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Abstract. In an infinite dimensional Hilbert space we consider a family of commuting
analytic vector fields vanishing at the origin and which are nonlinear perturbations of
some fundamental linear vector fields. We prove that one can construct by the method
of Poincaré normal form a local analytic coordinate transformation near the origin trans-
forming the family into a normal form. The result applies to the KdV and NLS equations
and to the Toda lattice with periodic boundary conditions. One gets existence of Birkhoff
coordinates in a neighborhood of the origin. The proof is obtained by directly estimating,
in an iterative way, the terms of the Poincaré normal form and of the transformation to
it, through a rapid convergence algorithm.

1. Introduction

In a Hilbert space H, consider a family {X i} of (germs of) analytic vector fields defined
in a neighborhood of a common singular point, say the origin. We assume that they are
pairwise commuting with respect to the Lie bracket. Consider the Taylor expansion

(1.1) X i = Ei + F i

of the fields at the origin, with Ei the linear part. It is known since Poincaré, that, in
finite dimension, each one of these vector fields can be transformed, by a formal change of
variables T̂i into a Poincaré normal form X̂ i = (T̂i)∗X i := DT̂i(T̂ −1i )X i(T̂ −1i ). By definition,

it means that the Lie bracket [Ei, X̂ i] = 0 vanishes. We then say that T̂i normalizes Xi.
Since the family is Abelian, i.e. [X i, Xj] = 0 for all i, j, then one can show that there is a

single T̂ that normalizes simultaneously the X i’s in the sense that [Ei, T̂∗Xj] = 0, for all
i, j.

In the same spirit, if H is a symplectic space, one can study a family {Hi = Hi
2+h.o.t} of

(germs of) analytic Hamiltonian functions which are higher order perturbations of quadratic
Hamiltonians Hi

2 and which are pairwise commuting with respect to the Poisson bracket

associated to a symplectic form ω. The normal forms of the Hamiltonians T̂ ∗Hi := Hi ◦ T̂
are then called Birkhoff normal form. We have {T̂ ∗Hi,Hj

2} = 0 for all i, j and T̂ is a

formal symplectomorphism, i.e. T̂ ∗ω = ω.
A classical and fundamental problem in dynamics is to know under which assumption

the normalizing transformation is not only formal, but also analytic. The motivation is to
understand on the normal forms themselves many dynamical and geometrical properties
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which are not tractable directly on the original system. For instance, an analytic differential
equation of the form ẋ = 2x + f(x, y); ẏ = y + g(x, y) with f, g vanishing at order ≥ 2 at
the origin is analytically conjugate to ẋ = 2x + αy2; ẏ = y for some number α. It is very
easy to describe completely the dynamics of the latter system, while it is almost impossible
to do it directly for the former.

In finite dimension, J. Vey proved two distinct results on this problem. On the one hand,
he considered in [Vey78] a family of n commuting Hamiltonian vector fields in C2n, whose
linear parts are linearly independent. On the other hand, he considered in [Vey79] a family
of n − 1 commuting volume preserving vector fields in Cn whose linear parts are linearly
independent. In both cases, he proved the existence of an analytic transformation to a
normal form of the family near the origin. A byproduct of Vey Theorem for Hamiltonian
systems is the (local) existence of Birkhoff coordinates, namely a sort of Cartesian action
angle variables which are regular until the equilibrium point. In the Hamiltonian case, H.
Ito [Ito89, Ito92] improved the results by essentially removing the condition of independence
of the linear parts. N. T. Zung [Zun05, Zun02] generalized Vey’s Hamiltonian approach by
considering m ”linearly independent” vector fields having n−m ”functionally independent”
analytic first integrals in Cn. He proved there the convergence of the transformation to
normal forms. All these results have been unified in [Sto00, Sto05] (see also [Sto08]):
it is proved that if the formal normal form of the family has a very peculiar structure
(called ”completely integrable”), and if the family of linear parts does not have ”bad
small divisors”, then one can normalize analytically the family through a Newton scheme
that simultaneously normalizes all the vector fields. One of the key points connecting
the previous results with the later is that, preserving a structure such as a symplectic or a
volume form, automatically implies that the formal normal form of the family is ”completely
integrable”.

The approach of [Sto00, Sto05] is similar in spirit to the one by H. Rüssmann [Rüs67]
and A.D. Brjuno [Bru72] who, in the case of a single Hamiltonian, proved convergence of
the normal form in the case where the formal Birkhoff normal form has the very special
form F̂ (H2), with a formal power series F̂ (E) = E + h.o.t of the single variable E (a
different proof of the same result, avoiding superconvergence has been given in [LM98], by
developing the methods of [GL97]).

In the infinite dimensional case the situation is much more complicated, the reason
being that even homogeneous polynomials are defined through an infinite series, therefore
even defining the formal normal form can be nontrivial. For this reason, even finite order
normalization is far from trivial and only partial results are known [Nik86, Bam05].

Even in the case of integrable Hamiltonian systems, there are not general results ensuring
the existence of action angle coordinates, but only a quite general technique to introduce
variables of this kind. This technique is due to Kappeler and coworkers [BBGK95, KP03,
HK08, GK14, KLTZ09]: the idea is to consider the square of the spectral gaps associated
to the Lax pair and to use them as the complete sequence of integrals of motion needed to
apply Arnold Liouville procedure[Arn76]. Then, one still has to regularize the singularity
at the origin of action angle variables, and thus one gets the Birkhoff coordinates.

A generalization of a part of Vey theorem to infinite dimension Hamiltonian systems
has been obtained by Kuksin and Perelman [KP10]. Such a result ensures that if one is
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able to construct a noncanonical set of coordinates Ψj, such that |Ψj|2 pairwise Poisson
commute, then one can introduce the Birkhoff variables. However, the construction of the
coordinates Ψj is far from trivial and has to be performed case by case.

The aim of the present article is to devise a normalizing scheme for an infinite sequence
of pairwise commuting analytic vector fields on some (infinite dimensional) Hilbert space.
We consider a sequence of commuting vector fields of the form (1.1) which are analytic in
a neighborhood of the origin and enjoy a suitable summability property; we assume that
the linear parts Ei of the vector fields are diagonal, enjoy a summability property and a
further property that we call to be ”small divisor free”. We first prove that the system can
be put in normal form at any order, then we prove that, if the normal form has a special
form, namely it is completely integrable, then the transformation of the family to a normal
form is convergent in a neighborhood of the origin.

Our goal is to finally apply our result to some concrete PDE. Indeed, we prove that
it can be applied to some integrable Hamiltonian PDEs, including KdV and NLS. As a
byproduct we get existence of Birkhoff variables near the origin for these equations. The
application to the Hamiltonian case is obtained by considering the sequence of Hamiltonians
{Hi} given by the square of the spectral gaps of the Lax operator, then the corresponding
Hamiltonian vector fields {X i := XHi} pairwise commute and fulfill our assumptions.
Furthermore, as in finite dimension, the fact that all the X i’s are Hamiltonian implies that
their formal normal form is ”completely integrable” (see Definition 2.15 below). Actually
our Hamiltonian application is done by proving that the hypotheses of Kuksin Perelman’s
theorem (as generalized in [BM16, Mas18]) imply our assumptions.

We emphasize that at present we are not able to use as starting points for our construction
the ”Hierarchies of integrable PDEs” such as defined in [Mag78, Tre01, Dic03] since they
do not have the good analyticity properties that we need.

We also emphasize that, while Kuksin-Perelman’s and Kappeler’s approaches are in-
trinsically based on Hamiltonian techniques, in principle our result is applicable also to
non Hamiltonian systems. Unfortunately, at present our only concrete applications are to
integrable Hamiltonian PDEs,

From the technical point of view, we point out that, in order to work in the present
infinite dimensional context, we have to face several difficulties: the first one is to find a
norm suitable to measure the size of a family of analytic vector fields, and the second one
is the Lemma 5.3 which allows us to estimate the solution of the “perturbed cohomological
equation” without any small divisor problem. The last difficulty are located in Lemmas
3.1 and 3.2, which allow us to estimate the remainder and flows.

We expect that our technique can be generalized to the case of systems with other
symmetries such as preserving other structures, e.g. a volume form or being reversible.
Here we did not develop this because we are not aware of meaningful examples to which
such a theory would apply.

We recall that it is known how to put a system in normal form up to some reminder in
a neighborhood of a nonresonant fixed point (see e.g. [Bam03, BG06, BDGS07, Bam08]),
under some assumptions on the small divisors and on the structure of the nonlinearity,
however the technique we use here is completely different from the one of these papers, and
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we do not think that the ideas of those papers, applied to integrable PDEs could lead to
the convergence result that we prove here.

Finally we remark that normal form results are often a fundamental starting points for
studying the stability of perturbed integrable PDEs (see e.g. [KP03, MP18, BKM18]).
Acknowledgments. We thank Michela Procesi for many discussions. We acknowledge the
support of Università degli Studi di Milano and of GNFM.

