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Abstract 
Motivation: Transposable elements (TEs) classification is an essential step to decode their roles in genome evolution. With a 
large number of genomes from non-model species becoming available, accurate and efficient TE classification has emerged as 
a new challenge in genomic sequence analysis. 
Results: We developed a novel tool, DeepTE, which classifies unknown TEs using convolutional neural networks. DeepTE 
transferred sequences into input vectors based on k-mer counts. A tree structured classification process was used where eight 
models were trained to classify TEs into super families and orders. DeepTE also detected domains inside TEs to correct false 
classification. An additional model was trained to distinguish between non-TEs and TEs in plants. Given unclassified TEs of 
different species, DeepTE can classify TEs into seven orders, which include 15, 24, and 16 super families in plants, metazoans, 
and fungi, respectively. In several benchmarking tests, DeepTE outperformed other existing tools for TE classification. In con-
clusion, DeepTE successfully leverages convolutional neural network for TE classification, and can be used to precisely identify 
and annotate TEs in newly sequenced eukaryotic genomes.  
Availability: DeepTE is accessible at https://github.com/LiLabAtVT/DeepTE 
Contact: songli@vt.edu  

 

1 Introduction  
Transposable elements (Transposons; TEs), constitute a large portion of 
many known eukaryotic genomes (Makałowski, 2001; SanMiguel et al., 
1996), and significant roles in many biological processes (Bourque et al., 
2018). Accurate identification and annotation of TEs are essential to the 
understanding of their roles in genome evolution, genome stability and 
regulation of gene expression (Goerner-Potvin and Bourque, 2018; Platt 
et al., 2016; Wicker et al., 2007). With the reduced sequencing costs and 
novel long-read sequencing technologies, a large number of eukaryotic 
genomes has been sequenced in recent years. Given the diversity and 
abundance of TEs, annotation and classification of TEs has reemerged as 
a major challenge in genome annotation (Platt et al. 2016). 

 
    TEs fall into two general categories (Wicker et al., 2007). Class I TEs 
are retrotransposons which can transpose from one to another position via 
the ‘copy-and-paste’ mechanism. This group contains long terminal repeat 
(LTR) retroelements such as Gypsy and Copia, and non-LTR retroele-
ments such as dictyostelium intermediate repeat sequence (DIRS), penel-
ope-like elements (PLE), long interspersed nuclear element (LINE) and 
short interspersed nuclear element (SINE). Class I TEs include two sub-
classes. Class II TEs are DNA transposons following a ‘cut-and-paste’ 
mechanism, characterized by terminal inverted repeats (TIR). In Subclass 
1 of Class II (Class II_sub1) TEs, nine known super families can be dis-
tinguished by the target site duplication (TSD) and TIR sequences. These 
TEs can be further classified into autonomous and non-autonomous ele-
ments based on their ability to move by themselves. Miniatures inverted 

repeat transposable element (MITE) is a special type of non-autonomous 
Class II_sub1 TEs with higher copy numbers and special structural feature 
and do not encode any transposase. Subclass 2 of Class II (Class II_sub2) 
TEs are DNA TEs that undergo a transposition process without double-
stranded cleavage. Helitron and Maverick are two major orders in this 
group (Wicker et al., 2007).  

