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Genetic and epigenetic intratumor heterogeneity
impacts prognosis of lung adenocarcinoma
Xing Hua1,9, Wei Zhao 2,9, Angela C. Pesatori 3,4, Dario Consonni4, Neil E. Caporaso5, Tongwu Zhang 2,

Bin Zhu1, Mingyi Wang 6, Kristine Jones6, Belynda Hicks 6, Lei Song6, Joshua Sampson1,

David C. Wedge 7,8, Jianxin Shi1 & Maria Teresa Landi 2✉

Intratumor heterogeneity (ITH) of genomic alterations may impact prognosis of lung ade-

nocarcinoma (LUAD). Here, we investigate ITH of somatic copy number alterations (SCNAs),

DNA methylation, and point mutations in lung cancer driver genes in 292 tumor samples

from 84 patients with LUAD. LUAD samples show substantial SCNA and methylation ITH,

and clonal architecture analyses present congruent evolutionary trajectories for SCNAs and

DNA methylation aberrations. Methylation ITH mapping to gene promoter areas or tumor

suppressor genes is low. Moreover, ITH composed of genetic and epigenetic mechanisms

altering the same cancer driver genes is shown in several tumors. To quantify ITH for valid

statistical association analyses, we develope an average pairwise ITH index (APITH), which

does not depend on the number of samples per tumor. Both APITH indexes for SCNAs and

methylation aberrations show significant associations with poor prognosis. This study further

establishes the important clinical implications of genetic and epigenetic ITH in LUAD.

https://doi.org/10.1038/s41467-020-16295-5 OPEN

1 Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA. 2 Integrative Epidemiology
Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA. 3 Department of Clinical Sciences and
Community Health, University of Milan, Milan, Italy. 4 Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Occupational Health Unit, Milan, Italy.
5 Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda,
MD, USA. 6 Cancer Genome Research Laboratory, Leidos Biomedical Research Inc., Bethesda, MD, USA. 7 Big Data Institute, Old Road Campus, Oxford, UK.
8Oxford NIHR Biomedical Research Centre, Oxford, UK. 9These authors contributed equally: Xing Hua, Wei Zhao. ✉email: landim@mail.nih.gov

NATURE COMMUNICATIONS |         (2020) 11:2459 | https://doi.org/10.1038/s41467-020-16295-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16295-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16295-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16295-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16295-5&domain=pdf
http://orcid.org/0000-0001-5103-3871
http://orcid.org/0000-0001-5103-3871
http://orcid.org/0000-0001-5103-3871
http://orcid.org/0000-0001-5103-3871
http://orcid.org/0000-0001-5103-3871
http://orcid.org/0000-0002-0261-3252
http://orcid.org/0000-0002-0261-3252
http://orcid.org/0000-0002-0261-3252
http://orcid.org/0000-0002-0261-3252
http://orcid.org/0000-0002-0261-3252
http://orcid.org/0000-0003-2124-2706
http://orcid.org/0000-0003-2124-2706
http://orcid.org/0000-0003-2124-2706
http://orcid.org/0000-0003-2124-2706
http://orcid.org/0000-0003-2124-2706
http://orcid.org/0000-0001-9419-4384
http://orcid.org/0000-0001-9419-4384
http://orcid.org/0000-0001-9419-4384
http://orcid.org/0000-0001-9419-4384
http://orcid.org/0000-0001-9419-4384
http://orcid.org/0000-0001-8014-4888
http://orcid.org/0000-0001-8014-4888
http://orcid.org/0000-0001-8014-4888
http://orcid.org/0000-0001-8014-4888
http://orcid.org/0000-0001-8014-4888
http://orcid.org/0000-0002-7572-3196
http://orcid.org/0000-0002-7572-3196
http://orcid.org/0000-0002-7572-3196
http://orcid.org/0000-0002-7572-3196
http://orcid.org/0000-0002-7572-3196
http://orcid.org/0000-0003-4507-329X
http://orcid.org/0000-0003-4507-329X
http://orcid.org/0000-0003-4507-329X
http://orcid.org/0000-0003-4507-329X
http://orcid.org/0000-0003-4507-329X
mailto:landim@mail.nih.gov
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Lung cancer is the leading cause of cancer mortality, causing
more than one million deaths worldwide annually1. Lung
adenocarcinoma (LUAD) is the most common histologic

subtype and accounts for about 40% of lung cancer incidence.
While hundreds of LUAD tumors have been profiled extensively
based on a single biopsy per patient2,3, fewer subjects have been
investigated for diversity within the tumor through multi-
sampling. A few studies have analyzed the extent of intratumor
heterogeneity (ITH) of somatic nucleotide variants (SNVs) and/
or somatic copy number aberrations (SCNAs)4–6, and others of
DNA methylation7,8 in LUAD. Some of these studies found a
positive association between SNV ITH and risk of relapse4 or
SCNA ITH and cancer free survival (combining risk of mortality
and of recurrences)6. However, ITH in these studies was esti-
mated without adjusting for the number of samples examined for
each tumor and the methylation analysis did not take into
account sample purity.

