
Anharmonic phonon damping enhances the Tc
of BCS-type superconductors

Chandan Setty∗

Department of Physics, University of Florida, Gainesville, Florida, USA

Matteo Baggioli†

Instituto de Fisica Teorica UAM/CSIC, c/Nicolas Cabrera 13-15,
Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Alessio Zaccone‡

Department of Physics ”A. Pontremoli”, University of Milan, via Celoria 16, 20133 Milan, Italy.
Department of Chemical Engineering and Biotechnology,

University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, U.K.
Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB30HE Cambridge, U.K.

A theory of superconductivity is presented where the effect of anharmonicity, as entailed in the
acoustic, or optical, phonon damping, is explicitly considered in the pairing mechanism. The gap
equation is solved including diffusive Akhiezer damping for longitudinal acoustic phonons or Klemens
damping for optical phonons, with a damping coefficient which, in either case, can be directly related
to the Grüneisen parameter and hence to the anharmonic coefficients in the interatomic potential.
The results show that the increase of anharmonicity has a strikingly non-monotonic effect on the
critical temperature Tc. The optimal damping coefficient yielding maximum Tc is set by the velocity
of the bosonic mediator. This theory may open up unprecedented opportunities for material design
where Tc may be tuned via the anharmonicity of the interatomic potential, and presents implications
for the superconductivity in the recently discovered hydrides, where anharmonicity is very strong
and for which the anharmonic damping is especially relevant.

I. INTRODUCTION

Atomic vibrations in solids are inevitably affected by
the shape of the interatomic potential. For all real ma-
terials, the shape of the interatomic potential is far from
being quadratic, i.e. harmonic. The intrinsic anhar-
monicity of solids has many well known consequences
such as thermal expansion, soft modes and instabili-
ties, sound absorption, identification of stable crystalline
phases etc. [1] A well established approach to anhar-
monicity is the self-consistent method introduced by
Born and Hooton [2], leading to the concept of renormal-
ization of phonon frequencies in the quasiharmonic or
self-consistent phonon approximation, where the renor-
malized phonon frequencies arise from an effective vibra-
tional dynamics within a region about equilibrium, which
takes anharmonic terms of the potential into account via
adjustable parameters obtained from a self-consistent so-
lution to the many-body problem [3].

However, the effect of anharmonicity extends to far
greater areas, including electron-phonon coupling, where
traditionally the effect of anharmonic damping has al-
ways been neglected, and where instead recent first-
principle calculations demonstrate an important effect of
anharmonicity on band-structure [4, 5].
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In the context of high Tc superconductors, the effect
of anharmonic enhancement on Tc has been studied in
the early days following the discovery of high-Tc super-
conductivity in the cuprates. In particular, several works
by Plakida and others have studied the effect of anhar-
monicity on Tc for the case of structurally unstable lat-
tices or deformed lattice potentials [6–8]. Even more re-
cent works on the high-Tc hydrides [9–19] only take into
consideration phonon energy renormalizations due to an-
harmonicity but neglect anharmonic damping.

However, a fundamental understanding of the effect
of anharmonic damping on phonon-mediated supercon-
ductivity and e.g. on Tc is absent due to the lack of
analytical approaches to this problem. Yet, this is a fun-
damental issue in the context of high-T superconductors
where anharmonicity becomes important due to the sig-
nificant temperature values, since in general anharmonic-
ity in solids grows roughly linear in T [1]. Even more
urgent is the problem of the effect of anharmonicity in
hydrogen-based materials, which have recorded the high-
est Tc values so far: in these systems the presence of
a light element such as hydrogen induces a huge anhar-
monicity due to the large oscillation amplitudes of the
hydrogen atoms [13, 18, 20–23].