2. Main results

2.1. Families of normally analytic vector fields. Having fixed two sequences of weights

w
(2)
j ≥ w

(1)
j > 0, j ≥ 1, we define the Hilbert spaces H = `2

w(1) and H+ := `2
w(2) where `2

w(n)

is the Hilbert spaces of the complex sequences z := {zj}j∈Z∗ , Z
∗ := Z− {0} s.t.

(2.2) ‖z‖2w(n) :=
∑
j∈Z∗

w
(n)
|j| |zj|

2 <∞ .

In the following we will denote the norms simply by ‖z‖ := ‖z‖w(1) , and ‖z‖+ := ‖z‖w(2) ,
and by Br ⊂ H the open ball in H centered at the origin and having radius r. Furthermore,
we will denote by e := {~ej}j∈Z∗ the vectors with components (~ej)k ≡ δj,k, the Kronecker
symbol.

Let Q ≡ (..., q−k, ..., q−1, q1, ..., qk, ...) ∈ NZ∗ be an integer vector with finite support, then
we write

zQ := ...z
q−k
−k ...z

q−1

−1 z
q1
1 ....z

qk
k ..., |Q| :=

∑
k∈Z∗
|qk|.

Let U ⊂ H be a neighborhood of the origin in H, and let X : U → H+ be an analytic
vector field, then it can be expanded in series

(2.3) X(z) =
∑
k≥0

∑
i,|Q|=k

XQ,iz
Q~ei , XQ,i ∈ C

or simply

(2.4) X(z) =
∑
i,Q

XQ,iz
Q~ei ,

(and the series converge in any ball Br ⊂ U). The vector field Xk :=
∑

i,|Q|=kXQ,iz
Q~ei

is a homogeneous polynomial vector field of degree k, it is often called the homogeneous
component or part of (the Taylor expansion at the origin of) X.

In the following we will denote by X (U , H+) the space of the vector fields analytic in U
with values in H+.

Definition 2.1. We will say that a vector field X (U , H+) is O(M) if ∀k < M its Taylor
components Xk vanish identically.

Remark 2.2. If limj→∞
w

(1)
j

w
(2)
j

= 0, then a vector field in X (U , H+) is smoothing. The use

of such vector fields, which, as shown for the first time in [KP10] actually occur in the
theory of integrable equations will allow to obtain a result according to which the coordinate
transformation putting the system in normal form is actually a smoothing perturbation of
the identity. This is sometimes useful in the applications.
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Let X ∈ X (U , H+) be a analytic vector field, and consider the vector field

(2.5) X(z) :=
∑
Q,i

|XQ,i|zQ~ei ,

which in general is defined only on a dense subset of U .

Definition 2.3. Let X ∈ X (U , H+) be an analytic vector field vanishing at the origin. We
shall say that X is normally analytic in a ball of radius r if X ∈ X (Br;H

+), namely it is
analytic in a ball of radius r. In this case we will write X ∈ Nr.

Remark 2.4. Definition 2.3 immediately extends to the case of applications from H to a
general Banach space. In particular we will use it in Subsection 2.3 for the case where the
target space is the space B(H,H+) of bounded linear operators from H to H+.

Remark 2.5. If X is a (non homogeneous) polynomial, then, it is analytic in an open set
U , if and only if it is analytic in the whole H. Thus, in particular, if a polynomial vector
field X ∈ Nr, for some r > 0 then X ∈ Nr ∀r > 0.

In what follows, all analytic vector fields will be considered as defined in a neighborhood
(precised or not) of the origin of H with values in H+.

A norm on Nr is given by

(2.6) ‖X‖r := sup
‖z‖≤r

‖X(z)‖+ .

Let X, Y be normally analytic vector fields. We shall say that Y dominates X and we
shall write X ≺ Y , if |XQ,i| ≤ |YQ,i| for all indices.

Remark 2.6. In particular, if X ≺ Y , then ‖X‖r ≤ ‖Y ‖r for any positive r.

Definition 2.7. A family F = {F i}i≥1 of normally analytic vector fields will be said to be
summably analytic if the vector field

(2.7) F :=
∑
i

F i

is normally analytic in a ball of radius r, i.e. F ∈ Nr. In this case we will say that
F ∈ NF r.

Remark 2.8. Writing

F i(z) =
∑
Q,j

F i
Q,jz

Q~ej ,

one has

(2.8) F(z) =
∑
Q,j

(∑
i

∣∣F i
Q,j

∣∣) zQ~ej ,
so that, for any r > 0, the norm ‖F‖r bounds the norm of each one of the vector fields of
the family, that is ‖F i‖r ≤ ‖F‖r.
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2.2. Normal forms. Consider the family E = {Ei}i≥1 of linear diagonal vector fields

(2.9) Ei =
∑
j∈Z∗

µijzj~ej

Definition 2.9. We shall say that E is summable if

(2.10) sup
j

∑
k

∣∣µkj ∣∣ <∞ .

Remark 2.10. In such a case, the vector field E =
∑

j∈Z∗
∑

k

∣∣µkj ∣∣ zj~ej, is well defined and

analytic as a map from H to H. Since, if
w

(2)
j

w
(1)
j

→∞ such a map is not analytic as a map

taking values in H+, then E is not summably analytic.

Definition 2.11. We shall say that E is locally finitely supported if the support of
each Ei intersects only a finite number of supports of the Ej’s, that is, for any fixed j there
exist at most finitely many values of i such that µij 6= 0.

In order to define the normal form transformation, one has to solve the so called co-
homological equation. Precisely, given a family of homogeneous analytic vector fields
F = {F i}i≥1, one has to determine U such that

(2.11) [Ei, U ] = F i ,

furthermore we are interested in the case where the vector fields X i := Ei + F i commute,
namely [X i;Xj] = 0 ∀i, j, which implies

(2.12) [Ei, F j] = [Ej, F i], i, j ≥ 1.

This justifies the following definition:

Definition 2.12. A family F = {F i}i≥1 of normally analytic polynomial vector field is
called a cocycle with respect to the family E = {Ei}i≥1, if it satisfies (2.12)

Let F be a cocycle and write

F j =
∑
Q,i

F j
Q,iz

Q~ei,

Then equation (2.12) reads,

(2.13)
(
(Q, µi)− µil

)
F j
Q,l =

(
(Q, µj)− µjl

)
F i
Q,l , ∀Q, i, j s.t. F j

Ql 6= 0 .

In turn, this implies, provided the two denominators are both different from zero

F j
Q,l

(Q, µj)− µjl
=

F i
Q,l

(Q, µi)− µil
.

This formula essentially ensures that one function U solves all the equation (2.11) simul-
taneously. The solution of the equation (2.12) requires the computation of the above
quantities, the idea is to select, for any Q, l the index i corresponding to which the divisor
does not vanish.

This justifies the following definition :
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Definition 2.13. The family E = {Ei} of linear vector field is said be small divisors
free if there exists a positive constant c, such that for each Q ∈ NZ∗ with |Q| ≥ 2 and

j ≥ 1, there is i(Q, j) ≥ 1 such that |(Q, µi(Q,j))− µi(Q,j)j | > c−1, unless (Q, µi) = µij for all
i.

In order to state our main theorem we still need a couple of definitions.

Definition 2.14. An analytic vector field X (resp. a family X = {Xj}j≥1) is said be a
normal form with respect to E if [Ei, X] = 0 for all i ≥ 1 (resp. [Ei, Xj] = 0 for all
i, j ≥ 1).

Definition 2.15. A family of normally analytic vector fields X := {Xj}j≥1 in normal
form is said to be completely integrable w.r.t. E := {Ei}i≥1 if it can be written
as X i =

∑
j≥1 aijE

j where aij are normally analytic functions, invariant w.r.t E, i.e.

Ei(aj) = 0, for all i, j ≥ 1.

Remark 2.16. In finite dimension, say R2n, let us consider an single analytic Hamiltonian
H = H2 + H3 + · · · which is an higher order perturbation of the quadratic Hamiltonian
H2 =

∑n
i=1 λi(x

2
i + y2i ). It is a (Birkhoff) normal form if H = F (x21 + y21, . . . , x

2
n + y2n).

This normal form is completely integrable w.r.t. H2 if H = F (H2) = F (
∑n

i=1 λi(x
2
i + y2i )).

On the other hand, a n-commutative family {H1, . . .Hn} of such Hamiltonians, with a
resonance free, linearly independent family quadratic parts H2 := {Hi

2} is also completely
integrable w.r.t H2 (see for instance [Sto00, Sto05, Zun05]).

The first result of this paper is the following theorem, which is just the extension to
the present context of Poincaré Dulac normal form theorem which is well known in fi-
nite dimensions. We recall that in infinite dimensions, some formulations are also known
[Bam05, Nik86], but a general result is not available, and it is not expected to hold.

Theorem 2.1. Let E = {Ei}i≥1 be a summable family of linear diagonal vector fields (see
Definition 2.11). Consider a family of analytic vector fields of the form

(2.14) X i = Ei + F i , i ≥ 1 .

