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Abstract. We explore Lagrangian perturbation theory (LPT) for biased tracers in the presence

of two fluids, focusing on the case of cold dark matter (CDM) and baryons. The presence

of two fluids induces corrections to the Lagrangian bias expansion and tracer advection, both

of which we formulate as expansions in the three linear modes of the Lagrangian equations

of motion. We compute the linear-order two-fluid corrections in the Zeldovich approximation,

finding that modifications to the bias expansion and tracer advection both enter as percent-

level corrections over a large range of wavenumbers at low redshift and draw parallels with the

Eulerian formalism. We then discuss nonlinear corrections in the two-fluid picture, and calculate

contributions from the relative velocity effect (∝ v2
r) at one loop order. Finally, we conduct

an exploratory Fisher analysis to assess the impact of two-fluid corrections on baryon acoustic

oscillations (BAO) measurements, finding that while modest values of the relative bias parameters

can introduce systematic biases in the measured BAO scale of up to 0.5σ, fitting for these effects

as additional parameters increases the error bar by less than 30% across a wide range of bias

values.
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1 Introduction

Observations of the large-scale structure (LSS) of the universe allow us to shed light on areas of

physics ranging from galaxy formation and evolution to fundamental physics. A prime target of

present and future LSS surveys is the measurement of baryon-acoustic oscillations (BAO) – the

imprints of sound waves in the baryon-photon fluid observed in the cosmic microwave background

(CMB) on the observed clustering of galaxies – which can be used as a standard ruler to constrain

the expansion of the universe [1]. Upcoming surveys such as DESI [2], EUCLID [3] and WFIRST

[4] will provide BAO measurements with higher-than-ever precision, and even more futuristic

BAO surveys such as a Stage II 21-cm experiment [5] have been proposed. These next-generation

observational campaigns will require us to model the LSS with unprecedented accuracy, at the

sub-% level.

One area of recent interest in the field of LSS has been in accounting for the effects induced

by the existence of multiple species (cold dark matter, baryons, neutrinos), with similar but

distinct clustering properties, using analytic methods. Studies of the perturbative approach to
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structure formation have traditionally grouped all nonrelativistic species into a “total matter”

fluid, whose gravitational collapse is the dominant source of structure on cosmological scales

in the late-time universe, but many authors have recently extended these techniques to include

neutrinos [6–10] and baryons [11–17] in the Eulerian framework of Standard Perturbation Theory

(SPT). In parallel, the response of galaxy and halo formation to the existence of multiple fluid

species has also been subject of extensive investigation [11, 16–22]. Of particular interest are

the present-day imprint of relative perturbations between baryons and dark matter on large

scales which, being seeded in the same epoch and at the same scales as the baryon acoustic

oscillations, has the potential to confound future BAO measurements [11, 22–24]. While these

relative perturbations do not grow significantly in time (and relative velocities in fact decay) and

are thus small compared to the total-matter growing mode at late times, they amount to coherent

supersonic flows post-recombination and could have significant effects on the formation of the

first halos and galaxies [11, 13], which are the progenitors of the objects we observe today.

The goal of this work is to formulate perturbation theory and galaxy bias in the presence of

multiple fluids within the Lagrangian framework, with a particular focus on the two-fluid baryon-

dark matter scenario. Our work is a direct extension of the aforementioned SPT calculations.

While Lagrangian Peturbation Theory (LPT) is order-by-order equivalent to SPT, it seamlessly

allows a consistent treatment of large scales bulk flows, which are responsible for the final shape

and position of the BAO features in the correlation functions or power spectrum [25–31]. The

theory can also be extended to handle density field ‘reconstruction’ [32–36]. These features make

LPT a natural language for investigating possible distortions to the BAO feature.

This paper is organized as follows. In Section 2, we introduce the linear Lagrangian equations

of motion and discuss the role of non-gravitational forces such as Compton drag with the CMB.

Modifications to Lagrangian galaxy bias and advection in the two-fluid limit are then introduced

in Section 3. In Section 4, we employ the results of the preceding two sections and calculate the

lowest-order two-fluid corrections to the galaxy power spectrum in the Zeldovich approximation.

Cross spectra and subtleties in the IR resummation are briefly discussed in Section 4.2. In

Section 5 we take up whether the calculated two-fluid corrections can significantly bias BAO

measurements, arguing that any such biases can be mitigated by simultaneously fitting for these

easily-characterizeable effects. Our conclusions are summarized in Section 6.

2 Linear Equations of Motion in Lagrangian Space

In the Lagrangian picture, fluid dynamics is encoded in the displacements Ψσ(q) of fluid elements

of each species, σ, originally situated at Lagrangian positions q, such that their Eulerian positions

at conformal time τ (dτ = a−1dt) are given by [28, 37, 38]

xσ(q, τ) = q + Ψσ(q, τ). (2.1)

The subscript σ = {c, b} denotes the species, either cold dark matter (CDM) or baryons, re-

spectively, whose motion we are tracking. Assuming that initial displacements are infinitesimally

small compared to those at the redshifts of interest, the overdensity, δσ, of each species at Eulerian
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position x can be solved for via mass conservation

1 + δσ(x, τ) =

∫
d3q δD(x− q−Ψσ(q, τ)) =

∫
d3q

d3k

(2π)3
eik·(x−q−Ψσ(q,τ)), (2.2)

where δD is the Dirac delta function. Taylor expanding to first order in displacements yields the

familiar result that δσ(x) = −∇ ·Ψσ(q), but, as seen in Equation 2.2, one feature of working in

the Lagrangian picture is that the translation into Eulerian quantities, such as the density field,

invariably involves nonlinear combinations of Ψ even when only the linear equations of motion

are considered.

2.1 General Formalism

While CDM particles by assumption experience only the gravitational force, baryons are subject

to non-gravitational effects, such as Compton drag and pressure gradients. These effects can be

summarized in the equations of motion of the fluid elements

Ψ̈c +HΨ̇c = −∇xΦ(q + Ψc)

Ψ̈b +HΨ̇b = −∇xΦ(q + Ψb) + Fb(q + Ψb), (2.3)

where overdots signify derivatives with respect to τ , H = d ln a/dτ is the conformal Hubble pa-

rameter, Fb is the non-gravitational force per unit mass felt by baryons, and Φ is the gravitational

potential at Eulerian position x satisfying Poisson’s equation

∇2
xΦ(x, τ) =

3

2
Ωm(τ)H2(τ)δm(x, τ), (2.4)

where Ωm is the total matter mass density and δm is the total matter overdensity (see below).

At the linear level, there is no difference between the Eulerian and Lagrangian positions in the

above equations of motion, and we will neglect this distinction in the rest of this section unless

otherwise stated. Indeed, taking the divergence of Equation 2.3 in the linear limit (xσ ≈ q)

directly yields the Euler equation when we map overdensities to displacements and velocities to

their derivatives:

δσ(xσ)↔ −∇ ·Ψσ(q) , vσ(xσ)↔ Ψ̇σ(q). (2.5)

Note that the first mapping is correct only to linear order, while the second one is exact if the

full x(q) is used. Assuming this translation, the solutions to the Lagrangian equations of motion

as described below are essentially identical to those extracted from Boltzmann codes such as

CAMB [39] or CLASS [40], provided one chooses post-recombination initial conditions for the

Lagrangian displacements.

To solve Equation 2.3 in the linear limit, it is convenient to rewrite the baryonic and CDM

displacements in terms of a mass-weighted matter component (Ψm = wcΨc + wbΨb), which

sources the gravitational potential, and a relative component that characterizes the differential

flows between baryons and CDM (Ψr = Ψb −Ψc), where we have defined the mass fractions of

each species, wσ = ρσ/ρm. These are related to the Eulerian quantities δm = wbδb + wcδc and

vr = vb − vc by δa = −∇ ·Ψa and va = Ψ̇a, where a = {m, r}, again at the linear level. The
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equations of motion in terms of these components are

Ψ̈m +HΨ̇m = −∇Φ + wbFb (2.6a)

Ψ̈r +HΨ̇r = Fb. (2.6b)

If in addition non-gravitational forces are negligible, the matter and relative components decou-

ple, such that Equation 2.6a can be solved as

Ψm(τ) = −m+D+(τ) + m−D−(τ) ≈ −m+D+(τ) , (2.7)

where D+ is the usual linear-theory growth factor. In the last step we have neglected the decaying

mode, m−, since it is a tiny fraction of the total displacement at all redshifts of interest. For

non-gravitational forces, like Compton drag or pressure gradients, direct integration of the linear

equations of motion show that the non-gravitational terms make a negligible contribution to the

matter component Ψm, such that the transfer function at redshifts below z = 6 agree with the

linear solution in Equation 2.7 to within 0.2%, with even better agreement at the lower redshifts

of interest in this paper. In the above we have included a minus sign for convenience such that

δm,0 = ∇ ·m+.

