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Hypertensive disorders affect about one third of all people aged 20 and above, and are treated with
anti-hypertensive drugs. Preeclampsia (PE) is one form of such disorders that only develops during pregnancy.
It affects ten million pregnant women globally and additionally causes fetal loss and major newborn disabilities.
The syndrome's origin is multifactorial, and anti-hypertensive drugs are ineffective in treating it. Biomarkers are
helpful for predict its development. Generic drugs, such as low dose aspirin, were proven effective in preventing
preterm PE. However, it does not cure the majority of cases and many studies are underway for fighting PE with
extended use of additional generic drugs, or through new drug development programs.
This review focuses on placental protein 13 (PP13). This protein is only expressed in the placenta. Impaired PP13
DNA structure and/or its reduced mRNA expression leads to lower blood PP13 level that predict a higher
risk of developing PE. Two polymorphic PP13 variants have been identified: (1) The promoter PP13 variant
with an “A/A” genotype in the -98 position (versus “A/C” or “C/C”). Having the “A/A” genotype is coupled to
lower PP13 expression, mainly during placental syncytiotrophoblast differentiation and, if associated with
obesity and history of previous preeclampsia, it accurately predicts higher risk for developing the disorder.
(2) A thymidine deletion at position 221 causes a frame shift in the open reading frame, and the formation of
an early stop codon resulting in the formation of DelT221, a truncated variant of PP13. In pregnant rodents,
both short- and long- term replenishment of PP13 causes reversible hypotension and vasodilation of uterine
vessels. Long-term exposure is also accompanied by the development of larger placentas and newborns. Also,
only w/t PP13 is capable of inducing leukocyte apoptosis, providing maternal immune tolerance to pregnancy.
Based on published data, we propose a targeted PP13 therapy to fight PE, and consider the design and conduct of
animal studies to explore this hypothesis. Accordingly, a new targeted therapy can be implemented in humans
combining prediction and prevention.

© 2017 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Preeclampsia: A Unique Form of Hypertension in PregnancyWith
the Need for an Orphan Drug Approach to Cure Preeclampsia — The
PP13 Drug Development Approach

1.1. Hypertension and its Consequences

Hypertension - defined as blood pressure (BP) above 140 systolic
over 90 diastolic mmHg -is a growing global epidemic. According to
the 2011World Health Organization (WHO) report, the number of peo-
ple living with hypertension (high BP) is predicted to be 1.56 billion
worldwide by the year 2025 [1]. Hypertension affects about a third of
all people aged 20 and above, and is treated with anti-hypertensive
drugs [2,3]. According to the 2010 World Health Statistics there are
more people in Europe and the USA die from hypertension-related
cardiovascular diseases (CVDs) than from the next three deadliest
diseases combined. Thus, the control of hypertension has become a
key priorityworldwide [4,5] and is accompaniedwithmajor investment
in drug research.

The increased prevalence of hypertension is attributed to the grow-
ing epidemics of obesity and metabolic disorders, factors associated
with lifestyle (e.g., lack of physical activity, alcohol and tobacco use,
and a high consumption of sugar and salt in processed food), family his-
tory, and anxiety [6]. Chronic high BP leads to blood vessel narrowing
induced by altered shear forces of the blood flow against the arterial
vessel wall [7]. Its incidence steadily increases with age as smaller
arteries become stiffer and narrower, while plaque formation in large
vessels is accelerated, and leads to atherosclerosis, favoring thedevelop-
ment of CVD [8,9]. Additional risk factors include diabetes, kidney
diseases, pheochromocytoma, Cushing syndrome, congenital adrenal
hyperplasia, hyperthyroidism, black ethnicity and sleep apnea [10–12].

1.2. Preeclampsia as a Specific Type of Hypertension

Preeclampsia (PE) is a unique form of hypertension that is specific
to pregnantwomen. Its clinical symptoms develop in themidst of preg-
nancy in previously normotensive women, and it is accompanied by
protein loss in the urine (proteinuria). There aremultiple complications
in other organs (liver, blood, lung, and eyes) with varying severity of
symptoms. The disorder can be exacerbated to convulsion and stroke
(eclampsia). Only delivery and removal of the placenta stops the
disorder [13–15]. The healthcare burden of PE is considerable, with
estimated annual global healthcare costs of $3 billion [16].

PE is a major life threatening syndrome for pregnant women,
and its frequency is on the rise due to increased rates of obesity
and pregnancy at advanced maternal age [17–19]. Today there is
no drug that is generally accepted for treating all cases of the disor-
der; neither is it clear when to treat. The preeclampsia foundation
(www.preeclampsiafoundation.com) has indicated that each year
about 76,000 maternal lives are lost due to PE. Current practice is
to deliver the baby to prevent the risk of developing eclampsia,
a final stage of the disorder associated with convulsions, stroke and
death. Hence, if the disorder develops early, the baby has to be
delivered prematurely, and there are around 300,000–500,000 life
losses and major handicaps of newborns associated with PE. These
tragedies massively affect pregnant women and their families.

Regrettably, there are impediments in the effort to develop effective
drug prevention programs to stop the devastating effects of PE on
pregnant women and their babies. (1) Only 0.5% or less of the total
health research budget in Europe is dedicated tofight PE, and the invest-
ments elsewhere are also limited [20]. (2) Drug companies do not view
this syndrome as a target for developing the next “block buster”
[21–24]. (3) On the contrary, most companies are worried of entering
the pregnancy field as they have concerns of potential teratogenic
effects (“the thalidomide impact”) [25] or of other long-term reproduc-
tive effects (the “DES” story) [26]. As a result, there is almost a complete
stifling of the development of new therapeutics against PE. The field re-
mains almost completely in the hands of medical and academic leaders,
and of a few small companies. Since a new drug development requires
large resources, it is no wonder that the progress is slow.

Today, PE management is performed by close surveillance
coupled to timed-delivery that is often commenced before term.
Anti-hypertensive drugs only have a limited effect, and must
be used carefully because they carry the potential for reducing
uteroplacental blood flow [27,28]. Early delivery (often by Cesarean
section) is advised to minimize maternal clinical complications,
but may cause negative consequences to the mother in the next
pregnancy [29]. While the early delivery may shorten the baby's
exposure to the stressful environment in the womb [30,31], it is
associated with additional time spent in the NICU (neonatal intensive
care unit), and additional costs. Also, premature babies are more
susceptible to developing diseases later in life (fetal programming)
[24,29].

In recent years, the life-long complications following PE have be-
come apparent for the mother as well. It has been shown that women’s
longevity after experiencing severe PE is approximately 10 years shorter
[30]. PE during pregnancy is also followed by an increased risk for
developing cardiovascular diseases (CVDs) and diabetes mellitus (DM)
within the next ten years [32–37]. The newborn also experiences long
term complications including obesity and diabetes already in adoles-
cence [38,39]. Living under stressful conditions in the womb during
early onset PE influences fetal programming and shapes the newborn’s
response to stress in a manner that leads to adulthood diseases [31].
Accordingly, the costs of treating the short and long-term complications
of PE are cumulative [18,24,29].