Using multiple samples per tumor it is possible to reconstruct
the cancer evolutionary history. In prostate and brain tumors,
congruent evolutionary trajectories of genetic and epigenetic
mechanisms have been reported9,10, but to what extent epigenetic
changes occur alongside phylogenetic changes in LUAD remains
largely unknown.

Here, we perform a comprehensive analysis of ITH of somatic
mutations in cancer driver genes, copy number aberrations and
DNA methylation in 292 tumor samples from 84 patients with
LUAD. We also investigated genetic/epigenetic ITH affecting
cancer driver pathways. Moreover, we order genetic and epige-
netic events along the LUAD evolutionary trajectories, and test
the hypothesis that co-occurrence of genetic and epigenetic
mechanisms characterizes the evolution of LUADs. Finally, we
assess the clonality of targetable cancer driver genes and evaluate
the association of ITH with clinical outcomes (survival and,
separately, risk of metastasis) correcting for sample purity and
using an unbiased statistical model which takes into account the
number of samples examined from each tumor.

Results
Patient characteristics. To determine clonal evolutionary patterns
in the genome and epigenome, we performed multi-region sam-
pling from 84 patients with LUAD, of whom 76 (90%) reported
past or current smoking. All the samples were treatment-naïve
and surgically excised. The demographic characteristics are sum-
marized in Table 1 and Supplementary Data 1. The clinical out-
come analyses were based on a median follow-up time of
40.0 months. In total, 292 tumor tissue samples and 157 non-
tumor samples (including 74 normal tissue samples, 81 blood
samples and 2 buccal cell sample) were collected from 84 subjects.
ITH was estimated for tumors that included between 2 and 11
tumor samples for each assay type. For reference, we used blood or
buccal cells for deep target sequencing and, to factor out high
tissue specificity, normal tissue samples for methylation. For SNP
arrays we used only tumor samples. Samples used for each assay
type are shown in Fig. 1 and Supplementary Fig. 1.

Clonal structure of SNVs and SCNAs. Across all patients, deep
target sequencing revealed SNVs in 35 out of the 37 cancer driver
genes assayed (Supplementary Data 2). On average, 3.4 genes had
nonsynonymous SNVs in each patient. The five most frequently
mutated genes were TP53 (50%), KRAS (46.4%), KMT2C (39.3%),
STK11 (28.6%) and KEAP1 (25%), consistent with previous stu-
dies for LUAD2,11,12 (Fig. 2, Supplementary Data 2). For each
patient, SNVs were classified as public if all tumor samples from
the same tumor carried the SNVs and private otherwise. 65.3%

(126 of 193) of SNVs were public, a higher proportion than what
was observed in the TRACERx study6 (public SNVs= 50.5%), if
we apply the same definition of public vs. private events. In total,
24.3% (47/193; 30 public, 17 private) of SNVs were predicted to
strongly alter protein functions (e.g., frameshift or gain of stop
codon mutations). The public SNVs showed slightly higher dN/dS
ratio than the private SNVs (public SNVs: 3.40 (95% CI:
1.80–6.44), private SNVs: 2.55 (95% CI: 1.29–5.05)). Overall, the
functional impact and selective pressure showed no significant
difference between public and private SNVs.

Next, we performed unsupervised clustering based on the
global SCNA profiles (see Methods section). Intratumoral
heterogeneity was lower than intertumoral heterogeneity, with
226/268 (84.3%) samples from the same tumors clustered
together and another 7/268 (2.6%) samples from the same
tumors in close proximity to each other (Supplementary Fig. 2).

In order to quantify levels of intratumoral heterogeneity, we
developed an unbiased metric, the average pairwise ITH index
(APITH, see Methods section) and applied it to the SCNA
profiles of all patients (Fig. 3a). A major advantage of APITH is
that its value is not biased by the number of multi-region samples
per tumor while a previously used method6 is strongly affected
(Fig. 3b). APITH ranged from 0 to 0.68 with a mean= 0.184,
median= 0.157, and standard deviation= 0.153 (Fig. 3c), sug-
gesting ~18.4% of the genome had different copy number status
on average for any pair of tumor samples from the same patient.
Of note, the largest APITH values (>0.5) were from patients with
only two tumor samples, likely because of large variance in the
APITH estimate.

