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Abstract

Neutron stars are among the densest objects in the Universe, making them a perfect
laboratory to study nuclear matter under extreme conditions. Pulsars – rapidly rotating
magnetised neutron stars – are one of their possible manifestations, being observed
as an extremely regular periodic emission in the radio spectrum. This radiation
is produced by converting their rotational energy and, because of this, pulsars are
expected to spin down. Some of them, however, have been observed exhibiting sudden
accelerations in their rotation, also known as glitches. Nowadays, pulsar glitches are
interpreted as the manifestation of vortex dynamics in the internal neutron superfluid,
which lags behind the observable charged component in spinning down, occasionally
releasing angular momentum to it and giving rise to a glitch.

In this work, we will present three different observational characteristics of a
glitching pulsar – its largest glitch, its average acceleration due to glitches and its
short-time evolution after a glitch – and we will try to extract information about the
neutron star from each of them. In particular, we will try to set constraints on the
mass of the star, the moment of inertia of its reservoir component and several other
quantities tied to the glitch phenomenon, with the ultimate goal of increasing our
knowledge about the properties of matter at densities above those of terrestrial nuclei.
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Introduction

Since the first speculations about their existence in the Thirties and the first theoretical
studies done until their discovery in the late Sixties, many advances have been made
in the description of neutron stars, one of the possible remnants of an ordinary star,
and more specifically its core after a core-collapse supernova.

With a mass of approximately 1.5M�, packed by gravity in a sphere of radius ≈ 10
km, neutron stars are among the densest objects in the Universe and can easily exceed
the nuclear saturation density, i.e. the density inside heavy atomic nuclei. In fact,
it is not infrequent to come across models which predict central densities ten times
larger than this value and claim the existence of exotic matter, like hyperons, meson
condensates and quark-gluon plasma. As it is not possible to achieve such densities on
Earth, these objects are arguably one of the few ways to study nuclear matter above
the saturation density, making them the perfect playground for nuclear physics. One
of the most important consequences of these extreme densities is the onset of nuclear
superfluidity, which causes many phenomena observable at macroscopic scale, such as
pulsar glitches. Moreover, due to their extreme compactness, neutron stars experience
extreme gravitational forces, so a complete and thorough description should be carried
out in a General Relativistic framework. Their Schwarzschild radius is, in fact, approxi-
mately 0.2−0.4 times their radius, meaning that spacetime is curved around and inside
neutron stars and their physical description is affected by important general relativistic
corrections. Finally, neutron stars present an extremely varied phenomenology. Their
emission spans the entire electromagnetic spectrum, ranging from radio frequencies
to gamma rays, with both continuous and discontinuous emissions, both regular and
sporadic. We can indirectly observe neutrino emission during the first stage of their
lives, by measuring the cooling of their surface temperature over the years (see, e.g.,
the neutron star in the Cassiopeia supernova remnant, Heinke and Ho, 2010; Yakovlev
et al., 2011), and directly detect it during the supernova phase (so far only in SN
1987A). They are also good candidates for emitting continuous gravitational waves,
and it has also been possible to detect gravitational waves from neutron stars in binary
systems. All these three lines of research about neutron stars – the nuclear one, the
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2 Introduction

one related to General Relativity and the observational one – are highly intertwined.
In fact, it is not possible to obtain serious theoretical constraints or observational
predictions on a neutron star phenomenon without keeping into account all these
three aspects. As an example, the observation of a neutron star of about two solar
masses (Demorest et al., 2010; Antoniadis et al., 2013; Fonseca et al., 2016; Linares
et al., 2018; Cromartie et al., 2020) has put a serious constraint on the physics of
nuclear matter over saturation density, and ruled out several models.

One of the possible manifestations of neutron stars are pulsars, which are rapidly
rotating neutron stars emitting a collimated beam of radiation. When this beam is
pointed in the direction of Earth, we observe a pulse in the radio spectrum, much like
a lighthouse. On average, this pulsation is extremely stable, even more stable than
atomic clocks (Milner et al., 2019). These objects slow down, due to a hydromagnetic
torque exerted by the pulsar wind they emit, except for sudden accelerations of their
pulsation frequency. These phenomena are called glitches. The current interpretation
of glitches is related to the presence of a neutron superfluid in the star interior, which
lags behind the observable charged component in spinning down, effectively storing
angular momentum. This angular momentum reservoir is occasionally released, giving
rise to a glitch. It is clear that an accurate modelling of the glitch phenomenon
is necessary in order to explain the observed glitch behaviour. On the other hand,
the latter can be an important test for the input variables of the model. In other
words, it is possible to constrain some of the characteristics of a neutron star with
its glitching behaviour. This is the leitmotif of this thesis: each Chapter presents a
different observational feature of pulsar glitches which can be employed to provide
new information about the internal structure of neutron stars. With this in mind, we
divide this thesis into four Chapters:

Chapter 1 We present here some key features of neutron stars, talking about structure,
Equations of State, phenomenology and the basic modelling of pulsar glitches.

Chapter 2 Glitch modelling can be employed to find the maximum angular momen-
tum reservoir that can be stored in a neutron star between glitches and, as a
consequence, the largest glitch achievable by a pulsar. This value can be easily
compared with the largest observed glitch of a particular object, and some con-
straints can be set on the microphysical inputs of the model and on the mass
of the star. All the modelling have been performed in the general relativistic
framework. This Chapter is based on the work published in Antonelli et al.
(2018).

Chapter 3 Pulsar activity is a well-known and widely used parameter in the field of
pulsar glitches. It summarises the average acceleration of a neutron star’s rotation
due to the presence of glitches. After some considerations about the calculation
of this parameter, we present two different models. The first one (studied in a
general relativistic framework and already well-known in the literature, see Link
et al. 1999) constrains the moment of inertia of the superfluid component, and
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the mass of a star as a consequence. The second one is an extension of the model
presented in the preceding Chapter, and includes the information contained
in both the activity parameter and the largest displayed glitch, providing an
improved – albeit more model-dependent – constraint on the mass of the glitcher.
The distribution of these mass constraints for a set of stars will be compared
with the distribution of the neutron star masses measured in binary systems.
This Chapter is based on a work which is yet to be published (Montoli et al.,
2020a) and a work which has already been published (Montoli et al., 2020c),
while the final Section is based on original work.

Chapter 4 In 2016, a glitch in the Vela pulsar has been measured with unprecedented
precision, allowing for a timing measurement of every pulse during the glitch.
This observation and, more in general, the possibility of observing a glitch in
the act have opened a completely new path for glitch modelling. For the first
time it has been possible to infer the existence of a glitch overshoot, a fast
transient which can occur in the very first instants of a glitch. In this Chapter we
analytically solve a very simple model which can account for the presence of a
glitch overshoot. After that, we present a first estimate of the phenomenological
parameters of the model, made with a least mean squares fit on the 2016 Vela
glitch. Finally, we show a more thorough analysis based on Bayesian inference,
predicting the probability distributions for each parameter of the model. The
work presented in this Chapter has been published in two different papers
(Pizzochero et al., 2020; Montoli et al., 2020b).





CHAPTER 1
Neutron stars overview

In this Chapter we will present some of the most important properties of neutron
stars. After recounting some of the most meaningful events in the history of theoretical
speculation and discovery of neutron stars, we will describe how they take shape,
starting from a main sequence star and ending with the formation of a compact object.
We will then rapidly study the neutron star structure, along with some hypotheses
that have been put forward about their internal composition. This subject will be
better examined in a subsequent Section, where we will talk about the Equation of
State of nuclear matter inside a neutron star, along with some methods which have
been proposed to pinpoint this quantity. After that, we will review the extremely
diverse phenomenology of neutron stars. Finally, we will specifically talk about pulsars,
spending some words about timing anomalies and glitches: we will present some
models for these phenomena, along with some mentions to superfluidity.

For more complete reviews about neutron stars, we refer to the books Shapiro and
Teukolsky (1983), Haensel et al. (2007) and Glendenning (2000) and the reviews
Chamel and Haensel (2008) and Haskell and Sedrakian (2018).

1.1 Brief history of neutron stars

The first idea of the existence of neutron stars was given by Lev Landau well before
their discovery and before the discovery of the neutron. In fact, he calculated the
maximum mass of white dwarfs (independently of Chandrasekhar 1931) and inferred
the existence of stars where atomic nuclei are in so close contact, that the star can be
represented as one gigantic nucleus (Landau, 1932). The neutron was discovered a
year later, by James Chadwick (Chadwick, 1932).

In 1934, Walter Baade and Fritz Zwicky proposed neutron stars as an explanation
for the immense energy release during a supernova explosion, the final instant of a
massive star. They described a neutron star as a cold compact object, composed by
neutrons packed in extremely high densities. This description is not that far from the
currently accepted one.
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6 Chapter 1. Neutron stars overview

Another important step in the understanding of these objects was made in 1939,
when Richard Tolman (Tolman, 1939) and J. Robert Oppenheimer & George Volkoff
(Oppenheimer and Volkoff, 1939) independently developed the equation of hydro-
static equilibrium in the general relativistic framework (nowadays also known as TOV
equation). Similarly to the Newtonian counterpart, it is possible to solve the internal
structure of a neutron star using this equation in addition to another equation, the
Equation of State (EoS), that describes the dependence between the various ther-
modynamic functions, such as pressure and energy density. The calculation of an
appropriate EoS of dense matter for the internal composition of a neutron star starting
from the microphysics has been an important challenge for both before and after the
Second World War. Still today, the calculation of the actual EoS of a neutron star is
topic of discussion.

The first attempts to find neutron stars were made in the 1960s. A neutron star
was expected to have a surface temperature of the order of ∼ 106 − 107 K, which
corresponds to a peak in the X-ray frequencies of a black body spectrum. Since these
wavelengths are absorbed by the terrestrial atmosphere, the first X-ray detectors were
launched on rockets and balloons. The first discovered X-ray source was Sco X-1, in
the Scorpius constellation, by Riccardo Giacconi and his team (Giacconi et al., 1962)
and after that many others have been discovered. However, the first attempts failed to
prove the relation between X-ray sources and neutron stars. Today we know that Sco
X-1 is a binary system containing an accreting neutron star and a main sequence star.

The discovery of neutron stars has been made with different methods and in a
completely different spectral window. Franco Pacini, in a paper published on Nature
(Pacini, 1967), showed that a rapidly rotating neutron star with a strong dipole
magnetic field can convert its rotational energy into electromagnetic radiation and,
subsequently, accelerate particles to high energies. During the same year, Jocelyn
Bell – a graduate student supervised by Anthony Hewish – discovered a weak radio
source, emitting with periodic pulses and extreme regularity (the period was of 1.337 s,
Hewish et al. 1968). Many hypotheses regarding the nature of these objects were
proposed, including the possibility of extraterrestrial life. The winning idea was that of
Gold (1968) in which these pulsating radio sources (pulsars) were rotating magnetised
neutron stars (as predicted by Pacini). In 1968, the discovery of a pulsar in the Crab
Nebula (remnant of the supernova SN 1054, observed by the Chinese in 1054, Comella
et al. 1969), see Figure 1.1, and one in the Vela supernova remnant (whose supernova
light reached Earth about 11000 years ago, Large et al. 1968), see Figure 1.2, was
the first confirmation of the link between supernovae, neutron stars and pulsars. In
particular, Crab pulsar period was so short (P ≈ 33 ms) that it seemed unlikely the
source was a rotating white dwarf.
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Figure 1.1: Composite image of Crab supernova remnant. Blue corresponds to X-ray wave-
lengths (from Chandra X-ray Observatory), red/yellow to visible (Hubble Space Telescope)
and violet to infrared (Spitzer Space Telescope). The Crab pulsar can be spotted as a white
dot near the centre.

Figure 1.2: The Vela pulsar, along its surrounding pulsar wind nebula, as seen by the Chandra
X-ray Observatory.
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1.2 From main sequence to compact objects

In this Section we will review the formation of neutron stars, one of the possible
endings for a star. The contents of this Section are based on Glendenning (2000).

Generally speaking, once the mass of a classical star is known, it is possible to
have an idea of which will be its ultimate fate. The starting point is a main sequence
star, which is a star in whose core groups of four hydrogen nuclei fuse together and
form a helium nucleus. This can happen if there is a core temperature high enough
to activate thermonuclear reactions (i.e. if the thermal energy of one proton is high
enough to have a sizeable probability to overcome another proton’s Coulomb barrier
through tunnel effect). Once all the nuclear fuel in the core has exhausted, the core
cannot be supported anymore and collapses. While collapsing, its temperature raises
and, if the stellar mass is high enough, it can reach the value necessary to activate new
thermonuclear reactions (that is, helium nuclei fusing together to obtain a carbon or
oxygen nucleus). Again, once all the nuclear fuel is used, the core undergoes another
collapse and the temperature rise might cause new nuclear reactions, if the stellar
mass is high enough. For example, the Sun is not massive enough to overcome this
step, and it will eventually die as a white dwarf composed by carbon and oxygen.
The evolution continues in this sequence of quasi-equilibrium phases, with higher
temperatures reached in the stellar core and more elements participating in a more
complex nuclear reaction network. If the star had, during its main sequence, a mass
greater than ' 8M�, it could synthesise the most stable nuclear element: iron. Its
isotope with mass number 56 has the highest nuclear binding energy per nucleon than
any other, thus it is not possible to find any other nuclear fusion or fission reactions
that is exothermic and can sustain the hydrodynamical equilibrium (see Figure 1.3).
Thus all the iron produced deposits on an inert and isothermic core supported by
electron degeneracy pressure, which eventually collapses when the Chandrasekhar
limit of 1.4M� is reached.

During the collapse, the core temperature raises and matter starts to neutronise.
First, photodissociation transforms 56Fe in helium nuclei (α particles) and neutrons:

56Fe+ γ� 13α+ 4n .

Then, at higher temperatures, α particles get photodissociated as well:

α+ γ� 2 p+ 2n .

Electron captures cannot take place under normal conditions, since the rest mass
difference between the neutron and the proton is ≈ 1.3 MeV, well above the electron
rest mass me = 0.5 MeV. Electrons, thus, need to be highly relativistic in order to make
electron capture possible. In the collapsing core, electrons are degenerate, so most of
their energy is not given by the thermal motion, but by Fermi energy. When density
becomes high enough to make electrons ultrarelativistic, electron capture finally takes
place, both by free protons

p+ e−* n+ νe
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Figure 1.3: Nuclear binding energy per nucleon for some of the most common isotopes, as
a function of the mass number. The maximum of the curve is given by the nuclear binding
energy of 56Fe. Starting from this value, any fission (fusion) – i.e. the production of elements
with smaller (larger) mass number – will need energy to take place.

and by nuclei

(Z, A)+ e−* (Z−1, A)+ νe .

The increasing number of neutrons causes a degeneracy pressure which partially
balances gravity, slowing down the core collapse. This is eventually stopped when
baryons are so close to each other that they feel the strong repulsive part of the nuclear
interaction. The collapse is in this way reverted and a shock wave originates from the
surface of the collapsed core, now a protoneutron star. This shock wave is not strong
enough to blast away the infalling material, since it loses energy by dissociating heavy
elements nearby the core, and stalls. In its early life, however, the protoneutron star
produces a huge amount of neutrinos, which escape interacting with the stalled shock
wave and reinvigorating it. In this way a core-collapse supernova occurs. Historically,
supernovae are classified using the hydrogen spectral lines, instead of the occurring
physical phenomenon: so core-collapse supernovae are more known by astronomers as
Type II supernovae (if hydrogen spectral lines are present) or Type Ib or Ic supernovae
(if hydrogen spectral lines are absent).

Finally, if the initial mass of the star is way larger than 8M� (say, 20− 30M�), not
even the neutrinos are able to revive the stalled shock wave, and the formation of a
black hole is more likely. Of course, we also have to consider that a supernova is not
necessarily a spherically symmetric phenomenon: because of this, neutron stars can
acquire a high proper motion. This is one of the hypotheses why the neutron star of
the supernova SN 1987A has not been detected.
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1.3 Structure

A neutron star can be subdivided in four main internal regions: the outer crust, the
inner crust, the outer core and the inner core (see e.g. Haensel et al. 2007 for a general
review, or Chamel and Haensel 2008 for a review focussed on the crust).

The outer crust is solid. It is comprised by ions, which are arranged in a crystalline
body-centred cubic (BCC) lattice, and free electrons. A very thin surface layer contains
a non-degenerate electron gas. Going inside the star, this gas becomes more degenerate,
and reaches ultrarelativistic regimes at densities ρ � 106 g cm−3. To maintain β-
equilibrium at higher densities, namely to have equilibrium in the reaction

n � p+ e− + νe , (1.1)

electron captures by the protons inside nuclear clusters can occur, and ions get more
neutron-rich in deeper layers of the star.

At densities of ρND ≈ 4×1011 g cm−3, also known as neutron drip density, nuclear
clusters start to be unstable and neutrons leak out. This neutron drip line marks the
beginning of the inner crust. In this region neutron-rich nuclei are still arranged in a
crystalline lattice, but this time are immersed in a gas of free neutrons in a superfluid
state. It is expected that not only electrons, but also free neutrons screen the interaction
between nuclear clusters, leading to a more inhomogeneous configuration than that
of a BCC lattice.

The outer core starts at ≈ 1.6×1014 g cm−3 (about a half of the saturation density
ρ0) and extends to ≈ 2ρ0. Nuclei disappear at the crust-core interface, so outer core
is mainly composed of a neutron fluid, with small percentage of protons, electrons
and possibly muons (extended nuclear matter). The nature of the transition between
inner crust and outer core is uncertain: it might be abrupt, but it also might be smooth,
with a series of phase transitions in which nuclei are no longer spherical, but arranged
in more exotic forms (like plates and rods). These arrangements are called “pasta”
phase, and they are caused by the competition between the surface tension of nuclear
clusters and the Coulomb interaction between protons in their inside (see Figure 1.4).
The presence of these layers can have a strong observational impact on phenomena
like glitches and gravitational wave emission (Gearheart et al., 2011).

At densities higher than the saturation density, the ground state of matter is
essentially unknown (see Figure 1.5). Thus, the inner core – which starts at ρ ¦ 2ρ0
– has a composition which is very model-dependent. New particles appear once the
density is high enough to satisfy the corresponding β-equilibrium equation (similar
to that in Equation (1.1)). Several hypotheses have been put forward, which are
hyperonisation of matter (i.e. the appearance of hyperons, such as Σ− and Λ), the
appearance of boson condensates (such as pion or kaon condensates) or a phase
transition to a quark-gluon plasma (a plasma of up, down and strange quarks and
gluons). Depending on which hypothesis is considered, we can define several types of
neutron star:
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Figure 1.4: Cartoon representation of the inner neutron star crust, figure taken from Newton
et al. (2011). Here the “mantle” is also displayed, which is a theoretically speculated region in
the deeper parts of the inner crust, where nuclei are no longer spherical.

Figure 1.5: Sketch of the various theoretical compositions of a neutron (or quark) star. Figure
adapted from Weber et al. (2007).
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• ordinary neutron stars, with a core made of extended nuclear matter.

• hyperon stars, with an inner core made of hyperons and an outer core made of
extended nuclear matter.

• hybrid stars, with an inner core of quark-gluon plasma, a shell of hyperonic
matter and a shell of extended nuclear matter.

A special mention goes to quark stars (Itoh, 1970), which are completely different
from the stars mentioned above: they are entirely – not only the core, but also the
crust – comprised of quark-gluon plasma, except for a thin external shell of ordinary
matter. Moreover, quark stars are bounded by strong force, unlike hadronic stars,
which are kept together by gravity. The mass-radius relation for this kind of stars is
quite particular (see Figure 1.6).

It is not clear whether the real structure of a neutron star corresponds to just one
of the possibilities presented above, or if there may exist at the same time different
types of objects with different internal structures. In the latter direction, some theories
have been put forward, which claim the coexistence of hadronic neutron stars and
hybrid stars, with different radii for the same mass (hence the name “twin stars”,
Glendenning and Kettner 2000) or the coexistence of hadronic and quark stars (the
“two families” scenario, Drago et al. 2014, 2016; Drago and Pagliara 2016).

1.4 Equations of state

As mentioned in the Introduction, neutron stars macroscopic structure cannot be de-
scribed in the framework of Newtonian gravity. Rather, we need the general relativistic
equation for hydrostatic equilibrium, also known as Tolman-Oppenheimer-Volkoff
(TOV) equation:

dP
dr
= −

G(ρ(r) + P(r)/c2)(m(r) + 4πr3P(r)/c2)
r(r − 2Gm(r)/c2)

, (1.2)

where m(r) is the enclosed mass at radius r, P(r) is the pressure profile and ρ(r) is the
mass density profile. It should be stressed that ρ(r) is not the rest mass density, since
we are in a relativistic framework. We can also notice that in the limit of c→ +∞,
the TOV becomes the Newtonian equation for hydrostatic equilibrium.

The TOV equation has to be solved together with an equation for m(r), much
similar to the Newtonian counterpart

dm
dr
= 4πr2ρ(r) , (1.3)

and with boundary conditions

m(r = 0) = 0

ρ(r = 0) = ρc

P(r = R) = 0 ,

(1.4)
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Figure 1.6: Mass–radius relations for several EoSs, taken from Lattimer (2012). Green curves
(SQM1 and SQM3) are the EoSs for quark stars, while black curves are the hadronic EoSs.
Orange curves show the radiation radius R∞, while dark blue, light blue, light green and
dark green regions show, respectively, the prohibited regions excluded by general relativity,
finite pressure, causality and mass-shedding limit for the fastest rotating known pulsar, PSR
J1748-2446ad. See text for further details.

namely we ask the enclosed mass to be zero at r = 0, we set a central mass-energy
density ρc, and we define the radius of the star R as the radius where the pressure
is null. It is easy to see that the total gravitational mass of the star can be defined as
M = m(r = R). As we have only two equations and three variables – m(r), ρ(r) and
P(r) – we need a third equation to solve the system, which is an Equation of State
(EoS). An EoS is a relation between the thermodynamic quantities of a system, where
all the microphysical information about the composition and behaviour of the nuclear
matter is included. Note that in our case nucleons inside a neutron star have a Fermi
energy larger than the energy given by thermal motion. In this sense, a neutron star
is essentially a cold object, even though it has an internal temperature of the order
of 109 K. Thus, our EoS will be a one parameter EoS, in which temperature will not
appear explicitly: in other words, it will be an equation P = P(ρ).

We have to notice that we can build a family of neutron star models parametrised
by central density (also called mass–radius or M–R curves). Some M–R curves for
various EoSs are plotted in Figure 1.6. Not every combination of mass and radius is
permitted. First of all, the star radius should be larger than the Schwarzschild radius,
i.e. we want that (dark blue region in the Figure):

R>
2GM

c2
.
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Secondly, pressure at the centre of the star should be finite. This is not a problem in
the Newtonian case, since there are no finite values of M and ρc which can cause Pc
to be infinity. In the relativistic case, it can be shown that only for values

GM
Rc2

<
4
9

P is assured to be finite (light blue region). Then, another problem is that of causality.
We want speed of sound inside the star to be lower than that of light, that is (light
green region):

c2
s =

dP
dρ

�

�

�

�

S
< c2,

where S is the entropy of the star. Of course, the speed of sound depends on the EoS
of the star, but a constraint like that in Figure 1.6 can be obtained by assuming a
(theoretical) maximally compact EoS (Koranda et al., 1997). Finally, the dark green
prohibited region is a rotational constraint: to be stable, the star does not have to lose
material at the equator due to centrifugal forces caused by rotation. This limit can be
expressed in a simple way in the Newtonian framework by the Kepler angular velocity:

ΩK =

√

√GM
R3

.

This kind of limit will not work in the case of a general relativistic framework, due to
the presence of a dragging of the local inertial frame (see Chapter 2). The value of the
Kepler frequency will be somewhat different and rather complicated, and its derivation
will be not treated here (see Chapter 6 of Glendenning 2000). In Figure 1.6, it is
showed the limit in the case of the fastest rotating observed pulsar, PSR J1748-2446ad.

An important thing to notice is that, for a fixed EoS, the TOV equation gives a
maximum mass for a star described with that EoS: stars more massive than that mass
are unstable. A first calculation for neutron star maximum mass has been made by
Oppenheimer and Volkoff (Oppenheimer and Volkoff, 1939). They used a simple
EoS composed of a strongly degenerate non-interacting and non-relativistic gas of
neutrons. The maximum mass they calculated was ≈ 0.71M�, considerably smaller
than the typical measured value of 1.4M� for the neutron star mass. Thus, neutron
stars must be described with an EoS which includes the strong nuclear forces. Due
to the current uncertainties in the nuclear interaction, however, this is not an easy
task. In principle, one would like to describe the neutron star matter starting from
QCD, but there are no ab-initio QCD calculations available for that. Usually, there
are two approaches for calculating the EoS. One approach is the ab-initio approach:
the idea is that of solving the many-body problem starting from realistic two- and
three-body nucleon interactions. One example for this class of EoS is given by the APR
EoS (Akmal et al., 1998), obtained with the Argonne v18 two-body potential (Wiringa
et al., 1995), along with the Urbana IX three-body interaction (Pudliner et al., 1995).
The other approach is the phenomenological one: here the EoS is based on an effective
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density-dependent nucleon-nucleon interaction, with parameters fitted on nuclear
properties. In this class many popular models are based on the Skyrme interaction
(Skyrme, 1958), like the EoS based on the SLy4 force (Douchin and Haensel, 2001).
Other EoSs calculated with the Skyrme interaction (along with a phenomenological
pairing interaction) are those of the MSk/BSk families. The idea is that of calculating
the binding energy of nuclei by means of the Hartree-Fock+BCS formalism (MSk,
Tondeur et al., 2000) or the Hartree-Fock-Bogolioubov formalism (BSk, Samyn et al.,
2002) and fit the phenomenological parameters of the Skyrme interaction with the
measured masses of nuclei of the Audi-Wapstra compilation (Audi and Wapstra, 1995).
Throughout the years, many new ingredients have been added to the model, yielding
the BSk20 and BSk21 forces we will use in the next Chapters (Goriely et al., 2010).
Recently, a newer version of these interactions has been published, also based on
newer laboratory measurements of nuclear masses (BSk22, BSk24, BSk25 and BSk26,
Pearson et al., 2018). These models, however, are non-relativistic: one model which
include relativistic effects is the relativistic mean field model (Serot and Walecka,
1986), of which the DDME2 EoS we will employ later is an example (Lalazissis et al.,
2005).

If we observe a star with a mass greater than the maximum mass of a given
EoS, we are sure that EoS cannot describe the internal structure of that star. This
is a peculiar trait of this field of research: a single observation can put constraints
on the microphysics of neutron stars. The current constraint given by observations
shows that the maximum mass given by an EoS should be of at least two solar masses
(Demorest et al., 2010; Antoniadis et al., 2013; Fonseca et al., 2016), but slightly
more massive stars have been recently detected (2.27+0.17

−0.15 M�, see Linares et al. 2018,
and 2.14+0.10

−0.09 M�, see Cromartie et al. 2020), which would suggest an even tighter
constraint. Beside the type of modelling behind it, an EoS can be roughly classified
with respect to its stiffness. A softer EoS is more compressible, giving a smaller radius,
a denser core and, thus, a smaller maximum mass. Conversely, a stiffer EoS is less
compressible, less compact (i.e., with smaller general relativistic corrections), and less
dense in the centre. Thus, an EoS cannot be too soft, otherwise it would not be able to
explain the observed masses of some stars. As we mentioned in the previous Section,
the inner core composition is currently unknown: it could be made of nucleons, but
also some more exotic phases may be present, like hyperons, pion or kaon condensates,
or deconfined quark matter. Laboratory data on the interactions between these species
are very scarce with respect to those regarding the nucleon interactions, so we cannot
put tight constraints on the EoS parameters. The addition of new species, however,
without a repulsive interaction (and the replacement of neutrons with a large Fermi
energy with new species with lower Fermi energy) can lower the pressure in the star’s
core, leading to a softer EoS (see, e.g., Baldo et al., 2000; Vidaña et al., 2000). Thus,
for instance, the addition of hyperons in a EoS model reduces its maximum mass. This
is the so-called hyperon puzzle: it is not easy to include hyperons in a model and yet
satisfy the 2M� constraint (Bombaci, 2017).

The equation of state can be constrained by both measurements in the nuclear and
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astrophysical regimes. Nuclear constraints are obtained from many different types
of measurements of the characteristic of terrestrial nuclei. We will not review these
constraints here (see, e.g., Fortin et al., 2016, for a review of the current constraints
given by nuclear measurements and an analysis on different EoSs). Astrophysical
constraints can be obtained by measuring masses, radii and several other macroscopic
quantities, like moment of inertia and tidal deformability. Beside the already cited
methods of constraining the EoS with the maximum mass of a star, other constraints
can be obtained by simultaneously measuring the mass and the radius of a star. As
in the case of non-degenerate stars, masses can be measured only in binary systems,
applying the third Kepler’s law (Özel and Freire, 2016). We can divide binary systems
in two classes: X-ray binaries and radio pulsar binaries (see also Section 1.5). X-ray
binaries are binary systems containing a neutron star (observed only in X wavelengths
and not in radio) and a companion star. The X-ray emission is due to accretion from
the companion star, usually a classical star. On the contrary, a radio pulsar binary is
a binary with at least a radio pulsar. In the first case, we can measure orbital sizes
and periods by measuring Doppler shifting and orbital variability of the emission from
at least one of the two star. Some uncertainties are given by the unknown angle
of inclination of the orbital plane to the line of sight. However, we can set some
geometrical constraints evaluating eclipse duration and/or variation on the optical
light curve. A similar procedure can be applied in the case of a radio binary pulsar,
using pulsar timing instead of surface X-ray emission. In the case of a radio pulsar
binary composed by two compact objects (neutron star-white dwarf or neutron star-
neutron star), several effects due to General Relativity have to be taken into account
for measuring masses (Özel and Freire, 2016), such as orbital period decay due to
gravitational waves emission (see e.g. the Hulse-Taylor binary pulsar, PSR 1913+16)
or Shapiro time delay, a delay in the pulsar timing due to the passage of the radiation
close to a strong gravitational field (i.e. that of the compact companion).

If a neutron star is isolated, we cannot measure its mass, but we can give an estimate
on its radius. One method is that of evaluating the radiation radius. Assuming that a
neutron star emits like a black body, we can measure the star’s colour temperature
by fitting its spectrum with a black body spectrum. In this way, measuring the total
luminosity of the star and keeping in mind the corrections due to gravitational redshift,
we can evaluate an upper limit to the actual radius, also known as radiation or apparent
radius:

R∞ =
R

p

1− 2GM/Rc2
.

However, a significant complication stems from the fact that the emission is modulated
by the star’s atmosphere and magnetic field, which causes a non-thermal component. In
other words, a neutron star is not a perfect black body (some atmospheric modifications
of the black body spectrum are presented, e.g., in Zavlin et al., 1996). Combined
mass-radius measurements on a single object can put interesting constraints on the
EoS: of course, this is not simple with standard methods, as masses can be measured
only for stars in binary systems, while radii are generally measured for isolated neutron
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stars. To deal with this issue, the NICER experiment has been recently deployed on the
International Space Station and it is operating since July 2017. One of its aims is that
of constraining the mass-radius relation with a precision of ≈ 5% for a few neutron
stars, by observing the rotating hot spot from non-accreting millisecond pulsars. Very
recently, two different estimates of the mass and radius of PSR J0030+0451 have been
proposed (Riley et al., 2019; Miller et al., 2019). Other kind of constraints on the
nuclear EoS can be obtained from neutron star cooling, which allows for determining
the presence of superfluidity (Shternin et al., 2011). One of the most studied objects
for cooling is the neutron star in the Cassiopeia A supernova remnant (Heinke and
Ho, 2010; Shternin et al., 2011, see Figure 1.8). Finally, the recent observation of
gravitational waves in binary neutron stars (GW170817, see Abbott et al., 2017),
which allows for a constraint on the tidal deformability of a star and on the maximum
mass of the star (Most et al., 2018). From all these constraints, it is possible to invert
the mass-radius relation and obtain information about the EoS, with methods ranging
from Bayesian analysis to neural network employment (Sieniawska et al., 2018; Fasano
et al., 2019; Traversi et al., 2020; Morawski and Bejger, 2020).

1.5 Neutron star phenomenology

From the observational point of view, neutron stars show a wide variety of behaviours,
which are typical of the particular class of stars we are considering. Usually, they
are classified according to their primary energy source for the emission of radiation
(Harding, 2013), that are the rotational, the magnetic, the thermal and the accretion
energy.

Rotation-powered pulsars (RPP) are those neutron stars which spin down due to
the torques from magnetic dipole radiation and particle emission. To date, more than
2800 pulsars are known, and are reported on the ATNF Pulsar Catalog1 (Manchester
et al., 2005). Their spin down is usually steady, except for some unexpected spin-ups,
also called glitches, which will be discussed in more detail later. The basic modelisation
of a RPP is that of a rotating dipole in the vacuum, inclined by an angle α with respect
to the rotation axis (the so-called lighthouse model). The total energy emitted by a
pulsar is given by the Larmor formula:

Ė = −
2|µ̈|2

3c3
, (1.5)

where µ is the magnetic dipole vector. In the case of a star with radius R, rotating
with an angular velocity Ω and with a polar magnetic field Bp, µ can be written as:

µ=
BpR3

2

�

ê‖ cosα+ ê⊥1 sinα sinΩt + ê⊥2 sinα cosΩt
�

, (1.6)

1https://www.atnf.csiro.au/research/pulsar/psrcat

https://www.atnf.csiro.au/research/pulsar/psrcat
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where ê‖ is the versor parallel to the rotation axis and ê⊥1,2 are the ones perpendicular
to it. Thus, the power emitted by the pulsar depends in a simple way on a few
quantities:

Ė∝ (Bp sinα)2R6Ω4. (1.7)

This model, however, is not physically correct: a real pulsar does not lie in the vacuum,
but it is immersed in a magnetosphere of charged particles teared off from its surface
by the electric fields induced by rotation of the intense magnetic fields. These particles
are then accelerated and emit the coherent and pulsated radiation we observe from
Earth. The simplest model that includes magnetosphere is that of Goldreich and Julian
(1969), in which the magnetic dipole is aligned with the rotation axis. Also this model
foresees a power emission with the same dependence of that of the lighthouse model
in Equation (1.7).