In the past, several computational tools have been developed to identify 
TEs without classifying TEs into super-families. For example, LTR TEs 
(LTRs) can be identified by LTR_STRUC (McCarthy and McDonald, 
2003), MGEScan (Rho et al., 2007), LTR_FINDER (Xu and Wang, 
2007), and LTRharvest (Ellinghaus et al., 2008). But these four tools can-
not classify LTRs into super families such as Copia or Gypsy. MITE TEs 
(MITEs) can be identified by MITE-Hunter (Han and Wessler, 2010), de-
tectMITE (Ye et al., 2016), MITEFinderII (Hu et al., 2018), and MITE 
Tracker (Crescente et al., 2018). However, MITEs identified from these 
four tools are not classified into super families under TIR order (Wicker 
et al., 2007). RepeatModeler is able to build and classify consensus mod-
els of putative interspersed repeats, based on sequence similarity to known 
repeats (Smit and Hubley, 2008). However, when we tested this method 
using in maize ‘B73’ genome (Schnable et al., 2009), approximately 14% 
TEs are unclassified.  
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Several software have been developed for TE classification including 
TECLASS (Abrusán et al., 2009), REPCLASS (Ranganathan, 2007), and 
PASTEC (Hoede et al., 2014). TECLASS leverages Support Vector Ma-
chine (SVM) to classify TEs into Class I, Class II, LINE, and SINE, but 
only these four groups are classified. REPCLASS utilizes structural and 
homology characterization modules to classify TEs into more groups than 
TECLASS such as Class I and II, super families of LTR TEs, DNA TEs, 
LINE, SINE, and Helitron. REPCLASS depends on WU-BLAST which 
is an alignment software that is no longer maintained. An additional short-
coming is that both TECLASS and REPCLASS cannot distinguish be-
tween TEs and other non-TE sequences (non-TEs). PASTEC uses Hidden 
Markov Model (HMM) profiles to classify TEs based on conserved func-
tional domains of the proteins, and it identifies more super families than 
REPCLASS. Performance of PASTEC was shown to be better than 
TECLASS and REPCLASS, and it can distinguish potential host genes, 
rDNA, and SRR sequences from real TEs. However, the sensitivity in de-
tecting certain groups of TEs such as TIR (64.1%), LTR (39.1%), and 
Class I (53.0%) groups are low, and it cannot distinguish super families 
under TIR, LINE, and SINE orders.  

In this article, we have developed DeepTE, a deep learning method to 
classify TEs from non-TE sequences and to classify TEs into multiple or-
ders and classes. Deep learning has been widely applied and has becomes 
one effective strategy in identifying complex patterns derived from fea-
ture-rich datasets. One particular deep learning model--Convolutional 
Neural Network (CNN)--have achieved outstanding performance in image 
classification, speech recognition, and natural language processing 
(Krizhevsky et al., 2012; Schmidhuber, 2015). CNN model has also been 
successfully applied in prediction of unknown sequences profiles or mo-
tifs and functional activity discovery, without pre-defining sequence fea-
tures such as prediction of sequence specificities of DNA- and RNA-
binding proteins (Alipanahi et al., 2015), effects of noncoding variants 
(Zhou and Troyanskaya, 2015), and classification of alignments of non-
coding RNA sequences (Alipanahi et al., 2015; Aoki and Sakakibara, 
2018; Schmidhuber, 2015; Zeng et al., 2016; Zhou and Troyanskaya, 
2015).  

Traditionally, transposons can be classified into different super families 
underlying distinct sequence patterns (Wicker et al., 2007). In view of this, 
we have designed DeepTE to classify TEs into seven orders which include 
15, 24, and 16 super families in plants, metazoans, and fungi respectively. 
This tool combines TE domain detection which improves its performance, 
and it outperforms PASTEC in most TE categories.  

2 Methods 

2.1 Transposon dataset 
DeepTE was built using RepBase (Bao et al., 2015) and Plant Genome 
and Systems Biology (PGSB) repeat database (Spannagl et al., 2015). 
Repbase contains prototypic sequences representing repetitive DNA from 
134 species. PGSB database provides access to the repeat element data-
base from 44 species and cover 20 different genera. We combined these 
two datasets since TEs in these two databases are largely not overlapping. 
We found 74,383 TEs when combining sequences from both databases. 
After removing identical TEs using BLAST (Madden, 2013), there are 
71,049 unique TEs in the dataset that is used for model training and test-
ing. Species-specific (plants, metazoans, and fungi) training data were se-
lected based on the presence of TE families in different species. For ex-
ample, 63,416 TEs (out of 71,049 TEs) were used for plants (see Table S1 
for a detailed breakdown of numbers of TEs in each family in plants). 

