the output of a segment of code, or making diagrams
representing the contents of memory after some code executes.
The report of an 2019 ITICSE working group also include a cata-
log [26, Section 5] of program comprehension tasks, covering many
different kinds of tracing tasks.

Tracing requires the application of syntactic and semantic knowl-
edge implied by the fragment of code machine, i.e., the notional ma-
chine [13]. For this reason tracing activities are considered to have
an important role in understanding the notional machine [24, 57].
Tracing tasks are also suitable to unveil learners’ shortfall or miscon-
ceptions, either related to basic semantic knowledge or concerning
more advanced concepts as scope, references, parameter passing,
that have major impact in later courses. On the other hand, errors
in tracing tasks may also occur when the execution simulation is
not performed rigorously or systematically enough. For instance,
when debugging their own programs, learners may be influenced
by what they want the program to do instead of identifying the
exact actions prescribed by the code [63].

Xie et al. show that explicitly teaching tracing strategies can
improve novices performances [93] and present a pedagogical ap-
proach where tracing acts as the first of four skills that the novice
should develop [92].

Tracing activities can also be part of program comprehension
strategies, including building strategies at higher levels of abstrac-
tion. For instance, executing a piece of code on a series of specific
inputs may guide the learner to understand what the given code
computes [26]. This high-level skill also includes understanding
which fragments of code to be traced, or knowing when an external
representation (e.g., a tracing table or a diagram) is needed.

Tracing can be shown by educational software tools that visualize
step-by-step code execution or support visual program simulation
exercises, see [83] for a survey. Such tools often present a simplified
view or alternative view than that available from debuggers in
modern IDEs, which allow line by line execution of a program
whilst inspecting variables and the call stack.

They often support automatically assessed exercises and other in-
teractive learning materials. These are important resources for large
courses that might have hundred or even thousands of students.
For example, PLTutor [57] integrates instruction on PL semantics,
tracing, showing program execution, and integrating interactive
practice questions, targeting CS1 level skills and recursion. Other
examples include Python Tutor [19] which visualizes the execution
of Python programs, and UUhistle [84] that additionally provides
interactive puzzles in which learners use graphical controls to di-
rect a program’s execution. Students are supposed to learn several
skills – including tracing skills – better than by simply watching
an animation of execution of a program [54].

2.3 Advanced Courses and Topics
As mentioned in the introduction, in this report we consider three
course topics: advanced object-oriented programming, data struc-
tures and algorithms, and concurrency.

We will discuss related work focusing in particular on the re-
lation between advanced topics and prerequisite skills, including
tracing. To the best of our knowledge, however, there is no work
that specifically aims at identifying ways to differentiate issues with
prerequisite and course topics.

2.3.1 Advanced Object-Oriented Programming. Although Object-
Oriented Programming (OOP) is sometimes presented also in in-
troductory courses, most of the techniques used by object-oriented
approaches to structure and reuse large code bases are left to ad-
vanced courses. In this paper we try to be agnostic of any particular
language used at the introductory level, but we assume the top-
ics a learner is supposed to master after a programming course
taught by referring to an object-oriented language include classes,
objects, methods, etc. Peter Wegner famously defined OOP as a
paradigm in which programs deal with classes, objects, and in-
heritance [90]. But even by limiting the approach to class/object
encapsulation, many misconceptions related to OOP topics have
been studied [25, 29, 68, 71, 80], such as:

• the problems with handling references to primitive types
and user defined ones;

• classes and objects (e.g., confusion between a class and its in-
stances, classes as collections of objects instead of templates
for creating them);

• object identity and immutability;
• object state (e.g., that an object can only hold instance vari-
ables of a single type);

• methods (e.g., a method can be invoked on an object only
once);

• the control flow among objects.

Advanced users of OOP put emphasis on modularity issues and
the potential that a fragment of code designed for a specific goal
might be re-used in a different context [43, 53, 58]. To this end,
it is important to appreciate polymorphic types and late binding,
together with the constraints posed by Liskov’s substitution prin-
ciple. The difficulties of dealing with a mix of static and dynamic
typing, method dispatching, dependencies on abstract interfaces
and concrete implementations, should be distinguished from more
basic difficulties with the fundamental programming skills.

Cross et al. [10] found a positive student response to the use of a
debugger in the context of teaching introductory programmingwith
Java. Their particular teaching case concerned stepping through
constructors in the inheritance chain when teaching OOP.

2.3.2 Data Structures and Algorithms. The second topic covered in
this paper is that of Data Structures and Algorithms (DSA), which
is one of the key learning goals in some CS2 courses [65]. An intro-
ductory data structures course typically covers classic structures
– stacks, queues, hash tables and binary trees, as well as learning
about abstract data types and the application of these structures,
while advanced data structure courses introduce topics on balanced
search trees, graphs and sorting algorithms. Even though there have
been continuous calls to place more emphasis on teaching how to
apply data structures in larger programs, most existing assessments
still focus on implementation [78].

Students entering advanced DSA courses were found to have
low proficiency on prerequisite knowledge. Valstar, Griswold and
Porter [89] administered a test consisting of questions on prereq-
uisite topics to students starting a course in advanced data struc-
tures. Each question was designed to test proficiency on one pre-
requisite topic. The topics ranged from basic topics like pass by
reference/value to topics from the prior data structures course such
as list implementations and runtime analysis, as well as topics from
a computer organization class. They found that students were not
very proficient on many of the prerequisite topics, and that weak-
ness on prerequisites correlated with poor performance on the final.
In addition, they looked at which questions, when answered cor-
rectly, correlated with good performance on the final; and which
questions, answered incorrectly, correlated most strongly with poor
performance on the final. The contribution of Valstar et al.’s paper
is to not only show that poor prerequisite knowledge corresponds
to poor performance in a course, but to give a more detailed analy-
sis of the particular topics most correlated to course performance,
which was extended upon in a paper the next year [37].

Visual program simulation exercises can be utilized in advanced
courses to recap and evaluate if students have misconceptions on
prerequisite skills. For example, UUhistle has been utilized in DSA
to teach recursion (how stack frames are formed), but also for
catching possible misconceptions students have related to the basic
notional machine [84]. The OpenDSA project [15, 75] provides a
complete interactive text book for DSA that includes a number of
proficiency exercises that ask the student to simulate an algorithm
step by step. This kind of visual algorithm simulation [36] resembles

the process of tracing a fragment of code, but it is done in a much
higher level of abstraction than in visual program simulation.

The relation between writing, tracing, and reading skills in CS2
have been investigated in [8, 22, 62] with conflicting results.

2.3.3 Concurrency. The third topic we will cover in this paper is
concurrency. There are several models of concurrency that are be-
ing taught and used. In this paper, we will assume the model where
multiple threads execute in a single process and communicate using
sharedmemory and synchronization primitives such as semaphores,
locks and condition variables. In this model, the programmer needs
to make sure that important steps happen in the right order, for
example waiting for the completion of another thread, and to en-
sure that multiple threads do not access the same piece of data
concurrently, usually using locks. This model has previously been
explored in various education contexts by a number of authors.
One such example is Kolikant, who studied high-school students’
solutions to synchronization problems involving semaphores [34]
in a concurrency simulator proposed by Ben-Ari et al. [64]. From
the solutions, the author found that the problematic part was to
identify the synchronization goal. Once the goals were identified,
most students managed to solve the problem. In a later study in-
volving questionnaires [35], the same authors investigate students’
views on what properties a concurrent program should have to
be considered correct, and found that many students considered
a program that exhibited occasional crashes or errors due to con-
currency to be correct, which might impact their performance on
concurrency questions.

Another study of common mistakes in this model of concurrency
was made by Strömbäck et al. [86], who examined a large number
of student solutions to a concurrency problem involving synchro-
nizing a simple data structure. The results differed slightly from
what Kolikant found. While 89% of students managed to identify
an instance where a busy-wait loop needed to be replaced by a
semaphore, only 62% managed to do so properly. A similar trend
was observed when students were asked to synchronize shared
data using locks. While a majority of students identified at least
some aspects of the issue, only around half managed to arrive at a
correct solution using locks. In this process, the authors identified a
number of mistakes made by students. Some of these are likely due
to students not understanding how the synchronization primitives,
mainly semaphores and locks, work. The authors do, however, note
that some of the mistakes are possibly due to lacking prerequisite
skills, such as lacking tracing skills and a lacking understanding of
pointers and scoping of variables.

Other concurrency models have been studied in an educational
context. For example, tuple spaces [5] which have been studied
extensively by Lönnberg et al. [45, 49], and the actor model [12].
The actor model is similar in nature to real-world events and it has
been studied in this context as well [33, 42]. Moreover, Lönnberg
et al. have studied how to utilize these models to study students
approaches to debug concurrent programs. In their study, students
make use of Atropos [45, 49], a novel visualisation system tar-
geted to debugging concurrent programs. The tool is intended to
display information relevant to understanding the behaviour of
concurrent Java programs, and is capable of visualising a trace

of concurrent program for post-mortem analysis in the form of
dependence graphs.

2.4 Assessment Design
In the computing education literature, assessment is a frequently
studied topic; most works however focus on the assessment of either
basics/prerequisite or advanced skills. Our differentiated assessment
questions try to do both. For a review of works on assessment for
introductory programming, the reader may refer to [39, 48].

2.4.1 Diagnostic Assessments and Concept Inventories. In the edu-
cational assessment field, assessments that support very specific
inferences about different parts of a learner’s knowledge have been
called diagnostic assessments [41]. Concept inventory (CI) tests are
assessments with validity arguments for assessing the overall under-
standing of a student for a particular set of concepts [1, 70, 87]. They
are characterized by being criterion-referenced (rather than norm-
referenced), and are often presented in the form of multiple-choice
tests, including “distractors” that cover frequent misconceptions. As
a form of assessment, either might be used either formatively, per-
haps at the start of a course in an effort to assess prior knowledge,
or summatively. Diagnostic assessments and concept inventories
have subtle but important differences.

While it is a frequent perception among researchers that concept
inventories can diagnose a particular test-taker’s misconceptions,
research in educational assessment has problematized that assump-
tion. Jorion et al. shows that validity arguments need to be made
separately for diagnosing test takers, and shows the different stud-
ies and analyses needed for such claims [28]. Sands et al. includes
discussion of the same issues in physics around the original Force
Concept Inventory and in concept inventories in general [73]. San-
tiago Roman’s dissertation and Denick et al. are examples of trying
to interpret a CI more diagnostically [11, 74].

2.4.2 Assessments in Computing. Prior work on assessment has
identified issues with assessment questions covering too many
skills, which inhibits inferring why the learner got the question
wrong when trying to give feedback or help them learn. The 2017
ITiCSE working group on assessing programming fundamentals
showed how a single question can assess many skills/parts of knowl-
edge [47]; for example, small errors, like not understandingmodulus
operators, can cause learners to get large questions incorrect [32].
In our analysis of assessment we follow a similar approach, aiming
at identifying the many prerequisite skills required.

Several assessments use code tracing questions in order to assess
programming knowledge; others assess tracing skills themselves,
as the already mentioned [26, 44, 47]. Nelson et al. developed a
systematic, multi-part formative assessment for tracing skills of
simple statements as well as larger combinations of code [55].

Within computing education for CS1 knowledge, several as-
sessments and concept inventories have been developed. For ex-
ample, Parker, Guzdial, and Engleman [59] designed the SCS1, a
concept inventory for introductory programming concepts (includ-
ing fundamentals, logical operators, conditionals, iteration, arrays,
parameters, recursion, and object-oriented basics). Other work on
developing standardized assessments of introductory computer

science concepts include Caceffo et al. [4], who developed a con-
cept inventory for a C programming course including parameters
and functions, iteration, loops, variable scope, recursion, point-
ers, and structures; Simon et al. [76, 77] who developed a set of
benchmark questions to be embedded in exams in introductory pro-
gramming courses at a range of institutions; Snow et al. [79], who
used Evidence-Centered Design to develop a set of assessments for
high school students taking the AP CS Principles course.

Work has also been done on assessing advanced topics. For ex-
ample, assessments have been developed for algorithms and data
structures [31, 60]. Assessments with explicit validity arguments
have been developed for recursion [21]. The Basic Data Structures
Inventory (BDSI) has the most extensive empirical work, which
covers some basic data structures and algorithm runtime analysis
concepts, and was developed as a concept inventory [66]. Ques-
tion banks also contain instructor-submitted questions that cover
advanced topics [16, 72]. Moreover, the OpenDSA project [15, 75]
that was mentioned earlier as well as visual algorithm simulation
exercises in general [36] provide a meaningful way to assess and
give immediate feedback for students solving tracing exercises on
data structures.

To the best of our knowledge there are no assessments designed
to assess simultaneously prerequisites and advanced skills, in a way
that it is possible to differentiate among them. Even concept inven-
tories for advanced topics, although with validity arguments for
measuring advanced topics, may not be suited to detect prerequisite
issues, since 1) they aim at assessing advanced topic knowledge
and 2) their distractors are, by design, aimed at detecting miscon-
ceptions about the advanced topics.

In our study we borrow from concept inventories the idea of
using distractors related to misconceptions; in our case the goal is
using some of the distractors to identify prerequisite issues.

2.4.3 Assessment Validity. Tew and Dorn argue for importance of
assessment validity in computing education [88], and Nelson et
al. present Kane’s validity framework for a computing education
audience [55]. Assessment validity concerns trace back historically
to concerns in psychology about whether some survey or other
psychological measurement technique actually measures what it
purports to measure [30, p. 6–7][9], and epistemological issues
around what observations provide evidence relevant for theoretical
statements (for example, disproving a theory) [85]. Validity argu-
ments for a particular (pragmatic) use of an assessment draw on
pragmatism [40] and the ancient human wisdom of asking “Why?
For what purpose?”. While our paper recognizes the importance of
making strong validity arguments for assessment, our paper focuses
on trying to create new designs for assessment questions that can
differentiate between issues with prerequisite and advanced course
topics, and does not aim at contributing strong validity evidence
that our designs work in practice.

3 METHOD
The goal of our work is to explore the issue that assessment for ad-
vanced courses often implicitly assess prerequisites, and to design
improvements to these assessments to make prerequisites explic-
itly assessed. As such, we are conducting research through design,

exploring a problem by designing possible solutions to the prob-
lem and analyzing them. As is described by Herriott [23], design
through research can be thought of as conducting an experiment
to test a hypothesis. In this case, the hypothesis is that it is possible
to address prerequisites explicitly together with course topics by
making differentiated questions, and we are testing this hypothesis
by designing such questions. As a side-effect of this inquiry, we
will also propose methods for discovering hidden prerequisites in
assessments, and for assessing them explicitly. Herriott also notes
that design through research is well suited to conducting a system-
atic inquiry into a subject to discover new knowledge about it. As
such, our contributions are mostly related to exploring the problem
and designing possible solutions rather than providing empirical
evidence for the validity and/or generalizability of these solutions.
Therefore, we have adopted the ideas in educational design research
suggested by McKenney and Reeves [50, 51]. According to the au-
thors, “educational design research is a genre of research in which
the iterative development of solutions to complex educational prob-
lems provides the setting for scientific inquiry,” [50] and attempts
to solve real-world problems while seeking to discover new knowl-
edge that might be valuable to others facing a similar problem. Since
educational design research is not a single method, but rather a way
of approaching a problem, there is no well-defined procedure to
follow. McKenney and Reeves do, however, describe the following
characteristics of educational design research [50]:

• It uses scientific knowledge, and also other kinds of knowl-
edge, such as craft wisdom, to ground design work.

• It produces scientific knowledge, and also craft wisdom
among the participants in some cases.

• It strives to develop both interventions and reusable knowl-
edge.

• It is an iterative method. In our case, we follow the method
suggested by Reeves [69], which consists of four phases:
problem analysis, solution development, iterative refinement,
and reflection to produce design principles.

In educational design research, the different phases are often
revisited during a project, and the results are thus refined during
the project. According to the authors, it is essential to involve prac-
titioners in this kind of educational design research in order to
properly identify real teaching and learning problems, and to create
prototype solutions based on existing principles and prior experi-
ence. The participating researchers in the current study are active
faculty members and/or active researchers in computing education
research with primary responsibility for not only teaching their
courses, but also designing the courses and developing course as-
sessments. Together, the researchers represent over 100 years of
collective experience in pedagogy and course design. In addition,
several of the researchers have had significant responsibility for cur-
riculum design at the program level, in official capacities such as CS
program director, service on departmental curriculum committees,
and through development of new programs at their universities.
As a result, they brought to this task experience in course develop-
ment at both the course and the program level, as well as years of
experience developing course materials and assessments.

Our design process consisted of the four steps that are outlined
in Figure 1:

Problem Analysis

Framing the Research

Data Collection

Solution Development 1 - The Codebook

Examine prerequisites in assessments

Developing codebook with prerequisites Ite
ra
tiv

e
re
fin

em
en
t

Solution Development 2 - Differentiated Assessments

Modifying assessments

Collecting patterns and experiences Ite
ra
tiv

e
re
fin

em
en
t

Reflection to Produce Principles

Generalization of patterns into PAPRIDA

Assessments

Assessments and Codebook

Codebook, modified assessments, and patterns

Codebook, modified assessments and PAPRIDA

Figure 1: Overview of how the educational design research
method was applied.

Problem Analysis and Data Collection: This phase includes fram-
ing the problem, which is described in the introduction, and
collecting data to analyze further.

Solution Development 1 - The Codebook: We identified and coded
prerequisite skills required by each question in each assess-
ment. A codebook for prerequisite skills was simultaneously
developed throughout this process, taking inspiration from
prior skill classifications. As we will present in further detail
below, iterative refinement is an important part of this phase.

Solution Development 2 - Differentiated Assessments: We re-
vised a subset of the questions in the assessments to make
them able to differentiate between weak prerequisite skills
or weak knowledge of course topics. Once again, iterative
refinement is an important part of this phase.

Reflection to Produce Principles - PAPRIDA: Intertwinedwith
the solution development 2 phase where we created differen-
tiated assessments, we also identified and refined patterns
and principles for designing such assessments.

The methods used in each step are detailed in the following
subsections:

3.1 Problem Analysis and Data Collection
We decided from the outset to limit the scope of assessment mate-
rial considered to “core” programming-related problems, including
those related to pseudo-code. We excluded courses related to, for ex-
ample, mathematics, and more applied or qualitative topics within
computer science (such as security, ethics, software engineering,
databases, etc.).

Assessments were contributed by the authors from undergradu-
ate and masters level courses from a range of institutions in Europe
and the United States. We specifically selected assessments cov-
ering the topics of concurrency, algorithms and data-structures,
advanced object-oriented programming. The rationale being that
these topics are widely taught, but are normally outside the scope
of CS1 courses, and build upon some parts of CS1. As previously
mentioned, we refer to these as course topics, implying that they are
what is intended to be covered, compared to prerequisites. We also
selected assessments which were known to be problematic for stu-
dents due to lacking prerequisite skills. This selection was based on
the members’ collective experience in teaching these topics. Some
members even created pretests specifically constructed to address
prerequisite knowledge. In these cases, the pretest questions were
also included in the set of questions, as they may act both as inspi-
ration for how to better assess prerequisite skills in assessments for
course topics, and that they may be used as a foundation to build
new such questions on top of. We also included the BDSI [66] as
a source for questions, to answer RQ2 to see what prerequisites
are involved in a state of the art concept inventory. In total, we
looked at 11 questions from courses taught by the authors, and all
13 questions from the BDSI. The 11 questions from courses taught
by the authors, as well as two questions from the BDSI are available
in Appendices M and O. Questions labeled M.x are questions that
were later modified, questions labeled O.x are questions that were
analyzed but not modified, and questions labeled B.x are questions
from the BDSI.

The selected assessment materials were a mixture of “pen and pa-
per” exercises, and those requiring writing new code on a computer.
With our selection of programming-related assessment material,
tracing skills were a clear prerequisite, and a natural way of fram-
ing our approach. Furthermore, tracing was a way to frame our
thinking about the assessment material, so that we were able to
think critically about implicit prerequisite knowledge (“what does a
student need to know about to trace this code?”), as well as a means
of devising new questions (“where in the code do you see...?”, “what
happens when this code is executed...?”)

3.2 Solution Development 1 - The Codebook
The goal of the qualitative analysis is to examine which, if any,
prerequisites a student needs to understand in order to answer
each question properly. We first considered a deductive approach
based on a predefined codebook. To find a theoretical or a author-
itative source for this codebook, we considered using the ACM
2013 Curriculum Guide [2], the Core Concepts identified by Gold-
man et al. [17, 18], and the Misconception Catalogue compiled by
Sorva [81] (See Appendix A). Each of these potential sources were,
however, not deemed suitable for our analysis. While the ACM 2013
Curriculum Guide is very complete, the main problem for our usage

is that a number of topics are described at a high level of abstraction,
while we desire a higher level of detail. For example, the question
O.7 (available in the Appendix) assesses whether a student has
realized that the return statement halts execution of the current
function in addition to defining what value to return from the func-
tion. This skill in particular maps to the ACM Curriculum Guide
concept of “SDF/Fundamental Programming Concepts/Functions
and parameter passing”. This concept does, however, also cover
the aforementioned “what to return” and function parameters in
addition to halting execution of the current function. The main
issue with Goldman’s Core Concepts is that it is only intended to
cover introductory concepts. As the specific prerequisite concept
for a course varies depending on the level of the course and what
is covered in earlier courses, the topics covered by the Core Con-
cepts might not cover all potential prerequisites for our questions.
The previously mentioned example with the return statement il-
lustrates this issue as well: the Core Concepts does not include a
concept that involves return, neither the return value nor the act
of halting execution. Finally, the Misconception Catalogue would
indeed form a detailed codebook, but due to its high focus on object-
oriented programming, it was also deemed unsuitable. The example
regarding the return statement once again illustrates this: it lists
misconceptions regarding the return value, but not regarding the
act of halting execution.

Since none of the above-mentioned candidates were deemed
suitable, we opted for an inductive coding approach, and hence
built a new codebook. This will give us the additional benefits of a
bottom-up approach: the codebook will be representative of what
the questions contain, regardless of the completeness and level of
detail of another source, and allows our codebook to focus on skills
related to tracing, and allows the code to represent prerequisites
at a sufficient level of detail. This is particularly important in this
context, as the relation between prerequisites and course topics in
assessments are not well studied. We do, however, recognize the
importance of the above-mentioned works, and we will therefore
relate the codes created in this work to them. Thus, that relation can
be used to prioritize prerequisites to assess based on their location
in the ACM 2013 Curriculum Guide, their importance in the Core
Concepts or known misconceptions.

The analysis of the assessments and the development of the
codebook were done iteratively. First, researchers analyzed the
prerequisites assessed in each of the questions in each of the as-
sessments, and then produced a proposed coding for these. The
produced codes were then discussed with the group, and the two
previous steps were revisited (which constitutes the iterative re-
finement phase).

In order to account for the different experiences and viewpoints
of the coders, the working group members were divided into two
groups, and each assignment was assigned to at least one member
in each group (thus, each question was assigned to at least two
coders). Each coder then independently coded the prerequisites
required to answer each question in each assessment. The analysis
and development phase was iterated a number of times within each
group before a consensus was reached.

When both groups were done with their coding work, the two
groups met and discussed their findings, aiming to merge the codes
created by the two groups. This corresponds to another design

phase. After this, the two groups independently re-coded all ques-
tions using the unified codebook. This resulted in a number of
minor revisions to the codes, which were then discussed between
the two groups again. This was repeated until all members of the
working group were satisfied that the codes covered all prerequi-
sites covered by the collected assessments. Note that due to the
iterative refinement of the codebook, some codes were split into
two during the process, resulting in codes representing prerequi-
sites that are not assessed by any of the questions. As these still
represent valid prerequisites, they were kept in the codebook in
spite of the fact that they are not present in any of the questions.
The codebook, and our coding of the assessments are presented in
Section 4.

In order to examine whether the questions in the BDSI had simi-
lar issues to the other assessment we collected, we examined the
distractors in the BDSI once more after the codebook was finalized.
For each question, two researchers independently coded which
prerequisite skills, if any, a student picking each distractor might
have difficulties with. In order to properly distinguish between
prerequisites and course topics, the researchers also noted which
course topics a student could have difficulties with. As with the
other coding, the researchers then discussed any potential differ-
ences until agreement. With this information we can see which
prerequisite skills are assessed by each question in the BDSI, and to
what extent it is able to differentiate between difficulties with pre-
requisites compared to course topics. The results from this coding
is presented in Section 5.

Finally, in order to verify that our codebook was sensible, and
what areas are covered by the other sources presented previously,
we mapped the codes created in this stage to the ACM 2013 Curricu-
lum Guide, the Core Concepts and the Misconception Catalogue.
For the first two, this mapping was also done independently by two
researchers in a similar fashion to the coding. The mapping to the
Misconception Catalogue was done by a single researcher. These
mappings are presented in Section 4.1, Tables 1 to 6.

