A large probability averaging Theorem for the
defocusing NLS

D. Bambusi* A. Maiocchil L. Turri®

Abstract

We consider the nonlinear Schrédinger equation on the one dimen-
sional torus, with a defocousing polynomial nonlinearity and study the
dynamics corresponding to initial data in a set of large measure with
respect to the Gibbs measure. We prove that along the corresponding
solutions the modulus of the Fourier coefficients is approximately con-
stant for times of order 8?T¢, 8 being the inverse of the temperature
and ¢ a positive number (we prove ¢ = 1/10). The proof is obtained
by adapting to the context of Gibbs measure for PDEs some tools of
Hamiltonian perturbation theory.

1 Introduction and statement of the main re-
sult.

In this paper we study the dynamics of the defocusing NLS with a polyno-
mial nonlinearity. We show that, with large probability in the sense of Gibbs
measure, each of the actions of the unperturbed system is approximately
invariant for long times. This is obtained by generalizing to the context
of PDEs some tools of perturbation theory in Gibbs measure developed in
recent years in the context of lattice dynamics |10} [11], 18] [13] [3].
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The system we consider is the defocousing NLS on the torus

=AY+ F ([p) ¢, z€T, (1)

where F' is a polynomial of degree ¢ > 2, F(x) := > 1_, cja?, s.t. F(z) >0
for any x > 0 and ¢ > 0. The flow of (1] is almost surely globally well-posed
on any one of the spaces H* with s fulfilling £ — q%l < s <3 (seeeg. [6,8],
see also [12]). We fix s in this range once for all.

We recall that the Gibbs measure is formally defined by

o BHW)T51I2,)
Z(B)

dpg = ,B>0, Z(B):= / e PHWH3IVILL) gy

(2)

where H is the Hamiltonian of the NLS (see (6))) and /3 plays the role of the

inverse of the temperature (we add the L?-norm in order to avoid problems

related to zero frequency). We study the system in the limit of 5 large.

We denote by 1 the k—th Fourier coefficients of ¢ defined by 1)y 1= \/% fOQW Y(x)e *dz.
Our main result is the following one

Theorem 1.1. There exist 5* > 1,C,C" > 0 s.t. for any ni,n2 > 0, any S

fulfilling
C
6 > max {5*, ﬁ}
m' s

and any k € Z, there exists a measurable set J, C H® whose complement Js,
has small measure, namely pg(dg) < n2 s.t., if the initial datum 1(0) € Jy
then the solution exists globally in H® and one has

V(B — [¢(0)?
[(1+%2)5]

The following corollary gives a control of all the actions at the same time.

1
10

<m, V[t < C'miymBtc, o= (3)

Corollary 1.2. Under the same assumption of Theorem and for any
a < 1/2, there exists a measurable set I, C H® with pg(3S) < na s.t., if the
initial datum ¥ (0) € J, then the solution exists globally in H® and one has

[¢(B)” — [¢(0)
[(1+x2)2p]

<m , V| <Cmympt , VkeZ, ¢=-—.



Remark 1. The expectation value of 1y is C1/+/(1 +k?)3, with a suitable
constant (. Theorem shows that with large probability with respect
to the Gibbs measure, for large $ and for large times, the single k-action
changes very little along the motion. Take for example,

m=mny" and = Cny > > 5%,

we get that pg(dy) < % and for all initial data ¥ (0) € Jx one has

Ul ~ [0 | __C

i | < gum e V<O (5)

Remark 2. The quantity |¢|* appears since it is the action of the linearized
system. Theorem shows that, for general initial data, |iy|*> moves very
little compared to its typical size over a time scale of order 32*<. Corollary
[1.2] controls all the actions at the same time at the prize of giving a slightly
worst control on the actions with large index.

Remark 3. If one considers (/1)) as a perturbation of the cubic integrable NLS,
then one has that the main term of the perturbation is (in the equation)
1" 4 whose size can be thought to be of order 575/2 which is of order 52
smaller then the linear part. For this reason one can think that the effective
perturbation is of size 372. So one expects to obtain a control of the dynamics
of the actions over a time scale of order 3.

Theorem [I.T] not only gives a rigorous proof of this fact, but also shows
that the actions remain approximately constant over a longer time scale. We
do not expect the value of ¢ to be optimal.