Numerical studies and first-principle calculations can
assess the effect of anharmonicity in an empirical way for
a specific material by benchmarking against harmonic
calculations, but a systematic fundamental understand-
ing of the role of anharmonic damping on conventional
superconductivity is missing. This would be highly bene-
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ficial to obtain system-independent guidelines to not only
estimate the effect of anharmonic damping in general
cases, but also to develop generic guidelines for material
design. For example, by relating anharmonic damping
to the interatomic potential it could become possible to
design materials with ad-hoc or tunable electron-phonon
coupling and superconducting properties.

Here we take a first step in this direction by studying
the effect of phonon Akhiezer and Klemens damp-
ing on superconductivity beyond the quasi-harmonic
approximation. We do this by explicitly taking into
account the phonon damping due to anharmonicity in
the mediator for the electron pairing. The theory shows
that, unexpectedly, the effect of the anharmonicity
(as represented by the damping coefficient) on Tc is
non-monotonic, i.e. Tc first increases then goes through
a maximum and then decreases upon increasing the
anharmonic damping. This occurs because electron-
phonon scattering processes involving energy-loss and
energy-gain (Stokes and anti-Stokes) act constructively
to increase the effective attraction driving the formation
of Cooper pairs. The enhancement is most efficient for
a window of critical damping parameter (Dmax) set by
the bosonic velocity and correlated with the Ioffe-Regel
scale. Outside this window, the strength of pairing
deteriorates leading a reduction in Tc. These results are
valid for both cases of acoustic and optical phonons, as
shown in in the Appendix A.3 below.

II. THE THEORETICAL FRAMEWORK

The displacement field of an anharmonic solid obeys
the following dynamical equation [24]:

ρ
∂2ui
∂t2

= CTijkl
∂2uk
∂xj∂xl

− CTijkl αkl
∂∆T

∂xj
+ νijkl

∂2u̇k
∂xj∂xl

(1)
which is coupled to Fourier’s law for heat transfer and
to the energy balance equation for the thermal gradient
∆T . In Eq. (1) , ui denotes the i-th Cartesian component
of the atomic displacement field, CTijkl is the isothermal
elastic constant tensor, αkl is the thermal expansion ten-
sor, and νijkl is the viscosity tensor. The dot indicates
derivative with respect to time of the elastic field uk in
the last dissipative term.

For solids, where acoustic excitations can be split into
longitudinal (LA) and transverse (TA), Eq. (1) can be
split into two decoupled equations for LA and TA dis-
placements, leading to the following Green’s function in
Fourier space [25]:

Gλ(ω, q) =
1

ω2 − Ω2
λ(q) + i ω Γλ(q)

(2)

where λ = TA,LA is the branch label, and Γλ(q) = Dq2

represents the Akhiezer damping, which coincides with
the acoustic absorption coefficient [24], while Ωλ(q) =

vλq is the acoustic eigenfrequency, already renormalized
to account for the shift induced by anharmonicity [26],
with vλ the speed of sound for branch λ.

The quadratic dependence Γλ(q) = Dq2 of the damp-
ing stems directly from the viscous term in Eq. (1) and
is typical of Akhiezer damping [24, 27]. In particular, it
has been shown [27] that Γ takes the following general
form for longitudinal excitations (see also [28]):

ΓL =
q2

2ρ

[(
4

3
η + ζ

)
+
κTα2ρ2v2

L

C2
p

(
1− 4v2

T

3v2
L

)2
]
. (3)

where η ≡ νxyxy is the shear viscosity, ζ is the bulk vis-
cosity, ρ is the solid density, κ is the thermal conductivity,
α is the longitudinal thermal expansion coefficient, and
Cp is the specific heat at constant pressure. The second
term in Eq. (3), ∼ α2, represents the phonon damping
due to heat exchange between the compressed and the
rarefied regions of the longitudinal wave. This second
contribution, in practice, represents only a few percent
of the first viscous contribution in Eq. (3) and is there-
fore negligible.

