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Abstract

Introduction: Despite significant advances in treatment and prevention, graft-versus-host disease (GVHD)
still represents the main cause of morbidity and mortality after allogeneic hematopoietic stem cell
transplantation. Thus, considerable research efforts have been made to find and validate reliable

biomarkers for diagnosis, prognosis and risk stratification of GVHD.

Areas covered: In this review the most recent evidences on different types of biomarkers studied fgr GVHD,
such as genetic, plasmatic, cellular markers and those associated with microbiome, were su ized. A
comprehensive search of peer-review literature was performed in PubMed includi a-analysis,
preclinical and clinical trials, using the terms: cellular and plasma biomarkers, graf -v\ st disease,

cytokines, and allogeneic hematopoietic stem cell transplantation.

Expert opinion: In the near future, several validated biomarkers will be avagable ® help clinicians in the

diagnosis of GVHD, the identification of patients at high risk of G\{fiD pment and in patients’
stratification according to its severity. Then, immunosuppressive t could be tailored on each
patient’s real needs. However, more efforts are needed to his goal. Although most of the
proposed biomarkers currently lack validation with large s al data, their study led to improved
knowledge of the biological basis of GVHD, and ultimate ementation of GHVD treatment.

Key words

Circulating endothelial cells, Cyt e cellular vesicles, Graft-versus-host disease, Microbiome,

microRNA, Natural killer, Protegfhicsyageggfatory T-cells, SNPs.
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Article highlights box

e Considerable research efforts have been done to find and validate relevant biomarkers for graft-
versus-host disease (GVHD), as new tools to tailor the use of immunosuppressive drugs and to
optimize GVHD management.

e The complex pathophysiology of GVHD makes the identification of reliable biomarkers challenging.

e A combined model including clinical and genetic variables could be able to correctly predigs grades
-1V acute GVHD (aGVHD) and chronic GVHD (cGVHD).

e Changes in the composition of intestinal microbiota play a pivotal role in develop GVHD.
\ rance and
impairment their function after allogeneic transplantation can lead to GV
e aGVHD causes endothelial injury and circulating endothelial cells (CQ IMcreased in affected
patients, whether these cells can be used as valid biomarker is u% on.

e microRNAs (miRNAs) are small non-coding RNAs, mainly

e T, B and Natural Killer (NK) cells are crucial in the maintenance of perj

in the regulation of gene
expression. In the context of allografting, many biomar have been focused on the role of

miRNAs involved in T-cell function in aGVHD.

e Extracellular vesicles (EVs) play an essential ‘@ . inter-cellular communications and their

extraction from biological fluids requires y non-invasive protocols, which makes them

attractive as biomarkers in GVHD setting.

e The development of high throfyg echnologies enabling the study of an entire spectrum of
molecules led to the idergticg®on ¥ a panel of cytokines which is, at the moment, the GVHD

biomarker closer to cjj | apMffation.

e Despite many a , the identification of valid GVHD biomarkers is still an unmet clinical need.
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1. Introduction

Graft-versus-host disease (GVHD) can be a life-threatening complication of allogeneic hematopoietic stem
cell transplantation (HSCT). Many advances have been made in GVHD treatment and prevention and
several risk factors have been identified [1,2]. However, since morbidity and mortality related to both acute
and chronic GVHD still represents a major concern, new diagnostic and therapeutic tools are needed to
tailor the use of immunosuppressive drugs and to optimize GVHD prevention and treatment. With this
purpose, considerable research efforts have been made to find and validate GVHD-relevant bio ers.
However, the complex pathophysiology of GVHD that can be considered in a frame of Wtinct
sequential phases of immune system dysregulation and cytokine production, makes t\ tification of

reliable biomarkers challenging [3,4].

Potential applications of biomarkers in GVHD clinical trials and routine patient a ent include: (1) risk
stratification for GVHD development; (2) diagnosis and assessme GV severity, including
distinguishing irreversible damage from continued disease activity fy ) cGVHD; and (3) prediction

of response to therapy [5].

Here, we summarize the main biomarkers being studie itMhE™aim of helping clinicians in GVHD

management, or, at least, of improving knowledge of G . correlation of each biomarkers with GVHD
pathogenesis is illustrated in Figure 1, whereas the lomarkers (diagnostic, prognostic or predictive)
in Table 1.

2. Pathogenesis of acute and chroni
GVHD biology is extremely comp

soluble mediators, and cellul

2.1. Donor ang#fatjgn®genetic background
In HSCT, altho a nd donors can result HLA-identic according to major histocompatibility complex
(MHC) antj theymay differ for one or more proteins presented in form of HLA-peptide complexesto T
cells actifgg as r§inor histocompatibility antigens (mHAs). Indeed, the human genome includes greater than
10’ rphic sequences outside HLA and the role of mHAs is supported by genome-wide analysis of
singleqgucleotide polymorphisms (SNPs), which has revealed differences in the coding of amino acids and a
variety of mechanisms related to DNA structural variation between recipients and donors [6-9]. Moreover,
interesting results were obtained by genome-wide association studies (GWASs) [10], since risk of aGVHD is
clinically increased in HSCT from unrelated as compared with related donors. Indeed, the percentage of
recipient coding SNPs mismatches was much larger for unrelated donor/recipient pairs than for sibling pairs
[11]. Genome-wide arrays revealed that every 1% increase in genome-wide recipient mismatching is

associated with a 20% increase in the risk of grades lll-IV aGVHD [6]. Another GWAS study, including more

Information Classification: General



than 3000 donor and recipient pairs, demonstrated a significant association between SNPs in the region of
the MHC class Il and the overall survival (OS) after HLA matched unrelated donor (MUD) HSCT [12]. Thus,
HLA-mismatching in mHAs could likely explain most of the increased risk of GVHD after HSCT with
unrelated donors [6].

Several studies showed a correlation between SNPs and genes involved in innate or adaptive immunity [e.g.
interleukin(IL)-10, IL-6, IL-1 and its receptor, tumor necrosis factor-alfa (TNF-a), transforming growth factor-
beta (TGF-B), cytotoxic T-lymphocyte antigen 4 (CTLA-4)] [13-15], although other studies faile confirm
this correlation [10,16,17]. More recently, a study performed on the large DISCOVeRY-BM rt sMpwed
that donor SNPs in the 2q12.1 region, which contains the IL-1 receptor ligand-1 \ gene, were

S

associated with elevated soluble suppression of tumorigenicity-2 (ST2) protein. @ ; which is the

product of the IL1IR1 gene, is a validated post-transplantation GVHD biomar itfMg 4-fold risk of death
for aGVHD, paving the way for potential use of this biomarker in donor selggfi rggess [18].
Despite the limitations of SNPs, Martinez-Laperche and colleagues e Jo demonstrate a significant

predictive value for their model which combined 25 SNPs on 1%¢gytokMe genes of HLA matched related

donors (MRD) and recipients with clinical variables (sex, donor/male recipient, stem cell

source, conditioning regimen and disease). In particular ined (clinical and genetic) model was able
to correctly predict 100% of grades IlI-IV aGVHD cas@yvs\¥8% of the model based on genetic variables only
and 50% of that based on clinical variables o % of extensive cGVHD ones [19]. Using another

combined model, Kim and colleagues wer abl predict the risk of aGVHD, but not of cGVHD [20].