This emission of radiation causes the system to lose energy. If we assume the
energy to be supplied by the rotational energy of the pulsar E = IΩ2/2, where I is
the moment of inertia of the star, we have a variation of the energy on time given by
Ė = IΩΩ̇. This hypothesis of rotation-powered pulsar yields a slowdown of the star,
given by:

Ω̇∝
(Bp sinα)2R6Ω3

I
. (1.8)

This relation, however, does not take into account the possibility of gravitational waves
emission. We can define a braking index n, defined by the relation:

Ω̇∝−Ωn. (1.9)

Thus, for the emission of a magnetic dipole, n= 3, while for gravitational radiation
emission it can be demonstrated that n = 5 (Shapiro and Teukolsky, 1983). From
these simple considerations we can give an estimate of the pulsar age. Starting from
the relation (1.9), if we measure the quantities Ω and Ω̇ now (quantities that we will
indicate with an “o” subscript), we can write:

Ω̇= −
Ωn−1

TΩn−1
o

,

where T represent a characteristic time given by Ωo/Ω̇o. By integrating this equation
from a time t = 0 (and Ω= Ωi) to the current time t = τ (and Ω= Ωo), we obtain:

τ=
T

n− 1

�

1−
�

Ωo

Ωi

�n−1
�

.

If we assume that the angular velocity when the star was born is much greater than
the current one (i.e. Ωo� Ωi), the pulsar age assumes a much simpler form:

τ≈
T

n− 1
=

1
n− 1

Ωo

Ω̇o
. (1.10)
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Figure 1.7: P − Ṗ diagram, taken from Tauris et al. (2015). Lines of constant magnetic field
and lines of constant age are depicted.

Pulsars are generally classified by period and period derivative on a P − Ṗ diagram,
which is the analogue of the Hertzsprung- Russel diagram for classical stars (Figure 1.7).
Starting from this diagram it is possible to infer some interesting characteristics of
pulsars, such as their age, or their magnetic field, by employing the relations in (1.10)
and (1.8) as functions of period and period derivative.

The pulsar population can further be divided in two subclasses: the normal pulsars,
which have characteristic age τ < 100 Myr, and the millisecond pulsars (MSPs), with
τ¦ 100 Myr and very short periods, of the order of ∼ 1 ms. MSPs are not thought to
be born with these extreme periods, but instead to be born as normal RPPs and to have
acquired angular momentum through accretion (Alpar et al., 1982). This hypothesis
is supported by the fact that almost 80% of MSPs are in binary systems, and that they
have a weaker magnetic field when compared to that of standard RPPs – as it can be
inferred from the P − Ṗ diagram – probably reduced or submerged during accretion.
The spin evolution of MSPs is extremely steady. In fact, MSPs have been seen glitching
only twice (Cognard and Backer, 2004; McKee et al., 2016). This feature makes them
particularly useful for gravitational wave detection: by monitoring small fluctuations
in the period of a set of MSPs (also known as pulsar timing array), it is possible to infer
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the passage through Earth of a gravitational wave, by estimating the correlation of
these fluctuations (Hobbs et al., 2010a). More recently, thanks to the LAT experiment
on the Fermi Gamma-Ray Space Telescope, new discoveries have been made on a
particular class of MSPs, the eclipsing binary MSPs, or spider pulsars (Linares, 2019).
These objects are MSPs with a very low-mass companion, typically less than 0.1M�
for the black widow pulsar, and 0.1− 0.4M� for the redback pulsars, (Roberts, 2013).
They generally have very high mass, higher than that of standard RPPs. In fact, one of
the most massive neutron star ever discovered, PSR J2215+5135, is a redback pulsar,
with M = 2.27+0.17

−0.15 M� (Linares et al., 2018). These objects are thus particularly
important for the study of the maximum mass of a neutron star, which can pose serious
limits on their internal structure and on the description of high-density matter.

A final class of RPP – discovered only recently (McLaughlin et al., 2006) – is that of
the Rotating Radio Transients (RRATs, see Keane and McLaughlin, 2011, for a review).
From the timing point of view, they present a transient behaviour, with both long
periods of no radio emission and periods of regular pulsation highly modulated. It is
not clear how these objects can be explained.

Neutron stars which use the magnetic energy as primary source for the emission are
called magnetars. From the observational point of view, magnetars present themselves
in two different ways (Mereghetti et al., 2015): with transients in the γ spectrum
(Soft Gamma Repeaters, SGRs) or with a regular emission in the soft X-ray range
(Anomalous X-Ray Pulsars, AXPs). Only later these two type of objects have been
interpreted as the same class, i.e. neutron stars with a very strong magnetic field
(Thompson and Duncan, 1995, 1996). Magnetars usually present a longer period than
that of a RPP, and a larger spin down rate. Many theories have been proposed for the
formation of these intense magnetic field. One possibility is that the magnetic field of
a magnetar is the same of its progenitor star, amplified by magnetic flux conservation.
This hypothesis, however, is unlikely, since too few progenitor stars with strong enough
magnetic fields have been observed in order to account for the magnetar birth rate
inferred. Another possibility is that this fossil field is amplified in the protoneutron
star phase by dynamo action driven by convection or differential rotation (Duncan
and Thompson, 1992; Thompson and Duncan, 1993). Also this possibility has some
issues, since the core-envelope coupling in the protoneutron star phase brakes the star
too efficiently to explain the observed spin distribution (actually, this problem also
affects the fossil field scenario). An up-to-date catalogue of observed magnetars can
be found on the McGill Online Magnetar Catalog2 (Olausen and Kaspi, 2014).

Accreting neutron stars are generally divided into two categories. Those neutron
stars with a companion which transfers its matter by filling its Roche Lobe (it can be
either a low-mass main sequence star, a white dwarf or a red giant), are said to be in a
Low-mass X-ray Binary (LMXB). In these systems, the matter is transferred through an
accretion disk. Due to this reason, also angular momentum is transferred to the more
compact object. This is why LMXBs are generally thought to be the systems where

2http://www.physics.mcgill.ca/~pulsar/magnetar/main.html

http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
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Figure 1.8: Composite image of the Cassiopeia A supernova remnant. Blue/green corresponds
to the X-ray frequencies (from the Chandra X-ray Observatory), gold to visible (Hubble Space
Telescope) and red is the infrared data (Spitzer Space Telescope). The blue dot just off-centre
is the neutron star.

millisecond pulsars are born. Note that a LMXB can be also comprised by a black hole
and a companion accreting on it. On the other hand, if the companion star is more
massive (for example, a O or B main sequence star), the system is called High-mass
X-ray Binary (HMXB). In this system, matter is accreted on the compact object through
the wind of the companion star.

Finally, the class of thermally emitting neutron stars presents different very different
behaviours. One subclass is that of the Central Compact Objects (CCOs). These are
X-ray thermal sources near the centre of supernova remnants – hence very young
neutron stars – which do not seem to have any emission in other frequencies. One
notable example is the CCO in the Cassiopeia A supernova remnant (see Figure 1.8).
Due to their purely thermal emission, CCOs are generally employed as benchmark
for neutron star cooling theories. Some of these objects (like J1852+0040 in Kes79,
Halpern and Gotthelf 2010, or J0822.0–4300 in Puppis A, Gotthelf and Halpern 2009)
have shown pulsations, and the measured P and Ṗ infer a very young age (103−104 yr)
and unusually low magnetic fields (hence dubbed anti-magnetar). Another subclass
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of thermally emitting neutron stars is that of the Isolated Neutron Stars (INS). They
present many similarities to the CCOs, with the differences that they are not associated
to any supernova remnant, and that they have a very low pulsating frequency. Only
seven objects of this class are known (also called the Magnificent Seven). It is not
clear how these stars are connected to the rest of the RPP population. They could be
either normal RPPs with the radio beam which does not cross our viewing angle, or
dead radio pulsars.

1.6 Pulsar timing and pulsar glitches

Radio pulsars spin with an extremely rapid rotation and with an extremely stable
period, outperforming the best atomic clocks (Milner et al., 2019). Their spin frequency
can be measured by means of pulsar timing, i.e. the regular monitoring of a neutron
star’s rotation by recording the time of arrival (TOA) of a pulse, which can be obtained
by folding a few minute-time observations. Since the rotational period of a pulsar is
nearly constant, the spin-down model can be obtained by fitting these pulses – after
systematic effects like Earth motion or the pulsar proper motion are taken into account
– with a Taylor expansion of the pulsation frequency ν around a reference time t0:

νsd(t) = ν0 + ν̇0(t − t0) +
1
2
ν̈0(t − t0)

2 . (1.11)

Usually, this equation provides a good fit to data and higher terms of the expansion
in ν are not needed. Any slow and stochastic deviation from this formula is called
timing noise (see, e.g., Hobbs et al., 2010b), whose cause is still not well understood.
It can be linked to various effects like a precession of the neutron star, turbulence in
the internal superfluid (Melatos and Link, 2014) or changes in the magnetic fields
(Kramer et al., 2006; Lyne et al., 2010). This phenomenon will not be treated here.

On the other hand, abrupt changes in the pulsar frequency and frequency time
derivative are glitches (see Figure 1.9). Pulsar glitches are a sudden spin up of a
rotating neutron star, followed by a period of slow recovery after which the values
evolve back to the pre-glitch ones. We used the term “sudden”, as at the present time
the rise timescale of a glitch cannot be resolved, but only upper limits can be put (see
Dodson et al. 2002; Ashton et al. 2019b; Montoli et al. 2020b, but also Chapter 4).
Timing anomalies can be studied as residuals with respect to the spin down model in
Equation (1.11):

ϕ(t) = 2π

∫ t

t0

(ν(t)− νsd(t))dt , (1.12)

where ν(t) is the true pulse frequency (thus, including all the deviations from (1.11)).
ϕ(t) are the phase residuals, and indicate the advance (if it is positive) or the delay (if
it is negative) of a pulsar with respect to the spin down model in units of radians. Of
course, if there are no deviations from the spin down model in (1.11), ν(t) = νsd(t),
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Figure 1.9: Four glitches of the Crab pulsar (PSR B0531+21 or PSR J0534+2200) measured
by Espinoza et al. (2011). Every plot shows the frequency residuals and frequency time
derivative against time. The zero on the abscissa corresponds to the glitch epoch, which is
indicated in Modified Julian Day (MJD) below the pulsar name.

and ϕ(t) = 0 for all t. We can also study the residuals by rescaling them by the star’s
angular velocity

r(t) = −
ϕ(t)
Ω0

, (1.13)

where Ω0 = 2πν(t = t0) is the angular velocity of the star (assumed as constant) at
the reference time. This function indicates in seconds how early (if it is negative)
or late (if it is positive) with respect to the spin down (1.11) a new pulse from the
neutron star is detected. If a pulsar glitch is detected, this function is monotonically
decreasing (see Figure 1.10).

The first glitch was detected in 1969, just a couple of years after the discovery of
pulsars, in the Vela pulsar (Radhakrishnan and Manchester, 1969; Reichley and Downs,
1969). Nowadays, more than 550 glitches have been observed in 190 pulsars3 (see
Figure 1.11). This value corresponds to about 7% of the pulsar population. Most of the
stars have glitched only once, but there are some objects – like Vela (PSR B0833-45,
or PSR J0835-4510), Crab (PSR B0531+21, or PSR J0534+2200) or PSR J0537-6910
(the most prolific glitcher, with 45 glitches, Antonopoulou et al. 2018) – which have
been seen glitching more than 10 times. It seems to be a correlation between glitching
activity (which can be summarised by the activity parameter, see Chapter 3) and pulsar
age. Middle-aged pulsars (i.e. with age ≈ 104 yr) glitch the most, while activity is
smaller for very young or for older pulsars (Shemar and Lyne, 1996). All glitches
have been observed in isolated stars, with one notable exception of a small glitch in
an accreting pulsar (Serim et al., 2017). Glitch sizes are generally evaluated with
respect to the pulsar frequency and span several orders of magnitude, ranging from
∆ν/ν≈ 10−12 to ∆ν/ν≈ 10−5 (see, e.g., Espinoza et al., 2011).

3See http://www.jb.man.ac.uk/pulsar/glitches.html for an up-do-date catalogue of pul-
sar glitches (Espinoza et al., 2011)

http://www.jb.man.ac.uk/pulsar/glitches.html
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Figure 1.10: Timing residuals of the 2000 Vela glitch, figure taken from Dodson et al. (2002).

After the unresolved rise (which can be still be modelled, see Chapter 4), a slow
relaxation towards the pre-glitch spin-down takes place (see, e.g., the lower row of
plots in Figure 1.9). Setting the reference time as the time of glitch, this can be fitted
with a function

ν(t) = νsd(t) +∆νp +∆ν̇p t +
N
∑

i=1

∆νie
−t/τi , (1.14)

where∆νp and∆ν̇p are the permanent step in the frequency and frequency derivative
and∆νi are the amplitudes of the decaying parts of the glitch, with timescales τi . The
time variable is set so that t = 0 corresponds to the instant in which the neutron star
glitches, and ∆νp +

∑

i∆νi represents the total size in frequency of the glitch. The
relaxation parameters in the above equation vary from glitch to glitch, even for the
same pulsar. However, it was this slow relaxation what suggested the presence (and
involvement) of a superfluid inside the pulsar (see below).

In the next Sections, we will rapidly go through some models for pulsar glitches,
as an introduction for the next Chapters. An up-to-date and more complete review on
pulsar glitch models can be found in Haskell and Melatos (2015).

1.6.1 First models

As we have already said, a pulsar glitch is a sudden increase in the observed pulsation
frequency of a pulsar, which is directly linked to the rotational frequency of the
magnetosphere of the neutron star. Thus, pulsar glitches can be thought as a spin
up of that part of the star which is anchored to the magnetic field, i.e. the crust and
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Figure 1.11: P − Ṗ diagram of all known neutron stars, with glitchers highlighted in green
and red. Figure taken from Fuentes et al. (2017).

the charged particles. Of course, the star’s crust cannot accelerate its rotation on its
own accord. So there must be a way to store angular momentum in the star while the
pulsar is slowing down. This is the basic idea behind the glitch phenomenon.

The first model proposed after the discovery of a pulsar glitch in the Vela pulsar
was that of crust quakes (Ruderman, 1969). In this model a glitch originates from
the outer crust, which is constituted by a crystalline lattice that can support stress.
The shape of the crust is, of course, influenced by the rotation frequency of the star:
we are expecting a rotating star not to have a perfectly spherical form, but somewhat
oblate, due to centrifugal forces. A simple example in the Newtonian context is that of
the Maclaurin ellipsoid, an axisymmetric figure of equilibrium for a self-gravitating
fluid with constant density. As the star spins down, we are expecting it to adjust its
shape in order to achieve a new equilibrium shape, but since the crust is rigid, stress
builds up and it is eventually released spasmodically as crust quakes. This starquake
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causes a rearrangement in the form of the crust, a change of the moment of inertia
and thus an acceleration of the star rotation. This can be seen in a simple way by
exploiting the fact that L = IΩ, where L is the total angular momentum of the star, I
the total moment of inertia and Ω the angular velocity, and the angular momentum
conservation:

∆L =∆IΩ+ I∆Ω .

The variations have been calculated between the after- and before-glitch quantities.
Angular momentum conservation yields ∆L = 0, thus giving:

∆Ω

Ω
= −
∆I
I

, (1.15)

which means the glitch amplitude to be proportional to the variation of the moment
of inertia during the quake. For a typical neutron star with mass M ≈ 1.4M� and
radius R ≈ 10 km, it would require about ten million years to accumulate enough
stress to cause the large glitches in Vela (Smoluchowski, 1970; Baym and Pines, 1971).
Just two years after the first detected one, however, Vela displayed a second glitch,
and continued to exhibit large glitches every 2-3 years for the following fifty years
(see Figure 1.12). This discordance between theory and observations is the main
reason why crustal deformation is no longer considered as the way to store angular
momentum for glitches. Nowadays, starquakes are considered one of the possible
triggers for vortex-mediated glitches (see below), although it seems unlikely that the
star can develop enough stress between glitches to break the crust, which is required
to be constantly in a stressed state, near the failure threshold (Franco et al., 2000;
Giliberti et al., 2019). This is the case, for example, for large glitches of the Vela
pulsar (Giliberti et al., 2020), but on the other hand starquakes may be able to explain
glitches of the Crab pulsar (Alpar et al., 1994, 1996; Crawford and Demiański, 2003;
Akbal and Alpar, 2018).

After the microscopic theorisation of superconductivity due to Bardeen et al. (1957),
the subsequent application of the BCS formalism to nuclear matter explained the energy
gap in the excitation spectra of nuclei, the odd-even mass staggering and the reduced
moment of inertia of nuclei (Bohr et al., 1958). The application of the BCS theory to
nuclear matter allowed also for the study of neutron superfluidity in neutron star well
before the discovery of pulsars (Migdal, 1959). If neutrons inside neutron stars were
normal (i.e. not superfluid), they would be strongly interacting with protons, and the
glitch would damp on a nuclear timescale (of the order of 10−17 s, see Baym et al.
1969a). One year after the first Vela glitch, the spin down rate relaxed to the value it
had before the glitch, hinting at the involvement of superfluidity in the process. A first
inclusion of the neutron superfluid in the glitch modelling has been proposed in Baym
et al. (1969b): here, the glitch rise is caused by a starquake, while the slow relaxation
is due to the presence of a neutron superfluid. This model thus divides the star into two
components: a normal component, indicated with a “c” subscript, which is comprised
by the solid crust and everything strongly coupled with it by the magnetic fields,
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Figure 1.12: Glitch sizes as a function of the glitch epoch for the eight pulsars with the
currently largest number of glitches. The grey areas are the periods when observations have
not been made for more than three months. Ng is the number of glitches detected in each
pulsar (figure taken from Fuentes et al. 2019).
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and a superfluid component, indicated with a “s” subscript. The rotational dynamics
of the neutron star is described by two equations, one for the angular momentum
conservation and one for the rate of exchange of angular momentum between the two
components:

¨

IcΩ̇c + IsΩ̇s = −α
IsΩ̇s =

Ic
τc
(Ωc −Ωs)

(1.16)

where α indicates the braking torque caused by the radiation emission (assumed
constant here) and τc is a relaxation timescale describing the mutual friction which
couples the normal and the superfluid component after the glitch. By considering the
stationary state as when both the components slow down at the same rate (that is,
Ω̇s = Ω̇c ≡ Ω̇∞), we can solve the system considering an instantaneous glitch of size
∆Ωgl:

Ωc = Ω∞ +∆Ωgl(1−Q+Qe−t/τ), (1.17)

where Q is the so-called healing parameter, that represents the degree at which the
star returns to the pre-glitch slowdown. Note that in the above model the glitch size
∆Ωgl is given by some unknown physical phenomenon: it can still be a crustquake (as
originally assumed by the authors of Baym et al. 1969b) or a different phenomenon,
which is able to explain these large and relatively frequent events.

1.6.2 Vortex-mediated glitches

As discussed above, nuclear matter inside neutron stars is expected to be superfluid.
In the BCS theory of superconductivity the coupling of electrons with lattice phonons
leads to an attractive interaction between electrons despite the repulsive Coulomb
force. These Cooper pairs of electrons with same angular momentum and different
spin behave like bosons, in a sense that they do not obey Pauli exclusion principle and
can occupy a single-particle quantum state. Thus, below a critical temperature, these
pairs condensate like bosons in the single-particle quantum state at the lowest energy,
causing superconductivity. After its formulation, BCS theory was applied to nuclear
matter (Bohr et al., 1958). In this case, the attractive interaction between nucleons is
given by the strong force. In neutron stars, neutrons are expected to form a superfluid
in the inner crust and in the core. Neutron-proton pairs could in principle exist, but
they are quite rare due to the asymmetry of nuclear matter inside the star. Hadrons
become superfluid when the energy associated with temperature is smaller than the
superfluid gap ∆, which can be interpreted as the binding energy of the Cooper pair.
∆ is usually of the order of the MeV in a neutron star, while the temperature, after
some months from the formation, can drop to values of the order of keV.

One of the peculiarities of a rotating superfluid is that it rotates by forming an
array of vortices with quantised circulation κ = ħh/2mn, where mn is the mass of
the particle comprising the superfluid (in our case, the neutron mass). Note that
while these vortices’ radii have a size of the order of the nuclear scale, their lengths
are macroscopic. A superfluid that rotates with angular velocity Ω(r) along an axis
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at r = 0 is threaded by a number n(r) of vortices per surface area given by the
Feynman-Onsager relation:

r
dΩ
dr
+ 2Ω(r) = κn(r) . (1.18)

It is easy to see that if vortices move outwards the angular velocity decreases: this is
the basic idea behind the vortex-mediated glitch model (Anderson and Itoh, 1975).
Quantised vortices of the neutron superfluid may pin to impurities in the crust of
the star (either nuclear clusters or the space between them) or to fluxoids in the
core of the star (which are the analogue of the superfluid vortices for the proton
superconductor in the core of the star) and stop their motion (Ruderman, 1976; Alpar,
1977; Epstein and Baym, 1988; Jones, 1991). Thus, as long as vortices are pinned,
the superfluid component cannot spin down. A glitch occurs when a huge number of
vortices unpin and repin after having drifted to outer regions of the star. The trigger
of the sudden unpinning is not clear: it is possible that a crust quake causes the
unpinning of some vortices, which in turn cause an avalanche while moving outwards
in the star. The observable consequences of this phenomenon are related to the vortex
knock-on process (Warszawski and Melatos, 2013) and to details on the propagation of
a vortex avalanche (Haskell and Melatos, 2016; Haskell, 2016). Nevertheless, vortex
avalanches can be studied in terms of self-organised critical systems by means of a
state-dependent Poisson process (Fulgenzi et al., 2017; Melatos et al., 2018; Carlin and
Melatos, 2019b). Alternatively, glitches might be also caused by superfluid instabilities
(Andersson et al., 2003; Mastrano and Melatos, 2005; Glampedakis and Andersson,
2009) and their evolution related to superfluid turbulence (Melatos and Peralta, 2007;
Khomenko et al., 2019). In any case, the unpinning causes the superfluid to slow
down and, thus, the observable normal component to spin up.

Let us consider the neutron star interior as composed by two different fluids: a
superfluid, which we will denote now on with a “n” subscript, and a normal fluid,
which we will denote with a “p” subscript. The first one is inviscid, and composed
by neutrons in a superfluid state, which rotates by forming an array of quantised
vortices. The latter is a charge-neutral fluid comprised by protons, electrons and
everything coupled to the crust and the magnetic field on short timescales (Easson,
1979). Because of this, the rotation we observe from Earth is that of the normal
component.

Since we are dealing with a system comprised by a superfluid and a normal fluid,
an important effect can arise: that of entrainment (for a review, see Chamel 2017a). A
first formalisation of this phenomenon dates back to the seminal work of Andreev and
Bashkin (1976) on the interaction in 4He and 3He mixtures. The independent motion
of a superfluid and a normal fluid can cause a non-dissipative interaction between
them, and in particular one fluid can induce a motion on the other, depending on
how strongly they interact. This causes a non-trivial relation between the velocities of
the two fluids and their linear momentum. In fact, it can be demonstrated that the
momentum of a particle of one fluid is not simply the product between the particle’s
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mass and its velocity, but a linear combination of the velocities of the two fluids. Thus
for a species x = n, p (see, e.g., Prix et al. 2002):

px = mx[vx + εx(v y − vx)], (1.19)

where εx denotes the entrainment parameter. We can define an effective mass of the
particle m∗x = mx(1− εx), which modifies the above equation as:

px = m∗x vx + (mx −m∗x)v y . (1.20)

Thus the particle momentum of each of the two fluids is not aligned with its respective
velocity. It is important to notice the relation (Chamel and Haensel, 2008):

εnρn = εpρp . (1.21)

The entrainment parameter (or equivalently, the effective mass) depends on the mass
density of the two-fluid system. What microscopically causes the entrainment between
the two components inside a neutron star and how to calculate this parameter is still an
open question. For the core of a neutron star, where both superfluid neutrons and the
charged component move as fluids, the entrainment is due to the nuclear interaction
between the species (Chamel and Haensel, 2006). On the other hand, in the crust –
where only the superfluid is free to move, and the charged component is arranged
in a crustal lattice – the entrainment phenomenon is due to Bragg scattering of the
superfluid neutrons with the crust (Chamel, 2012). The issue here is the calculation of
this parameter, which is computationally very expensive. Moreover, the entrainment
effect is severely affected by the particular nuclear model we are considering (Martin
and Urban, 2016; Watanabe and Pethick, 2017) and by the arrangement of the crustal
lattice, which – in the limit of an amorphous crust – can make it almost negligible
(Sauls et al., 2020). In the following, we will employ the entrainment parameter
calculated by Chamel and collaborators, which is large and negative in the crust of the
star (Chamel, 2012), and small and positive in the core (Chamel and Haensel, 2006,
see Figure 1.13).

Beside entrainment, the motion of the superfluid component is also impacted by
those interactions affecting the motion of superfluid vortices, namely the Magnus force,
drag force and pinning force. Magnus force is a general aspect of fluid dynamics. It
arises when a spinning object is immersed in a background flow. The physical meaning
of this force is quite easy: the velocity field induced by the spinning object – in our
case, the vortex – sums (subtracts) to that of the background velocity causing lower
(higher) pressure on that side. This difference of pressure produces an effective force,
which is the Magnus force. Of course, if the spinning object is at rest in the frame of
reference of the background flow, no Magnus force occurs. In the case of a vortex in a
neutron star, Magnus force is induced on it if it is not comoving with the background
flow of superfluid neutrons. The vortex experiences a force per unit length:

fM = ρnκ× (vL − vn), (1.22)
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Figure 1.13: Effective neutron mass in the crust (plotted with data from Chamel (2012), in
blue) and in the core (plotted with data from Chamel and Haensel (2006), in green). The
figure has been taken from Antonelli and Pizzochero (2017).

where ρn is the mass density of the background flow (in the case of a neutron star, that
of the superfluid component), κ is the vorticity vector (thus tangent to the vortex line),
vL is the velocity of the vortex line and vn is the velocity of the background neutron
superfluid. It can be demonstrated (see, e.g., Andersson et al., 2006; Antonelli and
Haskell, 2020) that also in the presence of entrainment the Magnus force preserves its
form described in Equation (1.22), but the vector κ is now defined as

κ=
h

2mn

∇× pn

|∇× pn|
,

that is, a vector with modulus equal to the quantised vorticity κ and direction given
by ∇× pn.

The dissipative drag force acts between the vortices and the proton-electron fluid.
It can be written in a phenomenological way as:

fD = −η(vL − vp), (1.23)

where vp is the velocity of the normal component and η is the drag parameter. This
quantity also appears in the literature as R= η/(ρnκ), which is related to the large-
scale hydrodynamic mutual friction coefficient by (see, e.g., Glampedakis et al., 2011):

B = R
1+R2

. (1.24)
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Figure 1.14: Pinning force at different densities in the inner crust, taken from Seveso et al.
(2016). L indicates the length scale over which a vortex can be considered rigid (in unity of
Wigner-Seitz cell radius). In this thesis we will use the L = 5000 case.

All these parameters depend on which dissipative phenomenon is considered. In the
core of the neutron star, entrainment effect causes a flow of superconducting protons
around each neutron superfluid vortex line, which causes the presence of a large
magnetic field (of the order of 1014 G) along every line. The scattering of electrons
off these magnetic fields leads to a dissipative mutual friction between the superfluid
and the normal fluid (Alpar et al., 1984a). Since we need a flow of entrained protons
around neutron superfluid vortices, this mechanism is valid only within the core of the
star, as the protons in the crust are forced into nuclear clusters. In the crust, vortices
can excite phonons in the crustal lattice if the relative velocity between the vortex
and the lattice is small (say, |vL − vp| < 102 cm/s, see Jones 1990) or Kelvin waves
can form on the superfluid vortices, if the relative velocity is larger (see Jones, 1992;
Epstein and Baym, 1992). A recent review on the calculation of the drag parameter
due to Kelvin waves excitation has been presented in Graber et al. (2018).

Finally, pinning force keeps the vortices fixed in position, preventing them to have
a natural outward motion due to drag force. Vortices can pin threading nuclear clusters
(nuclear pinning, which occurs at densities similar to that of the crust-core interface)
or passing through two of them (interstitial pinning, occurring at lower densities,
close to the neutron drip one). We will not discuss here the complex problem of the
derivation of the pinning force per unit length, since it depends in a complex way on
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several quantities, like vortex rigidity and orientation. Many calculations and studies
have been performed throughout the years (Ruderman, 1976; Alpar, 1977; Epstein
and Baym, 1988; Jones, 1991), considering simple geometries. More recently, Link
(2009) studied the pinning force due to a crust made of randomly displaced ions. In
the next Chapters we will make use of the pinning force in Seveso et al. (2016), which
describes a realistic maximum pinning force calculated averaging over all orientations
of a vortex with respect to a BCC lattice (see Figure 1.14). In partitular, we will employ
the pinning force calculated by assuming a vortex rigidity length of 5000 Wigner-Seitz
radii4: this parameter is justified by comparing the angular momentum reservoir which
can be stored in the star with the average waiting time and glitch size of the Vela
pulsar (Seveso et al., 2016). We have to consider, however, that in between glitches it
is possible that vortices unpin because of thermal effects and repin in the outer regions
of the star. This phenomenon, also known as vortex creep (Alpar et al., 1984b), may
influence the amount of angular momentum which can be stored between glitches,
and the spin evolution over time of the post-glitch relaxation.

These three forces act together on every superfluid vortex. If a vortex is pinned,
it corotates with the normal component, thus only pinning and Magnus force will
act on it. Pinning also prevents the superfluid to spin down and an angular velocity
lag between the two components builds up. When the lag is high enough, i.e. when
Magnus force is high enough to be greater than pinning force, vortices unpin and
move outward. If many vortices are unpinned at the same time, their massive outward
migration causes the pulsar to glitch.

4The crust is decomposed into a set of independent spheres centered around each nuclear cluster,
with a radius (the Wigner-Seitz radius) which includes enough electrons to ensure charge neutrality (in
other words, it includes the same number of protons and electrons).





CHAPTER 2
Largest observed glitch

One possibility to extract information about a pulsar’s structure is given by employing
the largest glitch displayed by it (Antonelli and Pizzochero, 2017; Pizzochero et al.,
2017). This measurement allows us to put a constraint – by assuming an EoS for the
neutron star matter – on the mass of the star. The advantage of this kind of constraint
is dual: on the one hand, the largest glitch amplitude does not have to be calculated
like the activity parameter (see Section 3.1). For each pulsar which displays glitches,
we just need to take the largest one, and try to set some constraints on the neutron star
structure from it. Of course, the largest measured glitch may not be the largest event
achievable by that star, but a new larger glitch simply puts a tighter constraint. On the
other hand, this constraint is not much model-dependent, as the only microphysical
ingredient needed is the maximum pinning force of the star in the crust.

In this Chapter we will discuss the method for obtaining this kind of constraint on
the neutron star structure, as first presented in Antonelli and Pizzochero (2017) and
Pizzochero et al. (2017) and later revised in a fully general relativistic formulation in
Antonelli et al. (2018).

2.1 Analytical calculation

Let us start by assuming a neutron star spacetime that is asymptotically flat, stationary
and axisymmetric. Let us choose a global chart with Schwarzschild-like coordinates
(t, r,ϑ,ϕ) such that the Killing vector associated with stationarity is ∂t and that associ-
ated to angular momentum conservation is ∂ϕ. The most general axially-symmetric
metric can be written as (see Hartle and Sharp, 1967):

g = −e2Φ(r,ϑ)c2dt2 + e2Λ(r,ϑ)dr2 + e2Ξ(r,ϑ)
�

r2dϑ2 + r2 sin2 ϑ (dϕ −ω(r,ϑ)dt)2
�

,
(2.1)

where Φ, Λ, Ξ and ω are four metric functions. The coordinates ϑ and ϕ represent,
respectively, the polar and azimuthal angles with respect to the rotational axis of the
star (defined as the set of points where the circular Killing vector vanishes). The star
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is assumed to be static, i.e. it rotates with a constant angular velocity Ω throughout
the whole star. This metric function can be simplified within the approximation of
slow rotation, introduced by Hartle (1967): for a star with mass M and radius R, the
slow-rotation condition can be written as

R3Ω2

GM
� 1 . (2.2)

In other words, we are asking the star to rotate on a much slower rate than the
mass-shedding angular velocity. For a typical pulsar with M ∼ 1.4M� and R ∼ 10
km, spinning at Ω ∼ 70 rad/s (like the Vela pulsar), this approximation works well.
The slow-rotation framework is less safe for a millisecond pulsar: the fastest pulsar
known to date – PSR J1748–2446ad, Ω = 4501 rad/s – gives R3Ω2/GM ≈ 0.11 for
the mass and radius assumed above (Haensel et al., 2007). Anyway, so far only two
millisecond pulsars have been seen glitching (J1824-2452A, Cognard and Backer 2004,
and J0613-0200, McKee et al. 2016). Neither, however, displays sufficiently large
glitches to be constrained by this model, so we can safely assume slow rotation from
now on. Following Hartle (1967), at first order in Ω the metric in Equation (2.1)
reduces to

g = −e2Φ(r)c2dt2 + e2Λ(r)dr2 + r2dϑ2 + r2 sin2 ϑ [dϕ −ω(r,ϑ)dt]2 . (2.3)

The metric functions that appear here depend only on r and are not the same of
Equation (2.1). ω(r), in particular, represents the dragging of the inertial frame due to
the rotation of the neutron star, and it can be calculated solving an additional equation.
We will not review the method here, as it can be found in many articles or books
(see, e.g., Haensel and Proszynski 1982 or Glendenning 2000 and references therein).
The centrifugal force and consequent star deformation appear when second-order
corrections in Ω are taken into account and the spherical structure becomes oblate.
The neutron star structure, thus, can still be described by solving the TOV equation for
spherically-distributed matter, along with an equation of state.