Assume that

0. the family of linear vector fields E is small divisor free.
1. the family F ≡ {F i}i≥1 is summably analytic,
2. there exists c0 s.t. for r0 small enough, one has ‖F‖r0 ≤ c0r

2
0

3. [X i;Xj] ≡ 0, ∀i, j.
Then, ∀k, there exist constant rk > 0, ck, a neighborhood Uk ⊃ Brk of the origin and an
analytic coordinate transformation Tk : U → H s.t.

(2.15) Tk∗X i = Ei +N i
k +O(k + 1) , ∀i ≥ 1 ,

where NF rk 3 Nk ≡ {N i
k}i≥1 is a normal form and is a polynomial vector field of degree

≤k.
Furthermore, ∀r < rk the following estimates hold:

i. ‖Nk‖rk ≤ ckr
2,

ii. sup‖z‖≤rk ‖z − Tk(z)‖+ ≤ ckr
2
k.
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Our main result is the following theorem

Theorem 2.2. Under the assumptions of Theorem 2.1, assume furthermore that family E
is locally finitely supported (see Definition 2.11) and that ∀k the partial normal form N i

k is
completely integrable w.r.t. E.

Then there exist constants r∗ > 0, c2, c3, a neighborhood U ⊃ Br∗ of the origin and an
analytic coordinate transformation T : U → H s.t.

(2.16) T∗X i = Ei +N i , ∀i ≥ 1 ,

where NF r∗ 3 N ≡ {N i}i≥1 is a completely integrable normal form w.r.t. E.
Furthermore, ∀r < r∗ the following estimates hold:

i. ‖N‖r ≤ c2r
2,

ii. sup‖z‖≤r ‖z − T (z)‖+ ≤ c3r
2.

Remark 2.17. From the proof it is clear that if one endows the Hilbert space by the
symplectic structure idz−k ∧ dzk the vector fields El have the form

El := −izl~el + iz−l~e−l

and F l are Hamiltonian for any l, then the transformation T is canonical. In the Hamilton-
ian case the normal form is automatically completely integrable, so that the assumptions of
Theorem 2.1 imply the conclusions of Theorem 2.2. If the vector fields are not Hamiltonian,
then the normal form could contain some monomyals which are not completely integrable,
so this is not true.

Remark 2.18. The Hilbert spaces considered can chosen to be more general. For instance,
it could be be spaces of sequences indexed over Zd \ {0}.

The following result considers the extreme case of a sole vector field. In some sense, it
is the infinite-dimensional counter-part of Rüssmann-Brjuno theorem when there are no
small divisors.

Corollary 1. Let E be a single summable linear diagonal vector field. Consider a vector
field X = E + F such that

0. the linear vector field E is small divisor free.
1. the vector fields F is normally analytic,
2. there exists c0 s.t. for r0 small enough, one has ‖F‖r0 ≤ c0r

2
0

Then the same conclusion of Theorem 2.1 holds. Assume also that, ∀k ≥ 2, the normal
form Nk have the form Nk = ak−1E for some polynomial function ak−1 of degree ≤ k − 1
fulfilling E(ak−1) = 0, then the same conclusion of Theorem 2.2 holds. In particular the
normalized vector field has the form

T∗X = (1 + a)E,

with a analytic in Br∗ fulfilling E(a) = 0.

We are now going to give a more precise statement for the Hamiltonian case, showing
in particular that the transformation T introduces Birkhoff coordinates for the integrable
Hierarchy associated to the fields {X i}.
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Thus, in the space H, we introduce the symplectic form idz−k ∧ dzk. Given an analytic
function H ∈ Cω(H,R), we define the corresponding Hamiltonian vector field XH as the
vector field with k-th component

(XH)k(z) := −i(sgnk)
∂H
∂z−k

.

Given also a second function K ∈ Cω(H,R) we define their Poisson Bracket by

{H,K}(z) := dH(z)XK(z) .

It is well known that such a quantity can fail to be well defined, nevertheless in all the
cases we will consider it will be well defined.

Consider now a sequence of analytic Hamiltonians Hi of the form

Hi = Hi
2 +Ki , Hi

2 := ziz−i ,

and Ki having a zero of order at least 3 at the origin.

Corollary 2. Assume that the vector fields X i := XHi fulfill the assumptions of Theorem
2.2, then the coordinate transformation T is canonical. Furthermore, given any analytic
Hamiltonian H with a zero of order 2 at the origin, such that

(2.17) {H,Hi} ≡ 0 , ∀i ≥ 1 ,

one has that H ◦ T −1 is a function of {(zjz−j)}j≥1 only.

Remark 2.19. The smoothness assumption are given on the Hamiltonian vector fields
instead of the Hamiltonian. This is standard, since, in case of weak symplectic forms
(the only one appearing when dealing with partial differential equations) in general the
smoothness of the Hamiltonian does not imply any smoothness property on the field. As
far as we know, the first to remark this fact was Kuksin who was the first to use this kind
of assumptions on vector fields [Kuk87].

Proof of Corollary 2 The proof follows the proof of Corollary 2.13 of [BM16]. First, it is
clear that Ej is the Hamiltonian vector field of Hj

2. Denote H̃ := H ◦ T −1, thus, from the
property that T∗Xj is in normal form one has that

(2.18) [T∗XH, Ej] = X{H̃,Hj2}
= 0 ,

from which {H̃,Hj
2} = cj. However, since both H̃ and H2 have a zero of order 2 at the

origin, the constants must vanish. Expand now H̃ in Taylor series, one has

H̃(z) =
∑
r≥2,

|α|+|β|=r

Hr
α,βz

α
+z

β
− ,

where we denoted z+ := {zj}j≥1 and z− := {z−j}j≥1. Then
{
H̃;Hi

2

}
= 0 imply that, in

each term of the summation, α = β, therefore H̃ is a function of zjz−j only. �
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2.3. Kuksin-Perelman’s Theorem. In this section we recall the Vey type theorem ob-
tained by Kuksin and Perelman in [KP10] (see also [BM16, Mas18]) and prove that it can
be obtained as a corollary of Theorem 2.2.

We come to the assumptions of the Kuksin-Perelman’s Theorem.
Consider an analytic map Ψ of the form

(2.19) Ψ = id +G ,

with G ∈ Nr (with some r > 0) having a zero of second order at the origin. For j > 0
consider also the functions Ij(z) := Ψj(z)Ψ−j(z) and the Hamiltonian vector fields Xj :=
XIj .

Remark 2.20. We recall that the verification of these assumptions was obtained by Kuksin
and Perelman in their paper [KP10] for the KdV equation, and by [BM16, Mas18] for the
Toda lattice and for the NLS equation. It is based on the application of Kato perturbation
theory of eigenspaces to the Lax operator of the system. Some very delicate estimates are
needed.

Assume that the following Hypotheses hold:

(KP1) The functions Ij(z) pairwise commute, namely {Ij; Ik} ≡ 0 for all j, k ≥ 1.
(KP2) the maps dG and dG∗ are analytic as maps from BR to B(H,H+). Here dG∗ is the

adjoint of dG with respect to the `2 metric.

Theorem 2.3. Assume that (KP1) and (KP2) hold, then the same conclusions of Theorem
2.2 and Corollary 2 hold.

Proof. It is enough to show that the assumptions (KP1-KP2) imply the assumptions of
Theorem 2.2 with the fields Xj := XIj . First remark that assumption 3 of Theorem 2.1
follows from (KP1), while assumption of Theorem 2.2 follows from the fact that the fields
X i are Hamiltonian. Assumption 0 of Theorem 2.1 follows from the structure (2.19) of the
function Ψ.

In order to verify assumptions 1, compute explicitly the components of the vector fields
XIl . For k ≥ 1 its k − th component is given by

i (XIl)k = zkδlk +Gkδlk + zl
∂G−l

∂z−k
+Gl∂G

−l

∂z−k
+ z−l

∂Gl

∂z−k
+G−l

∂Gl

∂z−k
;(2.20)

the first term contribute to El, while all the other ones contribute to F l. From (2.20) we
have that the k-th component of F, (k ≥ 1) is given by

Gk +
∑
l≥1

zl
∂G−l

∂z−k
+
∑
l≥1

Gl∂G
−l

∂z−k
+
∑
l≥1

z−l
∂Gl

∂z−k
+
∑
l≥1

G−l
∂Gl

∂z−k
.(2.21)

We have to show that each one of the terms of this expression define the k-th component
of an analytic vector field. For the first term this is a trivial consequence of the fact that
G ∈ Nr. Consider the second term. In order to see that it is analytic we write it in terms of
dG∗. To this end define the involution (Iz)k := z−k and the truncation operator (Tz)k = zk
if k ≥ 1 and zero otherwise. Then the second term of the above expression is the −k-th
component of dG∗(ITz), which belongs to Nr by assumption (KP2). All the other terms
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can be dealt with in the same way getting that assumption 1 is fulfilled. Assumption 2 is
a direct consequence of the fact that G has a zero of order 2 at the origin. �

3. Flow of normally analytic vector fields

In this section we study the flow Φt
U of a vector field U ∈ Nr. This is needed since all

the coordinate transformations we will use are constructed as flows of such vector fields.