Sadly, PE's societal challenge is increasing due to the world's
growing epidemics of obesity [40–42] and DM [43,44]. Obese
women (BMI N 35) are twice as likely to develop PE during preg-
nancy (in central Europe PE prevalence of obese pregnant women is
5.5–7% vs. 2.5% in the entire population), and the highest frequency
(20%) of occurrence is among women with DM. PE is also higher

http://www.preeclampsiafoundation.com
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among women who conceive through assisted reproductive technolo-
gies (ART). According to the European prenatal health survey [44],
there is an increasing trend for advanced maternal age in pregnancy,
and the frequency of developing PE is approximately 6–8% among
women above 40 years. Obese women who become pregnant at
advanced maternal age have 21% risk for developing PE and later
CVDs. The American Heart Association has published a white paper
describing the life-long complications related to PE, and its association
with a higher susceptibility to develop CVDs, and has issued specific
guideline for the clinical surveillance of this group [45,46].

Based on the above, the European Commission in its evaluation
of drugs for rare diseases [47], as well as the USA Food and Drug
Administration [48], have both independently decided to give the status
of “orphan drugs” for drugs designed to fight PE. The underlying
rationale was widely covered by Hahn [49] who also described the
different causes of morbidity and mortality derived from PE.

1.3. Treatment of Preeclampsia

In the past decade physicians were increasingly obliged to resort to
“off-label” use of drugs for evaluating their benefit to fight PE [50]. The
purpose of the trials were to see if the drugs may have alternate
purposes and beneficial effects to women with PE, a condition with no
true medical intervention, yet. The idea behind this concept is that
these drugs have already undergone safety testing and have been
approved for use in pregnant women, thus reducing the cost of their
evaluation in treating PE.

Aspirin is already incorporated into the guidelines of both the WHO
and the UK national institute of clinical excellence (NICE) for the
prevention of PE. However, according to the current guidelines, N30%
of all pregnant women should be treated. The experience has been
that there was low compliance of physicians in prescribing the drugs,
and of patients using the drug. Also, when aspirin is used in a large
number of patients, its unfavorable side effects start to be noticed.
Some of this review’s co-authors were involved in the ASPRE clinical
trial for evaluating aspirin versus placebo in the prevention of PE.
In the ASPRE trial, approximately 1,800 patients identified in the
first trimester as being at elevated risk to develop PE based on history,
biophysical and biochemical markers, were randomized to 150 mg/day
aspirin vs. placebo taken at bed time from 12 to 36 weeks of gestation.
The study showed an 83% reduction in the frequency of early PE, a 62%
reduction in preterm PE, and a non-significant effect in the reduction of
PE at term [51]. The ASPRE study reached amuch higher effect compared
to the average 10% reduction reported in an earlier meta-analysis [52].
The differences are attributed to the larger aspirin dose used in ASPRE
(150mg/day compared to 80, 60 or 40mg/day inmost previous studies),
earlier start of the treatment (at 12 weeks compared to starting at
gestational week 18, 20, 24 and later in most previous studies) as
described in the meta-analysis of Roberge et al. [53].

Several studies evaluated the effect of generic drugs widely used for
preventing CVDs including low molecular weight heparin [54] and
sildenafil citrate as drug candidates to prevent PE [55]. Other generic
drugs with a broader spectrum such as calcium supplementations
have been evaluated as well [56]. The rationale for using these drugs
relates to the pathophysiological features that CVDs share with PE,
and the hope that the drugs will enhance vasodilation and/or provide
anti-thrombotic actions [57,58]. Calcium supplementation was proven
effective mainly in adolescence pregnancy in Columbia [56]. Sildenafil
incorporated in a large randomized study was found to generate no
effect in PE prevention (Zarko Alfirevic, World Congress in Fetal
Medicine, Ljubljana, Slovenia, 6/2017).

Metformin, usually used to fight metabolically derived DM to mod-
erately reduceweight and blood sugar levels,was evaluated in pregnant
women to assess its effect on weight gain, and frequency of gestational
diabetes mellitus (GDM), PE, and other pregnancy disorders. It was
discovered that metformin is very effective in preventing PE, mainly
PE at term (~50% reduction) amongobesewomen (BMIN 35) [59] in ad-
dition to its effects on reducing weight gain. In these studies metformin
has not shown to affect the frequency of other pregnancy disorders.

A preliminary study of PE prevention was also conducted with
statins, usually used to reduce blood lipids and prevent atherosclerosis.
The rationalewas that these drugs act on the ratio between soluble fms-
like tyrosine kinase-1 (sFlt-1), an anti-angiogenic factor, and placental
growth factor (PlGF), a pro-angiogenic factor. This ratio is “balanced”
in normal pregnancy and increased in atherosclerosis and PE [60]. A
small-scale clinical study has shown that statins are potent sFlt-1/PlGF
ratiomodifiers in PE [60]. Itwas also proven to be effective in preventing
PE in women who develop a form of PE related to having the
phospholipid syndrome, a condition known to be a strong risk factor
for developing PE [61]. A very large study is nowbeing conducted by the
Fetal Medicine Foundation (FMF) in the UK, Spain and other European
countries to explore the statins impact on term PE prevention.

Additional efforts to develop medical therapies are found at the
preclinical level in in vitro, ex vivo and in vivo research. This includes a
number of compounds unrelated to treating CVDs. Among them is
Sofalcone, a drug currently tested only in tissue culture that potently ac-
tivates the antioxidant nuclear factor (erythroid-derived 2)-like 2/HO-1
pathway, decreases sFlt-1 production, and ameliorates endothelial
dysfunction [62].

A differentmechanism involves the potential use of proton pump in-
hibitors (PPI). It has been found that blocking PPI leads to decreased
sFlt-1 and soluble endoglin (sENG) secretion and endothelial dysfunc-
tion, dilation of blood vessels, decreased BP, and antioxidant and anti-
inflammatory properties [63]. Esomeprazole, another proton pump
inhibitor that is also used for gastric reflux, is also being evaluated in
phase II clinical studies to treat early onset PE (PIE Trial) [64].

Treatment with recombinant human anti-thrombin versus placebo,
combined with expectant management failed to show any benefit in
reducing PE or increasing time to delivery, indicating that - at least
when used at the third trimester of pregnancy - this treatment strategy
is of no value [65].

The evaluation of generic and new drugs, as described above, has in-
dicated both the benefits and limitations of current experimental and
practice treatments. From all the studies completed to date the ASPRE
study for aspirin prevention of preterm PE (PE developed before
37 weeks of gestation) and the metformin study to prevent PE in
obese women showed the largest significant reduction in PE frequency
in the target group following treatment.

However, even in theASPRE and themetformin studies, the high risk
groupwho received placebo had approximately 10 times more patients
who were at high risk than the ones who actually developed the disor-
der (in ASPRE - 822 patients in the high risk group treatedwith placebo
ofwhich 82 developed PE (35 preterm PE)) [51]. These findings showed
that with today's tools, based on pregnancy and medical history, serum
and biophysical markers, the group identified as being at high risk in-
cludes quite many patients who will not go on to develop the disorder.
Thus, it appears that not all patients in the high risk group are similar
and neither aspirin or any other drug could prevent all cases in the
same way. Better risk stratification methods are required to narrow
down who should be treated, and how [66,67].

The limitations of risk stratification were recently covered by the
authors of the international SCOPE study [68]. These authors stated
that: “the ability to predict PE in healthy nulliparous women using clin-
ical phenotype is modest”, and indicated the need for “personalized
clinical risk profiles to which biomarkers could be added”.

