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KEY PO INT S

l Immune abnormalities
are overrepresented
in GPS, including
autoimmune diseases,
positive autoantibodies,
and reduced leukocyte
counts.

l In GPS, multiple types
of blood cells are
deficient in granule
proteins, and the
plasma proteome has
a proinflammatory
profile.

Gray platelet syndrome (GPS) is a rare recessive disorder caused by biallelic variants in
NBEAL2 and characterized by bleeding symptoms, the absence of platelet a-granules,
splenomegaly, and bone marrow (BM) fibrosis. Due to the rarity of GPS, it has been difficult
to fully understand the pathogenic processes that lead to these clinical sequelae. To discern
the spectrum of pathologic features, we performed a detailed clinical genotypic and phe-
notypic study of 47 patients with GPS and identified 32 new etiologic variants in NBEAL2.
The GPS patient cohort exhibited known phenotypes, including macrothrombocytopenia,
BM fibrosis, megakaryocyte emperipolesis of neutrophils, splenomegaly, and elevated se-
rum vitamin B12 levels. Novel clinical phenotypes were also observed, including reduced
leukocyte counts and increased presence of autoimmune disease and positive autoanti-
bodies. There were widespread differences in the transcriptome and proteome of GPS
platelets, neutrophils, monocytes, and CD4 lymphocytes. Proteins less abundant in these
cells were enriched for constituents of granules, supporting a role for Nbeal2 in the function
of these organelles across a wide range of blood cells. Proteomic analysis of GPS plasma
showed increased levels of proteins associated with inflammation and immune response.

One-quarter of plasma proteins increased in GPS are known to be synthesized outside of hematopoietic cells, pre-
dominantly in the liver. In summary, our data show that, in addition to thewell-described platelet defects inGPS, there are
immune defects. The abnormal immune cells may be the drivers of systemic abnormalities such as autoimmune disease.
(Blood. 2020;136(17):1956-1967)

Introduction
The discovery that biallelic variants in NBEAL2 cause gray platelet
syndrome (GPS) has been a key advance in hematology1-3 and has
improvedour understanding of platelet andgranule biology.4,5 The
Nbeal22/2 mouse phenocopies the features of GPS, including
bleeding, thrombocytopenia, absence of platelet alpha (a)-gran-
ules, splenomegaly, and bone marrow (BM) fibrosis.6-8 In addition
to the known defects of the megakaryocyte–platelet axis, we and
others have reported the susceptibility of Nbeal22/2 mice to
bacterial and viral infection, which is implicated in increased organ
damage, lower survival rates, and longer time to recovery upon
infection.9,10 These observations have been attributed to defects of
secretory granules in natural killer cells and neutrophils. It has also
been shown that mast cells of Nbeal22/2 mice are deficient in
storage vesicles11 and that monocytes have reduced granularity.9

Together with our observation that Nbeal22/2 megakaryocytes
(MKs) have a proinflammatory profile,7 these findings highlight
that Nbeal2 is important for normal granule function in MKs,
platelets, and a variety of myeloid and lymphoid cells in mice.
However, it has been unclear whether the immune cell defects
seen in the murine model are relevant to the pathophysiology
of GPS. Small series of patients with GPS have reported re-
current infection12-14 and atypical presentations of autoimmune
lymphoproliferative syndrome.15,16 Neutrophil ultrastructure
has been evaluated in several patients with GPS, with con-
flicting results: some reports have shown that neutrophil
granules are preserved,17,18 whereas others have noted their
absence.12,13

Given the paucity of published studies on patients with GPS with
confirmed etiologic variants in NBEAL2, we established an in-
ternational collaboration to systematically evaluate clinical and
laboratory phenotypes in a large collection of patients. We fo-
cused on features related to immunity and followed this up with
a detailed molecular characterization of plasma, platelets, and
3 different leukocyte populations in a subset of the patients

using both protein mass spectrometry (MS) and RNA sequencing
(RNA-seq).

Methods
This section contains a short description of the methods we have
used. The supplemental Methods (available on the Blood Web
site) provide further details.

Enrollment
All study participants provided written informed consent. The
majority of participants enrolled into UK or French studies, all of
which were approved by research ethics committees (UK: REC
13/EE/0325, REC 10/H0304/65, REC 10/H0304/66; France:
INSERM RBM-014). The remaining participants consented using
ethics procedures approved at the recruiting center.