Lemma 3.1. Assume that U ∈ Nr for some r > 0 fulfills ε := ‖U‖r <
δ
4e

and let F ∈ NF r
and δ < r. family (Φ−1)∗F ≡ {(Φ−1)∗F i}i≥1 is summably analytic and, defining Si :=

(Φ−1)∗F i − F i and S̃i := (Φ−1)∗F i − F i − [U, F i], one has

(3.22) ‖S‖r−δ ≤
4

δ
‖F‖r ε ,

∥∥∥S̃∥∥∥
r−δ
≤ 8e

δ2
‖F‖r ε

2

Proof. In this proof we will omit the index U from Φ. To start with, we remark that, since
sup‖z‖<r ‖U(z)‖+ ≤ ‖U‖r, ∀ |t| ≤ 1, one has∥∥Φt(z)− z

∥∥ =

∥∥∥∥∫ t

0

U(Φs(z))ds

∥∥∥∥ ≤ ∥∥∥∥∫ t

0

U(Φs(z))ds

∥∥∥∥
+

≤ δ

and therefore z ∈ Br−δ implies Φt(z) ∈ Br i.e. Φt(Br−δ) ⊂ Br (Br denoting the ball in
H of radius r centered at zero). Thus the flow is well defined and analytic at least up to
|t| = 1. By Taylor expanding in t at t = 0, one has

(3.23) (Φ−t)∗F i =
∑
k≥0

tkAdkU
k!

F i ,

where AdUG := [U,G]. To estimate this family remark first that

AdUF
i � DU F i +DF i U =: AAdUF

i .

Summing over i one gets ∑
i

AdUF
i � AAdUF ,

and, by induction on k ∑
i

AdkUF
i � AAdkUF .

Thus we have

(3.24)
∑
i

(
(Φ−1)∗F i − F i

)
�
∑
k≥1

1

k!
AAdkUF .

In order to estimate the r.h.s. remark first that, for any family G ∈ NF r−δ−δ1 (for some
δ, δ1 ≥ 0), we have, by Cauchy estimate

(3.25) ‖AAdUG‖
r−δ−δ1−δ2 ≤

2

δ2
‖U‖r ‖G‖r−δ−δ1 .

Fix now some k ≥ 0, define δ′ := δ/k and look for constants C
(k)
l , 0 ≤ l ≤ k s.t.∥∥AAdlUF

∥∥
r−lδ′ ≤ C

(k)
l .
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Of course, by (3.25) they can be recursively defined by

C
(k)
l =

2

δ′
C

(k)
l−1 ‖U‖r , C

(k)
0 := ‖F‖r ,

which gives

C
(k)
l =

(
2

δ′
‖U‖r

)l
‖F‖r ;

taking l = k this produces an estimate of the general term of the r.h.s. of (3.24):

(3.26)

∥∥∥∥∥AAdkUF

k!

∥∥∥∥∥
r−δ

≤ kk

k!
‖F‖r

(
2

δ
‖U‖r

)k
≤ ‖F‖r

e

(
2e

δ
‖U‖r

)k
,

where we used k! ≥ kke−k+1. Summing over k ≥ 1 or k ≥ 2, one gets the thesis. �
Although the family E is not summably normally analytic, its composition with the flow

has the following remarkable property.

Lemma 3.2. Assume that U ∈ Nr for some r > 0 fulfills ε := ‖U‖r <
δ
8e

with 0 < δ < r;
then the family T ≡ {(Φ−1)∗Ei − Ei − [U,Ei]}i≥1 is summably normally analytic and one
has

(3.27) ‖T‖r−δ ≤
8Cr

eδ

(
4eε

δ

)
ε,

where C > 0 depends only on E.

Proof. We proceed as in the proof of the previous Lemma except that we compute explicitly
the first term of the expansion (3.23).

Since the family E is summable, there exist a positive constant C such that one has
DU E ≺ C(DU(z))z and

∑
i(DE

i)U ≺ CU , so we get (for any δ′ < r),

(3.28)
∥∥∥[U,E]

∥∥∥
r−δ′
≤ C

( r
δ′

+ 1
)
‖U‖r ≤

2Cr

δ′
‖U‖r .

So, by (3.26),

1

(k − 1)!

∥∥AAdkUE
∥∥
r−2δ′ =

1

(k − 1)!

∥∥∥AAdk−1U [U,E]
∥∥∥
r−2δ′

≤ 2Cr

eδ′

(
2e

δ′
ε

)k−1
ε ,

thus∑
k≥2

1

k!

∥∥AAdkUE
∥∥
r−2δ′ ≤

∑
k≥2

1

k

2Cr

eδ′

(
2e

δ′
ε

)k−1
ε ≤ 2Cr

eδ′
ε
∑
k≥1

(
2e

δ′
ε

)k
≤ 2Cr

eδ′
ε2

(
2e

δ′
ε

)
.

Taking δ′ = δ/2 one gets the thesis. �
Finally we need a Lemma on the composition of flows.

Lemma 3.3. Let U1, U2 ∈ Nr be two polynomial normally analytic vector fields. Then, for
any k, ∃Rk+1 ∈ Nr and a polynomial U(k) ∈ Nr which are normally analytic, s.t.

(3.29) Φ1
U1
◦ Φ1

U1
= Φ1

U(k)
+Rk+1 ,

furthermore Rk+1 = O(k + 1).

Its elementary proof is left to the reader.
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4. Proof Theorem 2.1

We start by some terminology.
Let N res be the centralizer of the family E, that is

N res := {F ∈ N | [Ei, F ] = 0, ∀i}

By the definition of E, we have

[Ei, zQ~ej] =

(∑
l≥1

qlµ
i
l − µij

)
zQ~ej =:

(
(Q, µi)− µij

)
zQ~ej.

Hence, any function F ∈ N res is obtained as the (possible infinite) linear combination of
the monomyals zQ~ej for which

(
(Q, µi)− µij

)
= 0 for all i ≥ 1.

Let N nres be the subspace of N generated by monomyals zQ~ej for which
(
(Q, µi)− µij

)
6=

0 for some i ≥ 1.
So, any vector field F ∈ N can be uniquely decomposed as

F = F res + F nres , F res ∈ N res , F nres ∈ N nres .

A vector field F ∈ N res will be called resonant, while a vector field F ∈ N nres will be
called non resonant. When speaking of the vector field U which generates a coordinate
transformation we shall say that it is normalized if U res = 0.

The same notation and terminology will be used also for families of vector fields, and in
such a case we will write NFnres for a nonresonant family, namely a family composed by
nonresonant vector fields and similarly for NF res.

The following lemma allows to solve and estimate the solution ofthe cohomological equa-
tion.

Lemma 4.1. Let Ei be small divisor free. Let B = {Bi} ∈ NF r be a polynomial summably
analytic family of nonresonant cocycles. Then there exists a unique normalized U ∈ Nr
which solves the cohomological equation

(4.30) [Ei;U ] = Bi .

Furthermore, one has

(4.31) ‖U‖r ≤ c ‖B‖r ,

with c the constant in the definition of “small divisor free”.

Proof. Write

Bi(z) =
∑
Q,j

Bi
Qjz

Q~ej , U(z) =
∑
Q,j

UQjz
Q~ej ,

then (cf. (2.13)) (4.30) is equivalent to

Bi
Qj = [(Q, µi)− µij] = UQj .

Since Ei is small divisor free, then, ∀Q, j there exists i = i(Q, j), s.t.∣∣(Q, µi)− µij∣∣ ≥ c−1 ,



14 DARIO BAMBUSI AND LAURENT STOLOVITCH

thus define

U(z) :=
∑
Qj

B
i(Q,j)
Qj

(Q, µi)− µij
zQ~ej

and one has

‖U(z)‖ ≤ sup
x:‖x‖=‖z‖

∥∥∥∥∥∑
Qj

|Bi(Q,j)
Qj |
c−1

xQ~ej

∥∥∥∥∥ ≤ sup
x:‖x‖=‖z‖

c

∥∥∥∥∥∑
iQj

|Bi
Qj|xQ~ej

∥∥∥∥∥ ≤ sup
x:‖x‖=‖z‖

c ‖B(x)‖ .

Theorem 2.1 is an immediate consequence of the following iterative lemma.

Lemma 4.2. Consider a family of vector fields of the form

(4.32) X i
(k) = Ei +N i

k +Ri
k+1 ,

with NF rk 3 Nk = {N i
k} = O(2) a polynomial normal form of degree k, and NF rk 3

Rk+1 =
{
Ri
k+1

}
= O(k + 1). Assume [X i

(k);X
j
(k)] = 0, ∀j, i, and assume that Ei is small

divisor free and summable. Then there exists U(k) ∈ Nrk , which is a homogeneous polyno-
mial of degree k + 1, s.t.

(Φ−1U(k)
)∗X i

(k) = X i
(k+1) ,

with X i
(k+1) fulfilling the assumptions of the Lemma with k + 1 in place of k.