1.4. Preeclampsia – A Multi-factorial Disorders

Major leaders in the field of placental research and physiopathology
listed various physiological pathways that may cause the development
of PE. The International Society for the Study of Hypertension in
Pregnancy (ISSHP) has issued a universal definition of PE [69,70].
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However, it is well established today that the disorder's symptomsmay
develop due to different underlying pathways [71–76]. Some studies
based their evaluation on the imbalance of trophoblast turnover,
leading to aponecrotic release of factors into the maternal circulation
[70,71,76]. Oxidative/nitrosative stress appears to be a major contribu-
tor [70–72]. Inflammation and modulation of the pro- and anti-
angiogenic factors (such as sFlt-1, sENG, PlGF and others) have been
widely proposed as the origin of the disorder [71,73,76]. A combined
effect of oxidative stress and angiogenic imbalance was listed as core
disease origins related to placental factors [71–73,76]. Recent models
have postulated that maternal cardiac insufficiency is responsible for
the development of PE [74]. The development of the disorder is also
attributed to immune rejection of pregnancy by the maternal decidua
facing invading trophoblasts that carry paternal genes. Studies by
several authors have found a correlation between a higher frequency
of PE in nulliparous (compared to multiparous) women and the lack
of maternal immune tolerance to the invasion of paternal genes. They
also correlated the higher frequency of PE in patients with the same
partner who experienced a long (N7 years) separation between first
and second pregnancy. These studies also found a higher PE frequency
in pregnancies derived from donated eggs and sperm, and indicated
that this may be due to immune rejection of the donor's unknown
genes causing a resistance to placental trophoblasts and to a rejection
of migrating trophoblasts that invade the uterine wall [77–79].

1.5. When to Treat? Whom to Treat?

The multifactorial origin of the disorders and the identified
multiple pathways that might lead to PE development have signifi-
cantly complicated efforts to develop PE prevention and treatment.
In terms of when to treat, there are, in general, two major strategies:
1) use of preventive agents for treating patients at risk, and 2) treating
at the time of symptoms.

The current leader in the prevention approach is low dose aspirin,
as discovered in the ASPRE study [51]. Drugs such as heparin [54],
sildenafil citrate [55], calcium supplementation [56], metformin [59]
and statins [60] have all been evaluated in the context of preventative
treatment of non-symptomatic patients selected based on various risk
evaluation algorithms using history, biochemical and biophysical
markers.

The other strategy focuses on treating symptomatic patients who
have already developed clinical symptoms of PE. These patients are
already undergoing cardiovascular stress (both the mother and her
fetus). According to this strategy, the efforts are directed towards
preventing disease exacerbation, at least for a short while, and thereby
extending pregnancy to reduce the potential impact of prematurity,
especially for early onset severe PE. Antihypertensive drugs used in a
randomized trial have been shown to slow the progression of the
disorder by 7–11 days, thus reducing the level of prematurity [28].
MgSO4, which has been proven effective in preventing stroke and
convulsion in eclampsia, is also used inmanyplaces to slow theprogres-
sion of severe symptoms, although there is currently no research
proof for this use [80]. Anti-thrombin introduced at gestational week
24–28 was found ineffective [65]. The direction that appears to offer
hope is the use of apheresis to remove excess soluble sFlt-1 from the
maternal circulation in cases of very severe early onset PE [81]. Another
strategy for preventing PE, mainly the type associated with growth
restriction, involves adenoviral delivery of VEGF through the uterine
arteries [82,83].

The question of whom to treat applies to both prevention and
treatment strategies. The prevention strategy relies on markers only
(including prior maternal risk factors), and the best accuracy today is
a 76% detection rate for 90% specificity, associated with treatment of
many false positive cases [51]. The treatment strategy relies on both,
symptoms and markers. The markers at this stage of clinical symptoms
are very accurate, e.g. especially sFlt-1 or the ratio of sFlt-1/PlGF
offer N90% sensitivity and specificity. However, the treatment is imple-
mented at a time of multiple secondary and tertiary complications, and
is thus not easy to perform.

The decisions in selecting whom to treat are challenging. In the
ASPRE study, the prediction algorithm has generated 93% detection
rate for early PE, 76% for preterm PE, and 44% for PE at term, all at 90%
specificity [51]. As a result, the high risk group for preterm PE was com-
posed of ten times more patients than those who eventually developed
the disorder. The treatment reduced preterm PE by 63%. The ASPRE
prevention efficacy is the best reported today, and it meets economic
cost/benefit criteria for using aspirin for PE prevention [29]. Yet, it
appears that there is a need for an approach to further size down the
high risk group, and to increase the likelihood of prevention among
treated patients.

We therefore see the need for a personalized approach that is set
forth along the following assumptions:

• PE is the commonfinal phenotype of amulti-factorial disorder derived
of various molecular pathways [69–77].

• Each molecular pathway leads to the development of the PE
phenotype either alone or in conjunction with other pathways.

• The strategy then should be based on identifying molecular markers
for particular affected pathway(s), and use a prevention/management
approach that is linked to the specific impaired pathway.

• The marker(s) could then be utilized for monitoring the progress of
treatment/prevention.

Accordingly, developing a targeted treatment will be based on a set
or sets of molecular-based assays related to a single disease subtype
derived from impaired manifestation of this molecule. A personalized
approach can then target the treatment to those who can be identified
according to the said assays to identify the impaired molecular
marker(s) and/or specific biological and physiological functions
depending on it. The hope is that based on such an individualized
treatment strategy, the downstream phenotypic disease symptoms
can be prevented or at least reduced [84].

2. Targeted Approach to Combat Preeclampsia

The genetic origin of PE has been evaluated in a variety of studies
[79,85,86]. Previous PE of the pregnant woman and/or of her mother
and sisters has already been identified as a major risk factor, along
with black ethnicity [87,88].Weuse the termblack ethnicity as statistics
have shown higher rates of PE in Africa compared to Europe, and among
Afro-Americans and Afro-Caribbeans compared to Caucasians.

Specific gene mutations have been identified in certain populations.
One example is the STOX-1 mutation identified in a Dutch cohort to be
associated with high risk for developing PE [89]. Mutations in comple-
ment regulatory proteins were identified as a predisposing factor for
developing PE [90]. The list of genes implicated in both PE and CVDs is
long and includes the p-53 pathway, inflammatory chemokines, inter-
leukin signaling, B-cell activation, PDGF, TGF-β- and integrin signaling,
Alzheimer disease pathways, apoptosis, graft-versus-host diseases,
allograft rejection, steroid hormone synthesis, type I/II DM, and VEGF,
GNRH or Notch signaling [91].

