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Abstract: Plant defense peptides are able to control immune barriers and represent a potential novel
resource for crop protection. One of the best-characterized plant peptides is tomato Systemin (Sys)
an octadecapeptide synthesized as part of a larger precursor protein. Upon pest attack, Sys interacts
with a leucine-rich repeat receptor kinase, systemin receptor SYR, activating a complex intracellular
signaling pathway that leads to the wound response. Here, we demonstrated, for the first time,
that the direct delivery of the peptide to Solanum melongena and Vitis vinifera plants protects from the
agent of Grey mould (Botrytis cinerea). The observed disease tolerance is associated with the increase
of total soluble phenolic content, the activation of antioxidant enzymes, and the up-regulation of
defense-related genes in plants treated with the peptide. Our results suggest that in treated plants,
the biotic defense system is triggered by the Sys signaling pathway as a consequence of Sys interaction
with a SYR-like receptor recently found in several plant species, including those under investigation.
We propose that this biotechnological use of Sys, promoting defense responses against invaders,
represents a useful tool to integrate into pest management programs for the development of novel
strategies of crop protection.

Keywords: crop protection; signaling peptide; plant defense; foliar application; hydroponics; antioxi-
dant activity

1. Introduction

The success of modern agriculture relies in part on discovery and adoption of pes-
ticides for pest control [1]. However, the onset of different concerns on the impact of
pesticides on the environment, biodiversity, as well as on human health, pressed the intro-
duction of more stringent pesticide registration procedures. Furthermore, the tendency in
European Union policy is to encourage the development of eco-friendly and sustainable
control strategies to protect crops reducing chemical inputs [2]. One of the main chal-
lenges facing the agricultural sector is to reduce the negative impact on soil, water, and the
atmosphere.

Sustainable strategies for pest control have been applied to agricultural practices,
such as biological control. This approach includes the use of beneficial microorganisms
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or bioactive compounds that bio-stimulate plant performance against pathogens by com-
peting or by directly antagonizing them [3–6]. Some other alternative control strategies
of plant diseases are based on the use of plant resistance inducers (PRIs, also called
elicitors or plant defense/resistance activators), which offer the prospect of durable, broad-
spectrum disease control [7]. PRIs can be chemical compounds [8] as well as biological
stimulators [9] able to activate and/or prime plant defense responses by their exogenous
application [10]. Depending on their nature, they either mimic plant downstream signaling
molecules, such as phytohormone or derivates, or act as non-self molecules, classified as
microbe/pathogen/herbivore-associated molecular patterns (MAMPs/PAMPs/HAMPs),
or signals from damaged cells, generally referred to danger- or damage-associated molec-
ular patterns (DAMPs) [11–14] or phytocytochines [15]. PRIs are recognized by plasma-
membrane localized pattern recognition receptors (PRRs) to initiate signal transduction
pathway [7]. One of the best characterized DAMP is systemin (Sys), an octadecapeptide
synthesized as a part of a larger precursor protein, prosystemin (ProSys) [16,17]. Sys was
isolated from tomato leaves and proved to be able to activate the octadecanoid pathway,
which leads to the production of the plant hormone jasmonic acid (JA) and its derivatives,
powerful activators of plant defense genes [18,19]. Transgenic tomato plants constitu-
tively expressing ProSys proved to be resistant to insect herbivores and phytopathogenic
fungi [20–22] and tolerant to moderate salt stress [23]. Homologs of the tomato ProSys
gene have been identified only in some economically important species of Solanoideae
subfamily, but other genetically distinct families of plant defense signal peptides have been
described in several species [24–30].

Upon either pests or other environmental challenges cues, Sys interacts with a leucine-
rich repeat receptor like-kinase (LRR-RLK), RLK SYSTEMIN RECEPTOR 1 (SYR1) and
with lower affinity its homologous SYR2, triggering a complex intracellular signaling
pathway that leads to the generation of early and late defense responses [31]. It was
recently observed that although both SYR1 and SYR2 receptors are restricted to the species
of Solanoideae subfamily (e.g., tomato, potato, eggplant, and pepper), other SYR-like genes
are present in other plants species, including Vitis vinifera [31].

Sys perception at the cellular surface induces depolarization of the plasma membrane,
mitogen-activated protein kinases (MAPKs), the opening of ion channels, with the conse-
quent increase of intracellular Ca2+ concentration, and accumulation of reactive oxygen
species (ROS) [32].

