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Accumulating evidence indicates that the endocrine and immune systems engage in
complex cross-talks in which a prominent role is played by thyroid hormones (THs).
The increase of resident vs. monocyte recruited macrophages was shown to be an
important effector of the TH 3,3′,5′-Triiodo-L-thyronine (T3)-induced protection against
inflammation and a key role of T3 in inhibiting the differentiation of peripheral monocytes
into macrophages was observed. Herein, we report on the role of T3 as a modulator of
microglia, the specialized macrophages of the central nervous system (CNS). Mounting
evidence supports a role of microglia and macrophages in the growth and invasion
of malignant glioma. In this respect, we unveil the putative involvement of T3 in the
microglia/glioma cell communication. Since THs are known to cross the blood-brain
barrier, we suggest that T3 not only exerts a direct modulation of brain cancer cell
itself but also indirectly promotes glioma growth through a modulation of microglia. Our
observations expand available information on the role of TH system in glioma and its
microenvironment and highlight the endocrine modulation of microglia as an important
target for future therapeutic development of glioma treatments.
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Introduction

The specialized macrophages of the central nervous system (CNS), namely microglia, constitute
5–20% of total glial cells (Ransohoff and Perry, 2009; Kettenmann et al., 2011; Saijo and
Glass, 2011). The lineage relationship between microglia and peripheral macrophages is well
established (Yang et al., 2010; Saijo and Glass, 2011); it has been recently suggested that
microglia originate from macrophages migrating into the CNS during early embriogenesis
and that microglial cell population can locally expand in CNS (Ginhoux et al., 2010; Saijo and
Glass, 2011). Our understanding of the key factors and molecular mechanisms responsible for
microglia development and function is however still incomplete. In a healthy environment,
resting microglia displays low expression levels of inflammatory molecules, but when activated,
microglial cells abandon their ramified surveiling morphology, become ameboid, acquire
phagocytic functions and migrate to the injured site to release inflammatory molecules
(Polazzi and Monti, 2010; Saijo and Glass, 2011). Generally, microglial cells act as the primary
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responding cells for infectious and traumatic stimuli
although their activation may also result in pathological
forms of inflammation that contribute to the progression of
neurodegenerative diseases (Glass et al., 2010; Perry et al., 2010;
Saijo and Glass, 2011; Assi et al., 2013).

Studies of peripheral macrophages have led to the
development of the concept of two different macrophage
activation states, i.e., the ‘‘classically activated’’ (M1) and
‘‘alternatively activated’’ (M2) ones (Murray and Wynn,
2011; Sica and Mantovani, 2012). The ‘‘classically activated’’
macrophages express pro-inflammatory cytokines, mediate
defense of the host from a variety of bacteria, protozoa
and viruses, and have roles in anti-tumor immunity. The
‘‘alternatively activated’’ macrophages have anti-inflammatory,
pro-tumoral function and regulate wound healing. It is generally
assumed that macrophages activation in vivo represents extreme
of a continuum in a universe of activation states and mixed
phenotypes and coexistence of cells in different activation states
have been observed in preclinical/clinical conditions (Sica and
Mantovani, 2012). These concepts might also be applicable in
the case of microglia which has activation states similar to that of
macrophages and exhibits functional plasticity during activation
states (Saijo and Glass, 2011). However, the associations between
distinct activation states and pathology are less well defined
and may differ from those of macrophages in peripheral tissues
(Ghosh and Chaudhuri, 2010; Yang et al., 2010; Saijo and Glass,
2011; Wei et al., 2013).

Similarly to other tissues, brain cancers are complex
ecosystems composed of many interacting elements. The
communication between the tumor cells and the surrounding
cells helps to drive the process of tumor progression and the
shaping of its complexity. Increasing evidence indicates that what
is happening inside the tumor cell occurs also under exogenous
stimuli arising around tumor cells (Albini and Sporn, 2007;
Joyce and Pollard, 2009; Charles et al., 2012; Goubran et al.,
2014; Klemm and Joyce, 2015). Beyond cancer cells, microglia,
astrocytes, the extracellular matrix and soluble factors influence
the tumor invasion, angiogenesis, cell proliferation/apoptosis
also having profound effects on the efficacy of cancer therapies
(Albini and Sporn, 2007; Joyce and Pollard, 2009; Charles et al.,
2012; Goubran et al., 2014; Klemm and Joyce, 2015; Gutmann,
2015). In the case of malignant gliomas, a primary CNS
cancers arising from glial cells, our understanding of the role of
microenvironmental cells has lagged behind the discovery that
monocytes are the most likely source of all brain macrophages
and that microglia and macrophages may account for a large
amount of total cell populations in brain tumors (Watters et al.,
2005; Saijo and Glass, 2011; Gutmann, 2015). In this regard,
glioma tissue shows high levels of infiltrating microglia, localized
diffusely throughout the tumor, rather than to the areas of
necrosis (Yang et al., 2010; Charles et al., 2012). Although once
previously thought to play an anti-tumorigenic role, microglia
has recently emerged as important element in the progression
and growth of glioma through diverse mechanisms (Ghosh and
Chaudhuri, 2010; Yang et al., 2010; Saijo and Glass, 2011; Zhai
et al., 2011; Charles et al., 2012; Jacobs et al., 2012;Wei et al., 2013;
da Fonseca and Badie, 2013; Gutmann, 2015). Glioma-associated