The above derivation follows a hydrodynamic approach
[29]; by comparing with the result of a microscopic ap-
proach based on the Boltzmann transport equation for
phonons, it has been shown that [24]

DL =
CvTτ

2ρ

(
4

3
〈γ2
xy〉 − 〈γxy〉2

)
≈ CvTτ

2ρ
〈γ2
xy〉 (4)

where we neglected the contribution from bulk viscosity
ζ, since normally η � ζ. Furthermore, 〈...〉 indicates
averaging with respect to the Bose-Einstein distribution
as a weight, while γxy is the xy component of the tensor
of Grüneisen constants. Also, Cv is the specific heat at
constant volume, while τ is the phonon life-time. Since
τ ∼ T−1 (which is an experimental observation for most
solids [24, 30]), the diffusion constant DL is independent
of temperature, i.e. a well-known experimental fact [30].

A substantially equivalent expression for the damping
of longitudinal phonons, in terms of an average Grüneisen
constant of the material γav, was derived by Boemmel
and Dransfeld [30]

DL ≈
CvTτ

2ρ
γ2
av (5)

and provides a good description of the Akhiezer damping
measured experimentally in quartz at T > 60K [30].

In turn, the Grüneisen constant γ, or at least the lead-
ing term [31] of γav or γxy above, can be directly related
to the anharmonicity of the interatomic potential. For
perfect crystals with pairwise nearest-neighbour interac-
tion, the following relation holds [31]

γ = −1

6

V ′′′(a)a2 + 2[V ′′(a)a− V ′(a)]

V ′′(a)a+ 2V ′(a)
(6)

where a is the equilibrium lattice spacing between
nearest-neighbours, and V ′′′(a) denotes the third deriva-
tive of the interatomic potential V (r) evaluated in r = a.
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Hence, the phonon damping coefficient DL can be
directly related to the anharmonicity of the interatomic
potential via the Grüneisen coefficient and Eq. (6).

III. RESULTS

Because in crystals momentum is always conserved
during electron-phonon scattering events, only longitu-
dinal phonons contribute to pairing [32, 33], therefore we
will focus on the LA phonon, λ = LA, and we will drop
the λ index in the following. According to Eq. (2) we
thus choose a phonon propagator written in Matsubara
frequency of the form

Π(iΩn,q) =
1

v2q2 + Ω2
n + Γ(q) Ωn

, (7)

with Γ(q) = Dq2 being the Akhiezer damping discussed
above, and v is the phonon velocity. We define the
Bosonic Matsubara frequency Ωn = 2nπT where n is
an integer number and T the temperature. The super-
conducting gap equation for a generic gap at momentum
k and Fermionic Matsubara frequency ωn = (2n+ 1)πT
takes the form (see Ref. [34] or [35])

∆(iωn,k) =
g2

βV

∑
q,ωm

∆(iωm,k + q)Π(q, iωn − iωm)

ω2
m + ξ2

k+q + ∆(iωm,k + q)2
,

(8)

for a constant attractive interaction g and volume V .
Here ξk is the free electron dispersion which we choose
to be quadratic with a chemical potential µ. The inverse
temperature is denoted by β and we work in simplified
units where twice the electron mass is set to unity. For
analytical tractability, we also choose an isotropic gap
function independent of frequency, i.e., ∆(iωm,k + q) ≡
∆. Converting the momentum summation into energy
integral with variable ξ and assuming a constant density
of states, the gap equation reduces to

1 =
∑
ωm

∫ ∞
−µ

λTdξ

[(v2 −Dωm)(ξ + µ) + ω2
m] [ω2

m + ξ2 + ∆2]

(9)

where λ = N(0)g2 and N(0) is the density of states at
the Fermi level. To begin the discussion, we confine our-
selves to small D so that we can ignore Dµ � T ∼ Tc
even though the chemical potential is allowed to be large
compared to Tc. This implies that the linear term in ωm
can be neglected. The remaining constant µv2 acts like
a mass term and reduces Tc for all D [36]. As this effect
is only quantitative, this term can also be ignored, as a
first approximation, without affecting the central claims
of the paper. The full effect of the chemical potential
term will be included in the upcoming paragraphs. With
these assumptions and using the energy integral identity