Sequencing and variant interpretation
DNA was extracted and sequenced by using the ThromboGe-
nomics next-generation sequencing platform, long-range PCR,
or whole-genome sequencing.1,19-21 Pathogenicity classification
of variants was determined in multidisciplinary meetings
according to international guidelines22-25 and using computa-
tional tools.26-31 Only patients with etiologic variants in NBEAL2,
defined as pathogenic (PV), likely pathogenic (LPV), and un-
certain significance variants with at least 3 supporting or
1 moderate and 1 supporting piece of evidence (supplemental
Table 1), were included.

Phenotyping of patients
Clinical information and the results of laboratory investigations,
including the complete blood counts (CBCs), of the patients
were obtained by the enrolling physicians. This information was
used to record Human Phenotype Ontology (HPO) terms for
each participant.32
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BM biopsies
BM biopsies were performed on 23 patients with GPS. BM fi-
brosis was defined by a reticulin grade $2.33 Quantification of
emperipolesis, the presence of intact neutrophils in the cyto-
plasm of MKs, was performed by manual counting on 3 samples.

Enhanced cellular phenotyping and plasma
proteomics
Five patients with GPS and 5 healthy control participants
attended a central center for a more complete evaluation under
standardized conditions. A CBCwas performed on a Sysmex XN-
1000 analyzer. Additional measured blood cell parameters, not
normally included in CBC reports, including forward scatter
(FSC) and side scatter (SSC), were analyzed. In addition, plate-
lets, neutrophils, monocytes, and CD4 lymphocytes were iso-
lated from citrate anticoagulated blood.34 For each cell type,
RNA was extracted and sequenced, and the lysate was analyzed
by using protein MS. Plasma was obtained from EDTA anti-
coagulated blood of 11 patients with GPS and 13 healthy control
participants and analyzed by using Sequential Window Acqui-
sition of All Theoretical Mass Spectra–Mass Spectrometry. All
control subjects were selected from a group of volunteers
without comorbidities and were matched on age and sex as
closely as possible to the patients with GPS (supplemental Ta-
bles 2 and 3).

Statistical analysis
The Fisher’s exact test was used for analyses unless stated
otherwise.

Results
A wide spectrum of NBEAL2 variants cause GPS
Forty-seven patients from 38 genetically independent pedigrees
were enrolled at 21 hospitals in 11 countries. We identified a
total of 70 etiologic variants in NBEAL2, 32 of which were novel
(Figure 1A; supplemental Table 1). Forty-three percent of vari-
ants were inherited in homozygosity and 57% in compound
heterozygosity. Fifty-six variants were unique, 64% of which were
classified as PV or LPV (Figure 1B). Of those unique variants,
38 were absent from the genotyping results of 162 100 indi-
viduals in the Genome Aggregation Database and the 100000
Genomes Project; the minor allele frequencies of the remaining
18 were ,0.00004.35,36

Missense variants accounted for 49% of all etiologic variants
identified, with the remaining ones categorized (in descending
order of frequency) as frameshift, stop gained, splice, and short
insertion/deletion (indel) variants. We mapped the position of
the missense variants onto the 5 known domains of Nbeal2 and
determined the evolutionary conservation score of the affected
residues37 (Figure 1C).Missense variants were enriched (P5 4.913
1025) in the highly conserved BEACH domain, consistent with a
suggested key role of this domain in the function of Nbeal2.5,38

We then mapped the 13 BEACH missense variants to the crystal
structure of another BEACH domain–containing protein (BDCP),
Nbea.39 Five variants occurred in the hydrophobic core of
BEACH, a portion of which interacts with neighboring PH, a 129-
residue domain with a neutral conservation score.37 However, we
identified a novel missense variant, R1979W, in a portion of PH

that is highly conserved; the position of this variant corresponds
to Nbea R2208, shown to be functionally relevant for the PH–
BEACH interface.40 To our knowledge, this is the first etiologic
variant to be described in PH.