Since ROS participate in signaling events, they are highly reactive but also toxic to
the cells. To control the level of ROS and protect cells under stress conditions, plants have
developed a sophisticated ROS scavenging system that includes the activity of several
enzymes such as catalase (CAT) and ascorbate peroxidase (APX) as well as non-enzymatic
low molecular compounds such as phenolics compounds [33–36].

Eggplants (Solanum melongena L.) and grapevine (Vitis vinifera L.) are particularly
susceptible to important fungal pathogens, among them Botrytis cinerea, the agent causing
grey mold which diminish yield and depreciate quality throughout their entire biological
cycle [37,38]. Phytochemicals are commonly used to prevent and reduce the damages
of this pathogen infection, but pathogen strains with pesticide-resistance have been re-
ported [39,40]. In an effort to protect crops from such a dangerous enemy and yet reduce
the impact of chemicals on the environment, considerable interest has been focused on the
identification of novel biotechnological tools that use elicitors to strengthen the endoge-
nous defenses of plants. In this work, we demonstrated that the direct delivery of Sys to
Vitis vinifera and Solanum melongena plants strongly reduces B. cinerea plant colonization.

2. Materials and Methods
2.1. Peptides

Two different purified peptides were assayed: Systemin (Sys) and its scrambled form
(Scp) that does not activate the plant defense response in tomato. Peptides synthesis,
purification, and stability are reported elsewhere [41].
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2.2. Plant Materials and Growth Conditions

The eggplant variety used was “Violetta Lunga”. For this crop, two different growth
systems were carried out: In soil and in hydroponic culture.

Seeds were germinated in Petri dishes on wet sterile paper and kept in the dark for
three days in a growth chamber at 24 ± 1 ◦C and 60% relative humidity (RH). Upon roots
emergence, for soil culture, eighteen plantlets were transferred to a polystyrene plateau
with inert substrate S-type (Floragard, Oldenburg, Germany) in a growth chamber at
26 ± 1 ◦C and 60% RH with a photoperiod of 18/6 h light/dark. After two weeks,
plants were transplanted in pots of 9 cm diameter with sterile soil mixture using the same
growth conditions. For hydroponic culture, eighteen plantlets of 2 cm were transferred to
hydroponic system and divided into three different plastic containers (5 L) supplemented
with Mg(NO3)2·6H2O (384 mg/L), Ca(NO3)2·4H2O (812.9 mg/L), KNO3 (101.5 mg/L),
K2SO4 (319.3 mg/L), KH2PO4 (204.8 mg/L), Hydromix (14.0 mg/L). Four weeks-old plants
were used for biological and molecular investigations unless otherwise indicated.

Grapevine, cultivar “Cabernet Sauvignon” cuttings (rootstock genotype 101.14 CL. 759),
were grown in a greenhouse in pots of 20 cm diameter until they developed six to eight
leaves. The second and third youngest adult leaves from each cutting were used for
biological and molecular investigations.

2.3. Plant Treatments with Peptides and Botrytis cinerea Assay

Intact leaves of eggplant and grapevine plants grown in soil were treated with 100 pM
of Sys or Scp peptides in PBS buffer (phosphate buffer saline, 10 mM phosphates, 140 mM
NaCl, 2.7 mM KCl, pH 7.4, Sigma-Aldrich, Milan, Italy) while to eggplants growing in
hydroponics, peptides were added into a nutrient solution at the same final concentration.
Control plants were similarly treated with PBS buffer.

Four weeks-old plants, leaf-treated or grown in hydroponics enriched with the Sys or
Scp, were tested for resistance to the necrotrophic airborne pathogen, B. cinerea, as already
reported [42]. The assay used five leaves per treatment from three different plants per each
thesis. Control and treated leaves were placed on sponges soaked in sterile water and
incubated in a growth chamber at 23 ± 1 ◦C under 16/8 h light/dark photoperiod and
90% RH as also described by [43,44].

Necrosis areas were measured at 1, 3, 5, and 7 days post inoculum (pi) with a digital
caliber (Neiko 01407A, Neiko Tools, Taiwan, China).