Let us consider a rigidly-rotating normal component (labelled by p) and a super-
fluid component (labelled by n) that can rotate non-uniformly with angular velocity
Ωn = Ωp +Ωnp, but still around a common and constant rotation axis. In other words,
we are assuming that no precession in the star rotation is present. Within this formal-
ism, the slow-rotation approximation is performed at first order in Ωp. Differently
from what has been done in Hartle (1967), here we have two fluids, rotating with
different angular velocities. Therefore, we have to assume that the two fluids are
almost corotating, namely that Ωnp is small with respect to Ωp (or, analogously, that
the angular velocities of the two components are similar), which can be safely assumed
for the present case of pinning-induced lag. Note that Ωnp is not a parameter in which
the expansion is performed: the parameters are Ωp and Ωn, which are assumed to
be of the same order of magnitude. We will not report the calculation here, but it
can be shown (Antonelli et al., 2018) that, with the hypothesis of quasi-corotation
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of the two components and the additional one of chemical equilibrium, the Komar
angular momentum (i.e. the conserved quantity due to the presence of the Killing
vector associated to angular momentum conservation, see, e.g., Rezzolla and Zanotti,
2013) of a sphere of radius R can be expressed as

L =
8π
3c2

∫ R

0

dr r4eΛ(r)−Φ(r)
�

ρ(r) c2 + P(r)
�

·
�

Ωp −ω(r) + ynΩnp

�

. (2.4)

Here we have also introduced the mass-energy density and pressure profiles ρ(r)
and P(r), and the superfluid fraction yn, defined as the fraction between the number
density of the free neutrons nn and the number baryon density nB. The total angular
momentum of the star L can always be split as:

L = IΩp +∆L[Ωnp] . (2.5)

The reason for this separation is the following: as a first approximation, the star rotates
as a whole with angular momentum IΩp. It is easy to see that the coefficient I is
exactly the moment of inertia of a sphere in the slow rotation approximation (Hartle,
1967)

I =
8π
3c2

∫ R

0

dr r4eΛ(r)−Φ(r)
�

ρ(r) c2 + P(r)
� Ωp −ω(r)

Ωp
. (2.6)

The functional ∆L accounts for the extra angular momentum due to the presence of
pinning inside the star, which translates in an angular velocity lag Ωnp. In the slow
rotation approximation case, this functional equals:

∆L[Ωnp] =
8π
3c2

∫ R

0

dr r4eΛ(r)−Φ(r)
�

ρ(r) c2 + P(r)
�

ynΩnp . (2.7)

We remark that in the decomposition of the total angular momentum as in (2.5) only
the global part IΩp contains the effect of frame dragging. The reservoir ∆L[Ωnp]
presents no factorω(r). This is not surprising, as the corrections due to frame dragging
are encoded as Ω−ω(r) and cancel out when considering the lag between the two
components. We have to deal with the subtle problem of justifying chemical equilib-
rium, which is an hypothesis we have used in order to write the angular momentum
in (2.4) as a function of the total mass-energy density ρ and pressure P instead of
the chemical potential of the two species (see Antonelli et al., 2018). Andersson and
Comer (2001) showed that chemical equilibrium between the two components in a
neutron star implies corotation of them, and it is thus only approximatively realised in
our context where the fluids must rotate differentially in order to produce a glitch (the
slowness of electroweak interactions, however, may help to maintain equilibrium).
Later, Sourie et al. (2016) have shown the inverse reasoning: starting from the hy-
pothesis of corotation and assuming chemical equilibrium at the centre of the star, it
is possible to infer chemical equilibrium throughout the entire star. The additional
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condition of quasi-corotation is then necessary to ensure very small departures from
chemical equilibrium and from rigid rotation, and thus guarantee the consistency of
Equation (2.5) with the rigid-body Hartle’s formalism.

We can introduce the partial moment of inertia In as the normalisation factor of
the distribution defined by ∆L

In =
8π
3c2

∫ Rd

0

dr r4e−Φ+Λ yn

�

ρc2 + P
�

, (2.8)

where Rd is the neutron-drip radius, which is placed at nd ≈ 2.6× 10−4 fm−3, namely
at the outer edge of the inner crust. This allows to define the average lag 〈Ωnp 〉
(weighted with In) and hence write the angular momentum of the reservoir as

∆L[Ωnp] = In〈Ωnp 〉 . (2.9)

We point out that, although we used the same symbol, the quantity In does not
represent the moment of inertia I tot

n of the entire n-component, but only that of the
reservoir associated with a given lag, in the sense of Equation (2.9). In fact, for rigid
rotation of the n-component, this is given by

I tot
n =

8π
3c2

∫ R

0

dr r4eΛ−Φ yn

�

ρc2 + P
� Ωn −ω
Ωn

, (2.10)

consistently with Equation (2.6). While in the Newtonian framework the two quantities
are the same, in the relativistic context they are distinguished concepts.

It is easy to see that – in the slow rotation case, but also in the Newtonian case,
see Section 3.3 – the functional in (2.7) is linear in Ωnp, thus allowing us to write the
time derivative of the above equation as:

IΩ̇p +∆L[∂tΩnp] = −I |Ω̇∞| , (2.11)

where−I |Ω̇∞| represents the angular momentum loss due to electromagnetic emission.
Let us now trigger a glitch, and integrate this equation between a time tpre just before
the glitch and a time tpost immediately after it. Let us also assume that the time interval
is sufficiently small so that we can neglect the term proportional to |Ω̇∞|, and let
us ignore possible time variation in the moments of inertia (caused, for instance, by
starquakes). With these assumptions, and again by making use of the linearity of ∆L,
the integration yields:

I
�

Ωp(tpost)−Ωp(tpre)
�

=∆L[Ωnp(tpre)]−∆L[Ωnp(tpost)] . (2.12)

Finally, we would like to obtain the maximal glitch amplitude, which can be obtained
by asking the angular momentum associated with the reservoir to be null after the
glitch, i.e. ∆L[Ωnp(tpost)] = 0:

∆Ωm(t) =
∆L[Ωnp(t)]

I
, (2.13)
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where we have defined the glitch jump as ∆Ωm ≡ Ωp(tpost)−Ωp(tpre) and redefined
tpre as t. Unsurprisingly, the glitch amplitude in Equation (2.13) does not explicitly
depend on entrainment: it is a direct consequence of the fact that the total angular
momentum of the star (2.4) is independent of it. However, the lag Ωnp is a dynamical
variable of the model and its evolution is affected by entrainment.

We want to maximise ∆Ωm, in order to obtain a theoretical upper bound to the
observed glitch amplitudes. What we would like to do is to find the value of Ωnp such
that the glitch size ∆Ωm is maximum. This value can be obtained by assuming that all
the vortices inside the star are pinned and subcritical: in this way, the lag between
the two components is the maximum achievable, which corresponds to the maximum
angular momentum reservoir ∆L, and thus the maximum glitch amplitude. Let us
call this critical lag Ωcr

np. The condition of subcriticality can be achieved by asking
that for every vortex in the neutron star the pinning force (which keeps the vortices
stuck in their pinning site) and the Magnus force (which tries to move them from their
place) are equal in modulus. In other words, all the vortices are about to unpin, and a
further increase of the angular velocity lag would increase the Magnus force, causing
the unpinning of the vortices. The Magnus force modulus per unit length in General
Relativity has exactly the same form as the Newtonian one (Langlois et al., 1998):

fM = κmn ynnB vL , (2.14)

where vL is the speed of a segment of vortex line as seen in the local frame comoving
with the superfluid flow. It can be shown (Antonelli et al., 2018) that if we want to
write the above relation in terms of the angular velocity lag, this has to be written as:

fM = κmn ynnBe−ΦxΩnp (2.15)

where x represents the cylindrical radius.
We have to keep in mind, however, that perfect pinning – that occurs all vortices

are pinned in the inter-glitch time and there is no vortex creep – is probably never
realised in neutron stars, but it is useful to perform this thought experiment. In fact,
an imperfect pinning in the star would only yield a smaller value of the theoretical
maximum glitch amplitude, thus confirming that the one we are about to calculate is
the maximum theoretically achievable. The upper limit∆Ωmax on the glitch amplitude
is thus obtained by artificially emptying the whole reservoir of pinned superfluid,
namely

∆Ωmax ≡ ∆Ωm[Ω
cr
np] . (2.16)

Estimates of Ωcr
np are based on the still poorly-known physics of vortices in the crust,

as well as in the core of neutron stars. Therefore we construct the critical lag in two
different physical scenarios: when vortex lines have an overall rigidity so that they
collectively organise into a stable array of paraxial vortex lines, and the scenario where
vortices are slack (i.e. tensionless) at the hydrodynamic scale, so that any macroscopic
portion of superfluid can flow independently from the others. It is interesting to study
these two extreme cases, as we expect real vortices to behave in a way that is in
between them.
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2.1.1 Rigid vortices

Let us restrict ourselves to the case of rigid vortices directed along the rotation axis, as
done in Antonelli and Pizzochero (2017). This is also the case employed to study the
maximum glitch amplitude in the Newtonian framework in Pizzochero et al. (2017).
This hypothesis is an extreme scenario, and it is not realised in the interior of a neutron
star. However, we will introduce this model in order to have a direct comparison with
the tensionless vortices model we will introduce below. Moreover, the rigid vortices
model has the advantage of simplifying the three-dimensional vortex dynamics problem
in a more treatable one-dimensional one, by projecting the motion of every vortex on
the equatorial plane of the star.

The idea of rigidity can be represented by studying the unpinning condition in an
integral way. In other words, if γx represent a vortex which threads the equatorial
plane of the star at a cylindrical coordinate x , the unpinning condition for that vortex
is

∫

γx

dl fM =

∫

γx

dl fP , (2.17)

where dl is the arc length along a vortex. Note that this unpinning condition is non-
local. Of course, other prescriptions for the unpinning condition of a rigid vortex can
be chosen: with this prescription, however, even if the Magnus force per unit length is
not large enough to overcome the pinning force at every point of the curve γx , the
integrated Magnus force should be able to unpin the vortex, by acting through vortex
rigidity. This integration allows us to reduce the motion of a vortex to the motion of a
point on the equatorial plane. Of course, there is also the additional complication of
defining a set of curves γx for the vortices.

The critical lag can be obtained by substituting the relativistic Magnus force in
(2.15) into this unpinning condition. However, we immediately face a problem: the
lag Ωnp cannot be easily brought outside the integral in the presence of entrainment,
since – as shown in (Antonelli and Pizzochero, 2017) – the angular velocity lag is no
longer columnar. One way to overcome this difficulty is to define a rescaled lag Ωvp
as:

Ωvp ≡
Ωnp

1− εn(r)
. (2.18)

This rescaled angular velocity is again columnar, thus it will be constant along a single
vortex line γx . This value will therefore only depend on the cylindrical radius x . Note
that, from Equation (2.7) we can also derive the partial moment of inertia of the
auxiliary v-component

Iv =
8π
3c2

∫ Rd

0

dr r4e−Φ+Λ
yn

�

ρc2 + P
�

1− εn
. (2.19)

A similar definition, but with an additional factor (Ωp −ω(r))/Ωp, is also present
in the work of Newton et al. (2015) and in Section 3.2: in order to account for
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entrainment in the crust in these cases, the moment of inertia is written by simply
dividing the integrand in Equation (2.6) (limited to the neutron component) by the
dimensionless effective neutron mass m∗n(r)/mn = 1− εn(r). This is not inconsistent
with our approach, since in those cases the moment of inertia of the entire (rigid)
n-component I tot

n is used.
The critical lag can be obtained by using Equation (2.17), and reads:

Ωcr
vp(x) =

∫

γx
dl fP

κ x
∫

γx
dl mnnn

1−εn
e−Φ

. (2.20)

We have to notice, however, that the form of the line element dl is related to the metric
we are using and on the form of the set of curves γx we are assuming. In our particular
choice of metric (2.3), if we choose straight lines directed along the axis z of rotation,
we obtain:

dl =

√

√z2

r2
e2Λ +

x2

r2
dz . (2.21)

The assumption of straight lines is quite unrealistic. However, since the exact configu-
ration of the superfluid vortices in a spinning-down neutron star is unknown we use
this configuration as a test case for our model. It can be shown that numerically the
critical lag (2.20) is very similar to the Newtonian one calculated in Antonelli and
Pizzochero (2017). For this reason, we will not comment much on this equation here,
delaying the discussion to the next Chapter, when we will consider the Newtonian
critical lag.

The maximum glitch can be obtained by substituting the critical lag (2.20) into
Equations (2.7) and (2.13). We obtain

∆Ωmax =
4π
Iκ

∫ Rd

0

d x x2

∫ z(x)

0

dz
yn (ρc2 + P)

1− εn
eΛ−Φ ·

·

�

∫

γx

dl fP

��

∫

γx

dl
mnnnc2

1− εn
e−Φ

�−1 (2.22)

where Rd is the radius corresponding to the interface between the inner and the outer-
crust (drip radius). We can see that this equation is entrainment-dependent. This is
not a drawback of our choice for the curves γx : the dependence on entrainment cannot
be cancelled out simply because the integral containing the mass-energy density and
pressure and that containing the rest mass density do not simplify. If we consider the
Newtonian limit (that is, Φ,Λ→ 0 and ρ = mnnB � P/c2), the above equation does
not depend on the entrainment anymore, as in this case the two integrals containing
it simplify themselves (Pizzochero et al., 2017):

∆Ωmax =
4π
Iκ

∫ Rd

0

dx x2

∫

γx

dl fP(r) =
π2

Iκ

∫ Rd

0

dr r3 fP(r) , (2.23)
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where the last equality has been obtained by making a change of variables. From
here we can see that – if we assume the pinning to be limited to the crust of the star
– this result does not depend on the extension of the superfluid inside the star, as
long as these vortices reside at least in the crust. In fact, if we set fP(r) = 0 in the
core of the star, the maximum glitch amplitude would be the same, regardless of the
extension (or not) of the vortices γx in the core. As we have seen, however, this is no
longer analytically true in the general relativistic framework. Nevertheless, it will be
shown in Section 2.2 that the presence of a curved spacetime, along with a strong
entrainment, does not change much the value of the maximum glitch. Of course, here
we are assuming for simplicity that the pinning of the superfluid vortices is limited to
the crust: Equations (2.22) and (2.23) hold also if we assume pinning in the core of
the star and we provide fP(r) for this region, which thus yields a different numerical
value for the maximum glitch amplitude.

2.1.2 Tensionless vortices

The opposite possibility with respect to that of rigid vortex lines is that of having
tensionless (or slack) vortices. In this case, we assume a local unpinning condition: we
are asking that every infinitesimal element of the vortex line behaves independently
from all the other ones. The unpinning condition (2.17) is then modified in

|fM | = fP(r), (2.24)

which is a local condition. The critical lag thus takes this much simpler form:

Ωcr
np =

fP(r)eΦ(r)

κ r sinϑmn nB(r) c2
. (2.25)

We have to notice that, even if we had used the rescaled lag Ωvp instead of the true
lag Ωnp, the critical lag is always a two-variable function, i.e. it depends on both r and
ϑ. This is just because we do not have to integrate along the vortex lines as we have
done in the rigid case. So in the particular case of tensionless vortices there is no real
advantage in using Ωvp instead of Ωnp as there were when assuming rigid vortices.

The advantage of taking tensionless vortices is that we do not have to assume
any vortex configuration, as the unpinning condition is simply local. We remark that
a completely slack vortex at the microscopic scale would bend even over lengths of
the Wigner-Seitz radius in the crust, making unrealistic the analysis of vortex pinning
carried out by Seveso et al. (2016) that incorporates the presence of non-zero single-
vortex tension to estimate the mesoscopic pinning force per unit length of vortex
line. Moreover, this scenario of vortices that are tensionless at the macroscopic scale
can lead to the development of superfluid turbulence: if vortices pass through the
crust-core interface, the non-pinned section of the vortex immersed into the core can
wrap around the rotation axis as described by Greenstein (1970) and vorticity can
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develop toroidal components. We can now substitute the expression for the critical
lag in Equation (2.16) in order to obtain the maximum glitch amplitude

∆Ωmax =
π2

Iκ

∫ Rd

0

dr r3 eΛ(r)
ρ(r)c2 + P(r)

mnn(r)c2
fP(r). (2.26)

It is interesting to notice that this result depends only on the pinning force profile,
the mass of the star and the EoS. Differently from the rigid case, the maximum glitch
calculated with tensionless vortices does not display a dependence on the entrainment.
This feature is retained also in the Newtonian limit. In fact, the Newtonian limit of
(2.26) is exactly the same of one for the rigid vortices (2.23). This means that the
result obtained in Pizzochero et al. (2017) holds for both the extreme cases of rigid
and tensionless vortices, as long as we work in a Newtonian framework.

2.2 Numerical results

In Section 2.1, we presented the argument for the calculation of the maximum glitch
size achievable by a pulsar of Antonelli et al. (2018) and generalised the model
presented in Pizzochero et al. (2017), embedding it in a relativistic framework and
proposing two different prescriptions to calculate the critical lag for unpinning and
the corresponding maximum glitch amplitudes. We now discuss the numerical results
for the partial moments of inertia and the maximum amplitudes; then, by following
the simple argument proposed in Antonelli and Pizzochero (2017), we estimate Mmax.

The input used in our numerical calculations is summarised in Table (2.1); we
adopted three unified barotropic EoSs (SLy4, BSk20 and BSk21), for which the super-
fluid fraction yn(nB) is provided together with P(nB) and ρ(nB): these are calculated
consistently for all regions of the neutron star (hence the adjective “unified”). For the
mesoscopic pinning forces, we used the results of Seveso et al. (2016). In particular,
we employed the more realistic case with L = 5000 Wigner-Seitz radii: note that
smaller values of L would give rise to larger pinning forces (see Figure 1.14), which
would in turn cause a larger maximum glitch and a less tight constraint on the mass.
We are thus considering the weakest pinning force, in order to compare and test the
outcomes with observational data. Note also that these pinning forces are given in
terms of rest-mass density, i.e. they depend on nB. For entrainment, we adopted the
entrainment parameters calculated in Chamel and Haensel (2006) for the core and in
Chamel (2012) for the crust (also given in terms of nB).

2.2.1 Relativistic moments of inertia

It is well-known that the relativistic moment of inertia given in Equation (2.6) can
have a marked discrepancy with respect to its non-relativistic counterpart. Although
only the total moment of inertia appears in the calculation of the maximum glitch, it
is interesting to discuss the relativistic corrections also to the partial ones, since they
frequently appear in dynamical studies of pulsar glitches.
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EoS nedge [fm−3] Mmax Reference

SLy4 0.076 2.05 M� (Douchin and Haensel, 2001)
BSk20 0.0854 2.16 M� (Goriely et al., 2010)
BSk21 0.0809 2.28 M� (Goriely et al., 2010)

fP 0.0776 β = 3, L = 5000 of Seveso et al. (2016)

Table 2.1: We list some properties of the three EoSs used: Mmax is the maximum non-rotating
gravitational mass that the EoS can sustain, while nedge is the baryon density at the crust-core
interface (see also Fantina et al., 2013, for a study of the global properties of non-rotating
neutron stars constructed with the same EoSs used here). For comparison we also list the
baryon density at which the pinning force used in this work becomes zero.

A word of caution is necessary, however, regarding the Newtonian framework:
since the background configuration is actually fixed by the integration of the TOV
equations, it is not clear what should be interpreted as “inertia” of the system in
this spurious scenario. Indeed, most studies existing in the literature take the more
consistent choice of always adopting the relativistic definition of density and use it in
different prescriptions for the moments of inertia (either the Newtonian expressions
or some general relativistic approximations, like the one discussed in Ravenhall
and Pethick, 1994). Here we will adhere to the approach adopted in Antonelli and
Pizzochero (2017) as well as in Pizzochero et al. (2017): in the Newtonian framework,
we take ρ as the mass-energy density calculated from the TOV equation, even in the
Newtonian case (that is, Φ,Λ→ 0 and ρ� P/c2). Note that the Newtonian maximum
glitch amplitude of Equation (2.23) is not affected by this alternative choice, as long
as one works coherently by using the same definition of the mass density ρ also in
the Magnus force. This ambiguity is inherent to the spurious nature of the Newtonian
scenario and disappears in the general relativistic framework.

In Figure 2.1 we compare the moments of inertia in the two frameworks (the labels
N and GR stand for “Newtonian” and “general relativistic slow-rotation” respectively)
by plotting I and In as a function of the gravitational mass M for the three unified
EoSs. For the moment of inertia In associated with the superfluid reservoir, we have
chosen the scenario of vortices that thread continuously the entire star, so that both the
crustal and core superfluid contribute to the angular momentum reservoir; as already
mentioned, this is the scenario investigated in Antonelli and Pizzochero (2017) and in
Pizzochero et al. (2017).

As expected from several existing studies with various EoSs, the total relativistic
moment of inertia is significantly larger than its Newtonian counterpart, with discrep-
ancies up to 50% for large stellar masses. The discrepancies are even more dramatic
for the reservoir, where In always exceeds the total moment of inertia I , indicating that
the effect of 1−ω/Ωp in the integrand of I is more severe than the diminishing effect
of yn in the integrand of In. Although unusual this result is not a physical contradiction,
as discussed previously. The only consistency requirement is I tot

n < I , which holds by
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Figure 2.1: Moments of inertia I (solid lines) and In (dashed lines) are shown for the three
EoSs considered and for the mass interval [0.8 M�, 2.5 M�]. A comparison is made between
the non-relativistic moments of inertia (orange curves, labeled by “N”) and the relativistic ones
calculated in the slow-rotation approximation (dark blue curves, labeled by “GR”). The curves
are terminated at the maximum mass allowed by each EoS, as reported in Table 2.1.

construction.

To better visualise the difference between the two frameworks, in Figure 2.2 we
plot the ratios In/I and Iv/I as a function of mass in the N and GR scenarios for the
three EoSs: this kind of ratio is often found in dynamical studies of pulsar glitches. In
particular, the figure allows to estimate the influence of entrainment: the advantage of
using the v-component (determined only by the vortex configuration) is that Iv encodes
entirely the effect of entrainment on the physical n-component. When entrainment
parameters are set to zero Iv tends to In: therefore, comparison of the two quantities
quantifies the global dynamical effect of the non-dissipative coupling between the two
components for a given vortex configuration. For the case under study of core plus
crust continuous reservoir, the differences are altogether quite small, no more than
some percent in the GR scenario. Moreover, for masses larger than ∼ 1.1 M� we find
that Iv > In, while smaller masses yield Iv < In, in both frameworks: the entrainment
parameters adopted here are large and negative in the crust, but small and positive in
the core.

When the superfluid reservoir extends into the core, the crust contribution to Iv
dominates for light stars (which present a thick crust), while for more massive stars
(with thinner crusts) it is the core contribution that prevails. This is different from
the case in which the superfluid reservoir is confined into the crust, defined as the
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Figure 2.2: Moments of inertia of the superfluid component in the whole star in units of the
total moment of inertia for the mass range [0.8 M�, 2.5 M�]. We make comparison between
two cases: when strong entrainment is present (and thus the quantity of interest is Iv/I , solid
lines) and when the entrainment profile is zero (in this case Iv is equal to In and we plot
the ratio In/I , dashed lines). In both cases we show the curves calculated in the Newtonian
framework (orange curves, labeled by “N”) and in the slow-rotation approximation (blue
curves, labeled by “GR”).

region where nB < nedge (see Table 2.1): entrainment has a marked decreasing effect
on the moment of inertia of the crustal superfluid (see Andersson et al., 2012; Chamel,
2013). As seen in the Figure 2.3, the presence of entrainment actually reduces by a
factor 3-4 the effective moment of inertia of the crustal superfluid. On the other hand,
the presence of relativistic corrections works in the opposite direction, by slightly
increasing Iv/I .

2.2.2 Maximum glitch amplitudes

Let us now discuss and compare the maximum glitch amplitudes in the Newtonian
and relativistic frameworks. Once the input has been fixed (EoS, pinning forces and
entrainment coefficient), the maximum glitch amplitude depends only on the stellar
mass. In the following, we will discuss three cases, corresponding to the different
scenarios explored in Section 2.1:

Model N – This is the Newtonian framework adopted in Pizzochero et al. (2017):
the maximum glitch amplitude as a function of mass ∆Ωmax(M) is calculated with
Equation (2.23). As already remarked, the Newtonian result does not depend on the
entrainment parameters and it is not necessary to specify how vortices are arranged,
since both the parallel and slack vortex configurations give the same result. Moreover,
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Figure 2.3: Moments of inertia of the superfluid in the crustal pinning region in units of the
total moment of inertia for the mass range [0.8 M�, 2.5 M�]; as in Figure 2.2, Iv/I is the case
with entrainment (solid lines), while In/I is the case without entrainment (dashed lines).
Again, we show the curves calculated in the Newtonian framework (orange curves, labeled by
“N”) and in the slow-rotation approximation (blue curves, labeled by “GR”).

also the extension of vortices inside the core is unimportant, as long as vortex lines
extend at least across the region where pinning is present. In this Chapter we assumed
the scenario of only crustal pinning and, as reported in Table 2.1, the region of non-
zero pinning lies inside the inner crust for the three EoSs considered. Therefore the
Newtonian results for ∆Ωmax(M) are valid for both cases of continuous vortex lines
and only crustal reservoir.

Model R – This is the relativistic generalisation of model N for the case of straight
rigid vortices, where the non-local unpinning condition is implemented: the function
∆Ωmax(M) is calculated from Equation (2.22). In this case the presence of entrain-
ment and the extension of vortices affect ∆Ωmax(M); the results shown here refer to
continuous vortices across the star interior, the general scenario adopted in Antonelli
and Pizzochero (2017) and Pizzochero et al. (2017). We remind that Equation (2.22)
was actually derived in a non-rigorous way, so that model R should be taken more as
a test for the dependence of the maximum glitch amplitudes on phenomenologically
reasonable (albeit not consistent) critical lags, like that of Equation (2.20).

Model S – This is the relativistic generalisation of model N for the case of slack
vortices, where the local unpinning condition is implemented: the function ∆Ωmax(M)
is calculated from Equation (2.26). This seems to be a natural generalisation of its
Newtonian counterpart, and all the remarks made for model N are still valid in this
GR extension.

To show an example of the typical result, in Figure 2.4 we fix the SLy4 EoS and
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Figure 2.4: Maximum glitch amplitude calculated as a function of mass for the SLy4 EoS in
the case of rigid vortices (R) and tensionless vortices (slack, S) in General Relativity and in the
Newtonian case (N).

plot the function ∆Ωmax(M) for the three models. We observe that both relativistic
models give maximum glitch amplitudes that are slightly larger than their Newtonian
counterpart, with model S closer to the non-relativistic case.

To better visualise our general results, in Figure 2.5 we show for the three EoSs
the relative difference between the relativistic models R and S and the Newtonian
one, namely we plot the curves ∆ΩR

max/∆Ω
N
max − 1 and ∆ΩS

max/∆Ω
N
max − 1, where

the superscript indicates the model used. We observe that in model R the relativistic
corrections increase with stellar mass, with values between 5% and 30% for all EoSs;
conversely, for model S the dependence on mass of the corrections is weak, with values
between 3% and 5% for all the masses allowed by the EoSs.

2.2.3 Relativistic corrections to the upper bounds on pulsar masses

Now, following the argument of Antonelli and Pizzochero (2017) and using the results
of the previous subsection, we estimate the upper bound on pulsar masses that can
be obtained from observations. As it is possible to see from Figure 2.4, the maximum
glitch is inversely proportional to the mass of the star. In other words, lighter stars can
achieve the largest glitches: if we observe a large glitch from a pulsar, all the stellar
models which predict a largest glitch smaller than the one observed are ruled out. In
this way we can put an upper limit on the mass of the glitching star. This method
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Figure (2.4)).

has been applied to a sample of large glitchers in Pizzochero et al. (2017): an upper
limit on the stellar mass can be obtained from the largest recorded glitch, while future
observations of even larger glitches will further constrain the mass. See, for instance,
the Crab pulsar, which has recently displayed its largest glitch (Shaw et al., 2018),
thus improving its mass constraint.

For a given pulsar, whose largest observed glitch amplitude is ∆Ω, the upper
bound on the mass Mmax is given by ∆Ω = ∆Ωmax(Mmax). The value of Mmax is
only dependent on the choice of the pinning force and the EoS used to calculate the
function ∆Ωmax(M) for models N and S, while model R requires also the entrainment
coefficients (as discussed previously, however, from the results in Figure (2.2) we
expect the maximum glitch to vary at most by some percent when entrainment is set to
zero). A graphical representation of the procedure used to estimate the upper bound
is shown in Figure (2.6), where we plot the inverted function M = M(∆Ωmax) for the
three EoSs; here, the curves refer to model R, the one showing the largest relativistic
corrections, but qualitatively these curves are very similar in all models, as can be seen
in Figure 2.4. Vertical dotted lines indicate the maximum glitch recorded for a small
sample of large glitchers (the glitch amplitudes are extracted from the Jodrell Bank
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Figure 2.6: Graphical representation of the upper mass limit for a glitching pulsar. In the
figure we plot the inverse of the function∆Ωmax(M) for the three EoSs; the scenario considered
here is that of model R (straight rigid vortices that thread the whole star). We also report the
largest observed glitch ∆Ω for some of the pulsars studied in Pizzochero et al. (2017): the
errors on ∆Ω are negligible, except for J0537-6910 and J0205+6449, which have a relative
error of ≈ 10%. For each pulsar, the value of Mmax is found by considering the intersection of
the gray dashed lines (corresponding to the value of ∆Ω) with one of the three curves. Taking
the Vela as an example, the range of Mmax arising from the EoSs considered here is highlighted
with a shaded band.

Glitch Catalogue1).
As an example, let us consider the benchmark case of the Vela pulsar (J0835-

4510), whose largest observed glitch to date has amplitude 2.17× 10−4 rad/s. By
looking at Figure 2.6, the Vela should have a mass lower than Mmax ≈ 1.5 M�, when
SLy4 or BSk21 are used, slightly less for BSk20. Instead of listing the mass upper
bounds corresponding to all the glitchers with maximum recorded glitch larger than
≈ 5× 10−5 rad/s and their deviation with respect to the Newtonian result, we prefer
to plot the discrepancy between the relativistic and non-relativistic values of Mmax
as a function of the maximum glitch amplitude. Note that the minimum value for
which it is possible to employ this method – i.e. 5× 10−5 rad/s – is dictated by the
maximum mass achievable by the different EoSs, see Figure 2.6. In fact, glitch sizes
smaller than this value do not provide constraints with this method, as they would lie
on the left of the curves for all the EoSs under consideration. The assumption of zero
angular momentum reservoir after the largest glitch is a working hypothesis we made
to obtain the maximum glitch amplitude in (2.16). Nevertheless, finite-size effects in

1Data available at www.jb.man.ac.uk/pulsar/glitches.html, see also Espinoza et al. (2011).

www.jb.man.ac.uk/pulsar/glitches.html
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Figure 2.7: Magnitude of the general relativistic corrections to the mass upper bound Mmax
as a function of the maximum observed glitch, for the SLy4, BSk20 and BSk21 EoSs and for
the rigid and tensionless cases.

the reservoir have been observed – through correlations between glitch size and the
following waiting time – only in PSR J0537-6910 so far (Melatos et al., 2018). Note,
however, that if a pulsar does not deplete its reservoir after its largest glitch, it would
mean that is not its maximum glitch achievable: a largest glitch is always possible, by
depleting the reservoir more. This supports the fact that the constraint given by the
largest glitch is an upper limit on the mass.

In Figure 2.7 we show for the three EoSs the relative difference between the
relativistic models R and S and the Newtonian one, namely we plot the curves
MR

max/M
N
max − 1 and MS

max/M
N
max − 1, where the superscript indicates the model used.

The main remark is that the relativistic corrections to Mmax are always positive and
small, less than 5% for all masses allowed by the EoSs; in particular, for model S the
discrepancies are smaller than 1%. The conclusion is that the upper bounds on masses
presented in Pizzochero et al. (2017) are quite robust: in the scenario of slack vortex
lines, they are uniquely determined by the pinning force profile and the EoS adopted,
while they are independent on entrainment and on the extension of vortices in the
core, and are basically unaffected by general relativistic corrections.





CHAPTER 3
Activity parameter

Some information about the structure of a glitching pulsar can be obtained from its
glitching behaviour. In particular, how frequent and how large its glitches are. One way
to encode this information is a study on the glitch size and waiting time distributions
(see, e.g., Melatos et al. 2008, Howitt et al. 2018 and Fuentes et al. 2019). While
calculating these functions is probably the method to extract information in the most
complete way, it is possible to summarise the behaviour of a glitcher in the activity
parameter, which is a quantity that expresses the average acceleration of a pulsar due
to glitches. In this Chapter we will discuss some approaches for calculating the activity
parameter, and some constraints on the mass and moments of inertia of a neutron star
which can be obtained from this quantity.

3.1 Calculation of the activity parameter

The activity parameter was first introduced in McKenna and Lyne (1990). It encodes
a quick estimate of a pulsar glitching behaviour, i.e. how large glitches the pulsar
displays and how frequently. If we assume that a particular object has undergone Ngl
glitches at times t i with size ∆Ωi – with i = 1, ..., Ngl – the absolute activity can be
defined as:

Aa =
1

Tobs

Ngl
∑

i=1

∆Ωi , (3.1)

where Tobs ≈ tNgl
− t1 is the temporal duration of the observation. Note that defining

this parameter in this way, we are assuming that no observations have been made
before the first and after the last glitch: it is thus possible for Tobs to be much longer,
yielding a lower value for the activity. Moreover, we are assuming that the stars
are regularly monitored, without missing any glitch. This is, of course, not the case,
but while large glitches can be easily detected, small glitches, easier to miss, do not
contribute to the activity in a significant way. It is useful to define the dimensionless
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activity parameter G as

G ≡ Aa

|Ω̇∞|
. (3.2)

This variable gives us an idea of the amount of spin down reversed by glitches, and it
allows for comparing different objects with different spin down rates. In the literature,
the absolute activity is usually calculated by fitting the data, rather than using the
above definition (see, e.g., Wong et al., 2001). An example of the activity fit performed
with a least-squares linear fit is shown in Figure 3.1 for the six pulsars which have
displayed the currently largest number of glitches. The motivation behind the choice
of an ordinary linear regression is simple: we are assuming a homogeneity in time,
which implies that the statistical properties of the random process do not depend on
the window of observation. In particular, the mean rate must be practically constant
in time (note that this is not true for some objects, like the Crab, see Carlin et al.,
2019). The idea of pulsar activity Aa fits well this concept. However, we immediately
face two problems: on the one hand, the choice of fitting the activity with a linear
regression causes a problem of statistical significance (Montoli et al., 2020c). We need
at least three (or, better, more than three) glitches in order to perform a reliable fit.
Moreover, we need at least two glitches with comparable orders of magnitude: a linear
regression would poorly fit a set of data with just one large glitch and many others
with sizes several orders of magnitude smaller. This characteristic can be quantified
with a parameter which summarises the number of maximal glitches that would be
needed to account for the observed total spin-up:

Nmax =

∑N
i=1∆Ωi

∆Ωmax
, (3.3)

where ∆Ωmax is the largest displayed glitch. On the other hand, even if the glitches
respect the above conditions and they are all of similar sizes (for example, in the
cases of PSR J0537-6910 or of the Vela pulsar, see Figure 3.1), a linear fit may not
be the ideal choice. In fact, a linear fit implies the presence of a strong correlation
between glitch sizes and the waiting times between them. This feature, however, is
not present in any of the pulsars which have been studied, where instead it seems to
be very little correlation between glitch sizes and the waiting times before and after
them (Melatos et al., 2018) – with the notable exception of PSR J0537-6910, which
presents correlation between glitch sizes and the following waiting time (Middleditch
et al., 2006; Antonopoulou et al., 2018; Ferdman et al., 2018; Ho et al., 2020) – and
autocorrelations in sizes and waiting times (except for the Crab’s glitch sizes, see
Carlin and Melatos, 2019a).