3.3 Solution Development 2 - Differentiated
Assessments

The purpose of this step was to modify a subset of the assessments
that contain both prerequisites and course topics to make them
differentiated, so that they can be used to diagnosewhether a learner
is struggling with prerequisites, course topics, or both. From the
modified assessments, we also distilled a number of patterns and
principles that can be applied to other assessments to make them
differentiated.

When modifying questions, two researchers started by review-
ing the previously coded prerequisite skills for the assessment and
decided which of them to assess explicitly. We opted not to assess
all prerequisites explicitly and individually in order to not increase
the size of the question too much. This decision was based on two
things: (a) the researchers’ pedagogical content knowledge about
student difficulties for the assessments’s course topics, and (b) pre-
vious experience with the assessment in particular in their course
and students’ learning difficulties. This means that the modified ex-
ercises will only be able to indicate that some prerequisite is missing,
or perhaps that one of a few well-known prerequisites are missing.

Previous experience was available for all assessments except one
(M.1) and the questions in the BDSI as none of the working group
members had used them in their courses.

This phase was conducted in a similar manner to the previous
one. First, two researchers set out to modify one question. This
resulted in a number of patterns, only some of which were used,
that were later generalized into the patterns and principles in the
next phase. After this, other pairs of researchers modified other
questions in the same way with the help of the previously identified
patterns, thus validating and refining the patterns from the previous
iterations. After a number of iterations of this process, modifying
a number of questions, we arrived at the modified questions in
Appendix M, some of which are presented in Sections 6.2 to 6.4.

3.4 Reflection to Produce Principles -
PAPRIDA

In this phase, we examined the patterns and our experiences us-
ing them to create differentiated assessment (above), and gener-
alized them into a number of patterns and principles for making
assessments more differentiated, called PAPRIDA (PAtterns and
PRinciples for Differentiated Assessment). The start of this phase
essentially took place alongside the previous phase in the form
of collecting patterns and associated experiences while modifying
questions. The first researchers proposed a number of potential pat-
terns after modifying the first questions. These were then explored
by other researchers in the context of other questions, where they
were refined, and new patterns were suggested. When all questions
were modified, these patterns and the experiences related to them
were collected and generalized to produce the list presented in Sec-
tion 6.1. As these patterns and principles were refined throughout
the assessment modification phase, the constant re-visiting and
application of them serves as an initial validation of the patterns
and principles. Note, however, that while PAPRIDA contains a set of
useful patterns and principles for making questions differentiated,
it is most likely not complete as it is rooted only on the structure
of the initial questions collected.

4 RESULTS: PREREQUISITE SKILLS IN
ADVANCED CS QUESTIONS

To answer RQ1: “What prerequisite skills do advanced CS questions
depend on?”, we analyzed a number of existing assessments as
described in Section 3. Our main contribution related to RQ1 is
the codebook produced during our empirical work of analyzing
the advanced questions, which is presented below. We also present
our coding of each of the individual questions. These two pieces of
information contribute to answering RQ1. The codebook represents
a set of possible prerequisites that should be considered as possible
candidates for prerequisite skills in assessments. The coding of the
questions contributes by giving concrete examples of the issue we
aim to address in this paper, and which prerequisite skills they
depend on.

4.1 The Codebook
We divided the codebook into the following six groups for ease of
navigation:

• Basic Notional Machine
• Loops
• Values and Types
• Functions
• Objects
• High Level Skills

The codebook is presented in Tables 1 to 6 below. These tables
also contain the mapping between our codes and the ACM 2013
Curriculum Guidelines, the Core Concepts and the Misconception
Catalogue including an example misconception of each category.
These mappings might aid the decision of which categories to
include when modifying questions. For example, based on where
they appear in the ACM Curriculum Guidelines, the estimated
difficulty in the Core Concepts or bymisconceptions that are known
to be common in the Misconception Catalogue. By examining the
mappings, we can see that all of our codes correspond to something
in at least one of these three mappings.

Most of our codes correspond to one or more Knowledge Units
in the ACM Curriculum Guidline. There are, however, exceptions
such as object scoping and data which does not map to a Knowledge
Unit. This does not mean that the ACM Curriculum Guidelines lack
these particular topics, but rather that the Knowledge Units are at
such a high level that no particular Knowledge Unit corresponds
well to these codes. Another similar discrepancy is illustrated by
the operators code, which maps to the SDF/Fundamental Program-
ming Concepts/Expressions and assignments, which is too general to
express this skill, and thus appear for multiple codes, such as simple
statements and assignments. The same thing is true for the codes
return and return values, which both map to the SDF/Fundamental
Programming Concepts/Functions and parameter passing Knowledge
Unit. From the mapping we can also see that the Core Concepts
and the Misconception Catalogue lack some skills that are covered
by our codes. This could be attributed to the fact that prerequisite
skills vary depending on the context. For example, our code API
usage represents a skill that is not necessarily an introductory skill,
but still was a prerequisite skill for some of the analyzed assess-
ments. However, some other skills were missing from these two, for
example return value, which is not represented in either the Core
Concepts or in the Misconception Catalogue.

4.2 Coding of Assessments for Course Topics
Tables 7 and 8 contain our coding of our initial 11 assessments
(Table 7) and the 13 questions in the BDSI (Table 8). All of these
questions are available in Appendices M and O.

From our coding of the questions, we can see that there are a
number of questions that differ in their relation to prerequisite
skills. We found three broad types of questions:

The first type is assessments that mostly focus on prerequisite
skills. Not surprisingly, a typical example of such assessments are
pre-exams that are given to students in the beginning of a course in
order to assess prerequisite skills. These typically cover skills that
are almost entirely captured by the skills presented in Section 4.1.
See Appendix O.2 for an example of this kind of question.

Another type of questions that almost exclusively assesses course
topics, meaning that almost none of the skills assessed by the ques-
tion appear in Section 4.1. Many of the questions were found in

the BDSI, and asked the student to reason about a data structure in
higher-level terms. For example, see question M.6 in the Appendix.
Other similar questions were found in a course on algorithm de-
sign, where the student was asked to reduce problems into suitable
standard algorithms (Appendix O.4). This type of questions has an
empty column for prerequisites, as can be seen in column M.6 of
Table 7. It is worth pointing out that this does not mean that these
questions do not have prerequisites; it only means that these pre-
requisites are not related to basic programming skills, but perhaps
aimed more towards skills in algorithmic thinking, analytical think-
ing, logical reasoning, abstraction, or mathematics. They may also
have prerequisites to actually learn the material, but the question
itself does not require applying those prerequisite skills directly;
for example, a question about the behavior of a data structure may
not directly refer to code describing that behavior.

The final type of questions assess both prerequisite skills and
course topics to a high degree. This is perhaps the type of questions
that are most interesting to examine in the context of this research,
as these typically have the property that if a student fails to answer
a question, it is often difficult to attribute the failure either to the
course topic or to a prerequisite skill. This does not, however, mean
that such questions are undesirable. On the contrary, most questions
of this type contained many prerequisites because they require the
student to show that they are able to integrate the course topics
into their prerequisite knowledge, and use it to solve some kind of
real problems. Most of the questions we coded are of this type; for
example see question M.5 in the Appendix with our coding of its
prerequisites in Table 7.

5 RESULTS: IS THE BDSI ABLE TO DIAGNOSE
PREREQUISITES?

To answer RQ2: “To what extent can an existing concept inventory
for data structures with a validity argument – the BDSI – also
diagnose difficulties with prerequisite skills?”, we also examined
all distractors for each question in the BDSI. For each distractor,
we coded which prerequisites and course topics a student might
have difficulties with when picking that distractor over the correct
answer. From this analysis, we found that all 13 questions in the
BDSI fall into five broad groups regarding how prerequisites and
course topics interact:

Group 1 – B.4, B.9, B.13: These questions almost exclusively as-
sess course topics (some of them assess meta-tracing knowl-
edge as well). As such, they do not indicate problems with
prerequisites (which is good in this case). For example, ques-
tion B.4 asks about the time complexity of certain operations
of a linked list, which does not depend on any prerequisites.

Group 2 – B.2, B.11: These questions contain both prerequisites
and course topics, but none of the distractors allow drawing
conclusions regarding whether a learner has difficulties with
prerequisites or course topics.

Group 3 – B.1, B.3, B.5, B.8, B.10: These questions contain both
prerequisites and course topics, and some of the distractors
indicate that prerequisite skills are the issue rather than
course topics. Other distractors do not make this distinction.

Table 1: The Codebook: Basic Notional Machine

Basic Notional Machine
Skill ACM Knowledge Unit Core Concepts Misconception Catalogue
Simple Statements: A basic understanding of
statements in a language.

SDF/Fundamental
Programming
Concepts/Expressions and
assignments

Operators: Skills related to operators cover both
being able to use arithmetic and comparison op-
erators. Examples of these include questions re-
lated to operator precedence and Boolean logic.

SDF/Fundamental
Programming
Concepts/Expressions and
assignments

OP (Operator
Precedence), BOOL
(Boolean Logic)

Assignments: Understand how assignments
work (e.g., the direction of the assignment), and
that there is a difference between assignment
and “equality” as used in mathematics.

SDF/Fundamental
Programming
Concepts/Expressions and
assignments

AS (Assignment
Statements)

VarAssign: “Primitive
assignment works in
opposite direction.”

Basic input and output: These skills are re-
lated to being able to output messages and the
value of variables to standard output and read
data from standard input.

SDF/Fundamental
Programming
Concepts/Simple I/O

Tracing: Being able to follow the step-by-step
instructions in a program by utilizing knowledge
of the notional machine while keeping track of
the relevant state of the computation (e.g., vari-
ables, types).

SF/Computational
Paradigms,
application-level
sequential processing

CF (Control Flow) Ctrl: “Difficulties in
understanding the
sequentiality of statements.”

Debugging: Refers to basic debugging skills to
localise the bug, and to identify mismatch be-
tween intended outcome and actual outcome.

SDF/Development
Methods, debugging
strategies

DEH
(Debugging/Exception
Handling)

Conditionals: How if- and switch-statements
behave, for example that only one branch in an
if-else statement is taken.

SDF/Fundamental
Programming
Concepts/Conditional and
iterative control structures

BOOL (Boolean Logic),
COND (Conditionals)

Ctrl: “Code after if
statement is not executed if
the then clause is.”

Table 2: The Codebook: Loops

Loops
Skill ACM Knowledge Unit Core Concepts Misconception Catalogue
Loop constructs: Basic knowledge of the dif-
ferent looping constructs (typically, for, while
and do-while). For example, that the condition
is only executed before each time the loop body
is executed in a for loop, and not between each
statement.

SDF/Fundamental
Programming
Concepts/Conditional and
iterative control structures

IT1 (Tracing execution
of nested loops), IT2
(Understanding that
loop variables can be
used in expressions that
occur in the body of a
loop)

Ctrl: “while loops terminate
as soon as condition changes
to false.”

Array iteration: Being able to utilize loops to
iterate arrays, either using regular loops and in-
dices, or any dedicated syntax for the task.

SDF/Fundamental Data
Structures/Arrays

AR1 (Identifying and
handling off by one
errors when using in
loop structures)

Table 3: The Codebook: Values and Types

Values and Types
Skill ACM Knowledge Unit Core Concepts Misconception Catalogue
Types: Being able to associate a type to each
variable, and trace the type information together
with the value of the variable. This might involve
finding and examining the type declaration in
statically typed languages, or relying entirely on
tracing in dynamically typed languages.

SDF/Fundamental
Programming
Concepts/Variables and
primitive data types (e.g.,
numbers, characters,
Booleans) and PL/Basic
Type Systems/Association
of types to variables,
arguments, results and
fields

TYP (Types) VarAssign: “A variable is
(merely) a pairing of a name
to a changeable value (with a
type). It is not stored inside
the computer.” Misc: “A type
is a set of constraints on
values..”

Values and references: The ability to differen-
tiate between values and references (or pointers)
to values, and the differences between making
copies of a value and a reference to a value.

SDF/Fundamental Data
Structures/References and
aliasing

MMR (Memory Model/-
References/Pointers),
PVR (Primitive and
reference type variables)

Refs: “Even primitive values
(in Java) are handled through
references.”

Indirection: The ability to identify whenever
a reference (or pointer) is traversed in order to
access the value being referred to. Depending
on the language, this might happen explicitly
(e.g., pointers in C), or implicitly (e.g., accessing
attributes in Java).

SDF/Fundamental Data
Structures/References and
aliasing

MMR (Memory Model/-
References/Pointers),
AR2 (Understanding the
difference between a
reference to an array
and an element of an
array)

Refs: “Once a variable
references an object, it will
always reference that object.”

Arrays: Declaring and indexing arrays, and
what happens when the index is out of bounds.

SDF/Fundamental Data
Structures/Arrays

AR2 (Understanding the
difference between a
reference to an array
and an element of an
array), AR3
(Understanding the
declaration of an array
and manipulating an
array)

Misc: “Confusion between
an array and its cell.”

Table 4: The Codebook: Functions

Functions
Skill ACM Knowledge Unit Core Concepts Misconception Catalogue
Parameters: Being able to declare and use func-
tion parameters to pass data into a function.

SDF/Fundamental
Programming
Concepts/Functions and
parameter passing

PA1 (Understanding the
difference between call
by reference and call by
value semantics), PA2
(Understanding the
difference between
formal parameters and
actual parameters)

Sorva’s “Methods” Topic is
more related to OO design
issues than function/method
calls. There is a separate
Calls Topics that deals with
these issues.

Return values: Being able to declare and use
function return values (or output parameters) to
pass data out of a function. “Void” return values
are included here.

SDF/Fundamental
Programming
Concepts/Functions and
parameter passing

Calls: “A function (always)
changes its input variable to
become the output.”

Return: Being able to use “return” to stop exe-
cuting a function and return to the caller.

SDF/Fundamental
Programming
Concepts/Functions and
parameter passing

Function scoping and data flow: Being able
to understand the scoping of local variables in a
function, that the local variables are not shared
between different invocations of the same func-
tion, and where parameters and return values fit
in the model.

SDF/Fundamental
Programming
Concepts/Functions and
parameter passing

PA3 (Understanding the
scope of parameters,
using parameters in
procedure design), SCO
(Scope)

Recursion: The ability to understand and uti-
lize recursive function calls, how execution flows
through recursive functions and how values
from operations are processed and stored. This
is essentially only a special case that requires a
better understanding of the three previous skills:
parameters, returns and function scoping and data
flow. It is however useful to separate this skill
from the others, as recursion in itself is often
problematic.

SDF/Fundamental
Programming
Concepts/The concept of
recursion

REC (Recursion) Rec: a Topic of its own.

Table 5: The Codebook: Objects

Objects
Skill ACM Knowledge Unit Core Concepts Misconception Catalogue
Classes/records/ADT: Being able to declare
classes or records. This means to have under-
stood their role in providing a template for in-
stantiating objects which took part in the compu-
tation. It should be clear that classes define new
(user-defined) types and they are units of encap-
sulation and scope, but not, for example, a way of
ordering method calls (the order of method dec-
laration is not relevant even w.r.t. their forward
use in most OO languages).

SDF/Fundamental Data
Structures/Records and
structs (heterogeneous
aggregates),
SDF/Algorithms and
Design/fundamental
design concepts and
principles, encapsulation
and information hiding,
PL/Object Oriented
Programming, Definition
of classes, methods and
constructors, PL/Basic
Type Systems/Compound
types built from other
types

CO (Classes and objects) OtherOOP: “An object is just
a record.”

Object/instance/variable: Being able to differ-
entiate between a class and an object (i.e., an
instance of the class, or an instance of a type),
or different instances of the same class. This in-
volves being able to distinguish which objects
(i.e., instances of a class or other memory entities
of a built-in type) are active at a given point of
a computation, in particular which objects have
different identity (and, possibly, state) although
they have the same type. The difference between
references equality and object equivalence, the
understanding of the problems of deep copies of
complex objects is another important OOP basic
skill. See also “Values and Types”.

CO (Classes and objects) ObjClass: “Confusion
between a class and its
instance.”

Object scoping and data: Understand the
lifetime of members of objects in relation
to the object as a whole and the program.
Class creation strategies (syntactic and seman-
tic details can be quite different among differ-
ent languages) define the lifetime of instance
variables and methods (collectively known as
members). A student should be able to differ-
entiate among static visibility rules (public/
protected/ private/package in Java) and the
accessibility of a specific entity, since even a pri-
vate member can be reached by holding a refer-
ence returned by a method.

SCDE (Scope Design,
understanding
difference in scope
between fields and local
variables, appropriately
using visibility
properties of fields and
methods, encapsulation)

ObjState: “During a method
call, an object attribute is
duplicated as variable. The
local variable is initialized
from the updated by the
method, then returned to
object at”

Static: Understand the difference between static
and non-static members of a class. Member ob-
jects can be shared among the instances of the
same class1. The role of static (to use the Java
lingo) members and their special initialization
rules should be well understood.

STAM (Static variables
and methods)

Table 6: The Codebook: High Level Skills

High Level Skills
Skill ACM Knowledge Unit Core Concepts Misconception Catalogue
Coding style: Understand and utilize elements
of the language to make it easier to understand
and reason about the code. Involves for example,
comments, naming, use of empty lines, indenta-
tion, etc.

SDF/Development
Methods/Documentation
and program style

API usage: Being able to find and use functions
in some library (e.g., the standard library of the
language). This involves searching for relevant
functions, and reading the documentation to un-
derstand the semantics.

SF/Cross-Layer Communi-
cations/Programming
abstractions, interfaces,
use of libraries

Problem decomposition: Being able to decom-
pose a larger problem into smaller pieces with
known solutions. For example, figuring out that
a particular problem can be expressed in terms of
a graph and use an appropriate graph algorithm
to solve the problem.

SDF/Algorithms and
Design/Fundamental
design concepts and
principles, Abstraction,
Program decomposition

DPS1 (Design and
problem solving 1,
understands and uses
functional
decomposition and
modularization), APR
(Abstractions/Pattern
Recognition and Use)

Reasoning about constraints: Being able to
reason about what is known and what is
not known about the specification (i.e., pre-
conditions) and reason about their implications
on a particular piece of code or a particular
method of solving a problem. For example, the
array is not sorted, so using binary search is not
possible without sorting the array first. There-
fore, a linear search is faster.

DPS2 (Design and
problem solving 2,
Ability to identify
characteristics of a
problem and formulate
a solution design)

Meta-tracing knowledge: Knowing you need
to go through some algorithmic process step by
step to check an answer, executing/keeping track
of a representation of computation. Knowing
when you need to use an external representa-
tion (and the representation is good enough).
Knowing where your limits are. For example,
if a problem says: “trace this code”, it probably
does not involve meta-tracing since the problem
explicitly tells the student to trace the code.

SVS (Syntax vs.
semantics,
understanding the
difference between a
textual code segment
and its overarching
purpose and operation)

Table 7: The results of our qualitative coding of prerequisites assessed in the questions from advanced courses shown in
Appendix M (questions that were eventually modified) and Appendix O (questions that were only used to devise the coding).

Qualitative codes M.1 M.2 M.3 M.4 O.1 O.2 O.3 O.4 O.5 O.6 O.7
Simple statements x x x x x x x x x x
Operators x x x x x x
Assignments x x x x x x x x x x
Basic input and output x x
Tracing x x x x x x x x
Debugging x
Conditionals x x x x
Loop constructs x x x x x
Array iteration x x x x
Types x x x x x x
Values and references x x x x x
Indirection x x x x
Arrays x x x
Parameters x x x x x x x x x
Return values x x x x x x x
Return x x
Function scoping and data flow x x x x x x x
Recursion x x
Classes/records/ADT x x x x x x x
Object/instance/variable x x x x
Object scoping and data x x
Static
Coding style
API usage x x
Problem decomposition x x x
Reasoning about constraints x x x x
Meta-tracing knowledge x x x x x x x x x x

Table 8: The results of our qualitative coding of prerequisites assessed in the questions in the BDSI. Note that B.6 and B.8 were
eventually modified and are therefore available in the Appendix.

Qualitative codes B.1 B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11 B.12 B.13
Simple statements x
Operators x x
Assignments x x
Basic input and output
Tracing x
Debugging x
Conditionals x
Loop constructs x
Array iteration
Types
Values and references x x x x
Indirection x x
Arrays
Parameters x x
Return values x x
Return x
Function scoping and data flow x x
Recursion x x
Classes/records/ADT x
Object/instance/variable x x x
Object scoping and data
Static
Coding style
API usage
Problem decomposition x
Reasoning about constraints
Meta-tracing knowledge x x x x x x x x x x

Group 4 – B.6, B.12: These questions rely heavily on tracing skills,
of course paired with some course topics. Therefore, an incor-
rect answer here likely means that some prerequisite is weak,
perhaps in addition to some course topics. The distractors
do not allow pinpointing the issue, however.

Group 5 – B.7: This question relies heavily on tracing skills, and
as such incorrect answers mean that some prerequisite is
weak. The combination of selected distractors do allow nar-
rowing down the set of prerequisites quite well.

Below, we present a few examples of some questions in the BDSI
along with an explanation of what skills the different distractors
could indicate difficulties with. We have selected examples that
illustrate the situation in groups 2 and 3, as they are the most inter-
esting to explore further. We also provide a detailed breakdown of
the possible answers to question B.7. All of the question statements
are summarized for brevity, but the associated code and all possible
answers, except for the correct answer, are reproduced verbatim.
We have also rearranged the order of the answers and thus changed
their labels. This is to make it more difficult for potential future tak-
ers of the test to find and memorize the correct answers to the BDSI
online. Furthermore, in our analysis, the correct answer is generally
uninteresting, and its omission does not impact the presentation of
our results.

5.1 BDSI: Group 2, Question B.2
This question asks the student to compare two implementations of
singly linked lists. One with a reference to the head of the list, and
one with a reference to both the head and the tail. For each of the
operations described below, the student is asked to select which
(zero or more) operations would have better execution time (i.e.,
faster worst-case time complexity) in an implementation with a tail
reference compared to one without a tail reference.

(a) Add a given element to the beginning of the linked list.
(b) Remove the last element from the linked list.
(c) Return True if the linked list contains a given element.
In this case, all answers involve course topics (in this case, mainly

what a tail reference is). Thus, none of the distractors are able to tell
whether a student fails to understand some aspect of a tail reference,
or if they fail to understand the implications of that aspect due to
lacking prerequisite skills.

5.2 BDSI: Group 3, Question B.1
This question asks the student to complete the following implemen-
tation of the addAtTail function, which adds an element at the
end of a singly linked list that maintains both a head and a tail
reference:
DEFINE addAtEnd(e)

IF tail == nil THEN
head = tail = new MyListNode(e)

ELSE
// MISSING CODE

ENDIF
ENDDEF

The student is then asked to select one of the following five
answers:

(a) temp = new MyListNode(e)
tail = temp

(b) temp = new MyListNode(e)
tail.next = temp

(c) tail.next = e
tail = e

(d) temp = head
WHILE temp.next != nil DO

temp = temp.next
ENDWHILE
temp.next = new MyListNode(e)

Each of these answers highlight difficulties in prerequisites and/or
course topics as follows:

(a) A student picking this answer over the correct answer could
have difficulties with object/instance/variable (e.g., a student
who does not understand that there are difference instances
of MyListNode will likely not see the point in linking them),
meta-level tracing (in this case, all operations only using
the tail reference would work, while others do not), or with
linked lists (e.g., forgetting that all nodes need to be reachable
from the head).

(b) A student picking this answer over the correct answer likely
has difficulties with either meta-tracing knowledge (in this
case, the implementation works for one insertion, but not
for two), or with linked lists (e.g., not understanding the
purpose of the tail reference).

(c) A student picking this answer over the correct answer likely
has difficulties with either types or object/instance/variable.
The solution is correct, except that both tail and tail.next
are supposed to refer to a node rather than an element. This
could either be due to the student not realizing this through
reasoning about the types, or by not realizing that a new
node instance needs to be created.

(d) This solution would be correct in a linked list without a tail
reference. As such, a student picking this answer over the
correct answer is likely able to trace and understand the code,
while only having difficulties with linked lists (in particular,
tail references).

5.3 BDSI: Group 3, Question B.3
This question asks the student to investigate whether an imple-
mentation of a LinkedList class is using a singly linked list (with
only a head reference), or a doubly linked list (with both head and
tail references). The implementation is not provided, nor accessible.
As such, the only option remaining is to conduct a small exper-
iment (i.e., execute some of the operations on the list) and draw
conclusions from there. The student is asked to select which of the
following experiments is the best option:

(a) Create two instances of the LinkedList and test the timing
of the first against the timing of the second. LinkedList
for all List methods. If the timings between the first and
second instances are close for all methods, the unknown
LinkedList implementation is a singly linked list, otherwise
it is a doubly linked list.