2.2. Acute GVHD pathogen
In this complex genetic bac HD pathophysiology can be simplified in a three-step model: (1)

host antigen-presentin APCs] activation due to tissue damage in the recipient by the conditioning

regimen and antibij ted changes [21-23] in the microbiome (that cause a decline in protective

microbial-deriy, es); (2) subsequent donor T cells activation; and (3) pathogenic effector cells
and infla mglliators producing the disease (Figure 1) [24].

Both in gumanfand murine models, during the first step neutrophils, monocytes and inflammatory cells
pro active oxygen species (ROS) as a consequence of tissue damage caused by chemo/radiotherapy
and efentual infections, infiltrating the gastrointestinal (Gl) tract [25-27]. The endothelial cell injury, intimal
arteritis and loss of microvessels (as observed in mice) [28,29], lead to the extracellular translocation of
damage-associated molecular pattern (DAMPs) and pathogen-associated molecular patterns molecules
(PAMPs). An additional consequence of Gl tract damage is the perturbation of gut microbiota. Crypts in
both the small and large intestine contain intestinal stem cells (ISCs) and Paneth cells. The latter act as
guardians of the crypt in murine models [30], since their eosinophilic granules contain a wide range of

antimicrobial peptides, including a-defensins, lysozyme, secretory phospholipase A2, and regenerating
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islet-derived protein 3a (REG3a). These are key elements of the intestinal mucosal barrier that protect from
enteric pathogens and maintain intestinal homeostasis and microbiome stability through proliferation and
maintenance of neighbouring ISCs [31,32]. Loss of commensal bacteria and microbial diversity during early
post-transplantation period, often caused by mucositis and early use of systemic antibiotics, permits the
overgrowth of pathogens associated with aGVHD [22,23,33,34]. In preclinical models, alteration of
microbial metabolites such as short-chain fatty acids (SCFAs), tryptophan and butyrate, a histone
deacetylase inhibitor, that modulates GVHD in an indoleamine-2,3-dioxygenase (IDO)-depend manner,
also has profound effects on mucosal immunity [35]. Thus, crypt damage, the break of 4 rity W the
intestinal mucosa, and the loss of Paneth cells and their proteins result in dysbiosis.\Qmore, in a
fu

rodent model of GVHD has been observed that GVHD itself induces dysbiosi
pathogenetic circle [33].

All the mechanisms mentioned above lead finally to APCs activation. Duri ecghd phase, donor T cells
1&;?’1

ing a vicious

are able to recognize allo-antigens on either host APCs (direct ) or donor APCs (indirect
presentation). Over time during the post-transplant period, APCsghang®&from primarily recipient origin to
donor origin [36]. It is likely that direct presentation by hgst A redominant during early stages of
aGVHD, whereas indirect or cross-presentation by donoggPCs Wypredominant in cGVHD.

During the last phase, the release of inflammat C ines by multiple cytotoxic effectors, such as
phagocytes, NK cells, neutrophils and T cells, ost tissues to produce inflammatory mediators

directing effector cells into target organs jagugh cMemotaxis. This mechanism amplifies local tissue injury

and leads to target tissue destructi h| effect of humoral immunity in conjunction with direct

cell-mediated cytolysis. A dysre trolled cascade of immunological events and a lack of proper

inhibitory regulatory system sen

Indeed, biomo, e d by EVs could be involved in many physiological and pathological processes,

e result of this complex biochemical process [4,37,38].

Finally, the interplay bg cells"and the extracellular matrix, together with the secretion of soluble

factors, could be injiffe extracellular vesicles (EVs) trafficking in humans (see section 3.3.2) [39,40].

being repr, tivegpf their corresponding secreting cells.

ronic GVHD pathogenesis
SimilaYly to aGVHD, also cGVHD development is associated with alteration in immune cell populations and
immunoregulatory mediators [41].

The pathophysiology model of ¢cGVHD, mostly derived from preclinical studies [42,43], can be divided into
three phases: early inflammation caused by tissue injury (phase 1); thymic injury, dysregulated B-cell and T-
cell immunity with auto- and/or allo-antibody production and consequent chronic inflammation (phase 2),

culminating in tissue repair with fibrosis (phase 3) [3,44-46].
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The pathogenesis of cGVHD begins with activation of host APCs expressed by damaged tissues and/or
pathogens. As a consequence, donor T-cell proliferation and dysregulated inflammatory cytokine
production [47,48] induce the activation of additional immune effector cells and perpetuate an adverse
cycle of alloreactive inflammation.

Rodent models have been important to unravel immunological mechanisms of cGVHD. An important step
in the phase 2 of cGVHD is the impairment in patient thymic function [49-53] due to thymic injury caused
by aging, toxic effects of the conditioning regimen, prophylaxis with calcineurin inhibi (CNils),
alloreactive T cells, and immunoglobulin deposition [54-56]. In rodent models, thymic de ic ceMy and
medullary and cortical thymic epithelial cells (nTECs and cTECs, respectively) are target@oreactive T
e

cells and pathologic antibodies, and their depletion leads to loss of central tq ,57,58]. As a

consequence of thymic injury, both positive and negative selection are af d cGVHD [59]. Thus,
potentially pathogenic T cells can escape from tolerization or deletion geral export [60]. The
net result is the proliferation of autoreactive and alloreactive CRQ4 cels producing IL-17a, which
maintains inflammation, and the loss of regulatory-cell populatiodg inclONing regulatory T cells (Tregs) [61],
regulatory B cells (Bregs) [62,63], regulatory natural killer (NKre®\, co®5 [64] and invariant natural killer T
(iNKT) cells [65]. Lack of sufficient Tregs in the contexgegf ¢ D can contribute to impaired peripheral
tolerance, autoimmunity and further cGVHD devel@gm in preclinical models [66]. Besides, Tregs are
capable to negatively regulate B-cell response ively kill B cells [67], so their deficiency would

predispose to a failure to control pathoggeic B ceMs. As a matter of fact, several preclinical and clinical

observations support the role of do w in cGVHD development. The loss of B-cell tolerance, the
altered B-cell homeostasis and @ rolled immunoglobulin production, possibly due to thymic
HD

dysfunction, could represe iggering mechanisms [68-71]. Analysis in patients with cGVHD

suggests that B cells egulatory phenotype are both decreased and inactive [62,72]. Bregs can

W,
produce anti-inflamyfatgry W10 and IL-35, being able to suppress the expansion of pathogenic CD4+ and
CD8+ T cells t h g immunoregulatory function, which may lessen the severity of sclerodermatous
cGVHD in
In phase@, theRoordination of T helper 2 cells (Th2) CD4+ cells, the up-regulation of TGF-B and IL-13, and
the \ R antibodies production, affect fibroblast collagen deposition, leading to aberrant tissue
repairggnd fibrosis [73,74]. TGF-B-producing fibroblast activation by activated macrophages results in the
production of extracellular matrix, which leads to tissue stiffness and sclerotic phenotype in murine models
[45,74]. The production of isotype-switched immunoglobulin by differentiated B cells (plasma cells), fueled

by B-cell activating factor (BAFF), results in pathogenic immunoglobulin deposition in various organs, which

contributes to organ damage and fibrosis.
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3. Biomarkers role

Biomarkers to predict the risk of both aGVHD and cGVHD before and after transplantation might represent
a turning point in the therapeutic approach of HSCT patients. As a consequence, in the past two decades a
growing number of preclinical and clinical studies evaluated target molecules that looked promising in this

field [5,75].