In this respect, it is interesting to consider the specific gene
mutations that have been identified among “native” Andeans and
Himalayans living at high altitude. These mutations enable them to
further augment a pregnancy-associated rise in erythropoietin
(Epo) for a successful vascular adaptation to pregnancy at high
altitude. Epo, a pleiotropic cytokine, has important angiogenic and
vasoactive properties. The native Andeans/ Himalayans who carry
the mutations are capable of adapting to the increased demand
for oxygen during pregnancy and have genetic advantages over
newcomers to high altitude, who suffer from a very high prevalence
of severe PE during pregnancy [92].
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Taken together, we can see that PE is associated with a broad
range of gene activation/silencing events that are implicated in the
pathophysiology of the syndrome. The list is long and includes various
genes. If the approach above is correct, in coming years we anticipate
seeing the development of different strategies for fighting PE that
are related tometabolic pathways, the immune response, inflammation,
oxygen supply, cell communication, etc. Gene enrichment is thus
conducted as the next generation of PE biomarkers not only to evaluate
the risk for developing the disorder, but also in the context of directing
treatment. The individualized medicine approach for PE aims at
developing treatment directed towards a specific molecular target
known to have an impaired function and/or expression/sequence in
the context of elevated risk for developing the disorder in a particular
patient. For example, patients carrying mutations/polymorphisms in
these novel biomarkers will be included in clinical studies directed for
treating the disease through an individualized pathway that is specific
to the respective impaired gene.

While PE is amulti-factorial disorder, the assumption is that one can
identify single gene impairment and its polymorphic variants, and
develop exclusive treatment that focuses only on this molecule among
the affected population. Treatment strategies will be based on under-
standing the signaling pathways associated with this molecule, and
will aim to improve the functionality of this molecule, either by
augmenting its expression, replenishing the “correct”molecular variant,
replacing the defective one, or recruiting other means to bypass the
impaired pathway or interfere with its potential harmful impact.

Clearly, multiple damaged molecules may be identified to be
co-expressed and may underline the more severe disease phenotype,
thereby creating pathways based on two or more molecules as the
next steps.

2.1. This new Approach Would be Specific and Individualized

It requires the use of a battery of tools, and not a single test. Specific
assays need to be introduced for identifying patients with impaired
specific gene targets either in its primary sequence, RNA or protein
expression, or other targets and methods. In turn, identified subjects
will be stratified for inclusion in clinical studies in the context of a
specific molecular pathway that is implicated in the development of
PE. Preclinical studies would then be directed to link between bio-
markers and model systems to assess the degree of their impairment
and the benefits of correction. Treatment strategies may then be intro-
duced for replenishing with the proper protein (or a fraction of it), or,
where appropriate – providing its agonist or antagonist, or similar
methods [93,94].

In conclusion:

• PE is a multi-factorial syndrome.
• The new approach for fighting PE focuses on individualized medicine,
aiming at developing treatment with a specific biological target/
molecular entity to identify those who suffer from a specific sub-
type of PE that is linked to a specific molecular pathway.

• The affected pathway could be associated with impaired placental
development, impaired RNA/protein expression, DNA mutations, etc.

• This way, the multifactorial origin of PE can be “dissected” from a
“collection of diseases”, which merge during pregnancy into a
common final symptomatic phenotype, with well-defined signaling
pathways that all add to the disease phenotype. The severity may be
related to one particular pathway or to pathway combinations.

• This approach may sound difficult, but offers hope, as it will enable
directing treatment to the origin of the disease and not to its pheno-
typic symptoms, and will treat only the target group, and is likely to
attain better outcome.

• If successful, the approach can subsequently be adopted to develop
strategies for combating a broader spectrum of PE sub-types related
to various underlying signaling pathways and relevant molecules.
• After a successful implementation of this approach for fighting PE,
any other multi-factorial syndrome can be approached in a similar
manner.

Our first test case to this approach is placental protein 13 (PP13).

3. The case for Placental Protein 13 (PP13)

The research for drug targeting to PE with placental protein
13 (PP13) started in 2013 [94]. PP13 is a relatively understudied
molecule among the PE biomarkers compared with the angiogenic/
anti-angiogenic factors (e.g. sFlt-1, endoglin), but it has attracted
interest due to several unique features.

The molecule was discovered in the 1980's and its sequence was
published in 1999 [95]. PP13 is a placenta-specific molecule (Fig. 1A).
In adult tissues its expression is limited to the placenta. It has also
been identified in rare fetal tumors [95]. This protein is a galectin with
a high affinity for sugar residues of other proteins [96,97], and is
encoded by the LGALS13 gene located on chromosome 19q13 near
several other galectin genes [95–99]. In this context, it is worth citing
the work of Freitag et al. [100] who have shown that interfering with
angiogenesis mediated by another galectin - Gal-1 – contributes to the
pathogenesis of PE.

PP13 is mostly expressed in the villous syncytiotrophoblast of the
placenta [101,102], and its expression has been determined in both
primary cultured placental cells, placental villous explants, and in
placenta-derived cell lines (e.g. BeWo cells), especially when they are
stimulated by forskolin to undergo fusion and form syncytia [103].
PP13 localization in adult tissues appears to be mainly related to the
placental villi (Fig. 1B) [97,98,102], while PP13 is also found in the
placental bed and the fetal endothelium [97,98,102,104,105].

Cross linkage analyses have shown that PP13 has a high affinity for
sugar residues of annexin IIA and beta & gamma actin [97]. The 3D
conformational changes of PP13 in the presence of sugar residues
have been analyzed, and the amino acids involved in sugar binding
were identified [106,107] along with an analysis of these amino acids
during evolution [95–98]. Using multiple labels of villi with anti- PP13
and anti-actin or anti-annexin 2 antibodies, and with nuclei stain
with DAPI (Fig. 1B-E), they appear to have close proximity along the
syncytiotrophoblast. PP13 also displays high affinity for the beta
galactoside of the blood group B antigen [108].

Circulating PP13 has been detected in the maternal blood from the
5th week of gestation [101], and its level slowly increases during the
course of pregnancy [102,104,109]. Cultured isolated placental villi
were shown to release PP13, a process that was augmented after adding
aspirin to the culturemedium [110]. Studies have also shown increased
PP13 expression induced by aspirin [111]. In this model, transfection of
the placenta-derived BeWo cell line with the PP13 construct was
followed by high PP13 expression that was increased by forskolin-
induced differentiation, and by exposure to a calcium ionophore [112].

PP13 as a biochemical serum marker of PE in pregnant women has
been reported in more than 20 studies [96,108–110,114–118] using
various assay platforms, different cohorts of pregnantwomen, andmul-
tiple prior risk populationsderived fromdifferent ethnic and geographic
origins [94,113]. According to these studies, PP13 as a single biomarker
has an 83% detection rate for 10% false positive rate for early PE
(b34 weeks), 66% for preterm PE (b37 weeks) and 47% for all cases
of PE combined [69]. Together with measurement of the Doppler
pulsatility index of the blood flow through maternal uterine arteries
or additional markers, the prediction of PE in the first trimester was
93% for preterm PE combined with fetal growth restriction [117] and
higher still when PP13 is further adjusted to the blood group [108].

Longitudinally, the PP13 level increases modestly from the first to
the third trimester. This slow increase is a combined effect of increased
numbers of placental villi during pregnancy (larger surface area), while
the level released by each single villus is actually decreased, which is
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Fig. 1. PP13 expression (A) Exclusive expression of PP13mRNA in the placenta compared to other human tissues according to theHumanGeneAtlas. (B)–(E): Co-Localization of PP13 on a
syncytiotrophoblast villouswith actin compared to the nuclei. (B) Stainwith DAPI (blue) for the nuclei, (C) Stainwith TRITC conjugated anti PP13 antibodies (red), and (D) Stainwith FITC
conjugated anti actin antibodies (green). (E) A tri-dimensional image of the co-localization of all three together.
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compensated for by the increased placental surface area. However, the
level of increase is sharply augmented in women entering the symp-
tomatic stage of the disorder along, presumably due to an increased re-
lease from individual villi [102,104,105,108–110]. PP13 disappears from
thematernal circulationwithin 2 to 5weeks after delivery [94,102,109].