We end this subsection by discussing the full solution of the relative displacement when Fb =

Fb(τ) is independent of Ψr. In this case Equation 2.6b is linear and first order in Ψ̇r and can be

solved as:

Ψ̇r(τ) = vr(τi)
(ai
a

)
+

1

a

∫ τ

τi

dτ ′ a(τ ′)Fb(τ
′), (2.8)

where we have set the boundary conditions at initial time τi assuming the non-gravitational

effects encoded in Fb do not turn on until τ > τi. Equation 2.8 turns out to be an excellent

approximation for the large-scale Compton drag electrons experience in the reionization era due

to their relative motion with respect to the CMB rest frame, Fb = −neσT (ργ/ρb)avb, where σT is

the Thompson scattering cross section, ργ is the photon energy density and ne the free electron

number density. Eq. (2.8) also applies baryonic pressure forces on small scales Fb ∝ −∇δb—
in both cases the total-matter component may be substituted for the baryonic component (i.e.

δb ≈ δm) at the sub-percent level [17]. In the case of the large-scale Compton drag, assuming

vb ' vm yields

Ψ̇r(τ) = Ψ̇r(τi)
a(τi)

a(τ)
+

[
1

a

∫ ln(a(τ))

ln(a(τi))
d ln(a′)

(
ne(a

′)σT
ργ(a′)

ρb(a′)

)
f(a′)D+(a′)

a′2

]
Ψm(τi)

D+(τi)
, (2.9)

with f = dD+/d ln(a) the linear theory growth factor. The Compton drag thus induces a mixing

between the matter and relative components through a numerical prefactor dependent only on

the linear growth factor D+ and reionization history via ne. Finally, we can integrate 2.9 to yield

Ψr(τ) = −r+ + r−Dr(τ, τi) + m+DCD(τ, τi), Dr(τ, τi) =

∫ τ

τi

H0dτ
′

a(τ ′)
(2.10)

where we can identify Ψr(τi) = −r+, a(τi)vr = H0r−, and the Compton-drag kernel DCD

is defined as the conformal time integral of the square-bracketed function in 2.9. The linear

solutions to both the total-matter and relative components are thus wholly specified by the three

modes m+ and r±. Jeans instabilities and baryonic pressure forces affect much smaller scales

and won’t be further discussed in the remainder of this work.

– 4 –



10 2 10 1 100

k [h Mpc 1]

101

102

103

T
r

10 2 10 1 100

103

104

105

T
r

z = 1
Fb = 0
Compton

10 2 10 1 100

k [h Mpc 1]

101

102

103

10 2 10 1 100

103

104

105 z = 7
CAMB
Sum

Figure 1. Transfer functions for the relative component from Equation 2.13 at z = 1 (left column) and

z = 7 (right column). These transfer functions solve Equation 2.8. The top row shows the transfer functions

for ∇·Ψr, i.e. the relative density. The bottom row shows the transfer functions for ∇·Ψ̇r, i.e. the relative

velocity divergence. The free-falling (Fb = 0) and Compton drag contributions are shown separately, the

effect of Compton drag on the relative velocity is immediately apparent even right after reionization

(zre = 7.90) at z = 7, whereas the relative displacement is dominated by the Fb = 0 contribution at all but

the largest scales shown. Unlike the Compton contribution, which is flat at large scales, the primordial

(Fb = 0) contributions fall off as k2 towards low wavenumbers, reflecting the origin of relative perturbations

in pre-recombination baryonic pressure forces. At low redshifts, the solutions to the Lagrangian equations

of motion, with initial conditions set at zi = 20, are in excellent quantitative agreement with the results

from CAMB (black dashed lines, barely visible on the plot as they lie below the purple lines).

2.2 Initial conditions and transfer functions

The linear evolution of the density and velocity contrasts can be easily written in terms the CDM

and baryon linear transfer functions (output from, e.g. CAMB) as

Tδr(k) ≡ Tδb(k)− Tδc(k) and Tθr(k) ≡ Tθb(k)− Tθc(k) (2.11)

where θb,c(k) ≡ −δ̇b,c(k). It is worth noticing that while the velocity field is gauge dependent,

velocity differences are not. The transfer function for ∇ ·m+ is simply the present-day matter

transfer function Tm and we can furthermore define

T∇·r+(k) ≡ Tb(k, zi)− Tc(k, zi)

T∇·r−(k) ≡ [(1 + zi)H0]
−1
(
Tθb(k, zi)− Tθc(k, zi)

)
. (2.12)
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These three functions specify the solution for the Ψm, Ψr and Ψ̇r at any z < zi. The choice of zi
is somewhat arbitrary but choosing redshifts before the onset of reionization has the advantage of

separating the effects of gravity from Compton drag. This choice also justifies the normalization

in Eq. (2.12), since r− is independent of redshift. In the remainder of the paper we assume

zi = 20.

In addition to the above, we will show below that calculating the power spectrum at some

redshift z in the Lagrangian picture requires linear-theory spectra of the relative displacement

at that redshift, which will typically include corrections from Compton drag. These can be

calculated via Equations 2.7 and 2.8 to give

T∇·Ψr(k, z) = T∇·r+(k) +Dr(z, zi)T∇·r−(k) +DCD(z, zi)T∇·m+(k). (2.13)

Sample solutions of the equation of motion in Eq. (2.6) when Fb is given by Compton drag with

the CMB are shown in Figure 1. After reionization most of large scale power in the relative

velocity transfer function, T∇·Ψ̇r
, is provided by the Compton drag, which in turn affects the

evolution of the relative baryon-dark matter density at large scales (see top panels in Figure 1).

Figure 1 also justifies the approximations we used to compute the drag forces, as one can see by

the excellent agreement with the full CAMB output. Other non-gravitational effects like pressure

terms (Jeans instability) and radiative transfer effects [41–44], can be written in a similar form.

Ratios of the transfer functions to the total matter one are shown in Figure 2. We notice that

the relative density perturbation is much larger than the relative velocity one, by a factor of a

hundred at least, and the two relative components have the same behavior with wave-number k

at small and large scales. Nonetheless r+ and r− have significant differences in shape around the

BAO scales and therefore will have to be treated separately from the point of view of the galaxy

bias expansion.

3 Lagrangian Bias in the Two-Fluid Dynamics

In the Lagrangian approach, galaxy bias is assumed to arise as the response of the overdensity

of galaxies, or the precursors thereof, to the variation of the initial conditions encoded in the

fields {Ψσ(q)} of the various species, and then transported via advection to their present-day

positions x(q, t) = q+Ψg(q, t). Thus, when computing the density of a biased tracer the number-

conservation Equation 2.2 is modified to

1 + δg(x, τ) =

∫
d3q Fg[q| {Ψσ(q)}] δD [x− q−Ψg(q, τ)] . (3.1)

The standard picture of (local) Lagrangian bias, outlined above, has been developed in the

1-fluid case by many authors, see for example [45–53] and [54] for a recent review on galaxy bias.

In this section our focus will be on extending these arguments to the case of multiple fluids, and

in particular to the two-fluid case. In the presence of two fluids, the form of Equation 3.1 raises

two questions: (1) the form of the response Fg and (2) whether biased tracers follow the dark

matter, baryons, or a combination thereof. We address these in turn.
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Figure 2. Relative to total-matter-component transfer function ratios. (Left) Transfer function ratios

between the initial fields m+ and r± defined at z = 20. The so-normalized constant r+, which roughly

corresponds to the relative overdensity mode, is a percent level contribution relative to the total-matter

growing mode m+. The decaying mode r−, which corresponds roughly to the relative velocity, enters at

significantly below the percent level. Note however that our definition somewhat exaggerates its smallness

by “redshifting” it to z = 0. The equivalent ratio for one percent of the growing mode at z = 3 is plotted

for comparison in black. (Right) Transfer function ratios between the evolved relative and total matter

displacements at redshifts z = 2 − 6. While the relative displacement is a percent level effect at low

redshifts (z = 2), it enters at close to the ten percent level at higher redshifts (z = 16).