Table 1 Distribution of demographic and clinical variables of
84 patients with lung adenocarcinoma.

Age at first diagnosis (mean, range) 66.3 (49–80)
Sex

Male 68
Female 16

Smoking status
Never 7
Former 34
Current 42

Cigarettes per day (mean ± s.d.) 19.1 ± 11.9
≤10 21
>10, ≤20 38
>20, ≤30 13
>30 9

Cigarette smoking duration (mean ± s.d.) 42.8+ 9.8
≤30 years 7
>30, ≤40 24
>40, ≤50 29
>50 years 14

Tumor stage
IA 19
IB 18
IIA 13
IIB 8
IIIA 21
IIIB 3
IV 2

Chemotherapy
Yes 0
No 84

Distant metastasis 44
Deceased 50
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Previous TCGA studies2,13 have reported recurrent SCNA
regions for LUAD and identified in these regions 32 candidate
driver genes, including 25 amplified and 7 deleted genes. In our
samples, SCNA ITH in the recurrently altered regions was similar
to SCNA ITH across the whole genome (Supplementary Fig. 3).
SCNAs of candidate driver genes were observed in 11.3–72.5%
tumors, comparable to the TCGA study (Supplementary Data 3).
SMARCA4 deletion and MCL1 amplification were the most
frequent SCNA events (72.5% and 68.75%, respectively). KRAS
and EGFR amplification were also observed in 38.75% and
41.25% of tumors, respectively, of which 41.9% and 33.3% were
public.

We do not report APITH of SNVs since we conducted target
sequencing of 37 cancer driver genes only, with resulting low
number of mutations identified.

Intratumoral heterogeneity of DNA methylation. We first
performed unsupervised hierarchical clustering based on methy-
lation profiles using the 5000 most variable CpG sites across the
genome (Fig. 4a) and, separately, limited our analysis to CpGs in
promoter regions (Supplementary Fig. 4). Both analyses con-
firmed that normal tissue samples from almost all subjects (59/
61) clustered together. Similarly, 183/205 (89.3%) samples from
the same tumors clustered together, showing higher intertumoral
heterogeneity than intratumoral heterogeneity.

Previous studies have identified high levels of methylation in
promoter regions of some genes, also referred to as the CpG
island methylator phenotype (CIMP) in multiple cancer types,
including lung cancer2,14,15. 16/68 (23.5%) patients had sig-
nificantly altered CpG island methylator phenotype (CIMP-H)
and 47/68 (69.1%) had a normal-like pattern (CIMP-L). In five
patients, both CIMP-H and CIMP-L patterns were observed in
the same tumor.

We next examined the distribution of DNA methylation ITH
based on either the probes across the whole genome or those
mapping to specific genomic regions (Fig. 4b). The CpG probes
mapping to CpG island regions had a significantly lower APITH
compared to those mapping to other regions (p= 1.09 × 10−10),
as previously observed in aggressive prostate cancer10. Moreover,
the CpG probes mapping to gene promoter regions (TSS1500,
TSS200, 5′ UTR and first exon) had lower APITH compared to
those mapping to gene bodies, 3′ UTR regions and intergenic
regions (t-test p= 1.626 × 10−8).

Restricting the analysis to CpG probes mapping to 250
oncogenes and 300 tumor suppressor genes predicted by TUSON
Explorer16 revealed that methylation ITH mapping to tumor

suppressor genes was significantly lower than that of oncogenes
(t-test p= 1.68 × 10−17) and that of other genes (t-test p= 1.50 ×
10−16) (Fig. 4c). Inactivation of tumor-suppressor genes by
hypermethylation at promoter regions has been observed in
multiple cancer types including lung cancer17–19. Lower DNA
methylation ITH in these regions suggests greater selective
pressure which is consistent with their high putative impacts in
oncogenic transformation.

ITH of genomic alteration types in cancer driver pathways. We
analyzed genetic and epigenetic aberrations of 13 cancer driver
genes in the RTK/RAS/RAF pathway that are frequently mutated
in LUAD2 (Fig. 5). For SCNAs, we only included amplification of
oncogenes and deletion of tumor suppressor genes. For DNA
methylation, we determined abnormality based on probes located
in CpG islands at promoter regions of the target genes.

Across the 13 genes, 77/84 (91.7%) tumors harbored genetic or
epigenetic alterations in this pathway; ITH was observed in 69
(89.6%) tumors. SNVs, SCNAs, and methylation of the driver
genes altered 7.28%, 17.5%, and 4.19% of the tumors, respectively.
Different types of genetic or epigenetic alterations affected
different samples in the same tumor. For example, in tumor
IGC-11-1130, four samples were tested and all had alterations in
the KRAS pathway. Among them, two samples had amplification
in ROS1 and the other two samples had aberrant DNA
methylation in the promoter regions of ALK (Fig. 5).