3.1. Microbiome
The human Gl tract is inhabited by a multitude of microorganisms, referred to as the inte 4@ icrobiota,
N individual

while their associated genomes are defined as the microbiome. Among an estigagt

bacteria, most are non-pathogen anaerobic commensal bacteria: bacteria irmicutes and

Bacteroidetes are prevalent in the intestinal microbiota, followed by Protfobacigri®, Fusobacteria and
Actinobacteria. Microbiota shares a lot of variability between individu i one third of bacterial
species being common between two individuals [76-78]. In the last rs, molecular techniques have

allowed a better knowledge of the human microbiota composign¥gaclugling 165 rRNA sequencing and the

unbiased high-resolution method of metagenomics shotgu yng, while in situ hybridization and PCR
are used to identify and quantify bacteria [77].
Studies focusing on the human Gl microbiota compW efore and after HSCT reported a drastic loss of

bacterial diversity after transplantation, often anied by the expansion of a single taxon (mainly

Enterococci), and loss of Clostridia spg

ecreased 0S [77,79-81]. Indeed, death from GVHD in HSCT

pown to produce SCFAs: these changes are linked to an

increased risk of infections and GV
has been associated with lowgfac ecies diversity [79], and the lack of Blautia Luti in the stool
microbiota [82] (Table 1).

Golob and colleagues ctively collected stool samples in patient from pre-transplantation until day

100 post-transpla otal of 694 stool profiles plus 36 microbiotas from healthy donors were

analyzed, shofiing sociation between impaired bacterial species diversity and severe aGVHD. In
particula m anisms, like oral Actinobacteria and oral Firmicutes, appeared to be predictive of
severe aQYHDYP On the contrary, patients that did not develop GVHD had microbiota similar to those
obse healthy donors, with dominance of Bacterioidaceae and/or Lachnospiraceae [83]. A
subseqient study published in 2018 confirmed these observations, showing that patients with aGVHD had
an impaired microbiota diversity at the time of engraftment, with dominance by a single microbiota family
(i.e. Gammaproteobacteria and Enterobacteriaceae) and a loss of Lachnospiraceae and Ruminococcaceae
which influences Tregs/Th17 balance with the reduction of Tregs [84].

A predictive model based on human gut microbiome sequencing has been recently proposed [85]. Stool

and samples of 150 evaluable patients from two centers were collected at preconditioning, transplantation

and neutrophil engraftment. The algorithm, defined as gut microbiota score (GMS), defined distinct risks of
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developing severe aGVHD based on selected features of intestinal bacteria. GMS has been shown to

correlate with Tregs/Th17 balance and the amount of proinflammatory cytokines.

Changes in microbiome structure cause a change in intestinal metabolites, which may play a role in aGVHD

severity, and could be used as surrogate markers for microbiome characterization as suggested by both

murine and human studies [35,86-89].

Besides, it has been observed that urinary 3-indoxyl sulfate (3-1S, a major conjugate of indole) levels at the

time of HSCT and early thereafter were associated with gut microbiota disruption. In patients, |g#glevels of

3-1S predicted higher transplant-related mortality (TRM), with intestinal GVHD as the pri ausWy[90].

Indeed, 3-IS could contribute to GVHD protection by stimulating Th2 responses and mo Q: urinary 3-

IS levels may be a feasible approach to monitor microbiome changing. n\

In 2020 Payen and colleagues combined the study of intestinal bacteria an eirggetabolites at GVHD

onset. A weekly stool sample was collected at the time of aGVHD onsej agpnts, whereas 35 non-
ra;m’:

GVHD patients were used as controls. Bacterial count and diversity antly lower at GVHD onset
in patient with severe aGVHD; patients with mild aGVHD had miqgobio™ysimilar to controls. As previously
demonstrated, Lachnospiraceae (e.g. Blautia) and Ruminocggcac re significantly reduced in patients
with severe aGVHD. Besides, this study suggests that b teWgay be a potential marker of GVHD and that

propionate and acetate may be associated with dise rity [91].

Finally, a recent paper highlighted the relatiorfh en microbiota and cGVHD, analyzing stool and
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composition in stool samples. F bundance of Akkermansia and Streptococcus were found to
positively correlate with ¢ w abundance of Clostridium and Lactoclostridia seemed to be

protective. These data ed that the lasting microbiome damage may impact on cGVHD. SCFA

administration mig awgerapeutic role in this setting [92].

Unfortunately, i obiota alterations relevant for GVHD development were not always consistent
among stydie®y AlthJugh the microbiome is an exciting and rapidly emerging area, several important
challenggs hadfo be faced by researchers. Each patient has a peculiar microbiome, reinforcing the notion
tha is no single "healthy" microbiome profile. Each host has a unique biological relationship with its
microRota, characterized by complex molecular interactions within specific niches in the gut. Differences in
the microbiome exist across age, cultures and geography. Moreover, faecal bacterial community can be
detected by different procedures, sampling and storage protocols, as well as DNA extraction methods. In
addition, animal experiments depend on several factors such as genetic background, sterility of the

environment and diet, so researchers should consider these challenges carefully when designing

experiments. Strategic collaboration of clinicians, microbiologists, molecular biologists, computational
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scientists, and bioinformaticians could represent the ideal paradigm for success in this field in the near

future.

3.2. Cellular biomarkers
As detailed above, immune cells play a key role in the pathogenesis and in the control of graft-versus-host
interaction and several of them have been identified as potential biomarkers of aGVHD and cGVHD, with a
predominant role of T lymphocytes (Table 1).
3.2.1. Tand NK cells
Peripheral tolerance after allogeneic HSCT significantly contributes to establishment of\ ce between
of

recipient tissues and donor-derived immunity. Tregs are crucial in the mainte is process. A
significant reduction of Tregs has been observed in aGVHD but also in ¢ aNg this decrease was

correlated with severity of manifestations [93]. Thus, Tregs relative coun bed prognostic biomarker
for GVHD [93]. In addition, the frequencies of Tregs at onset of aGV pledict the response to GVHD
treatment in patients [94]. Tregs were shown to be reduced in Mtients with ¢cGVYHD compared to

healthy subjects, regardless of a previous diagnosis of aGV 92 monstrated by reduced frequency
of CD4+CD25+Foxp3+ T lymphocytes [93,96,97]. Furth or striking inverse correlation between the
percentages of Tregs and CD8+ cytolytic T cells in p tN\fith cGVHD emerged [95]. In a paediatric cohort,
Tregs have been specifically identified as associ h¥eedom from ¢cGVHD. Fewer data are available on
aGVHD. In both adult and paediatric cohg high® CD4+/CD8+ T-cell ratio was reported in patients who
develop aGVHD [98-100].

