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BACKGROUND Heart rate follows a diurnal variation, and slow
heart rhythms occur primarily at night.

OBJECTIVE The lower heart rate during sleep is assumed to be neu-
ral in origin, but here we tested whether a day-night difference in
intrinsic pacemaking is involved.

METHODS In vivo and in vitro electrocardiographic recordings,
vagotomy, transgenics, quantitative polymerase chain reaction,
Western blotting, immunohistochemistry, patch clamp, reporter
bioluminescence recordings, and chromatin immunoprecipitation
were used.

RESULTS The day-night difference in the average heart rate of mice
was independent of fluctuations in average locomotor activity and
persisted under pharmacological, surgical, and transgenic interrup-
tion of autonomic input to the heart. Spontaneous beating rate of
isolated (ie, denervated) sinus node (SN) preparations exhibited a
day-night rhythm concomitant with rhythmic messenger RNA
expression of ion channels including hyperpolarization activated
cyclic nucleotide gated potassium channel 4 (HCN4). In vitro
Funding sources: The authors have no funding sources to disclose. Disclosures:
contributed equally to this work. Address reprint requests and correspondence:
chester, 46 Grafton St, Manchester M13 9NT, United Kingdom. E-mail address: a

1547-5271/© 2020 Heart Rhythm Society. This is an open access article under the C
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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studies demonstrated 24-hour rhythms in the human HCN4 pro-
moter and the corresponding funny current. The day-night heart
rate difference in mice was abolished by HCN block, both in vivo
and in the isolated SN. Rhythmic expression of canonical circadian
clock factors, for example, Bmal1 and Cry, was identified in the SN
and disruption of the local clock (by cardiac-specific knockout of
Bmal1) abolished the day-night difference in Hcn4 and intrinsic
heart rate. Chromatin immunoprecipitation revealed specific
BMAL1 binding sites on Hcn4, linking the local clock with intrinsic
rate control.

CONCLUSION The circadian variation in heart rate involves SN local
clock–dependent Hcn4 rhythmicity. Data reveal a novel regulator of
heart rate and mechanistic insight into bradycardia during sleep.

KEYWORDS Circadian rhythm; Nocturnal bradycardia; Pacemaking;
Sinus node; Vagus nerve

(Heart Rhythm 2021;-:1–10) © 2020 Heart Rhythm Society. This is
an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
In humans, the resting heart rate exhibits diurnal rhythms
and is higher during the day when we are awake.1 The
heart is therefore primed, anticipating the increase in
demand during the awake period. Conversely, slow heart
rhythms primarily occur at night during the sleep
period.1 The same occurs in the nocturnal rodent, but
in reverse.1
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For w90 years, the day-night difference in heart rate
in vivo in humans has been attributed to the autonomic ner-
vous system2 and primarily high vagal tone during sleep.3

This is in large part based on heart rate variability (HRV)
as a surrogate measure of autonomic tone.3 However, from
biophysical analysis of HRV we have previously demon-
strated an exponential-like relationship between HRV and
heart rate, and changes in HRV observed in humans and an-
imal models are mainly attributable to the accompanying
changes in heart rate.4,5 The involvement of the autonomic
nervous system in the circadian rhythm in heart rate has
also been previously tested in rodents by acute block of sym-
pathetic and parasympathetic input to the heart. In spontane-
ously hypertensive rats, Oosting et al6 demonstrated that the
circadian rhythm of heart rate is unaffected by pharmacolog-
ical block of the autonomic nervous system. Makino et al7 re-
ported that both sympathectomy and pharmacological block
of the parasympathetic nervous system in rats diminishes but
does not abolish the circadian variation in heart rate in rats.
Knockout of the muscarinicM2 receptor or all 3 b-adrenergic
receptors has little or no effect on the circadian rhythm in
heart rate in mice.8,9 Taken together, these data call into ques-
tion the widely accepted notion that autonomic tone is the
sole driver of the circadian variation in heart rate. Here we
tested the hypothesis that an intrinsic day-night rhythm in
the sinus node (SN), the primary pacemaker of the heart, is
an important contributor. We have focused on the pacemaker
channel hyperpolarization activated cyclic nucleotide gated
potassium channel 4 (HCN4) as a “first port of call.”
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Methods
Animal models and associated ethical approval, experimental
methods, and statistical comparisons are described in detail in
Online Supplemental Methods.
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Results
Circadian variation in heart rate is independent of
locomotor activity and persists under autonomic
blockade
Electrocardiographic (ECG) telemetry in mice showed an
in vivo day-night difference in mean heart rate and other elec-
trophysiological variables including the PR interval and QRS
duration; in Figure 1A, the mean heart rate and other vari-
ables are plotted against the zeitgeber time (ZT), in which
ZT 0 is taken as the start of the lights-on period. Changes
in the heart rate set by the SN were explored: the heart rate
was highest at ZT w13, and it varied by 76 6 4 beats/min
over the course of 24 hours (Figure 1A; Online
Supplemental Table 1). The day-night differences during
the 12-hour light/12-hour dark lighting regime (shown by
alternating light and dark shading in Figure 1A) were sus-
tained when mice were placed in constant darkness (shown
by continuous dark shading in Figure 1A).