∫∞
−∞

dξ
(zξ+s)(ξ2+r2) = πs

r(s2+z2r2) , we obtain

1 =
∑
ωm

λπTω2
m√

ω2
m + ∆2

(
ω4
m + (ω2

m + ∆2)(v2 −Dωm)2
) .
(10)

To determine the condition for Tc, we set the supercon-
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Figure 1. Top: The dimensionless critical temperature T̄c

as a function of the damping constant D at different dimen-
sionless speeds v̄ ∈ [0.5, 1.4]. Bottom: The position of
the maximum temperature as a function of the dimensionless
longitudinal sound speed. In both plots we fixed µ̄ = 0.1.

ducting gap ∆ = 0. We can then perform the infinite
sum over Matsubara frequencies (see the Appendix A.1
for more details) to obtain the simplified gap equation

1 =
−1

v̄4

[
ψ

(
1

2

)
+
i(i+D)

4
ψ

(
1

2
− v̄2

2πT̄c(i+D)

)

+
i(i+D)

4
ψ

(
1

2
+

v̄2

2πT̄c(i+D)

)
+ c.c

]
, (11)

where, henceforth, the barred quantities are normalized
by
√
λ, i.e., v̄ = v/

√
λ and ψ(x) is the digamma function.

A solution for T̄c can be obtained from Eq. (11) and is
plotted in Fig. 1 (Top) as a function of the anharmonic
damping parameter D. The plot shows that T̄c is
enhanced quadratically for small D, reaches a maximum
at an optimal anharmonicity parameter Dmax (set by
the dimensionless phonon velocity v̄), and falls off as a
power law for larger D. The optimal parameter Dmax

increases with v̄ as shown in Fig. 1 (Bottom). In the
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Figure 2. Top: The dimensionless critical temperature T̄c in
function of the diffusion constant D at different dimensionless
chemical potentials µ̄ ∈ [0.01, 1.5]. Bottom: The position
of the maximum temperature in function of the dimensionless
chemical potential. In both plots we fixed v̄ = 1.2.

Appendix A.2 (see also Refs. [37–42] quoted therein),
we discuss the behavior of Dmax for larger values of
v̄ where it saturates to a value Dmax ∼ v2/Tc (not
shown in Fig. 1). This condition for resonance can be
obtained from the denominator in Eq. 10. Note that
the enhancement of the transition temperature occurs
only above a critical value of the phonon velocity that
is set by the interaction parameter

√
λ. The reason for

the non-monotonic behavior of T̄c can be understood
from Eq.(10) and the anti-symmetry in ω of the phonon
damping term. Because of this property, Stokes and
anti-Stokes processes (ωm < and > 0, respectively) add
up constructively to increase the effective attraction
driving the formation of Cooper pairs. This constructive
interference grows with D which gets to the numerator
upon adding the two processes. Eventually, however, for
sufficiently large anharmonic damping D � v2/ωm, the
quadratic term ∼ D2ω2

m in the denominator of Eq.(10)
becomes the dominant contribution, the Stokes and
anti-Stokes processes now add up in a destructive way
and superconductivity gets suppressed. In the regime
where v is very small, the last term in the denominator of
Eq.(10) can be approximated as (v2 − Dωm)2 ∼ D2ω2

m

and the non-monotonicity is absent even at small D
values (see dark lines in Fig.1).