(b) Author a singly linked list class of your own and test the
timing of it against the timing of the unknown list for all

methods. If the timing between your singly linked list and
the unknown list is exactly the same for all methods, the
unknown list is a singly linked list, otherwise it is a doubly
linked list.

(c) Execute 𝑛 addAtEnd operations followed by 𝑛 removeAtEnd
operations; if the removeAtEnd operations take much longer
than the addAtEnd operations, we have a singly linked list,
otherwise it is a doubly linked list.

(d) None of the above experiments would be able to answer this
question. You would need to be able to examine the code to
determine if the implementation uses a previous reference.

As is the case with question 2, most options involve both course
topics (asymptotic notation and linked lists in this case) and prereq-
uisites. As such, most distractors does not distinguish between the
two. The distractor (a) is, however, interesting. It suggests that one
can differentiate between a singly linked list and a doubly linked
list by creating two instances of the unknown class, and doing the
same sequence of operations to each of them in turn while mea-
suring the time. For this to be true, the two instances of the class
need to behave differently in some regard, which in turn implies
some shared state between them. In particular, this would be true
for a student who do not realize that different instances have a
different set of member variables, and thus append all elements
from the two instances to a single list. This reasoning implies that
a student who picks the distractor (a) is likely to have difficulties
with object/instance/variable.

5.4 BDSI: Group 5, Question B.7
This question asks the student to select all correct implementations
of a function, sum_leaves, that computes the sum of all leaves in
a binary tree (the exercise also contains a simple TreeNode class
containing the variables item, left and right). The following two
examples are provided to illustrate the expected behavior of the
function:

4

4 6

sum_leaves should return 10

4

4 4

4 1

4

sum_leaves should return 12

The following four implementations are provided, and students
are asked to select all that apply:

(a) DEFINE sum_leaves(node)
value = 0
IF node.left == nil AND node.right == nil THEN

value = value + node.item
ENDIF
IF node.left != nil THEN

sum_leaves(node.left)
ENDIF
IF node.right != nil THEN

sum_leaves(node.right)
ENDIF

RETURN value
ENDDEF

(b) DEFINE sum_leaves(node)
IF node.left == nil AND code.right == nil THEN

RETURN node.item
ENDIF
IF node.left != nil THEN

RETURN node.item + sum_leaves(node.left)
ENDIF
IF node.right != nil THEN

RETURN node.item + sum_leaves(node.right)
ENDIF
ENDDEF

(c) DEFINE sum_leaves(node)
value = 0
WHILE node != nil DO
IF node.left == nil AND node.right == nil THEN

value = value + node.item
ENDIF
IF node.left != nil THEN

node = node.left
ELSE IF node.right != nil THEN

node = node.right
ENDIF

ENDWHILE
RETURN value
ENDDEF

(d) DEFINE sum_leaves(node)
IF node == nil THEN

RETURN 0
ELSE IF node.left == nil AND node.right == nil THEN

RETURN node.item
ELSE

RETURN sum_leaves(node.left)
+ sum_leaves(node.right)

ENDIF
ENDDEF

In this multiple choice question, it is interesting to explore all
combinations of distractors selected by the student, as the combina-
tion can be used to better pinpoint which prerequisites (or course
topics) that might be problematic:

(a) return value or recursion
(b) return
(c) meta-tracing knowledge
(d) -

(a,b) return and function scoping
(a,c) recursion and meta-tracing knowledge
(a,d) function scoping
(b,c) return and loops
(d,b) return
(d,c) meta-tracing knowledge

(a,b,c) Likely conditionals
(a,b,d) Likely recursion
(b,c,d) You know function scoping and return values, but not loops

and return

(a,b,c,d) Many areas: meta-tracing knowledge, recursion and loops.
Likely only looks at the keywords and see if they appear.

From these examples, we can see that the distractors often do
not distinguish between difficulties in prerequisites and course
topics. In principle B.7 might be able to, as the many combinations
of highlighted answers can be used to pinpoint the prerequisite
difficulties quite well. However, students might also randomly guess
or use other reasoning in practice, so empirical validity work with
students would be needed to check the quality of these inferences
in practice. This question does, however, not assess many course
topics (in this case, only basic knowledge of trees) as it focuses on
tree traversal.

6 RESULTS: DIFFERENTIATED ASSESSMENTS
AND PAPRIDA

To answer RQ3: “What are examples of differentiated assessments
and principles for designing differentiated assessments?”, we uti-
lized the results from RQ1 (Section 4) and modified a number of
the analyzed questions to make them able to differentiate between
difficulties with prerequisite skills and course topics. During these
modifications, we also collected a set of patterns and principles to
do these modifications, which we later generalized into PAPRIDA
(PAtterns and PRinciples for Differentiated Assessment). In this
section, we start by presenting the patterns and principles, fol-
lowed by a detailed presentation of the analysis and modifications
to one question from each of the three course topics: advanced
object-oriented programming, data structures and concurrency.

Each of these questions will be examined in detail. For each ques-
tion, we will present what course topics the question is designed to
assess, along with some additional background. After that, we will
describe the steps taken to modify the question: first the question is
analyzed to find prerequisites. Then, a number of those are selected
to be assessed explicitly. It is usually not wise to assess all prereq-
uisites explicitly in a way that it is possible to distinguish between
all of them as that would dramatically increase the size of the as-
sessment considerably. Finally, we apply a number of patterns and
principles from PAPRIDA to make the modifications to the question.
Thus, these examples can be seen as “worked examples” of how
to apply PAPRIDA to improve a question, either by making the
question explicitly assess the prerequisites, or by introducing new
prerequisites that are explicitly assessed to a question. Additional
questions we modified are reported in Appendix M.

6.1 PAPRIDA: PAtterns and PRinciples for
Differentiated Assessment

Below, we present PAPRIDA (PAtterns and PRinciples for Differenti-
ated Assessment), which represents a set of patterns and principles
that are helpful to explore in order to modify existing questions or
to construct new ones.

Show your work: One relevant strategy instructors already use
with questions to diagnose skills on the course topic is for
learners to show all their work. This method does indeed
reveal misconceptions in prerequisites, but is time consum-
ing to grade, and learners may not actually show enough

to diagnose their skills (especially if learners feel the allot-
ted time is short). As such, depending on the context for
the assessment, this strategy might not always be suitable.
For example, if the goal is to add some small items to an
already large assessment, it might be better to explore other
strategies first.

Asking for details: One alternative to the previous approach is to
add a small question that asks the student for some specific
detail of the code in the question related to some prerequisite
skills. This could, for example, be to ask the student to point
to lines in the code that accesses a particular part in memory
or asking for the type of a particular expression in a particular
context. This is used in the concurrency exercises to assess
whether students know when Indirection occurs. The benefit
of this approach is that it does not increase the grading time
by much, while still giving an indication of the prerequisite
skills, but it might be difficult to find a small but precise
enough such question. Another option is to insert a print
statement that outputs something very specific and ask about
that.

Altering terminology: One approach that might be used to as-
sess new prerequisites to a question that previously assessed
few of the prerequisites is to alter the terminology slightly.
For example, instead of using high level terms, such as “ac-
cessing by index” one could use “array.get(index)” to
require Arrays into the assessment. When used in the main
question text, this does not necessarily make the question
able to differentiate between prerequisite skills and course
topics, but strategic use of this method, perhaps in a distrac-
tor, is useful for assessing this difference.

Introducing aliasing: One approach that was used to assess Val-
ues and references in the concurrency exercises was to break
out parts of the code that modifies some variable into a new
function with the data passed as a reference parameter. The
formal and actual parameters should have different names
so that the student has to make the connection between
them explicitly. A print statement placed after the call to
the new function can then be used to clearly see if a student
understands which modifications are visible in the caller and
which are not, and thus whether or not the student under-
stands the difference between values and reference and their
semantic when used as function parameters. This can thus
also be used to assess Function parameters and Indirection.

Renaming variables: Another approach that was used in con-
junction with the above one is to rename reference variables
in different functions. For example, if multiple functions
access the same data structure by reference, renaming the
parameter so that it has different names in each function
makes it impossible to rely on pattern-matching to arrive at
the conclusion that they might refer to the same value, and
thus introducing the Values and references skill. This can be
properly assessed by adding a strategic print statement, or a
short piece of code that executes two of the functions with
the same data as parameter to check what student under-
stands.

Adding another instance: A final approach that was used in the
data structure and algorithms questions was to introduce

multiple instances of a data structure in some part of the
question. This requires students to be aware of the Object
skill in order to be able to differentiate between the instances
while tracing the implementation of some algorithm.

Adding distractors: In case of a multiple-choice question, having
coded the prerequisites implicitly assessed in the question
makes it possible to introduce additional distractors that ex-
plicitly address misconceptions related to the prerequisites.
Note that this kind of distractors differ from those typically
found in multiple choice questions. These distractors are
concerned with misconceptions in prerequisites, and not
misconceptions in the course topics. This approach is bene-
ficial to pair with one of the others to introduce additional
possibilities for creating relevant distractors.

Distractors with code: One interesting example we found in the
BDSI was to have a number of distractors containing code,
where the student need to select the pieces of code that are
correct. This type of question opens up for checking many
prerequisite misconceptions, as they allow each distractor
to highlight a different set of them. Picking these sets with
care allow all combinations of selections (assuming students
may select more than one) to highlight one or a few of the
misconceptions, making it possible to assess many possible
misconceptions with a single question.

6.2 Advanced OOP: Inheritance and
Polymorphism

In this section we will discuss our modifications to a question
about inheritance and OOP. This assignment was designed to make
students consider the problems that might arise when Liskov’s
substitution principle is not fully taken into account. In particular,
if the pre-conditions for using a service provided by both a super-
class and a subclass are stronger for the subclass, clients accessing
subclass objects through references of superclass type might have
constraints/expectations that will be not satisfied.

The question provides an implementation of the classes depicted
in Figure 2 in Eiffel2, and the code in Listing 1 that creates instances
of the classes and calls the member function eat in various ways.
The student is then asked whether different calls to eat is a compile-
time or run-time error, and are then asked to add some constraints.
The full question is presented in Appendix M.4.

To productively focus on the problem, the answering student
should already master at least the following prerequisite skills (from
our qualitative coding):

• Simple Statements
• Operators
• Assignments
• Tracing
• Types
• Values and references
• Indirection
• Parameters
• Classes/records/ADT

2The implementation language is Eiffel, a statically typed language in which method
overriding can change formal parameters in a co-variant way, a choice that is not
possible in Java or C++.

Figure 2: UML Class diagram for the polymorphism assess-
ment

Listing 1: Part of the Eiffel code for assessment on Polymor-
phism (M.4)

1 c l a s s APPLICATION
2 create
3 make
4
5 feature −− Main
6
7 make
8 −− Run a p p l i c a t i o n .
9 l o ca l
10 a : ANIMAL
11 c : COW
12 g : GRASS
13 f : FOOD
14 do
15 create c
16 create g
17 a : = c
18 f : = g −− f o c u s on t h i s
19 p r i n t (a . out + " i s go ing to e a t : " + f . out + "%N")
20 a . e a t (f)
21 end
22
23 end

• Meta-tracing knowledge

In particular, a clear understanding of references, the impact of
their types, the handling of method parameters, and the ability to
trace the flow of the computation are key for solving the exercise.
Thus, it could be useful to add a couple of specific questions able
to make evident the weaknesses or misconceptions in these areas.
Tracing questions can be exploited in order to check that the ac-
quaintance with the basic OOP notional machine is solid enough
to support the OOP concepts. To this end, the assessment needs
some updates. The out methods (see Appendix M.4 for the full
source code) can be used to query and print the dynamic type of
an object, therefore they can be leveraged on in tracing questions.
Some useful modifications are (see Listing 2):

(1) Add a new concrete FOOD class (e.g., PLANKTON) and create
an object p from this class (Adding another instance, a class
in this case, from Section 6.1)

Listing 2: The modified Eiffel code for the modified assess-
ment on Polymorphism (M.4). Additions are highlighted.

1 feature −− Main
2
3 make
4 −− Run a p p l i c a t i o n .
5 l o ca l
6 a : ANIMAL
7 c : COW
8 g : GRASS
9 f : FOOD
10 p : PLANKTON
11 do
12 create c
13 create g
14 create p
15 g . grow (5)
16 a : = c
17
18 −− l o g _ f o o d 2 (f) −− l o g _ f o o d (f) n o t l e g a l
19 f : = g
20
21 l o g_ f ood (p)
22 l o g_ f ood (g)
23 l o g_ f ood (f)
24
25 p r i n t (a . out + " i s go ing to e a t : " + f . out + "%N")
26 a . e a t (f)
27 p r i n t (" F i n i s h e d !%N")
28 end
29
30 l o g_ f ood (x : FOOD)
31 do
32 p r i n t (" The food x i s : " + x . out + "%N")
33 end
34
35 l o g_ f ood2 (x : d e t a c h a b l e FOOD)
36 do
37 i f a t t a c h e d x then
38 p r i n t (" The food x i s : " + x . out + "%N")
39 e l se
40 p r i n t ("No x%N")
41
42 end
43 end
44 end

(2) Add amethod log_foodwith a parameter x of type FOOD, the
method just prints the dynamic type of the actual parameter
bound to x (Asking for details from Section 6.1)

(3) Add a question about the output of log_food(p), log_-
food(g), log_food(f), where g is a reference to a GRASS
object and f is a reference to a GRASS object of FOOD static
type. Note that it would not be legal to call log_food with
f as an actual parameter before assigning it to a concrete
object. In order to do this, the type of the parameter must
be marked as detachable3. This observation can be used to
assess the students’ understanding of nullable references by
asking why the call to log_food2 at line 18 is legal while
log_food is not. (Asking for details from Section 6.1)

6.3 Data Structures
In this subsection, we describe our modifications to a data structure
exam problem. The problem is available in Appendix M.1, but we

3In Eiffel types are by default “attached”, meaning that they do not permit void (null)
values: to support null references, a type must be declared as detachable.

provide a summary here. The question presents students with the
code in Listing 3 and are asked to:

(a) determine whether it implements a stack, a queue, a priority
queue or a union find data structure

(b) implement a suitable size method (from four options)
(c) determine which out of four possible invariants are upheld

by the data structure
(d) trace the behavior of a sequence of insertions and removals
(e) reason about the number of array accesses the removemethod

performs in the worst case
(f) reason about the number of array accesses the most expen-

sive public operation perform in the worst case
(g) reason about a generic sequence of operations
(h) reason about memory consumption of the data structure

Listing 3: Code from the data structure question (M.1)
1 public class Y<Key extends Comparable <Key >>
2 {
3 private Key[] A = (Key[]) new Comparable [1];
4 private int lo, hi, N;
5 public void insert(Key in)
6 {
7 A[hi] = in;
8 hi = hi + 1;
9 if (hi == A.length) hi = 0;
10 N = N + 1;
11 if (N == A.length) rebuild ();
12 }
13 public Key remove () // assumes Y is not empty
14 {
15 Key out = A[lo];
16 A[lo] = null;
17 lo = lo + 1;
18 if (lo == A.length) lo = 0;
19 N = N - 1;
20 return out;
21 }
22 private void rebuild ()
23 {
24 Key[] tmp =
25 (Key[]) new Comparable [2*A.length];
26 for (int i = 0; i < N; i++)
27 tmp[i] = A[(i + lo) % A.length];
28 A = tmp;
29 lo = 0;
30 hi = N;
31 }
32 }

The code included in the question implements a queue with a
circular array and two integers: lo is the index of the first element in
the queue and hi is the index just after the last element in the queue.
The variable N represents the number of element in the queue. The
array is rebuilt with doubled size whenever the insertion of an
element exhausts the capacity of the array.

The question assesses the following topics on data structures:
• to distinguish among different data structures;
• to understand code implementing a data structures;

• to know worst case and amortized complexity notion;
• to analyse the complexity of an algorithm expressed by a
piece of code

From our analysis of the question, we can also see that it requires
the student to understand the following prerequisite concepts, even
though none of them is assessed explicitly:

• Simple statements
• Operators
• Assignments
• Tracing
• Conditionals
• Loop constructs
• Array iteration
• Types
• Values and references
• Arrays
• Parameters
• Return values
• Function scoping and data flow
• Classes/records/ADT
• Reasoning about constraints
• Meta-tracing knowledge

By further examining the different items, we can see that items
(a) to (d) require close inspection of the code to figure out how the
data structure works, which in turn require skills related to code
comprehension. For example, lines 8 and 17 can be used to rule out
the possibility that the data structure is a stack for item (a), lines
10 and 19 can be used to identify that N is indeed the number of
elements in the stack for item (b), and understanding the circularity
and the rebuilding policy are essential for answering (c) and (d).
Items (e) and onwards are then more focused on course topics (in
this case, mostly asymptotic analysis) while relying on prerequisites
to a lesser extent.

Throughout the exercise, the most critical prerequisites are: oper-
ators (modulus in this case), conditionals, arrays and array iteration.
As these are not assessed explicitly anywhere in the question, and
are deemed critical, we focused our modifications on making these
prerequisites explicit. Our changes to accomplish this are outlined
below. The full modified question is presented in Appendix M.1.

• A new items was added at the end of the tracing task in
item (c), that asks how many times the rebuild method is
called. This assesses the prerequisite knowledge on condi-
tionals and hence ascertains that the building policy has
been understood (Asking for details from Section 6.1).

• Another concrete tracing task was added to assess knowl-
edge on operators (modulus), arrays (indexing and storage),
and array iteration (Asking for details from Section 6.1).

• An item was added that proposes a specific input situation
and asks to establish if it can occur after a sequence of insert
and remove call. This requires the students to reason about
the pre- and post-conditions and the invariants of the code
(Asking for details from Section 6.1).

• We finally add an item to assess knowledge about values and
references. Additionally, this exercise also assesses the ability
to differentiate between an object/ADT and its instances,
which was deemed an important and related prerequisite

skill, even though it was not strictly necessary to answer
the original question. More precisely, students are asked to
establish the values of variable a and b after executing the
following piece of code (Adding another instance/Introducing
aliasing from Section 6.1):

1 Y y = new Y();
2 Y z = new Z();
3 Y w = z;
4 w.insert (3);
5 z.insert (1);
6 y.insert (2);
7 int a = z.remove ();
8 int b = y.remove ();

6.4 Concurrency/Synchronization
The analyzed questions assessing concurrency were designed to
explicitly assess threads, busy-wait, and the student’s ability to use
suitable synchronization primitives (out of semaphores, locks and
condition variables) to solve synchronization issues. This can be
quite clearly seen from the original question in Appendix M.2. The
question presents students with the code in Listing 4, which imple-
ments a buffer containing strings, and asks students to identify and
solve occurences of busy-wait, and then to identify and solve any
remaining synchronization issues. By analyzing the question, we
can see that it also requires the student to understand the following
prerequisite concepts, even though they are not explicitly assessed:

• Simple Statements
• Operators
• Assignments
• Tracing
• Debugging
• Loop constructs
• Array iteration
• Types
• Values and references
• Indirection
• Parameters
• Return values
• Function scoping and data flow
• Classes/records/ADT
• Problem decomposition
• Reasoning about constraints
• Meta-tracing knowledge

By examining the study by Strömbäck et al. [86], which studied
students’ performance on this particular question, we can see that
the authors observed that it was not always clear if particular cate-
gories of incorrect answers were due to students not understanding
concurrency, or had some misconceptions regarding different in-
stances and/or pointers. The authors also noted that some students
attempted to synchronize local variables in functions, suggesting
that students either do not understand what is relevant to synchro-
nize, or that students do not understand function scoping. Because
of this, we want to explicitly assess the skills Objects, Values and
references, Indirection and Function scoping and data flow in order
to be able to properly differentiate difficulties in prerequisites from
difficulties with the course topics.

Listing 4: Code for the concurrency exercise (M.2)
1 struct idea_buffer {
2 // All ideas in the buffer. Empty elements are
3 // set to NULL.
4 const char *ideas[BUFFER_SIZE];
5 // Number of ideas in the buffer.
6 int count;
7 };
8 // Add a new idea to an empty location in the
9 // buffer. Returns 'false ' if the buffer is full.
10 bool idea_add(struct idea_buffer *buffer ,
11 const char *idea) {
12 int found = BUFFER_SIZE;
13 for (int i = 0; i < BUFFER_SIZE; i++) {
14 if (buffer ->ideas[i] == NULL) {
15 found = i;
16 break;
17 }
18 }
19 if (found >= BUFFER_SIZE)
20 return false;
21 buffer ->ideas[found] = idea;
22 buffer ->count ++;
23 return true;
24 }
25 // Get and remove a random element from the
26 // buffer. If no elements are present , the
27 // function waits for an element to be added.
28 const char *idea_get(struct idea_buffer *buffer) {
29 while (buffer ->count == 0)
30 ;
31 buffer ->count --;
32 int pos = rand() % BUFFER_SIZE;
33 while (buffer ->ideas[pos] == NULL) {
34 pos = (pos + 1) % BUFFER_SIZE;
35 }
36 const char *result = buffer ->ideas[pos];
37 buffer ->ideas[pos] = NULL;
38 return result;
39 }

The modified exercise is presented in Appendix M.2. The modifi-
cations address the prerequisite skills through the following modi-
fications:

• The name of the pointer variables referring to the shared
idea_buffer were altered in order to make it impossible to
rely on pattern-matching to realize that the variables inside
the struct may refer to the same variable, thus requiring
the student to understand how pointers work in order to
be able to identify shared data. This is explicitly assessed
by adding the following question (Renaming variables from
Section 6.1):
After executing the following code, what is the value of the
variable res?

1 struct idea_buffer x;
2 idea_init (&x);
3 idea_add (&x, "a");
4 int res = x.count;

• In order to assess the object skill explicitly, we add the follow-
ing question that requires the student to be able to differen-
tiate between different instances of the same struct (Adding
another instance from Section 6.1):
What is the expected behavior when executing the last line
in the code below?

1 struct idea_buffer a, b;
2 idea_init (&a);
3 idea_init (&b);
4 idea_add (&a, "a");
5 idea_get (&b); // <-- here?

• In order to assess the indirection skill explicitly, a question
asking the student to mark all locations where data inside a
idea_buffer is accessed (Asking for details from Section 6.1).

• Finally, in order to assess the function scoping and data flow
category, students are asked which variables are not possi-
bly shared between threads. If students fail to mark any of
the variables, it indicates that the student might incorrectly
believe that local variables are shared between threads, and
thus that the student might not understand function scoping
properly (Asking for details from Section 6.1).

By adding these parts to the question, the student will get some
help examining the code for things relevant to the synchronization
tasks, but more importantly, the instructor will be able to examine
the answers to these parts and assess whether any mistakes in other
parts of the question are due to concurrency or not.

7 LIMITATIONS
As our research is an initial investigation into nature of prereq-
uisite skills in advanced courses and possibility of differentiated
assessments to explicitly assess prerequisites, there are a number
of limitations.

Small, non-representative question sample. We did not attempt to
systematically sample assessment questions from instructors, nor
did we attempt to make generalizable claims about the frequency of
prerequisite skills appearing in course topic assessment questions.
The sample size of questions used to develop the codes was small
and not representative of all questions, although this is not abnor-
mal in qualitative analysis. We included the BDSI for its validity
argument and careful question design, to get qualitative insights
on prerequisite dependencies for questions made with existing con-
cept inventory design methods. We also included questions used
previously by the working group members, where the members
previously experienced that students had trouble with due to lack-
ing prerequisite skill. Due to the working group’s interest in tracing
as a tool for assessing these skills, we tended to pick examples
that involved code comprehension and/or tracing problems. This
small sample size and possible bias is always present in our kind of
qualitative analysis, which instead merely aims to show existence
of prerequisite issues and provide examples of how they appear in
questions. Evidence of existence is not evidence for their frequency
or magnitude in different contexts.

Qualitative analysis by experts. The qualitative coding of prereq-
uisites required for questions, which is not an empirical study of

students’ behavior, relied on our understanding of students’ men-
tal models and informally remembered behavior of students on
questions. Our understanding may not be consistent with actual
learner behavior if we empirically studied their behavior. We did
follow good inductive coding methods where two researchers inde-
pendently coded each question first, then discussed disagreements,
revised our codes for clarity, and finally iterated to consensus, but
ultimately it is still an expert analysis. Our consensus process only
applied to our coding of our data, the reliability of the codebook
on other data is not known and should be measured in future work
(i.e. how well others can use the codebook to consistently code new
questions).

Non-exhaustive analysis of some prerequisites: basic and tracing-
related skills. The codes are not an exhaustive or complete listing
of all prerequisite skills required for our questions (for example,
we did not code for needing to understand English in questions,
mathematical skills, etc.). Even a computing-only complete listing
of possible prerequisites would be very difficult as CS is taught dif-
ferently at different institution, and as such any list of prerequisites
smaller than most of the entirety of CS will inevitably lack some
possible prerequisites in some context. Since we have examined
questions from different advanced topics (concurrency, data struc-
tures & algorithms, and advanced OOP), our inductive coding has
some coverage of the major prerequisite topics brought up, at least
regarding imperative and object-oriented languages.