microglia produce plenty of cytokines, chemokines, interleukins,
and growth factors, which can either shape a more permissive
tumor microenvironment or directly trigger glioma cell growth
and invasion. In particular, by inducing new blood vessel
formation and/or changes in the extracellular matrix microglia
may create indirectly a supportive soil that further enhances
glioma growth or invasion. Alongside microglia-released soluble
factors may increase directly glioma stem cell or astrocytoma
cell proliferation, survival, and/or invasion. In addition, glioma-
infiltrating microglial cells appear incapable of inducing an
effective anti-tumor T cell response, strongly supporting the
fact that microglias promote tumor growth by facilitating
immunosuppression of the tumor microenvironment. Of notice,
glioma cells may over-rule the normal defensive role ofmicroglial
cells and confine them into an immune-depressive boundary. In
this context, the elucidation of the microglia-glioma ecosystem
can provide useful information for manipulation of the glioma
microenvironment in a therapeutic perspective, i.e., to generate a
specific and durable anti-glioma immune response.

Thyroid Hormones and
Macrophages/Microglia

The endocrine and immune systems engage in complex
cross-talks. Hormones and endocrine transmitters bind to
immune system cells, thus modifying immune cell functions
and tuning immune responses (Dorshkind and Horseman,
2000; Kelley et al., 2007; Barnard et al., 2008; Butts and
Sternberg, 2008; Rivest, 2010; Carlton et al., 2012). In this
respect, growing evidence indicates that the thyroid hormones
(THs) 3,3′,5′-Triiodo-L-thyronine (T3) and L-thyroxine (T4)
are important modulator factors of immune cells, including
peripheral macrophages (Khansari et al., 1990; Rosa et al.,
1995; Forner et al., 1996; Rittenhouse and Redei, 1997;
Ortega et al., 1999; Dorshkind and Horseman, 2000; El-Shaikh
et al., 2006; Klecha et al., 2006; Mascanfroni et al., 2008;
Mazzoccoli et al., 2010; De Vito et al., 2011; Chen et al.,
2012). Recently we identified a homeostatic link between T3
and the pathophysiological role of macrophages (Perrotta et al.,
2014). In particular, our in vitro results indicate a negative
role of T3 in triggering the differentiation of mouse circulating
monocytes into macrophages. T3 was also shown to induce
macrophages to display a ‘‘classically activated’’ signature, as
revealed by the expression analysis of surface proteins and
cytokine release, as well as the experiments on cell migratory
ability (chemotaxis) and phagocytosis. Interestingly, the analysis
of gene markers in macrophages treated with T3 revealed a
somehow ‘‘classically activated’’/‘‘alternatively activated’’ mixed
phenotype thus suggesting that the switching induced by T3 is
very complex. In vivo results demonstrated that circulating T3
increased the content of the resident macrophages in the mouse
peritoneal cavity while reducing the content of the recruited
monocyte-derived cells. Additionally, T3 significantly protected
mice against endotoxemia: decreased T3 levels increased the
recruited (potentially damaging) cells while the restoring of
T3 levels decreases recruited and increases resident (potentially
beneficial) cells (Perrotta et al., 2014). Although macrophages
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were historically considered to be derived from the blood
monocyte reservoir, numerous studies have since demonstrated
that, under steady-state conditions, resident tissue macrophage
populations are largely maintained through local proliferation
(Yona and Jung, 2010). Inflammatory insults, however, result in
the rapid recruitment of blood-borne precursors to the respective
tissue macrophage compartment (Yona and Jung, 2010). In this
line, our data suggest that T3 contributes to limit inflammation
by promoting the proliferation of peritoneal macrophages in
situ, while inhibiting the potentially damaging cell recruitment
from monocyte cell pools, in a context not fully explained by
the ‘‘classically activated’’/‘‘alternatively activated’’ framework
(Perrotta et al., 2014).