Mice are nocturnal, and as expected, lower physical (loco-
motor) activity was recorded from ZT 0 (lights on) to ZT 12
(lights off) than from ZT 12 to ZT 0; this activity pattern
FLA 5.6.0 DTD � HRTHM8602_proo
continued in constant darkness (Figure 1A, bottom panel).
Physical activity, if sufficiently intense and prolonged, is ex-
pected to influence the heart rate via the autonomic nervous
system. Various methods were used to test whether the
day-night difference in heart rate is an indirect result of the
difference in physical activity (via the autonomic nervous
system) or is an independent time-of-day effect. During 72
hours of continuous recording in a normal light-dark cycle
(Figure 1A), the heart rate and physical activity were aver-
aged for each 5-minute period for each animal. For ZT
0–ZT 12 (day) and ZT 12–ZT 0 (night), individual activity
data were then binned into no activity (0 arbitrary units
[au]) and high activity (20–30 au) groups and the correspond-
ing heart rate was recorded. A mixed effects linear model
showed that heart rate was significantly higher both at night
(P5 .007) and when mice were active (P, .0001). Howev-
er, the interaction between time and activity was not signifi-
cant (P5 .27), which means that in this data set the heart rate
difference between night and day does not depend on the ac-
tivity level. Comparisons were conducted between day and
night at each of the activity levels by using a 2-sided 5%
test and applying a Sidak multiple comparison adjustment,
and this revealed a significant difference (P 5 .03) in heart
rate at night vs day in the no activity group. Further details
of these statistical tests are available in Online
Supplemental Results.

Exposing nocturnal animals to light during their active
phase suppresses their locomotor activity, a phenomenon
referred to as negative masking.10,11 Light pulses were used
to separate the effects of time-of-day and physical activity.
Figure 1B shows the heart rate and activity level in conscious
mice measured using telemetry before, during, and after the
light pulses (from Figure 1A, which shows the context of
the selected data). In constant darkness, a 1-hour light pulse
from ZT 1 to ZT 2 was associated with a baseline level of
physical activity and the heart rate was relatively low
(Figure 1B). In contrast, a light pulse from ZT 13 to ZT 14
caused physical activity of mice to fall to baseline values
whereas the heart rate remained relatively high (Figure 1B).
Online Supplemental Figure 1 demonstrates no discernible
relationship between heart rate and physical activity level
before, during, and after the light pulses or over 24 hours.
Therefore, in this experiment, the average heart rate of the
9 mice was primarily influenced by the time of day rather
than the average physical activity level. In vivo, the heart
rate in the absence of physical activity was obtained by
ECG recordings in anesthetized mice at ZT 0 and ZT 12;
the heart rate was highest at wZT 12 and increased by 54
6 14 beats/min from ZT 0 (Figure 1C; Online
Supplemental Table 1). It is concluded that in this study the
effect of activity on the circadian rhythm in heart rate is not
discernible.