PP13 mRNA was identified in the placenta by hybridization studies
[99]. At delivery, placental PP13 RNA in PE cases is significantly lower
compared to normal control [104,105]. There are a number of studies
that have shown that the level of PP13mRNA in thematernal circulation
is lower in PE cases compared to controls, and that the lower level can
be detected throughout pregnancy (first and third trimester) in either
the maternal circulation or the placenta [105,119–121]. As the level of
circulating free PP13 mRNA in maternal blood is very low [119–121],
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and its half-life very short, PP13 mRNA tests available today offer a
low detection rate, and message may not be a good marker on its
own. However, when coupled with other prior risk factors (previous
PE, ethnic origin, BMI and advanced maternal age), the detection rate
of PP13 mRNA test becomes higher [121].

PP13 polymorphisms. As mentioned before, PP13 has been
sequenced, cloned, expressed, and purified. Its DNA configuration
presented in Fig. 2, indicates that it has 4 exons (E1–E4, Fig. 2A).
The molecular weight is 16 kDa for the monomer although it is
more stable as a dimer, and the polypeptide has 0.6% carbohydrate
and 0.8% lipid co bounds to it [95–97]. The discovery of polymorphic
PP13 variants [121] has driven research to identify the potential
correlation between reduced PP13 mRNA in PE [119–121] and the
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presence of PP13 polymorphic variants [122]. Most variants are rare
and their very low frequency is a challenge for reaching statistical
significance in molecular investigation. However, two variants
show sufficient prevalence to drive research on their potential role
as molecular markers of PE.

(1) The promoter variant - The -98A/C promoter variant (Fig. 2A)
is identified with an “A/A” genotype (homozygous to the
adenosine nucleotide) or “C/C” genotype (homozygous to
thecytosine nucleotide) or an “A/C” genotype (heterozygous
form). In first trimester blood samples from pregnant women
who subsequently had a healthy delivery without PE, all three
genotypes are in Hardy Weinberg equilibrium. The level of A/A
genotype is always the largest (~65%), but in pregnant women
who subsequently develop PE, the level of A/A is significantly
higher (~82%) and the three genotypes are no longer in Hardy
Weinberg equilibrium (Table 1). Accordingly, it appears that
having at least one “C” allele (e.g., not only the C/C but also the
A/C genotype) protects against the development of PE [123,
124]. Similar results have been obtained in a South African
Cohort as well as in a London cohort [123,124]. Carriers of the
A/A variant had an adjusted Odds Ratio of 2.45 [1.16–5.20]
for developing PE, while the carriers of the C/C and the A/C geno-
types are protected from developing PE.,The presence of the A/A
genotype in associationwith obesity (BMI N 35), history of previ-
ous PE, African ethnicity and pregnancy at advanced (N40)
maternal age, is accurately predicting a very high risk for devel-
oping the disorder with adjusted Odds Ratio of 15.6 for term PE
and 11 for all PE cases [124]. Obesity was the major confounding
variable, indicating the relevance of improving the selection of
obese women for targeted prevention.
It has been shown that binding of the TFAP2A promoter activator
is three times higher to “C” in the -98 position than to “A” in
this position, indicating that the presence of “C” is anticipated
to induce higher PP13 expression. PP13 promoter reporter
expression studies have been conducted after transfecting
BeWo cells with PP13 having “A” or “C” in the −98 promoter
region using Luciferase assays. In non-differentiating BeWo
cells, a higher PP13 expressionwith “−98C”wasmeasured com-
pared to “−98A” (p = 0.04). Forskolin-induced differentiation
of BeWo cells led to a 4.55 fold increase in PP13 expression
with the “−98C” clone compared to a 3.85 fold increase with
the “−98A” clone (p b 0.001) [124]. Altogether, it appears that
the higher risk for PE is associated with the “A/A” genotype
may be due to reduced PP13 expression among obese women
who had PE in previous pregnancies and are of African ethnicity.
Screening to identify this sub group PP13-related high risk for PE
can be performed by real time PCR.

(2) “Truncated” – A thymidine deletion in position 221 of the open
reading frame of PP13 (located on the region encoding for exon
3) (Fig. 2A) was discovered by Gebhardt et al. [122] in a black
and colored pregnant women cohort in South Africa. The muta-
tion is accompanied by a shift in the open reading frame, and
the generation of an earlier stop codon coupled to the expression
Table 1
The frequency of promoter variants
The−98 promoter genotypeswere determined by DNA extraction followed by DNA amplificat
in the first trimester revealing the A/A, A/C and C/C genotypes in the control and various PE su

Unaffected control
(n = 196)

All PE
(n = 67)

Genotype N % N %

A/A 132 67.3 55 82.1
A/C 48 24.5 9 13.4
C/C 16 8.2 3 4.5
p p = 0.068
of a shorter PP13 variant (“truncated” or “delT221”) lacking exon
4 and a fraction of exon 3 [122] (Fig. 2B). Heterozygous pregnan-
cies of this mutation develop early severe PE and have very low
level of PP13 due to an impaired PP13 molecule. The truncated
PP13 variant is rare and accounts for about 7% of the cases of
severe early PE (5 in 10,000 pregnancies). However, in South
Africa, where PE has a high prevalence, carriers of the heterozy-
gous mutation are close to 1:3,000 of the pregnant population,
and they have an 89% positive predictive value for developing
PE. Carriers of the homozygous form of DelT221 mutation are
non-viable and are associated with early pregnancy loss [122],
indicating that there is a need for at least one copy of the wild
type (w/t) PP13 for a successful pregnancy.
Truncated and w/t PP13 were expressed in bacterial (E. Coli),
and the polypeptides were purified [124]. When added to
leukocytes derived of the maternal decidua, w/t PP13 but not
the truncated variant caused leukocyte apoptosis [98,125,126].
It was postulated that w/t PP13 plays a role in rendering the
mother immune-tolerant to pregnancy [98,125,126] while the
truncated (DelT221) variant fails to do so. This can be attributed
to the loss of carbohydrate binding capacity due to the absence
of two amino-acids involved in the carbohydrate binding
domain, and of two additional amino acids supporting carbohy-
drate binding [106,107]. The immune tolerance provided by
PP13 is thus estimated to be related its carbohydrate binding
capacity [98,125,126].

Taken together, it appears that polymorphic variants of the PP13
molecule may serve as molecular markers to determine impaired
DNA/RNA structure/expression using immune-assays and PCR
tools. Patients identified positive in these assays represent a high
risk group for evaluating PP13 as a candidate for targeted therapies
to fight PE.