Proof. Let Bi
k+1 be the homogeneous Taylor polynomial of degree k+1 of Ri

k+1 and decom-
pose Bi

k+1 = Bi
nonres + Bi

res; define U(k) as the normalized solution of (4.30) (with Bi
nonres

in place of Bi) and then define

N i
k+1 := N i

k +Bi
res ,

Ri
k+2 := (Φ−1U(k)

)∗(Ri
k+1 −Bi

k+1) +
(

(Φ−1U(k)
)∗Bi

k+1 −Bi
k+1

)
+
(

(Φ−1U(k)
)∗N i

k −N i
k +

(
(Φ−1U(k)

)∗Ei − Ei − [Ei;U(k)]
))

,

then of course (Φ−1U(k)
)∗X i

(k) = X i
(k+1). Furthermore, by Lemmas 3.1, 3.2, the transformed

vector field fulfills the assumptions of the Lemma with k + 1 in place of k. �

5. Proof of the main theorem

In order to prove Theorem 2.2 we will use an algorithm which is different from that of
Lemma 4.2, for this reason we need to know that the normal form we will get through
the new algorithm is completely integrable if the normal form obtained by the previous
algorithm (or any other one) is completely integrable.

Lemma 5.1. Under the assumptions of Theorem 2.1; assume that there exist U ∈ Nr,
Ũ ∈ Nr̃, s.t.

X i
(k) := (Φ−1U )∗X i = Ei +N i +Ri

k+1 ,(5.33)

X̃ i
(k) := (Φ−1

Ũ
)∗X i = Ei + Ñ i + R̃i

k+1 ,(5.34)

with Ri
k+1 = O(k+ 1). Assume that N i is completely integrable, then also Ñ i is completely

integrable.
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Proof. Assume for definiteness that r < r̃ then, by Lemma 3.3, there exists U(k) ∈ Nr s.t.

X i
(k) = (Φ−1U(k)

)∗X̃ i
(k) +O(k + 1) .

First we prove that, if {N j} and {(Φ−1U(k)
)∗N j} are normal forms then [U(k), E

i] = 0 for all

i. From now on we omit the index (k) from U . We have

(Φ−1U )∗N j = N j + [U,N j] +
1

2
[U, [U,N j]] + · · ·

Taking the bracket with Ei and using Jacobi identity, we obtain

[Ei, (Φ−1U )∗N j] = −[N j, [Ei, U ]] +
1

2
[Ei, [U, [U,N j]]] + · · ·

Let Ud0 be lowest order term in the Taylor expansion of U at origin. Then, one has
[Ej, [Ei, Ud0 ]] = 0 for all i, j. Hence, [Ei, Ud0 ] belongs to both the range and the kernel of
the semi-simple map [Ei, .]. Hence, [Ei, Ud0 ] = 0 for all i. Hence, the lowest order term
of [N j, [Ei, U ]] is [Ej, [Ei, Ud0+1]]. On the other hand, since the bracket of resonant vector
fields is still resonant, we have, for k ≥ 2, [Ei, adkU(N j)] = [Ei, adk−1U ([U − Ud0 , N j]) which
is of order ≥ d0 + 1 + (k − 1)(d0 − 1) ≥ 2d0 > d0 + 1. Hence, the lowest order term of
[Ei, (Φ−1U )∗N j] is [Ej, [Ei, Ud0+1]] = 0 and we proceed by induction on the order.

Assume that the the family {N j} is completely integrable. Transform it to another
normal form Ñ j by a transformation ΦU . According to the first point, U commutes with
each Ei. Hence, it commutes with each N i since [U,

∑
j ai,jE

j] =
∑

j ai,j[U,E
j]+U(ai,j)E

j.

On the other hand, Ek(U(ai,j)) = [Ek, U ](ai,j) = 0 for all k. So that

(Φ−1U )∗N i =
∑
j

(
∑
k

Uk(ai,j)

k!
)Ej.

�

5.1. Perturbed cohomological equation. Assume the Abelian family X = {X i} is
normalized up to order m = 2k:

X i = Ei +N i
≤m +Ri

≥m+1.

where N≤m ∈ NFRm is a completely integrable normal form of degree m; we shall write
NF i

≤m = Ei + N i
≤m =

∑
j≥1(δi,j + ai,j)E

j where ai,j are polynomials of degree ≤ m − 1

that are common first integrals of E. Let us Taylor expand Ri
≥m+1 = Bi

≤2m + R̃i
≥2m+1 up

to degree 2m. We shall (mostly) omit the dependence on m in this section. Since X i and
Xj are pairwise commuting, then

0 = [X i, Xj] = [NF i, Bj]− [NF j, Bi]+[NF i, R̃j
≥2m+1]− [NF j, R̃i

≥2m+1]+[R̃i
≥2m+1, R̃

j
≥2m+1].

Therefore, the truncation at degree ≤ 2m gives

(5.35) 0 = J2m([NF i, Bj]− [NF j, Bi]),

where J2m(V ) denotes the 2m-jet of V .

Lemma 5.2. Let B be a nonresonant family and N a completely integrable normal form.
Assume that they fulfill (4.1). Then there exists a unique U normalized (i.e. no resonant
term in expansion) such that for all j one has J2m([NF j, U ]) = Bj.
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Proof. We give here a direct proof although a more conceptual proof involving spectral
sequences can be found in [Sto00][proposition 7.1.1] for the finite dimensional case. For
any integer m+ 1 ≤ k ≤ 2m, the homogeneous polynomial of degree k of eq.(5.35) is

(5.36)
k−m∑
p=1

[NF i
p, B

j
k−p+1] =

k−m∑
p=1

[NF j
p , B

i
k−p+1]

Let us prove, by induction on the integer m + 1 ≤ k ≤ 2m, that there exists a unique
normalized polynomial Vk homogeneous of degree k, such that

(5.37) ∀1 ≤ i, [Ei, Vk] = Bi
k +

k−m∑
p=2

[Vk−p+1, NF
i
p],

that is Jk
(

[NF i,
∑k

p=m+1 Vp]
)

= Jk(Bi).

For k = m + 1, the equation (5.36) leads to [Ei, Zj
m+1] = [Ej, Zi

m+1]. According to the
Lemma 4.1, there exists a unique normalized Vm+1 homogeneous of degree m+1 such that,
for all 1 ≤ i, [Ei, Vm+1] = Zi

m+1.
Let us assume that the result holds for all integers q < k. Let 2 ≤ p ≤ k − m be an

integer, then m+1 ≤ k−p+1 < k. Let us first recall that, by assumptions, [NF i
k, NF

j
k′ ] = 0

for all integers 1 ≤ i, j and 1 ≤ k, k′.
Thus, by Jacobi Identity, we have

[NF i
p, [E

j, Vk−p+1]] = −[Ej, [Vk−p+1, NF
i
p]]

[NF i
p, [Vk−p−q+2, NF

j
q ]] = −[NF j

q , [NF
i
p, Vk−p−q+2]] ∀ 2 ≤ q ≤ k − p+ 1−m

With these remarks as well as (5.37), it follows, by induction, that

[NF i
p, Z

j
k−p+1] =

[
NF i

p, [E
j, Vk−p+1]−

k−p+1−m∑
q=2

[Vk−p−q+2, NF
j
q ]

]

= −[Ej, [Vk−p+1, NF
i
p]] +

k−p+1−m∑
q=2

[NF j
q , [NF

i
p, Vk−p−q+2]]

Since [NF j
q , [NF

i
p, V ]] = [NF i

p, [NF
j
q , V ]], then exchanging j and i leads to

[NF i
p, Z

j
k−p+1] + [Ej, [Vk−p+1, NF

i
p]] = [NF j

p , Z
i
k−p+1] + [Ei, [Vk−p+1, NF

j
p ]]

Summing over 2 ≤ p ≤ k and using the compatibility condition (5.36) leads to[
Ej, Zi

k +
k−m∑
p=2

[Vk−p+1, NF
i
p]

]
=

[
Ei, Zj

k +
k−m∑
p=2

[Vk−p+1, NF
j
p ]

]
But, the same argument as in the proof of the first point of this proposition will show that,
{
∑k−m

p=2 [Vk−p+1, NF
i
p]} is a non-resonant family of homogeneous vector fields of degree k.
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Therefore, according to Lemma 4.1, there exists a unique normalized Vk such that, for all
i ≥ 1,

[Ei, Vk] = Zi
k +

k−m∑
p=2

[Vk−p+1, NF
i
p],

which ends the proof of the induction and the proposition.
�

Let us construct and estimate the unique nonresonant solution U (i.e. with U res ≡ 0),
of order ≥ m+ 1 and degree ≤ 2m of the perturbed cohomological equation, namely

(5.38) J2m([NF i, U ]) = Bi
nres,

where Bi
nres denotes the nonresonant projection of Bi.

Lemma 5.3. Assume that, for all ‖z‖ ≤ r, for all v ∈ H

‖DN(z).v‖+ ≤
1

2
‖v‖, ‖R≥m+1‖r ≤ ε.