Involvement of the autonomic nervous system in medi-
ating the day-night variation in heart rate was tested by block-
ing cardiac muscarinic and b receptors Q(using 1 mg/kg of
atropine and 1 mg/kg of propranolol; see Online
Supplemental Discussion for justification of doses) in
f � 4 January 2021 � 6:42 pm � ce
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Figure 1 The day-night difference in average heart rate is independent of average physical activity and autonomic tone. A: Heart rate, PR interval, QRS dura-
tion, uncorrected QJ interval, and physical activity (measured using telemetry) in conscious mice (n5 9) overw6 days. Light and dark shaded regions represent
light and dark phases in this and all similar figures. Timing of 1-hour light pulses is shown. In this and all similar figures, data are fit with a standard sine wave
(red). Values are presented as mean6 SEM in this and all other figures (except in the case of physical activity, for which mean6 SD values are presented Q19). B:
In vivo heart rate and physical activity measured by telemetry at the times shown during 24-hour darkness (subjective day and night is shown) with the exception
of a 1-hour light pulse delivered toward the start of the day (left) or night (right Q20). The dotted red lines highlight the heart rate and physical activity at the end of the
day-time light pulse, and the red arrows highlight the heart rate at the end of the nighttime light pulse. From the same experiment as in panel A. C: In vivo heart
rate measured from anesthetized mice at ZT 0 and ZT 12 (n 5 9/9 mice) before (control) and after autonomic block by intraperitoneal injection of 1 mg/kg of
atropine and 1 mg/kg of propranolol. D: Spontaneous beating rate of the SN isolated at ZT 0 and ZT 12 (n5 8/6 mice Q21). E: In vivo heart rate at ZT 0 and ZT 12
measured by telemetry in vagotomized rats (n 5 7) at baseline (presurgery) and at 1, 3, and 7 days postsurgery. F: In vivo heart rate over 24 hours measured in
telemetrized wild-type control andGirk42/2mice (n5 21/23mice). *P, .05. HCN45 hyperpolarization activated cyclic nucleotide gated potassium channel 4;
NS, not significant Q22; SN 5 sinus node; ZT 5 zeitgeber time.
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anesthetized mice. The day-night difference in heart rate per-
sisted after complete pharmacological autonomic block,
although it was reduced in amplitude (Figure 1C; Online
FLA 5.6.0 DTD � HRTHM8602_proo
Supplemental Table 1). This intrinsic day-night difference
in SN pacemaking was further confirmed in the isolated,
denervated SN dissected at ZT 0 and ZT 12 (Figure 1D).
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The spontaneous SN beating rate remained higher at ZT 12
than ZT 0—by 55 6 9 beats/min (Figure 1D; Online
Supplemental Table 1). Next, the role of the vagus in setting
the diurnal variation in heart rate in vivo was studied by 2
loss-of-function approaches: the SN is predominantly inner-
vated by the right vagus12 and its contribution to heart rate
rhythmicity was assessed by unilateral right vagotomy in tel-
emetrized rats. Figure 1E demonstrates that the day-night dif-
ference in heart rate persisted on sectioning the right vagus.
The influence of vagal signaling (downstream of the musca-
rinic receptor) on the day-night rhythm was then investigated
in Girk42/2 mice with genetic ablation of the acetylcholine-
activated K1 current (IK,ACh). Girk42/2 mice exhibited
slightly increased basal heart rates in comparison to wild-
type counterparts, which is a typical hallmark of this genetic
strain.13 However, although IK,ACh is acknowledged to be a
key mediator of the negative chronotropic effect of vagal
stimulation on heart rate, loss of IK,ACh did not perturb the
circadian variation in heart rate in Girk42/2 mice vs control
animals (Figure 1F; Online Supplemental Table 1).

Taken together, these findings demonstrate that the auto-
nomic nervous system is not solely responsible for the day-
night difference in heart rate in vivo. Intrinsic mechanisms
underlying day-night rhythms were thus considered.
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Day-night difference in HCN4 channel expression
Pacemaking is the result of the concerted action of ion chan-
nels and Ca21-handling proteins comprising the membrane
and Ca21 clocks and messenger RNA (mRNA) for many
of these molecules (and key regulatory transcription factors)
was measured in the SN by quantitative polymerase chain re-
action. Some transcripts, for example, the pacemaker channel
Hcn4 (that carries the pacemaker current If), demonstrated a
significant day-night difference (Figure 2A; Online
Supplemental Table 2). With the exception of Ca21/calmod-
ulin-dependent protein kinase IId (Camk2d), a day-night
rhythm was not detected in any of the principal components
of the Ca21 clock (Figure 2A; Online Supplemental Table 2).