3.1. PP13 replenishing studies

PE is a primarily a human hypertensive pregnancy disorder, while
gestational hypertension is a pregnancy disorder identified across the
mammalian kingdom in many of the small and large mammalians.
Many also develop kidney problems and suffer from elevated urine pro-
tein during pregnancy [133]. The “full blown” form of PE is, however,
limited to primates and is associated with the evolution of deep placen-
tation [126]. This makes studies in animals “tricky” for extrapolation to
the effect on primate and human pregnancy disorders. However, with
an awareness of these limitations, and knowing that the phylogenetic
expression of PP13 is limited to pregnant primates [99], an extensive
set of preclinical studies was conducted in gravid rodents to assess the
impact of PP13 in pregnancy:

• Initially, a single PP13 dosage injected intravenously into gravid
rats and rabbits during the second trimester of their pregnancy has
resulted in a reversible ~30% reduction in blood pressure [94,127].

• In a second set of experiments, peristaltic pumps were implanted
into gravid rats to enable continuous release of PP13 initially in
ion by PCR and sequencing of circulating free DNA inmaternal plasma of pregnantwomen
b-types. Modified from Madar Shapiro et al., Ref. [124].

Preterm PE (PE 340–366)
(n = 18)

Term PE (PE N 37 w)
(n = 49)

N % N %

13 72.2 42 85.5
3 16.7 6 12.2
2 11.1 1 2.0
p = 0.730 p = 0.032



Table 2
PP13 induced increase of venous diameters
Changes in venous diameters in gravid rats at day 21 of pregnancy following previous ex-
posure to slow release of w/t (n=9) and truncated PP13 (n=6) compared to saline con-
trol (n = 6). The pumps were implanted in pregnancy days 8, and PP13 was detected in
the animal blood until day 15. Note that, the closer the vein is to the placenta, the larger
the effect. Only w/t PP13 was able to induce enlargement of venous diameters, while
the truncated form (delT PP13) was unable to do so. Bolded (w/t PP13) values are signif-
icantly different from controls (p b 0.001). Modified from Gizurarson et al., Ref. [128].

Type of vein Control
(n = 6)

PP13
(n = 9)

delT PP13
(n = 6)

Mean ± SD Mean ± SD Mean ± SD

Post-placental vein 0.28 ± 0.07 0.41 ± 0.11 0.24 ± 0.09
Post-myometrial vein 0.55 ± 0.34 0.61 ± 0.14 0.33 ± 0.16
Radial vein 0.75 ± 0.32 0.91 ± 0.32 0.52 ± 0.15
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the third trimester of pregnancy, and in a third set of experiments,
at the beginning of the second trimester of pregnancy [127,128].
Applied from day 8 of pregnancy, the pumps released PP13 until
day 15 accompanied by a reduction of the blood pressure that
reached the lowest blood pressure at 10 days of pregnancy (two
days after the start of the release), and then slowly returned to nor-
mal by pregnancy day 15 (compared to saline control) (Fig. 3A).
Hypotension was recorded for both w/t PP13 and the truncated
PP13 variant, although the effect of the latter returned to normal
in a faster pace (Fig. 3A) [128].

• The w/t PP13, but not the truncated variant, also induced signifi-
cant utero-placental vessel dilation and/or growth (Fig. 3B–E).
This was identified in both non-pregnant (Fig. 3B&D) and pregnant
rats (Fig. 3E) [125,128]. Arteries were expanded by about 45%,
while veins were expanded by about 50% (for veins see Table 2)
[125,128].

• At delivery on day 21, 6 days after the blood pressure returned to
normal and the slow release of PP13 was ended, a significant in-
crease in placental (46%) and pup (10%) weights was detected in
the w/t PP13 group, whereas placental and pup weights were sig-
nificantly decreased in the truncated group (Table 3) [125,128].
Pup numbers, however, were unaffected.

Table 4 summarizes the differences between w/t and truncated
PP13. Both induced hypotension; however, only the w/t stimulated ar-
terial and venous expansion along with a larger placenta and bigger
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Fig. 3. Blood pressure changes induced by PP13 A – Changes in mean arterial pressure in pregn
pregnancy for releasing their content until day15. The three animal groups had pumps that r
truncated PP13 resulted in hypotension throughout the duration of PP13 release from the pum
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content for seven days; the rats were sacrificed six days later (13 days overall), on gestatio
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magnification of a given section from the pregnant rat exposed to PP13.
pups [94,128] indicating the importance of PP13 for avoiding growth
restriction (IUGR) in addition to its hypotensive and uteroplacental
vascular effects.
3.2. Signaling Pathways

To identify the signaling pathways underlying these changes,
isolated uterine and mesenteric arteries from both mid-pregnant and
non-pregnant rats were used. After isolation the arteries were placed
y 13 Day 15
3 Saline

E

Day 21 Pregnant
(PP13)

ant rats were induced by using peristaltic pumps implanted inter-peritoneally on day 8 of
eleased w/t (n = 9) or truncated PP13 (n = 6) or saline (n = 6). (A) Release of w/t and
ps. Modified from Gizurarson et al., Ref. [128]. (B–C) Increased diameters of the uterine
nimals were subjected to continuous release from implanted pumps that released their
nal day 21. (D) Increased diameters of the utero-placental vasculature in pregnant rats
on day 8 of pregnancy. All animals were sacrificed on gestational day 21. Inset: higher



Table 3
Assessment of placental and pup weights after long exposure to w/t and truncated PP13
PP13 was slowly released from peristaltic pumps implanted inter-peritoneally in gravid
rats on day 8 of pregnancy, and released saline control or w/t or truncated PP13 until
day 15 of pregnancy. Animalswere sacrificed on day 21 followedbyweighing the placenta
and the pups. Bolded values are significantly different from controls (p b 0.01). Modified
from Gizurarson et al., Ref. [128].

Parameter Control
(n = 6)

PP13
(n = 9)

DelT PP13
(n = 6)

Pup weight (g) 2.24 ± 0.33 2.46 ± 0.35 0.93 ± 0.11
Placental weight (g) 0.45 ± 0.07 0.64 ± 0.11 0.37 ± 0.09
Number of pups (n) 12.5 ± 4.9 14.0 ± 1.4 13.5 ± 0.7
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into arteriographs to visualize their diameters and measure lumen
diameters measured in response to drug superfusion [129].

• Both the uterine and the mesenteric arteries were dilated in a dose
dependent manner by increasing concentrations of PP13 with a
mean efficacy of 38–50% [129].

• Half-maximal vasodilation of isolated arteries (EC50) was achieved
at 1 pM PP13, a concentration that corresponds to first trimester
maternal blood levels of pregnant women [102].

• The effect was endothelial layer mediated, since vessels without the
endothelial layer [130,131] lost the ability to dilate in response to
PP13 [129].

• Pharmacological analysis of the signaling pathways revealed that the
effect was mediated through eNOS and prostaglandin 2 receptors
(Fig. 4).

Hence, PP13 pre-conditions the utero-placental vasculature preg-
nancy by causing arterial expansion mediated via the endothelial
layer, through vaso-dilatory eNOS and prostaglandin pathways
(Fig. 4). This would likely improve blood flow and nutrient supply
to the placenta and resulted in placental enlargement and increased
pup weights. It is important to mention that PP13 has no typical
“receptor” in conventional pharmacological terms [94–97]. Therefore,
it is anticipated that this effects aremediated through the sugar residues
of the endothelial layer-related molecules of the eNOS and prostaglan-
din pathways. In this respect it is interesting to mention that PP13 has
a mild phospholipase effect, and was shown to cause slow release of
prostacyclin and arachidonic acid [132].