Because both databases only contain Helitron, the plant Class II_sub2 
classifier only represent Helitron superfamily. To classify Class II_sub1 
transposons into MITE and nMITE (not MITE) TEs, we manually created 
MITE and nMITE datasets. Class II_sub1 TEs annotated as MITE in Rep-
Base and PGSB were labeled as ‘MITE’. The rest of Class II_sub1 TEs 
were annotated for PfamA domains with hmmer3 (Eddy, 2010). The TEs 
were defined as ‘nMITE’ where transposase (TR) domains were identified 
with length >= 800 bp (Wicker et al., 2007) (Table S2). A total of 752 TEs 
were defined as ‘MITE’, and 2,696 TEs were defined as ‘nMITE’ (need 
something in the Table S1).  

 
2.2 Transposon sequence representation 
We used k-mer occurrence to construct feature matrices from the TE se-
quences. This system has been successfully applied to bacteria taxonomic 
classification of metagenomic data (Fiannaca et al., 2018). The number of 
features was set to L = 4k where k is the length of the k-mers (Figure 1). 
A sliding window over the input vector was used to generate the convolu-
tion operation of the first stage of the CNN network. In our analysis, we 
used k = 3 to 7 to test the performance of different k-mer size. 

2.3 CNN classifier 
We used a python package Keras (version 2.2.4) to implement convolu-
tional neural network in our model (Figure 1B). Our neural network is 
consisted of three hidden layers with kernel sizes of three and three max-
pooling layers with pool size of two (Figure 1B). The rationale of using 
CNN and the reasons for the choices of hyper-parameters are included in 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

Fig. 1.  Training process of neural network. A) The training sequences were 

converted to a matrix of k-mers occurrences. B) The architecture of the convolu-

tional neural network. L1 indicates the dimension of the input K-mer vector. L2 

indicates the dimension of the output vector of classification number. KS repre-

sents kernel size and KN is the number of kernels. PS represents max pooling 

window size which is 2 and stride is equal to 1 for all three layers. FC indicates 

fully connected layer with 128 units. LAYER 2 and 3 had similar architectures 

as LAYER 1 except for number of kernels. C) Eight models (bold fonts) were 

trained in our classification pipeline. Class model was to classify TEs into Class 

I, Class II_sub1, and ClassII_sub2; ClassI model was to classify TEs into LTR 

and nLTR; ClassII_sub1 model was to classify TEs into P, Harbinger, Tc, 

MuDR, hAT, and CACTA; LTR model was to classify TEs into Copia, Gypsy; 

nLTR model was to classify TEs into SINE, LINE, PLE, and DIRS. LINE 

model was to classify TEs into L1, I; SINE model was to classify TEs into 

tRNA, 7SL; Domain model was to classify TEs into MITE and nMITE. 
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the discussion section. Hidden layers reside in-between input and output 
layers. For each input sequence, the k-mer frequency is calculated for dif-
ferent sizes of k (k = 3 to 7). In the input layer, kmers are ordered alpha-
betically and the orders are identical for all input sequences. Kernel is a 
small vector of size KS (KS = 3) where KS adjacent input kmer-frequen-
cies are use as input for a neuron. We set the stride size as 1 which means 
the kernel window is moving alone the input vector with a step size of 1. 
Each convolution layer consisted of KN (KN = 100, 150, and 225) number 
of kernels. Max pooling is to transform data by taking the maximum value 
from the values observable in the window and max pooling size represents 
the height of the pooling window. Max pooling was used to summarize 
the output of each two adjacent kernels with a stride of 1. A dropout value 
of 0.5 was set after the last convolutional layer. The dropout is the proba-
bility of training a given node in a layer (0 means no output from this layer, 
and 1.0 means no dropout). The output of max-pooling layer is flattened 
as input for the next convolution layer. After the max pooling layer of the 
third convolution layer, a fully connected layer was set to densely connect 
the flattened max-pooling layer to 128 units. A dropout value of 0.5 was 
set after this layer. A softmax output layer was set to compute the proba-
bilities for the classes of input sequences (Figure 1B). ReLU function was 
used in all three hidden layers and the fully connected layer. ReLU is an 
activation function that introduces non-linear properties to the network, 
and convert an input signal of a node to an output signal. ReLU gives an 
output x if x is positive and 0 otherwise (Agarap, 2018). 