We focused on Hcn4, because of its central role in pace-
making in the SN.14 Hcn4 mRNA was measured at 4 time
points. JTK Cycle, a statistical software tool for analyzing
circadian rhythms,15 shows that Hcn4 mRNA displays a
robust circadian rhythm and is at a maximum at wZT 20
(JTK Cycle; P 5 .008) (Figure 2B; Online Supplemental
Table 3). To test whether this finding is associated with rhyth-
micHcn4 promoter activity, the 780-bp core promoter region
of human Hcn416 was subcloned into a luciferase reporter
construct (hHcn4-Luc). Transient transfection of this
construct into C2C12 cells was followed by forskolin treat-
ment to synchronize circadian clocks across cultured cells.17

As given in Figure 2C, real-time bioluminescence recording
(a measure of Hcn4 promoter activation) revealed a discern-
ible circadian rhythm of hHcn4-Luc (JTK Cycle; P51.21!
10214). Interestingly, the phase of hHcn4-Luc in synchro-
nized cultured cells was comparable to HCN4mRNA expres-
FLA 5.6.0 DTD � HRTHM8602_proo
sion in the mouse SN (Figure 2B), peaking at circadian time
w19.5 (circadian time 0 is the time of forskolin treatment).

Expression of HCN4 protein in the SN at ZT 0, ZT 6, and
ZT 12 was measured using Western blotting. A representa-
tive blot is shown in Figure 2D. HCN4 protein expression
was normalized to total protein expression and is plotted
against time in Figure 3C; there was a significant change at
ZT 6 vs ZT 12. Online Supplemental Figure 2 shows exam-
ples of immunolabeling of HCN4 in tissue sections through
the SN from wild-type mice culled at ZT 0 and ZT 12; the la-
beling was brighter, indicating higher expression, at ZT 12.
This is confirmed by the mean data in Online Supplemental
Figure 2. It is concluded that there is a circadian rhythm in
HCN4 protein as well as the Hcn4 transcript.
Role of HCN4 remodeling in the day-night
difference in pacemaking
HCN4 is the primary channel underlying the funny current If,
and patch clamp experiments on isolated mouse SN cells
were carried out to test whether there is a circadian rhythm
in If. Figure 3A shows representative families of recordings
of If from SN cells isolated from mice at ZT 0, ZT 6, and
ZT 12. The density of If was reduced at ZT 6 compared
with the earlier and later time points. Mean current density-
voltage relationships Qfrom n 5 38, n 5 31 of 38, and n 5
24 of 27 cells (at ZT 0, ZT 6, and ZT 12) are shown in
Figure 3B; current density at ZT 6 was significantly reduced
relative to that at ZT 12 at potentials �290 mV and ZT 0 at
�2105 mV. Current density at 2120 mV is plotted against
time in Figure 3D. Current density is calculated from current
amplitude and cell capacitance, and these measurements are
plotted in Figures 3E and 3F. Cell capacitance did not vary
with time, but current amplitude did, explaining the circadian
rhythm in the density of If (Figures 3D–3F).

To test whether rhythms in HCN4 and If contribute to the
day-night difference in heart rate, HCN4 was blocked in vivo
and in the isolated SN (the efficacy and selectivity of blockers
used are considered in Online Supplemental Discussion).
Telemetrized mice received an intraperitoneal injection of 6
mg/kg of ivabradine to block HCN4 and thus If.