IV. CHEMICAL POTENTIAL EFFECTS

In the following paragraphs, we relax the assumptions
made previously on the chemical potential. We restrict
ourselves to the BCS/quasi-BCS regime where the chem-
ical potential is positive and not below the band bottom.
This assumption ignores effects where the pairing scale
becomes comparable to the band-width and hence keep-
ing the BCS-BEC cross-over regime inaccessible. Follow-
ing the same steps of the previous section, we obtain the
simplified formula

1 =
∑
ωm

λπTc
(
ω2
mc + (v2 −Dωmc)µ

)
|ωmc|−1

(ω2
mc + (v2 −Dωmc)µ)

2
+ ω2

mc(v
2 −Dωmc)2

(12)

where ωmc is the Fermionic Matsubara frequency at T =
Tc. After algebraic manipulations of the Matsubara sum,
as shown in the Appendix A.1, the final equation for T̄c
with a finite chemical potential reduces to

1 =
1

2v̄2µ̄

[
− ψ

(
1

2

)
+

{
b+ − a∗

2(b+ − b−)
ψ

(
1

2
− b+

)
+

a∗ − b−
2(b+ − b−)

ψ

(
1

2
− b−

)
+ c.c

}]
+ [D ↔ −D] , (13)

where we have the definitions a ≡ z
D+i ,

b± ≡
z∗±

√
z2+ 4v̄2µ̄

(2πT̄c)2

2(D−i) and z ≡ v̄2

2πT̄c
+ iD µ̄

2πT̄c
. A

plot of the numerical solution for T̄c versus D is shown
in Fig. 2 (Top). Many of the features appearing in
Fig. 1 (Top) are reproduced when the chemical po-
tential is introduced – a non-monotonic dependence
on the anharmonicity parameter, a quadratic rise and
power-law fall off for small and large D respectively.
This reaffirms the assumptions made on the chemical

potential in deriving Eq. (11). However, the chemical
potential has an additional non-trivial effect of reducing
T̄c at small and large D, but enhances its peak value at
optimal D. Furthermore, the T̄c peak position (Dmax)
changes substantially for small µ̄ and remains virtually
unchanged for larger µ̄. A plot of Dmax as a function of
µ̄ is shown in Fig. 2 (Bottom).



5

V. DISCUSSION

Much attention has been devoted to the role of dis-
order induced damping on superconducting Tc (see [43]
and references therein); however, only a few theoretical
works have examined directly the effects of damping on
the superconducting properties, mostly in terms of glassi-
ness [36, 44–46]. Ref. [45] finds an enhancement of super-
conducting transition driven by a spin-glass phase formed
from paramagnetic spins interacting through Ruderman-
Kittel-Kasuya-Yosida exchange couplings. On the other
hand, Ref. [44] finds that a glassy phase leads to mono-
tonically decreasing Tc but does not take into account
the role of anharmonic phonon damping explicitly. The
dissipative aspect of the glass phase was considered at
a phenomenological level in Ref. [36] in the context of
the under-doped high-Tc cuprates. While a similar non-
monotonic behavior in Tc is found, its mechanism does
not arise from the time-reversal symmetry breaking in
the dissipation term. This is reflected in the linear rise
of T̄c for small damping as opposed to the quadratic rise
as found in this work. Furthermore, as alluded to ear-
lier, the parameter D is a characteristic of anharmonic
damping and originates from the viscous damping term
in Eq. (1) describing anharmonic phonons. It can be di-
rectly related to the Grüneisen constant, which, in turn,
can be determined via first-principle calculations of the
inter-atomic potential through Eq. (6); therefore, this re-
lation provides a microscopic handle for tuning D giving
one significant control in designing real materials.

VI. CONCLUSION

To conclude, we have developed superconducting gap
equations which account for the effect of anharmonic
damping of phonons. The phonon viscosity parameter
D can be related directly to the Grüneisen coefficient
and to the shape of the interatomic potential. Upon
solving the gap equation, it is found that the Tc depends
non-monotonically upon the anharmonic damping
parameter D and features a maximum as a function of
D. The value of the critical damping parameter (Dmax)
around which Cooper pairing is the strongest is set by
the velocity v of the phonon. Within this optimal range
of damping, Stokes and anti-Stokes electron-phonon
scattering processes act constructively to increase the
effective coupling constant. Outside this window, the
strength of pairing deteriorates leading to a reduction in
Tc. The prominence of the peak is enhanced when the
Fermi energy is large compared to the electron-phonon
coupling. Since the phonon damping corresponds to
the phonon linewidth, these predictions may be further
tested and investigated experimentally. The same results
(anharmonic enhancement of Tc and non-monotonicity
with damping) and the same resonance mechanism (this
time due to Klemens damping [47]) apply in the case of
pairing mediated by optical phonons, as shown in the