3.1 Bias Expansion

The initial tracer overdensity, Fg[q| {Ψσ(q)}], is defined to be a functional encoding the physics

of gravitational collapse and galaxy formation at some Lagrangian position q. Since the galaxy

density field is a scalar quantity under rotations, Fg will also be a scalar. We will assume this

functional is local, in the sense gravitational collapse depends only on the value of the fields

within a characteristic patch of size Rh, which then flows coherently on large scales with Ψg

[54]. In the fluid limit, these conditions imply that the system is wholly specified – albeit in

some complex, nonlinear way – by the species overdensities, δσ(q), velocities, vσ(q), and the

gravitational potential1, Φ(q), at some initial time τi. The condition that Fg is local – or rather,

nonlocal with width Rh – can be equivalently (but more conveniently) expressed by requiring Fg
depend only on the initial fields and their spatial derivatives, with nth derivatives suppressed by

n powers of Rh [54].

In addition to the assumption of locality, the form of Fg is strongly restricted by various

symmetries. General relativity requires that all physical quantities be diffeomorphism invariant,

which in our case reduces to rotational invariance and invariance under generalized Galilean

1The gravitational potential Φ, while not independent of δm, depends on the total matter density in a very

non-local way. To make our bias expansion local, and be able to truncate the derivative expansion at a reasonable

order, we thus include it as a standalone quantity here.
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transformations [55]:

q→ q , Ψσ → Ψσ + n(τ) , Φ→ Φ→ Φ− x · (n̈ +Hṅ) , (3.2)

where n are time-dependent but spatially constant vector fields.

Rotational invariance simply requires that only contracted scalar quantities enter the bias; the

restrictions placed on the bias expansion by general Galilean invariance are more subtle, and it

is here that the two-fluid case diverges from the single-fluid case. Under this symmetry, densities

remain unchanged— for instance that at first order δσ(q) = −∇ ·Ψσ(q)— while velocities get

boosted by a spatially constant amount (leaving ∂v invariant) and the gravitational potential

changes in a spatially linear way (leaving ∂∂Φ invariant). In the single-fluid regime, where

only one set of densities and velocities exist, this directly implies that velocities can only enter

with at least one spatial derivative, and the gravitational potential can only enter as second

(spatial) derivatives and beyond. The single-fluid overdensity, which is unchanged under the

transformation, can enter at any order.

The presence of two or multiple fluids relaxes some of the above restrictions. In particular,

since all particle velocities are boosted by the same amount (n′) under a Galilean transformation,

the relative velocity vr = vb − vc remains invariant and can thus enter the bias expansion at

zeroth order in derivatives. The total matter velocity, vm, on the other hand, is boosted and

can thus still only enter at the derivative level. These two quantities form an equivalent basis to

the individual species velocities and there is no loss of generality in defining the bias expansion

in terms of them. We may similarly write terms involving species densities, which can enter

separately, in the total matter and relative density basis. In general relativity the gravitational

potential is unaffected by the number of species as a consequence of the equivalence principle,

i.e. gravitational interactions are universal. The full set of physical fields that can enter Fg in

the two fluid case is then

Fg = Fg [δσ,vσ,Φ] ≡ Fg [δm, δr, ∂vm,vr, ∂∂Φ, · · · ] , (3.3)

where the dots stand for higher derivative operators. To first order in the fields we can therefore

write2

1 + δg(q) = 1 + b1δm + brδr + bθθr + · · · (3.4)

which is similar to the Eulerian linear theory expression in [16]. This is not surprising, since at

first order q ' x, however we will see below that differential advection can introduce further

terms degenerate with the initial Lagrangian bias terms above, such that the Eulerian relative-

component bias will in general be a combination of these terms.

Finally, since Fg is defined as a functional on the initial conditions which can be chosen

to be sufficiently early that they lie deep in the linear-theory regime, its form can be further

simplified and expressed purely in terms of the initial modes m+ and r±. In the single fluid

case, this restriction leads to the simplification that all bias terms can be written in terms of

spatial derivatives of the total matter displacement m+ ∼ Ψm; this is a direct consequence that,

up to time-dependent constant factors, δm ∼ ∂Ψm, vm ∼ Ψm and ∂∂Φ ∼ ∂Ψ in linear theory.

2A list of bias terms up to second order is given in Appendix B.2.
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In the two-fluid case these terms must be supplemented by those involving the relative modes.

Specifically, including the vr dependence requires the inclusion of terms proportional to r− and

including δr dependence similarly requires terms proportional to ∇ · r+. Equation 3.4 can thus

be re-expressed as:

Fg(q) = b1δm + b+∇ · r+ + b−∇ · r− + ... (3.5)

We therefore have a direct correspondence in the bias expansion between the initial modes ex-

pressed in Eulerian and Lagrangian space. Notice that the bias expansion defined above is

complete, in the sense that it contains all possible operators compatible with the symmetries of

the problem. In particular, while r± are defined at a particular initial redshift zi, in the linear

regime this dependence amounts to a simple linear transformation and can be absorbed into the

definition of the bias parameters (Appendix A).

Finally, an additional complication arises when halo formation is affected by Compton drag.

As pointed out by [17], by picking out the local CMB rest frame such that the drag force ∝ vb, we

lose the gauge redundancy of Galilean transformations. This will in general produce heretofore

forbidden terms such as those proportional to the matter-component velocity vm. However, the

terms thus generated are required by rotational invariance to enter at second order and beyond.

For the remainder of this paper we will thus neglect these contributions, which are subdominant

to the already sub-percent level contributions we study.

Whereas there exists quite a large literature on measuring and predicting, using approximate

physical models, the value of the bias parameters in one-fluid scenarios, less attention has been

devoted to the multi-fluid case. From an effective field theory perspective the dimensionless

parameters should be of order unity, but in reality the actual value of the bias parameters is

tracer-dependent and can be quite a bit larger or smaller. In this work we will assume, unless

otherwise noted, that typical values are given by b+ ' 1 and b− ' 6.8 derived in [16] using a

spherical collapse model. These numbers are consistent with the non-detection of relative bias

effects in BOSS DR12 by ref. [23], who find e.g. b+ = −1.0±2.5 to within one sigma when fitting

for b+, b− and c− (Section 4.3) across all redshift bins, with large systematic biases measured in

dark-matter only simulations that had to be subtracted.

3.2 Modifications to Tracer Advection

Once the initial, biased tracer overdensity is set, the overdensity at later times is set by the tracer

“fluid” advecting from initial (Lagrangian) q to final positions q+Ψg along trajectories described

by the tracer equation of motion

Ψ̈g +HΨ̇g = −∇Φ + Fb, g, (3.6)

where we have included a non-gravitational term, Fb, g, to account for the possibility that tracers

feel non-gravitational forces. Such non-gravitational contributions may arise, for example, from

the Compton drag on the baryonic component of galaxies, or from various galaxy formation

processes. Since such contributions are always local in space and time, we will assume the above

equation satisfies the same symmetries of Eq. (3.2), i.e. the force acting on galaxies depends only

on density fields and velocity gradients.
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Equation 3.6 can be solved by subtracting the equation of motion of the total matter dis-

placement (Equation 2.6a) and defining Ψr,g = Ψg − Ψm. Neglecting the baryonic contri-

butions such that the tracers’ dynamics are governed only by gravity, and assuming that the

initial tracer displacements are a weighted average of the baryonic and CDM displacements, i.e.

Ψg,i = Ψm,i + fgΨr,i, this immediately yields the time evolution

Ψg(τ) = Ψm(τ) + fg[Ψr(τ)]CD=0, (3.7)

where the relative displacement is evaluated assuming zero Compton drag. Note that if we

assume that the tracer field is made of objects composed of the same mass fractions of baryons

and CDM as the total matter content of the universe, i.e. with fg = 0, Equation 3.7 reduces to

the trajectory of the matter component. Similarly, objects composed purely of baryons or the

CDM will (at the linear level) follow the baryon or CDM displacements, respectively.