2.4 Improving classification via detecting transposon con-
served domains  
The eight models were organized according to TE classification system 
(Wicker et al., 2007) (Figure S2).To improve the performance of classi-
fication, conserved domains from TE sequences were identified using 
PfamA domains with hummer3 (Eddy, 2010) (Table S2). Classification 
results from “Class” model and “ClassI” model were corrected by the fol-
lowing criteria: 1) If TEs were classified into Class I group with domain 
‘TR’ (Transposase), the predicted ‘Class I’ was changed to ‘Class II_sub1’ 
in the Class model; 2) if TEs were classified into Class II_sub1 group with 
domain ‘RT’ (Reverse Transcriptase), this prediction was changed to 
‘Class I’ in the Class model; 3) If TEs were classified into LTR but with 
‘EN’ (Endonuclease) domain, this predicted group was corrected to nLTR, 
since ‘EN’ is exclusive in nLTR TEs (Wicker et al., 2007) (Figure S2).  

2.5 Model training and evaluation 
The dataset was divided into training (95%) and testing (5%) sets for each 
TE family. We performed 10-fold cross validation in the training dataset, 
and separated the training set to sub-training (90%) and validation (10%) 
sets. The sub-training and validation sets were used to compare perfor-
mance of different k-mer size using precision, sensitivity, and f1-score for 
eight models. These eight models were then used to classify TEs from the 
test set (Figure S2). To further evaluate the performance of DeepTE, we 
compared DeepTE with the latest TE classification tool called PASTEC 
(Hoede et al., 2014). true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN) TE number were calculated and sensitivity, 
specificity, accuracy, and precision were evaluated. These four scores 
were calculated for the test TEs using PASTEC software with default set-
tings and compared with DeepTE. SE, SP, AC, PR, and F1 were defined 
as follows: 
Sensitivity = TP / (TP + FN); 
Specificity = TN / (FP + TN); 

Accuracy = (TP + TN) / (TP + TN + FP + FN); 
Precision = TP / (TP + FP); 
F1 = 2 * (PR * SE / (PR + SE)) 

2.6 Classifying non-transposon and transposon sequences 
To differentiate non-TE sequences from TE sequences, we collected non-
transposon sequences including coding sequences (CDS) and intergenic 
sequences (INS). The CDS from twenty-one plant species were collected 
from phytozome (https://phytozome.jgi.doe.gov/index.html), and Sol Ge-
nomics Network 
(https://solgenomics.net/organism/Nicotiana_tabacum/genome) (Table 
S3). Sequences of CDS from each species were combined and CDS anno-
tated with transposons were removed. From these CDS sequences, we ran-
domly selected ~800,000 sequences as our CDS dataset. These sequences 
were then randomly divided into ten datasets of each contained ~80,000 
sequences. For INS, sixteen plant species with known repeat annotations 
in the phytozome were analyzed. The intergenic sequences of each species 
without overlapping with transposons were collected, and sequences with 
length between 50 - 10,000 bp were retained. Approximately 800,000 se-
quences from the filtered sequences were selected, and randomly divided 
into ten replicated datasets with ~80,000 for each. Each set from CDS and 
INS was separated into training (90%) and validation (10%) sets. TE da-
taset was constructed using all TE sequences (~80,000). These TE se-
quences were randomly partitioned into ten equal sized subsamples, and a 
single subsample is retained as the validation set and the remaining nine 
subsamples were used as training set. This process was repeated ten times 
to obtain ten replicated TE datasets with each contains training and vali-
dation sets. For replicates in CDS, INS, and TE datasets, we selected one 
replicate from each of these datasets, and combined them to one final rep-
licate. This process was repeated ten times and each replicate was used 
exactly once. Ten final replicates were generated to train model. Three 
scores (precision; sensitivity; f1-score) generated from keras packages 
were used to evaluate performances of this model. 