CD31 is an excellent marker of ygilc emigrants, within Foxp3+ Tregs population in humans [96].
Higher percentages of CD4+ A+ 1+ T cells have been seen on day 100 post-HSCT and at onset of
cGVHD, and they signifi could predict later development of ¢cGVHD [101], showing both prognostic

and diagnostic role 02

Raised levels o ocytes strongly correlate with the inflammatory process taking place in aGVHD
and active D, agfdemonstrated by Dander et al. [103]. Interestingly, an inverse relationship between
Tregs anl§ Th17ghas been shown, not only in peripheral blood but also in sites of active cGVHD in patients
[10 ithin conventional T and Tregs, a CD4+CD146+CCR5+ subpopulation with a Th17 profile has
been Zscribed, which increased in patients with ¢cGVHD [105]. Moreover, the expansion of this subset
appeared to be an early event in the pathogenesis of GI GVHD and might assume prognostic value in
predicting development of aGVHD in subjects underwent allogeneic HSCT [106].

Another subset of T helper, follicular helper T cells (cTFH), were reduced in patients with active cGVHD and
their phenotype is skewed toward Th2/Th17 subsets, capable of inducing B-cell activation and
immunoglobulin production. A linear relationship between active ¢TFH and clinical grading of cGVHD was

shown [107].
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CD30 expression appeared to be increased on effector and central memory CD8+ T cells in patients with
aGVHD [108], acting as diagnostic biomarker and, possibly, as a therapeutic target.

In addition to T cells, also NK cells were correlated with GVHD. In this regard, a delayed reconstitution of
the immune-regulatory CD56°""™ NK cells was observed in patients with aGVHD and cGVHD [109]. An

inverse relationship between CD56"""

NK-cell levels and aGVHD onset was shown, thus revealing a role as
early prognostic biomarker [109]. NK cells could be also predictors for cGVHD [109]: lower proportion of
CD56"8" NK regulatory cells results in higher rate of cGVHD and it is associated with higher leygly of C-X-C
motif chemokine ligand 10 (CXCL10), a chemokine secreted in response to IFN-gamma (IFN at bds to
C-X-C receptor 3 (CXCR3) and is involved in T-cell recruitment to inflamed tissue [64].
3.2.2. B cells \

The cytokine BAFF plays a critical role in normal B-cell maturation and sur L e context of B-cell
lymphopenia after HSCT, high soluble BAFF levels promote the selectio xpgysion of autoreactive B

cells [69,70]. Indeed, BAFF levels and B-cell counts are significantly in}patients with active ¢cGVHD

than in those without [110]. BAFF/B-cell ratio is an important ind# GVHD [110-112] and it is related

to the cGVHD grading [113]. Elevated ratios were observe ith hypogammaglobulinemia and
related to onset and activity of ¢cGVHD [114]. Incre vayes were observed in patients with lung

involvement, confirming the validity of a potential er for early diagnosis of bronchiolitis obliterans

syndrome (BOS), also in asymptomatic patien nversely, low BAFF/B-cell ratios after umbilical

cord blood transplantation have also bee ociate®with a low incidence of cGVHD [111].

Within the first year after HSCT, bre B-cell lymphopenia is followed by the progressive

normalization of B-cell count. In of GVHD, elevated immature/transitional CD21- B-cell and low

CD27+ memory B-cell count seen in patients with active cGVHD [112] and are associated with

more frequent infectio plications [116]. Increased absolute count of CD19+CD21°" B cells was
observed at the o ovo cGVHD [117]. Furthermore, the same panel, assessed at day 100 after
HSCT, was pr, iveyfogf” subsequent development of quiescent and progressive ¢cGVHD [101,112].

Associatioghel\yeenfow CD19+CD21"" levels and activity and severity of cGVHD has been revealed also in
a paedidfgric cdport [118]. The resolution of cGVHD correlated with the normalization of CD19+CD21""
lev 19+CD21"°" might help with distinction between active vs inactive cGVHD [118]. Similar
resultQwere observed in patients responding to extracorporeal photopheresis (ECP) [119]. Along with high
BAFF/B-cell ratios, elevated levels of CD19+CD21"°" lymphocytes were observed in patients with new onset
of pulmaonary ¢cGVHD and long-lasting BOS, hinting a possible role as biomarker for early diagnosis of this
serious GVHD manifestation [115]. Memory B-cells are profoundly reduced in patients developing cGVHD
[114,116,120]. Active cGVHD has been related to a low proportion of CD19+CD27+ memory B-cells and

persistent low memory B-cell counts predicted an increased risk of cGVHD during later follow-up in a
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paediatric cohort [118]. Unlike cGVHD, late-onset aGVHD was associated with higher levels of unswitched
memory B cells and transitional B cells in children [121].
3.2.3 Invariant NKT

Invariant natural killer T cells (iNKT) are a rare subset of lymphocytes that co-express T-cell and NK-cell
markers selectively activated by glycolipid antigens presented by CD1d and characterized by an invariant
TCR a-chain named Va24jal8 in humans [122]. iNKT are further distinguished in two different subsets,
based on CD4 expression, characterized by a different cytokine profile with CD4iNKT secr higher
amounts of IFN-y than IL-4, resulting in a Thl bias [123]. Both preclinical mouse mo nd ®nical
observations have shown that iNKT cells are capable to modulate immune response an\ epresent an

important marker to predict the occurrence of aGVHD.

In a seminal preclinical work by Lan et al. [124], in which mice received reduc en conditioning (RIC),
total lymphoid irradiation and anti-thymocyte globulin (ATG), recipienty wreferentially survived
because of radioresistance resulting in aGVHD abrogation. Such eff t%endent on host T cells IL-4
secretion [125,126] and on donor T cells STAT-6 expression [127NKT Wad to donor Th2 polarization and

resulted in donor Tregs expansion [65,126,128]. Donor Trggs e dispensable since the protective

effect of a-galactosylceramide infusion was lost when d s cells were depleted [65,129].

analyzed between day 15 an 90 aWer transplantation, was found to represent a reasonable surrogate

marker of iNKT reconsj . Palients with >1x10” ratio had lower chance to develop aGVHD and

ulting in lower incidence of NRM and enhanced 0S. Day 15 iNKT/T-cell ratio
could efficient|
to identifyna%ents Bt higher risk to develop aGVHD [131]. In another report comprising 78 patients
receivingperipferal blood stem cell (PBSC) MRD transplantation [132], a higher graft content of iNKT was
ass with a lower chance of aGVHD: 31% vs 64% for iNKT > vs <0.057x105/Kg. This effect was
particlarly evident for CD4iINKT cells and may be due to its direct cytotoxic activity against CD1d-
expressing mature myeloid dendritic cells [123]. Malard et al. [133] analyzed a cohort of 80 patients
receiving MRD, MUD or mismatched unrelated (MMUD) transplantation employing RIC and ATG, and found
that a higher iNKT cell graft content (>0.11x10°/Kg) was associated with improved GVHD-free and
progression-free survival (GRFS). This effect was mainly due to a reduced incidence of disease relapse and
cGVHD. In another report [134], only pre-transplantation donor CD47iNKT expansion capacity was

associated with aGVHD in patients receiving a PBSC graft. Of note, donor iNKT graft content did not
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correlate with donor age, while iNKT recovery was lower with increasing recipient age. Therefore, even if
we are unable to select a particular donor to improve iNKT reconstitution, iNKT graft content and post-
transplantation recovery represent important makers to identify patients at higher risk of aGVHD.