The influence of thyroid imbalance on microglial
development was firstly identified in 2001 when hypothyroidism
was found to slow markedly the progressive elaboration of
microglial processes in the developing rat forebrain and increases
in T3 levels accelerate them (Lima et al., 2001). In addition, in
vitro and in vivo analyses revealed that T3 increases the number
of microglia cell bodies, promotes microglia survival (but not
the proliferation) and enhances growth of their processes (Lima
et al., 2001). These results indicate that THs promote the growth
and morphological differentiation of cortical microglia during
development. Accordingly, it has been recently shown that
hypothyroidism prominently reduces the processes of microglia
in the hippocampus of diabetic rats (Nam et al., 2013).

Thyroid Hormones at the Interplay
Between Microglia and Glioma Cells

An aspect that is worth pursuing to understand better the
interplay between the immune system and glioma is the role of
the endocrine system since both contribute with an integrated
action in the maintenance of the body defense against tumors.
For instance, hormone dysregulationsmay determine the efficacy
of chemo- or immuno-modulatory therapies likely affecting the
tumor microenvironment (Mazzoccoli et al., 2010; ThyagaRajan
and Priyanka, 2012; Armaiz-Pena et al., 2013; Goubran et al.,
2014). In order to get new insight on the possible role of T3
in the regulation of microglia/glioma cross-talk we used here
a retroviral-immortalized cell line, the N9 microglia line, and
the GL261 murine model of malignant glioma as previously
reported (Davis et al., 2006; Zhang et al., 2009, 2011; Liu
et al., 2011; Zhai et al., 2011). The N9 microglia is derived
from mouse brain and shares many phenotypical characteristics
with primary mouse microglia, also maintaining the crucial
properties of in vivo microglia (Stansley et al., 2012). N9 and
GL261 cell lines were cultured in Dulbecco’s Modified Eagle’s
Medium supplemented with 10% heat inactivated fetal bovine
serum, 2 mM glutamine, 100 UI/ml penicillin and 100 µg/ml
streptomycin (Euroclone, Milano, Italy) at 37◦C, 5% CO2 in an
humidified atmosphere. During treatments, cells were exposed to
THs-depleted medium (Perrotta et al., 2014). T3 (Sigma-Aldrich,
Saint Louis, MO, USA) was added to the cell medium for 24 h at
the concentration of 1 µM, giving maximal receptor occupancy
in macrophages (Perrotta et al., 2014). Parallel cultures were
maintained with T3 vehicle and used as a control. As shown

in the western blot experiment of Figure 1A, the levels of
proliferating cell nuclear antigen (PCNA) in N9 microglia did
not change in the presence of T3, further confirming that T3
was not coupled to microglia proliferation (Lima et al., 2001).
We then set-up an indirect co-culture experimental procedure
in which GL261 cells were plated in the bottom wells with or
without N9 cells and T3 in the top wells. Using this system
we observed a significant increase in GL261 cell proliferation
in the presence of T3 and N9 cells when compared to GL261
with N9 only (about 49%), while T3 had no effect on GL261
cell number in the absence of N9 (Figure 1B). These results
were confirmed by the analysis of PCNA protein expression
(Figure 1C). Although THs (especially T4) were suggested to be a
growth factor for different glioma cells in vitro (Davis et al., 2006;
Lin et al., 2009), in our experimental settings T3 itself did not
affect GL261 proliferation. Accordingly, similar concentrations
of T3 did not modify PCNA levels in GL261 cells (Davis et al.,
2006). In this respect, T3 effect on cell growth appears to be
dependent on the type of glioma tumor cell line (Liappas et al.,
2011).