3 Results 

3.1 Performance comparison for different k-mer sizes 
To identify suitable k-mer size for representing the input sequences, per-
formances of different k-mer sizes were compared. The precision changed 
as the k-mer size changed in all eight trained models (Figure 2). The per-
formance improved significantly (p < 0.05) with increased k-mer sizes in 
Class, ClassI, ClassII_sub1, LTR, and nLTR models. No significant 
change was found in Domain, LINE, and SINE models. Using k = 6 has 
similar performance with using k = 7 for most models except for 
ClassII_sub1 model. In model ClassI and nLTR, using k = 5, 6 and 7 
have the same performance. Using k = 3 has the worst precision across all 
tested k-mer sizes. Another two scores precision and f1-score showed sim-
ilar results as precision (Figure S1). Taken together, using k = 7 has the 
best performance in all models, and it was used for further analysis. Using 
larger k-mer sizes requires substantial more computing time and were not 
tested in this analysis.  
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3.2 Performance of trained models 
To further evaluate performance from these eight models, precision, sen-
sitivity, and f1-scores, were calculated (Table 1). In Class model, these 
three scores are higher than 0.90 for Class I and Class II_sub1 TEs. For 
Class II_sub2 (Helitron) TEs, although precision (0.88) is close to 0.90, 
its sensitivity (0.44) and f1-score (0.59) are the lowest among these three 
classifiers. In ClassI model, LTR and nLTR both have high performance, 
and the performance scores are all higher than 0.97 for LTR TEs. 
ClassII_sub1 model could classify six DNA/TE families, with variable 
performance. In P super family, precision (0.50), sensitivity (0.10) and f1-
score (0.18) are lower than other families. Mutator and Harbinger has 
higher precision than sensitivity and f1-score. For TcMar and hAT, their 
sensitivities (> 0.80) are higher than precision (< 0.80) and f1-score (< 
0.80). CACTA has relative consistent scores with average of 0.70. For 
LTR, nLTR, LINE models, all super families have similar performance 
scores, and most scores are above 0.90. Particularly, Domain model dis-
played the best performance with MITEs and nMITEs achieved to maxi-
mal value for these three scores (Table 1).  

In summary, we can roughly divide the models into four categories: 
high, good, moderate and poor performance. High performance models 
have all three scores higher than or equal to 0.9. Moderate high models 
have at least one score higher than or equal to 0.9 and all scores are higher 
than 0.7. Moderate models have no more than two scores that are lower 
than 0.7. Poor models have all three scores below 0.7.  Among all TE 
classification results, we have 50 percent high performance models (4/8), 
25 percent good models (2/8), one moderate model and one poor models. 

 
 
Table 1. Performance of eight models in plants. 

Model Group PRa SEb F1c 

Class 
Class I 0.92 0.93 0.93 

Class II_sub1 0.91 0.94 0.93 
Class II_sub2 0.88 0.44 0.59 

ClassI model LTR 0.98 0.97 0.97 

nLTR 0.91 0.94 0.93 

ClassII_sub1 model 

TcMar 0.66 0.84 0.74 
hAT 0.76 0.82 0.79 

Mutator 0.85 0.60 0.71 
P 0.50 0.11 0.18 

Harbinger 0.83 0.60 0.70 
CACTA 0.73 0.71 0.72 

LTR Copia 0.95 0.89 0.92 
Gypsy 0.93 0.97 0.95 

nLTR 

LINE 0.98 0.94 0.96 
SINE 0.97 0.97 0.97 
DIRS 0.83 0.95 0.88 
PLE 0.88 0.92 0.90 

LINE L1 0.96 1.00 0.98 
I 1.00 0.90 0.95 

SINE tRNA 1.00 1.00 1.00 
7SL 1.00 1.00 1.00 

Domain MITE 0.99 1.00 0.99 
nMITE 1.00 1.00 1.00 

Note: a, precision; b, sensitivity; c, f1-score. 
 