We can alternatively think of Eq. (3.7) as a bias expansion of the galaxy displacements in terms

of the underlying fields, since Ψm and Ψr are the only two linear operators allowed by symmetries

at lowest order in spatial derivatives. If the tracer flow is purely gravitational, as assumed above,

the equivalence principle further restricts the coefficient of the total matter displacement – which

encapsulates the motion due to the gravitational potential – to be exactly 1 at all times. However,

this restriction can be broken by baryonic contributions (∝ Fb, g) such as the Compton drag. As

seen in the second term on the right hand side of Equation 2.9, the acceleration due to Compton

drag generates displacements proportional to Ψm; this contribution, on top of the aforementioned

gravitational displacements, can lead to an expansion Ψg = (1 + αCD)Ψm + fgΨr + ... for some

nonzero coefficient αCD due to Compton drag, where the total-matter coefficient deviates from

unity. Consequences of this modified expansion for the power spectrum are considered at the end

of Section 4.1 and in Figure 6. Other baryonic forces, such as pressure forces at small scales, can

similarly be included as further terms (Ψg 3 c2s∇δb) in this expansion.

4 Galaxy Power Spectra in the Zeldovich Approximation

4.1 Analytic Form

From Equation 3.1, the power spectrum at redshifts z for a biased tracer can be computed as

Pgg(k, z) =

∫
d3q eik·q

〈
Fg[q1]Fg[q2] e

ik·(Ψg(q1,z)−Ψg(q2,z))
〉
q=|q2−q1|

, (4.1)

where the subscripts denote quantities evaluated at two points separated by q in Lagrangian

space. It is important to note that the bias functions Fg are evaluated in terms of the linear

modes m+, r± defined at the initial redshift zi. In the Zeldovich approximation displacements

are solved to linear order but the full mapping between initial and final times is kept. This

amounts to keeping the displacement correlators exponentiated in what follows [46]. We will

adopt the bias expansion in Equation 3.5. We evaluate integrals involving Fg by functional

differentiation in the usual manner [46, 47, 56]: we include a term (e.g. λX) in the exponential

for each argument, X, of Fg and evaluate terms like Xn via ∂n/∂λn of exp[λX].

Under the above assumptions our task reduces to evaluating

eiM ≡
〈
exp

(
ik ·∆g(z) + λδm,1δm,1 + λ+,1∇r+,1 + λ−,1∇r−,1 + (1↔ 2)

)〉
(4.2)
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Figure 3. Correlation functions entering the galaxy power spectrum in Eq. (4.7) at z = 1.2. Left panel:

the displacement auto- and cross-correlation functions between the different components. Right panel:

bias-weighted, displacement correlation functions. Correlation functions involving the relative component

exhibit abrupt features around q ∼ 102 h−1 Mpc, reflecting the baryon acoustic oscillation scale.

with numerical subscripts referring to Lagrangian coordinates, q1 and q2, and

∆g = Ψg,1 −Ψg,2 = Ψm,1 −Ψm,2 + fg(Ψr,1 −Ψr,2) ≡∆m + fg∆r (4.3)

The function eiM can be evaluated using the cumulant theorem as the exponential of the con-

nected components. The Zeldovich approximation assumes linear dynamics, such that only

quadratic terms survive

eiM = exp

{
− 1

2
kikjA

mm
ij − fgkikjArmij −

f2g
2
kikjA

rr
ij

+ ik ·
(
(λδm,1 + λδm,2)(Umm + fgUrm)

+ (λ+,1 + λ+,2)(Um+ + fgUr+) + (λ−,1 + λ−,2)(Um− + fgUr−)
)

+ (λδm,1λ+,2 + (1↔ 2) ) ξδm∇r+ + (δm,∇r−) + (δm, δm)

+ (∇r+,∇r+) + (∇r+,∇r−) + (∇r−,∇r−)

}
, (4.4)

where we have defined

Aabij =
〈

∆a
i (z)∆

b
j(z)

〉
, Ua±i = 〈∆a

i (z)∇ · r±(q1)〉 , ξab = 〈a(q1)b(q2)〉 , (4.5)

noting that the ∆’s carry an implicit redshift dependence while the other fields do not. For the

total-matter component this redshift dependence is a direct growth factor scaling and we will for

convenience take the linear field’s value as evaluated at the observed redshift δm = −Dm(z)∇·m+.

The paired parentheses denote terms similar to the preceding except with the indicated pair of

variables. For example, in the third line

(δm,∇r−) ≡
(
λδm,1λ−,2 + (1↔ 2)

)
ξδm∇r−(q) (4.6)
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and when the elements of a pair are repeated the term should be divided by a symmetry factor

of two.

Figure 3 shows the different correlation functions entering the above calculation. Since the

correlation function of the different displacements fields, Aabij (q), is a tensor, we can decompose

it as Aabij (q) = Xab(q)δKij + Y ab(q)q̂iq̂j , and the functions X(q)’s and Y (q)’s are shown in the

left panel of Figure 3. Clearly the galaxy displacements are dominated by the total matter

component, with the relative terms contributing much less than a % to the bulk flows. This fact

will enable us to treat the terms proportional to fg perturbatively, as they will be much smaller

than one for wavenumbers below the nonlinear scale defined by k2Σ2 . 1, where the Zeldovich

r.m.s. displacement is Σ ∝ Xmm(q → ∞). The same conclusions apply for the bias weighted

displacements U(q)’s, shown on the right hand panels in Figure 3, where Um(q)� U±(q).

Working to linear order in the power spectrum we then have that the galaxy-galaxy power

spectrum is given by

Pgg(k) =

∫
d3q eik·q e−

1
2
kikjA

mm
ij

[
1− fgkikjArmij −

f2g
2
kikjA

rr
ij

+ 2ik · (b1Umm + b+Um+ + b−Um−)

+ 2fgik · (b1Urm + b+Ur+ + b−Ur−)

+ b2mξδmδm + 2bmb+ξ∇r+δm + 2bmb−ξ∇r−δm

+ b2+ξ∇r+∇r+ + 2b+b−ξ∇r+∇r− + b2−ξ∇r−∇r− +O(P 2
L)
]
.(4.7)

Figure 4 shows the different contributions to the galaxy power spectrum in the Zeldovich ap-

proximation at z = 1.2. The leading corrections to the total-matter power spectrum come at

the roughly percent level from terms in Equation 4.7 linear in r+, i.e. in b+ and fg. These

contributions are essentially degenerate, with differences due to the dynamical evolution of Ψr

in the fg term, as we will discuss in the next paragraph. Corrections quadratic in r+ or linear in

r− enter at roughly the same size four orders of magnitude below the total-matter contributions.

An interesting consequence of the advection of biased tracers with |fg| > 0 is the appearance

of relative bias terms even if none were present in the initial Lagrangian bias expansion. To

see this, we can take the low-k limit of Eq. (4.7), neglecting for the moment non-gravitational

contributions to Ψr(q), and obtain up to O(P (k))

Pgg(k, z) =(1 + b1)
2 Pδmδm(k)

+ 2(1 + b1)(b+ + fg)Pm∇r+(k) + 2(1 + b1)(b− + fgDr(z))Pm∇r−(k)

+ (b+ + fg)
2P∇r+∇r+(k) + (b− + fgDr(z))

2P∇r−∇r−(k)

+ 2(b+ + fg)(b− + fgDr(z))P∇r+∇r−(k) . (4.8)

We immediately recognize the familiar expression for the Eulerian linear bias, bE1 = 1 + b1, and

that the relative density and velocity bias terms get renormalized by terms proportional to fg.

To make further contact with the existing literature employing the Eulerian formulation of the

equations of motion [16, 17], we can identify the relative baryon dark-matter density perturbation

δr with the divergence of r+, δr ≡ ∇·r+, and the relative baryon dark-matter velocity divergence

θr with the divergence of r−, θr ≡ (1 + z)H0∇ · r−. This implies that the bias parameters in
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Figure 4. Different contributions to the galaxy power spectrum in the Zeldovich approximation, Eq. (4.7),

at z = 1.2. Terms proportional to b+b−, fgb−, and b2− have been omitted as they are two orders of

magnitude smaller than the smallest contributions shown. Many terms, such as those involving fg and

b+, are essentially degenerate.