Furthermore, due to the small and possibly biased set of initial
questions, the list of prerequisite skills may not be complete. This
is not a major issue in the context of this report, since our goal is to
show that prerequisite skills are implicitly assessed in assessments
for later courses and how to improve assessments. Additionally,
even though the list might be incomplete, it is still useful to highlight
a number of common prerequisites and address those.

Our modified assessments and lack of empirical evaluation with
students. Finally and most importantly, we did not empirically eval-
uate or make a validity argument for the questions modified in this
paper (listed in full in AppendixM) with actual students. Instead, we
once again relied on our understanding of students’ mental models
during this phase. Even though we personally believe that the mod-
ifications do indeed improve the questions to more explicitly assess
prerequisites of the questions, that is only our judgement of face
validity. Additional empirical validity work with actual students
needs to be done to ensure the modifications have their desired
properties, and is described in our future work. For now, our ex-
ample modified questions should be seen as worked examples of
how to apply the PAPRIDA suggested in this paper — more validity
work is required for evaluating them.

There were also many potential ways to modify the questions,
including which prerequisites to target, but we only explored a few
examples, which means there may be many other principles and
patterns that we did not discover.

8 DISCUSSION
In this section, we will examine our results and discuss in what
context they are useful, and what new ideas they bring to the table.
First, we summarize our results in general here, then we discuss

our results for each research question more deeply. We then discuss
how making differentiated assessments raises questions for theories
of computing knowledge and how we might refine such theories
by analyzing assessments. Lastly, we discuss other areas of future
work, including applying our paper’s approach to other course
topics. In addition, we recommend empirical validity studies for
our initial differentiated assessments.

8.1 Summary of Results by Research Question
The hypothesis that motivated our work is that assessments for
advanced courses may not differentiate between lacking prerequi-
site skills and course topics. Our results provide support for our
hypothesis, implying that this issue is present to some extent and
worthy of future research.

For RQ1 “What prerequisite skills do advanced CS questions
depend on?”, we found variation among advanced assessment ques-
tions in their required prerequisite skills, often requiring many such
skills, and sometimes none.

For RQ2 “To what extent can an existing concept inventory for
data structures with a validity argument – the BDSI [66] – also
diagnose difficulties with prerequisite skills?”, we found even for
high quality questions, many unable to precisely diagnose prereq-
uisite skill issues from incorrect answers. Of the BDSI questions,
ten required prerequisites, and one of those ten was diagnostic
(see Section 5.4), five had some distractors indicating a small set of
prerequisites and/or advanced skills, and four could not diagnose
(Groups 2 and 4 in Section 5).

Thus, for RQ3, our goal was to investigate the feasibility of de-
signing assessments that are able to differentiate between the two,
ideally with no or minimal increase in the time required neither for
students to do the assessments, nor for teachers grading the assess-
ments. We then made six modified assessment questions, designed
to better differentiate (according to our judgement as instructors),
and distilled initial patterns and principles for differentiated as-
sessments (PAPRIDA), including computing-specific patterns like
“introducing aliasing”.

8.2 Research Question 1
Most questions we analyzed required some prerequisite knowledge.
For example, question M.1’s course topic is data structures, but
learners might get parts of it incorrect due to not being able to trace
the loop inside the rebuild function. In this case, it might be due
to a lacking understanding of loops, or a lacking understanding of
operators (modulo in this case), which could make the student be-
lieve that the function does something more advanced than resizing
the data structure’s array.

Some questions did not require any of the prerequisites we ana-
lyzed. These interesting questions were more conceptual, for exam-
ple, some high level data structures questions on the BDSI (see, for
example, question B.4 in Table 8). These questions can be useful
for finding and correcting gaps in conceptual knowledge. Future
work should find ways to make such focused and specific ques-
tions, contributing general patterns and ones specific to computing
education specific.

While it can be good to have such questions, assessments that
only cover the course topics are not necessarily better. First, stu-
dents might be able to answer such questions by rote memorization,
seemingly knowing part of the course topic without knowing pre-
requisite skills; for example, for a question asking for the big-O
runtime for an algorithm, a learner may answer correctly without
understanding how to derive it from the algorithm or what it really
means. Second, if we mostly use questions solely on the course
topics, we might teach and assess course topics in an isolated way,
without practicing the prerequisites you need to use them. Without
practice learners can forget or becomeweaker in those prerequisites
over time.

8.3 Research Question 2
The results of our qualitative analysis of the BDSI distractors showed
few questions could diagnose prerequisite issues very specifically.
Given our results, concept inventories for course topics should
not be presumed useful for diagnosing prerequisite issues. This
is not surprising, since this is not a design goal of the BDSI or
concept inventories in general; nor do they usually desire to make
validity arguments that individual questions have validity. This
connects to related work in educational assessment we described in
Section 2.4; one should not assume concept inventories and other
assessments have desirable properties, such as diagnosing learner’s
misconceptions [28, 73].

8.4 Research Question 3
The main practical contribution of this work is a toolbox of patterns
(listed in Section 6.1) for augmenting assessments to be more differ-
entiated. We have found a few initial computing specific technical
tricks, like “Introducing aliasing” or “Renaming variables”, that have
the underlying goal of testing which chunks of prerequisite knowl-
edge the solver is able to use in a new, more advanced, setting. These
strategies are particularly useful when a large number of students
are expected to take the modified assessment, as it may require less
manual grading compared to, for example, “Show your work” ques-
tions, while still being able to diagnose some prerequisites issues.
For example, as in the concurrency question in Section 6.4, one can
carefully re-structure code in an assessment and/or add question
parts that highlight the relevant prerequisites. This restructuring
can enable good feedback on prerequisites without increasing the
workload for the student considerably, and also may be easy to
grade automatically and thus give immediate feedback to students.
At the same time, our PAPRIDA recognize patterns teachers have
used for millennia to get students to reveal their problem solving
process, like “Show your work” and “Asking for details”.

The idea of augmenting assessments to be more differentiated is
different from a pre-exam at the start of an advanced class: in fact,
students have probably passed such an exam, but this is in many
cases not enough to guarantee that prerequisite skills are at the
level required to focus properly on the new ones. Differentiated
assessments can be more narrowly focused on what is actually
instrumental to course topics, and this might also help students in
making sense of what they learn.

8.5 Implications for Research on Theories of
Computing Knowledge

Our research raises questions for theories of computing knowledge.
Theories of computing knowledge include, for example, “theories
of what it means to know a programming language, what it means
to know how to program, what it means to be an expert software
engineer, what it means to have computer science literacy, and
numerous other unanswered and yet foundational questions that
are specific to computing education” [56]. Ourwork raises questions
such as: For every advanced topic in computing, can a person know
parts of it without knowing the prerequisites? Is it desirable to
make questions that purely assess an advanced topic? For what
topics is it possible to do that and why? How can we theoretically
specify and separate shallow, fragile ways learners may know these
skills from more fluent and transferable knowledge?

Perhaps making assessment questions is a useful way of opera-
tionalizing theories of computing knowledge, as a kind of design-
based research program [3, 7]. For example, researchers might try
to make more specific questions (as a 2018 ITiCSE WG did for
programming fundamentals [47]), try the assessments with actual
learners, then iterate on their theory of computing knowledge, by
perhaps questioning skills they can not seem to assess, or adding
skills inspired by an assessment they made.

As a concrete example within our work, one prerequisite knowl-
edge code arose that we called “meta-tracing”. It represents a set
of self-regulated problem solving behaviors and competency for
applying representations of computation appropriate for problem
solving, for example, “Knowing you need to go through the steps
to check your answer, step by step.” This qualitative code might be
further developed in later research - separated into components,
empirically checked to see if learners seem to develop a general
skill like this or if it just specific to learning particular problem
types.

Our community might also want to analyze existing assessments
made by teachers to develop theories of computing knowledge. This
would draw on teachers’ sense of what knowledge and skills are
important to assess, which are expressed in question designs.

8.6 Implications for Instructors and Teaching
Assessments and assignments that differentiate at least some pre-
requisite skills, can help instructors and students. For example, an
early set of differentiated questions can be “disguised” as quizzes
on the first few lectures, which gives most of the benefits of a pre-
exam, while also giving the students the opportunity to practice
on course topics. This is opposed to taking yet another pre-exam
containing only prerequisites. In addition to keeping students moti-
vated to take the test, this also utilizes the instructors’ valuable time
with students more efficiently. Assessing prerequisites explicitly in
midterms and final exams is also beneficial to catch cases where a
student is not proficient enough with the prerequisites to be able
to focus on the course topics. Instructors can also find common
weaknesses in the specific prerequisite knowledge, may realize why
their tests are too hard and try to make learning steps more explicit
and give more feedback to students.

Differentiated questions seem especially promising for improv-
ing equity. The more students come in with varied backgrounds,

especially in more advanced degree programs, the more beneficial
they are for both identifying students falling behind and helping
them with targeted feedback. The questions do not need to cover
everything. If the assessment is able to tell that some prerequisite is
lacking, the student can be instructed to take a more extensive test.
This could check all prerequisites in depth, and the student can be
directed to further practice the relevant subjects.

In making differentiated assessments, it can be infeasible to as-
sess all the prerequisites diagnostically. Instructors making differ-
entiated assessments should prioritize, by asking TAs to gather
common difficulties or drawing on their experience in class and
office hours when choosing which prerequisites to prioritize.

Instructors might benefit by following our paper’s process of
analyzing and modifying their existing questions to make them
more differentiated. Instructors might surface and reflect upon the
effectiveness of their assessments and their inclusion of prerequisite
skills, intended and unintended. Using this information, the teacher
might improve their teaching, via a more informed decision of what
prerequisites might be beneficial to assess explicitly and address, or
perhaps which could be excluded from the assessment. Instructors
teaching an advanced class could go through that process together
within or across institutions.

8.7 Future Work
In this section, we outline empirical validity studies for our theoret-
ical findings presented in this report. We also discuss how our work
leads to other interesting research topics for future investigation,
which our community can pursue, such as making differentiated
assessments for other advanced topics and prerequisites, and new
patterns and principles for designing differentiated assessments.

8.7.1 Evaluating questions empirically for validity properties, espe-
cially for formative use. As mentioned in our limitations (Section 7),
the modified questions have not been empirically evaluated with
students. A validity argument based on, for example, Kane’s frame-
work [30, 55] should be made using empirical studies, such as think-
alouds and using the questions in actual learning environments.

To evaluate how well questions differentiate prerequisite skills
and advanced skills, learners can take a differentiated assessment,
then separate advanced topic and prerequisite assessments; the
study can compare how well they match. The study may also in-
terview learners or evaluate think-alouds to diagnose the learner’s
knowledge, then compare with the diagnosis of the differentiated
assessment.

To evaluate the modified questions’ validity for giving feedback,
learners can take a differentiated assessment, then the instructor
could give feedback based on the assessment’s diagnosis, automated
or manual. Another design could involve using differentiated as-
sessments in a class, then comparing any improvement in learning
outcomes and the equity of learning process, during or at the end
of the course.

In particular, our modified BDSI questions don’t have empirical
validity work and shouldn’t be used in place of the original versions
(as with questions for any assessment with a validity argument).
Empirical validity work needs to be done for any question mod-
ification in general, and adding a question to a test may require
redoing validity studies for the entire test.

8.7.2 Creating differentiated assessment questions for each advanced
computing topic and for different prerequisites. We made several
example questions for a small part of three advanced topics, scoping
prerequisites to focus on the syntactical and conceptual knowledge
of basic programming constructs, and on program comprehension
skills including code tracing. Future work can be done for many
different choices of advanced topics, and many different choices of
prerequisites. That work might also contribute new patterns and
guidelines for differentiated assessments.

This future work should evaluate the generality of our PAPRIDA,
the patterns and principles presented in Section 6.1. Our paper’s
design method can be applied to different questions for advanced
courses, both inside and outside of the topics covered in this report.
This would involve coding a question according to the codebook in
Section 4.1, determine which prerequisites are relevant to assess,
and applying the patterns in Section 6.1 to make them explicit, and
ideally empirically evaluate the resulting questions. This work may
also evaluate howwell our PAPRIDA generalize, and contribute new
PAPRIDA. There are likely computing education specific question
patterns for each area of knowledge, just waiting to be discovered
and distilled.

8.7.3 Analyzing curricular assumptions using prerequisite coding of
assessment questions. The coding of prerequisite skills presented in
this paper could be used to examine the pedagogical assumptions
made in the curriculum (sequence of courses) by analyzing their
assessments. To do this, one would code the prerequisite skills as-
sessed by some course, and code the skills assessed in any previous
courses. The codes for the examined course and the prerequisites
can then be compared to find any skills assessed as prerequisites
in the advanced course, but not assessed or taught in any of the
previous courses. Such a discrepancy indicates that either the ex-
pectations of the latter course need to be lowered, or that some of
the previous courses need to be expanded to include the missing
prerequisites.

8.7.4 Extending our paper’s assessment design method to also in-
clude qualitative coding of advanced course topics. In this paper we
only code skills that were considered prerequisites to at least one
of the advanced topics. It would be useful to extend our method to
include some advanced skills as well, using the method presented
in Section 3.2. This would extend the codebook to include codes
for advanced skills. Such an extension would also allow explor-
ing curricular assumptions from earlier advanced courses to later
advanced courses (see Section 8.7.3).

8.7.5 Developmental stages for course topics. Another interesting
extension to the framework is to introduce developmental stages
for the course topics. These could be based on the coding of course
topics as mentioned above, but also from other observations in
the literature. For example, in a course on concurrency, we can
conjecture that a student start by being able so solve simple, explicit
synchronization goals, then progresses to be able to identify some
shared data and synchronize it properly at a coarse level, and finally
at a finer level. Given these developmental stages, one could then
create a matrix with developmental stages on the horizontal axis,
and a set of tracing weaknesses from Section 4.1 that are known
to be problematic in the context (if not all of them). Then, for each

cell in the matrix, one would write what a hypothetical student
with the given tracing weakness at the given developmental stage
would be able to do, and what the student would not be able to do.
This information could then be used to select appropriate questions
during a course, or to design questions that are able to diagnose at
what developmental stage a particular student is at, and which, if
any, tracing weaknesses the student have.

9 CONCLUSION
In this paper we presented and discussed a novel methodology for
revising assessments of advanced course topics to be more diag-
nostic, by making assessment of prerequisite knowledge explicit.
We qualitatively analyzed existing questions, including the BDSI,
a cutting edge high quality data structures assessment, and found
interesting issues and implicit assessment of prerequisite knowl-
edge (see Sections 4 and 5). We developed PAPRIDA, initial patterns
and principles for designing differentiated assessments, which may
help better diagnose issues with prerequisite knowledge (see Sec-
tion 6). We made six example modified assessment questions (see
Sections 6.2 to 6.4 and Appendix M).

Achieving more differentiated assessments for advanced topics
and prerequisites is a worthy research goal contributed by our
paper. The key idea is to expand the typical scope we define for
an assessment, expanding it to also diagnose student issues with
prerequisites. There is much work that remains to be done. For ex-
ample, our assessment design work requires future validity studies
and empirical work with learners to evaluate our PAPRIDA and
example questions. Ultimately, differentiated assessments should
be evaluated by their usefulness to the learning process by directly
evaluating learning gains from using them to give formative feed-
back to learners.

We chose to focus on tracing skills for prerequisites and data
structures, advanced object-oriented proramming, and concurrency
as our advanced course topics. We invite readers to follow the ap-
proach in this paper for other scopings of prerequisite and advanced
course topics. Our approach was driven by reviewing prior skill
classifications, then qualitative coding prerequisite knowledge in
a sample of assessment questions, then revising assessments to
make more explicit, diagnostic assessment of those prerequisites.
The key idea is that through the coding process itself, researchers
and teachers are prompted to critically examine assessments from
the perspective of prerequisite knowledge, and may then be able
to better identify such topics where they are implicitly assessed.
Therefore we emphasise the importance of the qualitative coding
process, to the overall assessment design process, as a part of ongo-
ing key work in computing education research developing theories
of computing knowledge and making corresponding assessments
with validity arguments.

ACKNOWLEDGMENTS
We thank the working group chairs and reviewers for their con-
structive feedback and service during the difficult and busy times
during the pandemic.

We thank the BDSI team for their blessing and feedback about
how to reprint two of their questions. The BDSI concept inventory
is available in their Google group4.

We thank Andrea Verdan for doing think-alouds with some draft
questions and the BDSI as part of coding those questions, and proof
reading. We also thank Ibrahim Albluwi for formative review of
prior work, even though he had to leave the working group early.

REFERENCES
[1] Wendy K Adams and Carl E Wieman. 2011. Development and validation of

instruments to measure learning of expert-like thinking. International Journal of
Science Education 33, 9 (2011), 1289–1312.

[2] Association for Computing Machinery. 2013. Computer Science Curricula 2013.
https://www.acm.org/education/curricula-recommendations

[3] Sasha Barab and Kurt Squire. 2004. Design-Based Research: Putting a Stake in
the Ground. Journal of the Learning Sciences 13, 1 (2004), 1–14. https://doi.org/
10.1207/s15327809jls1301_1 arXiv:https://doi.org/10.1207/s15327809jls1301_1

[4] Ricardo Caceffo, Steve Wolfman, Kellogg S. Booth, and Rodolfo Azevedo. 2016.
Developing a Computer Science Concept Inventory for Introductory Program-
ming. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education (SIGCSE ’16). Association for Computing Machinery, New York, NY,
USA, 364–369. https://doi.org/10.1145/2839509.2844559

[5] Nicholas Carriero and David Gelernter. 1989. Linda in Context. Commun. ACM
32, 4 (April 1989), 444–458. https://doi.org/10.1145/63334.63337

[6] Tony Clear, J. Whalley, P. Robbins, A. Philpott, A. Eckerdal, and M. Laakso. 2011.
Report on the final BRACElet workshop: Auckland University of Technology,
September 2010. Journal of Applied Computing and Information Technology 15
(Jun 2011). Issue 1. http://aut.researchgateway.ac.nz/handle/10292/1514

[7] Allan Collins, Diana Joseph, and Katerine Bielaczyc. 2004. Design Re-
search: Theoretical and Methodological Issues. Journal of the Learning
Sciences 13, 1 (2004), 15–42. https://doi.org/10.1207/s15327809jls1301_2
arXiv:https://doi.org/10.1207/s15327809jls1301_2

[8] Malcolm Corney, Sue Fitzgerald, Brian Hanks, Raymond Lister, Renee McCauley,
and Laurie Murphy. 2014. "Explain In Plain English" Questions Revisited: Data
Structures Problems. In Proceedings of the 45th ACM Technical Symposium on
Computer Science Education (SIGCSE ’14). Association for Computing Machinery,
New York, NY, USA, 591–596. https://doi.org/10.1145/2538862.2538911

[9] L. J. Cronbach and P. Meehl. 1955. Construct validity in psychological tests.
Psychological bulletin 52 4 (1955), 281–302.

[10] J. H. Cross II, T Dean Hendrix, and Larry A Barowski. 2002. Using the debugger
as an integral part of teaching CS1. In 32nd Annual Frontiers in Education, Vol. 2.
IEEE, Stripes Publishing LLC, Chapaign, IL, USA, F1G–F1G. https://doi.org/10.
1109/FIE.2002.1158137

[11] Dana Denick, Aidsa Santiago-Román, Ruth Streveler, and Natalie Barrett. 2012.
Validating of the diagnostic capabilities of concept inventories: Preliminary
evidence from the Concept Assessment Tool for Statics (CATS). In 2012 ASEE
Annual Conference & Exposition Proceedings. ASEE Conferences, San Antonio,
Texas, 25.1457.1–25.1457.19. https://doi.org/10.18260/1-2--22214

[12] Travis Desell. 2013. Using Actors and the SALSA Programming Language to Intro-
duce Concurrency in Computer Science II. In 2013 IEEE International Symposium
on Parallel Distributed Processing, Workshops and Phd Forum. IEEE, 1257–1262.
https://doi.org/10.1109/IPDPSW.2013.153

[13] Benedict du Boulay. 1986. Some Difficulties of Learning to Program Areas
of Difficulty. J. EDUCATIONAL COMPUTING RESEARCH 2, 1 (1986), 57–73.
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9

[14] Kathi Fisler, Shriram Krishnamurthi, and Preston Tunnell Wilson. 2017. Assessing
and Teaching Scope, Mutation, and Aliasing in Upper-Level Undergraduates. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’17). Association for Computing Machinery, New York, NY,
USA, 213–218. https://doi.org/10.1145/3017680.3017777

[15] Eric Fouh, Ville Karavirta, Daniel A. Breakiron, Sally Hamouda, Simin Hall,
Thomas L. Naps, and Clifford A. Shaffer. 2014. Design and architecture of an
interactive eTextbook The OpenDSA system. Science of Computer Programming
88, 1 (2014), 22–40. https://doi.org/10.1016/j.scico.2013.11.040

[16] Daniela Giordano, Francesco Maiorana, Andrew Paul Csizmadia, Simon Marsden,
Charles Riedesel, Shitanshu Mishra, and Lina Vinikienundefined. 2015. New
Horizons in the Assessment of Computer Science at School and Beyond: Lever-
aging on the ViVA Platform. In Proceedings of the 2015 ITiCSE on Working Group
Reports (ITICSE-WGR ’15). Association for Computing Machinery, New York, NY,
USA, 117–147. https://doi.org/10.1145/2858796.2858801

[17] Ken Goldman, Paul Gross, Cinda Heeren, Geoffrey Herman, Lisa Kaczmarczyk,
Michael C. Loui, and Craig Zilles. 2008. Identifying Important and Difficult

4https://groups.google.com/forum/#!forum/cs2-bdsi-concept-inventory

https://groups.google.com/forum/#!forum/cs2-bdsi-concept-inventory
https://www.acm.org/education/curricula-recommendations
https://doi.org/10.1207/s15327809jls1301_1
https://doi.org/10.1207/s15327809jls1301_1
http://arxiv.org/abs/https://doi.org/10.1207/s15327809jls1301_1
https://doi.org/10.1145/2839509.2844559
https://doi.org/10.1145/63334.63337
http://aut.researchgateway.ac.nz/handle/10292/1514
https://doi.org/10.1207/s15327809jls1301_2
http://arxiv.org/abs/https://doi.org/10.1207/s15327809jls1301_2
https://doi.org/10.1145/2538862.2538911
https://doi.org/10.1109/FIE.2002.1158137
https://doi.org/10.1109/FIE.2002.1158137
https://doi.org/10.18260/1-2--22214
https://doi.org/10.1109/IPDPSW.2013.153
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.1145/3017680.3017777
https://doi.org/10.1016/j.scico.2013.11.040
https://doi.org/10.1145/2858796.2858801

Concepts in Introductory Computing Courses Using a Delphi Process. SIGCSE
Bull. 40, 1 (March 2008), 256–260. https://doi.org/10.1145/1352322.1352226

[18] Ken Goldman, Paul Gross, Cinda Heeren, Geoffrey L. Herman, Lisa Kaczmarczyk,
Michael C. Loui, and Craig Zilles. 2010. Setting the Scope of Concept Inventories
for Introductory Computing Subjects. ACM Trans. Comput. Educ. 10, 2, Article 5
(June 2010), 29 pages. https://doi.org/10.1145/1789934.1789935

[19] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-Based Program Visu-
alization for Cs Education. In Proceeding of the 44th ACM Technical Symposium on
Computer Science Education (SIGCSE ’13). Association for Computing Machinery,
New York, NY, USA, 579–584. https://doi.org/10.1145/2445196.2445368

[20] Mark Guzdial, Shriram Krishnamurthi, Juha Sorva, and Jan Vahrenhold. 2019. No-
tional Machines and Programming Language Semantics in Education (Dagstuhl
Seminar 19281). Dagstuhl Reports 9, 7 (2019), 1–23. https://doi.org/10.4230/
DagRep.9.7.1

[21] Sally Hamouda, Stephen H Edwards, Hicham G Elmongui, Jeremy V Ernst, and
Clifford A Shaffer. 2017. A basic recursion concept inventory. Computer Science
Education 27, 2 (2017), 121–148. https://doi.org/10.1080/08993408.2017.1414728

[22] Brian Harrington and Nick Cheng. 2018. Tracing vs. Writing Code: Beyond the
Learning Hierarchy. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education (SIGCSE ’18). Association for Computing Machinery,
New York, NY, USA, 423–428. https://doi.org/10.1145/3159450.3159530

[23] Richard Herriot. 2019. What Kind of Research is Research Through Design?. In
IASDR 2019 Conference Proceedings. International Association of Societies of De-
sign Research, Manchester, 11. https://iasdr2019.org/uploads/files/Proceedings/
op-f-1078-Her-R.pdf

[24] Matthew Hertz and Maria Jump. 2013. Trace-based Teaching in Early Pro-
gramming Courses. In Proceeding of the 44th ACM Technical Symposium on
Computer Science Education (SIGCSE ’13). ACM, New York, NY, USA, 561–566.
https://doi.org/10.1145/2445196.2445364

[25] Simon Holland, Robert Griffiths, and Mark Woodman. 1997. Avoiding Object
Misconceptions. SIGCSE Bull. 29, 1 (March 1997), 131–134. https://doi.org/10.
1145/268085.268132

[26] Cruz Izu, Carsten Schulte, AshishAggarwal, Quintin Cutts, RodrigoDuran,Mirela
Gutica, Birte Heinemann, Eileen Kraemer, Violetta Lonati, Claudio Mirolo, and
RenskeWeeda. 2019. Fostering ProgramComprehension in Novice Programmers -
Learning Activities and Learning Trajectories. In Proceedings of theWorking Group
Reports on Innovation and Technology in Computer Science Education (ITiCSE-
WGR ’19). Association for Computing Machinery, New York, NY, USA, 27–52.
https://doi.org/10.1145/3344429.3372501

[27] Joint Task Force on Computing Curricula, Association for Computing Machinery
(ACM) and IEEE Computer Society. 2013. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
Association for Computing Machinery, New York, NY, USA.