Then (5.38) has a unique nonresonant solution U which satisfies

‖U‖r ≤ 4ε.

Proof. Let us write (5.38) as

(5.39) [NF i, U ] = Bi
nres + Zi

≥2m+1 =: F i

where Zi
≥2m+1 := J2m[NF i, U ]− [NF i, U ].

Let λ
(d)
i be an eigenvalue of the operator [Ei, ·] in the space of formal homogeneous

polynomial vector fields of degree d. Let h
i,λ

(d)
i

be the associated eigenspace.

Remark 5.4. In the Hamiltonian case, the family E is defined by Ei = zi~ei − z−i~e−i so

that we have λ
(d)
i = qi − q−i − si where qi denotes the ith component of a multi index

Q = (· · · q−i−1, q−i, · · · , q−1, q1, · · · qi, qi+1, · · · ) with modulus d and si is 1,-1 or 0. Indeed,
we have [Ei, zQ~ek] = (qi − q−i − si)zQ~ek with si = 1 if k = i, si = −1 if k = −i and si = 0
otherwise.

Let λ(d) = (λ
(d)
1 , λ

(d)
2 , . . .) be a collection of such eigenvalues. We shall say that λ(d) is a

generalized eigenvalue of degree d. If λ(d) 6= 0, then only a finite number of its components
are non zero; this is a consequence of the locally finiteness support assumption on E. Let

us denote Supp(λ(d)), the support of λ(d), that is the set of indexes j such that λ
(d)
j 6= 0.

From now on, we shall write λ for λ(d), if there is no confusion.
We remark that, given U ∈ ∩i≥1hi,λ(d)i , and any function a which is a common first

integral of the family Ei, namely s.t. Ek(a) = 0, ∀k, one has

[Ei, aU ] = λ
(d)
i aU ,

thus it is convenient to denote

(5.40) Hλ(d) :=
{
U ∈ N : [Ei, U ] = λ

(d)
i U

}
.
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We now show that [NF i, .] leaves invariant Hλ (where we omitted the index d from λ).
We have

(5.41) [NF i, U ] = [Ei, U ] +
∑
j≥1

ai,j[E
j, U ] + U(ai,j)E

j.

Here, U(ai,j) denotes the Lie derivative of ai,j along U . Since the Ei’s are pairwise com-
muting and since the ai,j’s are first integrals of E, we have[

El, [Ei, U ] +
∑
j≥1

ai,j[E
j, U ]

]
= [Ei, [El, U ] +

∑
j≥1

ai,j[E
j, [El, U ]]

= λl

(
[Ei, U ] +

∑
j≥1

ai,j[E
j, U ]

)
.

On the other hand, we have[
El,
∑
j≥1

U(ai,j)E
j

]
=

∑
j≥1

El(U(ai,j))E
j =

∑
j≥1

[El, U ](ai,j)E
j

= λl
∑
j≥1

U(ai,j)E
j

From which the invariance of Hλ follows.
Let Uλ (resp. F i

λ) be the projection onto Hλ of U (resp. F i). Therefore, the projection
onto Hλ of equation (5.39) reads

(5.42) [NF i, Uλ] = F i
λ.

Using (5.41), this equation reads(
λi +

∑
j≥1

ai,jλj

)
Uλ +

∑
j≥1

Uλ(ai,j)E
j = F i

λ.

Let εi be the sign of λi, if i ∈ Supp(λ). Let us multiply the ith-equation by εi and then let
us sum up over i ∈ Supp(λ). We obtain

(5.43)

|λ|+∑
j≥1

∑
i∈Supp(λ)

εiai,jλj

Uλ +
∑
j≥1

∑
i∈Supp(λ)

εiUλ(ai,j)E
j =

∑
i∈Supp(λ)

εiF
i
λ =: F̃λ.

Let us define

(5.44) bλ := |λ|+
∑

j∈Supp(λ)

∑
i∈Supp(λ)

εiai,jλj =: |λ|+ cλ.

Remark that it is an analytic function whose value at 0 is |λ|; furthermore one has Ej(bλ) =
0, ∀j. Let us consider the operator

Pλ : Uλ 7→
∑
j≥1

∑
i∈Supp(λ)

εiUλ(ai,j)E
j.
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We have P 2
λ = 0. Indeed, since the ai,j are first integrals of E, we have

Pλ(Pλ(Uλ)) =
∑
j≥1

∑
i∈Supp(λ)

εiPλ(Uλ)(ai,j)E
j

=
∑
j≥1

∑
k≥1

∑
i∈Supp(λ)

εi
∑

l∈Supp(λ)

εlUλ(al,k)E
k(ai,j)E

j

= 0.

Similarly one has Pλ(Pλ(./bλ)) = 0. As a consequence, the nonresonant solution of equation
(5.43) is

(5.45) Uλ = (I − 1

bλ
Pλ)

(
F̃λ
bλ

)
.

Summing up over the set of generalized eigenvalues λ of degree m + 1 ≤ d ≤ 2m, and
applying J2m we obtain

(5.46) U = J2m

(∑
λ

F̃λ
bλ
−
∑
λ

1

bλ
Pλ

(
F̃λ
bλ

))
.

Since U is of degree ≤ 2m, we can substitute Bλ to Fλ, thus we are led to the final definition
of U , namely

(5.47) U = J2m

(∑
λ

B̃λ

bλ
−
∑
λ

1

bλ
Pλ

(
B̃λ

bλ

))
,

where B̃λ :=
∑

i∈Supp(λ) εiB
i
λ. We now estimate such a quantity. Remark first that one has(

1

bλ

)
=

(
1

|λ| − cλ

)
� 1

|λ|
∑
k≥0

(
cλ

|λ|

)k
� 1

|λ| − cλ
,

so that we have ∑
λ

B̃λ

bλ
≺
∑
λ

∑
i∈Supp(λ)B

i
λ

|λ| − cλ

On the other hand, given an orthonormal basis e of H+, a sequence {Gλ} of vectors with
nonnegative coordinates on e and a bounded sequence {gi} of nonnegative numbers, we
have∥∥∥∥∥∑

λ

gλGλ

∥∥∥∥∥
2

+

=
∑
λ,λ′

gλgλ′(Gλ, Gλ′)+ ≤ (sup
λ,λ′

gλgλ′)

∥∥∥∥∥∑
λ

Gλ

∥∥∥∥∥
2

+

≤ (sup
λ
gλ)

2

∥∥∥∥∥∑
λ

Gλ

∥∥∥∥∥
2

+

.

Evaluating at a point near the origin in the domain, we can apply this with gλ = 1
|λ|−cλ

and Gλ =
∑

i∈Supp(λ)B
i
λ Hence, we obtain

(5.48)

∥∥∥∥∥∑
λ

∑
i∈Supp(λ)B

i
λ

|λ| − cλ

∥∥∥∥∥
+

≤ sup
λ

∣∣∣∣ 1

|λ| − cλ

∣∣∣∣
∥∥∥∥∥∥
∑
λ

∑
i∈Supp(λ)

Bi
λ

∥∥∥∥∥∥
+

≤ sup
λ

∣∣∣∣ 1

|λ| − cλ

∣∣∣∣ ‖B‖+.
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In order to estimate cλ, remark first that according to (5.44), we have

(5.49) cλ ≺
∑

j∈Supp(λ)

∑
i∈Supp(λ)

ai,j|λj| ≺
∑

j∈Supp(λ)

|λj|

(∑
i

ai,j

)
.

To estimate βj :=
∑

i aij, we proceed as follows. According to (2.9), we have N i =∑
j∈Z∗ ai,jzj~ej so that N =

∑
j∈Z∗

(∑
i ai,j

)
zj~ej =

∑
j βjzj~ej. Hence, we have

∂N

∂zk
=
∑
j∈Z∗

∂βj
∂zk

zj~ej + βk~ek.

Since the previous equality involves only vectors with nonnegative coefficients, we have

βkek ≺
∂N

∂zk
(5.50) ∑

j∈Z∗

∂βj
∂zk

zjej ≺
∂N

∂zk
(5.51)

So, ∀v ∈ H and for all ‖z‖ ≤ r, we have(
1

2
‖v‖
)2

=
1

4

∑
k

w1
k(1) |vk|2 ≥ ‖DN(z)v‖2+ =

∥∥∥∥∥∑
k

∂N

∂zk
vk

∥∥∥∥∥
2

+

≥

∥∥∥∥∥∑
k

vkβk~ek

∥∥∥∥∥
2

+

=
∑
k

w
(2)
k β2

kv
2
k =

∑
k

w
(1)
k

w
(2)
k

w
(1)
k

β2
kv

2
k .

Taking v := vk~ek = 1/

√
w

(1)
k ~ek, which has norm 1, one gets

1

4
≥ w

(2)
l

w
(1)
l

β2
l ≥ β2

l =

(∑
i

ail

)2

.

Inserting in (5.49) one gets

|cλ| ≤ |λ|
1

2
,

hence ∣∣∣∣∣ 1

|λ| − cλ(z)

∣∣∣∣∣ ≤ 2

|λ|
.