Bleeding and platelet phenotypes in GPS
Patients recruited into the study were between the ages of 6 and
70 years (median, 35 years). The median age at presentation was
11.5 years but this varied between 2 months and 67 years. All
patients were thrombocytopenic, and a-granule deficiency was
noted in the platelets of all cases assessed by electron or light
microscopy (Figure 2A; supplemental Figure 2.1; supplemental
Table 2). Consistent with previous reports,17,40,41 a wide spec-
trum of bleeding symptoms was reported, ranging from sub-
cutaneous to intracranial hemorrhage. Five patients were
notable for their lack of a bleeding diathesis.

Raised vitamin B12 levels and stable BM fibrosis
Raised serum vitamin B12 levels (B12) were recorded for 31 of
34 patients, expanding the previous observations made in a
smaller GPS collection.17 B12 was increased by at least 1.5 times
the upper limit of the local reference range in two-thirds of
patients (supplemental Figure 2.1; supplemental Table 2).

BM biopsies were performed in 23 patients, and 13 (57%) pa-
tients were diagnosed with BM fibrosis. Morphologic exami-
nation of 5 centrally reviewed trephine samples showed
preservation of trilineage hematopoiesis (supplemental Fig-
ure 2.2). BM fibrosis was diagnosed at amedian age of 28.5 years
(range, 10-52 years), with a median of 16 years since this di-
agnosis to the present time. Patient 20.3 received an allogeneic
stem cell transplant at age 32 years,42 but the rest of the pa-
tients have not required treatment of BM fibrosis. Neutrophil
emperipolesis was observed in a mean of 58%MKs in 3 GPS BM
trephines compared with only 1% in 3 trephines from control
subjects (Figure 2B-C).

Patients with GPS have abnormalities of the
immune system, including autoimmune disease
affecting multiple organ systems
Coding of clinical and laboratory information by using HPO
terms identified phenotypes associated with “Abnormality of the
immune system” in 91% of patients (Figure 2A; supplemental
Table 2). “Splenomegaly” (determined clinically or by ultra-
sound) was observed in 40% of patients and did not significantly
overlap with BM fibrosis (x2test, P 5 .26) (supplemental Fig-
ure 2.2). “Abnormal immune system morphology” (81%) was
largely due to cytopenia of at least one leukocyte type (77%).
“Abnormal immune system physiology” (51%) included “Re-
current infections” (17%), most commonly respiratory tract in-
fections and otitis media, and “Autoimmunity” (43%), which
consisted of autoimmune disease and positive autoantibodies.
Twelve patients (26%) were diagnosed with an autoimmune
disease with a wide spectrum of organ systems affected. These
included the endocrine (Hashimoto’s thyroiditis), skeletal
(rheumatoid arthritis), integumentary (alopecia, discoid lupus
erythematosus, and vitiligo), and immune (atypical autoimmune
lymphoproliferative syndrome) systems (Figure 2D). Twenty-nine
patients had autoantibody tests performed and, of these,
17 (59%) had at least 1 positive test result. The 4 most frequent
positive test results (in descending order of frequency) were
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1960 blood® 22 OCTOBER 2020 | VOLUME 136, NUMBER 17 SIMS et al

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/136/17/1956/1778028/bloodbld2019004776.pdf by guest on 13 N

ovem
ber 2020



anti-thyroperoxidase, perinuclear anti-neutrophil cytoplasmic
antibodies, rheumatoid factor, and antinuclear antibodies.

Altered blood cell parameters of multiple cell
lineages in patients with GPS
We compared the complete and differential leukocyte counts of
all 47 patients with GPS against those of 45 032 healthy blood
donors from the INTERVAL (Efficiency and Safety of Varying the
Frequency of Whole Blood Donation) study.43 The median total
leukocyte count of both male and female patients with GPS was
significantly lower than for the INTERVAL participants (one-
sample Wilcoxon signed-rank test, P 5 3 3 1023 and 4 3 1024,
respectively) (Figure 2E). All median differential leukocyte counts
(neutrophil, monocyte, lymphocyte, eosinophil, and basophil
counts), as well as platelet counts and hemoglobin concentra-
tions, were significantly lower than the corresponding INTERVAL
values (supplemental Figures 2.1 and 2.3; supplemental Ta-
ble 2). Although we found no association between total leu-
kocyte, granulocyte, or monocyte counts and BM fibrosis
(logistic regression, P . .05), platelet and lymphocyte counts
were inversely associated with the latter (logistic regression,
P, .05). Furthermore, there was no association between total or
any of the differential leukocyte counts and splenomegaly (lo-
gistic regression, P . .05).