[16, 17] associated to the Eulerian fields are bEδr = b+ +fg and bEθr = (1 + z)−1H−10 (b−+fgDr(z)).

Note that the referenced overdensities and velocities are those defined at the initial redshift zi
so should not be directly substituted for their Eulerian counterparts; for more details about the

mapping of bias parameters from some initial time zi to Eulerian coordinates see Appendix A.

A final caveat occurs when the non-gravitational forces on the tracer, Fb,g are nonzero. The

integrated effect of such forces on Ψr,g must then be accounted for. For example, when dealing

with baryons and dark matter, the effects of Compton drag on large scales are non-negligible.

In this case, since the Compton drag force is proportional to the total-matter displacement, the

two-point functions in Eq. 4.5 involving ∆r will gain a contribution proportional to ∆m (Fig. 5).

Such contributions can be non-negligible at large scales and can dominate in the contributions

to the power spectrum proportional to fg at low wavenumber (Fig. 6). Importantly, terms pro-

portional to b± are unaffected since they are related only to the primordial modes r±, breaking

the degeneracy between fg and b+. Since the difference between these terms is proportional to

the total-matter component, this difference can alternatively be absorbed into the total-matter

bias bm [17]. Comparisons of these terms with and without Compton drag are shown in Fig-

ure 6. Comparing the fg contribution with and without Compton drag we see, as expected, that

renormalizing the linear total-matter bias b1 to include a contribution proportional to fgDCD(z)

(purple dotted curve) is sufficient to account for the non-gravitational Compton drag contribu-
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Figure 6. Comparison of terms involving b+ (blue dashed) and fg with and without Compton drag (red

and black). The two are largely degenerate in the latter case, but with Compton drag the fg terms are

dominated by a contribution proportional to the total-matter power spectrum at large scales, which can

alternatively be renormalized into the matter bias b1, shown separately as a dashed magenta curve. The

left panel shows contributions due to contracting the relative components (fgΨr or b+∇ ·m+) with the

total matter displacement Ψm, while the right panel shows contractions with the total matter bias b1δm.

tions.

4.2 Cross-Spectra of different tracers and IR Resummation

So far we have dealt only with tracer auto-spectra. The situation for cross-spectra is complicated

by the non-cancellation of the IR-exponent at small separations, q. For two generic fluids, X and

Y , such that ΨX,Y = Ψm + fX,Y Ψr, the cross spectrum will take the form as in Equation 2.2:

PXY (k) =

∫
d3q eik·qe−

1
2
kikjA

XY
ij

[
· · ·
]
, (4.9)
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where the exponentiated two-point function AXY is given by

AXYij (q) =
(
〈ΨX

i ΨX
j 〉+ 〈ΨY

i ΨY
j 〉 − 2〈ΨX

i ΨY
j 〉
)

+
(

2〈ΨX
i ΨY

j 〉 − 2〈ΨX
i (q)ΨY

j (0)〉
)
, (4.10)

and expectation values of point operators are displayed without arguments. Both terms in paren-

theses on the RHS of Equation 4.10 are well-defined and invariant under generalized Galilean

transformations; however the second term vanishes as q → 0 while the first does not3. As first

noted in Ref. [15], this is in contrast to the single-fluid case where Aij had to vanish at small

scales due to Galilean invariance.

In principle, the non-cancellation discussed above will introduce a large scale damping in

the power spectrum at scales proportional to the difference |ΨX −ΨY |2. However, since ΨX,Y

are both expected to have the same coefficient in the total-matter component (i.e. unity) this

difference squared will generically be proportional to (fX−fY )2O(Ψ2
r), and thus is suppressed by

about four orders of magnitude relative to the Zeldovich displacement, Σ2, at the redshifts with

which we are concerned (z < 10). On the other hand, while differential streaming is expected to

damp cross spectra negligibly even if fX is of order unity, as discussed in the previous section it

will still generate an observable effect degenerate with the relative bias b+.

4.3 Higher Order Bias

Thus far we have not discussed the fact that any perturbative model should be considered an

effective field theory, working up to some scale Λ [57–59]. This forces us to introduce a set of

counterterms that remove the small scale sensitivities of the perturbative calculations. For in-

stance all the Aij(q) terms contain a zero-lag piece computed at zero separation, i.e. q = 0, where

perturbation theory breaks down. In the single fluid case, this UV-sensitivity is renormalized to

lowest order in the power spectrum by a counterterm csk
2PZA(k) [29, 60], where the free parame-

ter cs has to be matched to simulations or data. The same structure of the counterterms appears

in the two fluid scenario: for instance, the Aabij (q) required to calculate auto and cross spectra fea-

ture the same UV-sensitive contributions as q → 0, requiring one value of cas for each species. In

principle, terms in the equations of motion due to the relative component will add additional UV

sensitivities to our predictions; in practice, however, such contributions are subdominant in the

dynamics of the relative component and negligible for the total-matter component (Appendix B).

To the extent that these contributions can be ignored, then, the two-fluid equations of motion can

be renormalized identically to the single fluid case with one set of counterterms for each species

or tracer. As counterterms have minor impact on BAO scales, and are anyway fitted to the data

in both the single and multiple fluid cases, we do not include them in the Fisher calculation in

the next section.

We have equally refrained from discussing bias beyond linear order. As in the equations of

motion, contributions beyond first order in the linear power spectrum proportional only to the

total-matter component can be added consistently as in the single-fluid case, and we will ignore

small nonlinear contributions proportional to one or more powers of the relative component4.

3A similar non-cancellation occurs in the modeling of BAO reconstruction, where the cross-term between the

‘displaced’ and ‘shifted’ fields exhibits the same behavior [33, 35].
4A proper accounting of such terms would in addition require solving the relative-component equations of motion

to beyond linear order, which is beyond our present scope.
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However, one exception must be made: operators involving the relative-velocity between the

baryon and dark matter squared, which, despite being at second order in the relative component,

can be non-negligible due to their distinct dimensional scaling [11, 16, 18, 22]. Such contributions

were the focus of the first studies of bias [11, 18, 22] in the two-fluid picture, and we will show

how their calculation fits naturally into the Lagrangian framework. For a discussion of other

second order bias operators see Appendix B.2.

At second order in the bias expansion we can write

Fg[Ψm, Ψr|q] ⊃ bvσ2vr
[vb(q)− vc(q)]2

σ2vr
= bvσ

2
vr

r−(q)2

σ2r−
≡ c−[r−(q)]2 (4.11)

where σ2vr is the 1-point variance of the relative velocities and σ2r− = (1+z)−2H−20 σ2vr . As several

authors [11, 16] have pointed out, baryon-dark matter relative velocities can be quite large at the

time when the first halos and galaxies form, which could result in a large value of bv for their late

time descendants. The value of bvσ
2
vr can be as large as 0.01, which will make this contribution at

second order in the power spectrum larger than the b− terms, even on linear scales. It is however

worth remembering that a value of bvσ
2
vr ' 10−5 is also plausible, which would substantially

reduce the importance of this contribution.

To consistently compute the power spectrum contributions due to c− ∼ bv2 we must go beyond

the Zeldovich approximation. Up to 1-loop in Lagrangian perturbation theory we have to compute

4 new terms to properly include the new bias parameter c−. Beyond these, terms proportional

to c2− can be safely neglected as they are O(P 2
∇r2−

). For the same reason we drop all the terms

proportional to b±c−, as well as contributions of the relative component to the equations of

motion. This leaves us with contributions proportional to c−, b1c−, b2c−, and bs2c−.

The first of these, proportional to c−, contains a 1-loop contribution and is given by

Pgg(k) ⊃ c−
∫

d3q eik·q e−
1
2
kikjA

mm
ij

(
2ikiUi(q)−

1

2
kikjA

m−
ik Am−jk

)
, (4.12)

where we have defined Am−ij = 〈∆m,i (r−,2 − r−,1)j 〉 and the 1-loop contribution from the second-

order Lagrangian displacement Ψ(2) enters as

Ui(q) ≡
〈

∆(2)r2−,1

〉
= q̂i

∫
dk

2π2
k2Qv2(k)j1(kq) (4.13)

The kernel Qv2 is derived in Appendix C.

The remaining terms do not contain loop contributions and follow straightforwardly from

evaluating the second and third cumulants in Eq. (4.1) within the Zeldovich approximation.