In order to solve this issue, we present here two alternative ways to estimate the
activity of a pulsar (see also Montoli et al., 2020a). One requires to calculate the
probability distributions for the waiting times and sizes of the glitches of a particular
pulsar, and then to obtain an estimate of the pulsar activity probability distribution
starting from this information. The other method is much simpler, and makes use of
the bootstrap method.
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Figure 3.1: Pulsar activity calculated with a least-squares linear fit (in blue) on the midpoints
of the glitch steps in the cumulative glitch sequence (see Wong et al., 2001), for the six pulsars
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so that the slopes of the curves are the dimensionless activities G.
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Probability distribution estimates for the waiting times and sizes of glitches have
already been performed in many works in the literature, and in many different ways.
In Melatos et al. (2008) the best fitting distribution is studied by minimising the
Kolmogorov-Smirnov statistic, in Fuentes et al. (2019) different distributions are stud-
ied with the maximum likelihood technique and compared with the Akaike Information
Criterion, while in Howitt et al. (2018) the empirical distributions have been smoothed
with a Kernel Density Estimator. Here we would like to study the best fitting probability
distribution for both the sizes and waiting times in a fully Bayesian framework and try
to infer the probability distribution of the activity parameter after N glitches AN . To
do so, we have to choose a set of probability distribution candidates among which we
find the best fitting for a particular pulsar and its waiting times/sizes. We choose a
uniform distribution, a Pareto (power law) distribution, an exponential distribution, a
gamma distribution, a truncated normal and a Rayleigh distribution.

The uniform distribution has been chosen as a test distribution: it is one of the
simplest distribution, so it can be useful as a benchmark distribution with respect
to which we study how well a particular model performs. In particular, we decide
to further simplify this function, by keeping the left bound fixed at xmin = 0. The
Pareto distribution has a power-law-like behaviour, which is the expected probability
distribution for the sizes if the glitch phenomenon is a self-organised one, as in vortex
avalanches (Melatos et al., 2008; Warszawski and Melatos, 2008):

P(x | xmin, a) =

(

a
xmin

�

x
xmin

�−a−1
if x ≥ xmin

0 elsewhere
(3.4)

On the other hand, an exponential distribution is also the expected one for the waiting
times in a self-organised system:

P(x |λ) =

¨

λ e−λx if x ≥ 0

0 elsewhere
(3.5)

We also try to study a more general distribution, the gamma distribution, which
includes both the trends of a Pareto distribution and an exponential one:

P(x |α,β) =

¨

βα

Γ (α) x
α−1e−β x if x ≥ 0

0 elsewhere
(3.6)

where Γ is the gamma function. Finally, we study also the possibility of a preferred glitch
size and waiting time, by including a truncated normal and a Rayleigh distributions.
It is important that the normal distribution is truncated, as we do not expect glitches
of negative sizes or negative waiting times.

P(x |µ,σ, xmin) =

¨

1
C exp

�

− (x−µ)
2

2σ2

�

if x ≥ xmin

0 elsewhere
(3.7)
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where C is the normalisation constant. Also the Rayleigh distribution has suitable
characteristics, as it is defined for only for positive values, it shares some similarities
with the normal distribution, and it has fewer parameters than the truncated normal.

P(x |σ) =

¨

x
σ2 exp

�

− x2

2σ2

�

if x ≥ 0

0 elsewhere
(3.8)

We have to keep in mind, however, that it is not a symmetric distribution, i.e. it has
non-null skewness.

Given a set of data D, the probability distribution of the set of parameters P of a
particular model M (i.e. one of the probability distribution we have assumed above
for the data) is given by the Bayes theorem:

P(P |D, M) = P(D|P , M) P(P |M)
P(D|M) , (3.9)

where P(P |D, M), P(D|P , M), P(P |M) and P(D|M) are the posterior distribution,
the likelihood, the prior distribution and the evidence, respectively. Let us assume
a probability distribution P(x |P) for the data we are interested in among the six
described before, that the measurements have no uncertainties and that each datum
is independent of the others. In this case, the likelihood of the parameters is given by:

P(D|P) =
∏

i∈data

P(x i|P). (3.10)

If we have more than one model, we can calculate which of two of them is more likely
by calculating the ratio (also known as Bayes factor, see, e.g., MacKay 2003)

Ki j =
P(Mi|D)
P(M j|D)

=
P(D|Mi)
P(D|M j)

, (3.11)

where the last equality has been obtained by employing the Bayes theorem, and by
assuming no particular preference a priori of one model Mi with respect to another. So
if we want to compare two different models we have to perform a Bayesian inference
(3.9) and study the ratio of the evidences calculated in this way. A positive natural
logarithm of the Bayes’ factor yields a preference of model Mi with respect to M j,
the other way around if it is negative. The other ingredient necessary to perform the
inference in (3.9) is a prior distribution. The idea employed here is that of using the
Jeffey’s principle in order to find the most uninformative prior for each distribution
(Gelman et al., 2013). As a rule of thumb, the prior on all “scale” parameters, like
the standard deviation σ of the normal distribution, follow a log-uniform distribution,
while all the “location” parameters, like the mean µ, follow a uniform distribution.
The ranges of the parameters have been chosen not to cut the posterior distribution.
We summarise the priors for the probability distribution described above in Table 3.1.

The pulsars we are interested in are all those pulsars with more than 15 glitches
detected, namely the Crab pulsar (J0534+2200), J0537-6910, J0631+1036, the Vela
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Model Variable Prior Range (sizes) Range (waiting times)

Uniform xmax Uniform (0, 10000) (0, 14600) [days]

Pareto xmin Log-uniform (1e-5, 1e4) (1, 14600) [days]
a Uniform (0, 10) (0, 10)

Exponential λ Uniform (0,100) (0,100) [days−1]

Gamma α Uniform (0, 10) (0, 10)
β Uniform (0, 100) (0, 100) [days−1]

Truncated µ Uniform (0,10000) (0, 14600) [days]
Normal σ Log-uniform (10, 10000) (10, 10000) [days−1]

xmin Uniform (0,10000) (0, 14600) [days]

Rayleigh σ Log-uniform (10, 10000) (10, 10000) [days]

Table 3.1: Priors for the different probability distributions used for sizes and waiting times.
Note that the data for the sizes is in units of 10−9Ω, where Ω is the angular velocity for the
particular pulsar under examination.

pulsar (J0835-4510), J1341-6220 and J1740-3015. For the Crab pulsar, only the data
after MJD 45000 has been considered, as there is a three-year gap with no observations
between February 1979 and February 1982. Since then, it has been monitored on a
daily basis (Espinoza et al., 2014; Lyne et al., 2015). The data has been retrieved from
the Jodrell Bank Glitch Catalogue1 (Espinoza et al., 2011). Note that all these pulsars
are also present in the sample of Fuentes et al. (2019).

In this framework, a modelMi simply represents a different probability distribution
for the sizes/waiting times. We test which of these models is the best one by calculating
the evidence for each dataset and each pulsar and studying the Bayes factor. The Bayes
factor can be calculated by the means of a nested sampling algorithm (dynesty, see
Speagle, 2020; Ashton et al., 2019a). We report the results in Tables 3.2 and 3.3 for
the sizes and waiting times, respectively. All the Bayes’ factors are calculated with
respect to the simplest model of a uniform distribution between 0 and a value xmax.
Keeping in mind that the natural logarithm of a Bayes’ factor larger than 5 indicates a
very strong evidence for a model with respect to another (Kass and Raftery, 1995),
we can notice that for sizes the best describing distribution is the Pareto distribution
for most of the pulsar, except for the Vela and PSR J0537-6910. This fact has already
been noted in many previous works (Melatos et al., 2008; Fuentes et al., 2019). What
is interesting is the best distribution describing these two exceptions: while for J0537-
6910 the best fitting distribution is a truncated normal, thus indicating a preferred
glitch size for it, it seems that the best probability distribution for the Vela pulsar is
the uniform one. In other words, it seems that the Vela pulsar does not seem to have

1www.jb.man.ac.uk/pulsar/glitches.html, data retrieved on July 2020.

www.jb.man.ac.uk/pulsar/glitches.html
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Pareto Gamma Exponential Truncated Normal Rayleigh

J0534+2200 63.6 51.3 46.1 22.3 -32.9
J0537-6910 -55.0 -7.4 -5.1 5.1 -2.9
J0631+1036 52.8 37.4 16.0 6.1 -55.7
J0835-4510 -40.8 -20.8 -18.1 -5.0 -13.4
J1341-6220 6.1 1.8 2.3 3.2 -19.8
J1740-3015 81.4 67.6 39.6 21.5 -74.8

Table 3.2: Natural logarithm of the Bayes factor for the different size probability distribution
of the different pulsars, calculated with respect to the simplest uniform model with constant
xmin = 0.

Pareto Gamma Exponential Truncated Normal Rayleigh

J0534+2200 15.7 15.9 18.7 16.7 0.0
J0537-6910 -11.5 7.0 -2.0 11.3 15.3
J0631+1036 -0.9 0.6 3.2 4.6 -2.2
J0835-4510 -26.6 -14.0 -15.0 -2.5 -1.8
J1341-6220 -5.3 -3.4 -11.1 1.6 4.5
J1740-3015 3.4 8.7 11.1 12.1 1.4

Table 3.3: Natural logarithm of the Bayes factor for the different waiting time probability
distribution of the different pulsars, calculated with respect to the simplest uniform model
with constant xmin = 0.

a preferred size for its glitches. A bit less clear is the situation for the waiting times.
For some of the pulsars in the sample, the exponential model seems to be excluded
(J0537-6910, Vela and J1341-6220, see also Howitt et al., 2018), while for all the
others it is not excluded, but it is not the strongly preferred one either. In general, it
seems there is not a particular predilection for one model with respect to another for
almost all the pulsars, except perhaps J0537-6910 – which seems to be well described
by a Rayleigh/truncated normal distribution.

One of the advantages of the nested sampling algorithm is that – as a by-product of
the calculation of the evidence for a particular inference – it is able to produce samples
of the posterior distribution of the parameters of the model. These posteriors can be
then employed in order to find the inferred probability distribution by calculating the
posterior predictive distribution, that is the probability of drawing a new value x̄ given
the data D:

P( x̄ |D, M) =
∫

P( x̄ |P , M) P(P |D, M)dP , (3.12)

where the integration is performed on the whole parameter space. The model M which
the above relation refers to is the best one as estimated by the Bayes factor. Starting
from the probability distribution of the waiting times t and the sizes s it is possible to
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infer some information about the probability distribution for the dimensionless glitch
activity after N glitches GN . Keeping in mind the definition of the pulsar activity G,
it is possible to calculate its probability distribution, as it is a ratio of two random
variables, the sum of sizes s̃N and of waiting times t̃N−1. The latter, in turn, are sum of
random variables themselves, i.e. the single glitch size si and the single waiting time
t i . Thus, it is possible to obtain:

s̃N =
N
∑

i=1

si ⇒ s̃N ∼ Ps̃N
= Ps ∗ . . . ∗ Ps
︸ ︷︷ ︸

N times

(3.13)

t̃N−1 =
N−1
∑

i=1

t i ⇒ t̃N−1 ∼ Pt̃N−1
= Pt ∗ . . . ∗ Pt
︸ ︷︷ ︸

N−1 times

(3.14)

The random variable GN is the ratio of the two random variables s̃N and t̃N−1. The
probability distribution of GN can be obtained through the ratio distribution:

PGN
(g) =

1
N − 1

∫ ∞

−∞
dx |x | Pt̃N−1

(x) Ps̃N
(x g) . (3.15)

Although it is a theoretically well-posed solution, it is troublesome to numerically
obtain this distribution, as a convolution of N probability distributions, albeit identical,
starts to be infeasible when N becomes large.

An alternative way of calculating activity is the bootstrap method (Efron, 1979).
The idea is that of resampling with replacement the original data in order to calculate
some statistics, as, e.g., the mean and standard deviation of the calculated activity.
In our case, the samples are two: the waiting time sample (of length N − 1) and
the size sample (of length N). Of course, in our case we have to draw the same
number of samples (N − 1) in order to have a fair estimation of the activity mean
and standard deviation. The pulsar activity is then calculated not by performing a
linear fit to the resampled data, but by employing the definition in Equation (3.1).
We can also take into account the possibility of a dependency between a glitch size
and the preceding or the subsequent waiting time, so it is useful to also bootstrap on
other two samples: the sample made up by ordered pairs {(si , tpre,i)}i=2,...,N , where
tpre,i is the waiting time preceding the glitch of size si, and the sample comprised
by ordered pairs {(si , tpost,i)}i=1,...,N−1, where tpost,i is the waiting time following a
glitch of size si . We plot in Figure 3.2 the histograms obtained by resampling the data
ten thousand times in all the three cases described above. In the same plot, also the
dimensionless activities obtained as a result of the linear fit of the cumulative glitch
data are displayed. Looking at the Figure, we can see that the activity calculated
by means of bootstrapping is compatible with the results obtained from a linear fit,
but it generally has larger standard deviations (see also Table 3.4). This is probably
due to the fact that a linear fit implies a strong correlation between sizes and waiting
times, which is not observed in glitching pulsars (Melatos et al., 2018). An interesting
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Figure 3.2: Dimensionless pulsar activity G, calculated by sampling both the size and waiting
time samples randomly (in blue), by sampling the pair (s, tpre) (in orange) and the pair (s, tpost)
(in green). The results of the linear fit of the cumulative glitch data is also plotted (in red, the
shaded area is the 1σ region).
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Pulsar Gfit [%] Grand [%] Gpre [%] Gpost [%]

0534+2200 0.0079± 0.0007 0.0082± 0.0046 0.0085± 0.0048 0.0083± 0.0049
0537-6910 0.8744± 0.0028 0.8942± 0.1143 0.8603± 0.1119 0.8801± 0.0290
0631+1036 1.7732± 0.1806 2.1142± 1.6717 2.2857± 1.7976 1.7972± 0.8544
0835-4510 1.6163± 0.0156 1.6484± 0.2723 1.6105± 0.1793 1.6604± 0.2407
1341-6220 1.5242± 0.0983 2.0235± 0.5697 1.9290± 0.5820 1.9007± 0.5105
1740-3015 1.2161± 0.0376 1.3120± 0.5337 1.2916± 0.5363 1.2133± 0.4490

Table 3.4: Dimensionless activities and their standard deviations, calculated for the six pulsars
with the largest number of glitches, with a least-squares linear fit (Gfit), with a bootstrap on
the size and waiting time samples separately (Grand), and on the pairs size - preceding waiting
time (Gpre) and size - following waiting time (Gpost).

exception pointed out in Middleditch et al. (2006) is that of PSR J0537-6910, one
of the few stars which presents a significant correlation between a glitch size and
the following waiting time. This correlation shows its effects also in Figure 3.2: the
histogram for J0537-6910, in the particular case of the sample of size-following waiting
time pairs, is much more peaked than the other two cases. At lower confidence, also
PSR J0631+1036 shows a correlation between size and the following waiting time, and
Vela a correlation between size and the preceding waiting time (Melatos et al., 2018).
These correlations show their effect in the histograms as well. It is also interesting
to notice the peculiar form of the PSR J0631+1036 activity distribution: it shows
two clear peaks, one on very small values and one around G ≈ 0.02. This is probably
because of the particular glitch sequence of this star (see Figure 3.1): it displays two
very large glitches, and many others with sizes several orders of magnitude smaller.
Thus, it is likely that the peak on smaller values has been generated by sampling
the small glitches only, while the peak on larger values occurs when one or both the
large glitches have been sampled. Moreover, as a consequence of the particular glitch
sequence for this star, the value of Nmax for this star is smaller than the ones of the
other stars in the sample.

In Figure 3.3 we try to give an idea of how much the activity changes when a
new glitch occurs. The first point of each curve is the activity calculated with the
definition in Equation (3.1) using the first ten glitches. Then, we update the activity
value whenever a new glitch is displayed. In order to make a comparison with the
activity calculated with the linear fit or with the bootstrap method, we decided to
neglect the first glitch, to have the same number of glitch sizes and waiting times. We
also plot the activity parameter calculated with the linear fit and the bootstrap method
(with uncorrelated glitch sizes and waiting times), along with their uncertainties. We
note that, as a general trend, the activity evolution of each star lies outside the error
region for the linear fit, while it is usually well inside the bootstrap uncertainty. A
notable exception is that of PSR J1341-6220, which is well below the error bar for
both the activity calculations, except for the last three glitches. This is because these
glitches are three of the largest ones displayed by this pulsar (see also Figure 3.1).
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Figure 3.3: Evolution of the glitch activity over time. The first point of each curve is the
activity calculated with the first ten glitches, with the first one neglected. The subsequent
points are calculated by gradually adding all the glitches that pulsar displayed. The estimate
of the linear fit (in yellow) and of the bootstrap with random waiting times and sizes (in red)
are displayed, along with their uncertainties (shaded).
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Also the activity evolution of PSR J0537-6910 is underestimated, but this is probably
due to our choice of neglecting the first glitch, which is also the largest one in this
object. For this pulsar and the Vela, the activity seems to have stabilised. This seems
to correlate with the amount of time these objects have been observed, and their spin
down rate Ω̇. The correlation is not simple, however, as the Crab has a higher spin
down rate (see Table 3.5), and yet its activity is very noisy. In general, however, it
is interesting to notice how variable the activity parameter is. A single large glitch
can change its value dramatically, even doubling it (see, e.g., PSR J0631+1036 or the
Crab pulsar after its November 2017 glitch, Shaw et al. 2018). This fact stresses the
importance of having a much larger uncertainty on the activity, which is the result of
not assuming a linear dependence between glitch sizes and waiting times.

3.2 Moment of inertia constraint

The activity parameter allows for many different ways to extract information from a
glitching pulsar. In fact, this parameter allows to estimate the rate at which the angular
momentum reservoir in the pulsar depletes due to glitches. The idea is that of using
this parameter in order to constrain the moment of inertia of that part of the star which
stores the angular momentum excess (Datta and Alpar, 1993). In this Section, we will
present a revised version of the original argument of Link et al. (1999), Andersson
et al. (2012) and Chamel (2013), as it is presented in Montoli et al. (2020a). Let us
start from Equation (2.11). We are still working in a slow rotation framework. It is
useful to divide Ωp into the contributions due to the smooth relaxation (R) during the
waiting times and the one from glitches (G),

Ω̇p = Ω̇
G
p + Ω̇

R
p , (3.16)

where Ω̇G
p are instantaneous accelerations of the star due to glitches, namely

Ω̇G
p =

∑

i

δ(t − t i)∆Ωi > 0 . (3.17)

Analogous decomposition holds also for ∆L[∂tΩnp]: during glitches ∆L[∂tΩ
G
np]< 0,

while for the rest of the time ∆L[∂tΩ
R
np]> 0. Let us now introduce an average over

a long time interval T (which does not have to coincide with the observational time
Tobs in Equation (3.1)),

〈 f 〉T = T−1

∫

T
d t f . (3.18)

Averaging the total angular momentum balance (2.11) we get

〈∆L[∂tΩ
G
np]〉+ I〈Ω̇G

p 〉+ 〈∆L[∂tΩ
R
np]〉+ I〈Ω̇R

p〉= −I |Ω̇∞| . (3.19)

We can simplify the equation above by making two observations.



3.2. Moment of inertia constraint 65

Firstly, due to the angular momentum conservation during a glitch, from the glitch
contribution we get

〈∆L[∂tΩ
G
np]〉+ I〈Ω̇G

p 〉= 0 . (3.20)

It is easy to notice that the quantity 〈Ω̇G
p 〉 corresponds to the average acceleration of

the star due to glitches, i.e. it is the true activity of the pulsar A. The above relation
thus becomes

〈∆L[∂tΩ
G
np]〉= −IA . (3.21)

We have to stress that the activity here is the true activity of the star over a period T
(which ideally should be very large), and it can be estimated through Equation (3.1)
for a limited observation time span Tobs.

Secondly, over the long period the star spins down as a whole: the lag oscillates
between well-defined limits, implying that the average 〈∆L[∂tΩnp]〉 has to tend to 0,
as T tends to infinity. Hence, the relaxation and glitch contributions must balance,
such that

〈∆L[∂tΩ
R
np]〉= −〈∆L[∂tΩ

G
np]〉 . (3.22)

From the practical point of view we have to assume that, during the observational
survey Tobs, the star spins down as a whole on the average: this means that the
measured activity is the true stationary one.

Finally, we can derive the constraint to the moment of inertia fraction given by
the pulsar activity. As we have done in Chapter 2, it is useful to employ the formalism
with the v−component, as in this case the vorticity is columnar also in the presence of
entrainment. We have to stress the fact that all the relations obtained until now are
still valid: the only difference is that ∆L is written as a function of the rescaled lag
Ωvp instead of the true lag Ωnp, by using Equation (2.18). Let us define the rescaled
lag ∂tΩ

P
vp > 0, which is the maximum value of ∂tΩ

R
vp, and corresponds to the case

when everything is perfectly pinned. Let us start from the Feynman-Onsager relation
for a two-fluid system in the slow rotation framework. Keeping the same formalism of
Chapter 2, this turns out to be (Antonelli et al., 2018):

Ωvp(r,ϑ) = −Ωp +ω(r) +
κmnnBeΦ(r)N (r,ϑ)

2π(ρnc2 + P) (r sinϑ)2
, (3.23)

where N (r,ϑ) is the number of vortices at (r,ϑ). When everything is pinned, it is
easy to see that the time derivative of N is zero, as we do not expect the vortex
configuration to change when vortices are pinned. Thus we obtain

∂tΩ
P
vp = −Ω̇p + ∂tω . (3.24)

We now have to calculate the time derivative of the drag of the inertial framesω. Since
we are working in the slow-rotation approximation, all the metric functions in (2.1)
are approximated to the first order in Ω. So, as we have mentioned in the previous
Chapter, all metric functions but ω can be derived from the usual TOV equations, as
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the deformations from the spherical configuration arise only at the second order in Ω.
The drag ω in the slow-rotation approximation is at the first order in Ω, namely:

ω≈ω1Ω (3.25)

The slow-rotation approximation requires the spacetime to be stationary, i.e. ∂tΩ= 0.
In our particular case, this is not completely true, but we can assume a quasi-stationary
approach, which can be justified by the fact that the glitch rise time is expected to be
orders of magnitude larger than the hydrodynamical timescale (Sourie et al., 2017).
Since we are assuming that only Ω is time-dependent, and that ω1 =ω/Ω depends
only on the radial structure of the star (Hartle, 1967), Equation (3.24) can be written
as:

∂tΩ
P
vp = −

�

1−
ω

ΩP
p

�

Ω̇P
p ≡ −ω̃ Ω̇

P
p , (3.26)

where we have defined ω̃= 1−ω/ΩP
p . The angular momentum conservation holds

also in the inter-glitch time, and also when the superfluid is perfectly pinned. We can
then write

〈∆L[∂tΩ
P
vp]〉+ IΩ̇P

p = −I |Ω̇∞| . (3.27)

Employing Equation (3.26), we find:

Ω̇P
p (I − Iv) = −I |Ω̇∞| , (3.28)

where we have defined Iv ≡ 〈∆L[ω̃]〉. Note that this definition of Iv is different
from that of Chapter 2, as it corresponds to the total angular momentum I tot

v of the
v-component.

Finally, let us now combine Equations (3.21) and (3.22). We have to notice that
the angular momentum excess obtained by using ΩP

vp is the maximum achievable by
the star. So we expect, in general, that the extra angular momentum in the inter-
glitch moments is smaller than the one when all the superfluid is pinned. All these
considerations yield

〈∆L[∂tΩ
P
vp]〉 > 〈∆L[∂tΩ

R
vp]〉= IA . (3.29)

By substituting ∂tΩ
P
vp from Equation (3.26) we obtain:

Ω̇P
p 〈∆L[−ω̃]〉 > IA ⇒ −Ω̇P

p Iv > IA , (3.30)

and finally, substituting Ω̇P
p from Equation (3.28), we can find the constraint on the

moment of inertia fraction of the superfluid component:

I Iv

I − Iv
|Ω̇∞|> IA ⇒

Iv

I − Iv
> G (3.31)
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Of course, this result can be obtained also in a Newtonian context, depending on
what prescription we use for ∆L. In the slow rotation case, the value of Iv is (see
Equation (2.7))

Iv =
8π
3c2

∫ R

0

dr r4eΛ(r)−Φ(r)
�

ρ(r)
c2
+ P(r)

�

yn(r)
1− εn(r)

Ωp −ω(r)
Ωp

, (3.32)

while the total moment of inertia is the usual one in the slow rotation framework
(Equation (2.6)).

We have to remark that in Equation (3.32), yn is the superfluid neutron baryon
density divided by the total baryon density. This superfluid fraction yn(r) is, of course,
null where there is no superfluid, and different from zero where there actually is the
superfluid reservoir. For a long time, the region containing this superfluid has been
thought to be the crust of the star. The first measurements of the activity parameter of
the Vela pulsar and the moment of inertia fraction estimates for different EoSs seemed
to be in full accordance and to respect Equation (3.31) (Link et al., 1999). Only later,
the entrainment parameter εn(r) in the crust of a neutron star has been calculated
in Chamel (2012), by estimating the effects of Bragg scattering on the superflow
due to the presence of the crustal lattice. These calculations yield a highly negative
entrainment parameter in the crust, which implies a severely hindered motion of the
superfluid component. This would reduce the amount of extra angular momentum
stored in the crust between two glitches – and thus of Iv – making the requirement
in (3.31) more difficult to be met. As a result of that, the only way for the star to
acquire enough angular momentum between glitches to explain the observed activity
is to have a large region inside it to store angular momentum (larger than the crust of
the star), or to have an unreasonably small mass (see below). This problem has been
evidenced in many papers (Andersson et al., 2012; Chamel, 2013; Ho et al., 2015;
Delsate et al., 2016; Carreau et al., 2019).

If we assume the superfluid region to be limited in the crust of the star, and we
fix the microphysical parameters, namely the EoS and the entrainment parameter,
then the moment of inertia fraction in (3.31) is a function of the mass of the star only.
Therefore, similarly to the case for maximum glitch amplitude, also here we obtain a
constraint on the mass of the pulsar. Let us plot in Figure 3.4 some values of Iv/(I− Iv)
as a function of the mass for some EoSs and for the entrainment parameter calculated
in Chamel (2012), assuming a superfluid reservoir limited to the crust. As we can see,
a problem arises: the Vela pulsar (PSR J0835-4510) requires excessively low values
for its mass, ranging from ≈ 1.1M� of the BSk20 EoS to ≈ 0.8M� for the SLy4 EoS.
Things are marginally better if one considers the 1σ uncertainty calculated with the
bootstrap method described in Section 3.1, with random waiting times and glitch sizes:
for the BSk20 EoS, the Vela pulsar has an upper limit on the mass of ≈ 1.2M�, which
starts to be more reasonable. Note that this value is above the minimum mass of a
neutron star estimated from calculations of core-collapse supernovae (1.17 M�, Suwa
et al., 2018) and the smallest mass measured in a neutron star (1.174± 0.004 M�,
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Figure 3.4: Activity constraint on the superfluid component moment of inertia plotted for
some EoS: SLy4, (Douchin and Haensel, 2001), BSk20 and BSk21 (Goriely et al., 2010),
and the DDME2 EoS (Lalazissis et al., 2005), glued with a SLy4 crust (following the method
described in Fortin et al., 2016). The entrainment parameter is that calculated in Chamel
(2012), and the superfluid reservoir is limited in the crust of the star. The dimensionless
activity parameter G – calculated with the bootstrap method described in Section 3.1 (the case
with random glitch sizes and waiting times) – is also plotted for the Vela pulsar, along with the
1σ, 2σ and 3σ uncertainties.

measured in PSR J0453+1559, Martinez et al., 2015). If we consider the 3σ error, then
we can get up to ≈ 1.5M� for the same EoS. The solution to this problem, however,
is not straightforward: the entrainment parameter in crust of the star calculated in
Chamel (2012), the assumption of a superfluid reservoir limited in the crust of the
star, and the measurement of the activity parameter seem not to be compatible with
each other. This is why in the last years there has been a crisis in the widely accepted
glitch paradigm, and in particular that of assuming the glitch reservoir to reside only
in the crust of the star. Several ways have been proposed to overcome this impasse,
including a maximally stiff EoS (Piekarewicz et al., 2014), a Bayesian analysis of
the EoS uncertainty (Carreau et al., 2019) or an extension of the region where the
neutron superfluid participates in the glitch beyond the crust-core transition, based
on the assumption that only the superfluid in the 1S0 state participates in the glitch
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phenomenon and on an analysis of the temperature of the star (Ho et al., 2015). On
the other hand, also different calculations of the entrainment parameter have been
proposed, which include hydrodynamical approaches (Martin and Urban, 2016) or
Bragg scattering in a disordered crustal lattice (Sauls et al., 2020), both of which yield
milder entrainment effects in the crust.

Finally, let us comment on the differences and similarities between this model and
the model presented in Chapter 2. In both cases the model depends on the EoS, and in
both cases it depends on a particular microphysical parameter, the maximum pinning
force for the largest glitch and the entrainment parameter for the activity constraint.
Thus, the two different methods would allow for two tests on completely different
microphysical parameters, if the real mass of the star is known. The most important
difference between the two methods, however, is the fact that while the maximum
glitch test is independent of the region where the superfluid resides (as long as it
resides at least in the whole pinning region in the crust of the star), the entrainment
test is not.

3.3 Revised maximum glitch mass constraint

A different approach on how to employ the activity parameter has been proposed in
Pizzochero et al. (2017), and further developed in Montoli et al. (2020c). The idea is
to improve the upper bound for the mass of the glitching pulsar given by the maximum
glitch amplitude (see Chapter 2) by using the extra information from the observed
timing properties encoded in the activity parameter. To do that, we have to start from
Equation (2.13):

∆Ωm(t) =
∆L[Ωnp(t)]

I
. (3.33)

As discussed in the previous Chapter, this Equation describes an upper limit on ampli-
tude of a hypothetical glitch that is triggered at time t, when the lag is Ωnp(t), given
that at t = 0 the angular momentum reservoir is completely empty. It may be possible
to produce an even larger glitch by allowing the lag Ωnp to become negative, or by
mimicking this behaviour by allowing for meridional flows (Ekman pumping, van
Eysden and Melatos, 2010). This would produce a glitch overshoot, a fast-transient
phase that, according to current glitch simulations (Haskell et al., 2012; Graber et al.,
2018), could occur within the first seconds after a large glitch is triggered. Recent
analyses of a glitch in the Vela pulsar (Palfreyman et al., 2018) point out that an
overshoot is actually present in the timing data (Ashton et al., 2019b; Pizzochero et al.,
2020; Montoli et al., 2020b, see also Chapter 4). However, for most of the data we use
in this analysis, this is not a problem, as the observed glitch size is likely to correspond
to the jump in frequency at later times, and not to the overshoot, which occurs on very
short timescales.

The basic idea for the revised constraint is that we will not employ the critical lag,
but instead we will try to study how the angular momentum reservoir depends on time
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and to find an “average” reservoir, instead of the maximum one. Therefore, we need
a prescription to obtain ∆L[Ωnp(t)]. A way to proceed would be to employ a set of
two-fluid hydrodynamic equations encoding macroscopic mutual friction (Andersson
et al., 2006; Antonelli and Pizzochero, 2017) and the effect of pinning (Seveso et al.,
2016). Such equations would depend on the observed angular velocity Ω of the pulsar
under study and on the inferred value of its secular spin down rate Ω̇. Moreover,
the dynamical equations will also depend on some unknown structural properties
of the star, like the EoS and the total mass, as well as on the parameters describing
entrainment and pinning. Once the theoretical curve ∆Ωm(t) has been obtained, we
still need to compare it with some information extracted from the observed timing
behaviour of the particular pulsar under study.

For simplicity, in this Section we will reduce to the Newtonian framework.

3.3.1 Newtonian unified model

Although the general form of the hydrodynamical equations is known, modelling
mutual friction introduces some degree of arbitrariness, which is unavoidable due to
the still poorly-understood vortex dynamics in neutron stars. The dynamical equations
are therefore always phenomenological at some level, at least for what concerns
aspects related to the unpinning and repinning of many vortices (Khomenko and
Haskell, 2018). For this reason, we will employ the particular toy-model presented in
Pizzochero et al. (2017). This model describes the rotational dynamics of a pulsar in a
simplified way, but it captures the most important feature we are interested in: pulsars
are slowly driven systems whose internal clock is set by the spin-down parameter |Ω̇|.