Remark 4. In order to cover times longer than 372, we have to face the prob-
lem of small denominators. Indeed, over the longer time scale, the nonlinear
corrections to the frequencies become relevant and the heart of the proof
consists in giving an estimate of the measure of the phase space in which the
nonlinear frequencies are nonresonant.

Theorem [I.] is essentially an averaging theorem for perturbations of a
linear resonant system.

We recall that previous results giving long time stability of the actions in
have been obtained in [I] and [7]. The first two results allow to control
the dynamics for exponentially long times, but only for initial data close in
energy norm to some finite dimensional manifold, so essentially for a very
particular set of initial data. Bourgain [7] was able to exploit the nonlinear
modulation of the frequencies in order to show that for most (in a suitable
sense, not related to Gibbs measure) initial data in H® with s > 1 the
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Sobolev norm of the solution is controlled for times longer then any inverse
power of the small parameter.

Nothing is known for solutions with low regularity as those dealt with in
the present paper.

Our result can be compared also to the result of Huang Guan [I5], who
proved a large probability averaging theorem for perturbations of KdV equa-
tion. We emphasize that the result of [I5] deals with the quite artificial case
in which the perturbation is smoothing, namely it maps functions with some
regularity into functions with higher regularity. In our case we deal with the
natural local perturbation given by a polynomial in ¢). Furthermore [15] only
deals with smooth solution. We also recall [16] in which a weaker version of
averaging theorem is obtained for solutions of some NLS-type equations. In
that paper the initial datum is required to be more regular that in Theorem
[L.1l and the times covered are shorter.

Finally we mention the papers [4, Bl 2] which deal with very smooth
initial data and perturbations of nonresonant linear system. These results
are clearly in a context very different from ours.

The proof of our result is based on the generalization to the context of
Gibbs measure for PDEs of Poincaré’s method of construction of approximate
integrals of motion |19, 14]. The standard way of using this method consists
in first using a formal algorithm giving the construction of objects which are
expected to be approximate integrals of motion and then adding estimates
in order to show that this actually happens. This is the way we proceed.

So, first, we develop a formal scheme of construction of the approximate
integrals of motion which is slightly different from the standard one. This is
due to the fact that the linearized system is completely resonant and we have
to find a way to use the nonlinear modulation of the frequencies in order to
control each one of the actions. We have also to restrict our construction
to the region of the phase space in which the frequencies are nonresonant.
This is obtained by eliminating (through cutoff functions) the regions of the
phase space where the linear combinations of the frequencies that are met
along the construction are smaller than §, where § is a parameter that will
be determined at the end of the construction.

The formal construction is contained in Sect.[dl As a result of this section,
for any k, we obtain a function ®y(¢)) close to |1|* which is expected to be
an approximate integral of motion.

The second step of the proof consists in estimating the L?(us) norm of
®, and in showing that it is small. To this end, we first prove that all the
estimates can be done by working with the Gaussian measure associated to
the linearized system, then we introduce the class of functions which will



be needed for the construction. Then we show how to control the L?(jup)
norm of such functions. This is obtained by exploiting the decay of the
Fourier modes of functions in the support of the Gibbs measure. Then we
use similar ideas in order to show that the integral of a function of our class
on the resonant region is small with 6. Then we choose ¢ in order to minimize
the L?(11g) norm of &y, and we use the invariance of the Gibbs measure and
Chebyshev theorem in order to pass from the estimate of @y to the estimate
of |®y(t) — ®,(0)|. Finally, we show that this implies the control of |¢]|?.
Acknowledgments. We thank T. Oh and N. Burq for introducing us to the
theory of Gibbs measure for PDEs. D. Bambusi was partially supported by
GNFM.

2 Preliminaries

Explicitly, the Hamiltonian of is given by

H=H,+P (6)
where
1 27 )
Hy = 3 V()| dz,
0
4q Ca 2m '
P=> " Hy, Hy:= i ()P da.
0

Jj=2

We will denote by @Y, ¢ its flow (see [9]). We consider the Gibbs measure jg
associated to this Hamiltonian, which is known to be invariant with respect
to @4, ([6, 17, 21, 20]) and that is formally defined in (2).

Given a function f : H® — C, f € L*(H?®, ug), we define its average and
its L?-norm with respect to the measure p4 as:

(f) = [ [fdug

HS

1, = [ 1P

Remark 5. From the invariance of pg, one has that the average (f) and
the L?-norm | f|,, of the functions are preserved along the flow, namely

(fo®yrs)=(f), If o ®Npsllus = Ifl, for any ¢.