These are those proportional to the first order bias:

Pgg(k) ⊃ 2iki b1c−

∫
d3q eik·q e−

1
2
kikjA

mm
ij Am−ij (q) U−mj (q) , (4.14)

second order bias:

Pgg(k) ⊃ 2b2c−

∫
d3q eik·q e−

1
2
kikjA

mm
ij Um−i (q) Um−i (q), (4.15)
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Figure 7. Contributions to the Zeldovich galaxy power spectrum from relative velocity bias at second

order. All biases are set to unity except for c−, which is set such that bvσ
2
vr

= 0.01—in this case, the

contributions from bv2 are seen to be quite comparable to those from b+, and moreover exhibit BAO

“wiggles” far more prominently than does the regular ZA contribution.

and shear

Pgg(k) ⊃ 4bs2c−

∫
d3q eik·q e−

1
2
kikjA

mm
ij W s−

ijk (q) W s−
ijk (q), (4.16)

where we have defined the 2-point functions U−m ≡ 〈 r−(q)δm(0) 〉 = Um− and W s−
ijk (q) =

〈 sij(q)r−,k(0) 〉. Details of the above calculation can be found in Appendix C.

The contributions proportional to c− and their comparison with the 1-piece in Eq. (4.7) and

with the b± ones computed in the previous section is shown in Fig 7 for z = 1.2, assuming bvσ
2
v2r

=

0.01. The c− terms are indeed larger than the b− terms on most scales, but still subdominant

compared to the b+ terms. Notably, the c− terms feature significantly larger oscillatory features

than contributions from b±, with minima that differ from maxima by more than an order of

magnitude.

5 Degeneracies and bias to BAO

Baryon acoustic oscillations (BAO) in the photon-baryon fluid before combination imprint a

characteristic clustering scale in the distribution of galaxies that can be used as a standard ruler

to constrain the cosmic expansion history [61]. In general this method is regarded as highly robust

as it probes very large scales which are largely unaffected by astrophysical processes. However,

relative component contributions to the two-point function also occur on very large scales and

their oscillatory features, although arising from the same physical process of the standard BAO

features in the matter density power spectrum, could bias our estimates of the distance scale if not

properly taken into account [22–24]. Indeed, as shown in the left panel of Fig. 8, all the relative

component contributions we have considered show distinct features around the BAO peak.

The extent to which contributions from the relative component can contaminate measurements

of the BAO scale can be estimated using the Fisher matrix formalism [62]. The galaxy overdensity
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Figure 8. (Left) Contributions to the z = 1.2 correlation frunction from the various relative component

biases, multiplied by constant factors for ease of comparison. All contributions have prominent features

at the BAO scale, reflecting their origin in early-universe acoustic oscillations. (Right) Derivatives of the

power spectrum with respect to these parameters and the BAO scale parameter α at z = 1.2, with bm = 0.5,

b2 = 0.2, b+ = 1, b− = 7 and c−σ
2
r− = 0.01. Despite the fact that all these templates feature prominent

oscillations, they nonetheless possess distinct scale dependence. Note that some of the derivatives have

been multiplied by powers of ten for ease of comparison.

has a covariance that is diagonal in Fourier space and given by the power spectrum plus shot

noise, P̂gg = Pgg(k) + n̄−1; for the parameters {θi}, the Fisher matrix is given by

Fij = Vobs

∫
d3k

(2π)3
1

2

∂ ln P̂gg(k)

∂θi

∂ ln P̂gg(k)

∂θj
, (5.1)

where Vobs is the observed volume. For simplicity we neglect redshift space distortions and focus

only on the isotropic BAO signal, though we will comment on how our Lagrangian analysis can be

naturally extended to redshift space in the final paragraph. We model the power spectrum using

the two-fluid Zeldovich terms derived above and include matter contributions up to one loop

(see e.g. [52]), including contributions from the quadratic Lagrangian bias b2. We consider only

scales between kmin = 10−2 hMpc−1 and kmax = 0.25 hMpc−1, and fiducial value of b1 = 0.53

and b2 = 0.2. The number density of galaxies is n̄ = 4.2 × 10−4 h3 Mpc−3 and we assume

V = 5h−3 Gpc3. These numbers are chosen to be similar to what galaxy surveys like DESI [2]

or Euclid [3] are expected to measure, and in particular are based off the expected DESI ELG

population at z = 1.25 in a bin of width ∆z = 0.1 and 14,000 square degrees of observation.

To quantify the potential impact of the relative component on standard BAO analyses, we will

compare two models of the power spectrum within the Fisher formalism: the “correct” model M1,

which is a function of all total-matter and relative component biases, and the nested “standard”

model M0, wherein the relative component biases are set to zero (i.e. b±, c− = 0). The observed

power spectrum is in addition a function of the BAO scaling parameter α such that

Pgg(k, z, α,M) = α−3Pgg

(
k

α
, z,M

)
. (5.2)
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Figure 9. (Top) Best fit power spectra using the total-matter-component-only model, M0, for a universe

where b+ = 5 with varying maximum fitted wave numbers kmax. (Bottom) Residuals of the above fits,

compared to expected errors (∆ ln k = 0.06), shaded in gray. Fitting over too narrow a range (kmax =

0.1hMpc−1) results in a highly biased phase, while fits using larger wave number ranges covering more

than one BAO wiggle are essentially in phase. The remaining oscillating residuals significantly exceed the

expected error and are due to lack-of-fit for the oscillations in the relative component.

The derivative of the baseline galaxy power spectrum with respect to the parameters is shown

in Figure 8. These templates all show oscillatory features of roughly the same frequency as the

BAO scale but exhibit distinguishable scale dependence. For reference, applying Eq. (5.1) returns

sub-% error on the BAO scale, with σα = 0.9%, for the standard analysis using M0.

We can now compute the systematic shifts in α that would be incurred by neglecting the

relative component, i.e. by fitting to M0. For convenience, we will split the parameters in M1 into

θ = (φa, ψσ), where φa with Latin indices are the BAO scale and total-matter parameters and ψσ
with Greek indices are the relative component biases, such that M0 is given by θ = (φa, ψσ = 0).

In this language the shift in α and b1 due to using the standard model can be calculated to first

order as [63]

δθa = −(F0)
−1
ab Gbσδψσ, a, b = α, b1, σ = b±, c−. (5.3)

Here F0 and G are respectively diagonal and off-diagonal blocks of the full Fisher matrix F =
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Figure 10. (Top Left) Shift in measured α when neglecting relative component biases as a function b±
in the absence of c−. While b− contributes negligibly, b+ = 5 produces a shift up to a 0.4%. (Top Right)

Ratio of error bars in α when marginalizing over b± vs. when they are kept fixed at zero, such that the

best-fit value of α is biased in the latter case. In the latter case the forecast takes into account the shift

away from the true value due to incorrect model assumptions. (Bottom Row) Same as the above, but with

c− added as a nonzero parameter in M1. We have set the true b− = 0 for convenience but marginalize

over it to calculate uncertainties. While even c−σ
2
r− = 0.01 contributes only a tenth of a percent to

the shift in α, the error bars are inflated relative to the top row by up to twenty percent. We assume

kmax = 0.25hMpc−1 throughout.

F (θ0) calculated at the best fit parameters θ0 for the full model M1, such that F0,ab = Fab and

Gbσ = Fbσ, and δψ is the deviation of ψ in the standard cold dark matter only model M0 from

M1, i.e. δψ = −ψ0.