In the cell cycle pathway, genetic or epigenetic changes in RB1,
CDKN2A, or SWI/SNF components were observed in 57/84
(67.9%) tumors, with ITH in 33 (57.9%) tumors.

Evolutionary trajectories of genetic and epigenetic events. To
reconstruct the evolutionary trajectories, we inferred clonal rela-
tionships for tumors that were assayed for both SCNA and DNA
methylation in multiple regions. For each pair of tumor samples
per tumor, we first calculated the Euclidean distance separately
for SCNA profiles and the DNA methylation levels of the 5000
most variable CpG probes. We found that the pairwise SCNA
distances were positively correlated with DNA methylation dis-
tances (Fig. 6a, Spearman’s correlation coefficient’s= 0.586, p <
1 × 10−16). To exclude the possibility that the DNA methylation
changed purely as a consequence of the changed ratio between
alleles, we carried out a sensitivity analysis by testing the corre-
lation between SCNA and methylation distances only in regions
with the same copy number status (gain/loss/neutral) for all
samples from the same tumor, defined as SCNA homogeneous
regions, and also in copy number neutral regions. Both analyses
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Fig. 1 Summary of subjects and tumor samples. Summary of tumor samples that were analyzed on different platforms: ultra-deep targeted sequencing of
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showed consistent results and supported the congruence between
SCNAs and methylation (Supplementary Fig. 5, panels A–D for
14 tumors with at least four samples each assayed for methyla-
tion, Spearman’s correlation coefficient’s= 0.638 and 0.573 for
SCNA homogenous and copy-number neutral regions, respec-
tively, p < 1 × 10−16). We then examined the topology of

evolutionary trees inferred from SCNAs and DNA methylation
and observed high similarity (Fig. 6b for six tumors with at least
five samples each; Supplementary Fig. 5E for the same analysis
based on CpG probes across the whole genome, CpG probes
mapping to SCNA homogenous regions, and CpG probes map-
ping to copy number neutral regions; and Supplementary Fig. 6
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for eight tumors with at least four samples each). These results
support the co-occurrence of the two mechanisms in shaping the
cancer genome.

Of note, when we overlaid the SNVs in target genes on the
SCNA-derived and methylation-derived trees, we observed that
some genes were altered by different mechanisms in the same
trees. For example, tumor IGC-10-1179 had STK11 mutated in
the trunk and deleted in a branch (Fig. 6c).

Associations between ITH and clinical outcomes. We tested the
association of SCNA and DNA methylation APITH with clinical
data and observed no significant correlations with age, tumor
stage, or grade (Supplementary Data 4). Smokers had higher
APITH of SCNAs (t-test p= 0.035, nominally significant) but
similar APITH of methylation compared with non-smokers.
Other smoking behaviors (e.g., smoking intensity and duration)
were not associated with APITH of SCNA or DNA methylation.
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Next, we examined the associations between APITH and
survival or risk of distant metastasis. For each analysis, we
performed a Cox proportional-hazards model weighted or
unweighted by the variance of the estimated APITH. For
significant associations, we found that weighted analysis
had smaller p-values than unweighted analysis, as expected.
Thus, we report below results based on weighted analyses
(summary of weighted and unweighted results is in Supplemen-
tary Datas 5 and 6).

Similar to the TRACERx study6, we found that increased
SCNA APITH was associated with poor overall survival with p=
0.05 using all patients and p= 0.0044 (HR= 1.77, 95% CI=
1.2–2.6) when restricting the analysis to patients with ≥ 3 tumor
samples per tumor (Supplementary Data 5 and Fig. 7a). SCNA
APITH was not significantly associated with risk of developing
distant metastases (Supplementary Data 5). Of note, for both
overall survival and distant metastasis, APITH based on SCNAs
in the 37 cancer driver genes provided lower prognostic value
than the APITH of SCNAs in the whole genome.

We then tested the association of DNA methylation-based
APITH with overall survival and the risk of distant metastases.
We found that APITH based on the 5000 most variable CpG
probes was associated with overall survival (HR= 1.27, 95% CI=
1.05–1.55, p= 0.016, Supplementary Data 6 and Fig. 7b) but not
significantly associated with risk of metastasis (p= 0.14). APITH
based on CpG probes mapping to island regions had the strongest
association with overall survival (HR= 1.31, 95% CI= 1.10–1.57,
p= 0.0028, Fig. 7c) and were also found to be associated with risk
of distant metastasis (HR= 1.35, 95% CI= 1.07–1.72, p= 0.012,
Fig. 7d). The results for APITH defined based on other genomic
regions are in Supplementary Data 6. The CIMP phenotype did
not show substantial ITH, i.e., there were only a few tumors with
CIMP-H and CIMP-L across samples from the same tumor.
Therefore, we could not analyze the association of APITH of
CIMP with clinical outcomes.