The activation of signal transducers and activators of
transcription 3 (STAT3) has been proposed to play an anti-
tumor immunity role (Yu et al., 2014), and indeed activation
of STAT3 in N9 cells increased GL261 growth (Zhang et al.,
2009). Interestingly, it is becoming apparent that STAT3 is
an important molecular player that allows glioma cells to
promote the activity of microglia; reciprocally microglia facilitate
tumor survival, growth and the spread of glioma cells (Zhang
et al., 2009; Wu et al., 2010; Wei et al., 2013; da Fonseca
and Badie, 2013). The inhibition of STAT3 function in tumor
microglia may thus potentially be used as an immunotherapy
approach for gliomas. We reported here an activatory role
of T3 on STAT3 of microglia since N9 treatment with T3
resulted in elevated levels of STAT3 phosphorylation when
compared to control (Figure 1D). In addition, as shown in
real-time quantitative PCR experiments of Figure 1E, treatment
of N9 microglia with T3 increased the mRNA expression of
chemokine (C-X-C motif) ligand (CXCL) 9 and CXCL10 by
15.9 and 3.4 fold, respectively, vs. untreated control. Similar
results were obtained inmouse peripheral macrophages (Perrotta
et al., 2014). Chemokines constitute a significant portion of
the modulatory messengers that can be released by activated
microglia and interact with specific transmembrane G protein-
coupled receptors (Hanisch, 2002). Of interest, both in vitro and
in vivo experiments using different glioma tumors, including
GL261 cells, indicated CXCL9 and CXCL10 (which bind to
their endogenous receptor CXCR3) as key ligands promoting
the growth of glioma (Liu et al., 2011). In this respect, different
evidence indicates CXCR3 as an independent prognostic factor
for glioblastoma patients and promotes an invasive phenotype
(Pu et al., 2015).

Taken together our results indicate that T3 promotes GL261
glioma growth through a modulation of N9 microglia and
that T3 effects involve the modulation of soluble factors
released by microglia. From a mechanistic point of view, we
suggest that STAT3 activation and the release of CXCL9/10 are
suitable candidates to answer the question of how microglia
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FIGURE 1 | T3 induces glioma cell growth by a direct action on
microglia. (A) Expression of the proliferation marker proliferating cell nuclear
antigen (PCNA) in N9 cells plated in the absence and in the presence of T3
(1 µM, 24 h). The Western blot analysis was performed as described
previously (Armani et al., 2007; Cervia et al., 2007, 2013; Bizzozero et al.,
2014; Cazzato et al., 2014; De Palma et al., 2014; Perrotta et al., 2014) using
the mouse monoclonal anti-PCNA (PC-10) and the goat polyclonal anti-actin
(I-19) (internal standard) primary antibodies (Santa Cruz Biotechnology, Dallas,
TX, USA). The image is representative of results obtained from three different
experiments (n = 3). (B) GL261 cell number in co-culture experiments. The
experimental setting was in agreement with a previous report (Zhai et al.,
2011), with minor corrections. Briefly, GL261 cells were seeded in the bottom
wells of Costar transwell plates (24-mm diameter insert, 0.4 µM pore size,
polycarbonate membrane; Corning Life Sciences, Corning, NY, USA) with or
without N9 cells in the top wells (1:1 N9:GL261), both in the absence or in the
presence of T3 (1 µM). Cell concentration after 24 h cultures was measured
by counting trypan blue-excluding cells with TC20 Automated Cell Counter
(Bio-Rad, Hercules, CA, USA), as described previously (Cervia et al., 2013;
Perrotta et al., 2014). Each histogram represents the data obtained from 3–6
different experiments (n = 3–6). The results were expressed as means ± SEM.
*P < 0.001 vs. the other values, using one-way ANOVA followed by the
Tukey’s multiple comparison post-test (GraphPad Prism; GraphPad Software,
La Jolla, CA, USA). (C) Western blot analysis of PCNA in GL261 cells
co-cultured as described above. The image is representative of results
obtained from three different experiments (n = 3). (D) STAT3 phosphorylation
in N9 cells plated in the absence and in the presence of T3 (1 µM, 24 h). The
Western blot analysis was performed using the rabbit polyclonal anti-phospho
STAT3 (Tyr705) and the anti-STAT3 primary antibodies (Cell Signaling
Technology, Danvers, MA, USA). The image is representative of results
obtained from three different experiments (n = 3). (E) Real-time quantitative
PCR experiments of mRNA levels for CXCL9 and CXCL10 in N9 cells in the
presence of T3 (1 µM, 24 h). Experiments were performed as previously
detailed (Cervia et al., 2008, 2012, 2013; Charles et al., 2012; Bizzozero et al.,
2014; Cazzato et al., 2014; De Palma et al., 2014; Perrotta et al., 2014).