As a simple first example, we consider a toy-model Universe in which the only relative con-

tribution is b+. Figure 9 compares the “true” power spectrum, P1(k), assuming b+ = 5, with

best fits to the power spectrum in a dark matter only universe P0(k), described by the model

parameters M0, where the values of α, b1, b2 are shifted from their true values according to Equa-

tion 5.3. Different values of the maximum wave number kmax included in the Fisher calculation
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Figure 11. Constraints on b+ and c− in our fiducial setup if only each respective parameter can be varied

(black), and if all relative parameters are simultaneously marginalized over (red). Notably, when the full

model is taken into account detecting the relative velocity effect (c−) will require up to ten times more

signal to noise.

are shown with different lines. For kmax = 0.1hMpc−1, we find a significant departure in phase

between the two models, compared to higher limiting wavenumbers, as evident from the phase of

the residual in the bottom panel. Beyond kmax = 0.15hMpc−1 there are sufficient BAO wiggles

that the phase of the residuals are essentially locked. We caution that the same exercise repeated

with both matter and relative terms in the Zeldovich approximation can lead to wide swings in

the BAO scale δα as a function of kmax. This can be understood as follows: at k & 0.1hMpc−1,

b+ contributes both oscillatory behavior and a broadband shape identical to the total matter

component. The latter is essentially an amplitude change and can be roughly cancelled by a

shift δbm, which it is thus fixed independently of kmax. This then requires δα to shift with kmax

as more oscillations are included until the oscillations in r+ relative to m+ are damped at large

k (Figure 2). This broadband effect is ameliorated by including nonlinear terms for BAO mea-

surements, but the partial degeneracy of b+ with the power spectrum amplitude likely implies

that ignoring two-fluid effects may affect measurement of the amplitude of the power spectrum

(though this effect will also be partially mitigated by redshift-space distortions).

The same formalism can be applied to more realistic bias models. In the upper left panel of

Figure 10 we consider the case when the observed power spectrum contains nonzero values b±
and c− = 0, and forecast the shifts in α due to the wrong assumption of b± = 0. Due to the

small size of the b− contributions (see Figure 4), we expect shifts in BAO inferred distances to be

dominated by b+, and this is indeed what we find, contours of constant δα are almost independent

of b− even when |b−| = 10. On the other hand, we see that values of b+ ∼ 5 shift the measured

α by up to 0.4%, close to half of the error on α expected when using M0.

However, the physics behind the relative components is quite well understood and can be

easily included in Fisher forecasts or power spectrum analyses. Indeed, as seen in Figure 8, the

templates for the various relative biases and α have distinct shape and could be distinguishable

depending on the noise level of the measurements. The upper right plot in Figure 10 shows the
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increase in σα induced by marginalizing over b± in universes where b± and bv are not necessarily

nonzero 5. The total loss of constraining power is modest, with less than 10% worse error bars

even after marginalizing over two extra parameters. In both the computations of the shifts in α

and the increase of σ(α), the volume of the survey does not enter, and the final results depend

only on the shot noise levels.

In the lower set of plots in Figure 8, we repeat the same exercise described above including c−
as an extra free parameter. Since b− is irrelevant for the final results we set it to zero (but still

marginalized over it). We find that b+ and c− are anti-correlated, with larger shifts compared

to the b± case, but δα/α ≤ 0.5% in all cases. Marginalizing over the extra parameter c− results

in a 20-30% increase in σ(α), which is still benign for BAO constraints. Our results therefore

advocate for the implementation of relative component biases, at least of b+ and c−, in standard

BAO data analysis of the galaxy power spectrum or correlation function.

Finally, in Figure 11 we investigate the detectability of the two-fluid effects in the same setup.

On their own, both b+ and c− become 1σ detectable at the upper end of our explored parameter

ranges, shown as the red lines in Figure 11. However, once all three relative bias parameters

are marginalized over, the black set of curves in Figure 11, neither will be detectable within our

fiducial volumes, with c− in particular at 0.1σ, well out of reach even if all the DESI redshift bins

are combined.

6 Conclusions

The large scale structure of the universe, whose formation is dominated by the dynamics of

gravitational collapse, is one of the premier probes into fundamental physics. At subleading

order, the presence of multiple particle species, broadly categorized into cold dark matter, baryons

and neutrinos, with distinct properties beyond their shared gravitational attraction, can present

additional features in this structure, which will become increasingly important as future surveys

push to higher precision. In particular, relative perturbations between baryons and cold dark

matter are prominent at the same scale as baryon acoustic oscillations and have the potential to

cause systematic biases in future BAO measurements.

In this paper, we develop the Lagrangian formalism to calculate the clustering of biased tracers

in the presence of multiple fluids, focusing specifically on the two-fluid scenario with dark matter

and baryons. The Eulerian description of two-fluid dynamics has been studied extensively in the

past and we make contact with previous work as appropriate throughout the text. LPT includes

an automatic resummation over long-wavelength bulk flows and is thus able to accurately capture

the shape of BAO features for biased tracers. In addition, LPT naturally maps bias terms from

their initial Lagrangian positions to advected Eulerian positions, in contrast to Eulerian theory

in which advective terms must be put in by hand, thereby simplifying the treatment of bias as

responses to linear initial perturbations.

The presence of two fluids introduces terms beyond those encountered in traditional single

fluid cosmological perturbation theory, with modifications in both the bias expansion and tracer

advection. In the former, the generalized Galilean invariance that restricted the bias to contain

5The nonzero b±,v produce shifts in the measured α, bm when using M0, which must be taken account when

computing σα. To first order, the shifted Fisher matrix is given by F0.
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only second derivatives of the gravitational potential in the single fluid case, allows terms includ-

ing relative overdensities and velocities between different species. In the latter, initial relative

displacements between various species are preserved under free fall and present an additional

source of bias. Large scale non-gravitational forces such as Compton drag induced by the CMB

can introduce additional corrections. We formulate modifications to tracer bias and advection

in terms of three initial modes, constants of motion in the linear equations of motion, which

roughly correspond to the initial total-matter displacement field and the relative displacement

and velocity fields between dark matter and baryons.

We explicitly calculate the galaxy auto-power spectrum in the Zeldovich approximation within

this formalism. Cross correlations between the relative modes introduce eight terms linear in

the power spectrum—however, those quadratic in the relative component are suppressed by

four orders of magnitude relative to the single fluid terms at low redshifts relevant for the next

generation of galaxy surveys. Comparing to the Eulerian result explicitly to first order in the

power spectrum, we find that the Eulerian relative component bias corresponds to linear mixtures

of the Lagrangian bias, with modifications to the tracer advection entering both the Eulerian

relative overdensity bias and the Eulerian relative velocity divergence bias. We then take up the

calculation of cross spectra, finding a large scale damping due to an IR noncancellation in the

relative component that is nonetheless negligibly small on perturbative scales. We also briefly

discuss higher order corrections to the equations of motion in the presence of two fluids from

an effective theory point of view, and perform an example one loop calculation for the relative

velocity effect (∝ v2
r).

We conduct an exploratory analysis into whether two-fluid effects can cause systematic biases

in measurements of the BAO scale. Taking the example of DESI ELGs at z = 1.25, we show

that while ignoring two-fluid effects can lead to systematic shifts in the measured BAO scale as

large as half a sigma, properly marginalizing over these effects induces less than ten percent loss

in precision for a wide range of bias values. Since the scale dependence of the underlying physics

is well understood, these results advocate for including two-fluid terms at linear order in future

analyses. The dominant relative bias term (∝ b+) does not fall quadratically with the growth

factor like the total-matter contributions, and we therefore expect the relative bias signal as a

fraction of total power to scale with redshift asD−1+ (z) and become proportionally more significant

for surveys (such as the proposed Stage II 21-cm survey [5]) at higher redshifts. Studies of more

highly biased tracers such as DESI quasars [2], for which the total-matter contributions are

correspondingly larger, will on the other hand be less influenced by the relative bias for similar

reasons.

While the Lagrangian picture is a natural playground for their study, in this paper we have

opted not to study redshift space distortions (RSD). We note, however, that of the two relative

components, r+ is dominant but stationary while r− is so small as to be essentially negligible—

two-fluid impacts should thus have a relatively small impact on RSD. However, as noted in the

previous section, since the dominant relative component contribution b+ is somewhat degenerate

with the overall power spectrum amplitude, it is possible that two-fluid effects could hinder the

accuracy of fσ8 measurements beyond the percent level. We will return to this issue in future

work.
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A Redshift dependence and size of the of bias parameters

The bias expansion in Equation 3.5 has an implicit dependence on the initial redshift zi that

must be taken into account to reach consistent conclusions. Since the initial conditions mix

at most linearly, no information can be lost by choosing one initial time τi over another; for

example, the sensitivity of halos to the relative velocity divergence after reionization, which

contains a contribution from the total matter overdensity (Eq. 2.9), can be directly accounted

for by calibrating the bias parameter for δm at an earlier redshift.