Discussion
In this study, we investigated genetic and epigenetic intra-tumor
heterogeneity based on multi-region sampling per tumor across
84 patients with LUAD. On average, 35% of SNVs in targeted
genes were private and ~18.4% of the genome had SCNA ITH for
any pair of samples from the same tumor. Methylation in CpG
islands or gene promoter regions, particularly of tumor sup-
pressor genes, had low ITH. Different types of somatic alterations
across samples from the same tumors affected cancer driver genes
in the RTK/RAS/RAF or cell cycle pathways. SCNAs and DNA
methylation changes showed congruent evolutionary trajectories.
Notably, we developed a statistical approach to correctly estimate
ITH for any pair of tumor samples from the same patient and
showed that ITH of SCNAs and DNA methylation was associated
with poor prognosis.

The findings of substantial ITH across different genomic
types and of similar tumor evolutionary trajectories for genetic
and epigenetic changes are important to understand the biology

and natural history of LUAD. Moreover, they are crucial to
inform clinical management and therapeutic strategies. Using
multi-region sampling, we identified private events in cancer
driver genes, which may not be detected by a single biopsy or by
limiting the analyses to point mutations. For example, com-
bining genetic and epigenetic changes, 95.2% of tumors had
activating events in the RTK pathway, of which ~36% were
private.

ITH of SCNA and ITH of DNA methylation (overall and in
CpG islands) were similarly associated with shorter survival in
our study, and ITH of methylation in CpG islands was also
associated with higher risk of developing metastasis. Adding both
measures in the same model did not significantly improve the
prediction value (data not shown), likely because the two mea-
sures were highly correlated to each other.

In previous studies, ITH of SCNAs was quantified as the
fraction of SCNAs not shared by all samples in the tumor6.
Clearly, this ITH index positively depends on the number of
tumor samples per tumor (Fig. 3b) and thus hinders valid cross-
patient comparisons or testing associations with clinical out-
comes. Moreover, unobserved factors that are associated with the
number of tumor samples per patient, e.g., tumor size or different
study sites, may confound the association analysis with clinical
outcomes. We propose APITH as an index for ITH, similar in
spirit to that previously proposed for quantifying ITH from the
observation of SNVs20. This index, defined by pairwise distances
of genomic profiles, is not biased by the number of samples per
tumor and thus allows association testing for any genomic pro-
filing platforms. Crucially, the variance of APITH estimates
depend on the number of samples per tumor and thus a naïve
statistical association test between APITH and any outcome may
have low statistical power. We explicitly addressed this issue by
quantifying the variance of APITH and proposing a procedure for
its numerical calculation. This variance was used to weight sub-
jects in the regression analyses to achieve the best statistical
power, as demonstrated in theoretical analyses (Supplementary
Methods). As a confirmation, our empirical results showed that
the weighted analyses produced more significant results than the
unweighted analyses for the association between APITH and
overall survival.

A comparison between the previous TRACERx study6 and this
study using APITH to estimate the ITH of SCNAs is reported in
the Supplementary Notes.

In conclusion, our results delineate the genetic and epigenetic
ITH in LUAD and provide a rigorous statistical approach to
estimate ITH for comparisons across individuals and for asso-
ciations with clinical outcomes. DNA methylation and genomic
changes followed similar evolutionary trajectories and strongly
impacted cancer driver genes and pathways in a complex manner.
These findings can inform the clinical management of LUADs
suggesting that taking multiple biopsies and analyzing multiple
genomic types may be needed to capture the landscape of tar-
getable events. Future larger studies are warranted to identify the
combination of genomic types and genomic regions to best pre-
dict clinical outcomes.