4. Animal Models to Evaluate PP13 for Fighting PE

The molecular markers and assays described above, and the animal
studies place PP13 as a candidate for fighting PE. This should be further
examined in animal models to enable the first human studies. One has
to be cautious since the full spectrum of the human syndrome is not
present in animals that lack the specific morphology of the human
placenta. However, each of the PE animal models published so far
replicates certain elements of the PE pathogenesis (e.g., hypertension
and proteinuria, endothelial dysfunction, impairment of the nitric
oxide system, over-activation of the systemic inflammatory response,
elevation of circulating proteins that interfere with angiogenesis, etc.)
[133–135]. Here we focus on a few animal models in an attempt to
analyse how they can be utilized.
Table 4
Comparative differences between Del T and w/t PP13 variants
Comparative differences extracted from the measured functional differences between w/t PP1

Systolic blood pressure Diastolic blood pressure Mean arterial pres

Control ~ ~ ~
W/T PP13 ↓ ↓ ↓
DelT PP13 ↓ ↓ ↓
4.1. The Reduced Uterine Perfusion Pressure (RUPP) Model

The RUPP model involves clamping of the abdominal aorta and of
the uterine arteries to induce an acute reduction in utero-placental
perfusion pressure by approximately 50% to generate hypertension
and proteinuria [136–141]. The model is usually accompanied by endo-
thelial dysfunction and IUGR with increased thromboxane sensitivity,
and is independent of the renin-angiotensin system [142–145].

In the context of PP13 subsequent supplementation with PP13 is
anticipated to reduce BP, proteinuria and growth restriction. In this con-
text, single horn gravid rats [136] could be used to study the impact of
angiogenesis and hypertension by providing a control for implantation
and placentation [81].

4.2. Chronic Inhibition of Nitric Oxide (NO) and the STOX-1 Model

Chronic inhibition/deficiency of the nitric oxide (NO) pathway,
especially the endothelial pathway (eNOS) in pregnancy leads to certain
manifestations resembling PE [146,147]. NO is tonically controlled and
locally produced by endothelial NO synthase (eNOS). Chronic inhibition
of eNOS leads to a dose-dependent sustained hypertension and protein-
uria in gravid animals [148,149]. It also increases maternal and
fetal morbidity and mortality in a pattern that resembles PE [150,151].
A reduced nitric oxide signaling has often been noted in human PE as
it has been recently reviewed by Osol et al. [152].

Accordingly, in a model of a sustained block of eNOS [149] it is
anticipated that PP13 injection may partially reverse the effects of
reduced NO signaling and, at least in part, hypertension and reduced
uteroplacental perfusion [129].

Transgenicmice could be further utilized to explore thismodel. PP13
is not expressed in mice [97]. PP13 expression in mice with a sustained
eNOS blockade should restore normal BP alone or combined with
removal of proteinuria.

4.2.1. The STOX-1 Model
The STOX1 Y153H mutation was initially identified as a suscepti-

bility marker of PE in a Dutch PE cohort of sisters who had mothers
that have also had PE [89,153,154]. While other cohorts have
shown no differences in PE frequency between STOX1 positive and
negative groups, these cohorts lack the familial structure and linkage
as the ones in which the mutation was discovered [153–155].
Doridot et al. [156] have shown the physiological role of STOX1 in
the development of PE. Their transgenic mice model significantly
overexpresses STOX1, particularly in the placenta. When the w/t
females have been crossed with STOX1 homozygous knock-ins,
they exhibited significantly elevated (~80 mm Hg) systolic arterial
BP by mid-pregnancy that disappeared after delivery. W/T crosses
with STOX1 overexpressing mice exhibited a significant proteinuria,
due to renal capillary swelling and fibrin deposition that affects renal
hemodynamics and indicates renal injury. Administration of low-
dose aspirin to the STOX1-crossed mothers was accompanied by a
significant attenuation of both maternal hypertension and renal
fibrin deposition. Aspirin also normalized the significant decrease
in litter size. In addition, these mice show increased levels of sFlt-1
and sENG in the maternal circulation [156,157], indicating that
STOX1 overexpression is associated with genes of angiogenic
3 and its truncated variant. The analysis is based on references [94, 98, and 125–128].

sure Arterial diameter Venous diameter Placental weight Pup weight

~ ~ ~ ~
↑ ↑ ↑ ↑
~ ~ ↓ ↓



Fig. 4. Signaling pathways affected by PP13 A scheme of the endothelium-dependent vascular relaxation pathways developed according to Drobnjak et al., Ref. [129]. Interaction of PP13
with the endothelial layer results in activation of nitric oxide (NO) production via endothelial nitric oxide synthase (eNOS), as well as metabolism of arachidonic acid (AA) to
prostaglandins (PG) via cyclooxygenase (COX1/2) enzymes. NO and PG normally elicit relaxation of vascular smooth muscle cells through cGMP and cAMP, respectively.
The endothelial element activated by PP13 is yet unknown. Note that, in the context of blood vessel relaxation, PP13 does not alter endothelial cytosolic Ca2+ levels, and that
the IP (prostacyclin) receptor is not involved, suggesting that another prostaglandin, e.g. prostaglandin E2 (PGE2) may be responsible. cAMP (cyclic adenosine monophosphate),
cGMP (cyclic guanosine monophosphate), PLA2 (phospholipase A2), PLC (phospholipase C), PGE2 (prostaglandin E2), PGH2 (prostaglandin H2), PGi2 (prostacyclin 2), TXA2
(thromboxane 2). Scheme adapted from Drobnjak et al., Ref. [129].
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proteins acting in synergy with STOX1. Relatively minor alterations
in placental morphology were reported indicating that ischemia is
unlikely to be a direct effect of STOX1 mutation [158]. Targeted
therapy of STOX1 carriers aims to cure oxidative stress (both
in vitro and in vivo) via influencing gene control over mitochondrial
function as it has been recently described by the Vaiman's group
[159]. Accordingly, co-expression of PP13 in STOX1 mice could act
to expand arteries and counteract oxidative stress.
4.3. The sFlt-1 Model

We have already mentioned that an imbalance of pro-angiogenic
and anti-angiogenic factors appears to be a good late pregnancy
indication of a widespread vascular dysfunction characteristic of
early-onset PE [82,83,93]. Alternative mRNA splicing of the VEGF
receptor molecule (VEGF-R) yields a circulating spliced variant
(sFlt-1) of the VEGFR1 receptor [91]. This process was initially
discovered in tumor development and was subsequently identified
in pregnant women who develop PE. The circulating variant reduces
the tissue availability of VEGF, and thereby inhibits its ability to
support and stimulate angiogenesis [160,161]. There are more than
200 publications on sFlt-1 elevation and reduced free VEGF and
PlGF levels in PE (e.g. [82,83,91]).

Injection of adenoviral vector expressing the full length human
placental sFlt-1-e 15a isoform induces a distinct maternal phenotype
of PE in the mouse model of PE [162,163]. PP13 co-expression can be
tested in reversing the effect in a partial or complete manner [164].