[28] Natalie Jorion, Brian D. Gane, Katie James, Lianne Schroeder, Louis V. DiBello, and
James W. Pellegrino. 2015. An Analytic Framework for Evaluating the Validity
of Concept Inventory Claims. Journal of Engineering Education 104, 4 (oct 2015),
454–496. https://doi.org/10.1002/jee.20104

[29] Lisa C. Kaczmarczyk, Elizabeth R. Petrick, J. Philip East, and Geoffrey L. Herman.
2010. Identifying Student Misconceptions of Programming. In Proceedings of
the 41st ACM Technical Symposium on Computer Science Education (SIGCSE ’10).
Association for Computing Machinery, New York, NY, USA, 107–111. https:
//doi.org/10.1145/1734263.1734299

[30] Michael T. Kane. 2013. Validating the Interpretations and Uses of Test Scores.
Journal of Educational Measurement 50, 1 (mar 2013), 1–73. https://doi.org/10.
1111/jedm.12000

[31] Kuba Karpierz and Steven A. Wolfman. 2014. Misconceptions and Concept
Inventory Questions for Binary Search Trees and Hash Tables. In Proceedings
of the 45th ACM Technical Symposium on Computer Science Education (SIGCSE
’14). Association for Computing Machinery, New York, NY, USA, 109–114. https:
//doi.org/10.1145/2538862.2538902

[32] Cazembe Kennedy and Eileen T. Kraemer. 2018. What Are They Thinking?:
Eliciting Student Reasoning About Troublesome Concepts in Introductory Com-
puter Science. In Proceedings of the 18th Koli Calling International Conference
on Computing Education Research (Koli Calling ’18). ACM, New York, NY, USA,
Article 7, 10 pages. https://doi.org/10.1145/3279720.3279728

[33] Yifat Ben-David Kolikant. 2001. Gardeners and Cinema Tickets: High School
Students’ Preconceptions of Concurrency. Computer Science Education 11, 3
(2001), 221–245.

[34] Yifat Ben-David Kolikant. 2004. Learning concurrency: evolution of students’
understanding of synchronization. International Journal of Human-Computer
Studies 60, 2 (2004), 243–268. https://doi.org/10.1016/j.ijhcs.2003.10.005

[35] Yifat Ben-David Kolikant. 2005. Students’ Alternative Standards for Correctness.
In Proceedings of the First InternationalWorkshop on Computing Education Research
(ICER ’05). ACM, New York, NY, USA, 37–43. https://doi.org/10.1145/1089786.
1089790

[36] Ari Korhonen. 2010. Applications of Visual Algorithm Simulation. InHandbook of
Research on Discrete Event Simulation Environments: Technologies and Applications,
Evon M. O. Abu-Taieh and Asim A. El-Sheikh (Eds.). IGI Global, Hershey, PA,

USA, 234–251. https://doi.org/10.4018/978-1-60566-774-4
[37] Sophia Krause-Levy, Sander Valstar, Leo Porter, and William G. Griswold. 2020.

Exploring the Link Between Prerequisites and Performance in Advanced Data
Structures. In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education (SIGCSE ’20). Association for Computing Machinery, New York,
NY, USA, 386–392. https://doi.org/10.1145/3328778.3366867

[38] Einari Kurvinen, Niko Hellgren, Erkki Kaila, Mikko-Jussi Laakso, and Tapio
Salakoski. 2016. Programming Misconceptions in an Introductory Level Program-
ming Course Exam. In Proceedings of the 2016 ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’16). Association for Comput-
ing Machinery, New York, NY, USA, 308–313. https://doi.org/10.1145/2899415.
2899447

[39] Thomas Lancaster, Anthony Robins, and Sally A. Fincher. 2019. Assessment and
plagiarism. In The Cambridge handbook of computing education research, Sally A
Fincher and Anthony V Robins (Eds.). Cambridge University Press, Cambridge,
UK, 414–444.

[40] Catherine Legg and Christopher Hookway. 2020. Pragmatism. In The Stanford
Encyclopedia of Philosophy (fall 2020 ed.), Edward N. Zalta (Ed.). Metaphysics
Research Lab, Stanford University, Standford, CA, USA.

[41] Jacqueline P. Leighton andMark J. Gierl. 2007. Verbal reports as data for cognitive
diagnostic assessment. In Cognitive Diagnostic Assessment for Education: Theory
and Applications, Jacqueline Leighton and Mark Gierl (Eds.). Cambridge Univer-
sity Press, Cambridge, 146–172. https://doi.org/10.1017/CBO9780511611186.006

[42] Gary Lewandowski, Dennis J. Bouvier, Robert McCartney, Kate Sanders, and
Beth Simon. 2007. Commonsense Computing (Episode 3): Concurrency and
Concert Tickets. In Proceedings of the Third International Workshop on Computing
Education Research (ICER ’07). Association for Computing Machinery, New York,
NY, USA, 133–144. https://doi.org/10.1145/1288580.1288598

[43] Barbara Liskov and John Guttag. 2000. Program development in JAVA: abstraction,
specification, and object-oriented design. Pearson Education.

[44] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, Beth Simon, and Lynda Thomas. 2004. A Multi-National Study of
Reading and Tracing Skills in Novice Programmers. InWorking Group Reports
from ITiCSE on Innovation and Technology in Computer Science Education (ITiCSE-
WGR ’04). Association for Computing Machinery, New York, NY, USA, 119–150.
https://doi.org/10.1145/1044550.1041673

[45] Jan Lönnberg, Anders Berglund, and Lauri Malmi. 2009. How Students Develop
Concurrent Programs. In Proceedings of the Eleventh Australasian Conference on
Computing Education - Volume 95 (ACE ’09). Australian Computer Society, Inc.,
Darlinghurst, Australia, 129–138. http://dl.acm.org/citation.cfm?id=1862712.
1862732

[46] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Re-
lationships between Reading, Tracing and Writing Skills in Introductory Pro-
gramming. In Proceedings of the Fourth International Workshop on Computing
Education Research (ICER ’08). Association for Computing Machinery, New York,
NY, USA, 101–112. https://doi.org/10.1145/1404520.1404531

[47] Andrew Luxton-Reilly, Brett A. Becker, Yingjun Cao, Roger McDermott, Claudio
Mirolo, Andreas Mühling, Andrew Petersen, Kate Sanders, Simon, and Jacqueline
Whalley. 2018. Developing Assessments to Determine Mastery of Programming
Fundamentals. In Proceedings of the 2017 ITiCSE Conference on Working Group
Reports (ITiCSE-WGR ’17). Association for Computing Machinery, New York, NY,
USA, 47–69. https://doi.org/10.1145/3174781.3174784

[48] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gi-
annakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott,
Judy Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic
Literature Review. In Proceedings Companion of the 23rd Annual ACM Confer-
ence on Innovation and Technology in Computer Science Education (ITiCSE 2018
Companion). Association for Computing Machinery, New York, NY, USA, 55–106.
https://doi.org/10.1145/3293881.3295779

[49] Jan Lönnberg and Anders Berglund. 2007. Students’ Understandings of Con-
current Programming. In Proceedings of the Seventh Baltic Sea Conference on
Computing Education Research - Volume 88. Australian Computer Society, Inc., Dar-
linghurst, Australia, 77–86. http://dl.acm.org/citation.cfm?id=2449323.2449332

[50] Susan McKenney and Thomas C. Reeves. 2014. Design and development research.
In Handbook of Research on Educational Communications and Technology: Fourth
Edition. Springer New York, New York, NY, 131–140. https://doi.org/10.1007/
978-1-4614-3185-5_11

[51] Susan E. McKenney and Thomas C. Reeves. 2012. Conducting Educational Design
Research. Routledge, London.

[52] Bertrand Meyer. 1995. Static Typing. SIGPLAN OOPS Mess. 6, 4 (Oct. 1995), 20–29.
https://doi.org/10.1145/260111.260214

[53] Bertrand Meyer. 1997. Object-oriented software construction. Vol. 2. Prentice hall
Englewood Cliffs, USA.

[54] Thomas L. Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer,
Chris Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger,
and J. Ángel Velázquez-Iturbide. 2002. Exploring the Role of Visualization and
Engagement in Computer Science Education. In Working Group Reports from

https://doi.org/10.1145/1352322.1352226
https://doi.org/10.1145/1789934.1789935
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.4230/DagRep.9.7.1
https://doi.org/10.4230/DagRep.9.7.1
https://doi.org/10.1080/08993408.2017.1414728
https://doi.org/10.1145/3159450.3159530
https://iasdr2019.org/uploads/files/Proceedings/op-f-1078-Her-R.pdf
https://iasdr2019.org/uploads/files/Proceedings/op-f-1078-Her-R.pdf
https://doi.org/10.1145/2445196.2445364
https://doi.org/10.1145/268085.268132
https://doi.org/10.1145/268085.268132
https://doi.org/10.1145/3344429.3372501
https://doi.org/10.1002/jee.20104
https://doi.org/10.1145/1734263.1734299
https://doi.org/10.1145/1734263.1734299
https://doi.org/10.1111/jedm.12000
https://doi.org/10.1111/jedm.12000
https://doi.org/10.1145/2538862.2538902
https://doi.org/10.1145/2538862.2538902
https://doi.org/10.1145/3279720.3279728
https://doi.org/10.1016/j.ijhcs.2003.10.005
https://doi.org/10.1145/1089786.1089790
https://doi.org/10.1145/1089786.1089790
https://doi.org/10.4018/978-1-60566-774-4
https://doi.org/10.1145/3328778.3366867
https://doi.org/10.1145/2899415.2899447
https://doi.org/10.1145/2899415.2899447
https://doi.org/10.1017/CBO9780511611186.006
https://doi.org/10.1145/1288580.1288598
https://doi.org/10.1145/1044550.1041673
http://dl.acm.org/citation.cfm?id=1862712.1862732
http://dl.acm.org/citation.cfm?id=1862712.1862732
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/3174781.3174784
https://doi.org/10.1145/3293881.3295779
http://dl.acm.org/citation.cfm?id=2449323.2449332
https://doi.org/10.1007/978-1-4614-3185-5_11
https://doi.org/10.1007/978-1-4614-3185-5_11
https://doi.org/10.1145/260111.260214

ITiCSE on Innovation and Technology in Computer Science Education (ITiCSE-
WGR ’02). Association for Computing Machinery, New York, NY, USA, 131–152.
https://doi.org/10.1145/960568.782998

[55] Greg L. Nelson, Andrew Hu, Benjamin Xie, and Amy J. Ko. 2019. Towards
Validity for a Formative Assessment for Language-specific Program Tracing Skills.
In Proceedings of the 19th Koli Calling International Conference on Computing
Education Research (Koli Calling ’19). ACM, New York, NY, USA, Article 20,
10 pages. https://doi.org/10.1145/3364510.3364525

[56] Greg L. Nelson andAndrew J. Ko. 2018. OnUse of Theory in Computing Education
Research. In Proceedings of the 2018 ACM Conference on International Computing
Education Research (ICER ’18). Association for Computing Machinery, New York,
NY, USA, 31–39. https://doi.org/10.1145/3230977.3230992

[57] Greg L. Nelson, Benjamin Xie, and Andrew J. Ko. 2017. Comprehension First:
Evaluating a Novel Pedagogy and Tutoring System for Program Tracing in CS1.
In Proceedings of the 2017 ACM Conference on International Computing Education
Research (ICER ’17). Association for Computing Machinery, New York, NY, USA,
2–11. https://doi.org/10.1145/3105726.3106178

[58] John Ousterhout. 2018. A Philosophy of Software Design. Yaknyam Press.
[59] Miranda C. Parker, Mark Guzdial, and Shelly Engleman. 2016. Replication, Val-

idation, and Use of a Language Independent CS1 Knowledge Assessment. In
Proceedings of the 2016 ACM Conference on International Computing Education
Research (ICER ’16). Association for Computing Machinery, New York, NY, USA,
93–101. https://doi.org/10.1145/2960310.2960316

[60] Wolfgang Paul and Jan Vahrenhold. 2013. Hunting High and Low: Instruments to
Detect Misconceptions Related to Algorithms and Data Structures. In Proceeding
of the 44th ACM Technical Symposium on Computer Science Education (SIGCSE
’13). Association for Computing Machinery, New York, NY, USA, 29–34. https:
//doi.org/10.1145/2445196.2445212

[61] Roy D Pea. 1986. Language-Independent Conceptual “Bugs” in Novice Program-
ming. Journal of Educational Computing Research 2, 1 (Feb. 1986), 25–36.

[62] Thomas Pelchen, Luke Mathieson, and Raymond Lister. 2020. On the Evidence
for a Learning Hierarchy in Data Structures Exams. In Proceedings of the Twenty-
Second Australasian Computing Education Conference (ACE’20). Association for
Computing Machinery, New York, NY, USA, 122–131. https://doi.org/10.1145/
3373165.3373179

[63] D. N. Perkins and Fay Martin. 1986. Fragile Knowledge and Neglected Strategies
in Novice Programmers. In Papers Presented at the First Workshop on Empirical
Studies of Programmers on Empirical Studies of Programmers. Ablex Publishing
Corp., Norwood, NJ, USA, 213–229. http://dl.acm.org/citation.cfm?id=21842.
28896

[64] Yakov Persky and Mordechai Ben-Ari. 1998. Re-engineering a Concurrency
Simulator. SIGCSE Bull. 30, 3 (Aug. 1998), 185–188. https://doi.org/10.1145/
290320.283117

[65] Leo Porter, Daniel Zingaro, Cynthia Lee, Cynthia Taylor, Kevin C. Webb, and
Michael Clancy. 2018. Developing Course-Level Learning Goals for Basic Data
Structures in CS2. In Proceedings of the 49th ACM Technical Symposium on Com-
puter Science Education (SIGCSE ’18). Association for Computing Machinery, New
York, NY, USA, 858–863. https://doi.org/10.1145/3159450.3159457

[66] Leo Porter, Daniel Zingaro, Soohyun Nam Liao, Cynthia Taylor, Kevin C. Webb,
Cynthia Lee, and Michael Clancy. 2019. BDSI: A Validated Concept Inventory for
Basic Data Structures. In Proceedings of the 2019 ACM Conference on International
Computing Education Research (ICER ’19). Association for Computing Machinery,
New York, NY, USA, 111–119. https://doi.org/10.1145/3291279.3339404

[67] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other
Difficulties in Introductory Programming: A Literature Review. ACM Trans.
Comput. Educ. 18, 1, Article 1 (Oct. 2017), 24 pages. https://doi.org/10.1145/
3077618

[68] Noa Ragonis and Mordechai Ben-Ari. 2005. A long-term investigation of the
comprehension of OOP concepts by novices. Computer Science Education 15, 3
(2005), 203–221. https://doi.org/10.1080/08993400500224310

[69] Thomas C. Reeves. 2006. Design research from the technology perspective. In
Educational design research. Routledge, 86–109.

[70] Gerard Rowe and Chris Smaill. 2007. Development of an electromagnetic
course—concept inventory—a work in progress. In Proceedings of the eighteenth
Conference of Australian Association for Engineering. Department of Computer
Science and Software Engineering, The University of Melbourne, Melbourne,
Australia, 7.

[71] Jorma Sajaniemi, Marja Kuittinen, and Taina Tikansalo. 2008. A Study of the
Development of Students’ Visualizations of Program State during an Elementary
Object-Oriented Programming Course. J. Educ. Resour. Comput. 7, 4, Article 3
(Jan. 2008), 31 pages. https://doi.org/10.1145/1316450.1316453

[72] Kate Sanders, Marzieh Ahmadzadeh, Tony Clear, Stephen H. Edwards, Mikey
Goldweber, Chris Johnson, Raymond Lister, Robert McCartney, Elizabeth Patitsas,
and Jaime Spacco. 2013. The Canterbury QuestionBank: Building a Repository
of Multiple-Choice CS1 and CS2 Questions. In Proceedings of the ITiCSE Working
Group Reports Conference on Innovation and Technology in Computer Science
Education-Working Group Reports (ITiCSE -WGR ’13). Association for Computing

Machinery, New York, NY, USA, 33–52. https://doi.org/10.1145/2543882.2543885
[73] David Sands, Mark Parker, Holly Hedgeland, Sally Jordan, and Ross Galloway.

2018. Using concept inventories to measure understanding. Higher Education Ped-
agogies 3, 1 (jan 2018), 173–182. https://doi.org/10.1080/23752696.2018.1433546

[74] Aidsa I. Santiago Roman. 2009. Fitting cognitive diagnostic assessment to the
Concept Assessment Tool for Statics (CATS). Ph.D. Dissertation. University of
Washington. https://www.proquest.com/docview/304991523?accountid=14784
Copyright - Database copyright ProQuest LLC; ProQuest does not claim copyright
in the individual underlying works; Last updated - 2020-10-07.

[75] Clifford A. Shaffer, Ville Karavirta, Ari Korhonen, and Thomas L. Naps. 2011.
OpenDSA: Beginning a Community Active-eBook Project. In Proceedings of
the 11th Koli Calling International Conference on Computing Education Research,
Joensuu, Finland, November 17-20, 2011. University of Eastern Finland, Joensuu,
Finland, 112–117.

[76] Simon, Judy Sheard, Daryl D’Souza, Peter Klemperer, Leo Porter, Juha Sorva,
Martijn Stegeman, and Daniel Zingaro. 2016. Benchmarking Introductory
Programming Exams: How and Why. In Proceedings of the 2016 ACM Con-
ference on Innovation and Technology in Computer Science Education (ITiCSE
’16). Association for Computing Machinery, New York, NY, USA, 154–159.
https://doi.org/10.1145/2899415.2899473

[77] Simon, Judy Sheard, Daryl D’Souza, Peter Klemperer, Leo Porter, Juha Sorva,
Martijn Stegeman, and Daniel Zingaro. 2016. Benchmarking Introductory
Programming Exams: Some Preliminary Results. In Proceedings of the 2016
ACM Conference on International Computing Education Research (ICER ’16). As-
sociation for Computing Machinery, New York, NY, USA, 103–111. https:
//doi.org/10.1145/2960310.2960337

[78] Beth Simon, Mike Clancy, Robert McCartney, Briana Morrison, Brad Richards,
and Kate Sanders. 2010. Making Sense of Data Structures Exams. In Proceedings
of the Sixth International Workshop on Computing Education Research (ICER ’10).
Association for Computing Machinery, New York, NY, USA, 97–106. https:
//doi.org/10.1145/1839594.1839612

[79] Eric Snow, Daisy Rutstein, Marie Bienkowski, and Yuning Xu. 2017. Principled
Assessment of Student Learning in High School Computer Science. In Proceedings
of the 2017 ACM Conference on International Computing Education Research (ICER
’17). Association for Computing Machinery, New York, NY, USA, 209–216. https:
//doi.org/10.1145/3105726.3106186

[80] Juha Sorva. 2007. Students’ Understandings of Storing Objects. In Proceedings of
the Seventh Baltic Sea Conference on Computing Education Research - Volume 88
(Koli Calling ’07). Australian Computer Society, Inc., AUS, 127–135.

[81] Juha Sorva. 2012. Visual program simulation in introductory programming educa-
tion; Visuaalinen ohjelmasimulaatio ohjelmoinnin alkeisopetuksessa. G4 Mono-
grafiaväitöskirja. Aalto-yliopisto. http://urn.fi/URN:ISBN:978-952-60-4626-6

[82] Juha Sorva. 2013. Notional Machines and Introductory Programming Education.
Trans. Comput. Educ. 13, 2 (Jul 2013), 8:1–8:31. https://doi.org/10.1145/2483710.
2483713

[83] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A Review of Generic Program
Visualization Systems for Introductory Programming Education. Trans. Comput.
Educ. 13, 4 (Nov 2013), 15:1–15:64. https://doi.org/10.1145/2490822

[84] Juha Sorva, Jan Lönnberg, and Lauri Malmi. 2013. Students’ ways of experiencing
visual program simulation. Computer Science Education 23, 3 (Sept. 2013), 207–238.
https://doi.org/10.1080/08993408.2013.807962

[85] Milton E. Strauss and Gregory T. Smith. 2009. Construct validity: Advances in
theory and methodology. Annual Review of Clinical Psychology 5 (4 2009), 1–25.
https://doi.org/10.1146/annurev.clinpsy.032408.153639

[86] Filip Strömbäck, Linda Mannila, Mikael Asplund, and Mariam Kamkar. 2019. A
Student’s View of Concurrency - A Study of Common Mistakes in Introductory
Courses on Concurrency. In Proceedings of the 2019 ACM Conference on Interna-
tional Computing Education Research (ICER ’19). Association for Computing Ma-
chinery, New York, NY, USA, 229–237. https://doi.org/10.1145/3291279.3339415

[87] C. Taylor, D. Zingaro, L. Porter, K.C. Webb, C.B. Lee, and M. Clancy. 2014. Com-
puter science concept inventories: past and future. Computer Science Education
24, 4 (2014), 253–276. https://doi.org/10.1080/08993408.2014.970779

[88] Allison Elliott Tew and Brian Dorn. 2013. The Case for Validated Tools in
Computer Science Education Research. Computer 46, 9 (sep 2013), 60–66. https:
//doi.org/10.1109/MC.2013.259

[89] Sander Valstar, William G. Griswold, and Leo Porter. 2019. The Relationship
between Prerequisite Proficiency and Student Performance in an Upper-Division
Computing Course. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE ’19). Association for Computing Machinery,
New York, NY, USA, 794–800. https://doi.org/10.1145/3287324.3287419

[90] Peter Wegner. 1990. Concepts and Paradigms of Object-Oriented Programming.
SIGPLAN OOPS Mess. 1, 1 (Aug. 1990), 7–87. https://doi.org/10.1145/382192.
383004

[91] Jacqueline L.Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil Robbins,
P. K. Ajith Kumar, and Christine Prasad. 2006. An Australasian Study of Reading
and Comprehension Skills in Novice Programmers, Using the Bloom and SOLO
Taxonomies. In Proceedings of the 8th Australasian Conference on Computing
Education - Volume 52 (ACE ’06). Australian Computer Society, Inc., AUS, 243–252.

https://doi.org/10.1145/960568.782998
https://doi.org/10.1145/3364510.3364525
https://doi.org/10.1145/3230977.3230992
https://doi.org/10.1145/3105726.3106178
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1145/2445196.2445212
https://doi.org/10.1145/2445196.2445212
https://doi.org/10.1145/3373165.3373179
https://doi.org/10.1145/3373165.3373179
http://dl.acm.org/citation.cfm?id=21842.28896
http://dl.acm.org/citation.cfm?id=21842.28896
https://doi.org/10.1145/290320.283117
https://doi.org/10.1145/290320.283117
https://doi.org/10.1145/3159450.3159457
https://doi.org/10.1145/3291279.3339404
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.1080/08993400500224310
https://doi.org/10.1145/1316450.1316453
https://doi.org/10.1145/2543882.2543885
https://doi.org/10.1080/23752696.2018.1433546
https://www.proquest.com/docview/304991523?accountid=14784
https://doi.org/10.1145/2899415.2899473
https://doi.org/10.1145/2960310.2960337
https://doi.org/10.1145/2960310.2960337
https://doi.org/10.1145/1839594.1839612
https://doi.org/10.1145/1839594.1839612
https://doi.org/10.1145/3105726.3106186
https://doi.org/10.1145/3105726.3106186
http://urn.fi/URN:ISBN:978-952-60-4626-6
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2490822
https://doi.org/10.1080/08993408.2013.807962
https://doi.org/10.1146/annurev.clinpsy.032408.153639
https://doi.org/10.1145/3291279.3339415
https://doi.org/10.1080/08993408.2014.970779
https://doi.org/10.1109/MC.2013.259
https://doi.org/10.1109/MC.2013.259
https://doi.org/10.1145/3287324.3287419
https://doi.org/10.1145/382192.383004
https://doi.org/10.1145/382192.383004

[92] Benjamin Xie, Dastyni Loksa, Greg L. Nelson, Matthew J. Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Andrew J. Ko. 2019.
A theory of instruction for introductory programming skills. Computer Science
Education 29, 2-3 (2019), 205–253. https://doi.org/10.1080/08993408.2019.1565235

[93] Benjamin Xie, Greg L. Nelson, and Andrew J. Ko. 2018. An Explicit Strategy to
Scaffold Novice Program Tracing. In Proceedings of the 49th ACM Technical Sympo-
sium on Computer Science Education (SIGCSE ’18). Association for Computing Ma-
chinery, New York, NY, USA, 344–349. https://doi.org/10.1145/3159450.3159527

https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1145/3159450.3159527

CONTENTS
A Study of Prerequisite Skills
A.1 ACM CC2013
A.2 Core Concepts Identified by Experts
A.3 Misconception Capalogue
M Modified Questions
M.1 Data Structure Question (Queue)
M.2 Concurrency 1
M.3 Concurrency 2
M.4 Advanced OOP: Inheritance and Polymorphism
M.5 BDSI: B.6
M.6 BDSI: B.8
O Other Questions
O.1 Scientific Computing
O.2 Software Design Question 1
O.3 Software Design Question 2
O.4 Advanced Data Structures and Algorithms
O.5 Data Structures and Algorithms 1
O.6 Data Structures and Algorithms 2
O.7 Data Structures and Algorithms 3
Note that the numbering here reflects the numbering of the

questions. M is for Modified questions and O is for Other questions
(that were not modified).