3.3 Improving classification by discovering conserved do-
mains of transposon sequences 
These eight models were wrapped together to classify unknown TEs and 
the classification performance were evaluated with four scores including 
accuracy, precision, sensitivity, and specificity (Figure S2; Figure S3). 
DeepTE showed high accuracy over 0.90 for all TE groups, and more than 
half of them (61%; 14/23) have almost perfect accuracy over 0.98 (Figure 
S3A). In Class I, all nLTR groups showed higher accuracy than all LTR 
groups. Among all TE groups, 70% (16/23) had SE higher than 0.80, and 
most Class I groups (92%; 12/13) had sensitivity over 0.80. 
ClassII_DNA_P showed the least sensitivity (0), probably due to its low 
number in the dataset (Table S1). ClassI_nLTR_SINE_7SL, MITEs and 
nMITEs had the highest sensitivity (Figure S3B). For precision, over half 
of TE groups (57%; 13/23) were over 0.70 (Figure S3C), while for speci-
ficity, nearly all groups were over 0.90 (Figure S3D). Taken together, our 
method showed higher sensitivity for Class I groups than Class II_sub1 
and Class II_sub2 groups. For accuracy, precision, and specificity, our 
method showed similar performance in all TE groups. Remarkably, for 
Class II_sub1 MITE and nMITE groups, our method generated sensitivity, 
accuracy, precision, and specificity close to 100%. Our method showed 
lower sensitivity for class II_sub2 than the other TE groups, but it per-
formed better in accuracy, precision, and specificity for Class II_sub2. 

We can also roughly divide the 23 TE groups into four categories as 
defined in the performance of trained models: high, good, moderate and 
poor. In total, we have 17.4 percent high performance models (4/23), 34.8 
percent good models (8/23), and 47.8 percent moderate models (11/23). 

TE families were defined with high DNA sequence similarity for their 
typical internal domain or coding region (Wicker et al., 2007). To improve 
performance of TE classification in DeepTE, conserved domains of TEs 
were detected to correct false classification (Figure S2; Table S2). Several 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

Fig. 2. Precision validation of CNN classifier based on k-mer size. k3, k4, k5, k6, 

and k7 represent k-mer size from 3 to 7. Different letters insides each bar indicates 

significant difference with p value < 0.05. 
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groups show slightly improved accuracy, sensitivity, precision, and spec-
ificity; however, these improvements are not statistically significant (Fig-
ure S4; Table S4).  

In general, these eight models achieved good performance, particular 
for accuracy and specificity, and it had relative better sensitivity score in 
Class I, than in Class II_sub1 and II_sub2 families. The classification per-
formance was slightly increased after correction of false prediction via de-
tecting domains within TE sequences. 

3.4 Performance comparison between DeepTE and PASTEC 
DeepTE was compared with a published TE classifier called PASTEC. 
There are 11 TE groups that can be classified by both DeepTE and 
PASTEC, and the model performances were used in our comparison, in-
cluding eight Class I groups, three Class II_sub1 groups, and Class 
II_sub2 (Figure 3).  