18 Block of
If decreased the heart rate as expected (Figures 4A and 4B),
and the effect of ivabradine on heart rate was greater at ZT
12 than at ZT 0 (Figures 4A and 4B). Furthermore, as shown
by ECG recordings in Figure 4A and the summary data in
Figure 4B, the presence of ivabradine abolished the day-
night rhythm in heart rate in vivo. Analogous results were ob-
tained in vitro by application of 2 mM Cs1 to the isolated
SN.19 Once again, block of If by 2 mM Cs1 decreased
beating rate as expected, but the Cs1 effect was greater at
ZT 12 than at ZT 0 (Figures 3C and 3D). In the presence
of Cs1, the day-night difference in beating rate was abolished
(Figure 3D). These results suggest that HCN4 and If partici-
pate in the circadian rhythm in the intrinsic heart rate as well
as heart rate in vivo.
f � 4 January 2021 � 6:42 pm � ce
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A peripheral circadian clock in the SN
Circadian clocks are endogenous oscillators that generate
transcriptional rhythms. In the ventricles, there is an intrinsic
circadian clock as well as a circadian rhythm in some ion
channels.1 Quantitative polymerase chain reaction showed
that many canonical circadian clock genes are also present
in the SN and their expression varies in the expected manner
from ZT 0 to ZT 12 (Figure 5A). Two key circadian clock
transcripts—Bmal1 and Clock—were measured in the SN
at 4 time points (BMAL1 and CLOCK form a heterodimer).
Figure 5B shows that they demonstrated a robust daily
rhythm and were at a maximum at wZT 0 (Online
Supplemental Table 1). This suggests that a functional
intrinsic circadian clock is contained in the SN. This was
FLA 5.6.0 DTD � HRTHM8602_proo
subsequently confirmed by measuring the bioluminescence
in the isolated SN of Per1::LUC mice carrying a luciferase
gene reporting the activity of Per1, a key circadian clock
component (Figure 5C). Per1-driven bioluminescence fluc-
tuated in the expected circadian manner, and this periodicity
was lost in Cry12/2Cry22/2 mice lacking a functional
clock20 (Figure 5C).
Role of the SN circadian clock in setting the day-
night difference in Hcn4 and intrinsic heart rate
To investigate a possible link between the local circadian
clock in the SN and the circadian rhythm in the intrinsic heart
rate, experiments were conducted on cardiomyocyte-specific
f � 4 January 2021 � 6:42 pm � ce
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Figure 3 Day-night rhythm in If. A: Families of recordings of If made from SN cells isolated at ZT 0, ZT 6, and ZT 12. B: Current-voltage relationships for If
recorded from SN cells isolated at ZT 0 (n5 38 cells per 4 mice), ZT 6 (n5 38 cells per 3 mice), and ZT 12 (n5 27 cells per 5 mice).C:HCN4 protein expression
from the Western blot at ZT 0 (n 5 10), ZT 6 (n 5 5), and ZT 12 (n 5 10). Data pooled from 2 sets of independent experiments and protein expression are
normalized to those at ZT 0. D: Density of If at 2120 mV at ZT 0 (n 5 38 cells per 4 mice), ZT 6 (n 5 38 cells per 3 mice), and ZT 12 (n 5 27 cells per 5
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Bmal1 knockout mice. Knockout of Bmal1 is known to
disrupt the circadian clock21 and previous studies have iden-
tified SN dysfunction on cardiomyocyte-specific Bmal1 dele-
tion.22 Figure 6A confirms that in these animals, Bmal1 was
effectively knocked out in the SN. Figure 6B shows that this
disrupted the circadian rhythm in the expression of Clock
mRNA—evidence that the SN circadian clock had been dis-
rupted as expected (Online Supplemental Table 4). The
intrinsic heart rate was measured in the isolated SN; Bmal1
knockout mice presented with lower intrinsic heart rates vs
FLA 5.6.0 DTD � HRTHM8602_proo
wild-type mice and the normal day-night variation in intrinsic
heart rate seen in wild-type mice was absent in Bmal1
knockout mice (Figure 6C; wild-type data from Figure 1D).
Furthermore, whereas there was a circadian difference in
the reduction in the intrinsic heart rate on block of If by
Cs1 in wild-type mice (the effect of Cs1 was greater at ZT
12 than at ZT 0), in Bmal1 knockout mice, once again this
pattern was lost (Figure 6D); this suggests that there is a
circadian variation in If, which is lost on disrupting the local
circadian clock. Consistent with these observations, the ZT
f � 4 January 2021 � 6:42 pm � ce
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0 to ZT 12 variation in both Hcn4 transcript and HCN4 pro-
tein (determined by immunolabeling) in wild-type mice was
lost in Bmal1 knockout mice (Figures 6E and 6F; Online
Supplemental Figure 2).