In the context of PP13, co- transfection with the placental sFlt-1-e
15a isoform [162,163], PP13 could act to prevent the development of
this phenotype of PE.
5. Conclusions

○ PE remains a major pregnancy disorder associated with severe
morbidity and mortality, and is associated with lifelong deterioration
of health of the mother and her newborn [164]. So far, issues related
to threats from teratogenic or future fertility complications have
limited the development of new drugs to fight PE. As a result, there
is a huge discrepancy between the urgent need to fight the disorder
and the availability of public and private resources to finance drug
development against PE. This situation has driven the regulatory
authorities to assign a status of orphan drugs to drugs aiming to
eradicate PE. The definition was achieved by defining PE as a unique
hypertensive disorder developing only during pregnancy. It opens a
new window of opportunities in the battle against PE [47,48].

○ Many generic drugs are tested today aiming to repurpose their use in
order to prevent PE, and to leverage their safe use in pregnancy to
shorten the clinical validation process of using them to fight PE. This
approach is strengthened by several achievements such as the
ASPRE study success for preventing preterm PE with aspirin [51]
and the use of metformin to prevent PE in obese women [59]. Other
studies are testing statins, lowmolecular weight heparin, and silden-
afil citrate, among others [53–56]. The approach involves treating
about ten times more women identified as being at risk compared
to the ones who actually develop the disorder, and none have
efficacies above 60%.

○ Newdrug strategies focus on one or two signallingpathways that lead
to the development of a PE phenotype [165] to score a better success
rate. Our approach focuses on PP13 as a unique molecule affecting
such signalling pathways and its polymorphisms.We have developed
PCR and others tests to identify patients at high risk for developing PE
according to impaired structure/function of PP13 DNA or RNA
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expression, and PP13 features as a galectin involved in immune toler-
ance, and in preconditioning the uterine vasculature to the increased
physiological burden of pregnancy. By having suitable ELISA, PCR,
and other diagnostics, this approach enables to select high risk
patients as candidates for future clinical studies.

○ A test of the -98 A/C polymorphism can identify patients with
lower expression of PP13 [124], mainly among obese women.
A shortage of PP13 may lead to narrower uteroplacental arteries
and veins, thus leading to hypertension, smaller placentas and
smaller pups [127,128]. With a cell-free DNA, test we have been
able to identify patients with the truncated variant which, in
turn, is associated with impaired leukocyte apoptosis, turning
the maternal tissue immune reactive to trophoblast invasion and
blood vessel remodelling [98,125,126].

○ Animal studies revealed the effect of supplementing with the
normal PP13molecule to reduce BP [126,127]. Long term exposure
to PP13 molecules expands the effect from hypotension and
vasodilation into a structural expansionof the vasculature (remodelling
of the arteries and veins) that preconditions the mother for adapting
to the increased cardiovascular burden of pregnancy [124,126].
Signalling endothelial pathways for mediating the PP13 effects
involve eNOS and prostaglandins [128].

○ Drug development for fighting PE is facing a very difficult imped-
iment in entering into preclinical studies. PE development is
associated with the deep placentation into the uterine wall,
which challenge the immune system. Many species in the animal
kingdom, especially mammals, can be induced to develop hyper-
tensive disorders in pregnancy, and some also develop protein-
uria along or in conjunction with hypertension. Yet, none of the
PE models in animals can accurately mimic the full spectrum of
PE in the human [97,126]. The structure of the placenta is very
different in these animals and the extrapolation to the human
pregnancy model has to be undertaken with caution. Yet, animal
models are valuable in guiding subsequent studies in humans,
human placenta tissues, human placental cells, and placental
like cell lines [101,102,110–112,124]. Animal models also enable
us to get a first estimate of drug potential with respect to some
aspects of PE, and allow the introduction of human genes for
evaluating their impact prior to testing in higher primates and
in human.

○ Transgenic animals and other methods of human gene transfec-
tion into smaller and larger animal models [158,162,163] along
with non-invasive sonographic and other imaging tools may assist
in measuring blood flow and arterial structure [158,159].

○ We foresee the role of in vitro models of placental cells and cell
lines [94,102,110–112,124] in drug development to assess
immune tolerance and determine long-term structural changes
in arterial diameters, angiogenesis, among others [49,107,166].
The course of the development includes vascular pharmacology
with special emphasis on the uterine vasculature and signaling
pathways for cell growth, apoptosis and angiogenesis studies
[129,145].

○ All drug development programs should be accompanied by
toxicology studies to evaluate safety according to ICH/S3 (toxico-
kinetics), ICH/S1 (carcinogenicity), ICH/S2 (geno-toxicity), ICH/S4
(long term use of PP13), ICH/S8 (immuno-toxicology) and fetal
toxicology (no guidelines available). Controlled in vivo release
of any drug should be followed by thorough monitoring of
physiological parameters. A dose response (pharmaco-dynamics)
should characterize the response together with interspecies
pharmaco-kinetics (Vd, k12, k21, ke, etc.) to achieve a therapeutic
index (TI = TD50/ED50), as well as MEC (minimal effective
concentration), MSC (maximal safe concentration) based on
different pharmacological effects that should be studied together
with testing of different nano-formulations with various targeting
capabilities.
○ The summary of all studies analyzing the impact of polymorphic
variants of PP13 is opening a new road to the prediction the risk
to develop PE and also for monitoring it during the progression of
the pregnancy. Genetic polymorphism may be used for predisposing
pregnant women to the risk to develop PE. Polymorphism is another
reasonwhy a unique drugwill probably not be suitable to fighting all
PE cases, even for a given phenotype, as itmay pre-dispose patients to
resistance to certain drugs. This is most probably the case for genes
encoding detoxification enzymes acting in the case of aspirin to cre-
ate aspirin resistance [167]. An additional example is the polymor-
phism of the metformin transporter that prohibits the availability of
the drug to act on the liver and the intestines, thus creating resistance
tometformin [168]. This issue has to be considered in any drug devel-
opment program and is quite important for personalized medicine,
as emphasized in this article.

Altogether, our initiative aims at bringing the PP13 research to a
level that allows clinical trials in pregnant women with patients identi-
fied by diagnostic tools as the appropriate target group according to
DNA mutation (DelT221) or impaired expression of the −98A/A geno-
type. Combined with the determination of low PP13 mRNA in maternal
blood and low blood PP13 protein, a battery of tools opens the road for
implementing this approach. Treatment doses will be selected accord-
ing to efficacy/toxicity ratios and ranges. Studies will be open- label,
controlled by ethical approval and written informed consents, and
conducted according to all GCP requirements. If proven effective, this
strategy could lead to valorization among the respective target groups.

It is generally accepted that the development of novel therapies to
treat hypertension in pregnancy is hampered by the relatively small
targeted population that challenges the potential return on investment
[49,63]. Verifying a novel drug-target composite through toxicology and
physiological/molecular and morphological testing in gravid animals
and in human is a feasible approach based on the strong scientific
base in research animals and isolated human vessels, and subsequently
in human volunteers.

The market clearly signals its need for a paradigm shift in the
management of hypertensive disorders in pregnancy, linking marker
discovery, risk stratification and replenishing of the missed/impaired
protein to create a strong biological basis for such a therapy [165].

Our initiative identifies PP13 as a candidate to be taken into the clin-
ical arena by creating a clear pathway fromnewdrug targets and design,
into treatment and a clear guidance of identifying the respective pa-
tients and their subsequent path for treatment. In due course we may
be able to evaluate the usefulness of the CRISPR/Cas 9 approach for
editing the LGALS/PP13 gene, but this day is still ahead of us [169,170].
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