In comparison of accuracy, PASTEC showed lower performance as 
compared to DeepTE for most groups, except for Class II_sub1, Class 
II_sub2, and PLE where PASTEC showed no significant difference than 
DeepTE (p value > 0.05). DeepTE had more than two folds accuracy score 
than PASTEC in Class I, and more than 1.5 folds accuracy score in LTR 
(Figure 3A). PASTEC showed lower sensitivity in all TE groups, of which 
the highest sensitivity was smaller than 0.65, and no TE was detected in 
DIRS, PLE, and Class II_sub2 groups. The sensitivity performance of all 
the groups were better in DeepTE than in PASTEC. In DeepTE, most 
groups (10/11) had sensitivity higher than 0.85, except for Class II_sub2 
(sensitivity = 0.421) (Figure 3B). PASTEC had higher precision in four 
TE groups, but the four groups were lower than DeepTE, and three groups 
showed no significant differnece. The precision in DIRS, PLE, and Class 
II_sub2 was 0 in PASTEC (Figure S5A). For specificity, seven groups in 
PASTEC displayed better performance than DeepTE, except for Class I in 
DeepTE with more than three folds specificity than PASTEC. No signifi-
cant difference was found in MITE, nMIT, and Class II_sub2 (Figure 
S5B). Taken together, PASTEC detected low number of false positives, 
resulting in better precision performance than DeepTE in LTR, nLTR, 
LINE, SINE, and Class II_sub1 groups. But it failed to detect plenty of 
true positive TEs, even it did not find any true positives in DIRS, PLE, 
and Class II_sub2. Taken together, DeepTE outperforms PASTEC.  

To further compare DeepTE and PASTEC, receiver operating charac-
teristic (ROC) curves for DeepTE were generated. Because PASTEC can-
not generate ROC curves, we mark the performance of PASTEC on the 
DeepTE ROC curve as individual data points (Figure S6). In DeepTE, ex-
cept for ClassII_sub1, all models have area under curve close to 1, sug-
gesting good performance for these models. In PASTEC, all groups 
showed false positive rate close to 0 except for Class I, but their true pos-
itive rates were all below 0.65, and Class II_sub2, DIRS, and PLE groups 
showed 0 true and false positive rates.     

We also compared the speed for DeepTE and PASTEC. The compu-
ting time for DeepTE and PASTEC were tested on a Linux workstation 
with Inter(R) Xeon(R) Gold 5115 CUP (2.40 GHz), eight cores and 40 
GB memory. There is one graphic card installed in this Linux work-
station: NVIDIA Corporation GP102GL [Tesla P40] (1.30 GHz base and 
1.53 GHz as boosters) with 24 GB memory. For DeepTE, the time used 
to classify 1,084 TEs was 71 ± 3 seconds, and for PASTEC, the time 
used to classify these TEs was 1,305 ± 7 seconds. These results suggest 
that DeepTE is 18.3 times fasters than PASTEC when classifying TEs. 

3.5 Classification of non-TE and TE sequences in plants 

As an additional function for DeepTE, we have trained a model to classify 
CDS, INS, and TE datasets in plants to differentiate non-TE and TE se-
quences. Three scores (precision, sensitivity, and f1-score) were used to 
evaluate model performance. The f1-score in CDS was significantly 
higher than TE and INS groups, and no difference was found between TE 
and INS groups. For precision, score in INS was lower than scores in TE 
and CDS groups. CDS showed the highest score in sensitivity, while the 
score in TE was the lowest (Figure 4). In total, CDS group achieved the 
best performance comparing with TE and INS groups.  

3.6 TE classification in metazoans and fungi 
Metazoans and fungi have TE super families that are not detected in 
plants, we developed another two training datasets containing 71,049 and 
63,449 TEs in metazoans (Table S5) and fungi (Table S6), respectively. 
Seven models were trained to classify TEs into 24 and 16 super families 
in metazoans and fungi, respectively, based on same model structures as 
plants (Table S7-S8). Consistent with the plant results, metazoans and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Performance comparison between DeepTE and PASTEC. Different letters 

above each bar indicates significant difference with p value < 0.05. 
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fungi both showed the worse performance in ClassII_sub1 than in other 
models, and most groups (66%; 21/32) in metazoans and (67%; 16/24) in 
fungi had evaluation scores over 0.7 of precision, sensitivity, and f1-
score (Table S7-S8). 