A STUDY OF PREREQUISITE SKILLS
In order to better connect our qualitative coding categories to ex-
isting knowledge, and as a way of validating our categories, we
associated each of our codes (Section 4.1, Tables 1 to 6) with topics
in the ACM Computing Curriculum Guidelines [2], prior work by
Goldman et al. [18] to identify prerequisite topics, and Misconcep-
tion Catalogue compiled by Sorva [81].

A.1 ACM CC2013
The ACM 2013 Curriculum Guide [27] consists of 18 Knowledge
Areas in computing.

- Algorithms and Complexity (AL)
- Architecture and Organization (AR)
- Computational Science (CN)
- Discrete Structures (DS)
- Graphics and Visualization (GV)
- Human-Computer Interaction (HCI)
- Information Assurance and Security (IAS)
- Information Management (IM)
- Intelligent Systems (IS)
- Networking and Communications (NC)
- Operating Systems (OS)
- Platform-based Development (PBD)
- Parallel and Distributed Computing (PD)
- Programming Languages (PL)
- Software Development Fundamentals (SDF)
- Software Engineering (SE)
- Systems Fundamentals (SF)
- Social Issues and Professional Practice (SP)

These Knowledge Areas correspond to particular courses or
course sequences in many programs. Therefore, the Curriculum
Guide can be seen as an enumeration of topics typically taught

in various CS courses. Given the fact that many computer science
programs as a part of accreditation align their courses whenever
possible to the 2013 Curriculum Guide, the Knowledge Areas can
be seen as reflecting skills commonly taught in CS1 courses.

This raises questions such as how these KAs are related to each
other. We need to realize that the KAs above are interconnected.
Concepts in one KA may build upon another KA. The reader is
encouraged to read the CC2013 and the Body of Knowledge as
a whole rather than focusing on any given Knowledge Area in
isolation.

The Body of Knowledge is a specification of the content to be
covered and a curriculum is an implementation for it. However,
Computer Science, unlike many technical disciplines, does not have
a well-described list of topics that appear in virtually all introduc-
tory courses [2]. Many of them focus on topics such as Software De-
velopment Fundamentals, Programming Languages, and Software
Engineering. Some courses start with object-oriented programming,
while others use functional programming. In addition, it is not said
that all Software Development Fundamentals should be covered in
a first course. In practice, however, most fundamental topics are
typically covered in CS1.

Not all technically relevant concepts to a computer scientist
(programming, software processes, algorithms, data structure, ab-
straction, performance, security, concurrency, etc.), even their early
introduction, can come in the first course. Many topics will ap-
pear only in advanced courses. Institutions make their own deci-
sions on which topics to select for advanced courses, and which
are considered prerequisite skills taught in introductory courses.
This also includes software design and development best practices,
such as unit testing and programming patterns, as well as tools
used in teaching such as version control systems, and industrial
integrated development environments (IDEs). Thus, in this report,
prerequisites are skills that are relative to the choices made for the
specification of the content to be covered and the curriculum that
is an implementation for it. In addition, not all skills and knowl-
edge covered in an introductory course will be prerequisites for
all advanced courses. If there is no demand for object-oriented
programming in an advanced course, the OO concepts are not
prerequisite knowledge even though the introductory course was
designed in an objects-first approach.

As said earlier, the Body of Knowledge can be interpreted as
a specification of the content to be covered and a curriculum is
an implementation of it. Many curricula meet the specification.
However, the above knowledge areas are not intended to be in one-
to-one correspondence with particular courses in a curriculum. In
addition, a curriculum should have courses that incorporate topics
from multiple Knowledge Areas. CC2013 identifies topics as “Core”
or “Elective”, with the core further subdivided into “Tier-1” and
“Tier-2”. A curriculum should include all topics in the Tier-1 core
and ensure that all students cover this material. However, the reader
must note that even most of the topics within a Tier-1 are such
that they are taught in advanced courses. For example, AL/Basic
Analysis has the following Core-Tier-1:

• Differences among best, expected, and worst case behaviors
of an algorithm

• Asymptotic analysis of upper and expected complexity bounds
• Big O notation: formal definition

• Complexity classes, such as constant, logarithmic, linear,
quadratic, and exponential

• Empirical measurements of performance
• Time and space trade-offs in algorithms

As we can see, many of these topics are taught in a course called
Data Structures and Algorithms, or similar, which also has a pre-
requisite course (e.g., CS1 or CS2). Thus, we are not going to list
all CC2013 Knowledge Areas in our paper, but review the areas of
CC2013 closest to the tracing-related prerequisite skills: SDF/Funda-
mental Programming Concepts, SDF/Fundamental Data Structures,
and SDF/Development Methods as well as PL/Object-Oriented Pro-
gramming, and PL/Basic Type Systems. For brevity, here we only
give an examples of SDF/Development Methods. It is expected that
every curriculum should invest 10 core Tier-1 hours for this. An
“hour” corresponds to the time required to present the material in a
traditional lecture-oriented format. However, the hour count does
not include any additional work that is associated with a lecture
(e.g., in self-study, laboratory sessions, and assessments). According
to CC2013, the SDF/Development Methods should include,

• Program comprehension,
• Program correctness,
– Types of errors (syntax, logic, run-time)
– The concept of a specification,
– Defensive programming (e.g., secure coding, exception
handling),

– Code reviews,

– Testing fundamentals and test-case generation,
– The role and the use of contracts, including pre- and post-
conditions, and

– Unit testing.
• Simple refactoring,
• Modern programming environments,
– Code search,
– Programming using library components and their APIs.

• Debugging strategies, and
• Documentation and program style.

As we can see, even these topics are described at such a high
level of abstraction that there must exist many underlying lower
level concepts (operators, variables, assignments, loop constructs,
conditional branching, subroutines, etc.) required to master the
whole knowledge area.

CC2013 also has examples of Learning Outcomes (LO) related to
each Knowledge Area. The following are good examples of LOs for
SDF/Development Methods that we are investigating in this report:

• Trace the execution of a variety of code segments and write
summaries of their computations.

• Construct, execute and debug programs using a modern IDE
and associated tools such as unit testing tools and visual
debuggers.

• Construct and debug programs using the standard libraries
available with a chosen programming language.

A.2 Core Concepts Identified by Experts
Goldman et al. [17, 18] set out to create a concept inventory for
introductory computing subjects. An important part of this process
is to investigate which core concepts are typically covered in intro-
ductory courses, and which of those are perceived to be important
and difficult. This allows the final concept inventory to focus on
the most important concepts that students are most likely to find
difficult, thus keeping the size of the concept inventory down.

We present a summary of the final concepts for programming
fundamentals below as that is the subject most relevant to this
report. The remaining concepts can be found in the original pa-
per [18]. To find the most difficult and important concepts, the
authors represented each concept as a point on a 2D plane, the 𝑥
coordinate being the mean importance, and the 𝑦 coordinate being
the mean difficulty. The concepts closest to the maximum point
(10, 10) were then deemed to be the most important and difficult
topics. The top 11 such topics are marked with an asterisk below.
PA1 Parameters/Arguments I: Understanding the difference be-

tween “Call by Reference” and “Call by Value”.
PA2 Parameters/Arguments II: Understanding the difference be-

tween “Formal Parameters” and “Actual Parameters”.
PA3* Parameters/Arguments III: Understanding the scope of pa-

rameters, correctly using parameters in procedure design.
PROC* Procedures/Functions/Methods: (e.g., designing and declar-

ing procedures, choosing parameters and return values, prop-
erly invoking procedures)

CF Control Flow: Correctly tracing code through a given model of
execution.

TYP Types: (e.g., choosing appropriate types for data, reasoning
about primitive and object types, understanding type im-
plications in expressions (e.g., integer division rather than
floating point))

BOOL Boolean Logic: (e.g., constructing and evaluating boolean
expressions, using them appropriately in the design of con-
ditionals and return expressions)

COND Conditionals: (e.g., writing correct expressions for condi-
tions, tracing execution through nested conditional struc-
tures correctly)

SVS Syntax vs. Semantics: Understanding the difference between
a textual code segment and its overarching purpose and
operation.

OP Operator Precedence: (e.g., writing and evaluating expressions
using multiple operators)

AS Assignment Statements: (e.g., interpreting the assignment op-
erator not as the comparison operator, assigning values from
the right hand side of the operator to the left hand side of the
operator, understanding the difference between assignment
and a mathematical statement of equality)

SCO* Scope: (e.g., understanding the difference between local and
global variables and knowing when to choose which type,
knowing declaration must occur before usage, masking, im-
plicit targets (e.g., this operator in Java))

CO Classes and Objects: Understanding the separation between
definition and instantiation.

SCDE Scope Design: (e.g., understanding difference in scope be-
tween fields and local variables, appropriately using visibility
properties of fields and methods, encapsulation)

INH* Inheritance: (e.g., understanding the purpose of extensible
design and can use it)

POLY Polymorphism: (e.g., understanding and using method dis-
patch capabilities, knowing how to use general types for
extensibility)

STAM Static Variables andMethods: (e.g., understanding and using
methods and variables of a class which are not invoked on
or accessed by an instance of the class)

PVR Primitive and Reference Type Variables: Understanding the
difference between variables which hold data and variables
which hold memory references/pointers.

APR* Abstractions/Pattern Recognition and Use: (e.g., translating
the structure of a solution to the solution of another similar
problem)

IT1 Iteration/Loops I: Tracing the execution of nested loops cor-
rectly.

IT2 Iteration/Loops II: Understanding that loop variables can be
used in expressions that occur in the body of a loop.

REC* Recursion: (e.g., tracing execution of recursive procedures,
can identofy recursive patterns and translate into recursive
structures)

AR1 Arrays I: Identifying and handling off-by-one errors when
using in loop structures.

AR2 Arrays II: Understanding the difference between a reference
to an array and an element of an array.

AR3 Arrays III: Understanding the declaration of an array and
correctly manipulating arrays.

MMR* Memory Model/Reference/Pointers: (e.g., understanding
the connection between high-level language concepts and
the underlying memory model, visualizing memory refer-
ences, correct use of reference parameters, indirection, and
manipulation of pointer-based data structures)

DPS1* Design and Problem Solving I: Understands and uses func-
tional decomposition and modularization: solutions are not
one long procedure.

DPS2* Design and Problem Solving II: Ability to identify charac-
teristics of a problem and formulate a solution design.

DEH* Debugging/Exception Handling: (e.g., deceloping and using
practices for finding code errors)

IVI Interface fs. Implementation: (e.g., understanding the differ-
ence between the design of a type and the design of its
implementation)

IAC Interfaces and Abstract Classes: (e.g., understanding general
types in design, designing extensible systems, ability to de-
sign around such abstract types)

DT* Designing Tests: (e.g., ability to design tests that effectively
cover a specification)

The authors characterized concepts with a high standard devia-
tion of rankings into two types: outlier and controversial. Outlier
concepts (PA1, IT2, TYP, PVR, REC) had a strong consensus but one
or two outliers. Controversial concepts (INH, MMR), on the other
hand, had clustering around two ratings. The authors theorize that
this might partially be due to different experts teaching different
programming languages in CS1.

A.3 Misconception Catalogue
Misconceptions can be caused by a lack of knowledge of the syntax,
not knowing how a particular syntactical construct behaves (i.e.,
due to an incorrect or incomplete notional machine [13, 82]), or
not knowing how to use a particular construct in order to solve a
programming problem (i.e. lacking strategic knowledge). Several
misconceptions in introductory programming have been identified
and addressed in the literature [38, 61, 67, 82]. For example, a classic
syntactical misconception is the use of an assignment operator
(=) instead of the comparison operator (==). At a conceptual level
(notional machine), an example of a misconception is that a variable
can hold more than one value; this is manifested in the task of
swapping two variables. With respect to the strategic level, novices
findmodularization and decomposition, general abstraction, testing,
and debugging very difficult [17].

In this report we do not contribute new misconceptions but
instead use existing knowledge about misconceptions to check
that our new assessment questions might feasibly catch frequent
misconceptions. We wanted to check how misconceptions from
the research literature aligned with our prerequisite skills coding.
However, as the number of studies related to misconceptions is
too large to be cited her, we chose to use the Misconception Cata-
logue collected by Sorva. It represents a review of literature from

the past forty years [81]. Although, it gives examples of novice
programmers’ misconceptions about the content of introductory
programming courses in general, it is somewhat leaning towards
misconceptions found in courses taking Object-Oriented approach.

In the Misconceptions Catalogue, the topics of misconceptions
are grouped into the following structure:

(1) General (the overall nature of programs and program execu-
tion),

(2) VarAssign (variables, assignment and expression evaluation),
(3) Control (flow of control, selection and interation),
(4) Calls (subprogram invocations and parameter passing),
(5) Rec (recursion),
(6) Refs (references and pointers, reference assignment and ob-

ject identity),
(7) ObjClass (the object–class relationship and instantiation),
(8) ObjState (object state and attributes),
(9) Methods (issues specific to methods and methods calls),
(10) OtherOOP (other topics specific to object-oriented program-

ming), and
(11) Misc (none of the above).
For examples of particular misconceptions mapped to our code-

book, see Tables 1 to 6.

M MODIFIED QUESTIONS
M.1 Data Structure Question (Queue)
M.1.1 Original question. Consider the following data structure:

1 public class Y<Key extends Comparable <Key >>
2 {
3 private Key[] A = (Key[]) new Comparable [1];
4 private int lo, hi, N;
5 public void insert(Key in)
6 {
7 A[hi] = in;
8 hi = hi + 1;
9 if (hi == A.length) hi = 0;
10 N = N + 1;
11 if (N == A.length) rebuild ();
12 }
13 public Key remove () // assumes Y is not empty
14 {
15 Key out = A[lo];
16 A[lo] = null;
17 lo = lo + 1;
18 if (lo == A.length) lo = 0;
19 N = N - 1;
20 return out;
21 }
22 private void rebuild ()
23 {
24 Key[] tmp =
25 (Key[]) new Comparable [2*A.length];
26 for (int i = 0; i < N; i++)
27 tmp[i] = A[(i + lo) % A.length];
28 A = tmp;
29 lo = 0;
30 hi = N;
31 }
32 }

(a) Class Y behaves like which well-known data structure?
A Stack
B Queue
C Priority queue
D Union-find

(b) Write the body of a method int size() that returns the
number of elements in the data structure.
A return N;
B return A.length;
C return A[N];
D return hi - lo;

(c) Which invariant does the data structure maintain after every
public operation?
A N < A.length
B lo < hi
C hi < N
D hi == N

(d) Draw the data structure (including the contents of A and the
values of hi, lo, and N) after the following operations:

1 Y y = new Y();
2 y.insert (1);
3 y.remove ();

4 y.insert (2);
5 y.remove ();
6 y.insert (3);

(e) Howmany array accesses does a single call to Y.remove take
in the worst case? (To make this well-defined, we assume
that the compiler performs no clever optimisations. That is,
every array access we’ve written in the code will actually be
performed.)
A ∼ 4𝑁
B 2
C ∼ 2𝑁
D 7

(f) How many array accesses does a single call to the most
expensive public method of Y take in the worst case?
A linear in 𝑘 .
B constant.
C linearithmic in 𝑘 .
D quadratic in 𝑘 .

(g) What is the number of array accesses per operation in the
following sequence of 2𝑘 operations, starting from an empty
data structure: y.insert(1); y.remove(); y.insert(2);
y.remove(); y.insert(3); y.remove(); . . . y.insert(k);
y.remove();
A linear in 𝑘 in the worst case and in the amortized case.
B constant in the worst case.
C constant in the amortized case, but linear in 𝑘 in the worst
case.

D quadratic in 𝑘 in the worst case.
(h) True or false: The data structure Y uses space linear in N.

Explain you answer on a separate piece of paper. (Be as
formal and short as you can, but not shorter. If you use
more than half a page of text you’re on the wrong level of
abstraction.)

M.1.2 Analysis of the original question. This question assesses the
following skills categorized in this paper:

• Simple statements
• Operators
• Assignments
• Tracing
• Conditionals
• Loop constructs
• Array iteration
• Types
• Values and references
• Arrays
• Parameters
• Return values
• Function scoping and data flow
• Classes/records/ADT
• Reasoning about constraints
• Meta-tracing knowledge

The code implements a queue with a circular array and two
integer: lo is the index of the last element in the queue and hi
is the index just after the first element in the queue. Variable N
represents the number of element in the queue. The array is rebuilt

with doubled size whenever the insertion of an element exhausts
the capacity of the array.

The correct answers for the first items are: B, A, A
More in-depth analysis on the original exercise:
• The answer to the first answer could be wrong for very
different reasons:
– you do not know these data structures, you are not able
to differentiate them (advanced concept)

– you do not understand the code
• If you know the difference between the mentioned data struc-
tures, a very general understanding of the code would be
enough to answer item (a): you can exclude union-find be-
cause is a totally different setting; you can exclude priority
queues because there are no comparisons; lines 8 and 17
should be enough to understand that insertion and removal
occur in different places so the stack can also be excluded.

• If one does not understand the circular nature of this queue
implementation, they might wrongly select option D for
item (b) and option B for item (c). The relevant lines of code
here are 9, 18, 27. However, the circularity is not explicitly
assessed, since one could correctly answer to items (b) and (c)
by considering only lines 10 and 19, without understanding
the circularity.

• Item (c) addresses the possible confusion between the length
of the array and the number of elements currently in the
queue.

• To answer item (d) correctly you need to understand both
the circularity and the rebuilding policy.

• To understand the rebuilding policy you need conditionals
and array knowledge (line 11).

• Neither the circularity nature of the queue nor implementa-
tion and the rebuilding policy are assessed explicitly (sepa-
rately).

• In item (d), extreme situations may occur: on the one hand,
one can answer correctly by tracing the code line by line,
without understanding what is going on on an abstract level,
on the other hand, if one has already understood how the
queue is implemented and they are able to reason about it at
a high level, they could answer item (b) without considering
the code at all.

• Items from (e) openly address advanced concepts (related
to complexity) that still require referring to the code and
considering its execution.

M.1.3 Summary of assessed skills. This exercise assesses the fol-
lowing advanced learning outcomes:

• knowledge: difference among different data structures; no-
tion of worst case complexity and amortized complexity

• skills: understand a piece of code that implements a queue;
analyse the complexity of an algorithm expressed in a piece
of code

The prerequisite skills (from our code-book) required to solve
this exercise are:

• Simple Statements
• Operators
• Assignments
• Tracing

• Conditionals
• Loop constructs
• Array iteration
• Arrays
• Type
• Return values
• Function scoping and data flow
• Classes/records/ADT
• Reasoning about constraints
• Meta-tracing knowledge

M.1.4 New version. (Changes are highlighted in bold)
(a) Class Y behaves like which well-known data structure?

A Stack
B Queue
C Priority queue
D Union find

(b) Write the body of a method int size() that returns the
number of elements in the data structure.
A return N;
B return A.length;
C return A[N];
D return hi - lo;

(c) Which invariant does the data structure maintain after every
public operation?
A N < A.length
B lo < hi
C hi < N
D hi == N

(c-1) Assume that:
A holds {3, 8, 4, 1},
lo holds 3,
hi holds 2 and
N holds 2.
A Is the above situation something that can occur by
calling a sequence of insert and remove? If yes, give
such a sequence, otherwise explain why not.

B What are the contents of A, lo and hi after executing
rebuild?

(d) Draw the data structure (including the contents of A and the
values of hi, lo, and N) after the following operations, and
indicate how many times rebuild were called:

1 Y y = new Y();
2 y.insert (1);
3 y.remove ();
4 y.insert (2);
5 y.remove ();
6 y.insert (3);

(d-1) What are the values of a and b after executing the fol-
lowing piece of code?

1 Y y = new Y();
2 Y z = new Z();
3 Y w = z;
4 w.insert (3);
5 z.insert (1);
6 y.insert (2);

7 int a = z.remove ();
8 int b = y.remove ();

(e) Howmany array accesses does a single call to Y.remove take
in the worst case? (To make this well-defined, we assume
that the compiler performs no clever optimisations. That is,
every array access we’ve written in the code will actually be
performed.)
A ∼ 4𝑁
B 2
C ∼ 2𝑁
D 7

(f) How many array accesses does a single call to the most
expensive public method of Y take in the worst case?
A linear in 𝑘 .
B constant.
C linearithmic in 𝑘 .
D quadratic in 𝑘 .

(g) What is the number of array accesses per operation in the
following sequence of 2𝑘 operations, starting from an empty
data structure: y.insert(1); y.remove(); y.insert(2);
y.remove(); y.insert(3); y.remove(); . . . y.insert(k);
y.remove();
A linear in 𝑘 in the worst case and in the amortized case.
B constant in the worst case.
C constant in the amortized case, but linear in 𝑘 in the worst
case.

D quadratic in 𝑘 in the worst case.
(h) True or false: The data structure Y uses space linear in N.

Explain you answer on a separate piece of paper. (Be as
formal and short as you can, but not shorted. If you use
more than half a page of text you’re on the wrong level of
abstraction.)

M.1.5 Modifications in the new version. We modified the exercise
by adding some items, so that the prerequisite skills can be assessed
separately, that are critical for this question. Namely, we focused
on operators (modulus), conditionals, arrays (indexing and storage),
and array iteration.

We also add an item focusing on the difference between an
object/ADT and its instances, and the difference between values
and references. These aspects were not addressed in the original
question, but the original code contains a class, thus we expanded
the topic a bit.

We kept items from (e) on unmodified, since with the previ-
ous addenda, they can be used just to focusing assessment of the
advance topics.

The order of items follows this rationale: first the core items that
access the advance topics, then items that aim at either confirming
that the correct answer is not by chance or by superficial guessing
from the code, or to distinguish whether the incorrect answers are
due to lack of prerequisite skills or bad knowledge/understanding
of advanced concepts.

• The use of “comparable” (lines 24-25) could prevent com-
prehension of the declaration. This issue was not classified
by our code-book since it is language-specific. However, we
added a comment before line 24 to make this clear:
The line below is essentially:
Key[] tmp = new Key[2*A.length];

with keys being comparable.
The fact that key are comparable could be also removed, but
that would weaken distractor C of item (a).

• A new question is added as (c-1), in order to assess prerequi-
sites on operators (modulus), conditionals, arrays (indexing
and storage), and array iteration.
The correct answer is: A holds {1, 3, 0, 0, 0, 0, 0, 0}, lo holds 0,
hi holds 2, N holds 2.
The second part requires tracing. The instance is not consis-
tent, and this might raise doubts in most conscious students,
so we added the idem before, which also assesses their abil-
ity to reason about constraints (pre- and post-conditions). A
good answer for this item is to notice that N is always equal
to the distance (in absolute value) between hi and lo, which
is not true in this instance. Answering correctly to original
items (b) and (c) is a good step towards this understanding.
Thus the question addresses circularity, since in this instance
lo is higher that hi.

• We modified question (d) to asses separately the “condition-
als” prerequisite skill. Namely we added this question: How
many times was “rebuild” called?

• Finally, we added another item, (d-1), after (d) to assessing
“references” and “instances”. The correct answer is a holds 1
and b holds 2. If they say a is 1, they do not know reference
semantics; if the say b is 3, they do not differentiate instances
(they have only one queue).