In addition, 5 patients with GPS and 5 control subjects partici-
pated in a single-center follow-up study in which CBC mea-
surements were conducted that included additional parameters
(eg, FSC, SSC). This analysis confirmed that the neutrophil,
monocyte, and basophil counts were significantly reduced in
patients with GPS (Mann-Whitney U test, P , .05) (Figure 2F;
supplemental Table 2). Moreover, the FSC and SSC measure-
ments exhibited a significant reduction in GPS eosinophil size
and granularity, the latter also holding true for neutrophils
(Mann-Whitney U test, P , .05).

Genotype–phenotype analysis
We compared subgroups of the patients according to the type,
position, and pathogenicity classification of their etiologic var-
iant(s). The goal was to determine whether there were pheno-
typic differences as reported for other inherited disorders
caused by pathogenic variants in BDCPs.44

First, patients were grouped into those with biallelic loss-of-
function variants (frameshift, stop gained, and splice) and those
with biallelic variants causing a change in the amino acid se-
quence but without truncation (hereafter called “protein-altering
variants” [ie, missense and in-frame indels]), excluding patients
with compound heterozygosity for one loss-of-function variant
and one protein-altering variant. There were 23 patients in the
loss-of-function group and 18 patients in the protein-altering
group. There were no significant differences in age (current and
at presentation), spleen size, or CBC parameters between the
groups and no significant overrepresentation of BM fibrosis,

recurrent infection, or autoimmune diseases in one group
compared with the other (Welch two-sample t-test andWilcoxon
rank sum test, P . .05) (supplemental Table 2).

We then performed two additional comparisons repeating the
aforementioned analysis using the same variables and statistical
tests: patients with biallelic BEACH missense variants (n 5 7) vs
those with missense variants outside of BEACH (n 5 5); and
patients with biallelic variants of uncertain significance (n 5 10)
vs those with biallelic LPVs or PVs (n 5 28). Although the sta-
tistical power was limited because of small group sizes, no
significant genotype–phenotype associations were observed.

Platelets and leukocytes have altered
transcriptome and proteome profiles in GPS
Prompted by the propensity to autoimmune diseases and the
altered CBC parameters, we set out to obtain a more com-
prehensive understanding of the differences in cellular pheno-
types of the same 5 patients with GPS who had additional CBC
parameters measured. Platelets, neutrophils, monocytes, and
CD4 lymphocytes were analyzed by using RNA-seq and protein
MS, and the results were compared with those obtained for
5 control subjects. Principal component analysis of these data
clearly delineated GPS and control samples, except for platelet
RNA-seq (supplemental Figure 3.1). Across each of the 4 blood
cell types, the number of differentially expressed genes ranged
from 95 to 255 and differentially abundant proteins from 63 to
123 (Figure 3A; supplemental Table 3). Of the 123, 65, and
63 differentially abundant proteins in platelets, neutrophils, and
monocytes, 89%, 86%, and 62% were reduced in patients with
GPS, respectively. These reduced proteins were enriched in
gene ontology (GO) terms pertaining to cell granules and their
lumens. Nine proteins, including Nbeal2, were significantly re-
duced in patients with GPS in at least 3 of the blood cell types,
and all are known to localize to blood cell granules (Figure 3B).

GPS platelets are diminished in a-granule cargo but
contain neutrophil granule proteins
Of the proteins differentially less abundant in GPS platelets,
there was a significant overrepresentation of proteins known to
be present in a-granules and/or the platelet releasate (73 of 110,
P, 2.23 10216) (Figure 3C; the supplemental Methods provide
classification of protein localization). None of these proteins was
differentially expressed in the RNA-seq analysis, suggesting that
a loss of function of Nbeal2 does not affect the transcriptional
output of a-granule–associated genes in platelets. We then
inspected the 13 proteins differentially more abundant in GPS
platelets. Five of these, including elastase (Elane) and myelo-
peroxidase (Mpo), are known to localize to neutrophil granules45