From now on, we shall work using the Fourier coordinates. In these
coordinates, Hy becomes

. 1 2 2
H, 25;/9 [e]”.

We give now some results on the relationship of the Gaussian measure
with the Gibbs measure. Define the H'-norm:

[l3n =) (1 + k)b,

k

then we can express Hs + 1|43, = 3||¢]|%: and the Gaussian measure is
formally defined by

— Sl

e 2"al

d,ug”/j = W, (7)
with
2,(8) == / IV i),

Given a function f : H® — C, we denote by

1915 = [ 17Pdn
HS

its L?-norm respect to i, 5.
The following lemmas will be proved in Appendix [A]

Lemma 2.1. There exist 3*,C > 0 s.t. for any 3 > B* and for any function
f € L*(H* pyp), one has:

Hf”uﬁ < Hf”gﬂec'

We emphasize that the constant C' is independent of 8 and ¢, where ¢ is
the degree of the polynomial F' (see ([1)).

Lemma 2.2. There exists Cyop, D' > 0 s.t. for any > 0 and any function
f € L*(H* pyp), one has

Csob 13
_7qmaX'C'DJ
7l = e

where xquy () is the characteristic function of the set U.

The next lemma shows that every moment of 115 is well defined.
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Lemma 2.3. There exists f* > 0 s.t., for any s1 < %, n €N, > g% one
has
1" |2 € LNH?, p15) OV LHH?, pig,5)-

|2, we have the following

Finally, for the special case of the function |ty
lemma.

Lemma 2.4. There exists f* > 0,C > 0 s.t. for any f > [* s.t.

C
2
™, = 5y
3 Polynomials with frequency dependent coef-
ficients
In this section we introduce a class of function on H?® which is stable

under the perturbative construction and we prove some results needed for
the rest of the proof.

Definition 1. Let By, By be two Banach spaces, we say that F'(y) : B — Bs
is a polynomial of degree n if there exists a n-multilinear form F' s.t. for any

y € By, one has F(y) = F(y,y, ...,y).
——

n

Remark 6. In particular a polynomial f : H® — C of degree n has the form:

F@) =D ™ fim (8)

where | = {lx}, m = {ms}, le,mx € N, Y, I + mg = n, fim € C, ¢ =

Ik Iy Tm
L apk . and the same for ™.

Definition 2. We say that a polynomial f of the form of degree 2n is of
class Py, if it fulfills the null momentum condition, i.e.

fim#Oonlyif > k= Y kand » L= mp=n_ (9
k

keSupp(l) keSupp(m) k

On P,,, we introduce the following norm

A= sup | fim] (10)



Remark 7. In the following, due to @, we will write a polynomial f € Py,
also in the equivalent following form, more convenient in a lot of situations

fw) = > i . (11)

k:(klv---vk}n) =1
E:'l=1 ki:Z$2n+l ki

The next lemma Shows that the polynomials of class P, are smooth
polynomials on H*', 1 5= % <81 < %

Lemma 3.1. Let n be a positive integer and sy s.t. %—% <5 < %, f € Poy,
then there ezists C'(s1,n) > 0 s.t.

[F()] < Clsu,m)l[l3 LA (12)
Proof.
2n
|f<¢)| < Z |fk1,~~~,k2n| H |¢kz
k1,...,kan =1
kz—Z, n+1
< 1Al Z H ¥,
k2n
Zz lk Zz n+1
We define ¢ := {¢r} := {|xl}, @ = >, pre™, so, using Sobolev’s embed-
ding H®* C L*" for 5 — 5~ < s; < 3, one has:

[F@) <A1l > Hsok 1Bl Z2- 11111

k'l: 7k2n
k Zz n+1

< Clst, W)@l A1 = Clsi )l 7 A

Hs1

]

We will also consider the functions f € C"(¢*, Py,), f: ' 5 w = {w;} —

fW,w) =3 k=h,. han) fi(w) T, ¥rk;.,- In the following w; will be
k ZZ n
the nonlinear modulatloﬁlof the j-th frequency.

Actually we need to keep the information of the size of the different derivative
of f. So, we give the following definition.