M.2 Concurrency 1
M.2.1 Original question. As a teacher, you are constantly on the
hunt for good ideas for exam exercises. The main problem, however,
is that it is easy to forget the good ideas before they are actually
used to produce a good question. To solve this problem, one teacher
implemented a data structure to keep track of them. The implemen-
tation of the data structure is below. It has the following operations:

• idea_init: Initializes the idea buffer.
• idea_add: Adds an idea (a string) to the buffer. If the buffer
is full and the idea could not be added, false should be
returned, otherwise true should be returned.

• idea_get: Randomly selects and returns an idea from the
buffer. The idea is also removed to ensure it is not used for
another exam. If no ideas are present, idea_get shall wait
until a new idea is added with idea_add.

During the exam periods, idea_add and idea_get are used fre-
quently by many teachers. Therefore, it is important that they are
usable from multiple threads simultaneously as far as possible.

(1) Is busy-wait used somewhere in the implementation? If so,
where?

(2) Use suitable synchronization primitives to eliminate any
occurrences of busy-wait you found.

(3) After using the data structure for a while, some users notice
that the same idea has been used multiple times (i.e. multi-
ple calls to idea_get returned the same idea). Furthermore,
ideas sometimes disappear from the buffer, even though
idea_add indicates success by returning true.
Explain with an example what could have happened when...

(a) ...the same idea was used multiple times.
(b) ...the buffer ”lost” one or more ideas.

(4) Mark any critical sections present in the functions idea_add
and idea_get. Also note the resource(s) that need protec-
tion.

(5) Use suitable synchronization primitives to synchronize the
code based on the critical sections you found.
Note: Strive for a solution that allows maximum theoretical
parallellism, even though that solution may perform worse
in practice due to synchronization overheads (please note if
you think this is the case).
Note: Points may be deducted for excessive locking.

1 #define BUFFER_SIZE 32
2
3 struct idea_buffer {
4 // All ideas in the buffer. Empty elements are
5 // set to NULL.
6 const char *ideas[BUFFER_SIZE];
7 // Number of ideas in the buffer.
8 int count;
9 };
10 // Initialize the buffer.
11 void idea_init(struct idea_buffer *buffer) {
12 for (int i = 0; i < BUFFER_SIZE; i++)
13 buffer ->ideas[i] = NULL;
14 buffer ->count = 0;
15 }
16 // Add a new idea to an empty location in the

17 // buffer. Returns 'false ' if the buffer is full.
18 bool idea_add(struct idea_buffer *buffer ,
19 const char *idea) {
20 // Find an empty location.
21 int found = BUFFER_SIZE;
22 for (int i = 0; i < BUFFER_SIZE; i++) {
23 if (buffer ->ideas[i] == NULL) {
24 found = i;
25 break;
26 }
27 }
28 // Full?
29 if (found >= BUFFER_SIZE)
30 return false;
31 // Insert into the buffer.
32 buffer ->ideas[found] = idea;
33 buffer ->count ++;
34 return true;
35 }
36 // Get and remove a random element from the
37 // buffer. If no elements are present , the
38 // function waits for an element to be added.
39 const char *idea_get(struct idea_buffer *buffer) {
40 while (buffer ->count == 0)
41 ;
42 buffer ->count --;
43 // Find an element. Start from a random index ,
44 // and look through the array until we find a
45 // non -empty element.
46 int pos = rand() % BUFFER_SIZE;
47 while (buffer ->ideas[pos] == NULL) {
48 pos = (pos + 1) % BUFFER_SIZE;
49 }
50 // Remove it.
51 const char *result = buffer ->ideas[pos];
52 buffer ->ideas[pos] = NULL;
53 return result;
54 }

M.2.2 Analysis of the original question. This question assesses the
following skills categorized in this paper:

• Simple Statements
• Operators
• Assignments
• Tracing
• Debugging
• Loop constructs
• Array iteration
• Types
• Values and references
• Indirection
• Parameters
• Return values
• Function scoping and data flow
• Classes/records/ADT
• Problem decomposition
• Reasoning about constraints
• Meta-tracing knowledge

M.2.3 New version. (Changes highlighted in bold)

As a teacher, you are constantly on the hunt for good ideas for
exam exercises. The main problem, however, is that it is easy to
forget the good ideas before they are actually used to produce a
good question. To solve this problem, one teacher implemented a
data structure to keep track of them. The implementation of the
data structure is below. It has the following operations:

• idea_init: Initializes the idea buffer.
• idea_add: Adds an idea (a string) to the buffer. If the buffer
is full and the idea could not be added, false should be
returned, otherwise true should be returned.

• idea_get: Randomly selects and returns an idea from the
buffer. The idea is also removed to ensure it is not used for
another exam. If no ideas are present, idea_get shall wait
until a new idea is added with idea_add.

During the exam periods, idea_add and idea_get are used fre-
quently by many teachers. Therefore, it is important that they are
usable from multiple threads simultaneously as far as possible.

(1) When executing the following code, what is the value
of the variable res afterwards?

1 struct idea_buffer x;
2 idea_init (&x);
3 idea_add (&x, "a");
4 int res = x.count;

(2) When executing the following code, what do you ex-
pect the last line to do?

1 struct idea_buffer a, b;
2 idea_init (&a);
3 idea_init (&b);
4 idea_add (&a, "a");
5 idea_get (&b); // <-- here?

(3) Is busy-wait used somewhere in the implementation? If so,
where?

(4) Use suitable synchronization primitives to eliminate any
occurrences of busy-wait you found.

(5) After using the data structure for a while, some users notice
that the same idea has been used multiple times (i.e. multi-
ple calls to idea_get returned the same idea). Furthermore,
ideas sometimes disappear from the buffer, even though
idea_add indicates success by returning true.
Explain with an example what could have happened when...

(a) ...the same idea was used multiple times.
(b) ...the buffer ”lost” one or more ideas.

(6) Mark all lines in the code where some data inside a
idea_buffer is accessed. Also note which part of the
expression that accesses the part.

(7) Which variables are not shared between threads?
(8) Mark any critical sections present in the functions idea_add

and idea_get. Also note the resource(s) that need protec-
tion.

(9) Use suitable synchronization primitives to synchronize the
code based on the critical sections you found.
Note: Strive for a solution that allows maximum theoretical
parallellism, even though that solution may perform worse
in practice due to synchronization overheads (please note if
you think this is the case).

Note: Points may be deducted for excessive locking.

1 #define BUFFER_SIZE 32
2
3 struct idea_buffer {
4 // All ideas in the buffer. Empty elements are
5 // set to NULL.
6 const char *ideas[BUFFER_SIZE];
7 // Number of ideas in the buffer.
8 int count;
9 };
10 // Initialize the buffer.
11 void idea_init(struct idea_buffer *buffer) {
12 for (int i = 0; i < BUFFER_SIZE; i++)
13 buffer ->ideas[i] = NULL;
14 buffer ->count = 0;
15 }
16 // Add a new idea to an empty location in the
17 // buffer. Returns 'false ' if the buffer is full.
18 bool idea_add(struct idea_buffer *to,
19 const char *idea) {
20 // Find an empty location.
21 int found = BUFFER_SIZE;
22 for (int i = 0; i < BUFFER_SIZE; i++) {
23 if (to->ideas[i] == NULL) {
24 found = i;
25 break;
26 }
27 }
28 // Full?
29 if (found >= BUFFER_SIZE)
30 return false;
31 // Insert into the buffer.
32 to->ideas[found] = idea;
33 to->count ++;
34 return true;
35 }
36 // Get and remove a random element from the
37 // buffer. If no elements are present , the
38 // function waits for an element to be added.
39 const char *idea_get(struct idea_buffer *from) {
40 while (from ->count == 0)
41 ;
42 from ->count --;
43 // Find an element. Start from a random index ,
44 // and look through the array until we find a
45 // non -empty element.
46 int pos = rand() % BUFFER_SIZE;
47 while (from ->ideas[pos] == NULL) {
48 pos = (pos + 1) % BUFFER_SIZE;
49 }
50 // Remove it.
51 const char *result = from ->ideas[pos];
52 from ->ideas[pos] = NULL;
53 return result;
54 }

M.2.4 Modifications in the new version. In the new version, we
made the following changes:

• The names of the pointer variables were altered to make
it impossible to rely entirely on pattern matching in order

to arrive at conclusions regarding shared and non-shared
variables in parts 1, 2 and 5.

• Part 1 was added, which explicitly assesses that students
understand references in C.

• Part 2 was added, which explicitly assesses the object cate-
gory, that the student understands the difference between
struct declarations and instances.

• Part 6 was added, which explicitly assesses whether students
understand indirection. Since the pointer variables are re-
named, students need to be aware that the different variables
actually refer to the same instance.

• Part 7 was added, which assesses function scoping and data
flow by asking the student to note which variables are not
shared, which requires the student to understand which
variables are local to functions and which are not.

M.3 Concurrency 2
This question presents the student with an implementation of a
data structure and asks the student to make sure it is synchronized.

M.3.1 Original question. You are working on a program that is
doing heavy computations. Sadly, the program only uses one of the
cores in your system, and you got tired of waiting for it to complete
all the time. After some thinking, you realized that it is possible to
split the problem up into multiple independent parts that can run in
parallel most of the time. In order to do this, you implement a basic
structure to help you managing the workload. Sadly, something
seems to be wrong as you sometimes get zero as a result from many
of the parts.

You have implemented two functions: spawn and wait:
• spawn creates a thread that executes do_work with the pa-
rameter passed to it. "spawn" returns a pointer to struct
work_data that keeps track of the created thread.

• The pointer returned from spawnmay then be passed to wait
in order to wait for the thread to complete its task and get
the result. It should be possible to call spawn from multiple
threads concurrently.
You may assume that wait is only called once for each time
spawn is called.

Correct any synchronization issues in the implementation.

1 // Function doing the heavy computations. We
2 // want to run this in parallel in two threads.
3 int do_work(int param) {
4 // Here we're doing heavy work ...
5
6 // Hint , try uncommenting the following
7 // line to see the problems occurring
8 // more frequently.
9 // timer_msleep(param);
10
11 // For simplicity we simply square
12 // the parameter.
13 return param * param;
14 }
15
16 // Data structure keeping track of a thread
17 // running "do_work ".
18 struct work_data {
19 // Parameter to be passed to "do_work ".
20 int param;
21
22 // Result from "do_work" in case
23 // the thread is done.
24 int result;
25 };
26
27 // The first function executed in new threads.
28 void thread_main(struct work_data *data) {
29 data ->result = do_work(data ->param);
30 }
31
32 // Start a new thread running the function
33 // "do_work" with "param" as a parameter.
34 // Returns a "struct work_data" that may be
35 // passed to "wait" in order to get the result.
36 struct work_data *spawn(int param) {

37 // Allocate a new data structure and
38 // initialize it.
39 struct work_data *data =
40 malloc(sizeof(struct work_data));
41 data ->param = param;
42
43 // Create a new thread running "thread_main"
44 // and give it access to "data".
45 thread_new (& thread_main , data);
46
47 return data;
48 }
49
50 // Wait for a thread started with "spawn" to
51 // complete , and get the result produced. "wait"
52 // will also free "data", so we assume that "wait"
53 // is only called once for each call to "spawn".
54 int wait(struct work_data *data) {
55 // Get the result , free the memory
56 // and return it.
57 int result = data ->result;
58 free(data);
59 return result;
60 }
61
62 // Main function. If the implementation above is
63 // correct you should not need to change anything
64 // here. It could be interesting to modify "main"
65 // in order to test your implementation.
66 int main(void) {
67 struct work_data *a = spawn (10);
68 struct work_data *b = spawn (100);
69
70 int c = do_work (5);
71
72 printf("Result for 'a ': %d\n", wait(a));
73 printf("Result for 'b ': %d\n", wait(b));
74 printf("Result for 'c ': %d\n", c);
75
76 return 0;
77 }

M.3.2 Analysis of the original question. The code implements a
simple data structure that acts as a simple version of a future, and
asks the student to synchronize it. Arriving at a solution requires
the student to understand under what conditions the code is as-
sumed to be used, in order to work out that the data in work_data
needs to be protected, and that wait needs to be synchronized ap-
propriately to protect that data. One solution for this exercise is to
add a semaphore to the data structure and call up on the semaphore
at the end of do_work and down in the beginning of wait.

M.3.3 Summary of assessed skills. This question assesses the fol-
lowing skills categorized in this paper:

• Simple statements
• Assignments
• Types
• Values and references
• Indirection
• Parameters

• Return values
• Function scoping and data flow
• Classes/records/ADT
• Object/instance/variable
• Meta-tracing knowledge

Advanced skills:
• Threads
• Semaphores or condition variables

As the synchronization goal is not explicitly stated, this problem
would be in level 3 of the concurrency development levels described
previously.

M.3.4 New version. (Changes are highlighted in bold)
You are working on a program that is doing heavy computations.

Sadly, the program only uses one of the cores in your system, and
you got tired of waiting for it to complete all the time. After some
thinking, you realized that it is possible to split the problem up into
multiple independent parts that can run in parallel most of the time.
In order to do this, you implement a basic structure to help you
managing the workload. Sadly, something seems to be wrong as
you sometimes get zero as a result from many of the parts.

You have implemented two functions: spawn and wait:
• spawn creates a thread that executes do_work with the pa-
rameter passed to it. "spawn" returns a pointer to struct
work_data that keeps track of the created thread.

• The pointer returned from spawnmay then be passed to wait
in order to wait for the thread to complete its task and get
the result. It should be possible to call spawn from multiple
threads concurrently.
You may assume that wait is only called once for each time
spawn is called.

(1) What do you expect to be printed by the statement on
lines 50-51 when running the supplied program?

(2) Highlight the lines in the code that access shared data.
For each line, highlight the expressions that access shared
data.

(3) Howmany instances of struct work_data are created
when running the main function?

(4) Consider the commented line on line 92. What would
go wrong if this line was not a comment?

(5) Use suitable synchronization primitives to synchronize the
code.

1 // Function doing the heavy computations. We
2 // want to run this in parallel in two threads.
3 int do_work(int param) {
4 // Here we're doing heavy work ...
5
6 // Hint , try uncommenting the following
7 // line to see the problems occurring
8 // more frequently.
9 // timer_msleep(param);
10
11 // For simplicity we simply square
12 // the parameter.
13 return param * param;
14 }
15
16 // Data structure keeping track of a thread

17 // running "do_work ".
18 struct work_data {
19 // Parameter to be passed to "do_work ".
20 int param;
21
22 // Result from "do_work" in case
23 // the thread is done.
24 int result;
25 };
26
27 // The first function executed in new threads.
28 void thread_main(struct work_data *data) {
29 printf("New thread computing %d\n",
30 data ->result);
31 data ->result = do_work(data ->param);
32 }
33
34 // Initialize data.
35 void initialize_data(int param ,
36 struct work_data *init) {
37 init ->param = param;
38 init ->result = 0;
39 }
40
41 // Start a new thread running the function
42 // "do_work" with "param" as a parameter.
43 // Returns a "struct work_data" that may be
44 // passed to "wait" in order to get the result.
45 struct work_data *spawn(int param) {
46 // Allocate a new data structure and
47 // initialize it.
48 struct work_data *data =
49 malloc(sizeof(struct work_data));
50 initialize_data(param , data);
51 printf("Initialized data for %d\n",
52 data ->param);
53
54 // Create a new thread running "thread_main"
55 // and give it access to "data".
56 thread_new (& thread_main , data);
57
58 return data;
59 }
60
61 // Version of spawn.
62 struct work_data *spawn2(int param ,
63 struct work_data *data) {
64 initialize_data(param , data);
65 printf("Initialized data for %d\n",
66 data ->param);
67
68 // Create a new thread running "thread_main"
69 // and give it access to "data".
70 thread_new (& thread_main , data);
71
72 return data;
73 }
74
75 // Wait for a thread started with "spawn" to
76 // complete , and get the result produced. "wait"
77 // will also free "data", so we assume that "wait"
78 // is only called once for each call to "spawn".

79 int wait(struct work_data *wait_for) {
80 // Get the result , free the memory
81 // and return it.
82 int result = wait_for ->result;
83 free(wait_for);
84 return result;
85 }
86
87 // Main function. If the implementation above is
88 // correct you should not need to change anything
89 // here. It could be interesting to modify "main"
90 // in order to test your implementation.
91 int main(void) {
92 struct work_data *a = spawn (10);
93 struct work_data *b = spawn (100);
94 // b = spawn_2 (1000, b);
95
96 int c = do_work (5);
97
98 printf("Result for 'a': %d\n", wait(a));
99 printf("Result for 'b': %d\n", wait(b));
100 printf("Result for 'c': %d\n", c);
101
102 return 0;
103 }

M.3.5 Modifications in the new version. In the new version we
made the following changes:

• Changed the name of the parameter used for struct work_-
data in the functions. By doing this, students need to under-
stand how pointers work in order to find the proper values
of the print statements in part 1, and to find shared data in
part 2.

• By adding part 2, it also becomes visible if students under-
stand function scope, as they would otherwise indicate local
variables as being shared.

• By adding part 3, the student needs to understand the dif-
ference between a struct declaration and an instance of that
struct. This is also visible by observing the print statement
inside wait, which is a part of assignment 1.

• The call to spawn_2 in part 4 also tests the ability to dif-
ferentiate between a struct declaration and an instance by
accidentally re-using one instance for multiple tasks. This
prevents guessing the correct number of instances on part 3,
but requires understanding of references as well.

• Part 5 is like in the original, and may now be used to verify
that the location of the semaphore required by the final
solution corresponds to the students’ prerequisite skills.

M.4 Advanced OOP: Inheritance and
Polymorphism

This question contains a piece of code that defines a number of
classes in Eiffel, and asks the student what would happen when a
piece of provided code is executed. Interestingly, Eiffel allows for
co-variant overloading of methods, and still it considers the derived
type as conforming to the base one (this is in contrast with the type
systems of many popular languages, such as Java and C++). The
assessment is designed to make students consider the problems this
possibility might cause (since Liskov’s conditions do not necessarily
hold) in a system in which both the base and the derived component
are used; see [52] for the background and the inspiration of the
exercise and further discussion.

For readers not familiar with the Eiffel language: member func-
tions and attributes are known as features in Eiffel lingo; deferred
means the implementation is postponed in another type defini-
tion, like abstract in Java; require, ensure, invariant mark pre-,
post-conditions, and invariants; create mark constructors features
and it is needed also to call them; Current is a self reference; out is
analogous to toString in Java.

Figure 3: UML Class diagram for assessment classes

M.4.1 Original question. Consider the Eiffel code below and an-
swer the following questions. An UML class diagram is depicted in
Figure 3.

(1) consider the assignment f := g at line 80 of feature make

in the class APPLICATION. What happens if after that state-
ment one puts a call c.eat(f)? Does it cause an error? If yes,
explain whether it is a compile-time or a run-time error.

(2) Consider an assignment f := c. What happens if after that
statement one puts a call a.eat(f)? Does it cause an error? If
yes, explain whether it is a compile-time or a run-time error.

(3) Consider an assignment f := a. What happens if after that
statement one puts a call a.eat(f)? Does it cause an error? If
yes, explain whether it is a compile-time or a run-time error.

(4) Suggest sensible invariants for class GRASS and pre-/post-
conditions for features grow and consume.

(5) Suggest a sensible pre-condition for feature eat in class COW
and explain why that would not be effective.

(6) Rewrite eat in COW such that it raises an exception in case (5).
Is it a good idea according to a Design By Contract approach?

1 deferred c l a s s
2 FOOD
3 end
4
5 deferred c l a s s ANIMAL inher i t FOOD
6 feature
7
8 e a t (f : FOOD)
9 require
10 −− f s h ou l d no t r e f e r t o me . . .
11 no_autophagy : f /= ({ FOOD} [Current])
12 deferred
13 end
14
15 end
16
17 c l a s s GRASS inher i t FOOD
18 redefine
19 out
20 end
21
22 feature
23
24 out : STRING
25 do
26 Result : = " a bunch o f g r a s s (" + weight . out + " kg) "
27 end
28
29 consume (q : INTEGER)
30 do
31 weight : = weight − q
32 end
33
34 grow (q : INTEGER)
35 do
36 weight : = weight + q
37 end
38
39 weight : INTEGER
40
41 end
42
43 c l a s s COW inher i t ANIMAL
44 redefine
45 ea t ,
46 out
47 end
48
49 feature
50
51 e a t (g : GRASS)
52 do
53 g . consume (1 0)
54 end
55
56 out : STRING
57 do
58 Result : = " a cow "
59 end
60
61 end
62
63 c l a s s APPLICATION
64 create
65 make
66
67 feature −− Main
68
69 make
70 −− Run a p p l i c a t i o n .
71 l o ca l
72 a : ANIMAL
73 c : COW

74 g : GRASS
75 f : FOOD
76 do
77 create c
78 create g
79 a : = c
80 f : = g −− f o c u s on t h i s
81 p r i n t (a . out + " i s go ing to e a t : " + f . out + "%N")
82 a . e a t (f)
83 end
84
85 end

M.4.2 Answers to the original question.

(1) The formal parameter (a static, compile-time property) of c.
eat is a GRASS and an actual parameter (a dynamic, run-time
property) of FOOD (the static type of f) is not compatible with
it, it raises a compile-time error.

(2) From a static, compile-time viewpoint the statement a.eat(f
) is fine, since the type of the formal parameter and the static
type of f are compatible (FOOD in both cases). At run-time,
however, a change of availability of type ("catcall") error
is caught, since dynamically a is a COW and it expects a GRASS

to eat, but f is a COW.
(3) From a static, compile-time viewpoint the statement a.eat(f

) is fine, since the type of the formal parameter and the static
type of f are compatible (FOOD in both cases). At run-time,
however, a change of availability of type ("catcall") error
is caught, since dynamically a is a COW and it expects a GRASS

to eat, but f is a COW (the dynamic type of a).
(4) Invariants and pre/post-conditions that make sense:
1 c l a s s GRASS inher i t FOOD −− on l y t h e r e l e v a n t c od e

i s r e p o r t e d h e r e
2
3 feature
4 consume (q : INTEGER)
5 require
6 q > 0
7 weight >= q
8 do
9 weight : = weight − q
10 ensure
11 weight = old weight − q
12 end
13
14 grow (q : INTEGER)
15 require
16 q > 0
17 do
18 weight : = weight + q
19 ensure
20 weight = old weight + q
21 end
22
23 invar iant
24 weight >= 0
25
26 end

(5) Having a pre-condition on COW.eat on g.weight would be
perfectly sensible, for example g.weight >= 10. However,
the syntactical enforcement of Liskov’s substitution princi-
ple embedded in Eiffel would put this condition in or else

(require else) with the pre-condition of the base class FOOD
(i.e., True), therefore this check will be ineffective at run-time
(but could be still useful as a hint to the user of the class COW).

1 c l a s s COW inher i t ANIMAL −− on l y t h e r e l e v a n t c od e
i s r e p o r t e d h e r e

2 redefine
3 e a t
4 end
5
6 feature
7
8 e a t (g : GRASS)
9 require e l se
10 g . weight >= 10
11 do
12 g . consume (1 0)
13 end
14
15 end

(6) One could add a check:
1 c l a s s COW inher i t ANIMAL −− on l y t h e r e l e v a n t c od e

i s r e p o r t e d h e r e
2 redefine
3 e a t
4 end
5
6 feature
7
8 e a t (g : GRASS)
9 do
10 check g >= 10
11 g . consume (1 0)
12 end
13
14 end

This is not a good idea according to Design By Contract,
since the constraint is not available to the clients of COW.
However, the constraint is probably part of the contract of
GRASS.consume (see answer (4)), thus a better idea would be
to avoid the contract violation by growing some GRASS.

1 c l a s s COW inher i t ANIMAL −− on l y t h e r e l e v a n t c od e
i s r e p o r t e d h e r e

2 redefine
3 e a t
4 end
5
6 feature
7
8 e a t (g : GRASS)
9 do
10 i f g . weight < 10 then
11 g . grow (1 0 − g . weight)
12 end
13 g . consume (1 0)
14 end
15
16 end

M.4.3 Summary of assessed skills. Although the goal of the exer-
cise is to test the understanding of the co-variant overloading and its
relationship with static typing constraints and Liskov’s substitution
principle (in a correct system, a component𝐶 ′ can be substituted to
component𝐶 only if the pre-conditions for the use of𝐶 ′ are weaker
or equal than the pre-conditions of𝐶 , and the post-conditions of𝐶 ′

are stronger or equal than the post-conditions of 𝐶), the answering
student must master at least the following fundamental skills (from
our code-book in Section 4).

• Simple Statements
• Operators
• Assignments
• Tracing

• Types
• Values and references
• Parameters
• Classes/records/ADT
• Meta-tracing knowledge

If some of these prerequisites are not clear, wrong answers cannot
be clearly attributed to misconceptions in the advanced topics.
In particular, a familiarity with a tracing as a general strategy to
understand how the interpreter executes the code is needed, but
this strategy has to transferred on a new level, since it should
applied not only on (abstract) states, but also to types and method
dispatching.