Since the family E is small divisor free, then we always have 1 ≤ |λ| (we have set c = 1
for simplicity), then by (5.48)

(5.52) sup
‖z‖≤rm

∥∥∥∥∥∥
∑
λ

B̃λ

bλ

∥∥∥∥∥∥ ≤ sup
λ

2ε

|λ|
≤ 2ε
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as soon as ‖B‖+ ≤ ε. On the other hand, we have

∑
λ

1

bλ
Pλ

(
B̃λ

bλ

)
≺
∑
λ

1

(|λ| − cλ)2
∑
j≥1

∑
i∈Supp(λ)

Dai,j

 ∑
l∈Supp(λ)

Bl
λ

Ej

According to (5.51), we have

∑
j≥1

∑
i∈Supp(λ)

Dai,j

 ∑
l∈Supp(λ)

Bl
λ

Ej ≺ DN.

 ∑
l∈Supp(λ)

Bl
λ

 .

As in (5.48), we have∥∥∥∥∥∥
∑
λ

1

bλ
Pλ

(
B̃λ

bλ

)∥∥∥∥∥∥ ≤ sup
λ

1

(|λ| − cλ)2

∥∥∥∥∥∥DN.

∑
λ

∑
l∈Supp(λ)

Bl
λ

∥∥∥∥∥∥ .
Hence, for ‖z‖ ≤ r,

(5.53)

∥∥∥∥∥∥
∑
λ

1

bλ
Pλ

(
B̃λ

bλ

)∥∥∥∥∥∥ ≤ 2ε.

Collecting estimates (5.52) and (5.53), we obtain

sup
‖z‖≤r

∥∥∥∥∥∥
∑
λ

B̃λ

bλ
− 1

bλ
Pλ

(
B̃λ

bλ

)∥∥∥∥∥∥ ≤ 4ε ,

and remarking that, for functions of class N the projector J2m does not increase the norm,
one gets

(5.54) sup
‖z‖≤r

‖U(z)‖ ≤ 4ε.

�

5.2. Iteration. Without loos of generality we can assume that C ≥ 1. We use U to
generate a change of variables which is the time 1 flow, Φ of the system ż = U(z). We have

Φ−1∗ Xi = Xi + [−U,Xi] +O(2m+ 1)

= NF i
≤m +Bi

nres +Bi
0 + [NF i

≤m,−U ] +O(2m+ 1)

= NF i
≤m +Bi

0︸ ︷︷ ︸
=:NF i≤2m

+O(2m+ 1).(5.55)

By assumption, Bi
0 =

∑
j≥1 ãi,jE

j where ãi,j are polynomials of degree ≤ 2m− 1 that are
common first integrals of E.

By assumption, we have X = E + F and there exists c0 such that

(5.56) ‖F‖r0 ≤ c0r
2
0
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for some small parameter r0. We also fix two large constants c1 and b≥ 1 (we will track
the dependence of everything on such constants). Their precise value will be decided along
the procedure.

We denote m := 2k, k ≥ 0 then the sequences we are interested in are defined by

qm := m−
b
m , m = 2k , k ≥ 0(5.57)

εk :=
ε0
4k

, k ≥ 0(5.58)

ε0 =
c0
C
r20(5.59)

δ0 :=
r0
2
,(5.60)

δ :=
1

Cc1
r0 , δk :=

δ

4k
, k ≥ 1(5.61)

r1 :=
1

4C
(r0 − δ0) =

1

8C
r0 , rk+1 := q2k (rk − δk) , k ≥ 1 .(5.62)

In the appendix we will prove that the following properties hold

dk :=
k−1∏
l=0

q2l =
1

4b(1−
k+1

2k
)
≥ 4−b ,(5.63)

rk ≥
1

4b
r1 −

δ

3
=

1

4bC

(
1

8
− 4b

3

1

c1

)
r0 =: r∞ ≥

r0
C4b+2

,(5.64)

provided c1 ≥ 4b+2/3. Actually we take

(5.65) c1 =
4b+2

3
, =⇒ r∞ =

r0
4b+2C

.

We will also prove that

(5.66)
k−1∑
l=0

εl ≤
4

3
ε0 ,

k−1∑
l=0

εl
rl − rl+1

≤ 8C

8C − 1

ε0
r0

+
ε0
r∞

2b/2 .

Consider the following inequalities (with m = 2k)∥∥∥R≥m+1

∥∥∥
rk
≤ εk ,(5.67) ∥∥∥N≤m∥∥∥

rk
≤
{

0 if k = 0∑k−1
l=0 εl if k ≥ 1

(5.68)

sup
‖z‖≤rk

∣∣∣DN≤m(z)
∣∣∣
B(H,H+)

≤
{

0 if k = 0∑k−1
l=0

εl
rl−rl+1

if k ≥ 1
.(5.69)

Lemma 5.5. Assume

b ≥ 8 +
2 ln(3 · 16C)

ln 2
,
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take

c1 =
4b+2

3
,(5.70)

r0 < min

{
3C

136c0
;

1

32ec0c1
;

1

7 · 29c0c21
;

1

2c0(
8
7

+ 4b+22b/2)
;(5.71)

c1C − 1
4

c0
(
(24 + 6)c1+29Cc21 + 49

7
+ 2b/24b+3

)} .

Assume that the inequalities (5.67)-(5.69) hold with some k ≥ 0. Let Φm be the flow
generated by Um defined by (5.46). It conjugates the family X i

m = Ei + N i
≤m + Ri

≥m+1 to
the family X i

2m := Ei +N i
≤2m +Ri

≥2m+1 and (5.67), (5.68), (5.69) hold for the new N and
R with k + 1 in place of k.

Proof. First we define

(5.72) N i
≤2m := N i

≤m +
(
J2mRi

≥m+1

)
res

,

so that the estimate (5.68) immediately follows and the estimate (5.69) follows from Cauchy
inequality.

Then, an explicit computation gives

Ri
≥2m+1 = (Φ−1m )∗Ei − Ei − [U,Ei](5.73)

+ (Φ−1m )∗N i
≤m −N i

≤m − [U,N i
≤m](5.74)

+ (Φ−1m )∗Ri
≥m+1 −Ri

≥m+1(5.75)

+
(
I−J2m

) (
[U,Ei] +Ri

≥m+1 + [U,N i
≤m]
)
.(5.76)

We remark that, as it can be seen by a qualitative analysis and we will also see quantita-
tively, the largest contribution to the estimate of the reminder term comes from the term
[U,Ei] in (5.76), followed (in size, but not in terms of order of magnitude) by the term
coming from R≥m+1 still in (5.76). All the other terms admit estimates which of higher
order.

Let us prove by induction on k ≥ 0 estimates (5.67),(5.68) and (5.69)
For k = 0, one has N≤1 ≡ 0 and

∥∥R≥2∥∥r0 ≤ c0r
2
0 = ε0. Hence, inequalities hold true

for k = 0. Assume that they hold for all 0 ≤ l ≤ k and let us prove the inequality for
m = 2k+1.

Since r1 and δ0 do not follow the induction definition of rk and δk, we have to prove
separately the case k = 1. Since N≤1 ≡ 0 then (5.74) is not present, as well as the last
term in (5.76). Furthermore the perturbed cohomological equation reduces to the linear
one, so U can be estimated using Lemma 4.1 with c = 1 which gives

‖U‖r0 ≤ ε0 .
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We have that, by (3.27), (3.22), the families corresponding to (5.73) and (5.75) are esti-
mated by (with a little abuse of notation)∥∥∥(5.73)

∥∥∥
r0−δ0

≤ 8r0C

eδ0

(
4eε0
δ0

)
ε0 = 32

(
r0
δ0

)2

c0r0ε0= 32 · 4c0r0ε0∥∥∥(5.75)
∥∥∥
r0−δ0

≤ 4

δ0
ε0ε0=

8c0
C
r0ε0 ≤ 8c0r0ε0 .

Concerning (5.76), by (3.28) we have∥∥∥[U,E]
∥∥∥
r0−δ0

≤ ε0
2Cr0
δ0

= 4Cε0 ,

and thus ∥∥∥(5.76)
∥∥∥
r0−δ0

≤ ε0
2Cr0
δ0

+ ε0= (4C + 1)ε0 ≤ 5Cε0 .

It follows that ∥∥∥R≥3∥∥∥
r0−δ0

≤ ((32 · 4 + 8)c0r0 + 5C)ε0 ≤ 8Cε0 ,

provided

(5.77) r0 ≤
3C

136c0
.

From Lemma A.4 it follows that∥∥∥R≥3∥∥∥
1
4C

(r0−δ0)
≤ 1

43C3

∥∥∥R≥3∥∥∥
r0−δ0

≤ 1

43C3
4
r0
δ0
ε0 =

1

8C2
ε0 <

ε0
4

= ε1 .