Appendix A.3 below. Hence, the presented framework
may lead to new guidelines for material design to
optimize Tc in conventional superconductors, including
high-T hydrides.
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Appendix A: Details of the derivations

1. Theoretical framework

To obtain Eq. 9 from the gap equation (Eq. 8; see
Fig. 3 for the associated self-energy diagram) we make
the assumption of an isotropic gap function independent
of frequency, i.e., ∆(iωm,k + q) ≡ ∆. This allows us
to cancel the order parameter in the numerator on both
sides of Eq. 8 and eliminate the ωn dependence to yield

1 =
g2

βV

∑
q,ωm

1

((v2 −Dωm)q2 + ω2
m) (ω2

m + ξ2
q + ∆2)

.

(A1)

We can now convert the q momentum sum into an in-
tegral by replacing 1

V

∑
q →

1
(2π)d

∫
ddq →

∫
N(ξ)dξ,

where N(ξ) is the density of states at energy ξ. For
quadratic bands with chemical potential µ, we have
ξq = q2 − µ written in units stated in the main text.
We now further assume a featureless density of states
and approximate N(ξ) ' N(0) as in a BCS supercon-
ductor. This is exact in two dimensions and works well
when the chemical potential is far away from the band
bottom in three dimensions. Defining λ = g2N(0), we
finally obtain Eq. 9.

To obtain Eq. 11 from Eq. 10, we can simplify the
Matsubara sum by summing over only positive frequen-
cies and writing the equation for Tc as

1 =
λ

2(2πTc)2

∞∑
m=0

[
1

x (x2 + (v2′ +Dx)2)

+
1

x (x2 + (v2′ −Dx)2)

]
(A2)

where x ≡ m + 1
2 and the primed quantities are di-

mensionless variables normalized by 2πTc (i.e, v2′ =
v2/2πTc). One can then use partial fractions to sim-
plify the denominators and use the identity ψ(z) =

limk→∞

{
−
∑k−1
n=0

1
n+z + ln k

}
. The logarithmic terms

cancel to yield Eq. 11. Similarly, one can obtain Eq. 13
from Eq. 12 by shifting the summation over positive fre-
quencies and writing the equation for Tc as
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1 =
λπTc

(2πTc)3

∞∑
m=0

[ (
x2 + (v2′ −Dx)µ′

)
x−1[

(x2 + (v2′ −Dx)µ′)
2

+ x2(v2′ −Dx)2
] +

(
x2 + (v2′ +Dx)µ′

)
x−1[

(x2 + (v2′ +Dx)µ′)
2

+ x2(v2′ +Dx)2
]]. (A3)

Π(q, iωn − iωm)

g(k + q, iωm)

Figure 3. Feynman diagram for the anomalous self-energy.
In the weak coupling BCS limit, the anomalous self-energy
reduces to the gap function. The solid (zig-zag) line is the
electron (boson) Green function in the superconducting state.

We again expand the summand above in partial frac-
tions by factoring the denominators. Performing the
remaining integer summations using the identity for
ψ(x) defined above, we obtain Eq. 13.

2. The resonance condition

In this paragraph, we provide more details about the
resonance condition discussed in the main text. The idea
is that at a specific frequency, sometimes referred to as
the Ioffe-Regel frequency [37], the boson mediator for the
phonons undergoes a crossover from a ballistic propaga-
tion to a diffusive incoherent motion. More precisely, this
happens at:

ωIR ∼
v2

πD
(A4)

This value is of fundamental importance in the realm of
amorphous systems, because of its correlation with the
boson peak frequency, where the vibrational density of
states (VDOS), normalized by the Debye law ∼ ω2, dis-
plays a maximum value [38–40]. The same boson peak
phenomenology, however, is also at play in strongly an-
harmonic crystals [41, 42].