Fig. 3 Intratumor heterogeneity of somatic copy number alterations (SCNAs). a Left panel: SCNA landscape of 80 subjects with multi-region sampling.
Right panel: fractions of genomes disrupted by a specific type of SCNA. Colors represent different SCNA event types: blue indicates deletion, yellow
indicates loss of heterozygosity, red indicates amplification, and white indicates copy number neutral. b APITH score (left) and naïve (right) calculated
based on the tumor samples of subject IGC-11-1044 with seven tumor samples. For a given set of tumor samples, APITH was calculated as the average
pairwise distance between any pair of tumor samples; naïve ITH index was calculated as the fraction of genome disrupted by private SCNAs that were not
shared by all tumor samples. For a given number (K= 2, …, 7) of tumor samples, we numerated all combinations of K tumor samples to derive the
distribution of ITH index. The naïve ITH index positively depends on the number of tumor samples while APITH does not. The center line in the box plots
indicates median APITH or naïve ITH index. The box length indicates the interquartile range (IQR). The whiskers extend to the largest and smallest APITH
or naïve ITH at most 1.5*IQR. c Distribution of pairwise average ITH of SCNAs for 80 subjects with average APITH score 0.184.
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Fig. 4 Intratumoral heterogeneity of DNA methylation profiles. a Unsupervised hierarchical clustering of 5000 most variable probes in CpG islands of
the genome in 68 subjects. Different tumors are indicated by different colors in the column sidebar, with normal samples colored in gray. The numbers in
parenthesis are the number of normal tissue samples for the ‘normal’ group, or the number of tumor samples in each patient. The beta values represent
estimates of methylation levels, with 0 being unmethylated and 1 fully methylated. b Distribution of ITH of DNA methylation in different genomic contexts.
TSS 1500: 200–1500 bases upstream of the transcription start sites (TSS), TSS 200: 0–200 bases upstream of the TSS. 5′UTR: Within the 5′ untranslated
region, between the TSS and the ATG start site. Gene body: Between the ATG and stop codon. 3′UTR: From the stop codon to poly A tail. Island: CpG
island. Shore: 0–2 kb from island. Shelf: 2–4 kb from island. North: upstream (5′) of island. South: downstream (3′) of island. c ITH of DNA methylation in
oncogenes (n= 176), tumor suppressor genes (n= 223) and other genes (n= 12,837). The p-values are based on unpaired two-sided t-test of the two
groups indicated by arrows. The center line in the box plots indicates median APITH. The box length indicates the interquartile range (IQR). The whiskers
extend to the largest and smallest APITH at most 1.5*IQR.
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Methods
Patients and multi-region tumor samples. The current work includes 84 patients
with LUAD from the EAGLE study, a population-based case-control study con-
ducted in Italy between 2002 and 2005 (refs. 12,21,22). Samples were snap-frozen in
liquid nitrogen within 20 min of surgical resection and the precise site of tissue
sampling was recorded. All tumor samples were histologically confirmed as pri-
mary LUAD (not mixed types or undifferentiated cases) with at least 50% tumor
nuclei and <20% necrosis. Normal tissue samples were taken at > 3 cm from the
tumor tissue and had to have no tumor nuclei at histological examination. Based
on these characteristics and DNA quality, we were able to analyze between 2 and
11 samples from each tumor, for an overall 292 tumor samples and 157 non-tumor
samples (including 74 normal tissue samples, 81 blood samples and 2 buccal cell
samples). Detailed information on tumor characteristics, recurrence, treatment,
and follow-up data were recovered from patients’ medical records and follow-up
visits and hospital admissions were identified by linkage with the region-wide
Regional Health Authority database (Supplementary Data 1). Recurrence history
was ascertained through December 31, 2010. The study protocol was approved
by the Institutional Review Board of the US National Cancer Institute and the
involved institutions in Italy, including A.O. Ospedale Niguarda Cà Granda—
Milano, A.O. Spedali Civili—Brescia, Istituto Clinico Humanitas—Rozzano
(Milano), Ospedale di Circolo e Fondazione Macchi—Varese, Fondazione IRCCS
Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena—Milano, Istituto Sci-
entifico Universitario Ospedale San Raffaele—Milano, A.O. Ospedale Luigi Sacco—
Milano, A.O. San Paolo—Milano, A.O. Ospedale San Carlo Borromeo—Milano,
IRCCS Policlinico San Matteo—Pavia, A.O. San Gerardo—Monza, A.O. Ospedale
Fatebenefratelli e Oftalmico—Milano, and Ospedale San Giuseppe—Milano.
Informed consent was obtained for all subjects prior to study participation.

Genomic and epigenomic profiling of tumor samples. Somatic copy number
alterations (SCNAs) in tumors were profiled using 705,667 probes from the Illu-
mina HumanOmniExpress SNP arrays in 268 tumor samples from 80 subjects.
SCNA segmentation was performed using ASCAT23 based only on B allele fre-
quencies to avoid hypersegmentation; copy number status of each segment was
determined based on log R ratio. Bisulfite treatment and Illumina Infinium
HumanMethylation450 BeadChip assays were performed to derive the DNA
methylation levels in 205 tumor samples and 74 normal tissue samples from
68 subjects; in the absence of paired normal tissue samples for seven tumors,
methylation levels were imputed based on the methylation levels of the overall
normal samples. For DNA methylation, we analyzed 338,730 CpG probes after
excluding probes annotated with genetic variants, in repetitive genomic regions or
on the X-chromosome. Deep target sequencing was performed to identify SNVs for
37 established lung cancer driver genes2,11,12 with an average sequencing depth of
500X in 180 tumor samples and 55 blood samples and 1 buccal sample from
56 subjects. Sequence data were processed using the standard Ion Torrent Suite
Software (Thermo Fisher Scientific) version 5.0.7 and somatic mutations were
detected using Torrent variant caller (TVC) version 5.0.9. More details can be

found in Supplementary Methods. Samples used for each assay are listed in Fig. 1
and Supplementary Fig. 1.