3.2.4. Circulating endothelial cells
The endothelium was recently recognized as a significant target of donor T-cell alloreactivity, being

involved in the pathogenesis of aGVHD, especially when steroid refractoriness is established [135].

endothelial damage are associated with the occurrence of aGVHD and may be useful to
ark of target

and response to front-line therapy. In a seminal work, Penack et al. [28] described that X
n

organs of aGVHD is represented by neovascularization driven by donor-derived v encwis in a murine
model. Donor circulating endothelial progenitor cells (EPCs) were found to b redged in the peripheral
blood of mice with aGVHD, resulting in increased vascularization of tgyli tQp colon and the bone

marrow. These observations are consistent with histologic findings ingh mgh counterpart, where donor
bone marrow derived vasculogenesis was found to contribute #g neoWscularization of the skin and the
intestine of patients with aGVHD [136,137]. Given this backgrou authors proposed a model linking
endothelial cells (ECs) and aGVHD [138]: in the early ph emMigthelial damage is caused by different toxic

agents such as the conditioning regimen (chemo- therapy), infections or drugs (such as CNIs); in

the second phase, vessels react by recruiting n erived ECs and neovascularization takes place; in
the third phase, alloreactive T cells target {as lium and blood vessels are destroyed.

Two main implications stem from th
markers of endothelial damage i g endothelial cells (CECs) may be helpful in the diagnosis of
aGVHD in humans. To addr uestion Penack et al. [28] treated mice with an anti-VE cadherin
antibody named EG410 bpecifically bind and depletes EPCs, resulting into abrogation of aGVHD and

increased survival. e

N

d question has been answered by several clinical reports investigating

whether mark ry or CECs are increased in patients with aGVHD. Almici et al. [139] described a

significant lve igfrease in the number of CECs in patients with aGVHD relative to patients without
aGVHD @ 0%, p=0.04). An inverse correlation was found at the time of the engraftment, with a
red mber of CECs in patients who will develop aGVHD compared to aGVHD free subjects. Of
relevaqce, not the absolute numbers, but the relative changes (either incremental or decremental) of CECs
were significantly associated with aGVHD and engraftment. Moreover, CECs values were a marker of
response to aGVHD therapy because they returned to pre-transplantation levels in responding patients. In
a subsequent report, Almici et al. [140] confirmed these observations and described that CECs changes
after allogeneic HSCT are a dynamic phenomenon influenced by conditioning regimen, engraftment,
infections and immunosuppressive treatments. Nevertheless, enumeration of CECs is still not a

standardized procedure yet, since the CellSearch system (CED identified as CD146'CD106°CD45 cells) or
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polychromatic flow-cytometry (CEC defined as CD34°CD45CD146"cells) bring complimentary, but not

completely overlapping, results [141].

3.3. Plasma biomarkers
In addition to altered immune cells subsets count, the balance between pro- and anti-inflammatory
cytokines, chemokines, soluble cell receptors and proteins, miRNAs, EVs, and immune activated biomarkers
plays a key role in both the initiation of GVHD and its progression. Serum biomarkers assgglgted with
GVHD, reflecting underlying biological process of both aGVHD and c¢cGVHD, have shown only be
useful in predicting GVHD occurrence before the onset of clinical symptoms, but also\ mate its risk

and to predict patient’s outcomes (Table 1).

3.3.1. miRNAs
MicroRNAs (miRNAs) are small non-coding RNAs, mainly involved in the rgggl®qjon gF gene expression, thus
controlling crucial cellular processes, including cell proliferation, diffegeMwi#io apoptosis [142,143]. Easily
detectable in body fluids, their measurement represents a poten®gl norinvasive diagnostic and predictive

tools for many diseases [144], including GVHD upon HSCT | 1

In the context of HSCT, most studies on miRNAs focus n tMgir role in T-cell function and aGVHD onset,

while less data are available on miRNAs role as bio eryDf cGVHD.

The increased expression of miR181a, regulati turation and TCR signalling, was able to prevent

aGVHD onset in rodent models of HS 47,14%. Similarly, the expression of miR146a, a negative

regulator of inflammation prevalentl in Tregs, has been shown to have a protective role against

aGVHD. In agreement, low expr R146a was associated with an increased incidence of aGVHD
during the first 28 days pos and mice treated with a mimic of miR146a showed a reduced
aGVHD severity and a bg rognosis [150]. On the contrary, miR155, physiologically involved in B and T-
cell proliferation arg#in olling effector and regulatory T-cell function [151], was upregulated in T cells

from mice dey in D after allogeneic HSCT. Moreover, miR155 expression blockade ameliorated
nd

aGVHD seygyi rvival in mice [152].
The clin@/ance of miR181a and miR155 has been confirmed in patients receiving allogeneic HSCT.
e

Mi was increased and miR181a expression was reduced before aGVHD onset and their levels
direct® and inversely correlated with aGVHD severity, respectively [148,153].

Together these data suggest that miRNAs could act in concert to regulate inflammatory responses, thus
indicating that the investigation of miRNA clusters as aGVHD biomarkers could be more informative than
the study of a single miRNA.

In this context, the upregulation of miR20a and 15a and the downregulation of miR181a, miR146a, miR30b-
5p, and miR374-5p showed diagnostic utility for aGVHD, being differentially expressed already 14 days post-
HSCT in patients who later developed aGVHD [154].

Information Classification: General



Moreover, a global microRNA expression profiling on skin biopsies identified the miR34a-3p and miR503-5p
as related to cutaneous aGVHD. The expression of these two miRNAs, together with miR34a-5p appeared
to be elevated also in the sera of aGVHD patients [155].

Investigating a specific plasma miRNA signature on 196 patients underwent HSCT, Xiao and coworkers
identified a 4-miRNA-based diagnostic panel, composed by miR423, miR199a-3p, miR93 and miR377, which
was able to early predict the occurrence and severity of aGVHD [156]. This evidence was further confirmed
by the observation that increased levels in serum and urine of miR423, miR199, and miR93 at 14 after
HSCT could predict the occurrence of aGVHD [157,158].