2.4. In Vitro Antifungal Assay

The antifungal assay was carried out as already reported [45]. Briefly, a sterile 12-well
plate was filled with potato dextrose broth (PDB 1/2) medium containing Sys and Scp
peptides at the final concentration of 100 pM. A solution with B. cinerea spores was added
to each well in order to reach a final concentration of 104 spores/mL in each well, the plate
was placed in a shaker and incubated for 24 h at 25 ± 1 ◦C. To assess the fungal growth,
the value of optical density (OD) at a wavelength of 600 nm was measured in triplicate on
a BioPhotometer Spectrophotometer UV/VIS (Eppendorf, Hamburg, Germany).

2.5. Gene Expression Analyses

Total RNA extraction, single-strand cDNA synthesis, and quantitative reverse tran-
scription (RT)-PCR were performed as already reported [46]. Expression analysis of selected
defense-related genes was monitored 3 h and 6 h after Sys foliar and hydroponic applica-
tion, respectively. Gene expression analysis was carried out using two technical replicates
for each of the three biological replicates. Relative quantification of gene expression was
carried out using the comparative method with the 2−∆∆Ct formula [47] where ∆Ct = Ct
target gene—Ct endogenous control and ∆∆Ct = ∆Ct sample—∆Ct calibrator. The house-
keeping APRT (adenine phosphoribosyl transferase) and the EF-1α (elongation factor-1α) genes
were the endogenous reference genes, respectively, for eggplant and grapevine plants,
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used for the normalization of the expression levels of the target genes. Primers and related
genes under investigation are listed in Table S1.

2.6. Biochemical Analyses

Total phenolic content (TPC) and antioxidant enzyme activities were assessed spec-
trophotometrically in treated leaves of eggplant and grapevine plants collected at various
time intervals: 1, 3, 6, and 24 h after peptides treatment using three technical replicates for
each of the three biological replicates. Untreated leaves were used as control.

For the extraction of total soluble proteins, frozen leaf sample (0.1 g) was ground
with 1 mL ice-cold 50 mM KHPO4 (pH 7.8) containing 0.1 mM EDTA. Homogenates were
centrifuged at 14,000 rpm for 20 min at 4 ◦C.

Protein concentration was measured by the Bradford method using bovine serum al-
bumin as a standard protein [48]. TPC was evaluated by using Folin–Ciocalteu colorimetric
method as described before [49].

The catalase (CAT) activity was measured following the previously described pro-
tocols [50,51], monitoring the decrease in absorbance at 240 nm. Ascorbate peroxidase
(APX) activity was analyzed by measuring the decrease in absorbance at 290 nm monitored
according to the method previously described [52].

2.7. Statistical Analyses

For the evaluation of Sys effect on B. cinerea growth and infection, necrosis area differ-
ences between controls and Sys-treated or Scp-treated sample were compared and analyzed
by one-way Analysis Of Variance (ANOVA) coupled with Tukey–Kramer Honestly Signifi-
cant Difference (HSD) test. Differences in relative quantities of defense transcripts were
analyzed by comparing ∆Ct values for all the replicates of tests and controls using a two-
tailed Student’s t-test. Moreover, the quantification of the amount of total phenolic content
and the evaluation of the activities of antioxidant enzymes were analyzed by one-way
ANOVA coupled with Tukey–Kramer multiple comparisons test. Error bars referring to
standard error have been displayed.

3. Results
3.1. Systemin Exogenous Supply Reduces B. cinerea Colonization of Eggplant and Grapevine
Leaves

The performance of Sys-treated eggplants and grapevine against B. cinerea was evalu-
ated at 1, 3, 5, and 7 days post inoculum (pi). The assay was carried out using detached
leaves harvested 6 h after peptides, Sys or Scp, application to intact plants [41,42]. Dis-
ease severity was quantified by measuring the necrotic leaf areas caused by fungal colo-
nization. In eggplants, as shown in Figure 1, Sys significantly reduced the lesions since
five days pi (Figure 1A), whereas in leaves deriving from hydroponic cultures, a reduction
of the lesions was evident already 24 h pi (Figure 1B). No differences were observed for
eggplants treated with buffer and Scp-peptide. Similarly, grapevine Sys-treated leaves
displayed a marked reduction of B. cinerea induced lesions after seven days pi compared
with the control ones (Figure 1C). Likewise to the previous experiment, no effect was
detected in Scp or buffer treated leaves. These results demonstrate that the exogenous
supply of Sys peptide to healthy plants reduced disease severity.
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Figure 1. Botrytis cinerea necrosis area assay. Sys was applied to eggplant leaves (A) or added to
hydroponic solution (B), while for the grapevine plants, only leaves were treated (C). Response to
B. cinerea infection on leaves from plants treated with 100 pM Sys or Scp or Control (PBS 1X).
The graph displays the average (±S. E., standard error) of the lesion size at 1, 3, 5, and 7 days
post-inoculation. Letters indicate statistically significant differences (one-way Analysis of Variance,
ANOVA, Tukey–Kramer Honestly Significant Differences (HSD) test with p < 0.05). Error bars
indicate standard error.