These findings suggest that the SN circadian clock con-
trols intrinsic pacemaker activity via Hcn4 transcriptional
regulation. Mechanisms by which BMAL1 may regulate
Hcn4 were therefore investigated in vitro. The CLOCK::-
BMAL1 heterodimer acts as a transcriptional enhancer by
FLA 5.6.0 DTD � HRTHM8602_proo
binding to E-box binding sites in the promoter, intron, or
exon of a gene.23 RVISTA Qwas used to identify canonical
E-box binding sites on Hcn4. Eight sites on Hcn4 and 20
kb of its 50 flanking region were identified (Figure 6G).
In vitro ChIP Qwas used to test whether BMAL1 specifically
binds to these sites. ChIP enrichment for E-box binding sites
D and G (within introns of the Hcn4 gene) (Figure 6G) were
identified (Figure 6H). These data reveal potential direct in-
teractions between the local SN clock and Hcn4.
f � 4 January 2021 � 6:42 pm � ce
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Figure 5 An intrinsic circadian clock in the SN.A:Relative expression of transcripts encoding key circadian clock components in the SN at ZT 12 vs ZT 0. The
vertical line corresponds to 1, that is, no change. Values,1 correspond to a decrease at ZT 12 and.1 an increase (n5 7/9 mice). B: Expression of Bmal1 and
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Discussion
For the first time, we show that the diurnal rhythm in heart
rate in rodents cannot be fully attributed to oscillations in
autonomic tone and reveal a day-night variation in intrinsic
SN pacemaker activity. We define time-of-day variation in
the expression of key pacemaking ion channels and ascribe
particular physiological relevance to rhythmic Hcn4 and
associated If remodeling in setting the day-night variation
in heart rate. Finally, we link, for the first time, SN pace-
making to an intrinsic circadian clock and propose a new
role for BMAL1 as a transcriptional regulator of Hcn4.

This study has shown that there is a day-night difference in
intrinsic SN pacemaker activity. Day-night differences in
HCN4 mRNA and protein and If (Figures 2 and 3) accompa-
nied the day-night variation in heart rate in vivo and intrinsic
SN beating rate (Figure 1). Block of HCN4 and If by ivabra-
dine in vivo and Cs1 in the isolated SNwasmore pronounced
at ZT 12 and HCN4 block abolished the day-night difference
in heart rate in vivo and ex vivo (Figure 4). Data consistent
with the time-of-day dependence of HCN4 block have been
obtained from patients: in patients with inappropriate sinus
FLA 5.6.0 DTD � HRTHM8602_proo
tachycardia or ischemic heart disease and heart failure, ivab-
radine causes a large decrease in heart rate during the day and
a slight decrease at night.24,25 Nevertheless, If may not be the
only mechanism involved: there was a day-night difference
in Camk2d/CaMKII Qd expression and various K1 channels,
particularly Kcnh2/ERG/Kv11.1 Q(Figure 2A). Further study
is warranted on the relative importance of these alterations
in controlling SN pacemaking. Please refer to Online
Supplemental Discussion for detailed limitations of the
study.

This is the first report of a functioning circadian SN clock
(Figure 5): key clock components were identified and many
showed expected rhythms and phase relationships, for
example, Bmal1 was downregulated, but Cry2, Per1, and
Per2 were upregulated at ZT 12 vs ZT 0 (Figure 5A). This
study provides the first evidence that Hcn4 is under local
clock control, as cardiac Bmal1 knockout suppressed tran-
script abundance and abolished the day-night rhythm in
both message and protein levels (Figures 6E and 6F). Func-
tional BMAL1-binding E-box sites on Hcn4 (Figures 6G
and 6H) were identified, and this is the first clue as to how
f � 4 January 2021 � 6:42 pm � ce
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Akin to the mouse, human Hcn4 also includes 1 E-box
consensus site within 5 kb of the 50 flanking region and 4 sites
within the first intron (Online Supplemental Figure 3). There
is further discussion of the phasing of the circadian clock,
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This study has shown that a local clock–driven day-night dif-
ference in intrinsic SN pacemaking contributes to the day-
night difference in heart rate in vivo. Our findings provide
new mechanistic insight into the fundamental question of
why the heart rate of a mammal is lower when asleep and
may explain the nocturnal occurrence of bradyarrhythmias
in the human.
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