Furthermore, circulating miR26b, miR374a, miR28-5p, miR489 and miR671-3p ¢ prove early

diagnosis of aGVHD [159], similarly to what was observed for miR194 and mi in Mdcohort of 24

lymphoma patients [160].
3.3.2. Extracellular vesicles

In recent years, the rapidly growing research area on EVs has de edthey have essential role in

inter-cellular communications, thus being involved in many ical and pathological juxtacrine

signalling processes (i.e. immune response modulation, inflammMjomM=ancer, cardiometabolic, neurologic
d

and infectious diseases) [161]. EVs are membrane enc anelles circulating in biological fluids, and

are secreted by virtually all cell types carrying biomolecules, including nucleic acids (DNA
[162,163], RNA [164,165] and miRNAs), protein lipids, and carbohydrates [40,170,171].
EVs extraction from biological fluids requi lativé8 non-invasive protocols, which makes them attractive

as biomarkers. Moreover, the biomaojgc ied by EVs could be representative of the secreting cells,

representing an attractive tool r diagnosis, together with molecules presented on the EVs

surface. Thus, the analysis o ular cargo is emerging as a new form of “liquid biopsy”, useful to

gain insights about dise ical features, biological characteristics, and therapy response, without being
invasive.
Wu et al. obs tNgt J¥s from endothelial origin were altered after HSCT before aGVHD onset [172],

while Lia NWhvesPeated the potential role of EVs as biomarkers of GVHD [173]. In this latter study, a
statisticly sigrfficant correlation between three EVs membrane antigens (CD146, CD31, CD140a) with the
riski?e oping aGVHD was retrospectively observed. Furthermore, all the three biomarkers showed a
signififant level change on EVs membrane before the onset of aGVHD [173]. Correlation of EVs membrane
antigen (CD146 and CD31) with aGVHD onset was also confirmed by preliminary results in a new
prospective study [174].

In the last years, exploratory study on miRNA profiles has been extended also on EVs. As a matter of fact,
EVs are also natural carriers of miRNAs and they support the release of such molecules to recipient cells,
protecting them from degradation of plasma ribonucleases. MiR155 is an example of miRNA which is

dysregulated and upregulated in aGVHD patients in both cell free- and EVs carried form. Furthermore, a
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study in vitro demonstrated that after TNF-a stimulation of human umbilical vein ECs, EVs are enriched in
miR155 [175]. Levels of miR155 were significantly higher in EVs compared to plasma level in aGVHD
patients as well as in mouse models. Moreover, inhibition of miR155 by loading antagomir-155 inside EVs
reduced differentiation toward Thl, Th9 and Th17 cells and skewed differentiation towards Th2 cells and
Tregs, which ameliorated clinical and pathological manifestations of aGVHD. In another preliminary study,
expression change of miR155, with miR100 and miR194b before aGVHD onset was also observed in serum
EVs [174]. Circulating miR423, miR199, and miR93 in serum derived EVs could be also used agfMiagnostic
and prognostic biomarkers for aGVHD [158].

Further studies are needed to better characterize and define EVs as reliable biomarkers§gr HD, and no

data are presently available in cGVHD context. Nevertheless, the aforementioned ngly suggest

the potential clinical applications of EVs in this setting.

3.3.3. Cytokines and chemokines O
Cytokines and chemokines are small proteins which are secreted ariogh cells to mediate immune
response and trafficking, to recruit immune cells to inflammati s an to promote T-cell differentiation
and expansion. These effects are mediated by their bindi ecific receptors on target cells which
modify transcription patterns, protein expression, an ° y behaviour [176,177]. Moving from the

evidence that a “cytokine storm” is a peculiar feat fRQGVHD, cytokines and their receptors have been

explored as potential target for studies on bio patients [19] (Table 1), among others, IL-2, IL-6,
IL-12, IL-15, IL-18, IL-33, IFN-y and TNF- ,179]. Soluble TNF-a is an inflammatory mediator of tissue
damage during aGVHD and its role i e enesis of aGVHD prompted the evaluation of TNF-blocking

agents for the treatment of ste raggpry aGVHD (SR-aGVHD) [180-182]. Moreover, an increase in the

concentration of serum T tumor necrosis factor receptor 1 (TNFR1) at day 7 post-HSCT were

associated with diseas y and survival in both adult and paediatric patients [183,184]. Nevertheless,

this association is 4t cii® enough to allow TNF-a to be used as an independent predictor for GVHD

development. fideed ncrease of TNF-a was also observed, in both human and murine models, before

major tr, I gfbted complications such as interstitial pneumonitis and veno-occlusive disease
[183,18

IL-2 cytokine primarily produced by CD4+ T cells after their activation, being implicated in T-cell
activatfon and proliferation. Monoclonal antibodies (mAbs) directed towards IL-2 receptor a-chain (IL-2Ra),
such as daclizumab or basiliximab, are currently used to inhibit activated alloreactive T cells in patients with
SR-aGVHD and Gl aGVHD [186,187]. Furthermore, soluble IL-2Ra levels were increased prior to clinical
onset of aGVHD in many studies and could be used to predict both aGVHD development and severity [188].
Nevertheless, sIL-2Ra levels, like TNF-a ones, rise also in the setting of other transplant-related
complications [189]. In addition, slL-2Ra levels can be altered by CNIs, commonly used for GVHD

prophylaxis [190].
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IL-33 is a member of the IL-1 superfamily of cytokines, thought to be released from damaged tissues as an
alarmin to induce Th2 responses and repair through ST2 receptor. Dysregulation of ST2/IL-33 signalling
pathway was originally described in the context of different inflammatory diseases[191]. Several preclinical
and clinical studies investigated the contribution of CCR5 and its ligands in the development of GVHD [192].
In preclinical models, CCR5+CD8+ T lymphocytes significantly contributed to liver GVYHD. Administration of
anti-CCR5 antibody dramatically reduced the infiltration of donor T cells into the liver, and consequently
reduced hepatic damage [193]. The Seattle group reported that lymphocyte infiltrated in the sjgg samples
of patients with aGVHD were predominantly CCR5+ T cells [194]. Genetic polymorphisms okin® and
chemokines correlated with GVHD risk and severity in patients [195]. Studies showed t etic deletion
of CCR5 in both human recipients and donors resulted in a decreased incide ’XD [196,197].
Recently, a phase 2 study showed the safety and efficacy of CCR5 antagonist@ for the prophylaxis

of GVHD in patients undergoing HSCT [198,199].
Several preclinical and clinical studies investigated the contribution @(CUO, and CXCL11 with its

ligands, in the development of aGVHD [192,200,201]. Soluble sBAIF), CXCL-9, CXCL-10, CXCL-11, ST2
and IL-33 have been frequently associated with the risk o in several studies [64,110,202-204]. In
addition to its correlation with aGVHD [205], ST2 poss oWl cGVHD predictive ability in combination

with CXCL9, matrix metalloproteinase 3 (MMP3), ax¥oNeopontin (OPN). Furthermore, this 4-biomarker

panel showed a significant correlation with cG osis and severity, together with NRM [203]. The

receptor for CXCL9, CXCL10 and CXCL1 R3, predominantly expressed on the surface of Thl cells.

Recent studies demonstrated the iny#lve f CXCR3 ligands in GVHD pathogenesis, revealing a central
n

role for chemokine-mediated r CXCR3+ T cells in this setting [204]. The hypothesis that CXCR3
ligands (in particular CXCL9 &ate eepers for tissue distribution of alloreactive T cells in cGVHD was
supported by high level ese chemokines in oral, ocular, and mucosal cGVHD [206,207]. Furthermore,
CXCR3 ligands cox@ ciated with progression, organ dysfunction and complications of cGVHD.
However, the jfiport of these chemokines in the diagnosis of cGVHD needs to be further evaluated.