Definition 3. We will say that f € P"(2n, {A;}_,) if f € C"({*, P»,) and

131
sup 6f—k(w) <A, Vi=0,..r.
w,k awj
|j]=i

Remark 8. Max;A; is a norm for C" (01, Py,).

Given a function f € C"(¢', Py,), we also consider

fph(¢) = f(¢7 |77Z)|2),

conversely, we will say that f : H® — C is of class P"(2n, {A;}_,) if there

exists a function F(¢,w) € P"(2n,{A;}_,) s.t. F(¢’w>‘w={|wk\2} = f(¢).

Remark 9. If f € P, with [||f]|| < oo, then f € P>*(2n,{A;}2,) with
Ao = |||f|l| and A; = 0 for any ¢ > 0. For simplicity, we will write f €
P (2n, [ F111)-

Remark 10. From Lemma , for any n € N and for any s; s.t. % — % <
sy < 3, for any r > 0 and for any f € P"(2n,{A4;}_,), one has

[FW)] < AgC(s1,n)[[¢]

The connection of the norm of P°(2n, Ay) and the L?-norm is given by

Lemma 3.2. Letn be an integer, denote Cy(n) := 2m2[(2)1]3 (2n—1)2 > ﬁ)n :
then for any B8 > 0, and f,, € P°(2n, Ay), one has

.. (13)

AoCy(n)

Gn (14)

”fthgﬁ <

.....

ol = [ 1fnlduas = [ S WO LTVt
(15)

Let s; be s.t. max{s,’g—;}} < 5 < %, by Lemma there exists a
constant C' s.t. |f|*> < CAZ||¢Y||3%,, moreover by Lemma ||, €
LY(H? pyp). So we can exchange the order between the integral and the
series and becomes

Z o fk<w)fj<w) qukiwjnJriQZji’lZ}knJridugﬁ =
kg VH° i=1
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Z st fk(w)f;(d}) H:L 1 ¢k'w]’n+z&jz@kn+z 7§ Zskj (1+12)|¢l|2 Hskj dwld@l
k.j I1s,, Joee — 2D gy i,

(16)
where Si; := Supp(k, j). It is useful to use the following notation: given a
set K of indices (ki, ..., k2,) with an even number of components, we denote

K1 = {]{51, ,kn} 5 K2 = {l{?n+1, ...,an} .

Using the substitution ), = \/%ewl, z € R 6, € ]0,27), one has that

the only integrals different from 0 are the terms in which K; U J, = Ky U J;.
We denote by T the set of (k,j) s.t. K3 UJy = Ky U Jp and with both &
and j fulfilling the zero momentum condition, namely >>7  k; = S22 k;,

i=n-+1
S Gi= > i Thus is bounded by

22n
2 — 25, A
A Z 52” Hz_ (1 + k2 1 + ]n_;,_,b /H Rl Zjitn € Skj H dzl

k’je‘:r Sk]
22”(2n)! 1
< A2 - —
° /8211 k%;{r Hi:l (1 + k?) (]‘ + ]3-%2)
So,
A222” 2n)! 1
[ fonll5 5 < —. (17)
phllgs < Z HZ 1 1+k2)<1+32+i)

Since we sum on (k, j) € T, we have that, having fixed K7 U Jy, = Ky U J; we
have (2n)! way to rearrange K; U Jy and (2n)! way to rearrange Ky U Jy, so

1 ) 1
Z BTN Zn, [Timy (14 K2) (1 +704)

So, finally,

A2 2n)P (X, )™ A2C3(n)
1 fonll2.5 < T <~

with Cy(n)? := 227H4[(2n)1]3(2n — 1)* (3, ﬁ)%
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Remark 11. According to Lemma [2.1], one also has
AoCy(n)

Bn

The Poisson brackets of two functions f, g with f € Py, and g € P" (2m, {A;}}_,)
is formally, given by

prhHM,a < (18)

B ny of dg 09 Of
{f.9} = Ls(g) = sz: <8¢k O O 3%) .

Remark 12. 1f f € P,, g € P,,, then

{f7 9} € Poym—2.