Moreover, in order to evaluate whether the reduction of B. cinerea necrosis area was
due to a direct antimicrobial effect of the Sys peptide on the fungus, an in vitro assay to
measure fungal growth in the presence of Sys and Scp peptides was carried out.

As shown in Figure 2, Sys peptide did not directly impact fungus vitality. The growth
of B. cinerea, monitored by measuring the absorbance at 600 nm, was similar in all three
treatments. This result indicates that the observed reduction of B. cinerea plant colonization
is determined by the induction of plant endogenous defenses upon Sys treatment.
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Figure 2. In vitro antifungal vitality assay. Each 12-well sterile plate was filled with 1 mL of PDB
1/2 medium containing the peptides at the final concentration of 100 pM, except for the broth sterility
control wells. Thereafter, spores of B. cinerea were added to each well, and fungal growth was
assessed 24 h after pathogen inoculation by evaluating the optical density (OD) of the medium
at 600 nm. Letters indicate statistically significant differences (one-way ANOVA, Tukey–Kramer
Honestly Significant Differences (HSD) test with p < 0.05; ns, not significant). Error bars indicate
standard error.

3.2. Systemin Exogenous Supply Activated the Expression of S. melongena and V. vinifera
Defense-Related Genes

In order to verify the ability of Sys-treatments to induce the expression of defense-
related genes, we performed a qRT-PCR of selected genes for the two plant species.
The genes analyzed were: Allene Oxide Synthase (AOS), Wound-induced proteinase inhin-
bitor I and II (Pin I and Pin II), Pathogenesis-related protein 4 (PR4), Dihydroflavonol 4-reductase
(DFR) and Polyphenol oxidase (PPO) for eggplants, the basic-helix-loop-helix (bHLH) tran-
scription factor (TF) (MYC2), AOS, Pin I, Pin II, PR4, Phenylalanine ammonia-lyase (PAL) and
Flavonol synthase 5 (FLS5) for grapevine plants. The expression of the target genes was
analyzed at two time intervals after treatment. Relative quantification of treated samples
was referred to the mock-treated control (relative quantification, RQ = 1).

As shown in Figure 3A, in eggplants, a strong increase of AOS transcript was recorded
3 h after Sys application followed by a reduction of the transcript after 6 h from peptide
application. Conversely, the expression profile of Pin I and II showed a gradual increase in
their transcripts that reached the highest expression level 6 h after Sys treatment. Moreover,
PR4, DRF, and PPO transcripts resulted significantly up-regulated (Figure 3A). We also
monitored the expression of the same genes in leaves of eggplants grown in hydroponics
enriched with the peptide. As shown in Figure 3B, Pin I, Pin II, and PR4, transcripts resulted
significantly up-regulated after 6 h and no significant variation in transcript level was
recorded for the other three genes.



J. Fungi 2021, 7, 15 7 of 15

J. Fungi 2021, 7, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 3. Expression analysis of defense-related genes following Sys treatments (100 pM) on egg-

plants and grapevine plants. Relative gene expression of defense-related genes by qRT-PCR in 

eggplants-treated leaves (A), in leaves of eggplants grown in a hydroponic system (B) and in 

grapevine-treated leaves (C). Quantities are relative to the calibrator control condition, 

mock-treated plants. Asterisks indicate data statistical significance (Student’s t-test, * p < 0.05, ** p < 

0.01, *** p < 0.001). Error bars indicate standard error. 