(supplemental Figure 3.2). Furthermore, when analyzing the
platelet proteomics data using a less stringent cutoff (log2 fold
change .0.5) than that used to determine differential protein
abundance (log2 fold change $2), we identified 54 proteins
more abundant in GPS platelets at this threshold. Fourteen of

Figure 2 (continued) immunoglobulin. (E) Histogram showing the total leukocyte count of 45 032 blood donors in the INTERVAL study43 stratified according to sex, upon which
the results of the patients with GPS are represented by arrows. The median total leukocyte count of both male and female patients with GPS was significantly (P5 33 1023 and
4 3 1024, respectively) lower than INTERVAL participants using a one-sample Wilcoxon signed-rank test, as represented by * and **. (F) CBC results for 5 patients with GPS vs
5 control subjects. The data point for each cell type and CBC parameter shows the absolute standardized effect size and directionality. On the y-axis (log10 scale), the P value
(Mann-Whitney U test) is shown; the horizontal dotted line represents P , .05. Volume (Vol) or forward scatter (FSC) refers to the following measurements: mean cell volume
(MCV) for red blood cells (Rbc), platelet mean frequent volume (P-MFV) for platelets (Plt); FSC for neutrophils (Neut), monocytes (Mono), lymphocytes (Lymph), eosinophils (Eos),
and basophils (Baso). SSC was available for all parameters except basophils and reflects the complexity of cellular contents, including granularity.
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these proteins are normally localized in neutrophil granules,
which indicated a significant overrepresentation of neutrophil
granule proteins in GPS platelets (P 5 6.6 3 1024). Importantly,
none of these 14 proteins is known to localize to platelet
granules,46-48 only 5 of these 14 have been detected previously
in the platelet proteome,49 and only 3 of the 14 were differ-
entially expressed genes in the GPS platelet transcriptome.

GPS neutrophils and monocytes are deficient in
granule proteins
To explore the GPS neutrophil proteome, we annotated the
differentially abundant proteins according to their presence or
absence in granules. For known granule proteins, these were
further annotated according to granule subtype (supplemental
Methods). Of the 56 differentially abundant proteins that were
reduced in GPS neutrophils (Figure 3A), 36 (65%) could be
assigned to different granule subtypes (Figure 3D; supplemental
Figure 3.3; supplemental Table 3) and there was a significant
overrepresentation of proteins that normally localize to the
gelatinase and specific granules (P , 1.3 3 1028 and , 2.2 3
10216, respectively). Given the reduced counts of monocytes in
our patients with GPS, we hypothesized that a lack of functional
Nbeal2 could also influence the granularity of these cells. Be-
cause there is no authoritative publication on the monocyte
granule proteome, we annotated the differentially abundant
proteins as granule proteins if they overlapped with proteins
detected in platelet releasate, a-granules, or neutrophil gran-
ules. Of the 39 proteins reduced in GPS monocytes, 29 had a
granular localization (supplemental Figure 3.4). Similar to GPS
platelets and neutrophils, the genes encoding these 29 proteins
were not differentially expressed in our RNA-seq analysis.

GPS CD4 lymphocytes upregulate markers of
immune responses
Given the associations between CD4 lymphocytes and auto-
immune disorders,50 we also included these cells for evaluation
by using RNA-seq and protein MS. In contrast to the other 3 cell
types analyzed, themajority of differentially abundant proteins in
GPS CD4 lymphocytes (57 of 71) were increased (Figure 3A;
supplemental Table 3), and there was a correlation with gene
expression (supplemental Figure 3.4). Among these proteins/
genes differentially more abundant and more highly expressed,
there was an overrepresentation of proteins involved in immu-
nomodulatory functions; for example, Bruton tyrosine kinase
(Btk) and the a-chain of the receptor for the Fc domain of
IgE (Fcer1a).