Let us take the Newtonian limit of Equation (3.33) and assume that the vortex
lines are straight and rigid at the macroscopic scale. As we told in Chapter 2, this is
an unrealistic hypothesis, but let us employ this prescription in order to simplify the
motion of a three-dimensional vortex to a one-dimensional one, by projecting it onto
the equatorial plane of the star. The reservoir of angular momentum ∆L due to the
presence of a rescaled lag Ωvp turns out to be

∆L[Ωvp] = 2π

∫ R

0

dx x3Ωvp(x)

∫

γx

dl
ρn(r)

1− εn(r)
. (3.34)

Let us also write the Newtonian version of the critical lag profile described in Equa-
tion (2.20), for rigid vortices directed along the rotation axis:

Ωcr
vp(x) =

∫

γx
dl fP(r)

κ x
∫

γx
dl ρn(r)

1−εn(r)

. (3.35)

We could now employ the set of two-fluid hydrodynamic equations described in An-
tonelli and Pizzochero (2017) to describe the angular momentum reservoir dependence
on time. These equations, however, should be solved for every pulsar with its distinc-
tive values of Ω and Ω̇. We circumvent this complication by introducing a common
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Figure 3.5: Depiction of the nominal lag evolution. Figure modified from Pizzochero et al.
(2017).

unified timescale for pulsars with different spin down rates. By taking as t = 0 the
moment in which ∆L = 0, we define the nominal lag as

ω∗ = |Ω̇| t . (3.36)

The nominal lag is just a rescaled measure of time that allows to treat all pulsars
within a unified model, regardless of their particular rotational parameters Ω and Ω̇.
The increasing value of ω∗ determines the actual rescaled lag built between the two
components since corotation,

Ωvp(x , ω∗) =min [Ωcr
vp(x), ω

∗]. (3.37)

The basic idea of the above Equation is described in Figure 3.5. The angular velocity
lag Ωvp fills up as the maximum between the nominal lag and the critical lag profile
for a given cylindrical radius x .

Up to this point, we have not assumed anything about the location and extension
of the region in which the neutron superfluid resides, i.e. the region in which ρn > 0.
In the case of the maximum glitch amplitude, corresponding to the critical lag in
Equation (3.35), we have

∆Ωmax = ∆Ωm(t →∞) = ∆L[Ωcr
vp(x)]/ I . (3.38)

It can be shown that (see Chapter 2)

∆Ωmax =
π2

Iκ

∫ Rd

0

dr r3 fP(r) , (3.39)
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where Rd is the neutron-drip radius (the outer edge of the inner crust, at baryon density
nd = 2.6×10−4 fm−3). Note that∆Ωmax depends only on the extension of the pinning
region. If fP is non-zero only in the inner crust (i.e. for Rc < r < Rd , where Rc is the
crust-core boundary), the integral in Equation (3.39) receives no contribution from
the core. Therefore, ∆Ωmax does not depend on the vortex extension, provided that
they extend at least in the pinning region of the crust of the star and that pinning in
the core is negligible. On the contrary, the maximal glitch amplitude ∆Ωm is different
according to the region where we assume the presence of the superfluid, due to
the explicit dependence on ρn(r) in Equations (3.34) and (3.35): considering the
superfluid limited to spherical shells ending at different depths in the core changes
the value of ∆Ωm(ω∗).

The quantity ∆Ωm(t) sets a theoretical limit for the glitch amplitude at time t
in a pulsar that emptied its reservoir at t = 0. However, we do not know when a
pulsar actually empties its reservoir of angular momentum (maybe never). A sequence
of maximal glitches, each emptying the reservoir, would result in a strong positive
correlation between the glitch amplitudes and the waiting time between them, in
contrast with the idea of glitches as random events that rarely empty the reservoir
significantly (Melatos et al., 2008). In such a system, the angular momentum released
in each event is not expected to necessarily correlate with the angular momentum
accumulated since the previous glitch: the effect of a finite-size reservoir, that can
occasionally be emptied, is expected to generate only weak correlations between
the glitch amplitude and the waiting time since the previous glitch. So far, these
correlations induced by the finite size of the reservoir have been observed only for a
few pulsars (Melatos et al., 2018).

The idea is to find a value for the typical timescale tact between two events that
may significantly empty the angular momentum reservoir. To do this we rely on an
intrinsic property of the pulsar under study, the absolute activity Aa, or its ratio with
the spin down rate G. As we can see form Table 3.5, there is no obvious dependence of
G on the maximum glitch ∆Ωobs observed for each object. Unlike the model described
in Section 3.2, the one proposed in Pizzochero et al. (2017) and presented here allows
for accounting for both these parameters. This allows for partially solving the intrinsic
degeneracy present in the definition of Aa, namely the fact that we can obtain the
same activity from several small and frequent glitches or from a few big ones. From
the activity and the largest observed glitch it is useful to define the characteristic time

tact =
∆Ωobs

Aa
=
∆Ωobs

|Ω̇|G
. (3.40)

The idea behind this timescale is that of assuming that the star spins up with a
(fixed) rate given by the activity parameter (which can be estimated via a long-term
observation), and that the largest observed glitch depletes considerably the superfluid
reservoir. tact then represents the average inter-glitch time in an idealised object that
has the same activity of the particular pulsar under study but displays a series of
events of size ∆Ωobs. Starting from tact, it is possible to define the related nominal
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lag ω∗act, and to build an average angular momentum reservoir ∆L. Thus, once the
microphysical parameters of the star (EoS, pinning force, entrainment, and superfluid
reservoir extension) are fixed, the angular momentum reservoir and, as a consequence,
the maximal glitch ∆Ωm are function of the mass of the star and of the nominal lag
only. If we employ the nominal lag ω∗act as a “special” value for the latter, the maximal
glitch depends only on the mass of the star. An improved upper limit on the mass of
the star can then be estimated, by measuring the maximum glitch amplitude of a star
∆Ωobs, and inverting the condition

∆Ωobs ≤∆Ωm(Mact,ω
∗
act) . (3.41)

Since the largest observed glitch does not correspond to a complete exhaustion of
the available reservoir, Mact is only an upper bound (a lighter star would still be
compatible with the data). The estimate Mact provides a refinement of the (less model-
dependent, as it does not depend on entrainment) absolute upper bound Mmax, given
by emptying the fully-replenished reservoir compatible with pinning (as discussed in
Pizzochero et al., 2017). Note that a comparison between these upper limits and a
mass measurement in a single glitching pulsar can put constraints on the microphysics
behind these models. However, it is rather difficult to obtain a mass measurement
from a glitcher, as almost only isolated pulsars have been seen glitching, while mass
measurements can be obtained in binary systems (see Section 3.3.4).

3.3.2 Selecting a sample of pulsars

In Montoli et al. (2020c) a sample from 166 known glitching pulsars has been selected,
by retrieving glitch data from the Jodrell Bank Glitch Catalogue2 (Espinoza et al.,
2011) and angular velocities and spin down rates for each pulsar from the ATNF Pulsar
Catalogue3 (Manchester et al., 2005).

To keep the description simple, let us evaluate the activity by fitting the cumulative
distribution of spin-up due to glitches (see Section 3.1). In order not to overestimate
the effect of the first and last glitch in the sequence, we perform a least-squares fit
of the midpoints of the frequency jumps (Wong et al., 2001). The sample should
contain glitchers statistically relevant for our approach, namely pulsars whose activity
can be determined and which are not too affected by observational biases, such
as a short observational time T . To identify the single glitchers (pulsars which in
the observational time have displayed a single large glitch and several ones orders
of magnitude smaller) we employ the observational parameter Nmax as defined in
Equation (3.3). Single glitchers have Nmax ≈ 1 and are not significant for the present
analysis: at least two glitches of the same order of magnitude are necessary to give
a rough estimate of tact. We interpret the smallness of Nmax in single glitchers as an
observational effect. As time goes by, these objects could eventually display another

2www.jb.man.ac.uk/pulsar/glitches.html, data retrieved on August 2018
3www.atnf.csiro.au/research/pulsar/psrcat

www.jb.man.ac.uk/pulsar/glitches.html
www.atnf.csiro.au/research/pulsar/psrcat
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Figure 3.6: The largest glitch amplitude ∆Ωobs observed in 166 glitching pulsars as a function
of their spin-down rate, |Ω̇|. We indicate by grey points the pulsars with Ngl < 3, by triangles the
single glitchers with Nmax ≤ 1.1, by squares the remaining objects with Ngl ≥ 3 and Nmax > 1.1.
The four pulsars indicated with a bold name have Nmax > 4. The squares and triangles are
displayed in red if T |Ω̇|< 10−3 rad/s and in blue if T |Ω̇|> 10−3 rad/s.

large glitch and an activity estimate will then be more reliable. By employing the
definition of the activity, we can see that

Nmax ≈ T / tact , (3.42)

meaning that Nmax represents the number of events that the idealised pulsar would
have displayed in the observational time. A large value for Nmax indicates that T has
been long enough for the pulsar to potentially reach corotation several times: for this
study, it is a better index of the statistical significance than Ngl, the actual number of
glitches detected during T .

In Figure 3.6 we display the largest observed glitch, ∆Ωobs, for the 166 glitchers
as a function of the pulsar’s spin-down rate, |Ω̇|. We indicate by points the objects
with a number of displayed glitches Ngl < 3: we are not interested in these pulsars,
since at least 3 glitches are needed (but not sufficient) to try to give a rough fit of
the activity of the star. Then, we indicate by triangles the single glitchers (defined by
Nmax ≤ 1.1): as discussed above, a reasonable activity cannot be determined with a
single large event and thus these objects are also excluded from the sample. Finally,
the remaining glitchers are indicated by squares: for these objects, an estimate of
their activity can be obtained. Looking at the square symbols in Figure 3.6, it can
be seen that fast evolving pulsars (i.e. with large |Ω̇|) exhibit large maximum events,
while slowly evolving ones display only small values of ∆Ωobs, as already reported in
previous works (McKenna and Lyne, 1990; Lyne et al., 2000; Espinoza et al., 2011;
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Yu et al., 2013). Note that these tiny events, with ∆Ωobs < 10−6 rad/s, may be due
to a different glitch mechanism, not hidden by the more infrequent larger glitches
(Fuentes et al., 2017; Ashton et al., 2017). This is probably an observational effect, as
slowly evolving pulsars need more time to develop a lag sufficient for a large glitch,
thus they need to be monitored for a longer interval T . To quantify the effect of the
observational time T , we introduce the observational nominal lag T |Ω̇|. This quantity
represents the maximum lag that could have been developed since the pulsar has been
observed, and allows for comparison of different objects. Since the typical ω∗act is
always larger than 10−3 rad/s (see Figure 3.6 and Table 3.5), it is reasonable to require
that pulsars in the sample must have been observed long enough to develop at least
such a lag. In the Figure, we denote by red symbols the glitchers with T |Ω̇| < 10−3

rad/s, and by blue symbols those with T |Ω̇| > 10−3 rad/s and use this criterion to
distinguish the fast evolving pulsars from the slowly evolving ones.

Summarising, we select a sample of stars on which we will apply the model by
requiring three specific conditions:

• Ngl ≥ 3 - This is required to fit the activity.

• Nmax > 1.1 - To eliminate the single glitchers from the sample. The low thresh-
old 1.1 has been chosen to select, as a first tentative step, a large number of
potentially interesting objects with diverse rotational parameters and glitch
amplitudes. Changing the threshold to Nmax > 1.5, however, would only remove
two objects from the sample.

• T |Ω̇|> 10−3 rad/s - To eliminate the pulsars that evolve slowly (and so require
a lot of time to replenish the reservoir) or that have not been observed for a
sufficiently long period T .

In this way, we obtain the sample of 25 stars in Table 3.5.

3.3.3 Parameter study on the improved mass upper limit

We now study the dependence of the improved upper limit on the mass Mact on the
extension of the superfluid reservoir. To do so, we perform different spherical cutoffs
in the extension of the superfluid region involved in the glitch, by imposing that the
reservoir extends from neutron drip density to 1 n0, 0.75 n0, 0.68 n0 and 0.6 n0, where
n0 = 0.168 fm−3 is the nuclear saturation density (Chamel and Haensel, 2008). Finally,
we consider a superfluid reservoir limited to the crust (where the crust-core boundary,
nc , is given by the specific EoS implemented). The choice of these cutoffs is justified
by physical motivations: the region between the crust-core interface and 1 n0 is the
region where most of the theoretical superfluid gaps of singlet state 1S0 go to zero.
In particular, 0.68 n0 corresponds to the value where the superfluid region ends in a
neutron star with temperature T ≈ 108K , considering a SFB superfluid gap (Schwenk
et al., 2003; Ho et al., 2015).
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J-name Ω |Ω̇| G Ngl Nmax ∆Ωobs T |Ω̇| ω∗act
[rad/s] [10−11 rad/s2] [%] [10−4 rad/s] [10−3 rad/s] [10−3 rad/s]

J0205+6449 95.61 28.19 0.743 ± 0.073 6 2.39 3.633 ± 0.382 104.2 48.90 ± 7.05
J0534+2200 188.2 237.2 (4.0± 0.5)× 10−3 27 2.19 0.886 ± 0.006 3636 2232 ± 292
J0537-6910 389.7 125.2 0.874 ± 0.003 45 16.66 2.677 ± 0.012 491.1 30.62 ± 0.17
J0631+1036 21.83 0.79 1.333 ± 0.213 15 1.55 0.716 3.79 5.37 ± 0.86
J0742-2822 37.68 0.38 0.107 ± 0.036 8 1.14 0.035 ± 0.001 2.99 3.23 ± 1.07

J0835-4510 70.34 9.84 1.616 ± 0.016 20 11.67 2.180 ± 0.008 148.4 13.49 ± 0.14
J1048-5832 50.81 3.96 1.623 ± 0.177 6 2.86 1.546 18.98 9.53 ± 1.04
J1105-6107 99.43 2.49 1.311 ± 0.184 5 2.30 0.966 10.48 7.37 ± 1.04
J1119-6127 15.40 15.18 0.175 ± 0.036 4 1.99 0.892 ± 0.031 81.29 50.9 ± 10.7
J1341-6220 32.50 4.25 1.524 ± 0.098 23 5.46 1.000 26.09 6.56 ± 0.42

J1413-6141 22.00 2.57 1.375 ± 0.107 7 2.38 0.530 6.65 3.86 ± 0.30
J1420-6048 92.16 11.24 1.366 ± 0.036 5 3.33 1.861 ± 0.012 37.00 13.62 ± 0.37
J1709-4429 61.32 5.57 1.389 ± 0.231 4 3.08 1.761 ± 0.016 28.54 12.68 ± 2.11
J1730-3350 45.05 2.74 1.403 ± 0.025 3 2.65 1.443 18.78 10.28 ± 0.19
J1737-3137 13.95 0.43 1.144 ± 0.194 4 1.18 0.187 2.06 1.64 ± 0.28

J1740-3015 10.35 0.80 1.216 ± 0.038 36 3.67 0.276 7.73 2.27 ± 0.07
J1801-2304 15.11 0.41 1.009 ± 0.035 13 4.22 0.098 3.77 0.97 ± 0.03
J1801-2451 50.30 5.15 1.720 ± 0.115 5 2.69 1.889 23.07 10.98 ± 0.73
J1803-2137 47.01 4.72 1.781 ± 0.107 5 3.34 2.253 ± 0.001 30.74 12.65 ± 0.76
J1826-1334 61.91 4.59 1.281 ± 0.199 6 3.33 2.217 ± 0.001 39.86 17.31 ± 2.68

J1833-1034 101.5 33.14 (3.6± 0.4)× 10−3 4 2.04 0.008 27.86 21.27 ± 2.54
J1841-0524 14.10 0.74 1.532 ± 0.166 5 1.85 0.145 1.92 0.95 ± 0.10
J1932+2220 43.49 1.73 4.513 ± 0.729 3 2.13 1.945 6.39 4.31 ± 0.70
J2021+3651 60.57 5.59 1.609 ± 0.067 4 2.82 1.846 ± 0.001 22.09 11.47 ± 0.48
J2229+6114 121.7 18.45 0.522 ± 0.066 6 2.42 1.487 ± 0.005 52.66 28.48 ± 3.58

Table 3.5: The sample of pulsars used in this Section. No errors are reported when they are
smaller than the symbols used in figures. The timing data and their observational uncertainties
have been obtained by retrieving angular velocities and spin down rates from the ATNF Pulsar
Catalogue (www.atnf.csiro.au/research/pulsar/psrcat, see also Manchester et al.
2005) and glitch data from the Jodrell Bank Glitch Catalogue (www.jb.man.ac.uk/pulsar/
glitches.html, see also Espinoza et al. 2011).

We consider two unified EoSs, SLy4 (Douchin and Haensel, 2001), BSk20 (Goriely
et al., 2010), and a stiffer relativistic mean field model, DDME2 (Lalazissis et al.,
2005), see Table 3.6. The DDME2 EoS does not have any consistently calculated
superfluid neutron fraction yn in the crust, so that we glued it with the crust from
the SLy4 EoS, keeping the crust-core transition density to be the one of SLy4. This
operation has been carried out by ensuring the continuity of the chemical potential, as
discussed by Fortin et al. (2016). This, while ensuring thermodynamic consistency,
also produces a strong first-order phase transition at the crust-core interface: the P(nb)
profile of the DDME2+SLy4 EoS turns out to be flat for nb between 0.076 fm−3 and
0.084 fm−3 (namely, 0.45 n0 and 0.5 n0), and a corresponding density jump appears
at the crust-core interface.

In Figure 3.7 we show the critical lag for straight vortex lines, given by Equa-
tion (3.35), for the different cutoffs considered here. The calculation was done with
the BSk20 EoS, by employing the pinning force of Seveso et al. (2016) and the entrain-
ment parameters obtained in Chamel and Haensel (2006) for the core and Chamel

www.atnf.csiro.au/research/pulsar/psrcat
www.jb.man.ac.uk/pulsar/glitches.html
www.jb.man.ac.uk/pulsar/glitches.html
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EoS Meos [M�] nc [n0]

SLy4 2.05 0.452
BSk20 2.16 0.508

DDME2 + SLy4 2.48 0.452

Table 3.6: The maximum neutron star mass and the baryon density corresponding to the
crust-core transition for the EoSs used in this Section.

Figure 3.7: Example of critical lag Ωcr
vp, as a function of the radius x/Rd and for the different

cutoff densities ncut. The calculation refers to a 1.4 M� star, described by the BSk20 EoS.

(2012) for the crust. As expected, Ωcr
vp has higher values in the central region of the star

for smaller superfluid reservoirs: since the superfluid extends in a smaller spherical
layer, the superfluid vortices are less subject to the Magnus force. And because the
critical lag is cutoff dependent, the lag Ωvp (and hence ∆Ωm, via Equation (3.33))
evolves differently. However,∆Ωmax does not depend on the cutoff we are considering,
as the different form of the critical lag is compensated by the second integral over γx
in Equation (3.34).

We now study the evolution of the maximal glitch, ∆Ωm(ω∗), as a function of the
nominal lag. The results are shown in Figure 3.8, where it can be seen that the maximal
glitch raises faster as a function of ω∗ for more extended reservoirs, in particular for
lower masses. On the other hand, for large values of ω∗ the maximal glitch tends
to ∆Ωmax, which in the present scenario of crustal pinning does not depend on the
superfluid cut. The stars of the sample seem to follow the form of the curves for
the masses, especially in the case of a reservoir limited to the crust; this may be just
a coincidence related to the fact that most pulsars of our sample are aligned along
G ∼ 1%, as also pointed out by Fuentes et al. 2017. As a consequence of this fact, the
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Figure 3.8: The maximal glitch ∆Ωm(ω∗, M , ncut), as a function of the nominal lag ω∗, for
different pulsar masses M and reservoir cutoffs ncut, in the case of the BSk20 EoS. The curves
in each panel correspond to different masses, starting from 0.5M� (the highest curve) up to
2.1M� (the lowest one); the 1.0M� and the 1.4M� curves are highlighted (black dashed lines).
We also display the values of the largest observed glitch∆Ωobs and the nominal lagω∗act for the
25 pulsars in Table 3.5. Pulsars with Nmax < 3 are shown in grey, the ones with 3< Nmax < 4
in red, and the remaining ones with Nmax > 4 in blue.

mass estimates for the crust-limited reservoir will fall in a narrow range of values.
We notice that two objects (J0742-2822 and J1833-1034) are below the lowest

curve, corresponding to the highest mass achievable from BSk20: they are not con-
strained by the reservoir, in the sense that any mass compatible with the EoS could
yield such small glitches (with ∆Ωobs < 5× 10−6 rad/s). Interestingly, this value is
just below the dividing line ∆Ω/2π ≈ 10µHz found by Espinoza et al. (2011) by
analysing the bimodal distribution of all measured glitch sizes. Hence, these uncon-
strained objects may belong to a subpopulation which is unable to release a sufficient
amount of angular momentum to produce large glitches (see also the more recent
analysis of Ashton et al. 2017 and Fuentes et al. 2017). Another viable hypothesis is
that J0742-2822 and J1833-1034 have not displayed yet a glitch large enough. In
fact, these pulsars still have small values of Nmax ® 2, a case that resembles the Crab
(J0534+2200, Nmax = 2.2), which only after 50 years of observations has displayed a
glitch big enough to be relevant for the present analysis (Shaw et al., 2018). The very
large value of ω∗act associated to the Crab may be due to its young age and possible



3.3. Revised maximum glitch mass constraint 79

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

M
a
ct

 (
M

su
n
)

Crust

Whole star

0.60 n0

Whole star

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Largest observed glitch (1e-4 rad/s)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

M
a
ct

 (
M

su
n
)

0.68 n0

Whole star

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Largest observed glitch (1e-4 rad/s)

0.75 n0

Whole star

1801-2304

0537-6910

0845-4510

0537-6910

0845-4510

1341-6220

1341-6220

0537-6910

0845-4510
1341-6220

1341-6220

0537-6910

0845-4510

1801-2304

1801-2304

Figure 3.9: The 25 fitted values Mact as a function of ∆Ωobs in the case of the BSk20 equation
of state. Each panel refers to a different cutoff ncut (blue crosses). Error bars are absent when
smaller than the symbols used. For comparison, in every panel we also show the case of the
reservoir extending to the whole star (orange circles, error bars not displayed). The ncut = 1 n0
cutoff is omitted, as it is almost identical to the whole star case. The four pulsars with Nmax > 4
are also indicated.

thermal effects favoured by high temperatures (e.g. enhanced vortex creep, implying
longer times to build up the excess of angular momentum). Another peculiar object is
PSR J1932+2220, with its low value of ω∗act. In the crust-limited reservoir case, it is
marginally fitted by the low 0.5 M� curve. However, we also notice that in the 0.68 n0
case the star is well within the 1-1.4 M� region. Thus, for this star the superfluid
reservoir should be extended to a small region in the outer core to obtain reasonable
masses; future observations and improved statistics may change the situation (this
pulsar has low values of both Nmax = 2.1 and Ngl = 3).

For a given cutoff ncut, we invert the equation ∆Ωm(ω∗act, Mact) =∆Ωobs for each
pulsar and find the value of Mact. Figure 3.8 provides a graphical representation of this
procedure. The results for the BSk20 EoS are shown in Figure 3.9, where we plot the
mass estimate Mact as a function of the largest observed glitch ∆Ωobs. In each panel,
we show the masses corresponding to a particular cutoff, and give as a reference the
case of no-cutoff (reservoir extended to the entire star, the case previously considered
in Pizzochero et al. 2017). The cutoff at 1 n0 has been omitted, since the corresponding
mass estimates are identical to the case of the whole star. Thus, with this model there is
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no particular need to invoke inner parts of the core (where nb ¦ n0) to explain current
glitch data. This is good news, considering the present uncertainty of theoretical
calculations on the properties P-wave pairing gap in the core and the presence of a
layer of normal matter between the triplet and singlet neutron superfluids.

It is possible to notice some general trends in our results. First, in Figure 3.9 we
see an inverse correlation between amplitude of the largest glitch and estimated mass.
Clearly, the inverse relation between the maximum theoretical glitch amplitude∆Ωmax
in (3.38) and the mass is obvious and expected, as lighter stars have thicker crusts.
However, this inverse relation persists also when we use the maximal amplitude ∆Ωm
defined in (3.33): in this case the anti-correlation between the estimated mass and the
largest glitch amplitude observed is less obvious because the parameter t in (3.33),
which we estimated from the observed glitch activity via t ≈ω∗act/|Ω̇|, is different for
every pulsar. The slope of the curves in Figure 3.9 increases with increasing extension
of the reservoir, being almost flat for the crust-only case and tending to the whole-star
case already for ncut ¦ 1 n0. Also, if we extend the superfluid reservoir to deeper
regions of the star we can fit fewer masses than in the case of a smaller reservoir: in
Figure 3.8 some pulsars with small largest glitch and small nominal lag can only be
constrained in the cases of shallower cutoffs.

Secondly, objects with a small nominal lag (ω∗act ® 2 × 10−2 rad/s) are more
sensitive to changes of the cutoff than those with a large one. In fact, pulsars with
small nominal lag show masses around 1.0− 1.4 M� in the case of reservoir limited to
the crust, while they show much larger masses (or they do not even get constrained)
for more extended cutoffs. On the other hand, the five pulsars with the largest nominal
lag (ω∗act ¦ 2.5×10−2 rad/s) have their masses almost unaltered between the different
cutoffs, as can be noticed in Figure 3.9. The reason for this is easy to understand
in the case of the Crab, with its extreme value of the nominal lag: when ω∗ is large
enough, the lag as a function of time (3.37) has reached the critical value (3.35). As
a consequence, the maximal glitch reaches a plateau, given by the maximum glitch
amplitude (3.39). In fact, for pulsars with largeω∗act, the maximal glitch corresponds to
the maximum glitch: their mass estimates are independent on the superfluid reservoir
extension or entrainment parameters, but strongly dependent on the pinning force
considered. Although the four remaining pulsars with large nominal lag have not
reached the plateau yet, they still lie in a region of the (ω∗, ∆Ωobs) plane where the
curves ∆Ωm(ω∗) are almost insensitive to the choice of the cutoff.

It is interesting to notice how, for the crust-limited reservoir, the masses of the
pulsar are – except for the three pulsars with the largest ω∗act (Crab, J1119-6127 and
J2229+6114) – all quite low, peaked around ≈ 1.1 M� and even less than ≈ 1 M�
in some cases. This fact indicates that the crustal reservoir alone is not enough to
describe pulsar glitches, as already noticed by Andersson et al. (2012) and Chamel
(2013).

To better follow the dependence of the mass estimates on the cutoff, in Figure 3.10
we consider the four benchmark pulsars with Nmax > 4. For each of these objects, we
plot Mact as a function of the superfluid region cutoff ncut for the three different EoSs
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Figure 3.10: The mass Mact as a function of the cutoff baryon density for the superfluid
reservoir, ncut, for the four pulsars in the sample which have Nmax > 4 and for the three EoSs
considered: SLy4 (yellow), BSk20 (blue) and DDME2 (purple). All lines start with a star,
which indicates the cutoff ncut = nc at the crust-core interface (crust-only case). In the case
of J1801-2304, the lines end with a dot at Meos, the maximum mass allowed by each EoS.
The shaded regions indicate the uncertainty on the mass estimate. The plateau in the DDME2
curves is a by-product of the presence of a strong first-order phase transition at the core-crust
interface.

considered. The region of constant mass for DDME2 corresponds to the first-order
phase transition mentioned before. The general trend of lower masses for smaller
superfluid reservoir is preserved and, as expected, a stiffer EoS like DDME2 predicts
larger masses than the two softer EoSs. Moreover, the star with the largest ω∗act in
this figure, J0537-6910, shows small variability in mass between the cutoffs, reaching
its plateau very soon (for ncut > 0.55n0), as opposed to the star with the smallest
nominal lag, J1801-2304, which reaches the maximum mass allowed by each EoS
well before 0.75 n0 and shows no plateau. In these cases larger cutoffs just yield too
much available reservoir of angular momentum, so that the pulsar is not constrained
anymore: any mass Mact compatible with the EoS can produce its small observed
glitches.
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3.3.4 Comparison with measured masses

The aim of this Section is that of trying to understand to what extent the upper limits
described in the previous Section are plausible, by comparing them with the neutron
star masses measured in binary systems (Özel and Freire, 2016). Of course, none
of the pulsars in the sample in Table 3.5 are in binary systems and have a measured
mass: we are asking ourselves if the distribution of measured masses in binary systems
are compatible with the constraints given in the previous Section. This causes two
problems: first of all, it is not true that the stars in the sample described in Section 3.3.2
have the same characteristics of those in the sample of Özel and Freire (2016). In fact,
while the stars in Özel and Freire (2016) are all in binary systems, all the pulsars in
the sample of Section 3.3.2 are isolated stars. Their evolution is thus different, which
means that the underlying mass distribution of the two samples can be intrinsically
different. Secondly, it is not easy to statistically compare mass measurements with
upper limits. To solve this problem let us assume in this Section Mact to be a mass
estimate for a particular pulsar. In general, this is not true for any of the pulsars we
have studied in the previous Section: it may be more true for some pulsars, whose
largest glitches are approximately the theoretically largest those stars can achieve, and
less for others.

From a statistical point of view, this problem is a two-sample problem. We have
two different samples, each with its underlying probability distribution, and we would
like to know whether these two distributions are the same. From a Bayesian point
of view, this can be solved by studying the Bayes factor of two models: one which
assumes that the two samples come from the same underlying distribution and one
which assumes they do not. The Bayes factor can be calculated as (Borgwardt and
Ghahramani, 2009)

K =
P(D1,D2 |H1 )
P(D1,D2 |H2 )

=
P(D1,D2 |H1 )

P(D1 |H2 )P(D2 |H2 )
, (3.43)

where H1 and H2 are the hypotheses that the two datasets D1 and D2 come from the
same distribution or not, respectively. The last equality is justified by the fact that if
the two datasets come from different distributions, then they are independent of each
other, and the evidence can be split in that way.

The two datasets are the Özel and Freire (2016) dataset of masses of neutron stars
measured in binary systems, and the dataset of Mact calculated with the procedure
described in the previous Section on the pulsar sample defined in Table 3.5 (Montoli
et al., 2020c). We show the dataset of Özel and Freire (2016) in Figure 3.114. In their
paper, the authors distinguish between four different classes of stars (see also Özel
et al., 2012):

1. The double neutron stars, which are all those neutron stars which are in a double
system with another neutron star.

4Data has been retrieved from http://xtreme.as.arizona.edu/NeutronStars/data/
pulsar_masses.dat

http://xtreme.as.arizona.edu/NeutronStars/data/pulsar_masses.dat
http://xtreme.as.arizona.edu/NeutronStars/data/pulsar_masses.dat
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2. The recycled pulsars, i.e. all the stars which have undergone accretion.

3. The accreting X-ray bursters, whose masses have been measured through X-ray
spectroscopy.

4. The slow pulsars, i.e. all those stars in binary systems which are slowly rotating,
thus assuming that only little accretion has occurred on them.

As discussed in Özel et al. (2012), where the authors’ aim was that of studying the
neutron star birth mass distribution, these four categories can be grouped in two
main families: those stars which have undergone accretion, and those which have not.
All the double neutron stars and the slow pulsars belong to the first category, as we
expect them to belong or to have belonged to a HMXB, so not having undergone much
accretion. We are thus expecting these stars’ masses to be near-birth. On the other
hand, we expect the bursters and the recycled pulsars to be undergoing or to have
undergone accretion, thus their mass is substantially different to that they had just
after the supernova. In fact, in these categories belong all the stars in a binary system
with a low-mass main-sequence star or with a white dwarf, hinting at a LMXB. The
distinction between near-birth-mass stars and accreted stars is important: we do not
expect isolated pulsars – like those in the sample in Table 3.5 – to have undergone much
accretion during their lifetime. Nevertheless, we will compare the masses inferred in
Section 3.3 with both the near-birth-mass sample (34 stars) and the full sample (68
stars) of Özel and Freire (2016).

As for the Mact sample, while we keep entrainment (Chamel and Haensel, 2006;
Chamel, 2012) and pinning force (Seveso et al., 2016) fixed, we study two different
equations of state, one soft (BSk20) and one stiff (DDME2, with a SLy4 crust), and
three different superfluid cutoffs (0.60n0, 0.68n0 and superfluid extended to the whole
star). We do not consider the superfluid limited to the crust of the star, as it can be
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seen by eye that the inferred mass distribution is quite unrealistic (Figure 3.9). We
therefore have six different Mact samples, by varying the microphysical parameters
(see Figure 3.12).

To calculate the evidences in Equation (3.43), we need to hypothesise a likelihood
and a prior of a Bayesian inference. In this case, the objective of the inference are the
parameters of the mass distribution. Let us assume we have measured a set of masses
m̂i with their associated errors σ̂i. If we assume these errors to be symmetric with
respect to the measured value m̂i , we can use a Gaussian distribution to estimate the
probability for the single measure P (m̂i |mi , σ̂i):

P (m̂i |mi , σ̂i) =
1

q

2πσ̂2
i

exp

�

−
(mi − m̂i)2

2σ̂2
i

�

. (3.44)

In other words, this is the probability of obtaining a particular measure m̂i with
associated error σ̂i if the true value of the mass of the neutron star is mi . As many of
the measured masses in Özel and Freire (2016) have skewed errors (see Figure 3.11),
however, it is important to employ a different type of distribution, in order to take into
account asymmetric error bars. In Kiziltan et al. (2013), the authors use an asymmetric
normal distribution for the errors (see also Fernandez and Steel, 1998):

AN (m̂i |mi , ci , di) =
2

di

�

ci +
1
ci

� ·

·
�

ϕ

�

ci(mi − m̂i)
di

�

ϑ(mi − m̂i) +ϕ
�

mi − m̂i

cidi

�

ϑ(m̂i −mi)
�

, (3.45)

where ϑ is the usual Heaviside step function and ϕ is the standard normal distribution
defined as:

ϕ(x) =
1
p

2π
e−

x2
2 .

The relation between the two parameters ci and di of the distribution and the left (li)
and right (ri) uncertainties on the measures can be obtained by imposing

AN (m̂i |mi − li , ci , di) = AN (m̂i |mi + ri , ci , di),

which will give us ci =
p

ri/li and the condition
∫ ri

−li

AN (m̂i |mi , ci , di)dmi = 0.6827,

that, solved numerically, will give us the value of di. Please note that the above
condition can be easily written in a more compact (and easier to be implemented)
way by making use of the error function. A priori, however, any skewed probability
distribution is acceptable. In particular, since we are talking about masses, it may
be interesting to consider an asymmetrical distribution with support on the positive
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real numbers (like the gamma distribution): the relation between the errors and the
parameters of the distribution could be obtained in the same way of the asymmetric
normal in Kiziltan et al. (2013). It is even possible to obtain the probability distribution
for the mass of a star for which only the mass ratio or the total mass of the binary
system has been measured (see, for example, Özel et al. 2012 or Antoniadis et al.
2016). However, to keep things simple, we will neglect this possibility, and we will
stick to the asymmetric normal distribution described above for all the stars for which
a mass measurement has been performed.