3.3. Systemin Increases the Production of Total Soluble Phenolic Content and Antioxidant 

Capacity in Treated Eggplant and Grapevine 

We quantified the amount of total phenolic content (TPC) and analyzed the activities 

of some key antioxidant enzymes that are responsible for rapid scavenging of ROS. Sys 

Figure 3. Expression analysis of defense-related genes following Sys treatments (100 pM) on
eggplants and grapevine plants. Relative gene expression of defense-related genes by qRT-
PCR in eggplants-treated leaves (A), in leaves of eggplants grown in a hydroponic system
(B) and in grapevine-treated leaves (C). Quantities are relative to the calibrator control condi-
tion, mock-treated plants. Asterisks indicate data statistical significance (Student’s t-test, * p < 0.05,
** p < 0.01, *** p < 0.001). Error bars indicate standard error.

Figure 3C shows the results of the gene expression analyses in treated leaves of
grapevine plants. All the target transcripts resulted significantly up-regulated. Taken to-
gether, the results demonstrate that Sys, under two different delivery systems, is able to
induce the transcription of defense-related genes in both plant species.

3.3. Systemin Increases the Production of Total Soluble Phenolic Content and Antioxidant Capacity
in Treated Eggplant and Grapevine

We quantified the amount of total phenolic content (TPC) and analyzed the activi-
ties of some key antioxidant enzymes that are responsible for rapid scavenging of ROS.
Sys induced in treated plants a rapid antioxidant response, the TPC pool increased signifi-
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cantly by about 70% in eggplants (Figure 4A) 3 h after Sys application while the response
of grapevine plants was more rapid with the increase of TPC after 1 h of roughly 16%.
In addition, the TPC content in the treated plant species reached the highest content 3 h
after Sys treatment (Figure 4, Table S2). On the contrary, as expected, the application of Scp
peptide to the plants did not induce any TPC content variation (Figure 4, Table S2).

Figure 4. Total phenolic content (TPC) in eggplant (A) and grapevine (B) leaves treated with Sys. TPC was measured in
control (PBS1X) and in treated leaves at 1, 3, 6, and 24 h after 100 pM Scp or Sys application. Letters indicate statistically
significant differences (one-way ANOVA, Tukey test with p < 0.05). Error bars indicate standard error.

In addition to the investigation on the non-enzymatic components that regulate redox
status, we monitored two enzymes that are included in the other arm of the antioxidant
defense machinery. A significant increase in the activities of CAT and APX enzymes
was observed in eggplant-treated leaves, respectively, of about four times and 100 times
higher than control, 1 h and 6 h following Sys application, respectively (Figure 5A,B,
Table S3). A different profile of CAT activity was observed in grapevine-treated leaves,
which showed a steady increase after 3 h up to 40 times higher the control value 24 h
post-treatment (Figure 6A, Table S4). In the same species, a significant increase in APX,
about 11 times control value, was observed 24 h post-treatment (Figure 6B, Table S4).
No significant variation in the activity of those enzymes was registered in leaves treated
with Scp (Figures 5 and 6, Tables S3 and S4).

Figure 5. Catalase (CAT) (A) and ascorbate peroxidase (APX) (B) activity at various time intervals in eggplant leaves treated
with Sys. CAT and APX activity was assessed in control leaves (PBS1X) and in treated leaves at 1, 3, 6, and 24 h after 100 pM
Sys and Scp application. Letters indicate statistically significant differences (one-way ANOVA, Tukey test with p < 0.05).
Error bars indicate standard error.
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Figure 6. Catalase (CAT) (A) and ascorbate peroxidase (APX) (B) activity at various time intervals and grapevine leaves
treated with Sys. CAT and APX activity was assessed in control leaves (PBS1X) and in treated leaves at 1, 3, 6, and 24 h after
100 pM Sys and Scp application. Letters indicate statistically significant differences (one-way ANOVA, Tukey test with
p < 0.05). Error bars indicate standard error.

4. Discussion

The development of safe and sustainable crop protection strategies is a challenging
goal facing our society. This is increasingly pursued through bio-inspired research efforts,
aiming to mimic natural mechanisms of pest suppression by exploiting biotechnological
applications of biomolecules active in plant defense [53]. A promising control strategy is
based on the application of elicitors to the plant that stimulate and/or potentiate plant
defense responses affecting the fitness and behavior of herbivores and pathogens [42,54].