Most stuffies sh an increase in pro-inflammatory cytokines in cGVHD cases, including TNF-a, IL-6, IL-
17, -1[@L-2Ra shed by activated T cells and IL-1Ra [103,206-208]. Conversely, only TGF-B, IL-15, IL-4
and were decreased at cGVHD onset [209,210]. Patients with lower serum levels of IL-15 at day 7 post-
HSCT Mad 3-fold higher risk of developing ¢cGVHD subsequently [209], and IL-15 levels were inversely
correlated with CD8+ T cells levels, cellular subtypes involved in the development of cGVHD. Severity of
established ¢cGVHD correlated with level of TNF-q, IL-6, and IL-1B [41]. Among all the ¢cGVHD biomarkers, a
decreased level of sIL-2R and sBAFF were associated to response to therapy [208,211],whereas increased

levels were associated with higher mortality [211].

Since infectious diseases, immune factors, immunosuppressive drugs and aGVHD can modify the levels of

the aforementioned biomarkers, their predictive value remains difficult to establish. Indeed, only CXCL9
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was confirmed as a robust cGVHD biomarker in a recent multicenter study [203]. Moreover, the levels of
some biomarkers (e.g. BAFF and CXCL9) could be modified also by corticosteroids [110,202]. Hence, many
efforts are needed to independently validate the role of these promising biomarker candidates in large
studies.
3.3.4. Proteomics

The development of high throughput technologies enabling the study of an entire spectrum of molecules
has provided new insights into the comprehension of the pathophysiological mechanism of a ase and
the identification of novel biomarkers useful in diagnosis and prognostic stratification. | contxt of
GVHD, both mass spectrometry (MS)-based and non-MS-based approaches have be\ to identify

candidate biomarkers [212].

Among the non-MS-based assays, antibody microarrays have been used to en WEVHD biomarkers in
peripheral blood. By investigating 120 proteins on plasma of HSCT pgd Pg¥zesny and coworkers
identified 8 potential biomarkers for aGVHD diagnosis. After otf%i#® v@idation by enzyme-linked

immunosorbent assay (ELISA), the authors defined a 4-protein coggposi® biomarker panel [IL-2Ra, TNFR1,
IL-8, and hepatocyte growth factor (HGF)] able to discrimigate Mgtie™s with and without aGVHD and to
predict their survival independently from GVHD severigg[21%, Subsequently, the same group identified

three organ-specific biomarkers, namely the skin- i arker elafin, the Gl GVHD-specific biomarker

REG3a and cytokeratin-18 fragments (KRT18 rrelated with intestinal and liver GVHD, with

prognostic significance [214-216]. In partj , RE®a, a marker secreted by Paneth cells associated with

Gl epithelial injury and repair, was vaj bredictive and prognostic biomarker of aGVHD and showed

predicted response to thera s, NRM and survival [217]. All above-mentioned biomarkers are
unfortunately not speg r liver GVHD, being produced also in the setting of other transplant-
related [214].

By combining dge, a multicenter, randomized, 4-arm phase 2 clinical trial (Clinical Trials

Identifier 2244¥4) was undertaken to investigate whether the above-mentioned 6 markers (IL-2Ra,

TNFR1, | , elafin and REG3a) could be able to define the prognosis and therapy response of aGVHD

survival [218].

Two ST2 isoforms having opposite roles have been described: a transmembrane form and a soluble
isoform, that acts as a decoy receptor sequestering IL-33. During aGVHD, an altered secretion of soluble
ST2 by intestinal cells was observed in experimental models [191]. Soluble ST2 measurement at the time of
GVHD diagnosis was validated as a biomarker for treatment-resistant aGVHD, and elevated circulating ST2

at day 7 or 14 post-HSCT could also be predictive of NRM following HSCT [219,220].The combined
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measurement at day 7 post-HSCT of TNFR1, IL-2Ra, REG3a and ST2 enabled the development of a
predictive algorithm (Mount Sinai Acute GVHD International Consortium or MAGIC), mainly based on ST2
and REG3a concentrations after one week of systemic glucocorticoid treatment, to early identify patients at
high risk for lethal GVHD and NRM in a multicenter cohort of 1287 patients [221]. In agreement, the
prognostic relevance of the measurement of REG3a and ST2 was recently confirmed in a cohort of 110
consecutive patients who underwent haploidentical HSCT. In this report, higher plasma levels of REG3a and
ST2 were associated with a higher incidence of grade II-IV aGVHD and NRM, but only 3Q#gay after
transplantation [222]. MAGIC algorithm demonstrated to be accurate when measured a tipleNsime-

points during the course of transplantation, implying that it could be a used as a resxmiomarker to
p

provide a dynamic tool that predicts outcomes more accurately than change in cling s [223].

In addition to the biomarker panels described above, other biomar coMypinations, including
ST2+REG3a+TNFR1 [224], ST2+TNFR1, TIM3+TNFR1+IL6 [225], ST2+TIM 2@ been investigated in
the plasma of HSCT patients to predict the aGVHD occurrence and seygr

Since different patient cohorts and different endpoints have Mgen c8gsidered to test each biomarker
combination, it is difficult to define the best one to identifgrob y indicator(s) of GVHD occurrence
and severity. In this regard, Etra and coworkers tested t bilNy of the different biomarker combination to

predict 1-year lethal GVHD on more than 500 pati ir results demonstrated that the measurement

of ST2 and REG3a serum levels had a higher pr racy [227].

In addition to circulating aGVHD biomarkgs ange of MS-based proteomic approaches have been

recently used on urine and saliva. ghrd, by using capillary electrophoresis and tandem mass

spectrometry, Wessinger and co tified in urine a 17-peptide panel, named aGVHD_MS17, able
to accurately and early det atients and to predict grade IlI-IV aGVHD [228]. In addition, the

same group defined a s 4-peptide biomarker for early diagnosis of cGVHD [229]. Similarly, Chiusolo

and coworkers trg gMyperformance liquid chromatography combined with electrospray-ionization

mass spectro d two proteins, S100A8 and S100A9, as possible aGVHD biomarkers [230].

4. Conclysions

In { years, advances in technology have permitted the discovery of numerous biomarkers for
diagn&is, prognosis and prediction of GVHD together with progress in understanding its pathophysiology.
Importantly, studies on biomarkers improved our understanding of GVHD pathogenesis and found new
pathways that could be targeted by antibodies or small molecules, finally contributing to the development
of new effective treatments for GVHD. For instance, given the important role of IL-6 in GVHD pathogenesis
[231], a trial assessing tocilizumab for the treatment of cGVHD therapy is ongoing (NCT02174263) [46]. Also

ibrutinib, a Bruton’s tyrosine kinase (BTK) inhibitors, which is critical for B-cell survival, proliferation, and
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migration [232], is an irreversible inhibitor of IL-2 inducible kinase [233] and interfere with many cytokine
cascades involved in GVHD development [3,44,45], has been recently introduced in SR-GVHD treatment
Although many specific and sensitive biomarkers for both aGVHD and cGVHD have been identified over the

past decades, much efforts are still needed to move from bench to daily clinical practice.