Physically, this means that the density of the boson
mediators is maximal around the boson peak frequency.
As a consequence, one would expect the effects of the
mediators to be enhanced at such energy scale. By esti-
mating that:

ωIR ∼ Tc (A5)

we arrive at the following phenomenological resonance

1.0 1.2 1.4 1.6
v

0.2

0.4

0.6

0.8

1.0

Dmax

v
2

πTc

Figure 4. A validation of the resonance condition (A6) using
the data of fig.1.

condition:

Tc ∼
v2

πDmax
(A6)

which is quoted in the main text. Here Dmax is the value
of the phonon viscosity at which Tc is maximized.
In order to validate this expression, we plot the ratio
πDTc/v

2 in figure 4 for the same curves shown in the
main text in fig.1. We observe, that, especially for large
values of the sound speed (compared to the phonon vis-
cosity D), the resonance condition (A6) holds to good
accuracy. This observation provides a useful correlation
between the energy scale of the boson peak (induced by
anharmonicity) and the maximum critical temperature
that can be reached.

3. Pairing mediated by anharmonic optical
phonons

In the main text we focused our attention on the case
of pairing mediated by acoustic phonons, where the an-
harmonic damping is diffusive, Γ ∼ q2, according to the
Akhiezer mechanism. In this section, we consider the
case of pairing mediated by optical phonons. In the case
of optical phonons, the anharmonic damping is mainly
related to the decay process of the optical phonon into
two acoustic phonons. The damping coefficient Γ is in-
dependent of q, in this case, and was famously calculated
by Klemens using perturbation theory [47]. As shown by
Klemens, the damping parameter Γ for optical phonons is
proportional to the square of the Grüneisen constant γ of
the material. Hence, also in this case the Tc-enhancement
could be tuned via the interatomic potential of the pa-
rameter through γ, in a material-by-design perspective.

Hence, we take a typical dispersion relation for optical
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Figure 5. The dimensionless critical temperature T̃c ≡
2πTc/

√
λ in function of the constant damping Γ. Top: In-

creasing the mass gap of the optical mode ω2
0 from orange

to purple. Bottom: Increasing the curvature of the optical
dispersion relation α from yellow to black.

phonons,

Ωopt(q) = ω0 + α q2 (A7)

with Klemens damping given a constant Γ. We imple-
ment this model of optical phonons into the Green’s func-
tion Eq. (2) of the main article, this time with damping
Γ = const independent of q [47], leading to the following
form of the Bosonic propagator:

Π(iΩn,q) =
1

[ω2
0 + 2ω0 α q2 +O(q4) ] + Ω2

n − Γ Ωn
.

(A8)
Upon implementing this propagator in the theoretical
framework above, we obtain the theoretical predictions
for Tc as a function of anharmonic damping constant
Γ for pairing mediated by optical phonons, reported in
Fig.5 above.

These predictions align well with the effect of Tc-
enhancement due to anharmonic damping at low damp-
ing, followed by a peak and subsequent decrease of Tc,
that was shown in the main article for acoustic phonons.
Also, in this case, clearly, the anharmonic damping can
lead to a substantial increase of Tc, by at least a factor
three. Furthermore, theory predicts that the damping-
induced enhancement, and the peak, become larger upon
increasing the optical phonon energy gap ω0, as shown in
the top panel of Fig.5. Finally, also the curvature coeffi-
cient α in the optical dispersion relation has an effect on
the enhancement and on the peak, they both become
larger as α becomes smaller, hence upon approaching
flat-looking optical dispersion relations, which are typ-
ically seen in DFT calculations of optical phonons in hy-
dride materials [21].
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