Among pathogenic plant agents, the necrotrophic fungus B. cinerea is a very dangerous
fungus that infects many economically important crops, such as grapevine, strawberry,
tomato, and eggplant. Grapevine is one of the major fruit crops in the world based on
hectares cultivated with this crop and its economic value [55]. The species is particularly
sensitive to various pathogenic fungi, including B. cinerea that causes significant losses
in terms of production and quality. This pathogen is controlled by fungicide treatments,
but pathogen strains with fungicide resistance have been reported [39]. Eggplant is one of
the most important vegetable crops, especially for the Mediterranean basin, after potato
(Solanum tuberosum) and tomato (Solanum lycopersicum) [56]. The plants are very susceptible
to important fungal pathogens, including B. cinerea, throughout their entire biological
cycle and the fungal control has been adversely affected by the development of fungicide
resistance [40]. Therefore, the identification of novel biotechnological tools able to protect
these crops from such a dangerous enemy is of great importance.

In this paper, we investigated the ability of tomato Sys to protect S. melongena and
V. vinifera plants from B. cinerea, demonstrating, for the first time, that the exogenous
supply of the peptide to intact healthy plants severely counteracted fungal growth. This is
likely the consequence of the induction of plants defense-related genes that promote the
accumulation of compounds active in plant defense [10,57]. Consequently, Sys-treated
plants respond more effectively than controls when exposed to biotic stress. Both peptide
delivery systems (leaf application or hydroponics uptake) proved to be very effective in
conferring measurable protection against the necrotrophic fungus. The absence of inhi-
bition of mycelium growth in the presence of Sys fully excluded that the peptide has a
direct effect on the fungus. Therefore, the observed reduction of plant colonization is likely
the consequence of the activation of plant endogenous defenses following Sys treatment.
As a matter of fact, we observed the induction of a set of defense-related genes. AOS,
a gene of the octadecanoid pathways, leads to the biosynthesis of JA that subsequently
activate the late defense genes PPO, Pin I, and Pin II. Tomato PPO is induced by Sys and
jasmonate, and it is involved in defense against pests [58,59]. In addition, PPO and pro-
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tease inhibitors (PIs) are up-regulated by tobacco Sys as well as by the endogenous supply
of a JA derived compound, the methyl jasmonate (MeJA) [60,61]. It has been demonstrated
that PIs are very effective against B. cinerea both in vitro and in vivo: PIs isolated from
young cabbage leaves were able to inhibit B. cinerea spore germination and germ tube
elongation in vitro [62], whereas a strong inhibitory activity of a PIs mixture purified from
tuber sprouts was observed against B. cinerea spore germination, germ tube elongation,
and necrotic symptom development in vivo [63]. We also observed that the exogenous
supply of Sys, under two different delivery systems, is able to induce the transcription
of PR4 genes in the two species. Pathogenesis-related proteins are a group of proteins in-
volved in higher-plant responses to biotic stresses, whose expression is triggered by several
pathogens, including fungi, bacteria, and viruses [64]. Many in vitro studies revealed that
over-expression in various crops of PR genes (PR2, PR3, PR4, PR5, PR12), alone or in com-
bination, leads to enhanced disease resistance against biotrophic and necrotrophic fungal
phytopathogens [65]. Therefore, the disease reduction observed in our experimental plants
is likely due, at least in part, to the increased level of protease inhibitors, polyphenol oxi-
dase and PR4. Sys-treated eggplants showed an increased level of DFR transcript. DFR,
together with PAL, CHS, CHI represents an essential component of the anthocyanin biosyn-
thetic pathway. Developmental stages, diverse stresses, such as drought, temperature,
wounding, and pathogen attack, are known to regulate anthocyanin biosynthesis. Previ-
ous studies showed that MeJA significantly induces anthocyanin accumulation through
the up-regulation of genes encoding for anthocyanin biosynthetic enzymes, such as DFR,
LOX, and UF3GT [66,67]. Sys-treated eggplants likely increase the MeJA production that
may modulate the anthocyanin biosynthetic pathway [68].