After having modelled the probability distribution for the mass of a single neutron
star, we need to choose a distribution for all the masses in the samples. Let us
assume a generic distribution for the masses P(mi |P), where P indicates the vector
of parameters of the distribution (for example, in the case of a Gaussian, these are
the mean and the variance). In this way, we can obtain the probability of obtaining a
particular measure (m̂i , σ̂i), given the parameters of the distribution, by marginalising
over the true mass of the neutron star:

P(m̂i |σ̂i ,P) =
∫

P(m̂i | σ̂i , mi) P(mi|P)dmi . (3.46)

Since the masses are measured independently from each other (i.e. they are indepen-
dent variables), we can write the likelihood of the distribution parameters for the
whole set of data by simply multiplying the probability of obtaining a single datum:

P(D|P) =
∏

i

P (m̂i|P), (3.47)

where we have dropped σ̂i for simplicity and D indicates the set of measured masses
m̂i. As we are not interested in the exact shape of the mass distribution, we will
assume, for simplicity, as distributions a unimodal and a bimodal normal distribution.
While the unimodal normal distribution is formally the same of Equation (3.44), the
bimodal one needs an extra parameter r for mixing the two normal distributions:

P (m |µ1,σ1,µ2,σ2, r) =
r

q

2πσ2
1

exp

�

−
(m−µ1)2

2σ2
1

�

+

+
1− r
q

2πσ2
2

exp

�

−
(m−µ2)2

2σ2
2

�

. (3.48)

The prior distribution for the parameters of these distributions are chosen to be:

P(µ j) = Unif(0.5M�, 2.5M�)

P(σ j) = Unif(0.01M�, 1M�)

P(r) = Unif(0,1)
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Özel and Freire Mact sample ln K
sample EoS Cutoff

whole 4.96
BSk20 0.68 3.86

0.60 2.54
Full whole -3.34

DDME2 0.68 -4.08
0.60 -6.26

whole 1.93
BSk20 0.68 -0.53

0.60 0.21
Birth whole -8.86

DDME2 0.68 -9.40
0.60 -10.86

Table 3.7: Bayes factor of the Bayesian two-sample test. The first column indicates which Özel
and Freire (2016) sample have been used for the comparison, while the second two columns
are the EoS and the cutoff of the Mact sample used. In the last column we report the natural
logarithm of the Bayes factor (Equation (3.43)).

where j = 1,2 for the bimodal distribution, and j = 1 for the unimodal. Finally, the
evidence for this inference can be calculated as:

P(D) =
∫

dP P(D |P) P(P) . (3.49)

This calculation cannot be performed analytically, so to obtain the numerical value of
the evidence the nested sampler MULTINEST have been employed (Feroz et al., 2009),
as implemented in the pymultinest Python module (Buchner et al., 2014). We
report the Bayes factors (3.43) in Table 3.7. These have been calculated by choosing
the best model (i.e. the one with the largest evidence) between the unimodal and the
bimodal normal distributions for each sample under consideration, thus the largest
evidence for the first sample, the second sample, and the combined one. A positive
natural logarithm of the Bayes factor means that the two samples under considerations
are likely to come from the same underlying distribution, while – on the contrary –
a negative one implies the unlikelihood that the two samples come from the same
distribution. The statistical significance of this implication is usually quantified by
taking into account the reference paper of Kass and Raftery (1995). If | ln K | < 1,
then the evidence is too poor to claim that one model is more likely than the other.
If 1 < | ln K | < 3 there is positive evidence for one model with respect to another, if
3< | ln K |< 5 the evidence is strong, while if | ln K |> 5 the evidence is very strong. As
we can see from Table 3.7, the BSk20 Mact samples generally has a better compatibility
with the measured masses than the DDME2 samples. In fact, there is strong evidence
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Figure 3.13: Posterior predictive of the Özel and Freire (2016) samples and of the Mact
samples considered.

that the DDME2 samples come from a different distribution with respect to both the
Özel and Freire (2016) samples, in all the cases considered. On the other hand, some
BSk20 samples present a positive evidence, meaning that there is some compatibility.
As a rule of thumb, the deeper cutoffs generally give better compatibility than the
shallower ones. Much interestingly, every combination with the full sample of Özel
and Freire (2016) gives a larger Bayes factor than those with the birth sample. This
is counter-intuitive: we decided to employ two different samples from the measured
masses, as we expected the mass distribution for the glitchers to have masses more
similar to the stars with near-birth masses.

One of the advantages of the nested sampling algorithms (such as MULTINEST) is
that the algorithm produces samples of the posterior distribution as a by-product of
the evidence evaluation. We can employ this samples in order to estimate the posterior
predictive distribution, namely the probability distribution of extracting a new mass
m given the already-measured masses D. To calculate this quantity, it is necessary to
marginalise the chosen model M for the mass distribution (P(m|P , M), i.e. normal
or bimodal) with the posterior distribution for that model (P(P |D, M)):

P(m|D, M) =
∫

P(m|P , M) P(P |D, M)dP . (3.50)

The mass distribution P(m|P , M) has been chosen for each sample to be the one
yielding the largest evidence. We plot the posterior predictive distribution for all
the single samples in Figure 3.13. We can here better visualise the results of the
two-sample test. The posterior predictive distribution for the birth mass sample is
unimodal, and peaked around 1.4M�. This is probably due to the presence in the
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Figure 3.14: Empirical distribution functions for the eight samples under consideration.

sample of a large number of binary neutron stars, which show a very strongly peaked
mass distribution (Kiziltan et al., 2013). On the other hand, the posterior predictive
for the full sample of Özel and Freire (2016) is bimodal, with a smaller peak over
1.5M�, and it is somewhat broader. This effect has already been seen in Antoniadis
et al. (2016) for a millisecond pulsar sample, in Kiziltan et al. (2013) and in Alsing
et al. (2018), and it is probably caused by the presence of stars which have undergone
accretion. Note that, however, the two distribution are only mildly different. The Mact
distributions are generally much broader, and in the case of the DDME2 EoS, peaked
on rather large values of masses.

In order to double-check the results obtained until now, we also performed a
two-sample Kolmogorov-Smirnov (KS) test on all the couples of samples considered.
The idea of the KS test is to calculate the KS statistic, which is the maximum vertical
distance between the two empirical distribution functions of the two samples under
consideration. We plot in Figure 3.14 the empirical distribution for all the eight samples
we employ here. The KS statistic and the corresponding p-value have been calculated
employing the ks_2samp function defined in scipy.stats Python module. A large
p-value means that we cannot exclude the hypothesis that the distributions of the two
samples are the same. It is not possible, however, to use the KS test directly on the
data, as they present uncertainties, which are quite large in some cases (see Figure
3.11). To solve this issue, we randomly extract one value for each measurement of
the two samples from the asymmetric normal distribution (3.45), and we perform
the KS test on these extracted data. We then re-extract the samples again from the
asymmetric normal distributions, and calculate the KS statistic and p-value again. By
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doing this procedure ten thousand times, we obtain the histograms for the p-values
presented in Figure 3.15. The trend is the same of the Bayes factor study: the BSk20
samples show much more compatibility with the measured masses compared with
those with the DDME2 EoS, and the agreement is better with the full Özel and Freire
sample than with the birth sample. The only different thing is the fact that the 0.60n0
cutoff seems to have a larger p-value than the 0.68n0 case.

We would like to stress that the Bayesian two-sample test and the KS two-sample
test are intrinsically different. They are based on completely different statistics, and
while the former requires a deep modelling of the probability distributions for the mass
measurements and the mass population (thus allowing for a natural implementation
of the measurement uncertainties), the latter is simpler and non-parametric. We note
that – albeit so different – they give essentially the same results. Finally, it is important
to notice that throughout all this Section we have assumed Mact to be the true mass of
the star, rather than an upper limit: this hypothesis was necessary in order to make
the comparisons presented here. We do not know how different from the true mass of
the star this upper limit is. If the error made by making this assumption is large (i.e.
Mact is much larger than the true mass of the star), then it is possible that the Mact
predictions made by stiffer equations of state (like DDME2) are compatible with the
measured masses, but not the predictions made by soft EoSs like BSk20. On the other
hand, if Mact is similar to the true mass of the star, then the results presented in this
Section hold.
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Figure 3.15: Histograms of the KS p-values for all the combination of samples, one taken
from Özel and Freire (2016) (rows) and one of the Mact cases (columns).





CHAPTER 4
Angular velocity evolution

Until now, most of the information extracted from pulsar glitches and used to constrain
neutron star structure has been obtained by the overall glitching behaviour of a pulsar,
i.e. how frequent and large the events it displays are. Some more information can
be obtained from the angular velocity evolution of a pulsar during a glitch. Among
this information, we mention the presence of a slow relaxation of the angular velocity
after the glitch towards the pre-glitch spin down rate, which is the main evidence
for the involvement of a superfluid component in the star. On very short timescales,
however, things are more obscure. In fact, although they have been modelled since
the Eighties (see, e.g., Alpar et al., 1984a), glitch rises are generally not resolved, due
to intrinsic noise in the time of arrival of single pulsations and the fact that pulsars are
not observed continuously, thus it is easy to miss a glitch in the act. As an example,
in spite of the fact that the Vela pulsar has been monitored for fifty years, only a
couple of notable events allowed to put an upper limit of 40 s on the timescale of the
glitch spin-up (Dodson et al., 2002, 2007). Only recently, the detection of a glitch in
the Vela pulsar on 12 December 2016 has provided a great deal of new information
for glitch modelling (Palfreyman et al., 2018). The peculiarity of this detection lies
in the fact that this is the first pulse-to-pulse observation of a glitch, allowing for
unprecedented timing resolution during the glitch trigger. Thanks to this, a new strong
upper limit of 12.6 s on the timescale of the glitch spin-up has been determined by
Ashton et al. (2019b), obtained through a Bayesian analysis with a phenomenological
three-component model, and a new upper limit of ∼ 6 s has been proposed in Montoli
et al. (2020b) with a more refined and model-dependent framework (see Section 4.3).
This kind of observations gives us a glimpse of how rapidly the two components
(the charged and the superfluid ones) exchange angular momentum and opens a
new window for theoretical speculations (Graber et al., 2018; Ashton et al., 2019b;
Pizzochero et al., 2020; Gügercinoğlu and Alpar, 2020; Montoli et al., 2020b).

Complex behaviour during the spin-up and the first minute of the post-glitch
relaxation has been predicted in simulations based on hydrodynamical models of
the neutron star internal structure, when more than just two rigid components are
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considered (Haskell et al., 2012; Haskell and Antonopoulou, 2014; Antonelli and
Pizzochero, 2017; Graber et al., 2018): when the superfluid component is allowed to
sustain non-uniform rotation, different regions may experience different friction and
hence recouple to the observable normal component on different timescales, giving
rise to different types of post-glitch frequency evolution. In particular, depending
on the strength of the couplings and on the initial conditions for the relative motion
between the various components, a glitch overshoot – a transient interval in which
the observable component spins at a higher rate than the post-glitch equilibrium
value, obtained by emptying the whole angular momentum stored into the superfluid
reservoir (Antonelli and Pizzochero, 2017) – is observed in such models. Many recent
studies have already used the data from the 2016 Vela glitch to study this phenomenon:
in Graber et al. (2018), the drag between the charged crust and the crustal and core
superfluids has been constrained; in Ashton et al. (2019b), different phenomenological
models have been compared to the timing results, obtaining the best current limits on
the glitch rise timescale; finally, in Pizzochero et al. (2020) and Montoli et al. (2020b),
an analytical solution to a simple three-component model has been proposed, and
it has been employed to study the values of different quantities of interest, such as
the moment of inertia fractions and the coupling parameters. All these studies also
confirmed the presence of an overshoot.

The present Chapter is outlined as follows: after a theoretical introduction in which
we will discuss the three-component model and its analytical solution (Section 4.1), we
will present a first attempt to employ it on the 2016 Vela glitch data with a frequentist
approach (Section 4.2). Finally, we will present a more thorough analysis in the
Bayesian framework in Section 4.3.

4.1 Three-component model

As we told in the introduction to this Chapter, many simulations of models with two
differentially-rotating components or meridional circulation have been performed,
many of which foresee the presence of a peculiar time evolution of the observable
charged component during the first moments after a glitch, the glitch overshoot (van
Eysden and Melatos, 2010; Haskell et al., 2012; Haskell and Antonopoulou, 2014; An-
tonelli and Pizzochero, 2017; Graber et al., 2018). It is difficult, however, to compare
simulations like these – with a differentally-rotating superfluid component – with the
data: the models need some simplification in order to obtain some information by
fitting the data. One easy way to accomplish this would be that of employing rigidly-
rotating components. Nevertheless, this poses another problem: two rigidly-rotating
components (which is the case of Equation (1.17)) yield a monotonic increase in the
angular velocity of the star, as the angular momentum excess is simply transferred
from the superfluid component to the normal one, thus not allowing for the presence
of a glitch overshoot. The minimal model which allows for an overshoot requires at
least three components: one normal component and two superfluid components, of
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which one stores most of the angular momentum excess (pinned component, which
could be the crustal superfluid) and the other very little or no angular momentum
surplus (passive component, which could be the core superfluid). In this way, different
couplings between the two superfluid components and the normal one yield different
transfer rates of angular momentum. If the pinned component transfers its angular
momentum excess on a faster rate than the normal component to the passive compo-
nent, then a glitch overshoot occurs. Therefore, in complete analogy with the model
of Baym et al. (1969b), we need a total angular momentum conservation equation,
plus two equations for the exchange of angular momentum between the superfluid
components (labelled with 1,2) and the normal one (labelled with p):

xpΩ̇p + x1Ω̇1 + x2Ω̇2 = −|Ω̇∞|

Ω̇1 = −b1

�

Ω1 −Ωp

�

Ω̇2 = −b2

�

Ω2 −Ωp

�

(4.1)

where x i indicates the moment of inertia of the i-component with respect to the total
one, bi the coupling parameter between the i-th superfluid component with respect to
the normal one and |Ω̇∞| is the spin-down rate. Note that |Ω̇∞| is the spin-down rate
averaged over several years (steady-state spin down), which thus considers glitches in
its measurement. For this reason, this spin down acts on the whole star, including the
superfluid components. We impose that the three partial moment of inertia ratios x i
sum up to 1, i.e. we are explicitly asking the three components to comprise the whole
star. In this case, the moment of inertia fraction for the normal component can be
written as:

xp = 1− x1 − x2 . (4.2)

Note that this is not a compulsory hypothesis, as the system of equations above is
solvable even without this assumption. In that case, however, we would have one more
free parameter – xp – to be fitted with the data. To keep things simple, we neglect
this possibility, assuming that all the star participates in the glitch mechanism. It is
interesting to notice that a model with a differentially-rotating superfluid component
is similar to a limit of an infinite number of rigidly-rotating superfluid components:
in this model only two have been taken, so to have the simplest model which is able
to account for an overshoot. The system in (4.1) is valid for t ≥ 0, where we have
set t = 0 as the time at which the glitch is triggered. Prior to the glitch moment, the
values of b1,2 could have a different value, e.g. they may be assumed to be equal to
zero if the two superfluid components are perfectly pinned (Anderson and Itoh, 1975),
but their actual pre-glitch value is not important for our scope. Since b1,2 set the
post-trigger creep rate of vortex lines (Alpar et al., 1984b), what is important in the
present analysis is that their value remain almost constant during the glitch spin-up
phase and the first moments of the relaxation, namely long enough (approximately
one minute) to describe the first exponential decay in the angular velocity (see, e.g.,
Celora et al., 2020, for models where these mutual friction coefficients are functions



96 Chapter 4. Angular velocity evolution

of the velocity lag between the components). Hence, a limitation of the model will be
that we drop the still poorly understood problem of the post-glitch repinning process,
during which the creep rate is expected to decrease as the velocity lag between the
superfluid and the normal component becomes smaller and smaller (Sedrakian, 1995;
Haskell and Melatos, 2016).

We can solve the system of equations (4.1) analytically (see Pizzochero et al.,
2020; Montoli et al., 2020b). As a first step, let us perform a change of variables:
it is convenient to use the superfluid angular velocities as measured in the frame of
the normal component Ωip ≡ Ωi −Ωp, with i = 1,2. Furthermore, it is convenient
to integrate directly the first equation for Ωp to find that the angular velocity for the
normal component with respect to the steady-state spin down solution is given by

∆Ωp(t) := Ωp(t)−Ω0
p + |Ω̇∞| t = −x · (y(t)− y0) , (4.3)

where we have defined the vectors

x= (x1 , x2)

y= (Ω1p , Ω2p)

y0 = (Ω
0
1p , Ω0

2p) .
(4.4)

In this way we only have to solve the dynamics of the lag vector y, that must satisfy
the matrix equation (given by the last two equations of (4.1))

ẏ = a− B y , (4.5)

where

a=

�

α

α

�

, B =

�

(1− x2)β1 x2β2
x1β1 (1− x1)β2

�

(4.6)

and

α= |Ω̇∞|/(1− x1 − x2) (4.7)

βi = bi/(1− x1 − x2) for i = 1,2 . (4.8)

The matrix B has two eigenvalues λ+ and λ−, given by

λ± =
1
2

�

β1(1− x2) + β2(1− x1)±

±
q

[β1(1− x2) + β2(1− x1)]2 − 4β1β2 xp

�

.
(4.9)

We call the respective eigenvectors e+ and e−, defined up to a normalisation constant;
their explicit form is not necessary here. Using the fact that the parameters bi are
positive and that the sum of the moment of inertia fractions x i cannot exceed unity,
it is easy to prove that both the eigenvalues are always positive and in particular
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that λ+ > λ− > 0. Because of this positivity property, Equation (4.5) allows a stable
steady-state solution y(t) = y∞ that is constant in time:

y∞ = B−1a= (α/β1 , α/β2) . (4.10)

This particular solution is an attractor for the dynamics of the lag vector y: the internal
forces induced by dissipation (set by the parameters bi) and the driving force (set
by the parameter |Ω̇∞|) tend to balance, killing off initial transients and settling the
system into its typical behaviour described by y∞. Since in the problem we have two
natural timescales (one short, 1/λ+, and one long, 1/λ−), we can conclude that the
steady state is reached in the limit t � 1/λ−.

The above property of the system allows to define the asymptotic amplitude of the
glitch ∆Ω∞p : we just have to take the limit t � 1/λ− in Equation (4.3) to obtain

∆Ω∞p = x · (y0 − y∞) . (4.11)

Instead of the lag vector y, it is more convenient to consider the dynamics of the
residual with respect to the steady-state

∆y= y− y∞ , (4.12)

that satisfies the linear equation

∆ẏ = −B∆y . (4.13)

Decomposing y0 − y∞ in the basis of the eigenvectors,

y0 − y∞ = δ y−e− + δ y+e+ , (4.14)

the general solution of (4.13) is expressible as

∆y(t) = e−tB (y0 − y∞) =
∑

j=+,−
e j δ y j e−tλ j . (4.15)

Employing the decomposition (4.14) and (4.15) into (4.3), it is easy to find

∆Ωp(t) = ∆Ω
∞
p

�

1−ω e−tλ+ − (1−ω) e−tλ−
�

, (4.16)

where we have defined
ω= δ y+ (x · e+)/∆Ω∞p . (4.17)

Instead of using the eigenvectors, it is easier to find the value of ω in terms of the
parameters of the system (4.1) by considering the value of the derivative of (4.16) at
t = 0

ω =
∆Ω̇p(0)

∆Ω∞p (λ+ −λ−)
−

λ−
λ+ −λ−

. (4.18)
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Finally, to write the general solution (4.16) in terms of the basic parameters of the
model, we need to know that

∆Ω∞p = x1

�

Ω0
1p −

α

β1

�

+ x2

�

Ω0
2p −

α

β2

�

(4.19)

∆Ω̇p(0) = x1 β1Ω
0
1p + x2 β2Ω

0
2p − (x1 + x2)α . (4.20)

Let us comment on the solution (4.16) of the system. This solution has been
presented in Montoli et al. (2020b), as a generalisation of a first solution presented in
Pizzochero et al. (2020). The angular velocity of the observable component shows an
evolution with two different timescales, one given by 1/λ+ and a longer one given by
1/λ−. The form of this solution has already been noted in other works, as Equation
(4.16) has the same functional form of the model used to fit the Vela 2016 glitch
by Ashton et al. (2019b); the difference here is that we make an exact connection
between the phenomenological parameters in (4.16) and the “structural” parameters
in (4.1), which have a more clear physical interpretation.

Let us now study the conditions under which an overshoot of the normal component
can be produced, a situation that – as we told before – can never occur in a model
with only two rigid components and a constant coupling parameter like the one of
Baym et al. (1969b). Note, however, that it is possible to obtain an overshoot with
a two-component model of the kind pioneered by Alpar et al. (1981), where the
superfluid can develop non-uniform rotation (see, e.g., Alpar et al., 1984b; Larson
and Link, 2002; Haskell et al., 2012; Antonelli and Pizzochero, 2017; Graber et al.,
2018), due to the fact that the coupling with the normal component – which depends
on the non-uniform lag itself and on stratification – may not be constant in both
space and time. This is not surprising as a fluid model has infinite degrees of freedom
that can react on different timescales, not only two (i.e. Ω1 and Ω2) as the present
minimal model. An overshoot is realised if there exists a certain time tmax > 0 such
that ∆Ω̇p = 0 and ∆Ω̈p < 0. For the minimal model in (4.1), the nulling of the first
derivative of (4.16) gives

tmax =
1

λ+ −λ−

�

log
�

λ+
λ−

�

+ log
� ω

ω− 1

�

�

, (4.21)

which needs to be positive. Since λ+ > λ− > 0 (see Equation 4.9), we have that tmax is
a real number whenω< 0 orω> 1. The additional condition∆Ω̈p(tmax)< 0 requires
ω> 0. Therefore, the overshoot occurs forω> 1, which also guarantees that tmax > 0.
Note that this overshoot condition, as well as the functional form of Equation (4.16),
are somewhat similar to those in van Eysden and Melatos (2010), although the idea is
different: here, the time evolution of the angular velocity is continuous at the time of
the glitch, while in van Eysden and Melatos (2010) there is a discontinuous jump at
the glitch time.
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If we consider the time residuals with respect to the steady spin-down evolution,
which are given by (see Equation (1.13))

rp(t) = −
1
Ω0

p

∫ t

0

∆Ωp(t
′)dt ′ , (4.22)

we can translate the overshoot condition in terms of them: for an overshooting glitch,
tmax corresponds to an inflexion point, after which r̈p(t) is positive. On the other hand,
in a non-overshooting glitch there is no inflexion point, and rp(t) is always concave
down.

We remark that all the equations displayed above are symmetric by exchange of
the label 1 with 2. To physically distinguish one superfluid component from the other,
we should impose, for example, that the superfluid component 2 is the one with the
largest initial lag, Ω0

2p > Ω
0
1p. This may be due to a stronger pinning in the region of

component 2, or simply because it happened that the glitch initiated in this condition
(the initial conditions are unknown and depend on the past history of the system).
Hence, the superfluid component 1 is, by definition, the one with a smaller initial lag,
i.e.

Ω0
1p < Ω

0
2p . (4.23)

4.1.1 Constraint on the moment of inertia of the slow component

In the previous Section we presented the general solution to a three-component system,
first presented in Pizzochero et al. (2020) and then extended in Montoli et al. (2020b).
Building on the particular solution of Pizzochero et al. (2020), which assumes the
presence of only one superfluid reservoir (i.e. Ω0

2p only is different from the steady
state lag, see Section 4.2), Sourie and Chamel (2020) recently proposed a simple
formula to constrain the moment of inertia fraction of the other superfluid component.
It is worth to extend their treatment in view of the more general approach used here.

Let us define the maximum angular velocity ∆Ωover achieved by the star during
the overshoot, which can be obtained by finding the maximum in Equation (4.16).
Using ∆Ωover =∆Ωp(tmax) and Equation (4.21), we immediately obtain

∆Ωover

∆Ω∞p
= 1−ω

�

λ− (ω− 1)
λ+ω

�

λ+
λ+−λ−

+ (ω− 1)
�

λ− (ω− 1)
λ+ω

�

λ−
λ+−λ−

. (4.24)

This quantity depends on the phenomenological input parameters of the model (i.e.
the x i, bi and |Ω̇∞|) as well as on the initial condition Ω0

ip, for i = 1,2. We stress
that, to obtain this equation, the role of the superfluid components 1 and 2 has been
considered as totally symmetric and all the formulas are invariant under the exchange
of the two. However, let us relax this hypothesis and assume that one of the two
components, say the component 2, has a higher drag parameter with respect to the
other one, i.e. b1� b2:

a1/2 = b1/b2 = β1/β2� 1 . (4.25)
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Having all the parameters but the coupling parameters fixed, it is possible to study
the value of ∆Ωover as a function of b1/b2. It is easy to see that the maximum value
of the overshoot can be obtained if b1/b2→ 0. In that case, in fact, the superfluid 2
would cede all its extra angular momentum to the normal component on a much faster
rate than the normal component to the other superfluid. No further assumptions are
needed on x1 and x2 (i.e. we do not need to specify which of the two components has
higher inertia). This case is of physical interest (since we expect the nature and the
strength of the friction mechanism to vary in different layers of the star) and allows to
perform an expansion in the parameter a1/2. Inserting the expansions

ω=ω∗ + a1/2ω
′ +O(a2

1/2) (4.26)

λ+ = λ
∗
+ + a1/2λ

′
+ +O(a2

1/2) (4.27)

λ− = a1/2λ
′
− +O(a2

1/2) , (4.28)

into (4.24), it is possible to safely take the limit a1/2� 1 to show that

∆Ωover

∆Ω∞p
=ω∗ +O(a1/2) (4.29)

and
∆Ωover −∆Ω∞p
∆Ωover

=
ω∗ − 1
ω∗

+O(a1/2) . (4.30)

Thanks to (4.9), we find that (4.27) and (4.28) read

λ+ =
b2 (1− x1)
1− x1 − x2

+
a1/2 b2 x1 x2

(1− x1)(1− x1 − x2)
+O(a2

1/2) (4.31)

λ− =
a1/2 b2

1− x1
+O(a2

1/2) . (4.32)

The lowest-order term ω∗ in (4.26) can now be obtained by inserting the above
equations into (4.17). Finally, the ratio in (4.30) turns out to be

∆Ωover −∆Ω∞p
∆Ωover

= x1 −
x1(1− x1)(b1Ω

0
2p − |Ω̇∞|)

b1 x2Ω
0
2p

+O(a1/2) . (4.33)

Finally, we observe that to obtain a positive glitch amplitude both ∆Ω∞p in (4.19) and
∆Ω̇p(0) in (4.20) should be positive. This constrains the initial lags and it is possible
to show that this requirement is fulfilled for any possible value of x1 and x2 if

|Ω̇∞| < min
i=1,2

[ bi Ω
0
ip ] . (4.34)

Under the assumption (4.25), the constraint (4.34) tells us that

|Ω̇∞| < a1/2 b2Ω
0
1p and |Ω̇∞| < b2Ω

0
2p . (4.35)
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Equation (4.35) tells us that the second term in the right-hand side of (4.33) is always
negative, so that, to the lowest order in a1/2, the detection of an overshoot allows to
constrain the fractional moment of inertia of the “slow” component (in this case x1) as

x1 >
∆Ωover −∆Ω∞p
∆Ωover

for b1� b2 . (4.36)

This is in complete accordance with equation (12) of Sourie and Chamel (2020).

4.1.2 Including corrections

It is straightforward to include the entrainment effect into our system of equations,
provided that a wise choice of the dynamical variables is made. In fact, it has been
shown that using the superfluid momenta instead of the velocities naturally leads
to a redefinition of the phenomenological parameters of the hydrodynamic model
(here the x i and the bi for i = 1, 2), but the form of the dynamical equations remains
unchanged (Antonelli and Pizzochero, 2017, but also Chapters 2 and 3). Originally
the argument has been presented in the very special case of straight and rigid vortex
lines permeating the superfluid component in a Newtonian context, but it can be
generalised to the case of tensionless vortices and of different superfluid domains, as
well as to take into account for general relativistic corrections in the slow-rotation
approximation (Antonelli et al., 2018).

The present discussion is analogous to the one made by Sidery et al. (2010)
and differs from it only for a different choice of variables, that is nonetheless quite
convenient in the present framework where we have to deal with three different
components. Locally, the momentum per particle pn of the superfluid neutrons is
a linear combination of the neutron velocity vn and of the velocity of the normal
component vp (which is a mixture of all the charged species and we assume it to be
rigid),

pn/mn = (1− εn)vn + εnvp , (4.37)

where mn is the neutron mass and εn is the entrainment parameter (Prix et al.,
2002; Chamel, 2017b; Haskell and Sedrakian, 2018). If we have two different (non-
overlapping) superfluid regions and the motion is circular, the above equation suggests
defining two additional angular velocities Ωi

v as (see also Equation (2.18))

Ωi
v = (1− ε

i
n)Ω

i
n + ε

i
nΩp , (4.38)

where Ωp is the observable angular velocity of the normal p-component while Ωi
n is

the angular velocity of the neutrons in the region i = 1, 2. In some situations, working
with the Ωi

v may be convenient because, due to the Feynman-Onsager relation, they
are a direct measure of the number of vortices in a certain superfluid region. Hence,
the Ωi

v cannot change as long as the number of vortices is conserved. This defines the



102 Chapter 4. Angular velocity evolution

form of the equations of motion at a certain location x inside the star (Antonelli and
Pizzochero, 2017),

∂tΩ
i
v(t,x) ≈ −2Ωi

v(t,x)
Ri

1+R2
i

(Ωi
n(t,x)−Ωp(t)) (4.39)

where Ri is the drag-to-lift ratio that appears in the vortex-mediated mutual friction
force between the superfluid and normal components (Andersson et al., 2006). With
the aid of (4.38), the above equation reads

∂tΩ
i
v(t,x) ≈ −2ΩpBi(r) (Ω

i
v(t,x)−Ωp(t)) , (4.40)

where we have used that Ωi
v ≈ Ωp because the lags are small and the coefficient Bi(r)

depends on the local values Ri(r) and εi
n(r) at a certain radius r inside the star (we

assume spherical stratification), namely

Bi(r) =
1

1− εi
n

Ri

1+R2
i

. (4.41)

Both Bi and Ri are expected to have a spherical radial dependence as their value
depends on the physical quantities in the stellar interior and on the particular mecha-
nism that operate to dissipate energy at the microscopic scale of a vortex core. When
the variables Ωi

v are used, the total angular momentum of the star Ltot is given by

Ltot = (I − I1
v − I2

v )Ωp + I1
v 〈Ω

1
v〉1 + I2

v 〈Ω
2
v〉2 , (4.42)

where I is the total moment of inertia and1

I i
v =

8π
3

∫

i
dr r4 ρn(r)

1− εn(r)
(4.43)

is a rescaled moment of inertia for the superfluid component (the integration extends
over the region i and ρn(r) is the density of unbounded neutrons). Using standard
spherical coordinates where θ is the colatitude, the parameters I i

v play the role of
normalisation factors for the averages of functions over the i-region,

〈 f 〉i =
1
I i
v

∫

i
d3 x f (x)

(sinθ r)2ρn(r)
1− εn(r)

. (4.44)

We now take the spatial average of equation (4.40),

〈Ω̇i
v〉i ≈ −〈2ΩpBi(Ω

i
v −Ωp)〉i ,≈ −2Ωp〈Bi〉i 〈Ωi

v −Ωp〉i . (4.45)

1Since the integration is over the i-region, and the two superfluid regions do not overlap, we can
drop the unnecessary i labels on the density and on the entrainment parameter. We do the same in
(4.44).
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Clearly, the last step is not rigorous but neglecting possible correlations between the
local value of Bi and the spatial fluctuations of the lag Ωi

v −Ωp is the price we have
to pay to obtain a rigid model from a fluid one. Finally, the spin-down torque has
the only effect to transport the angular momentum to infinity, so it can be introduced
exactly as

L̇tot = (I − I1
v − I2

v )Ω̇p + I1
v 〈Ω̇

1
v〉1 + I2

v 〈Ω̇
2
v〉2 = −I |Ω̇∞| . (4.46)

Equations (4.45) and (4.46) are formally equivalent to the system in (4.1), provided
that we make the following identifications:

x i = I i
v / I (4.47)

xp = (I − I1
v − I2

v )/I = 1− x1 − x2 (4.48)

bi = 2Ωp〈Bi 〉i (4.49)

Ωi = 〈Ωi
v 〉i . (4.50)

Note that including all the entrainment corrections into the definition of the phe-
nomenological parameters of the model has the advantage that the final system of
equations does not change because of the additional entrainment couplings. Hence,
no new calculations are needed to find the general solution of the system, which is
formally identical to the case with no entrainment. In particular, the generalisation of
the formula of Sourie and Chamel (2020) to the case in which there is entrainment is
still our equation (4.36), where

x1 =
I1
v

I
>
∆Ωover −∆Ω∞p
∆Ωover

for 〈B1 〉1� 〈B2 〉2 . (4.51)

Although this is a completely Newtonian model, it is easy to expect that a fully
relativistic treatment would start from a system like that in (4.1) as well, at least in
the slow rotation approximation (Hartle, 1967). What changes is the definition of the
different parameters inside the equation: the moments of inertia are no longer those
described in a Newtonian framework, but the relativistic ones, by following a line of
reasoning very similar to that for the entrainment parameter. It is interesting to note,
however, that the moment of inertia fractions in both the Newtonian and the slow
rotation approximation are numerically very similar, as it has been noticed in Antonelli
et al. (2018) (see Chapter 2). Other works concentrate on other aspects of the glitch
dynamics, as for example the glitch rise time. This is not an easy combination of the
parameters of the model, but the fact that the relativistic value of this varies from
the Newtonian one up to a factor of two, also in the more massive stars, is somewhat
comforting (Sourie et al., 2016; Gavassino et al., 2020). We have however to stress
the importance of a fully consistent general relativistic derivation for the model with
three rigidly-rotating components. Only in this way it is possible to make a more clear
and direct link between the phenomenological parameters described in (4.1) and the
microphysical parameters.
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4.2 Application to the 2016 Vela glitch: frequentist
approach

A first fit to the 2016 Vela glitch has been performed in Ashton et al. (2019b). In
that work, the authors performed a Bayesian fit to the Palfreyman et al. (2018) data,
by assuming a time dependence of the angular velocity of the form (4.16). The fit
was based on a phenomenological model: the objectives were the glitch rise time
and decay time (1/λ− and 1/λ+), and the prefactors in front of each exponential
(i.e. the overshoot size and the long term glitch size). We show here the different
approach presented in Pizzochero et al. (2020). The idea is – instead of using the
phenomenological parameters – to fit the more “physical” parameters, such as the
moment of inertia fractions x i and the coupling parameters bi. To do so, a first fit
has been performed in Pizzochero et al. (2020), by employing a simplified version of
(4.16) and a frequentist approach. The analysis have been made more thoroughly in
a subsequent work (Montoli et al., 2020b, see also Section 4.3).