M.4.4 New version. To address some of these issues, the following
changes could be made:

(1) Add a new concrete FOOD class (e.g., PLANKTON) and create
an object p from this class;

(2) add a method log_foodwith a parameter x of type FOOD, the
method just prints the dynamic type of the actual parameter
bound to x;

(3) add a question about the output of log_food(p), log_food(g),
log_food(f), where g is a reference to a GRASS object and
f is a reference to a GRASS object of FOOD static type (using
f as an actual parameter of log_food before assigning it
to a concrete object is not legal in Eiffel, unless the type is
marked explicitly as detachable, see log_food2);

1 −− ANIMAL , COW, GRASS , and FOOD as b e f o r e
2
3 c l a s s PLANKTON inher i t FOOD −− new c l a s s
4 redefine
5 out
6 end
7
8 feature
9
10 out : STRING
11 do
12 Result : = " Lo t s o f p l a n k s t e r s "
13 end
14 end

15
16 c l a s s APPLICATION −− mod i f i e d
17
18 feature −− Main
19
20 make
21 −− Run a p p l i c a t i o n .
22 l o ca l
23 a : ANIMAL
24 c : COW
25 g : GRASS
26 f : FOOD
27 p : PLANKTON
28 do
29 create c
30 create g
31 create p
32 g . grow (5)
33 a : = c
34
35 −− l o g _ f o o d 2 (f) −− l o g _ f o o d (f) n o t l e g a l
36 f : = g
37
38 l o g_ f ood (p)
39 l o g_ f ood (g)
40 l o g_ f ood (f)
41
42 p r i n t (a . out + " i s go ing to e a t : " + f . out + "%N

")
43 a . e a t (f)
44 p r i n t (" F i n i s h e d !%N")
45 end
46
47 l o g_ f ood (x : FOOD)
48 do
49 p r i n t (" The food x i s : " + x . out + "%N")
50 end
51
52 l o g_ f ood2 (x : d e t a c h a b l e FOOD)
53 do
54 i f a t t a c h e d x then
55 p r i n t (" The food x i s : " + x . out + "%N")
56 e l se
57 p r i n t ("No x%N")
58
59 end
60 end
61
62 end

M.5 BDSI: B.6
We modified some questions from the Basic Data Structures Inven-
tory (BDSI) [66], for the purposes of exploring potential changes to
question designs, which might also explicitly assess prerequisite
skills. However, we have not done any empirical validity experi-
ments on these modified versions yet, to see how actual learners
respond to them - for example, having learners think aloud as they
answer the question. Thus, we do not really know how good they
are yet. If you want to maintain the validity argument for the BDSI
(especially if you are using the BDSI for summative use, like to
assess learning at the end of a class), do not substitute or add these
modified questions, and do not use them as practice or for class
assignments, as they are too close to the BDSI questions.

With that said, here is our modified question based on question
6 from the BDSI.

M.5.1 Original question. Here is a possible method for a Singly-
LinkedList class. Assume head is a variable in the SinglyLinked-
List class that refers to the first node in the list.

1 DEFINE mystery(value)
2 current = head
3 temp = nil
4 WHILE current != nil AND current.item != value DO
5 temp = current
6 current = current.next
7 ENDWHILE
8 RETURN temp
9 ENDDEF

Which of the following best explains the “purpose” of the mystery
method? (That is, what is the overall goal of the mystery method?)

Select one of the following statements:
A It returns the node before the one containing value, or it

returns nil if value is in the head, or it returns the last node
of the list of value if not found.

B It returns the node containing value, or it returns the last
node of the list if value is not found.

C It returns the node containing value, or it returns nil if
value is not found.

D It returns the node before the one containing value, or it
returns nil if value is in the head, or it returns nil if value
is not found.

M.5.2 Analysis of the original question. This question assesses the
following prerequisite skills:

• Operators
• Assignments
• Loop constructs
• Indirection
• References
• Meta-tracing knowledge

M.5.3 New version. (Changes are highlighted in bold)
Here is a possible method for a SinglyLinkedList class. As-

sume head is a variable in the SinglyLinkedList class that refers
to the first node in the list.

1 DEFINE mystery(value)
2 current = head
3 temp = nil
4 WHILE current != nil AND current.item != value DO
5 temp = current
6 current = current.next
7 ENDWHILE
8 RETURN temp
9 ENDDEF

Which of the following statements is correct/matches the
“purpose” of the mystery method? (That is, matches the overall
goal of the mystery method?)

Select all that apply:
A mystery returns the node containing value, or it re-

turns the last node of the list of value is not in the
list.

B For the SinglyLinkedList holding 2, then 4, then 6, my-
stery(1) will return the last node in the list.

C If the value is not in the list, mystery returns nil.
D If the value is in the list, mystery returns the node con-

taining the value.
E If the value is in the list, mystery returns the value con-

tained in the node in the list.
F If the value is in the head node of the list, mystery re-
turns nil.

M.5.4 Modifications in the new version. The differences between
the original question and the new version is that all answer alter-
natives have been replaced, and the student is allowed to select
multiple correct answers. The correct answer is selecting B and F,
which implies good meta-tracing skills and knowing other prereq-
uisites for this question.

M.6 BDSI: B.8
We modified a question from the Basic Data Structures Inventory
(BDSI) [66], for the purposes of exploring potential changes to
question designs, which would add additional required knowledge
to the question. However, we have not done any empirical validity
experiments on these modified versions yet, to see how actual
learners respond to them - for example, having learners think aloud
as they answer the question. Thus, we do not really know how
good they are yet. If you want to maintain the validity argument
for the BDSI (especially if you are using the BDSI for summative
use, like to assess learning at the end of a class), do not substitute
or add these modified questions, and do not use them as practice or
for class assignments, as they are too close to the BDSI questions.

With that said, here is our modified question based on question
8 of the BDSI.

M.6.1 Original question. Suppose that your program stores a list
of Strings. The user is permitted to access the string at a given
position (index) in the list, and can make as many accesses as they
wish. N is the number of strings in the list.

Which List data structure would provide the best performance
for the user accesses and why?

Select one:
A ArrayList is best as it guarantees constant-time access.
B ArrayList is best as it guarantees access time proportional

to log𝑁 using binary search.
C Unsorted DoublyLinkedList is best as it guarantees constant-

time access.
D Unsorted DoublyLinkedList is best as it guarantees access

time proportional to log𝑁 using binary search.
E Sorted DoublyLinkedList is best as it guarantees constant-

time access.

F Sorted DoublyLinkedList is best as it guarantees access
time proportional to log𝑁 using binary search.

M.6.2 Analysis of the original question. This question is interesting,
as it does not assess any of the prerequisite skills, it only assesses
the students’ knowledge of containers and their properties.

M.6.3 New version. (Changes are highlighted in bold)
Suppose that your program stores a list of Strings in a variable

called the_list. The user is permitted to access the string like
the_list.get(x), where x < N and N is the number of strings in
the list.

Which List data structure would provide the best performance
for the user accesses and why?

Select one:
A ArrayList is best as it guarantees constant-time access.
B ArrayList is best as it guarantees access time proportional

to log𝑁 using binary search.
C Unsorted DoublyLinkedList is best as it guarantees constant-

time access.
D Unsorted DoublyLinkedList is best as it guarantees access

time proportional to log𝑁 using binary search.
E Sorted DoublyLinkedList is best as it guarantees constant-

time access.
F Sorted DoublyLinkedList is best as it guarantees access
time proportional to log𝑁 using binary search.

M.6.4 Modifications in the new version. We replaced the English
description of random access by position with the code for that,
to also assess understanding of array syntax/semantics. This is an
example of how one might add some more prerequisite skills to a
question, by removing natural language descriptions and replacing
them with notation.

O OTHER QUESTIONS
O.1 Scientific Computing
The following question is given as a pre-exam to non-CS students
taking a course on Scientific Computing in Python. The idea is to
ensure that students are able to write and run Python code on their
computers, and to assess basic programming ability:

• Write a script to compute the numeric integral of cos(𝑥)
from 0 to 𝜋/2.

• Use the “left rectangles” approach and 𝑁 = 1000 intervals.
• Hint: use a for loop. Add up the areas of all the slices.

O.2 Software Design Question 1
The following question was given on a midterm exam on a question
in a course on software design methods:

Recall the Pharmacy and PharmacyDB classes from the project:

1 public class Pharmacy {
2 private String id;
3 private String owner;
4 private String busName;
5 private String address;
6 private String suite;
7 private String city;
8 private String state;
9 private String zip;
10 private String phone;
11 private String type;
12
13 public Pharmacy () {}
14
15 public Pharmacy(String id, String owner ,

String busName , String address , String
suite , String city , String state , String
zip , String phone , String type) {

16 this.id = id;
17 this.owner = owner;
18 this.busName = busName;
19 this.address = address;
20 this.suite = suite;
21 this.city = city;
22 this.state = state;
23 this.zip = zip;
24 this.phone = phone;
25 this.type = type;
26 }
27
28 public String getId() {
29 return id;
30 }
31
32 public void setId(String id) {
33 this.id = id;
34 }
35
36 public String getOwner () {
37 return owner;
38 }
39
40 public void setOwner(String owner) {

41 this.owner = owner;
42 }
43
44 // getters and setters for many instance variables

are not shown to save space
45 public String getZip () {
46 return zip;
47 }
48
49 public void setZip(String zip) {
50 this.zip = zip;
51 }
52
53 public String getPhone () {
54 return phone;
55 }
56
57 public void setPhone(String phone) {
58 this.phone = phone;
59 }
60 }

This is a shortened version of PharmacyDB:

1 public class PharmacyDB {
2 private HashMap <String , Pharmacy > pharmMap =

new HashMap <String , Pharmacy >();
3 public void add(Pharmacy pharm) {
4 pharmMap.putIfAbsent(pharm.getId(), pharm)

;
5 }
6 public Pharmacy getPharmById(String id) {
7 return pharmMap.get(id);
8 }
9 public Boolean containsId(String id) {
10 return pharmMap.containsKey(id);
11 }
12
13 /**
14 * return a list of pharmacies sorted by zip

code
15 */
16 public List <Pharmacy > getPharmaciesSortedByZip

() {
17 // needs to be implemented
18 }
19 }

(a) Here is a JUnit test class for PharmacityDB. Write a test
method for getPharmaciesSortedByZip, which returns an
array list of pharmacy objects sorted by zip code. You can
just test that the zip codes are in the expected order, rather
than testing all the pharmacy values.

1 class PharmacyDBTest {
2 private PharmacyDB pharmDB;
3 private Pharmacy pharm1;
4 private Pharmacy pharm2;
5 private Pharmacy pharm3;
6
7 @BeforeEach
8 void setUp() throws Exception {
9 pharmDB = new PharmacyDB ();

10 pharm1=new Pharmacy("1","owner1","
CVS1","addr1","", "city1","
state1", "10709", "111 -1111","
pharmacy");

11 pharm2=new Pharmacy("2","owner2","
CVS2","addr2","22", "city2","
state2", "22222", "222 -2222","
pharmacy");

12 pharm3=new Pharmacy("3","owner3","
CVS3","addr3","3", "city3","
state3", "333333", "333 -3333","
pharmacy");

13 pharmDB.add(pharm2);
14 pharmDB.add(pharm1);
15 pharmDB.add(pharm3);
16 }
17 }

(b) Nowwrite the implementation of the getPharmaciesSorted-
ByZip method. It should return an array list of pharmacy
objects sorted by zip code.

O.3 Software Design Question 2
The following question was given on a final exam on a question in
a course on software design methods:

Here is an alternative version of the product list. This one uses a
low level array to maintain the list of products. It has two methods.
One method adds a product, returning false if there is no more space
in the array and true otherwise. The other returns the product at
a given position in the array. If there is no product at the given
position, it returns null.

1 public class ProductList {
2 private final int LEN = 3;
3 private Product [] products = new Product[LEN];
4 private int numProds = 0;
5
6 /**
7 * add a product if there is room
8 * @param prod
9 * @return true if the product can be added ,
10 * false if there is no more space
11 */
12 public Boolean add(Product prod) {
13 if (numProds >= LEN) {
14 return false;
15 }
16 products[numProds] = prod;
17 numProds ++;
18 return true;
19 }
20
21 /**
22 * return the product at position pos
23 * if there is no product at that position ,
24 * return null

25 * @param pos
26 * @return a product or null if no product
27 * at that position
28 */
29 public Product getAtPos(int pos) {
30 if (pos >= numProds) {
31 return null;
32 }
33 return products[pos];
34 }
35 }

(a) Write a JUnit test class with test methods for the getAtPoint
method (don’t worry about the add method). You need to
test for both possible return values.

(b) You can’t use the built in iterator class with low level arrays,
so you must write your own. Write the iterator implementa-
tion for ProductList as well as the method that returns the
iterator. The iterator should implement this interface.

1 public interface MyIterator {
2 public Product next();
3 public boolean hasNext ();
4 }

Here is a program that uses the iterator.

1 public class ProdFun {
2 public static void main(String [] args) {
3 ProductList products = new

ProductList ();
4 products.add(new Product("2A", "

Friskies Fishalicious Cat Food",
12.99));

5 products.add(new Product("1B", "Fancy
Feast Cat Food", 11.88));

6 products.add(new Product("1C", "
Friskies Surf N Turf Cat Food",
10.99));

7
8 MyIterator iter = products.

getIterator ();
9 while (iter.hasNext ()) {
10 Product prod = iter.next();
11 System.out.println(prod.getName ()

);
12 }
13 }
14 }

When run, it prints out:
Friskies Fishalicious Cat Food
Fancy Feast Cat Food
Friskies Surf N Turf Cat Food

Implement the iterator class, which will be a nested class
inside ProductList, as well as the getIterator method.

O.4 Advanced Data Structures and Algorithms
This question appeared as a part of a larger exercise in a final
exam for a course on advanced data structures and algorithms.
The test contained a number of questions, each stating that one
of the attached problems could be solved using some well-known
algorithm. Below is the question related to one of the problems:

One of the problems in this set is easily solved by a reduction to
network flow.

(a) Which one?
(b) Explain the reduction. Start by drawing the graph corre-

sponding to Sample Input 1. Be ridiculously precise about
which nodes and arcs there are, how many there are (in
terms of size measures of the original problem), how the
nodes are connected and directed, and what the capacities
are. Describe the reduction in general (use words like “every
node corresponding to a giraffe is connected to every node
corresponding to a letter by an undirected arc of capacity
the length of the neck”). What does a maximum flow mean
in terms of the original problem, and what size does it have
in terms of the original parameters?

(c) State the running time of the resulting algorithm, be precise
about which flow algorithm you use. (Use words like “Using
Bellman-Ford, the total running time will be O(𝑟17 log3 𝜖 +
log2 𝑘 where 𝑟 is the number of froontzes and 𝑘 denotes the
maximal weight of a giraffe.”). This part merely has to be
correct. There is no requirement about choosing the cleverest
flow algorithm.

The associated problem statement:
Messy Arithmetic

You’ve finally found your old maths homework from school! Un-
fortunately, your handwriting when you were a kid was even worse
than it is today, and you can’t make out the difference between +, -
and *. Also, the exercises and solutions are on separate sheets of
paper, and you don’t know which exercise corresponds to which
solution.

You want to bring these important historical documents back
in shape, in case your future biographer needs them when you’re

famous. Certainly there will be no time for this kind of busywork
once you are a famous YouTuber or have won two Nobel prizes in
a year.

Match each exercise, which is just a pair of numbers with an
unreadable arithmetic operation between them, to a solution, which
is also just a number. This requires you to determine the proper
arithmetic operation between each pair of numbers.

To avoid having to think about rounding errors, let’s assume all
numbers are integers. (This is also why we exclude difision from
this exercise.)
Input

The first line of input consists of the integer 𝑛, the number of
exercises. The next line contains the solutions 𝑠1, . . . , 𝑠𝑛 as𝑛 integers
separated by space. Then follow 𝑛 lines each containing a pair of
integers 𝑎𝑖𝑏𝑖 for 𝑖 ∈ {1, . . . , 𝑛}, separated by space.
Output

The output consists of 𝑛 lines of the form 𝑎𝑖op𝑖𝑏𝑖 = 𝑠 ′
𝑖
for 𝑖 ∈

{1, . . . , 𝑛}. The values 𝑎𝑖 and 𝑏𝑖 are given in the input, and in the
same order. The operator op𝑖 is one of +, -, *. The set of values
{𝑠 ′1, . . . , 𝑠

′
𝑛} is the same set as {𝑠1, . . . , 𝑠𝑛}, but may be in a different

order than given in the input.
You can assume that a solution exists. If there is more than one

solution, any one of them will do.
Sample Input 1 Sample Output 1
5 1 + 2 = 3
0 1 2 3 9 1 - -1 = 2
1 2 0 * 5 = 0
1 -1 3 * 3 = 9
0 5 5 - 4 = 1
3 3
5 4

Sample Input 2 Sample Output 2
4 3 - 1 = 2
3 2 2 3 1 + 1 = 2
3 1 3 * 1 = 3
1 1 3 * 1 = 3
3 1
3 1

O.5 Data Structures and Algorithms 1
This is an exercise in the final lab exam of a second year course on
“data structures and algorithms”. The language taught in the course
is C, so the exam needs to assess also knowledge of C and ability
to use it to manipulate data structures:

Consider the below, where the type Bit_node is used to imple-
ment the nodes in a binary tree:

1 struct bit_node {
2 int item;
3 struct bit_node *l, *r;
4 };
5
6 typedef struct bit_node *Bit_node;
7
8 void printArray(int *a, int n) {
9 for (int i = 0; i < n; i++)
10 printf("%d ", a[i]);
11 printf("\n");
12 }
13
14 void f_r(Bit_node root , int *path , int len) {
15 if (root == NULL)
16 return;
17
18 if (root -> item % 2) {
19 path[len] = root -> item;
20 len ++;
21 }
22
23 if (root -> r == NULL && root -> l == NULL) {
24 printArray(path , len);
25 return;
26 }

27
28 f_r(root -> l, path , len);
29 f_r(root -> r, path , len);
30 }
31
32 void f(Bit_node root) {
33 Item *path = malloc(1000 * sizeof(int));
34 f_r(root , path , 0);
35 }

Consider the two binary trees below when answering the fol-
lowing questions:

1

39 15

79

1

39 15

7

9 7

13

79

(1) What height does the stack reach if the f function is invoked
on the root of the left tree?

(2) What height does the stack reach if the f function is invoked
on the root of the right tree?

(3) In general, howmany lines does the function print if invoked
on the root of any binary tree?

(4) What does the function print if invoked on the root of any
binary tree that contains only even numbers?

(5) Complete the following phrase: If root is the pointer to the
root of a binary tree, then the invocation of the function
f1(root) outputs...

O.6 Data Structures and Algorithms 2
The following question is used as a question on the final examination in a course on Data Structures and Algorithms in order to reveal
potential misconceptions regarding basic programming skills:

In the following, you can see two algorithms computing the power function (𝑥𝑛) for integers 𝑥 and 𝑛. Read through all the questions
below without answering them and after that familiarize yourself with the code thoroughly. After this, answer all the questions and take time
to ponder and explain your reasoning. Note, however, that all the questions refer to the given algorithms. In addition, the argumentation is
the only thing that matters for the points!

1 Algorithm pow1(x, n)
2 if (n = 0)
3 return 1; else
4 if (n = 1)
5 return x; else
6 if ("n is odd")
7 return pow1(x*x, n/2)*x; else
8 if ("n is even")
9 return pow1(x*x, n/2);
10
11 Algorithm pow2(x, n)
12 p = 1;
13 i = 1;
14 while (i <= n)
15 p = p * x;
16 i = i + 1;
17 return p;

(a) Describe in your own words how pow1 works (without an example). Note! Try to explain how the algorithm behaves in general. Do
not explain the algorithm line by line.

(b) Describe in you own words how pow2 works (without an example). How is it different from the previous one?
(c) In which code line is the first multiplication performed? What are the factors (multiplicand and multiplier) in this case?
(d) In which code line is the last multiplication performed? What are the factors (multiplicand and multiplier) in this case?
(e) Which lines of code and how many multiplications are totally executed by pow1? Give an example of the execution of pow1(2, 9).
(f) Analyze the time complexity of Algorithm 1 in terms of the input size 𝑛.
(g) Analyze the time complexity of Algorithm 2 in terms of the input size 𝑛.
(h) Analyze the time complexity of Algorithm 1 if the line 7 was changed to return x * pow1(x*x, n/2); else. Give an example.
(i) Is it possible to replace the while-loop in Algorithm 2 with another loop construct? Either argue why not or give an example of how

to replace it (rewrite the algorithm).

O.7 Data Structures and Algorithms 3
The following question is used as a question on the final exam in a course on data structures and algorithms in order to reveal potential
misconceptions regarding basic programming skills:

Below you can see two algorithms, linearSearch and binarySearch.

1 def linearSearch(table , x):
2 for i in range(len(table)):
3 if (table[i] == x):
4 return i
5 return i
6
7 def binarySearch(table , x):
8 low = 0
9 high = len(table) - 1
10
11 while (low <= high):
12 mid = (low + high) // 2
13 print(low , mid , high)
14 if (table[mid] < x):
15 low = mid + 1
16 elif (table[mid] > x):
17 high = mid - 1
18 else:
19 return mid
20 return -1

(a) Which of the following statements are true for linearSearch (L) and/or binarySearch (B) in case of successful search? Use one of
the following five options in each case:
L = the statement is correct only for linearSearch
B = the statement is correct only for binarySearch
L&B = the statement is correct for both linearSearch and binarySearch
neither = not either or,
I don’t know.
Each statement is worth two points as follows: correct answer +2, incorrect answer -1, empty or I don’t know 0 points. However,
you will get at least 0 points from all the questions, and the maximum is 6 x 2 p = 12 points.
i The algorithm goes through the items from smallest index to the largest.
ii The algorithm returns always the smallest index for the item 𝑥 .
iii The algorithm returns all the indices that have the item 𝑥 .
iv The algorithm always goes through all the items.
v The algorithm is correct only if the array is sorted in ascending order.
vi The algorithm always returns -1 at the end.

(b) Give and example to linearSearch the item x = 14 from the table below. List all the values the variable 𝑖 holds during the search.
(c) Give an example to binarySearch the item x = 14 from the table below. List the values for the variables each time print(low, mid,

high) is called.
(d) Argue whether the following statement is true or false: linearSearch is a more efficient algorithm than binarySearch to find a

single item from an array. Hint: try to justify both alternatives!

table -9 -1 0 13 14 14 27 29 31 34 36 36 44 44 98
index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

	Abstract
	1 Introduction
	2 Related Work
	2.1 Basic Programming Knowledge and Skills
	2.2 Tracing Skills
	2.3 Advanced Courses and Topics
	2.4 Assessment Design

	3 Method
	3.1 Problem Analysis and Data Collection
	3.2 Solution Development 1 - The Codebook
	3.3 Solution Development 2 - Differentiated Assessments
	3.4 Reflection to Produce Principles - PAPRIDA

	4 Results: Prerequisite Skills in Advanced CS Questions
	4.1 The Codebook
	4.2 Coding of Assessments for Course Topics

	5 Results: Is the BDSI Able to Diagnose Prerequisites?
	5.1 BDSI: Group 2, Question B.2
	5.2 BDSI: Group 3, Question B.1
	5.3 BDSI: Group 3, Question B.3
	5.4 BDSI: Group 5, Question B.7

	6 Results: Differentiated Assessments and PAPRIDA
	6.1 PAPRIDA: PAtterns and PRinciples for Differentiated Assessment
	6.2 Advanced OOP: Inheritance and Polymorphism
	6.3 Data Structures
	6.4 Concurrency/Synchronization

	7 Limitations
	8 Discussion
	8.1 Summary of Results by Research Question
	8.2 Research Question 1
	8.3 Research Question 2
	8.4 Research Question 3
	8.5 Implications for Research on Theories of Computing Knowledge
	8.6 Implications for Instructors and Teaching
	8.7 Future Work

	9 Conclusion
	Acknowledgments
	References
	A Study of Prerequisite Skills
	A.1 ACM CC2013
	A.2 Core Concepts Identified by Experts
	A.3 Misconception Catalogue

	M Modified Questions
	M.1 Data Structure Question (Queue)
	M.2 Concurrency 1
	M.3 Concurrency 2
	M.4 Advanced OOP: Inheritance and Polymorphism
	M.5 BDSI: B.6
	M.6 BDSI: B.8

	O Other Questions
	O.1 Scientific Computing
	O.2 Software Design Question 1
	O.3 Software Design Question 2
	O.4 Advanced Data Structures and Algorithms
	O.5 Data Structures and Algorithms 1
	O.6 Data Structures and Algorithms 2
	O.7 Data Structures and Algorithms 3