Moreover, in grapevine, we observed that Sys application activated the phenyl-
propanoid pathway, as shown by the increased level of PAL transcript, and the induction of
MYC2 and FLS5 genes. PAL, the first enzyme of the phenylpropanoid pathway, is involved
in the biosynthesis of secondary metabolites, especially the production of phytoalexins and
salicylic acid (SA) which were proposed to reduce the incidence of plant disease through
antifungal activity and to stimulate plant defense responses, respectively [69,70]. It has also
been shown that priming of PAL1 is associated with responses to pathogen infection and
wounding [71]. Interestingly, it was recently demonstrated that the exogenous application
of MeJA in grapevine raises PAL gene expression and the consequent accumulation of
several bioactive compounds (e.g., total phenolic and anthocyanin concentration) [72,73].
Therefore, in grapevine like in eggplant, Sys may induce an increase of MeJA that likely
contribute to the accumulation of defense compounds. In addition, the up-regulation
of MYC2, in Sys-treated grapevine plants, linked to the observed disease reduction, con-
firmed that this transcription factor is required for JA-mediated defense responses against
the necrotrophic fungus B. cinerea [74].

Flavonols are the most abundant component of flavonoids, important secondary
metabolites with a myriad of functions, including plant defense following pathogen attack,
thanks to their antioxidant properties [75]. The increased level of FLS5 transcripts registered
in Sys-treated grapevine plants may favor the accumulation of these compounds that reduce
disease severity following fungal infection.

Taken together, the most likely explanation of these results is the ability of Sys to bind
SYR-like receptors or closely related genes recently identified in eggplants and grapevine
plants, besides other plant species [31]. Following Sys-SYR interaction, the initiated signal-
ing pathway leads to the systemic defense responses by the induction of JA synthesis that
triggers the plant defense machine able to reduce the growth of with B cinerea.

It was previously shown that in tomato Sys causes very rapid changes in cellular
redox homeostasis with the generation of excessive ROS [76,77], which may damage cell
organelles. Since our data show that Sys is perceived by both eggplants and grapevine
plants, in Sys treated plants, ROS likely increased and the plants reacted by activating the
antioxidant defense machinery that boosted the TPC and the activity of CAT and APX
enzymes, two key actors of the enzymatic H2O2 scavenging mechanism in plants [78].
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Generally, in plants, the metabolism of H2O2 is controlled by several antioxidant
scavenging enzymes, such as SOD, APX, and CAT [79,80]. The increased level of CAT and
APX activities observed in treated plants of both species is likely functionally related to
the cell requirement of a reduction of redox potential caused by Sys treatment. Similarly,
the increased level of phenolic compounds may be linked to this function. In fact, they par-
ticipate as antioxidants in the prevention of the plant from suffering molecular damage
caused by microorganisms, insects, and herbivores [81]. In addition, it is worth noting
that phenolic compounds play an important role in plant disease resistance responses
representing an early defense plant reply to several biotic stresses [82]. As they are toxic
to pathogens, their accumulation at the infection site can restrict pathogen development
and the successive plant colonization or contrast infections by increasing the mechanical
strength of the host cell wall [83]. Jasmonates (JAs), or their derivates, enhance the accu-
mulation of phenolic compounds in different plant species contributing to the resistance
against B. cinerea [84,85] and have a pivotal role in the reduction of H2O2 level by the
enhancement of antioxidant enzymes activity in plant cells [86,87]. Sys-treated plants likely
increase the JAs production that may modulate the activity of CAT and APX antioxidant
enzymes in both plant species. Previous studies showed that the application of MeJA
to in vitro cultures induced not only the expression of defense-related genes but also the
antioxidant enzyme activity and the over-production of secondary metabolites [86]. Our re-
sults demonstrate the increase of both phenolic content and the antioxidative activity of
CAT and APX enzymes likely determined by the activation of the JA pathways triggered by
Sys treatment. In our experimental conditions, the increased level of TPC likely contributed
to the observed reduction of damages on Sys treated leaves [84,88].

In conclusion, tomato systemin induces resistance against B. cinerea, indicating that
the two species perceive the non-self-peptide and activate the defense and the antioxidant
machineries. These results open a novel perspective on the use of plant peptides in crop
protection. From an applied perspective, the exogenous delivery of plant signaling peptides
integrated into pest management programs may offer a useful contribution to the reduction
of chemical pesticide both in greenhouses and in the field.
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X/7/1/15/s1. Table S1: Oligonucleotide sequence, gene symbol, accession number and plant species;
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eggplant and grapevine plants; Table S3: Effect of systemin peptide on catalase (CAT) and ascorbate
peroxidase (APX) activity at different times in eggplant treated leaves; Table S4: Effect of systemin
peptide on catalase (CAT) and ascorbate peroxidase (APX) activity at different times in grapevine
treated leaves.
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