5. Expert opinion
Reliable and validated biomarkers in GVHD have many potential future applications. First, implgfgentation

of donor and patient selection for HSCT, thanks to genetic polymorphisms or microbio dificMions

studies that might identify patterns at high risk of GVHD development. Furthermore, tification of
specific changes in microbiome, cellular subtypes and/or panel of molecules specifj x«:ould greatly
help physicians in GYHD management and in differential diagnosis betwee
complications which sometimes can be challenging. Similarly, biomarker lowghn early recognition of
patients who are very likely to develop SR-GVHD could led to ea nt intensification in those
patients, and a treatment sparing in the others.

Weak points are the limited sample size of patient coforts e lack of large-scale validation.
Furthermore, more efforts should be done to minimize fo ing variables, such as different conditions,
other than GVHD, affecting the same biomarker. th@ important limit to their widespread use is the
complexity and the cost of the analyses neces ) sure biomarkers. Finally, to be employed in the

clinical setting, biomarkers should be dejasgable easy-to-collect samples with non-invasive methods,

however most of the reported studie e with that.

In the future, a special interes d ke’ placed on the role of microbiome in GVHD pathogenesis,

although its role is not so ea estaMsh due to the frequent controversial results. The concept that the

manipulation of Gl banisms (i.e. through different use of antibiotics, immunomodulators,

chemotherapy) coylff e ally influence the development of aGVHD, and likely cGVHD and other HSCT
complications eMisgfascinating. Other promising and growing sections are EVs, miRNAs and CECs,
which pla ucig role in cellular interactions. We are not completely aware of all the potential
informatpn th§t these markers carry, but more research in these fields will hopefully led to greater
kno in pathophysiology and eventually to the possibility of interfering with cellular crosstalk.
Givenghe complexity of mechanisms involved, it is likely that a panel of markers rather than a single one
will result meaningful. Furthermore, biomarkers for aGVHD will be available to clinicians in the next future,
as the research is more advanced in this setting. Hopefully, validated markers for cGVHD will follow, as the
interest and the number of published studies is growing over the time also in this field.

Among the illustrated biomarkers, the plasmatic panel proposed by MAGIC consortium is the most

advanced in clinical development. The first trial which include a panel of biomarkers (TNFR1, ST2, and
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REG3a) [224] to assign GVHD treatment has been conducted by the Bone Marrow Transplant Clinical Trials
Network (Clinical Trials Identifier NCT02806947), and the results should be available in the near future.

At present, the search of GVHD biomarkers is not part of clinical routine, and their application remains
restricted to clinical trials. Nevertheless, biomarkers studies play an important role in improving the
knowledge of the complex pathophysiology of aGVHD and cGVHD. Finally, a better understanding of the

mechanisms leading to GVHD has been crucial to the introduction on new treatments for SR-GVHD.
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BIOMARKER LEVELS | aGVHD | ¢GVHD | diagnostic | prognostic | Predicti | clinical trial
| SNPs [18-201 [19] [18-201

microbiota impaired | g5 gc) [83-85]

bacterial
| SCFAs (butvrate) reduced [88.911 [88.911
Cellular biomarkers

Tregs reduced [93.94] [93.95- [95-971 [93.95-97] [94]

CD4+CD45RA+CD31 | increased [1011 [1011 [1011
| CD4+/CD8+ increased | [98- [98-1001

Thiz increased [103.10 [T[103.104]

CD4+CD146+CCR5+ increased | [1061 [105] [1051 [1061

cTEH reduced [1071 [1071

CD56""" NK cells reduced | [109] [64.2101 | [64] [109.2

CD3+CD30+ T cells expressed | [1081 [108]
BAFE/B cells increased [110- [110-1121
CD19+CD21"°"% B increased [112,11 | [112,115,1 1 [118,11

CD27+ memory B reduced (114,11 | [114,116,1

iNKT reduced [130.13 31
iNKT/T cells reduced [131] 1311
CD4iNKT graft protective | [132] [132]
CECs reduced [139,14 [139,140] [139,14

Vs
| miR146a reduced [234] [1551
| miR155 increased [153] [1551
| miR181a reduced [148.234]
miR423, miR199a- increased [156,157,2 | [156,157,2
miR26b, miR374a, ,
: : incre [159]
miR489, miR28-5p,
EVs membrane incNsed | [173] [173]
antigens (CD146,
Cytokines and Chemokines
increased | [188] [1881
increased | [219.22 [219] [2201]
increased [203] [203] [203]
protective | [196,19 [196,197]
CXCl9 Increased [202.20 | [202.2031
CXCL10. CXCL11 increased [204] [2041
sBAFF increased [208] [208] [208]
IL-15 reduced [209] [209]
Proteomics
IL-2Ra, HGF, IL-8, increased | [213,21 [213] [218] [218] NCT0022487
REG3a, elafin, increased | [214,21 [214] [214,217,2 | [217,21 | NCT0022487
REG3a, ST2, TNFR1, | increased | [221,22 [221,222,2 | [221,22 | NCT0280694
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aGVHD_MS17 variable [228] [229] [228,229] [228]

Table 1. List of biomarkers involved in acute and chronic Graft-versus-host disease, according to their
diagnostic, prognostic or predictive value.

Abbreviations: aGVHD=acute graft-versus-host disease; cGVHD=chronic graft-versus-host disease;
miRNAs=microRNAs; EVs=extracellular vesicles; SNPs=single-nucleotide polymorphisms; SCFAs=shgrt-chain

fatty acids; Tregs=regulatory T cells; Th17=T helper 17 cells; cTFH=follicular helper T cells;

activating factor; iNKT=invariant natural killer T cells; CECs=circulating endothelial cells; | terleukin-
2 receptor alpha-chain; sST2=soluble suppressor of tumorigenicity 2; CXCL9=C-X-C N kine ligand
9; OPN=osteopontin; MMP3=matrix metalloproteinase 3; IL-15=interleukin-15; %tocyte growth
factor; IL-8=interleukin-8; TNFR1=tumor necrosis factor receptor 1; REG@n ating islet-derived

protein 3a; KRT18=cytokeratine-18 fragments
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Figure 1 legend

The pathophyffolog cute GVHD (aGVHD) has been historically divided into three distinct phases: (1)
the first P es conditioning-induced tissue damage and subsequent release of inflammatory
cytgkinewncllling TNF-a, IL-6, IL-1a, and alarmins such as IL-33. In addition, loss of diversity in intestinal
micr eads to loss of homeostasis with host immune system; (2) in the second phase, both host and
donor Werived antigen presenting cells (APCs) activate and expand alloreactive T cells. The inflammatory
response is partly mediated by innate immune effectors (neutrophils, phagocytes, NK cells) stimulated by
translocation through the damaged intestinal mucosa of lipopolysaccharide (LPS), damage associated
molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs); (3) in the third phase,
pathogenic effector cells and inflammatory mediators lead to the disease. Activated T cells migrate to
target organs where they cause tissue damage and produce proinflammatory cytokines attracting other

cellular effectors. Of note, damage of Paneth cells induces release of REG3a into bloodstream.
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