(Continued)

FIGURE 1 | Continued
Primer pairs: CXCL9, 5′-TCCTTTTGGGCATCATCTTCC-3′ (forward) and
5′-TTTGTAGTGGATCGTGCCTCG-3′ (reverse); CXCL10
5′-TCCTTGTCCTCCCTAGCTCA-3′ (forward) and
5′-ATAACCCCTTGGGAAGATGG-3′ (reverse) (Primmbiotech, Milano, Italy).
Values are expressed as the fold change over control (untreated N9 cells).
Each histogram represents the data obtained from three different experiments
(n = 3) run in triplicate. The results were expressed as means ± SEM. P <

0.05 vs. respective control (one-way ANOVA followed by the Tukey’s multiple
comparison post-test).

supports glioma growth. This hypothesis, however, needs to be
verified by different experimental approaches using, for example,
pharmacological and/or genetic manipulations. This may also
help to fully understand the signaling pathway mediating T3
actions. Indeed, STAT3 and its downstream effectors may act
in parallel with different transduction mechanisms. Also, the
possibility that soluble factors other than chemokines may be
involved in themodulation of glioma growth cannot be excluded.
At present, the pathological significance of T3-microglia-glioma
axis in vivo remains to be established. The study of this
complex issue and its molecular players appears of great interest
and might highlight targets for future therapeutic development
of glioma treatments based on endocrine modulation of
microglia.

Relevance of Thyroid Hormones in Glioma
Therapy

There is increasing evidence that alterations in TH system
are common events in cancer (Aranda et al., 2009; Moeller
and Führer, 2013). However, our current understanding of
the effects of THs on cancer cells reflects a rather complex
picture and conflicting results mainly obtained in in vitro and
in vivo animal models have also been reported. Indeed, in
addition to the studies describing that THs can function as
tumor suppressors, other reports support the concept that THs
can enhance carcinogenesis, thus suggesting a dual role of THs
(Aranda et al., 2009; Moeller and Führer, 2013).

Although no unequivocal association between thyroidal
status and human cancer has been demonstrated, epidemiology
and clinical studies strongly support a generalized tumor-
promoting effects of THs and suggest the possibility that thyroid
function/dysregulations influence the outcome of tumor therapy
(Hercbergs et al., 2010; Ashur-Fabian et al., 2013; Moeller and
Führer, 2013). In this respect, hypothyroidism is associated with a
favorable outcome in several cancer types (Hercbergs et al., 2010;
Moeller and Führer, 2013). In brain tumors, the concentration
and metabolism of THs found in human tissues are altered
thus suggesting that changes in circulating levels of THs
may be related to malignant progression of gliomas (Nauman
et al., 2004). In addition, treatment-induced hypothyroidism
in glioma patients significantly improves survival and response
to tamoxifen (Hercbergs et al., 2003, 2010; Moeller and
Führer, 2013). Also, the successful long-term tumor response to
medically induced chemical hypothyroidism in conjunction with
carboplatinum chemotherapy of an adult patient with glioma
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FIGURE 2 | Schematic illustration of the role of T3 in the cross-talk
between microglia and glioma cells in the tumor microenvironment.

was recently reported (Ashur-Fabian et al., 2013). Yet, it is still
possible that hypothyroidism is only a surrogate marker for
treatment efficacy and does not positively influence treatment
outcome by itself (Moeller and Führer, 2013).

Conclusion and Outlook

Malignant gliomas are aggressive, highly invasive, and
neurologically destructive tumors considered to be among
the deadliest of human cancers. Three decades of intensive
research and a variety of chemotherapy regimes, radiotherapy
and surgical approaches have been trialed and investigated,
however the prognosis for patients with malignant glioma
has not changed significantly (Desjardins et al., 2005;
Taylor, 2010; Talibi et al., 2014). This has stimulated active
research in multiples areas and the advent of new treatment
strategies.

The emerging recognition of the roles of microglia in health
and disease has stimulated substantial efforts to define more
clearly the regulatory mechanisms that control their functions.
With respect to CNS pathological remodeling induced by
dysregulation of plasmatic levels of THs, the characterization
of the physiologic factors that regulate the establishment of
the microglial/glioma network is challenging. It has been
previously hypothesized that changes in the host stroma
associated with hypothyroidism rather than a direct receptor-
mediated action on the tumor cells may be responsible for
THs-induced modulation of tumor growth (Martínez-Iglesias
et al., 2009a,b). In this context, since THs are known to cross
the blood-brain barrier and microglial cells are CNS targets
of THs, it is reasonable to assume that T3, beside a direct
modulation of brain cancer cell itself, influences the relationship
of tumor cells with stroma cells (Figure 2). In particular, our
suggestion that T3 indirectly promotes glioma growth through
a modulation of microglia, deserves further consideration and
may help to understand better the role of T3 dysregulations
in brain tumorigenesis. Given the important clinical impact
of glioma tumors, clariyfying T3-induced microenvironment
regulations may open the field to significant advances in the
identification of possible new strategies to cancer therapy thus
translating the role of thyroid gland status into clinical cancer cell
biology.
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