The GPS plasma proteome has a proinflammatory
and hepatic signature
We postulated that the granular abnormalities in the blood cells
evaluated might lead to systemic changes in the blood circu-
lation. To this end, we analyzed the plasma of 11 GPS patients
and 13 control subjects using Sequential Window Acquisition of

All Theoretical Mass Spectra-Mass Spectrometry. First, an un-
supervised random forest analysis of the normalized concen-
tration of plasma proteins segregated patient and control
samples and determined 51 discriminatory proteins (Figure 4A;
supplemental Table 3). The analysis showed that 11 and 40
discriminatory proteins had higher and lower concentrations,
respectively, in patients. GO enrichment analysis highlighted the
presence of terms associated with inflammation and immune
response, particularly in the top-ranked GO terms for the
11 proteins more abundant in GPS plasma (Figure 4B). We then
overlapped the discriminatory plasma proteins with the pro-
teome of the 4 cell types analyzed. Fourteen of the discrimi-
natory plasma proteins were differentially abundant in the
proteome of at least 1 cell type, but the pattern of directionality
differed according to protein (Figure 4C). Interestingly, proteins
that were less abundant in the GPS platelet proteome were also
less abundant in GPS plasma, including proteins localized to
a-granules. In contrast, all of the 4 overlapping proteins with
higher levels in plasma are known to be present in neutrophil
granules. Of these, cathelicidin antimicrobial peptide (Camp),
cysteine-rich secretory protein 3 (Crisp3), and neutrophil
gelatinase-associated lipocalin (Lcn2) were all differentially less
abundant in GPS neutrophils, and all localize to the neutrophil-
specific granules.45

Cross-referencing the discriminatory plasma proteins with the
BLUEPRINT consortium gene expression data51 revealed that
14 of the discriminatory plasma proteins are not known to be
expressed in hematopoietic cells (Figure 4B; supplemental
Figure 4). We then analyzed the gene expression of these
14 proteins in the Genotype-Tissue Expression database,52,53

which showed that 9 of these nonhematopoietic proteins are
predominantly synthesized by liver-residing cells. These include
known acute-phase reactants such as C-reactive protein and
lipopolysaccharide-binding protein (Figure 4D), both of which
had increased levels in the plasma of patients with GPS.

Discussion
Through our international collaboration, we brought together
the largest collection, to date, of patients with GPS.We report on
56 unique etiologic NBEAL2 variants. Thirty-two variants were
newly identified, including 1 in the PH domain. By compre-
hensively re-assessing established phenotypes of GPS in
47 patients, we confirm that there is marked heterogeneity of
bleeding symptoms, a near-universal increase in B12, and BM
neutrophil emperipolesis.17,40,54 Our data further suggest that
splenomegaly and BM fibrosis each occur in one-half of patients
but without significant overlap. Importantly, in the majority of
patients, BM fibrosis seems to be nonprogressive and is likely to
be a reactive phenomenon that does not generally require in-
tervention. We show that the median count for all leukocyte
types is reduced in GPS and reveal that neutrophil granularity, as

Figure 3 (continued) illustrated in the “Proteins” panel. (B) For each individual, the protein abundance was calculated for each of the 9 proteins that are differentially less
abundant in at least 3 types of cells and averaged across all of the cells. The results were scaled from21 to 1 and plotted as a dendrogramwith heatmap, such that positive (dark
blue) and negative (yellow) values represent higher and lower protein abundance, respectively. Hierarchical clustering was applied by using the complete linkage method, and
dissimilarity between rows and columns was based on the Euclidean distance. Each column represents an individual GPS patient or control subject. (C) The comparison of gene
expression and protein abundance of platelets (GPS vs control) highlights the high proportion of “alpha-granules” and “releasate” proteins (in red and orange, respectively),
which are significantly diminished in GPS platelets at the protein level (P, 2.23 10216), and also shows that proteins normally resident in neutrophil granules (blue) are increased
in GPS platelets. (D) The comparison of gene expression and protein abundance of neutrophils (GPS vs control) separated vertically by subcellular localization shows a
significantly lower abundance of specific and gelatinase granule proteins in GPS neutrophils (P , 1.3 3 1028 and , 2.2 3 10216, respectively).
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assessed by SSC, is reduced.We also show, for the first time, that
eosinophil SSC is diminished, suggesting a potential role for
Nbeal2 in the granule biology of these cells.