As a simple example we consider the redshift dependence of the relative components in the

sourceless (Fb = 0) case. If we set our initial time at τ ′i instead of τi we will get

Ψr(τ) =
(
− r+ + r−Dr(τ

′
i , τi)

)
+ r−Dr(τ, τ

′
i) ≡ −r′+ + r′−Dr(τ, τ

′
i). (A.1)

Re-expanding Fg at τ ′i thus yields

Fg(q) = b1δm + b′+∇ ·
(
r+ − r−Dr(τ

′
i , τi)

)
+ b′−∇ · r′− + ... (A.2)

Since b′ and b apply to the same field configurations at different times, they must yield the same

initial overdensity Fg — this requirement can be satisfied by enforcing the differential equations

db+
dτ

= 0,
db−
dτ

=
b+
a(τ)

. (A.3)

Intriguingly, the presence of a relative overdensity bias can “generate” a relative velocity bias

at later times. This can be understood as follows: the relative overdensity at late times is a

linear combination of the relative overdensity and velocities at earlier times. Similar, though

more complicated, versions of this relation hold when Fb ∝m+, in which case mixing of all three

initial fields must be taken into account.

B Beyond Linear Order

B.1 Equations of motions

In this appendix we derive the equations of motion beyond linear order in the two-fluid scenario,

and show that the nonlinear contribution of r± to the total-matter component are quadrati-

cally suppressed, and that the nonlinear relative component is always sourced by at least one

component of r±.
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The Lagrangian equations of motion at higher order can be found by taking the real-space

divergence of both equations in 2.3. To do so we make use of the identities

1 + δa(x, t) =
∣∣∣∂xa
∂q

∣∣∣−1 = J a(q, t)−1 (B.1)

∇xa · V =
[∂xa
∂q

]−1
ij

∂Vi
∂qj

=
[
δij + Ψa

i,j

]−1
Vi,j , (B.2)

where the negative powers in the second line denote matrix inverses, to account for the coordinate

transformations between Lagrangian coordinates q and the fluid trajectories for each species

xa = q+ Ψa, as well as the standard matrix identities (I +A)−1 = I −A+A2−A3 +O(A4) and

det(I + A) = 1 + Tr[A] + 1
2(Tr[A]2 − Tr[A2]) + O(A3). We will neglect the effects of Compton

drag, which affects the relative displacement at a few percent level even at late times and on

linear scales and thus enter into our final power spectra at the same order of magnitude as the

relative component squared, and assume potential flow.

The above equations imply that the Lagrangian equations of motion for the fluid displacements

of a species a at nth order takes the generic form

DΨ
(a,n)
i,i = −

n−1∑
m=1

F (a,n−m)DΨ(a,m) +
3

2
H2Ωm

∑
a′

wa′
(J − 1

J

)(a′,n)
, (B.3)

where the superscript (a, n) denotes the species and order of each term, the derivative operator

D is defined such that DX = X ′′+HX ′, and the F (a,n)’s are kernels composed of displacements

of the species a at order n and below. Switching to the total matter and relative components,

we have

DΨ
(m,n)
i,i = −

∑
a′

wa′
n−1∑
m=1

F (a′,n−m)DΨ(a′,m) +
3

2
H2Ωm

∑
a′

wa′
(J − 1

J

)(a′,n)
(B.4)

DΨ
(r,n)
i,i = −

(
n−1∑
m=1

F (c,n−m)DΨ(c,m) −
n−1∑
m=1

F (b,n−m)DΨ(b,m)

)
. (B.5)

We can derive some elementary properties of these equations without solving for their particular

forms using symmetry arguments. Noting that the RHS of B.4 is symmetric under species

index exchange (b ↔ c) while B.5 is antisymmetric, we can conclude that (1) the first relative

contribution to the total matter EOM at each order must be of order O(r2±), and all subsequent

contributions suppressed by further even powers of the linear relative component and (2) the

relative component is always sourced by at least one power of r±, since the total matter component

is even under this swap while the relative component is even. Note that (1) implies that the

dynamics of the total-matter displacement are affected by the relative component only at the

percent-of-a-percent level, and (2) implies that the nonlinear relative displacement is never less

suppressed in r± than the linear solution.. A similar result occurs in Eulerian theory, as described

in [15].
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For completeness, the explicit second and third order equations of motion for the relative

component are, up to first order in the linear relative perturbation

DΨ
(r,2)
i,i =Ψ

(r,1)
j,i DΨ

(m,1)
i,j

DΨ
(r,3)
i,i =Ψ

(r,1)
j,i DΨ

(m,2)
i,j + Ψ

(m,1)
j,i DΨ

(r,2)
i,j + Ψ

(r,2)
j,i DΨ

(m,1)
i,j

−
(
Ψ

(r,1)
j,k Ψ

(m,1)
k,i + Ψ

(m,1)
j,k Ψ

(r,1)
k,i

)
DΨ

(m,1)
i,j , (B.6)

which are in-line with the symmetry arguments outlined above. The equations of motion for

the total matter component at second and third order can be similarly verified to be simply the

equations of motion in the one-fluid case to this order in the relative component.

B.2 Biasing at second order

Below we list all contributions to the bias expansion up to second order in the initial fields

omitting derivative corrections:

Fg = b1δm + bδrδr + bθrθr

+
1

2
b2δ

2
m + bs2sijsij + bδmδrδmδr + bδmθrδmθr + bvr∂δm(vr)i ∂iδm + bs ∂v∂i(vr)jsij

+ bv2rv
2
r + .... (B.7)

In the main body of this paper we consider relative bias terms up to first order in the power

spectrum, since even these represent only percent level effects, with the exception of the relative

velocity effect ∝ v2
r , which has a distinct scaling. As noted in the text, we note that the presence

of Compton drag can introduce additional terms due to loss of gauge redundancy; we refer readers

to the extensive discussion in [17].

C Relative Velocity Bias Terms

In this appendix we provide details for the contributions of the relative velocity bias bv2 at

O(P 2) to the galaxy power spectrum. These contributions require the calculation of two new 2-

point functions, the one-loop correlation between matter displacements and the squared relative

velocity, and the correlation function between the shear field sij and the relative velocity. We

describe these in turn.

The second order solution to the total-matter displacement (correct up to first order in the

relative component) is given by

Ψ
(2)
i (k) =

1

2

3

7

i ki
k2

∫
d3p

(2π)3

[
1−

((k − p) · p
|k − p||p|

)2]
δm,0(p) δm,0(k − p), (C.1)

and more simply the “normalized” relative velocity at first order is given by

r−,i(k) =
−i ki
k2

(
∇ · r−

)
(k). (C.2)
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From this we can calculate the two-point function

〈Ψ(2)(q) r2−(0)〉 =
3

7

∫
d3k

(2π)3
eik·q

(−i ki
k2

) d3p

(2π)3[
1−

((k − p) · p
|k − p||p|

)2] p · (k − p)
p2(k − p)2

Pδm∇r−(p)Pδm∇r−(k − p), (C.3)

which can be simplified to give

〈Ψ(2)(q)v2r,0(0)〉 = q̂

∫
d3k

(2π)3
eik·qQv2(k), (C.4)

where the kernel is defined as

Qv2(k) ≡ 3

7

∫ ∞
0

dr Pm−(kr)

∫ 1

−1

dx

4π2
r (x− r)(1− x2)
(1 + r2 − 2rx)2

Pm−(k
√

1 + r2 − 2rx). (C.5)

Next, the shear-velocity correlation function W s−
ijk is given in Fourier space by

W s−
ijk (q) = i

∫
d3k

(2π)2
eik·q

(
kikjkk
k4

− 1

3
δij
kk
k2

)
Pm−(k) ≡ W̃ s−

ijk (q)− 1

3
δijU

m−
k (q). (C.6)

where in the last equality we have split W s−
ijk into a totally-symmetric piece and a familiar piece

proportional to Um−. The former can be decomposed into scalar components

W̃ s−
ijk (q) = A(q) q̂iq̂j q̂k + B(q) (q̂iδjk + q̂jδki + q̂kδij), (C.7)

with the scalar components defined as spherical Bessel transformations:

A(q) =

∫
dk k

2π2
j3(kq) Pm−(k) (C.8)

B(q) = −
∫
dk k

2π2
1

5

(
j1(kq) + j3(kq)

)
Pm−(k). (C.9)
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