Bioinformatic analyses of DNA methylation data. Bisulfite treatment and Illu-
mina Infinium HumanMethylation450 BeadChip assays were performed to derive
the DNA methylation levels. Raw methylated and unmethylated intensities were
background-corrected, and dye-bias-equalized, to correct for technical variation in
signal between arrays. For background correction, we applied a normal–exponential
convolution, using the intensity of the Infinium I probes in the channel opposite
their design to measure non-specific signal. For each CpG probe, the DNA
methylation level was summarized as the fraction of signal intensity obtained from
the methylated beads over the total signal intensity. After excluding CpG probes
annotated with genetic variants, in repetitive genomic regions or on the X-chro-
mosome, 338,730 CpG probes remained for analysis. Each CpG probe was anno-
tated as in CpG Island (denoted as CGI), nonCGI (including shores and shelves) or
open-sea. Each CpG probe was also annotated as in promoter (TSS200, TSS1500,
and first exon), body, 3′UTR in a specific gene or annotated as intergenic.
Methylation ITH of specific genomic regions was computed using the average pair-
wise distance of the top 10% variably expressed probes mapping to that region
scaled by the number of probes. To identify potential driver DNA methylation
events, we analyzed CpG island regions of cancer driver genes and compared the
beta values of tumor samples and corresponding normal samples. We used 0.3 as
the cutoff value to call differences in beta values7.

Bioinformatic analyses of deep target sequencing data. Deep target sequencing
was performed to identify SNVs for 37 established lung cancer driver genes with an
average sequencing depth of 500×. The genes were targeted with an Ion Ampliseq
panel, and enriched libraries were sequenced using P1 chips on the Ion Proton
sequencer. All laboratory analyses were performed at the Cancer Genomics
Research Laboratory (CGR) of the Division of Cancer Epidemiology and Genetics,
NCI. Sequence data were processed using standard Ion Torrent Suite Software
(Thermo Fisher Scientific) version 5.0.7. The data processing pipeline includes
signal processing, base calling, quality score assignment, adapter trimming, read
alignment to hg19, coverage analysis and somatic variant calling. We used TVC
version 5.0.9 to detect somatic mutations. A somatic mutation was detected if the
variant allele count >3, coverage >2 in both tumor and normal samples and variant
allele fraction ≥ 0.1. The dN/dS ratio was estimated using R package dNdScv24.

Bioinformatic analyses of SCNA data. We initially performed SCNA analysis
using ASCAT23 with default parameters, which uses both LRR (log R ratio) and B-
allele frequency (BAF). Extensive SCNAs and very complex subclonality patterns
made segmentation difficult. Thus, we modified the ASCAT to rely only on BAFs
for segmentation. Segments with BAF values different from 0.5 were identified as
SCNA regions. We compared LRR values between SCNA regions and segments
with BAFs= 0.5 using the Student’s t-test. If the SCNA region LRRs were
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Fig. 5 Intratumor heterogeneity of genomic and epigenomic alterations of 13 cancer driver genes in RTK/RAS/RAF pathway. Shown are public and
private SNVs, SCNAs, and DNA methylation alterations in 84 subjects. SNVs, SCNAs, and DNA methylation alterations are indicated by yellow/orange,
red, and blue, respectively. Clonal and subclonal events are indicated by light and dark shades, respectively.
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significantly higher or lower at significance level of 0.05 after adjusting for multiple
comparisons, the segments were identified as amplified or deleted, respectively.
Otherwise they were identified as LOH. In addition, amplifications with at least
four copy numbers in oncogenes and deletions with zero copy number in tumor
suppressor genes were identified as potential driver events.