We also remark that, by Cauchy estimate, we have∥∥∥DN≤2

∥∥∥
r1
≤ 1

r0 − r1

∥∥∥N≤2∥∥∥
r0
≤ 1

r0 − r1

∥∥∥R≥2∥∥∥
r0
≤ ε0
r0 − r1

.

This concludes the proof of for case k = 1.

Assume now k ≥ 1. According to Lemma 5.3, we have ‖U(z)‖rk ≤ 4εk as soon as

8C

8C − 1

ε0
r0

+
ε0
r∞

2b/2 ≤ 1

2
,

that is, since ε0
r0

= c0r0
C

and r0
r∞

= 4b+2C

(5.78) c0r0

(
8

7
+ 4b+22b/2

)
≤ 1

2
.

Let us assume that

16eεk
δk

=
16eε0
δ

= 16ec0c1r0 <
1

2
⇐⇒ r0 <

1

32ec0c1
(5.79)
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Then, by (3.27), (3.22), the above families are estimated by∥∥∥(5.73)
∥∥∥
rk−δk

≤ 8rkC

eδk

(
4e4εk
δk

)
4εk = 29C

(ε0
δ

)2
rk ≤29Cc21r0c0ε0∥∥∥(5.74)

∥∥∥
rk−δk

≤ 8e

δ2k

4

3
ε0(4εk)

2 = 29c20e
(r0
δ

)2
r20ε0 =

29e

3
c20c

2
1r

2
0ε0 < 29c20c

2
1r

2
0ε0 ,∥∥∥(5.75)

∥∥∥
rk−δk

≤ 4

δk
εk4εk =

24c0
4k

(r0
δ

)
r0ε0 ≤ 24c0r0

(r0
δ

)
ε0 = 24c0r0c1ε0 .

Concerning (5.76), by (3.28) we have∥∥∥[U,E]
∥∥∥
rk−δk

≤ 4εk
2rkC

δk
≤ 8C

(r0
δ

)
ε0 = 8Cc1ε0

and, by (5.69), (5.68), (5.67) and (5.66), we have∥∥∥[U,N≤m]
∥∥∥
rk−δk

≤
∥∥∥DUN≤m

∥∥∥
rk−δk

+
∥∥∥DN≤mU

∥∥∥
rk−δk

≤ 4εk
δk

4

3
ε0 + 4εk

k−1∑
l=0

εl
rl − rl+1

≤ ε0
δ

16

3
ε0 + 4εk

(
8C

7
+ 2b/2

r0
r∞

)
ε0
r0

≤
[

16

3
c1 + 4

8

7
+ 4 · 2b/24b+2

]
c0r0ε0 .

Here, we have used the inequalities ε0
δ

= c1c0r0,
r0
r∞

= C4b+2 and ε0
r0

= c0r0
C

. Summing up
we have∥∥∥[U,E] + [U,N≤m] + R≥m+1

∥∥∥
rk−δk

≤ ε0

[
8Cc1+

1

4k
+ c0r0

(
16

3
c1 + 4

8

7
+ 4b+3 · 2b/2

)]
,

and therefore the same estimate holds for
∥∥∥(5.76)

∥∥∥
rk−δk

. Summing up the different contri-

butions, we have

∥∥∥R≥2m+1

∥∥∥
rk−δk

≤ ε0

[
8Cc1+

1

4k
+ c0r0

(
(24 + 6)c1+29Cc21 + 4

8

7
+ 4b+3 · 2b/2 + 29c0c

2
1r0

)]
,

(5.80)

which, provided

(5.81) r0 <
4

7 · 29c0c21
, r0 < (Cc1−

1

4
)

[
c0

(
(24 + 6)c1+29Cc21 + 4

9

7
+ 4b+3 · 2b/2

)]−1
,

gives

(5.82)
∥∥∥R≥2m+1

∥∥∥
rk−δk

≤ 9c1Cε0 .

Now, from Lemma A.4, since b ≥ 2, one has

(5.83)
∥∥∥R≥2m+1

∥∥∥
rk+1

≤ q2m+1
m 9c1Cε0 = 3 · 4b+22−bk(2+

1

2k
)Cε0 .
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For k = 1 (which corresponds to m = 2), we have∥∥∥R≥5∥∥∥
r2
≤ 3C

4b+2

2
5
2
b
ε0 =

3 · 42C

2b/2
ε0 ≤

ε0
42

,

provided

3 · 42C

2b/2
<

1

24
⇐⇒ ln(3 · 42C) < (

b

2
− 4) ln 2 ,

which is equivalent to

(5.84) b > 8 +
2 ln(3 · 42C)

ln 2
.

For k ≥ 2 we have ∥∥∥R≥2m+1

∥∥∥
rk+1

≤ 3 · 4b+22−2bkCε0 ≤
ε0

4k+1
,

provided

3·42C < 4b(k−1)−(k+1) ⇐⇒ ln(3 · 42C)

ln 4
< b(k−1)−(k+1) ⇐⇒ b >

k + 1

k − 1
+

1

k − 1

ln(3 · 42C)

ln 4
,

which, since the r.h.s. is a decreasing function of k, is implied by

(5.85) b > 3 +
ln(3 · 42C)

2 ln 4
,

which in turn is implied by (5.84). �

From Lemma 5.5, by a completely standard argument, the following Corollary follows

Corollary 3. The sequence of transformations {Ψk}k≥1 defined by Ψk := Φ−1
2k−1 ◦ · · · ◦Φ−11

converges to an analytic transformation Ψ in a neighborhood of the origin and it conjugates
the family {X i}i≥1 to a a family of normal forms {NF i}i≥1.

Appendix A. A technical Lemma

Lemma A.1. Equation (5.63) holds.

Proof. Denote by dk the l.h.s. of (5.63), one has

dk = exp

(
k−1∑
l=0

lnm−
b
m

)
= exp

(
−

k−1∑
l=0

b

2l
ln 2l

)
= exp

(
−b ln 2

2

k−1∑
l=0

l

2l−1

)

= exp

(
−b ln 2

2
4

(
1− k + 1

2k

))
,

where we used the formula
k−1∑
l=0

l

2l−1
= 4

(
1− k + 1

2k

)
.

Now, the result immediately follows. �

Lemma A.2. Equation (5.64) holds.
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Proof. We use the discrete analogue of the formula of the Duhamel formula, namely we
make the substitution rk = dksk, where dk was defined in the proof of Lemma A.1. One
gets

rk+1 = dk+1sk+1 = q2kdksk+1 = q2k(dksk − δk)
and thus

sk+1 = sk −
δk
dk

, s1 =
r1
d1

= r1 ,

from which

sk = s1 −
k−1∑
l=1

δl
dl
.

Now, one has
k−1∑
l=1

δl
dl

=
k−1∑
l=1

δ

4l
4b

4b
l+1

2l

≤
k−1∑
l=1

δ

4l
4b =

4b

3
δ .

Thus,

rk ≥ dk

(
r1
d1
− 4b

3
δ

)
.

�

Lemma A.3. Equation (5.66) holds.

Proof. The first inequality is trivial. We discuss the second one. Using the definition of
rk+1, we have

(A.86)
εk

rk − rk+1

=
εk

rk(1− q2k) + q2kδk
≤ εk
rk(1− q2k)

;

now, one has

1− qm = 1− exp

(
− b

m
lnm

)
,

which is of the form 1− e−x with x varying from 0 to b
2

ln 2. Remarking that in an interval
[0, x0] one has

1− e−x ≥ e−x0x ,

we get

1− qm ≥ 2−b/2
(
b

m
lnm

)
=

b

2k+b/2
ln 2k =

k

2k
b

2b/2
ln 2 ,

and thus, for k ≥ 1,

εk
rk(1− q2k)

≤ ε0
r∞

2b/2

b ln 2

2k

k

1

4k
=

ε0
r∞

2b/2

b ln 2

1

k2k
.

Now one has∑
k≥1

xk

k
=
∑
k≥1

∫ x

0

yk−1dy =
∑
k≥0

∫ x

0

ykdy =

∫ x

0

1

1− y
dy = [− ln |1− y|]x0 = − ln |1− x| ,
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which, for x = 1/2, gives ∑
k≥1

1

k2k
= ln 2 ,

and thus ∑
l≥2

εl−1
rl−1 − rl

≤ ε0
r∞

2b/2 .

adding the first term, namely 8C
8C−1

ε0
r0

, one gets the thesis immediately follows. �

Lemma A.4. Let F be a summable normally analytic vector fields with F i having a zero
of order m at the origin for all i. Let 0 < α ≤ 1, then

(A.87) ‖F‖αr ≤ αm ‖F‖r .

Proof. Consider the function F(z) =
∑

Q,i FQ,iz
Q~ei; since all the coefficients are positive

one has, for any i,∑
Q

FQ,i(αz)Q = αm
∑
Q,i

α|Q|−mFQ,iz
Q ≤ αm

∑
Q

FQ,iz
Q

Thus one gets

sup
‖z‖≤αr

‖F(z)‖+ = sup
‖z‖≤r

‖F(αz)‖+ ≤ αm sup
‖z‖≤r

‖F(z)‖+ .

�
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