4 Discussion 
Many studies applied deep learning models to predict unknown genomic 
sequences directly using sequence information, instead of pre-defined 
features (Eraslan et al., 2019; Park and Kellis, 2015). CNN is an essen-
tial model of deep learning, and suitable for identifying sequence pro-
files, due to its excellent feature extraction capability on high-dimen-
sional data (Kelley et al., 2016; Zeng et al., 2016). The input vector of 
CNN is primarily based on sequence-derived features, such as the fre-
quency of k-mer occurrence applied in this study and one-hot vector 
strategy (Aoki and Sakakibara, 2018; Fiannaca et al., 2015; Ghandi et 
al., 2014; Lee et al., 2011; Nguyen et al., 2016). One apparent advantage 
of the one-hot vector is to reserve specific position information of each 
individual nucleotide in sequences. In the case of TE classification, be-
cause TEs are different in their sizes, one-hot vector is not directly appli-
cable. Alternatively, the k-mer approach can be directly applied to se-
quences with different sizes and the location of the k-mer inside a se-
quence does not need to be fixed (Eraslan et al., 2019). This method fits 
TE structure well, since TEs are classified different families commonly 
based on motif categories or flanking sequence patterns, which can be 
captured by k-mers (Wicker et al., 2007). 

We tested different hyper-parameters including the number of net-
work layers, kernel sizes, kernel numbers, and k-mer sizes. However, we 
found these hyper-parameters have small impact on the model perfor-
mance except for the k-mer sizes. We have compared performances of 
different k-mer sizes, and found that using k = 7 performed best. We also 
tested eight and higher k-mer sizes, but the time it takes to train the 
model is prohibitive, as for the k-mer number exponentially increases 
with k-mer length. In ClassII_sub1 model, we did observe a trend where 
k = 7 showed better performance than k = 6. (Figure 2). However, preci-
sion of LINE, SINE, and Domain models did not increase as k-mer size 
increased. Class, ClassI, LTR, and nLTR models did not show consistent 
improvement as k increases. This observation suggests the precision may 
not be sensitive to variations of k-mer size. For example, in the LINE 
model, L1 and I super families could be clarified since the I superfamily 
has an additional RH domain compared with the L1 superfamily. In 

contrast, domains of all Class II_sub1 super families are transposase, re-
sulting in significant different performances among all five k-mer sizes 
(Figure 2).  

Currently, more than 27 and 17 TE super families are identified, but 
our study can only classify TEs into 24 and 16 super families in metazo-
ans and fungi (Wicker et al., 2007). The missing families were not con-
sidered because there is only small number of TEs in the databases. In 
plants, there are only 15 known super families and DeepTE can classify 
all these TE super families. However, the collected super families have 
varied number of TEs, potentially reduces the classification accuracy 
(Barandela et al., 2004). For example, the number of TE/Gypsy (30,368) 
is 150 times more than the number of TE/P in plants (Table S1). To han-
dle this imbalanced issue, we leveraged a tree structural classification 
process (Figure 1) by setting eight models that could classify the super 
families under each order. Among these models, performance of 
ClassII_sub1 was lower to the others (Table 1). This could be accounted 
for most Class II_sub1 super families are distinguished by sequence dis-
similarities of the terminal inverted repeats and TSD size, rather than 
motifs easily defined in TE body region (Wicker et al., 2007), possibly 
raising difficulties to identify the sequence differences.  

5 Conclusion 
With the growing availability of reference genome from non-model spe-
cies, TE annotation becomes a new challenge. In this study, we developed 
a deep learning tool called DeepTE to classify unknown TEs based on 
convolutional neural networks, and it outperforms current PASTEC tool. 
DeepTE contained eight models for different classification purposes, and 
also wrapped a function to correct false classification based on domain 
structure. This tool classified TEs into 15-24 super families according to 
the sequences from Plants, Metazoans, and Fungi. For unknown se-
quences, DeepTE could distinguish non-TEs and TEs in plant species. A 
manual is provided for users to apply DeepTE in identification and anno-
tation of TEs in a different genome (Supplementary Note). This tool pro-
vides a new method for using deep learning on TE identification or anno-
tation.   
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