Statistical analyses. Regional genetic and epigenetic evolutionary trees for each
patient were built using fastme.bal in an R package ape that uses the minimum
evolution algorithm based on a distance matrix of SCNA or methylation profiles25.
The consensus tree was built using a revised distance matrix combining both
SCNA and DNA methylation profiles with methods described briefly below. Let d1ij
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Fig. 6 Reconstruction of evolutionary trajectories from SCNA and DNA methylation profiles. a Pairwise distance of tumor samples from the same tumor
based on DNA methylation and SCNA profiles. Each dot represents a pair of tumor samples from the same subject. Significant Spearman’s correlation
coefficient is shown (n= 212 tumor sample pairs). b Phylogenetic analysis of subject IGC-11-1044 based on DNA methylation and SCNA profiles, and the
consensus phylogenetic tree built based on the distance incorporating both SCNA and DNA methylation profiles. Blue lines represent alterations shared by
all tumor samples from the same subject. Yellow lines represent alterations shared by two or more tumor samples. Red lines represent alterations specific
to one tumor sample. Green lines represent alterations specific to one normal sample. c Consensus phylogenetic trees for six tumors with at least five
samples assayed for both SCNAs and DNA methylation. SNVs, deletions of tumor suppressor genes and amplifications of oncogenes are marked on the
inferred phylogenetic tree.
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denotes SCNA distance and d2ij denotes methylation distance. When both samples
have SCNA and methylation profiles, the new distance was defined as

d0ij ¼ 0:5
d1ij

max d1kl
þ d2ij

max d2kl

� �
. When only SCNA profiles are available, we define

d0ij ¼
d1ij

max d1kl
. Here, the denominators are used to rescale distances so that they are

comparable between SCNA and DNA methylation profiles.
The analysis of the CIMP was performed using the hierarchical clustering based

on the 5000 most variable CpG probes mapping to gene promoter regions and CpG
island regions.

Methylation analysis adjusted by sample purity. For a given CpG probe, the
observed DNA methylation was a linear combination of the data from the normal
and the tumor tissue samples weighted by tumor purity. ITH may be overestimated
if purity varies across tumor samples from the same patient. Thus, we estimated
purity, π, for each tumor sample and derived the purity adjusted methylation
values using R package InfiniumPurify26. All downstream methylation analyses
were based on purity-adjusted methylation.

Quantification of ITH. The frequently used index6 that measures ITH for a patient
using the fraction of aberrations present in all samples positively depends on the
number of multi-region tumor samples. This estimate may vary across tumors
making the association analysis between ITH and clinical outcomes problematic.
To address this problem, we defined an ITH metric, average pairwise ITH or
APITH, for each patient. For a patient with k tumor samples, and with dij defined
as the genomic or epigenetic distance between a pair of samples (i, j), the APITH is

defined as the average across all pairs of samples:

APITH ¼ 2
k k� 1ð Þ

X
1≤ i<j≤ k

dij: ð1Þ

The expectation of APITH does not depend on the number of multi-region tumor
samples. For SCNAs, dij is calculated as the proportion of the 705,667 probes with
different copy number status for (i, j). To investigate ITH of lung cancer driver
genes2,11,12, we also calculated dij as the fraction of the genome in these driver gene
regions with differing copy number state. For DNA methylation, we define dij as
the Euclidean distance calculated for a given set of CpG probes, e.g., all CpG probes
after quality control (QC), CpG probes mapping to CpG island and gene promoter
regions. These analyses are informative to investigate whether ITH defined based
on specific genomic regions would be useful for predicting prognosis.

The variance of the APITH estimate depends on the number of multi-region
tumor samples. Intuitively, APITH is more accurate for patients with more multi-
region tumor samples and should be weighted up in downstream statistical
analyses to optimize statistical power. As described in Supplementary Methods, we
heuristically derived sample weights that were used for the weighted Cox
proportional-hazards model using svycoxph in the R package survey27 to investigate
the association between APITH and clinical outcomes (overall survival and the risk
of distant metastasis). The survival analysis was adjusted for stage, age, and
smoking status. KM-plot were stratified by the median APITH of subjects with at
least two tumor samples.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Fig. 7 Kaplan–Meier curves of overall survival. Kaplan–Meier estimates of overall survival in patients with high and low ITH of a SCNAs, b DNA
methylation based on the top 5000 most variable CpG probes and c DNA methylation at CpG islands. d Kaplan–Meier estimates of metastasis in patients
with high and low ITH of DNA methylation at CpG islands. High and low ITH groups were stratified by median APITH and colored in red and blue,
respectively. The p-values were calculated using the Cox proportional-hazards model weighted by the variance of the estimated APITH. Sample size for
each group is indicated in the figure.
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Data availability
The target sequencing data have been deposited in SRA through dbGaP under the
accession number phs001169.v2.p1. The SNP array and methylation array data have been
deposited in dbGaP under the same accession number. All other data are available tin the
Article, Supplementary Information or available from the author upon reasonable
request.

Code availability
The corresponding R code has been distributed at https://github.com/xtmgah/
EAGLE_LUAD.
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