The simplifying working assumption made in Pizzochero et al. (2020) is that we
assume that only one of the two superfluid components stores an excess of angular
momentum. We are thus asking that the other component (the 1-superfluid component)
has an initial lag at the glitch time that is equal to the steady state solution, i.e.
Ω̇1 = Ω̇∞. This condition translates in (see Equation (4.10)):

Ω0
1p =

|Ω̇∞|
b1

. (4.52)

We will discuss in Section 4.3 the acceptability of this hypothesis. With this assumption,
it can be shown (see Pizzochero et al., 2020) that the overshoot condition ω> 1 can
be translated into b1/b2 < 1. In other words, the condition for an overshoot is that
the post-glitch coupling parameter b2 associated to the “active” component (that in
the pre-glitch state was only loosely coupled to the rest of the star) must be larger
than the coupling parameter b1 of the “passive” component. From the physical point
of view, the overshoot occurs if the “active” superfluid region that stores the angular
momentum for the glitch can transfer its excess of angular momentum to the normal
component faster than the typical timescale the “passive” superfluid component reacts
with.

The data made available by Palfreyman et al. (2018) span a 4200 s time window,
with the glitch time positioned roughly at the centre of the dataset. The authors
calculate a first estimate of the glitch date, to be set at tP

g = 57734.4849906MJD.
Moreover, they identify some peculiarities during the glitch: soon after a null (missing)
pulse at time t0, a sudden and persistent increase of the timing residuals has been
detected in the time interval between t1 = t0 + 1.8s and t2 = t0 + 4.4s (see Figure 4.2
for the relative positions of these times). This kind of phenomena can be linked to an
effective slow-down of the star before the actual glitch (Graber et al., 2018; Ashton
et al., 2019b) or to a magnetospheric change that could cause a delay on the emission
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of the pulsations of the star, maybe due to a starquake (Bransgrove et al., 2020). Of
course, this phenomenon cannot be described using the model described in Section 4.1,
thus we add a phenomenological offset r0 to the time residuals in (4.22). Finally, we
ask (4.22) to be valid only after a glitch, i.e. we ask rp(r) to be zero for t < tg , where
tg is the glitch instant. In conclusion, the function we would like to fit is:

rp(t) = ϑ(t − tg)

�

r0 −
1
Ω0

p

∫ t−tg

0

∆Ωp(t
′)dt ′

�

, (4.53)

where ∆Ωp(t) is given by Equation (4.16) – with the condition of Equation (4.52) –
and ϑ is the Heaviside theta function.

We now fit this expression to the data of the residuals made available by Palfreyman
et al. (2018) using a least-squares method. The parameters to fit are seven: the two
moment of inertia fractions x1,2, the two coupling parameters b1,2, the offset r0, the
glitch time tg and the glitch size ∆Ω∞p . As we have only one angular momentum

reservoir, the glitch size∆Ω∞p is linearly dependent on the initial lagΩ0
2p (see Equations

(4.19) and (4.52)). Hence, we will use the glitch size as a parameter, as it allows for
a direct comparison with the result obtained in Palfreyman et al. (2018). Although
the glitch time tg and amplitude ∆Ω∞p were already estimated by Palfreyman et al.
(2018), here we will take them as free parameters, thus allowing for a check of our
results.

Due to the presence of the increase in the timing residuals, we will have to neglect
some of the data after the occurrence of the glitch. We expect that during the interval
∆tm = t2 − t1 the emitting magnetosphere has decoupled from (i.e. is not corotating
with) the rapidly accelerating crust: the persistent positive offset in the mean of the
timing residuals and their associated low variance observed by Palfreyman et al. (2018)
during∆tm cannot describe the overshooting normal component, which instead would
correspond to decreasing residuals. Therefore, the data around the interval ∆tm do
not describe the crust rotation and should be excluded from the fit. In order to decide
how much data to neglect, we proceed as follows: defining tcut as the time before
which the data are neglected, we perform the fit varying tcut between t2 − 1s and
t2 + 4 s by steps of 0.1 s (the frequency of the Vela being about 11 Hz, this amounts to
eliminating one data point at each successive fit). The fitted parameters can then be
plotted as a function of tcut: in Figure 4.1 this is shown for∆Ω∞p (the best determined
parameter in our model, due to the extension of the data well after relaxation has
completed), and other parameters of the model, x1,2 and b1. The fitted ∆Ω∞p first
decreases until tcut = t2 + 0.5 s, then stabilises until tcut = t2 + 2s, then decreases to
stabilise at a slightly smaller value until tcut = t2 + 3s. Short after that, the fitting
of the data with expression (4.53), containing two exponentials, does not converge
any more, probably because too much data has been omitted to resolve the shorter
time component and determine its parameters. The variations of ∆Ω∞p even during
the “stable” phase shows the sensitivity of our fit to the choice of data range: even
the removal of one data point affects the result, which reflects the inherent noise in
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Figure 4.1: Result of the fit for the parameters x1, x2, b1, and ∆Ω∞p as a function of tcut, the
time (measured with respect to t2) before which we neglect the data. We vary tcut by steps of
0.1s, and connect the results by a line for clarity. The vertical lines define the region we have
chosen to evaluate the parameters; the means and standard deviations reported in Table 4.1
are taken for the values marked by black dots.

the timing residual data. We then decide to take as final result for each parameter
the mean and standard deviation calculated from the values it assumes when tcut
varies in the interval [t2 + 0.5 s, t2 + 2 s]. We have also checked that taking the mean
and standard deviation in the longer interval [t2 + 0.5 s, t2 + 3 s] yields mean values
within the previous errors and larger standard deviations. However, we prefer to adopt
the smaller interval (whose data point are marked in orange in Figure 4.2), which
eliminates less information about the short time component.

The fact that∆Ω∞p “stabilises” only five pulsar revolutions after t2 seems to indicate
that shortly after ∆tm the magnetosphere recouples with the normal component.
To our knowledge, no theoretical work on the decoupling and recoupling of the
magnetosphere following a glitch has been performed, so that the timescale of order
∆tm = 2.6 s for the duration of this process remains, at present, only speculative.
Incidentally, the recent work by Bransgrove et al. (2020) studies the response of the
magnetosphere to a quake in the crust, arguing that this is the cause of the null pulse
at t0 and speculating that the quake may be the trigger of the glitch.

The results for the seven independent parameters of Equation (4.53) are reported
in Table 4.1; in its lower part, we also show some dependent quantities, that can be
derived from the equations in the previous section. The residuals of the glitch (see
Equation (4.53)) corresponding to the parameters in the Table are shown superimposed
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Figure 4.2: The timing residuals around the time of the glitch, as obtained in Palfreyman et al.
(2018). Superimposed in blue, we plot our best fit for the residuals (Equation (4.53) with the
parameters of Table 4.1). In the zoom we indicate the times t0, t1, t2 defined in Palfreyman
et al. (2018) and our result for tmax. The glitch begins right after t1. The data points are
connected by a line for clarity: in light grey those always omitted from the fit, in dark grey
those always included, in orange the region corresponding to the interval of tcut over which
we evaluate the parameters of the model, as explained in the text (see Figure 4.1).
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Parameter Value

x1 0.60± 0.01
x2 0.08± 0.01
b1 (9.24± 0.84) · 10−3 s−1

b2 3.92± 3.09 s−1

∆Ω∞p 1.014 · 10−4 rad/s
r0 0.086± 0.002 ms
tg 2.0± 0.1 s

xp 0.32± 0.02
1/λ− 0.20± 0.14 s
1/λ+ 43.3± 2.1 s
tmax 1.2± 0.7 s
B1 (6.6± 0.6) · 10−5

B2 (2.8± 2.2) · 10−2

Table 4.1: Results of the fit for the 7 independent parameters of Equation (4.53). The time of
beginning of the glitch, t g , is given with respect to t0, while tmax is given with respect to t g .
The relative error on ∆Ω∞p is of order 10−5, while the other errors are at 1σ confidence level.
The second part of the table reports some dependent quantities and their propagated errors,
obtained from Equations (4.9), (4.21) and (4.49) (without entrainment).

to the data in Figure 4.2. The results of Table 4.1 yield some interesting considerations.
First of all, the glitch size ∆Ω∞p is the same as what obtained in Palfreyman et al.
(2018) (∆Ω∞p = 1.006 · 10−4 rad/s) once their long-term (τd = 0.96 day) decay term
∆Ωd = 0.008 ·10−4 rad/s (absent in our model, since the data we use extend to about
34 minutes after the glitch time) has been added.

Moreover, we find a decay timescale 1/λ+ = 43.3 ± 2.1 s, close to the shortest
timescales measured in the 2000 and 2004 Vela glitches (Dodson et al., 2002, 2007)
and within the errors of the value obtained in Ashton et al. (2019b). The rise time
1/λ− = 0.20± 0.14s is over two order of magnitude shorter than 1/λ+; it has quite
large errors, reflecting the difficulty to resolve the short time behaviour, but it is well
within the upper limit of 12.6 s determined by Ashton et al. (2019b).

The mutual friction parameters B can be directly compared to the constraints
given by (Graber et al., 2018), namely 3× 10−5 < Bcore < 10−4 for the drag between
the core superfluid and the normal component, and Bcr > 10−3 for that between the
crustal superfluid and the normal component. These values possibly correspond to
electron scattering off magnetised vortices in the core and Kelvon scattering in the
crust, the latter parameter being poorly predicted by theory, with differences of more
than one order of magnitude at higher densities between different calculations (Graber
et al., 2018). If we interpret the two superfluid components of our model as the core
(i = 1) and the crustal reservoir (i = 2), then the value B1 = (6.6± 0.6) · 10−5 lies



4.2. Application to the 2016 Vela glitch: frequentist approach 109

0 1 2 3 4 5
Baryon density (n0)

0.0

0.2

0.4

0.6

0.8

1.0

Su
pe

rfl
ui

d 
fra

ct
io

na
l m

om
en

t o
f i

ne
rti

a

M 
= 

1 
M

M 
= 

1.4
 M

M =
 1.

8 M

M = 2 
M

x2

x2

x1+x2

x1+x2

0.50 0.75 1.00 1.25
0.00

0.05

0.10

Figure 4.3: Moment of inertia fraction of the neutrons enclosed in a spherical shell extending
from the radius at which the neutron drip starts to the radius corresponding to a certain baryon
number density. The baryon density corresponding to the internal boundary of the shell is given
in units of n0 (nuclear saturation). The vertical line marks the core-crust transition at 0.45n0.
The horizontal line represent x2 and x1 + x2 = 1− xp without (solid lines: m∗1 = m∗2 = 1)
and with strong entrainment in the crust (dashed lines: m∗1 = 1, m∗2 = 4). We used the SLy4
equation of state and four reference masses: 1, 1.4, 1.8 and 2 M�. The inset is a zoom on the
outermost regions of the core.

right in the constrained interval for Bcore; the parameter B2 is affected by a large error
(reflecting the large uncertainty of all short time parameters, as seen in Table 4.1) but
it also satisfies the lower limit on Bcr. Since to date calculations of the drag coefficients
Ri are uncertain, the present model provides a simple technique to extract average
values of these parameters from glitch observations, which may help to clarify the
theoretical issues concerning the microphysics involved in the dissipative channels at
work during a glitch. Note that the different orders of magnitude of the two coupling
parameters (with B2� B1, and so are the b1,2 parameters) confirm the presence of a
glitch overshoot.

Regarding the time when the glitch begins, tg , our value is before what estimated
in Palfreyman et al. (2018), but within their error bars. We find tg ≈ t1, which supports
the idea that the magnetosphere decoupling is associated to the onset of the glitch.

We finally discuss the fractional moments of inertia. In Figure 4.3 we display
the partial fraction of neutrons for shells starting from the surface and going deeper
into the star, using a unified nucleonic equation of state (SLy4, Douchin and Haensel,
2001) and for different values of the stellar mass. We see that the value x2 ≈ 8%
implies that the reservoir cannot be limited to the crust (which contains at most 4%
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of the neutron fraction for the lightest neutron star), but extends into the outer core
to densities below nuclear saturation. For a standard 1.4M� star, the intersection
of the curve with the solid horizontal line representing x2 in Figure 4.3 shows that
the reservoir extends to about 0.75n0 (with n0 = 0.168 fm−3 the nuclear saturation
density); this is compatible with some calculations of S-wave pairing gaps (Ho et al.,
2015; Montoli et al., 2020c). We also see that x1+ x2 ≈ 68%, implies that the moment
of inertia fraction associated to normal matter is xp ≈ 32%. This is much more than
the value predicted by equations of state without an inner core (between 5% and
10%, as shown for SLy4 by the endpoints of the curves in Figure 4.3, which give the
total neutron fraction of the star, xn, the remaining 1− xn then being the charged
fraction). Therefore, our results suggest the presence of non-superfluid neutrons, a
strong coupling between superfluid neutrons and superconductiong protons or an
inner core of matter strongly coupled to the charged component. For each mass in
Figure 4.3, the intersection of the curve with the solid horizontal line corresponding to
x1 + x2 identifies the transition density to the innermost region that is rigidly coupled
to the normal component. For a standard 1.4M� star, such a core would start around
2n0. This is compatible with microscopic calculations, which predict the appearance
of an inner core of non-nucleonic matter (hyperons, meson condensates, quarks) at
densities in the range 2n0 − 3n0. Other possibilities, however, can be proposed, such
as strong coupling of the neutron superfluid to the proton superconductor in the inner
core, due to the (still poorly known) vortex-fluxoid interaction.

Until now we have studied the fitted parameters without speaking of entrainment.
Entrainment enters in the equations as discussed in Section 4.1.2, and in particular,
the parameters fitted here are modified as in Equations (4.47) and (4.49). We will
not employ the integrations defined in those equations, but we will simply employ a
dimensionless effective mass of the neutron m∗i in order to account for entrainment.
This value is a mean value of the effective mass of the neutron, averaged over the
neutron star (see Equation (4.44))

1
m∗i
= 〈1〉i . (4.54)

Within this approximation, the parameters of the three-component model become:

x̃ i ≈
x i

m∗i
(i = 1,2) (4.55)

x̃p = 1− x̃1 − x̃2 ≈ xp − (1−m∗1) x̃1 − (1−m∗2) x̃2 (4.56)

B̃i ≈
Bi

m∗i
(i = 1,2) (4.57)

It follows that, in presence of entrainment, the timing solutions are still represented by
Equations (4.16) and (4.53) for the glitch and its residuals, but with tilded parameters
instead of untilded ones. Therefore we do not need to repeat the fit: all the results
reported in Table 4.1 are still valid, but they now represent the rescaled quantities. We
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Parameter Value
x1 0.60± 0.01
x2 0.32± 0.04
xp 0.08± 0.05
B1 (6.6± 0.6) · 10−5

B2 (1.1± 0.9) · 10−1

Table 4.2: Fractional moments of inertia and drag parameters obtained in the presence of
strong entrainment in the reservoir (m∗1 = 1 and m∗2 = 4). The quantities and their propagated
errors were obtained by rescaling the results of Table 4.1, as explained in the text.

can then go back to the physical variables using the previous relations: of course, the
“observable” parameters (rise and decay timescale of the overshoot, amplitudes of the
exponentials, ∆Ω∞p , tg and r0) remain the same, while only the “internal” parameters
(fractional moment of inertia and mutual friction coefficients) must be rescaled.

For example, we consider the case of no entrainment in the core component and
strong entrainment in the reservoir; this is justified by some theoretical calculation,
which suggest an effective mass slightly smaller than 1 in the core (Chamel and
Haensel, 2006) and quite large in the crust (Chamel, 2012). In particular, we take
m∗1 = 1 and m∗2 = 4, the latter being close to the average value of 4.3 (Andersson et al.,
2012; Chamel, 2013), but other values could be tested: to date, the issue of strong
entrainment in the crust is still open to debate (Chamel, 2012; Martin and Urban,
2016; Watanabe and Pethick, 2017; Sauls et al., 2020).

In Table 4.2 we report the physical quantities whose values are changed because
of entrainment, namely the fractional moments of inertia and the mutual friction
coefficients; with entrainment being confined to the crust (i = 2), only the values of
the reservoir are affected, namely B2 = m∗2B̃2 and x2 = m∗2 x̃2. In particular, the value
of B2 = (1.1±0.9)·10−1 is four times larger than before and still satisfies the constraint
of Graber et al. (2018); due to the mentioned uncertainty of theoretical calculations,
no strong conclusion can be drawn at this stage. As for the fractional moments of
inertia, the normal component now results xp ≈ 8%, in agreement with standard
neutron star models without an exotic inner core (in Figure 4.3 the dashed horizontal
line corresponding to x1 + x2 = 1− xp is very close to the endpoints of the curves for
the neutron fraction). On the other hand, now the reservoir is x2 ≈ 32%, a very large
fraction extending into the outer core up to densities above nuclear saturation. For
a standard 1.4M� star, the intersection of the curve with the dashed horizontal line
representing x2 in Figure 4.3 shows that the reservoir extends to about 1.25n0. This
suggests strong non-crustal pinning, possibly with the pasta phase and/or the magnetic
fluxoids in the superconducting core, but other mechanisms could be envisaged.
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4.3 Application to the 2016 Vela glitch: Bayesian approach

We now employ again the model discussed in Section 4.1 to analyse the data obtained
for the 2016 glitch of the Vela pulsar (Palfreyman et al., 2018). This time we will
follow a Bayesian approach, so to find the posterior probability distribution for the
phenomenological parameters of the model. Differently from Section 4.2, this time
we will keep both the superfluid reservoir, namely we will use Ω0

1p and Ω0
2p as free

parameters to be fitted.
Like in the previous Section, the presence of an increase in the timing residuals

in the data has to be modelled, as this phenomenon cannot be described using the
solution (4.16). To do so, this time we assume that the magnetosphere instantaneously
decouples and recouples from the rotation of the crust of the star, lagging behind the
actual angular velocity of the charged component. This amounts to introduce a fourth
component with negligible inertia (the magnetosphere) that is always locked to the
p-component apart for an instantaneous jump at t = tM , namely

ΩM (t) = Ωp(t)−Ω0
p∆r0δ(t − tM ), (4.58)

where ∆r0 and tM are additional phenomenological parameters that have to be
fitted together with x i, bi, and the initial lags Ωip. Equation (4.58) is non-physical
but provides a simple mathematical form for this magnetospheric slip; its impulsive
character is a crude simplification of a complex dynamical problem. Hence, the
modelling in (4.58) represents the minimal choice to extend the system (4.1) to take
into account this additional piece of physics that is present in the data of Palfreyman
et al. (2018). The residual function of the “observable component” (that now is the
magnetosphere) takes the form

r(t) = rp(t − tg)ϑ(t − tg) +∆r0ϑ(t − tM ), (4.59)

where we extended the function rp(t− tg) (Equation (4.22)) to pre-glitch times t < tg
by means of the usual Heaviside step function ϑ. The quantity tM is unknown and
the magnetospheric change can happen before (tg > tM ) or after (tg < tM ) the glitch.
Finally, the data provided by Palfreyman et al. (2018) are lacking of the uncertainty on
the single measure of the residual. We estimate it from the standard deviation of all
the data before t1, as it is quite sure that before that time the star has not undergone
the glitch yet. In this way, we find σ = 0.25 ms and we assume this value to be valid
also for the post-glitch measurements.

4.3.1 Bayesian modelling

Now we describe the statistical modelling used to obtain a probability distribution
for the parameters involved in the model. From Equation (4.22) we have up to a
maximum of six parameters: the two coupling parameters b1,2, the two moment of
inertia fractions x1,2 and the two initial lags Ω0

1,2 p. The residuals of Equation (4.22)
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have to be considered with respect to the glitch date tg , which is itself a parameter
of the model. Moreover, the magnetospheric slip defined in Equation (4.58) has to
be included in the model as well. In other words, the residual function r(t) which
describes all the pre-glitch and post-glitch data is the one in Equation (4.59). In the
following, the estimate of these two date parameters, tg and tM , is given with respect
to the glitch date tP

g calculated in the analysis of Palfreyman et al. (2018).
We collectively call all the nine parameters of the model as

P = { x1, x2, b1, b2, Ω0
1p, Ω0

2p, ∆r0, tg , tM } . (4.60)

The probability distribution for these parameters can be obtained as the posterior
distribution of a Bayesian inference (see, e.g., MacKay, 2003),

P(P |D) = P(D |P) P(P)
P(D) , (4.61)

where
D = { ( t i , ri ) } i∈data (4.62)

represents the data used for the fit, i.e. the time of arrival of the pulses t i and the
measured residual ri with respect to the model of a uniform spin down. In (4.61),
the functions P(D |P), P(P) and P(D) are the likelihood, the prior and the evidence,
respectively.

Assuming that the measurement for a single pulsation is independent on the
measurements of the others, we write down the likelihood as (see also Ashton et al.
2019b):

P(D |P , σ) =
∏

i

1
p

2πσ2
exp

�

−
(r(t i)− ri)2

2σ2

�

, (4.63)

where σ is the uncertainty on the single measure as calculated before. By writing
the likelihood like this, however, we made a further simplification: in this way the
uncertainty σ is referred only to the time residual ri , while the same uncertainty must
affect the time of arrival t i as well, as the two quantities are dependent. In fact, an
hypothetical variation of the time of arrival would generate the same variation in
ri and vice versa. Thus, the correct likelihood should be a normal distribution with
variance σ2 and set diagonally on the (t i , ri) space. Since the uncertainty on the
measure of the TOAs is of the order of a fraction of ms, while the pulsations arrive on
timescales of a tenth of a second, we neglect this correction, and use the distribution
in (4.63).

We assume most of the variables to be independent from the others, so to factorise
our prior for the parameters P(P) into smaller parts. We set the probability distribution
of the moment of inertia fractions x i as a uniform distribution between 0 and 1, with
the constraint that the sum is less than unity,

x1, x2 ∼

¨

Unif(0,1) Unif(0,1) if x1 + x2 < 1

0 elsewhere
(4.64)
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For each of the two coupling parameters bi we choose a log-uniform distribution, as
we do not know the order of magnitude of the coupling parameters and we would
like to explore a wide range of orders of magnitude,

b1 [s
−1]∼ LogUnif(10−6, 100) (4.65)

b2 [s
−1]∼ LogUnif(10−4, 102) . (4.66)

For the same reason, we choose a similar log-uniform distribution for the prior of
the initial lags Ω0

ip. We already made a first step to break the symmetry between
the two superfluid components by setting two different priors on the two coupling
parameters. By setting a prior on the initial lags with the condition that Ω0

2p > Ω
0
1p, we

unambiguously break this symmetry, implicitly asking the second superfluid component
to be the one that acts as a primary angular momentum reservoir:

Ω0
1p, Ω0

2p [rad/s]∼







LogUnif(10−10, 10−1)×
×LogUnif(10−5, 10−1)

if Ω0
1p < Ω

0
2p

0 elsewhere
(4.67)

We ask the shift on the timing residuals given by the magnetospheric change to be as
broad as possible: since the pulsation of the Vela has a frequency of ≈ 10Hz, we set
the prior on ∆r0 to be a uniform distribution between −100 ms and 100 ms. In this
way, we cover a whole pulsation, which can be up to 0.1 seconds early or 0.1 seconds
late,

∆r0 [ms]∼ Unif(−100, 100). (4.68)

Finally, we set the two priors on the two dates tg and tM respectively to be uniform
between −100 s and 100 s and between −1000 s and 100 s with respect to the glitch
date tP

g obtained by Palfreyman et al. (2018). We do not set further conditions on the
relation between them. In this way, it is in principle possible to understand whether
the magnetospheric change proceeded the glitch, or vice versa (see also Ashton et al.,
2019b):

tg [s]∼ Unif(-100, 100) (4.69)

tM [s]∼ Unif(-1000, 100) (4.70)

The whole prior distribution P(P) is the product of all these independent probability
distributions, defined in Equations (4.64) to (4.70):

P(P) = P(x1, x2) P(b1) P(b2) P(Ω
0
1p,Ω0

2p) P(∆r0) P(tg) P(tM ) . (4.71)

4.3.2 Results of the Bayesian fit

To set the angular velocity at the time of the glitchΩp
0 and the angular velocity derivative

|Ω̇∞| we use the values reported in Dodson et al. (2002). The posterior distribution
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Figure 4.4: Cornerplot of the posterior distribution. On the diagonal the marginalised posterior
distribution for each parameter of the model is plotted. The vertical lines represent the 16th
and 84th percentiles of these distributions. The numerical values are reported in Table 4.3.
The prior distribution is plotted in orange as a comparison: for the jump in the residuals ∆r0
and the magnetospheric time tM this is almost invisible, due to the width of the distribution.
The covariance plots are located off-diagonal.

for the nine parameters in (4.60) has been inferred employing the dynesty nested
sampler (Speagle, 2020), as implemented in the Bilby Python package (Ashton et al.,
2019a). The results for these nine parameters are shown in Figure 4.4, with the 16th,
50th and 84th percentiles for each variable reported in Table 4.3.

The posterior of the parameters tg , tM and ∆r0 yield some information about
this particular glitch event. In Figure 4.5 we show the two distributions for the glitch
time tg and the magnetospheric change time tM , along with some characteristic times
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Variable 16th percentile Median 84th percentile
b1 [s−1] 0.004 0.007 0.009
b2 [s−1] 0.08 0.37 24.64

x1 0.53 0.63 0.78
x2 0.08 0.16 0.29

Ω0
1p [rad/s] 1.06e-08 5.18e-07 8.61e-06
Ω0

2p [rad/s] 0.0003 0.0006 0.0011
∆r0 [ms] 0.08 0.12 0.27

tg [s] -53.1 -18.2 -1.1
tM [s] -7.59 -6.46 -3.61

Table 4.3: 16th, 50th and 84th percentiles for the marginalised posterior for the different
variables of the model. The values of b1 and b2 are given in units of s−1, Ω0

1p and Ω0
1p are

in rad/s, ∆r0 in ms, t g and tM in seconds, using the date tP
g of Palfreyman et al. (2018) as

reference time origin.

defined in Palfreyman et al. (2018): the authors detected a missing pulse at time t0 and
a persistent increase of the residuals which took place between t1 and t2. The glitch
time tg is not particularly well constrained in the model, yielding a broad distribution
with 68% of the probability lying between the glitch time calculated in Palfreyman
et al. (2018) and 53.1 seconds before it. A strong correlation is also present between
the glitch time tg and the initial residual due to the magnetospheric “slip”. As we
can notice from Figure 4.6, this is probably due to the fact that an anticipated glitch
with a higher initial residual and a postponed glitch with a lower initial residual can
fit the data equally well (see also Ashton et al. 2019b about this). A tighter prior
on the glitch time would allow for a better resolution on the probability distribution
for the other parameters, for example x1, which present a correlation of one of its
peaks with the glitch time (see Figure 4.4). The magnetospheric time tM presents two
clear peaks, one 6.4 s and one 2.6 s before the Palfreyman et al. (2018) glitch time.
Unfortunately, the low resolution on the glitch time obtained in this model does not
allow us to determine if the magnetospheric change is before or after the triggering of
the glitch at tg .

The probability distributions for the rise timescale 1/λ+, the relaxation timescale
1/λ−, the overshoot parameter ω and the asymptotic glitch size ∆Ω∞p are given in
Figure 4.7. The rise time 1/λ+ is peaked close to 0s (the limit in which the rise is
practically instantaneous) and the 90% of the distribution lies within 6.02 s (cf. with
Figure 2 of Ashton et al. 2019b). This is a more stringent constraint with respect
to the ∼ 12s obtained in Ashton et al. (2019b), probably due to the different type
of theoretical modelling underneath the fit: in fact, on the one hand they used a
single-timescale model to fit this parameter, and on the other we used a prior based on
completely different parameters (thus intrinsically different) which causes different
results for the posterior distribution. The value obtained for the relaxation timescale
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Figure 4.5: Probability distribution for the inferred glitch time t g and the time of the mag-
netospheric change tM . We also plot some characteristic times obtained in Palfreyman et al.
(2018): the time of a null pulse t0, the start and the end of the rise of the residuals t1 and t2,
and the glitch time tP

g as calculated in that paper.

is 1/λ− = 55.07+15.58
−11.99 s: this value is also similar to that of previous glitches of the

Vela, for example the 2000 and the 2004 glitches (Dodson et al., 2002, 2007).
Finally, the parameter ω obtained here has a value of 2.56+1.38

−0.51, which is a clear
indication of the presence of an overshoot (Ashton et al., 2019b), and the glitch size
is 1.014± 0.002 · 10−4 rad/s, is in good accordance with the previous estimates in
Pizzochero et al. (2020) and Section 4.2.

To better compare with the results in Section 4.2, a fit has also been performed by
keeping Ω0

1p = |Ω̇∞|/b1, the value corresponding to the steady-state lag. In this way,
we are asking the 1-component to be a “passive” one (a superfluid that rotates with
the steady state lag does not contribute to the angular momentum reservoir, which
is the scenario considered in Pizzochero et al., 2020). In this case, we have to fit
eight parameters and not nine. We will not report the results here, as it yields fully
compatible values for all the parameters shown in Figure 4.4. This establishes that the
differences with respect to Section 4.2 are mostly due to the different fitting procedure
and not to the assumption that the 1-component is at the steady state at t = 0 (i.e. is
“passive”). Moreover, the steady-state lag for the 1-superfluid, which is of the order of
10−8 ÷ 10−9 rad/s, as calculated with the inferred values, is compatible to the results
obtained here for the model with a free initial condition for Ω0

1p, again indicating a
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Figure 4.6: Result of the fit. We plot the data obtained by Palfreyman et al. (2018) in grey,
joined by a line, and the fitted curve: the median of the probability distribution for the residual
function (4.59) is plotted in black, while the blue region indicates the 16th-84th percentile
zone. The reference time t = 0 is set to be the glitch time tP

g calculated in Palfreyman et al.
(2018).

single reservoir. Regarding the Bayes factors, the 8-parameters model with Ω0
1p fixed

is only marginally preferable to that with a free initial condition, having a Bayes factor
of ln Z ≈ 1.4, which does not allow us to claim a strong preference between the two
models (Kass and Raftery, 1995).

Some more interesting considerations can be made for the other initial lag Ω0
2p.

The 68% of probability for this distribution lies in the range between ≈ 3 · 10−4 and
≈ 1.1 · 10−3 rad/s. In the years just before the glitch considered here, the Vela has
undergone two glitches, as reported by the Jodrell Bank Glitch Catalogue2 (Espinoza
et al., 2011): one in 2014, which is at least three orders of magnitude smaller than
the one considered here, and one in 2013, which is the largest ever achieved and of
a comparable size with respect to the 2016 one. If we assume that the largest glitch
has completely emptied the angular momentum reservoir (that is, the lag between
the components is on average null after the glitch), and we calculate the maximum
lag obtainable by the spin down of the star between the 2013 and the 2016 glitches
(obtained by multiplying the inter-glitch time with the spin down rate of the star

2http://www.jb.man.ac.uk/pulsar/glitches.html

 http://www.jb.man.ac.uk/pulsar/glitches.html
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Figure 4.7: Probability distributions for the glitch rise timescale 1/λ+, the relaxation timescale
1/λ−, the overshoot parameter ω and the glitch size ∆Ω∞p . For the glitch rise timescale the
90th percentile is plotted, while for the other three quantities the 16th and 84th percentiles
are plotted.

measured in Dodson et al. 2002), we obtain a value of ≈ 0.01 rad/s, which is one
order of magnitude larger than what obtained from the fit. This discrepancy can be
interpreted in several ways: one possibility is that vortex creep is very efficient in the
crust, so that only 10% of the maximum achievable lag is actually stored. We have
also to consider that a small glitch occurred between these two events, lowering the
amount of lag available for this last event. The presence of entrainment, which is
strong in the crust of the star, is expected to make things worse, as it would lower the
true lag between the components. Finally, Figure 4.4 reveals the presence of a strong
correlation between the moment of inertia fraction x2 and the lag Ω0

2p: a different
prior on the superfluid fraction x2 would give a smaller value for it, thus yielding
greater values of the lag.

4.3.3 Physical interpretation of the fit

We now discuss what information can be extracted from the fitted values of the
phenomenological parameters x i and bi . As we told before, the physical interpretation
of the parameters x i and bi is a little subtle, due to the presence of entrainment
between each superfluid component and the normal component (see Section 4.1.2).
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The idea to treat entertainment in a simple way is to redefine the lags between
the two superfluid components and the normal one according to (4.38), so that a
system like that in Equation (4.1) still holds without the need to encode additional
“entrainment torques” (Antonelli and Pizzochero, 2017). The downside is that the
moments of inertia fractions x i contain a dependence on the entrainment parameter
(Equation (4.47)). Similarly, also the coupling parameters bi, when expressed as
spatial averages over some internal region of the star, contain some entrainment
correction (see (4.41) and (4.49)).