Immune dysregulation in patients was common, with more than
one-half having detectable autoantibodies and one-quarter
clinically manifesting autoimmune disease. Comparison with
HPO terms in a control collection of 428 patients with sus-
pected inherited thrombocytopenia21 revealed autoimmunity
only in 3%, suggesting an overrepresentation of this phenotype
in GPS. We observed a wide spectrum of immune pathologies,
including newly described associations with rheumatoid ar-
thritis, alopecia, and skin-related autoimmune disorders. In

addition, we extend a previous single case report of Hashi-
moto’s thyroiditis12 in GPS to 4 patients. Almost 20% of the
patients had recurrent infections corroborating our observa-
tions in Nbeal22/2 mice.10 The wide spectra of autoimmune
diseases and immunodeficiency in the context of granule
defects are also the consequence of Mendelian disorders of
other BDCP genes, such as LYST,38 and highlight the disruptive
effect of etiologic variants in NBEAL2 on a variety of immune
cells. This was shown in the RNA-seq and protein MS analysis of
GPS platelets, neutrophils, monocytes, and CD4 lymphocytes,
in which there were widespread differences in the tran-
scriptome and proteome of all cells evaluated. This finding is in
stark contrast to the isolated platelet defect seen in our recent
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description of IKZF5-related thrombocytopenia, a disorder also
accompanied by reduced a-granularity.34

GPS platelets were markedly diminished in proteins known to
localize to a-granules, but unexpectedly, we observed that
proteins which were differentially more abundant in GPS
platelets were enriched with neutrophil granule constituents.
Given the lack of a concordant increase in expression of the
genes corresponding to these proteins in our RNA-seq analysis,
2 potential mechanisms to explain this are endocytosis by cir-
culating platelets or emperipolesis by MKs. Although we cannot
discard the former, we reason that emperipolesis is likely to have
consequences in the platelet progeny produced by MKs that
have engulfed neutrophils. The transfer of membrane between
MKs and neutrophils during emperipolesis has been reported,55

and a recent functional genomic study reported an association of
Mpo, known to localize to neutrophil-specific granules, with
mean platelet volume highlighting the cross-talk between
neutrophils and platelets.56 Hence, the release of neutrophil
granule proteins insideMKs during emperipolesis would provide
a plausible explanation for the higher level of these proteins in
GPS platelets.

Our proteomic data set strongly supports the reduction of
specific granule proteins in GPS neutrophils, an observation that
has previously been contested,12,13,18 and shows for the first time
that gelatinase granule constituents are also depleted. Our re-
sults also show a significant depletion of granule proteins from
the monocytes of patients with GPS, supporting findings in
Nbeal22/2 mice.9

The majority of CD4 lymphocytes do not contain secretory
granules, which may provide an explanation for the un-
derrepresentation of granule proteins in the differential tran-
scriptome and proteome of these cells in patients with GPS.
However, GPS CD4 lymphocytes showed the strongest corre-
lation between the transcriptome and the proteome with a
significant upregulation of multiple transcripts and their corre-
sponding proteins. This upregulation is enriched in GO terms
related to immune responses. For instance, BTK, whose protein
is critical for B-cell development, was both more highly
expressed and its protein differentially more abundant in GPS
CD4 lymphocytes compared with those in control subjects. The
role of Btk in the regulation of T cells may be relevant to the
autoimmune disorders seen in our patients with GPS and war-
rants exploration in further research studies.57,58

Although we observed a depletion of granule proteins in GPS
neutrophils and monocytes, some granule proteins such as
Camp, which has a function in innate immunity, as well as other
proteins related to the acute phase response were increased in
the patient plasma. Furthermore, more than one-quarter of the
discriminatory plasma proteins are not known to be synthesized
by blood cells, the majority of which are produced in liver-
residing cells. Possible mechanisms to explain this observation
in patients with GPS include the systemic activation of the liver
by proinflammatory myeloid granule proteins and/or the ab-
normal infiltration of atypical blood cells into the liver.

In conclusion, our study identifies novel features of GPS, in-
cluding reduced leukocyte counts, autoimmune diatheses,
hypogranularity of myeloid cells, and a proinflammatory plasma

proteome. By evaluating GPS patient phenotypes at both the
clinical and cellular level, our study provides further evidence for
the role of Nbeal2 in the granule and cell biology of platelets and
immune cells and highlights the prevalence of immune dysre-
gulation not previously associated with this rare bleeding
disorder.
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