The coupling parameters b1 and b2 yield some interesting information about the
phenomena which cause the interaction between the superfluid component and the
normal component. For the core superfluid, it is thought that the electron scattering off
magnetised vortices causes the drag between the superfluid and the normal component,
and the subsequent exchange of angular momentum (Alpar et al., 1984a). For the
crustal superfluid, two different phenomena may occur, whether the relative velocity
between the two components is small (phonon excitation, Jones 1990) or large (Kelvin
waves excitation, Jones 1992; Epstein and Baym 1992). These two phenomena are
believed to yield coupling parameters with rather different orders of magnitude. If we
interpret the results obtained here for b1 and b2 as the coupling parameters for the
core and the crustal superfluid, respectively, then we are able to compare these results
with the theoretical calculations done in the literature: from (4.49) it is immediate to
obtain

〈B 〉crust ≈
〈1− εn 〉crust

2Ω0
p

b2 ≈ 0.03 b2(s
−1)

〈B 〉core ≈
〈1− εn 〉core

2Ω0
p

b1 ≈ 0.007 b1(s
−1)

(4.72)

where the average values 〈1− εn 〉crust ≈ 4 and 〈1− εn 〉core ≈ 1 have been taken from
Chamel (2012) and Chamel and Haensel (2006) respectively, while Ω0

p ≈ 70 rad/s has
been employed. Using the percentile values in Table 4.3, we obtain

〈B 〉crust ≈ 2.4× 10−3 ÷ 0.7

〈B 〉core ≈ 2.8× 10−5 ÷ 6.3× 10−5 .
(4.73)

However, if the crustal lattice is amorphous or contains a large number of defects, only
weak entrainment is expected (Sauls et al., 2020), so we may use 〈1− εn 〉crust ≈ 1
and obtain

〈B 〉crust ≈ 5.6× 10−4 ÷ 0.17 . (4.74)

The orders of magnitude of the coupling parameters calculated here are in good
agreement with the most recent theoretical calculations for both the crust (Graber
et al., 2018) and the core superfluid (Andersson et al., 2006). While this is a Newtonian
model, a fully relativistic model would yield values for 〈B 〉crust corrected by a factor
of the order of ≈ 2 (Sourie et al., 2017; Gavassino et al., 2020).
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Figure 4.8: Moment of inertia fraction of the superfluid present in the spherical region (r, R) as
obtained from 4.43, plotted with respect to the baryon density nB(r) (expressed in units of the
nuclear saturation density n0). The upper panel refers to the BSk21 EoS (Goriely et al., 2010),
the lower one to the SLy4 EoS (Douchin and Haensel, 2001). The red-dashed curves represent
the inertia fraction Iv(r)/I when entrainment corrections are included (Chamel and Haensel,
2006; Chamel, 2012), the gray-solid ones represent In(r)/I (i.e. when entrainment coupling
is zero). The crustal region is depicted orange-shaded in the plot. The posterior distribution
for x2 is plotted as a background histogram, with the 16th, 50th and 84th percentiles shown
with black dotted lines.
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The fitted values for x1,2 allows us to make some speculation on the spatial ex-
tension of the angular momentum reservoir. Similarly to Pizzochero et al. (2020)
(Section 4.2), the results show that nearly the x1 ≈ 60% of the total moment of inertia
refers to the component with a smaller initial lag (i.e. the component that before the
glitch was likely to be only weakly pinned, so it did not develop a large lag). On
the other hand, we find x2 ≈ 15% for the “strongly pinned” superfluid. This value
is too large to be accommodated in the crust of the star alone, whatever the value
of the entrainment in the crust, thus requiring that some of the reservoir superfluid
should be located in the core of the star (Ho et al., 2015; Montoli et al., 2020c). This
can be seen visually in Figure 4.8: here we plot the moment of inertia fraction for
different masses and two different unified EoSs (SLy4 and BSk21) integrated from the
neutron drip line up to different values of the baryon number density, along with the
posterior distribution for x2. We plot the cases with (red dashed lines) and without
(grey solid lines) entrainment, where the coefficients εn for the core and the crust of
the star are taken from Chamel and Haensel (2006) and Chamel (2012), respectively.
Although the posterior distribution of x2 is doubly peaked (see also Figure 4.4), even
the narrower peak on the left lies outside the crustal region for both the EoS, for all
the masses considered, and for the cases with and without entrainment. Moreover,
this peak falls rapidly to 0 as x2 tends to 0: due to this reason, in almost all the cases
considered the value of x2 calculated at the crust-core interface lies in regions with
very small or null values of the probability density P(x2).

To check this result, we have decided to replicate the fit, but imposing that
x1 + x2 < 0.05 and keeping all the priors on the other parameters untouched. In this
way we limit the moment of inertia fraction to a portion that should coincide with the
crust of the star: this value is an upper limit to the crustal moment of inertia when
realistic equations of state and entrainment corrections are taken into account (see,
e.g., Figure 2.3).

With the restriction x1 + x2 < 5%, we obtain non-physical posteriors for some of
the parameters, in particular for the glitch rise time tg , the initial residual ∆r0 and
the magnetospheric time tM . More importantly, since the nested sampling algorithm
allows to estimate the evidence of the two models (the one with x1 + x2 < 1 and the
one with x1 + x2 < 5%), the natural logarithm of the Bayes factor between the two
models is ≈ 5.6 in favour to the model with x1 + x2 < 1. As claimed by Kass and
Raftery (1995), a natural logarithm of a Bayes factor larger than 5 can be considered
a strong evidence for a model with respect to another one. This test thus proves again
the necessity of the inclusion of the superfluid in the core for the glitch process. Note
that differently from the earlier results of Andersson et al. (2012) and Chamel (2013),
this kind of result is independent of the presence of strong entrainment in the crust:
this is because our limiting value of the 5% can easily accommodate for the moment of
inertia fraction of the superfluid in the whole crust either with or without entrainment
corrections.

Finally, considering the value of x2 ≈ 0.3 at the 84th percentile as an upper limit to
Iv(r)/I , from Figure 4.8 we can also conclude that the region relative to this superfluid
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Figure 4.9: Moment of inertia fraction of the normal component, as a function of mass plotted
for some EoSs. We also plot the probability distribution for this parameter (grey histogram),
as obtained as a fit from the 2016 Vela glitch. Some percentiles of this distribution are also
plotted (vertical dashed lines).

component is the one extending from the drip point to nB ≈ 1.5n0 at most (for the
BSk21 EoS and a star of 2M�, as indicated by the horizontal dash-dotted line in the
upper panel). Similarly we obtain that the region corresponding to the 2-component
extends at most up to nB ≈ 2n0 if the SLy4 EoS is used.

We have to stress that the moment of inertia fractions for the two superfluid
components do not necessarily correspond to crust and core superfluid, as the three-
component model is sufficiently flexible to assume any location for the superfluid
components (as, for example, two superfluid components in the core of the star, see
Sourie and Chamel, 2020). It is more clear, however, what is the normal component of
the star: this comprises all the charged particles, along with all the neutrons which are
not superfluid. Some uncertainties regarding the triplet pairing gap make the amount
of non-superfluid neutrons difficult to calculate: given this uncertainty, all we can do
is just, once fixed the star’s mass and EoS, to calculate the moment of inertia of the
charged particles, as all the EoSs provide the composition of the nuclear matter as a
function of its density. We plot in Figure 4.9 the result of the fit for the moment of
inertia fraction of the normal component, along with the same quantity calculated as a
function of mass for different EoSs. The probability distribution is rather broad, but we
have to notice that all the equations of state considered in the Figure are well within
the median of the distribution (around xp ≈ 15%). However, we do not expect this
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Figure 4.10: Constraint obtained in Sourie and Chamel (2020) (in orange), plotted with the
probability distribution obtained in Montoli et al. (2020b).

quantity to vary much from one Vela glitch to another, so we can cross the information
obtained from many future glitches in order to narrow it – by using the posterior
distribution of xp as a prior for future observations – and put a tighter constraint on
the EoS composition.

Finally, we would like to test the validity of the Sourie and Chamel (2020) constraint
on the weakly coupled component (i.e. Equation (4.36)). The glitch jump ∆Ω∞p and
the overshoot angular velocity∆Ωover can be obtained by fitting the data and extracting
the phenomenological parameters (Ashton et al., 2019b). By employing the posterior
distribution obtained in this Section and Equations (4.19) and (4.24), it possible
to study the constraint directly from the “physical” parameters (Figure 4.10). We
can notice that the median of the probability distribution of x1 is larger than that of
1−∆Ω∞p /∆Ωover, as expected. More information can be extracted from the covariance
plot: we can see that most of the plot lies on the region below the diagonal, thus
respecting the constraint described above. This is a direct consequence that in the 2016
Vela glitch the two coupling parameters have values different by orders of magnitude.



Future directions

In this thesis we have discussed different ways to constrain the internal structure of a
neutron star by employing different characteristics of its glitching behaviour.

First of all, we talked about the largest glitch observed in a pulsar. It is possible to
calculate the maximum amount of angular momentum storable in a star as a function of
the mass, the EoS and the pinning force density profile. If we fix the last two quantities,
we can calculate the largest glitch achievable by a stellar model as a function of the
mass, and the comparison with the largest observed glitch in a pulsar can provide a
strong upper limit on the mass of that star (Antonelli and Pizzochero, 2017; Pizzochero
et al., 2017; Antonelli et al., 2018). This constraint can always improve in the future:
the observation of a new largest glitch in a particular object lowers its mass upper limit
(see, e.g., the case of the Crab pulsar, Shaw et al., 2018). We note that the maximum
glitch achievable is not dependent on the extensions of the vortices in the core of the
star, as long as we assume crustal pinning. Moreover, there is a weak dependence
on the vortex tension (i.e. if the vortices are rigid or completely tensionless), which
completely disappears in the Newtonian context. Finally, a small correction on the
mass constraints (of about some percent) is present if General Relativity is enforced.
Of course, this constraint is dependent on the EoS and pinning force we have chosen
as inputs. It is interesting to notice, however, that the observation of a large glitch
in a star whose mass has been previously measured can put interesting constraints
on these two microphysical inputs, by comparing the inferred upper limit with the
measured mass. Unfortunately, the possibilities of measuring the mass of a glitching
pulsar are low, since glitchers are not usually in binary systems and, on the other hand,
pulsars in binary systems are generally old and with low spin-down rates.

Secondly, we discussed about the activity parameter. This quantity should describe
the average acceleration of a pulsar because of glitches and, unlike the largest observed
glitch, it requires some modelling to be calculated. Since this parameter is usually
viewed as an intrinsic characteristic of a glitching pulsar, and since we are able to
observe only a small time interval of its life, it has to be inferred in some way. For
some pulsars the activity parameter seems to have converged, namely it does not
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change much by adding new glitches. In any case, it is important to develop a correct
methodology to extract activity from glitch history. In many works the activity has
been calculated as a linear fit to the cumulative glitch history of a pulsar (Wong et al.,
2001). This way of calculating it, however, assumes a strong correlation between glitch
sizes and waiting times between them, which is not observed in almost all the most
glitching objects (Melatos et al., 2018). We proposed a different way to calculate this
quantity, by employing a bootstrap method (Montoli et al., 2020a): the main result is
that the uncertainty on the activity parameter calculated in this way is much larger
than that evaluated with the linear fit. In other words, the assumption of a correlation
between glitch sizes and waiting times underestimates the uncertainty on the activity
parameter. This underestimation can also be seen by comparing the activity calculated
glitch by glitch, and observing how its variance is much larger than the uncertainty
provided by the linear fit. While the maximum glitch amplitude is related to the
maximum pinning force, as it is necessary to find the maximum reservoir of angular
momentum storable in a star, the activity parameter is strongly related to entrainment,
as this phenomenon affects the motion of the superfluid and, as a consequence, how
fast the superfluid reservoir replenishes. We then showed an alternative way to obtain
the classic constraint of Link et al. (1999), in a general relativistic slow-rotation
framework. The result is the same as in Andersson et al. (2012) and Chamel (2013):
the combination of a crust-limited superfluid participating in the glitch, the entrainment
parameter calculated in Chamel (2012) and the measured activity yield a constraint
on the moment of inertia for the neutron superfluid which requires exceptionally low
masses for the pulsars, especially for high-activity pulsars like the Vela. Marginally
better results are obtained if one employs the new uncertainty calculated with the
bootstrap method. A similar conclusion can be reached with a different model, which
includes the information provided by both the activity parameter and the largest
observed glitch (see Montoli et al., 2020c): also in this improved upper limit on the
mass (with respect to the one obtained with the largest glitch), pulsars with crust-
limited reservoir have too small masses. Things become better when some superfluid
in the core of the star is included in the reservoir. It is not necessary to include the
whole core superfluid, as including the superfluid at densities larger than the saturation
density does not modify the results. It is then possible to statistically compare the
mass distribution extracted with this method (assuming the upper limits to be the
actual mass of the star) with the distribution of the masses measured in binary systems,
in order to see if these two distributions are compatible. It seems there is some
compatibility, especially between soft EoSs (like BSk20) and the complete sample of
measured masses (thus, even with the inclusion of non-birth-mass stars), but with
a superfluid reservoir extended outside the crust. This method can also be used the
other way around: if enough pulsars are eligible for this kind of constraint, then it is
possible to perform a comparison with the distribution of masses, yielding constraints
on the microphysical inputs of the models (i.e. maximum pinning, entrainment and
density of cutoff for the neutron star superfluid). Of course, this is possible if we
assume that both the isolated glitching pulsar and the binary neutron stars for which a
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mass measurement has been performed come from the same underlying distribution.
From the observational point of view, nothing much can be done in order to resolve
the activity issue, if not that of continuously monitoring stars to observe more glitches
when they occur. However, we do not expect pulsar activity to change much, especially
for stars like Vela, where the activity is well measured. It is more likely that the problem
of the activity constraint can be solved only in a theoretical way, understanding where
the superfluid participating in the glitch resides and how strong the entrainment in
the crust actually is (Sauls et al., 2020).

Finally, the most promising way for constraining neutron stars using glitches is
arguably that of catching them in the act. The development of a simple phenomeno-
logical model, based on the only assumption of angular momentum conservation and
rigid rotation (Pizzochero et al., 2020), and its application for studying the 2016 Vela
glitch (Palfreyman et al., 2018) has produced a string of interesting results (Montoli
et al., 2020b). Using Bayesian methodologies, it has been possible to infer the presence
of a glitch overshoot, and the probability distribution for the moment of inertia of
the superfluid components, the coupling timescales between superfluid and normal
components and the initial lags. All this has been possible with a single glitch: distri-
butions are quite broad, but some information has been obtained. If the instrumental
error can be reduced further, more information can be extracted, with more precision.
The presence of an increase in the timing residuals is an intriguing feature of the data:
one interesting question would be if this characteristic is a particular feature of the
2016 Vela glitch or a more general one that occurs frequently in glitching pulsars.
In the latter case, we would need a more careful modelling of the magnetospheric
term we showed, as in that case an involvement of the magnetosphere in the glitch
phenomenon is likely. In any case, we have to stress the importance of a Bayesian
approach to this problem: a series of glitches from the same pulsar would surely
require different initial lags, and probably also different moment of inertia for the
superfluid fractions, as the regions of the star involved in the glitch can be different
from one glitch to another. What is not expected to change from glitch to glitch is the
moment of inertia of the charged component. We can thus use the inferred posterior
distribution for this quantity after a glitch as the prior distribution for the inference
in a subsequent glitch. In this way it is possible to constrain the phenomenological
parameters of the model even more than it would have been possible after a single
glitch. The probability distribution of the moment of inertia fraction for the charged
component can be an interesting constrain for the EoS of nuclear matter. In fact,
the moment of inertia fraction of the charged component is somewhat constant as
a function of the mass of the star (see Figure 4.9). If the probability distribution is
narrow enough, its information can be crossed with the constraints given in other ways,
like that of the largest glitch and it is possible to fix some characteristics of the EoS.
About the moment of inertia fraction of the two superfluid components, the model is
sufficiently agnostic to allow the two superfluid components to be divided in the core
and in the crust of the star, or both in the core (as assumed by Sourie and Chamel,
2020). It is interesting to notice, however, that most of the probability distribution
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for both the superfluid component’s moments of inertia predicts values that are too
large to be accommodated in the crust of the star, even in the absence of entrainment.
Moreover, it has been shown that the evidence for both the superfluid to be contained
in the crust is low: it is statistically unlikely that all the superfluid involved in the
glitch is contained in the crust of the neutron star. This is a stronger result with respect
to that obtained with the activity parameter, as here the result is independent of the
presence of entrainment. The initial lag for the “reservoir” component is predicted
to be around the 10% of the expected lag if perfect pinning between two glitches is
assumed: this can be a hint of the presence of vortex creep inside the star, or the fact
that even in large glitches a small part of angular momentum reservoir is exploited.
Finally, the fit on the Vela glitch has constrained the coupling parameters between
the two superfluid components and the normal component. The estimates from the
2016 Vela glitch are in full accordance with the theoretical estimation for the coupling
parameters in both the crust and the core of the star. We do not expect these values to
be constant between different glitches, as they are coupling parameters averaged by
means of the superfluid moment of inertia fractions. However, different glitches can
at least confirm the order of magnitude of these parameters, and give us an idea of
the physical phenomenon behind these quantities. Given the amount of information
we extracted from a single glitch, it is thus clear that it is necessary to observe many
more glitches “in the act” in order to obtain much more stringent constraints on the
neutron star structure.
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APPENDIX A
Moments of inertia in the slow

rotation approximation

Neutron stars are extremely compact objects, needing a general relativistic description.
Among the many corrections which can be made on the structure of neutron stars,
we cite the general relativistic hydrostatic equilibrium, which is described by the TOV
equation, and the correction on the moment of inertia of the star. One of the most
popular prescription for calculating this quantity is the slow rotation approximation,
which assumes the star to be rigidly and slowly rotating in an axisymmetric spacetime.
In this Appendix, we will rapidly review how to derive the TOV equation for hydrostatic
equilibrium, and we will tackle the problem of calculating the dragging of the inertial
frames due to the rotation of the star and its moment of inertia in the slow rotation
approximation. In the following, we will use the Einstein notation, for which the
summation over repeated indices is implicit. Moreover, we will use the “MTW” (Misner
et al., 1973) notation: spatiotemporal coordinates will be denoted with Greek letters,
while purely spatial coordinates will be denoted with Latin ones.

In the general relativistic framework, the presence of a massive and compact object
curves the spacetime. The distance between two points on a curved spacetime is
described by a metric:

ds2 = −c2dτ2 = gµνdxµdxν , (A.1)

where gµν denotes the components of the metric tensor1 and τ is the proper time.
The amount of spacetime’s curvature is described by the Einstein field equations:

Gµν =
8πG

c4
Tµν, (A.2)

where Gµν is the Einstein tensor, which expresses the curvature of the spacetime and
can be obtained directly from the metric tensor once a connection is defined, and Tµν

1Metrics will be written with the “mostly plus” signature (−+++). We will try to keep the constants
c and G.
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is the stress-energy tensor, which describes the properties of the body which generates
the curvature.

In the case of a spherically symmetric star, it can be demonstrated that, if we
assume the star to be static (i.e. ∂t gµν = 0) the metric inside the star can be written
as (see, e.g., Haensel et al., 2007):

ds2 = −e2Φ(r)c2dt2 + e2Λ(r)dr2 + r2(dϑ2 + sin2 ϑdϕ2), (A.3)

where (r,ϑ,ϕ) denotes the spherical coordinates, with ϑ the polar angle and ϕ the
azimuthal one, and Φ(r) and Λ(r) are two metric functions. Note that this metric
is a generalisation in the matter of the famous Schwarzschild metric in the vacuum,
which describes the spacetime outside the event horizon of a black hole. Let us assume
the star to be comprised of a perfect fluid, which is a fluid in which the shear stress,
viscosity and energy transport are negligible on the hydrodynamical timescale. It can
be described by a stress-energy tensor of the form:

Tµν =
�

ρ +
P
c2

�

uµuν + P gµν, (A.4)

where uµ = dxµ/dτ is the fluid four-velocity, P its pressure and ρ its mass density
in the fluid rest frame. We stress the fact that ρ is not the rest mass density, but the
mass-energy density. Thus, this value is not simply ρ = mn, where m is the mass
of a particle of fluid and n the particle number density. Since we are considering a
static star, every fluid element is at rest in the static coordinate system: the worldlines
are lines of constant r, ϑ and ϕ. Then, the only non-null component of the fluid
four-velocity is the temporal one:

u= e−Φ∂t .

Our aim now is that of finding the quantities that describe the star, which are ρ(r), P(r),
n(r) and the two metric functions Φ(r) and Λ(r). These functions can be calculated
by using the Einstein equation (A.2), and an equation for the conservation of the
stress-energy tensor (continuity equation):

∇νTµν = Tµν;ν = 0 , (A.5)

where∇ν or the semicolon “;ν” notation indicate covariant differentiation with respect
to the ν component. From these two tensor equations, we can derive the system of
equations describing the internal structure of the star:
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=
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(A.6)
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where m(r) represents the mass-energy included in a radius r. In particular, we have
to notice that the value M ≡ m(r = R), where R denotes the star radius, is the mass
we measure at infinite distance. We can spot in the system the TOV equation (Tolman,
1939; Oppenheimer and Volkoff, 1939). Now we have six unknown quantity and four
equations. The other two equations that close the system constitute the EoS:

P = P(n) and ρ = ρ(n).

The most general form of an EoS is a couple of equations in the form P = P(n, s)
and ρ = ρ(n, s), where s is the specific entropy. Nevertheless, a neutron star can be
considered a “cold” object, in a sense that the internal temperature can be considered
null, since the thermal energy is much smaller than the Fermi one. Therefore, s is
usually fixed to 0. EoSs with this characteristic are called “one parameter” EoSs.

The boundary conditions for the system are readily expressed as:
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(A.7)

Most of these conditions have been already discussed in the first Chapter. In particular,
we stress the fact that the central mass-energy density ρc is not a priori known, so it
constitutes a parameter describing a family of stars with different central density (and
thus, different mass M and radius R). The boundary conditions for the two metric
functions Λ and Φ can be obtained from the matching with the Schwarzschild metric
in the vacuum (i.e. outside the star).

Until now, we have considered a static and spherically symmetric star. The presence
of rotation, however, might flatten the star more or less depending on the star’s angular
velocity. Spherical symmetry is thereby broken, but we expect the star to maintain
axial symmetry. The most general metric for a static axially symmetric spacetime with
time-translational invariance can be demonstrated to be (see, e.g., Hartle and Sharp,
1967, §V):

ds2 = −e2Φ(r,ϑ)c2dt2 + e2Λ(r,ϑ)dr2 + e2µ(r,ϑ)
�

r2dϑ2 + r2 sin2 ϑ(dϕ −ω(r,ϑ)dt)2
�

.
(A.8)

In this case, the star is assumed to be static in the sense that it rotates rigidly, thus
static in the corotating frame. The hypothesis of rigid rotation is important for our
derivation (see below). Note that in the metric appears a new off-diagonal term gtϕ
and all the metric functions are now dependent on the polar angle ϑ, due to the
rotational flattening and broken spherical symmetry. The metric can be led back to the
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non-rotating Schwarzschild one (A.3), in the particular case of spherical symmetry
(i.e. ω= 0 and µ= 0). Finally, the metric functions in (A.8) depend implicitly on the
star’s angular velocity Ω, and the metric has to be the same under a reversal of time
and angular velocity: thus, ω depends only on odd powers of the angular velocity of
the star Ω, while the other ones on even powers of Ω.

The metric function ω(r,ϑ) has a quite interesting physical meaning: it is the
angular velocity of the local inertial frames (see Glendenning, 2000). Let us consider
a particle dropped at infinite distance from the star, on the equatorial plane of the
rotation (ϑ = π/2). If the star were not rotating, the particle would eventually fall
toward the centre of the star. However, if the star were rotating, the particle would
acquire an increasing angular velocity in the same direction of the star’s rotation as
approaching. This can be demonstrated in a simple way, starting from the geodesic
equation, written for the covariant acceleration, which defines the particle’s trajectory:

d2 xµ
dτ2

− Γ κµν
dxκ
dτ

dxν

dτ
= 0. (A.9)

Recalling that uµ = dxµ/dτ and employing the explicit form of the Christoffel symbols,
we can write the second term of the equation as:

Γ κµνuκuν =
1
2

gκλ(gλν,µ + gλµ,ν − gµν,λ)uκuν

=
1
2
(gλν,µ + gλµ,ν − gµν,λ)u

λuν

=
1
2
(gλν,µ + gµ[λ,ν])u

λuν ,

where the comma notation “,ν” indicates partial differentiation with respect to the ν
component and the square brackets indicate antisymmetrisation with respect to the
components in between them. In the above expression we have also exploited the
symmetry of the metric tensor. In particular, we can see that the second term of the
left member of the equation is null, since it is the contraction of a symmetric tensor
with an antisymmetric one. Thus, Equation (A.9) can be written as:

duµ
dτ
=

1
2

gλν,µuλuν. (A.10)

This form of the geodesic equation can easily lead to interesting considerations: if
all the components of the metric tensor are independent of some coordinate, say xµ,
then the derivative gλν,µ is null, and the covariant component uµ of the four-velocity
is constant along the particle’s trajectory. In our particular case, we have that uϕ is
constant along the particle’s trajectory, since the metric functions are independent of
ϕ. We can write the contravariant components of the four-velocity as:

uϕ = gϕϕuϕ + gϕtut

ut = g t tut + g tϕuϕ.
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Since the particle is initially at rest, the three spatial contravariant components of the
four-velocity are null. Moreover, because at infinity the metric is the flat Minkowski
one, we have gϕt = 0 and from the above equations we can state that also uϕ is
initially null. Hence – due to the conservation of uϕ – we have uϕ = 0 along the entire
trajectory. Therefore, we can write for the particle:

dϕ
dt
=

uϕ

ut
=

gϕt

g t t
.

The inverse components gµν of the metric tensor can be obtained by inverting the part
of the covariant metric tensor which is not in diagonal form:

�

gt t gtϕ
gϕt gϕϕ

�

.

It can be easily demonstrated that, in the case of ϑ = π/2, the particle’s coordinate ϕ
varies according to (see Glendenning, 2000):

dϕ
dt
=
−gϕt

gt t
=
−r2e2µ(r,π/2)ω(r,π/2)

−r2e2µ(r,π/2)
=ω(r,π/2).

As we can see from the above equation, if the star is rotating, the particle does not fall
toward the centre, but it is deflected in the ϕ direction. Moreover, since the particle is
freely falling in the gravitational field of the star, it defines inertial frames, which have
angular velocities ω as measured by an observer at infinity with respect to the star.
Thus ω defines the dragging of the local inertial frame by the rotating star.

The problem of calculating the new metric function has been addressed in Hartle
(1967). The author started from the ϕt component of the Einstein equation

Gϕt =
8πG

c4
Tϕt , (A.11)

which makes its appearance, in contrast to the spherically symmetric case, due to the
presence of the off-diagonal term of the metric tensor gϕt . This equation simplifies a
lot if we consider the slow rotation approximation, namely:

R3Ω2

GM
� 1. (A.12)

This approximation can be translated into the fact that we are considering the star’s
angular velocity to be much smaller than the Kepler one. Although a pulsar is a rapidly
rotating neutron star, this approximation is quite reasonable: even if we consider
the fastest observed pulsar (J1748-2446ad, with an angular velocity Ω = 4501 rad
s−1) and assume M = 1.4M� and R = 10 km, we obtain R3Ω2/(GM) ≈ 0.11 for
this pulsar. Moreover, since we are dealing with pulsar glitches, it is interesting to
evaluate this quantity for the fastest glitcher observed, the millisecond pulsar B1821-
24A (also known with the J-name J1824-2452A, Cognard and Backer 2004). Only
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one more millisecond pulsar has been seen glitching (J0613-0200, McKee et al. 2016)
but its spinning frequency was lower. Using the same hypothesis for the neutron star’s
mass and radius, but this time using B1821-24A’s angular velocity Ω= 2057.15 rad
s−1, we obtain the much lower value of R3Ω2/(GM) ≈ 0.023. Therefore, while this
approximation might not work well for all millisecond pulsars, it is a very good one for
the glitching ones. All metric functions in (A.8) depend on even powers of Ω, except
for ω(r), which depends on odd powers. Thus, at the lowest (0-th) order in Ω, the
metric in Equation (A.8) reduces to the spherically symmetric one (A.3).

Using the slow rotation approximation, Equation (A.11) becomes:

1
r4

d
dr

�

r4 j(r)
dω
dr

�

+
4
r

d j
dr
ω(r) = 0, (A.13)

where ω(r) has been defined as

ω(r)≡ Ω−ω(r) (A.14)

and j(r) is:

j(r)≡

¨

e−(Φ(r)+Λ(r)) r < R

1 r ≥ R
(A.15)

where Φ(r) and Λ(r) are the metric functions of the spherically symmetric metric, as
at the lowest order they are independent of Ω, and they can thereby be obtained from
the system (A.6). We can note from this equation that, at the lowest order in Ω, ω
does not depend on ϑ any more, but only on the radius r. The boundary conditions
for this equation are readily given: since at infinity the spacetime is described by the
Minkowski metric, we require that ω(r)→ 0 at r → +∞. Moreover, we expect the
drag of the local inertial frames to be regular at r = 0.

The problem described in Equation (A.13) can be divided in two parts: an external
problem, from the edge of the star and beyond, which takes place in vacuum, and an
internal problem, in which we have to take into account the internal structure of the
star. The solutions of these two problems must be matched at the star’s radius. Since
for r ≥ R j(r) = 1, the external problem can be rewritten in a simple way as:

1
r4

d
dr

�

r4 dω
dr

�

= 0 (A.16)

whose solution is:
ω(r) = A−

B
3r3

,

where A and B are two integration constants. The value of A can be easily inferred
from the boundary condition ω(r → +∞) = 0 – or, better, from ω(r → +∞) = Ω.
Thus we have A= Ω. The value of B can be calculated from dimensional analysis:

B =
6GL
c2

,
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where L represents the total angular momentum of the star, and the choice of the
factor 6 it will be clear from a comparison of the form of the relativistic moment of
inertia with the Newtonian one. The external (r ≥ R) solution therefore reads:

ω(r) = Ω−
2GL
c2r3

. (A.17)

Let us now consider the internal problem. This is, of course, described by Equation
(A.13), with the condition of a regular drag of the local inertial frames at the centre
of the star. We have to notice that Equation (A.13) is linear for the multiplication of
a constant: thus, if ω(r) is a solution, aω(r) – with a denoting a real number – is a
solution as well. We can exploit this fact and choose a fictitious boundary condition
ω(r = 0) = 1. The real value of ω(r = 0) can be obtained by rescaling the internal
solution to match the external one. A particularly useful prescription is given in
(Haensel and Proszynski, 1982). Equation (A.13) can be rewritten as:











d`
dr
=

8π
3

r4e−Φ(r)+Λ(r)
�

ρ(r) +
P(r)
c2

�

ω(r)

dω
dr
=

6G`(r)eΦ(r)+Λ(r)

c2r4

(A.18)

which can be obtained from (A.13) defining `(r) as:

`(r)≡
c2r4

6GeΦ(r)+Λ(r)
dω
dr

. (A.19)

Rewriting Equation (A.13) in this form has a lot of benefits. First of all, it splits a
second-order differential equation in a system of two first-order differential equations,
which makes the numerical integration easier. Moreover, the value `(r) corresponds
to the angular momentum of the star included in a sphere of radius r. Since at r = 0
the angular momentum is null, the boundary conditions for this system are therefore
given by:

¨

ω(r = 0) = 1

`(r = 0) = 0
(A.20)

The total angular momentum of the star can be obtained by L = `(r = R). It is easy
now to infer the relativistic moment of inertia of the star, in the approximation of slow
rotation:

I =
L
Ω
=

8π
3

∫ R

0

dr r4e−Φ(r)+Λ(r)
�

ρ(r) +
P(r)
c2

�

ω(r)
Ω

. (A.21)

Let us make some considerations. First of all, in the non-relativistic limit (that is,
Λ(r) = 0, Φ(r) = 0, ω(r) = 0 and ρc2 � P) the above expression reduces to the
Newtonian one. Moreover, the moment of inertia in the slow rotation approximation
does not depend on the value of the angular velocity Ω of the star. In fact, due to
the already explained linearity of Equation (A.13), we have that the ratio ω(r)/Ω
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Figure A.1: Drag of the local inertial frame for a 1.4M� star with three EoSs. Note that the
softer EoSs SLy4 (Douchin and Haensel, 2001) and BSk20 – which are also more relativistic,
since they are more compressible – shows a bigger drag in the central zone than the stiffer
BSk21 (Goriely et al., 2010).

(or, similarly, ω(r)/Ω) depends only on the chosen EoS and central density. We have
plotted on Figure A.1 the drag of the local inertial frame for three stars of different
EoSs and same mass.

Finally, it is interesting to give a quick look to an alternative prescription for the
relativistic moment of inertia in the slow rotation approximation. It has been noticed by
Ravenhall and Pethick (1994) that for a large number of EoSs the product j(r)ω(r)/Ω
is remarkably constant in the neutron star interior. For this reason, it seems justifiable
to evaluate it at the neutron star radius R

j(R)
ω(R)
Ω
= 1−

2GI
c2R3

,

and bring it outside the integral in (A.21). In this way, the relativistic moment of
inertia can be simplified in:

I '
I0

1+ 2GI0/R3c2
, (A.22)

with I0 defined by:

I0 =
8π
3

∫ R

0

dr r4e2Λ(r)
�

ρ(r) +
P(r)
c2

�

. (A.23)
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Figure A.2: Newtonian moments of inertia (red), in the Hartle approximation (blue) and in
the Ravenhall and Pethick approximation (yellow) for the three EoSs SLy4, BSk21 and BSk20.

This approximation is quite important, since many papers about pulsar glitches use it.
In Figure A.2 we make a comparison between the three types of moment of inertia
considered: the Newtonian, that of Hartle and that of Ravenhall and Pethick. Let
us make some considerations about this figure. First of all, we observe that a low
mass neutron star, which also has a higher radius and thus it is less compact, has
a relativistic moment of inertia similar to the Newtonian one. On the contrary, for
a high mass star differences are important. This was expected, since a high mass
neutron star is more compact, and thus more relativistic. Secondly, we can easily
notice that the Ravenhall & Pethick prescription represents a good approximation to
the more realistic Hartle one, although always a bit overestimated. Finally, with the
aid of Figure A.3, we observe that if we fix the neutron star mass, a softer EoS gives
a higher correction to the moment of inertia. This is expected as well, as a softer
EoS produces more compact – thus, more relativistic – stars with respect to a stiffer
one. Corrections to the Newtonian moments of inertia are important and rise quickly
with the mass: for a typical neutron star of 1.4M� general relativistic corrections can
modify the value of the moment of inertia of ≈ 25%, while high mass neutron stars
obtain higher corrections, up to 50− 55%.
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