Lemma 3.3. Consider f € Poy, |||f||| < D, gpn € P" (2m,{A;}/_,). Then

gt =R+ B, (13)
where

Fy € P"(2n 4 2m — 2,2nmD{A;}i_,) , (20)

Fy € P"'(2n 4 2m, 2nD{A; 1 }]2)). (21

Proof. Writing gpn = D _j— (4, ky) Ik ({1vxl*}) Vry o b Vb oy - Wby then it
is immediate to verify that holds with

Fy = Z g ({10 1P 1) LS ko by V- Vo }

k=(k1,...kam)
Fr= D ket i U ({051} =
k=(k1,...kam)
0 |2 _ _
- Z (Z %W) wkl”'wk7n¢km+1"‘¢k2m {f’ |77Z}l|2}
k=(k1,...kam) !

and, by Remark[12] Fy € P" (2n + 2m — 2,2nmD{A;}}_¢) and F, € P"~}(2n+
2m, 2nD{A;1};—,) hold.
O

Actually, we shall use a more particular class of functions in which the
range of the indices is subject to a further restriction. This is related to
the fact that in our construction we shall fix an index k corresponding to
the action we want to conserve. To this end, we introduce the following
definition:
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Definition 4. Given M > 0, k € Z, a linear combination

2n
G(kl, ceey kgn) = Za,kz
=1

with a; € Z, |a;| < M, we will say that the relation
Gk, kon) = K

s (M, k)-admissible.

Lemma 3.4. Given D > 0, let be f € Pon, IfIll < D, gu(¥¥) €
Pr(2m,{A;}_,), M >0,k € Z.
Assume that

Gph = Z 9k ({1kl?}) ks oot Vo i
k=(k1,..,kam) S.T
Gk(kl ..... /sz) k

where, for any k, Gy, =k is (M, k)-admissible. Then
{f, 9o} = F1+ Fy

where

Py = Z L A ) A ) TS (22)
k/:(kll 7777 k/2n+2m 2)
ék/ (kll """ k2n+2m 2) k
Fy = Z Fyprtbwy - bwr
= 2)
Gt (R seee K ) =K

lpkgﬂrnﬁ—l "lzké/m-q—}n (23)

where for any k', k', the relations Gy =k, Ggr =k are (2M, k)-admissible.

Proof. Writing f=3%"_q, 1, fitbny iV Yt , by Lemma , we have

Fy € Pr(2n+2m — 2,2nmD{A;}_,), F» € P '(2n+2m, 2nD{A;}}_,) . Moreover,
each term of Fj is originated by two terms that depend respectively on [ =
(L, - lon) and k = (ky, ko) st S0 L= S0 Ly SO k=300 ks

and {ly, ..L, } N {kmi1, ...kom} # D or {lni1, ...lon } N {k1, ..k} # @. Without
loosing generality, we can suppose l; = k1.

We form a vector of indices k' = (la, ...Ln, k1, ooy ki b1y -lon, Koy -y Kom)

St S r LS k= kS o Ky Moreover, kyq = o, ki —
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Zl s ki By hypothesis, we can write Gy (ki, ..., kom) = 2?;”1 a;k; with
a; € N, |a;] < M, so

2m m 2m
k:Gk<k1,...,]€2m> :Zalkz ZZ CLZ+(lm+1 k? —+ Z am+1)k5
i=1 i=1

i=m+2

_Zbk + Z biki = Gr(kr, -y ks Kmsas s Kom)
i=m+2
:Gk’(l%'“alnakla-"7kmaln+17"'7l2n7km+27'“7k2m)'

We note that |b;] < 2M and G}, is a linear combination only of {k1, oo kmy Koy ooy kom }
so it is independent of the null-momentum condition related to

(lay ooy by K1y ooy Ky L1y <oy lon, K2y vy k2 ), 8O we obtain the thesis for Fj.

For F; the situation is simpler. Again each term of Fj is orlgmated by two

terms that depend respectively onl and ks.t. Y l; = ZZ S by Dok

Zz m+1 k’ and {ll, . .ln}ﬂ{km+1, kgm} 7é @ or {ln+17 lgn}m{k’l, m} 7£ @
We obtain a vector of indices " = (I, ... ln, Evy oy Ky lns 1y ooy lony K1y <vy K2m)

.t Dy bt 0l ki = Ez nt1 K +Zz D1 ki and
k= Gk<k17 k?m) = ék’”(ll) [RXD) lna kla "'7km7ln+17 "'7l2n7 km—‘rh L) ka)

O

Remark 13. This result holds also in the particular case in which g; is a
constant independent of {|¢;]*}.

In particular, one can obtain the following improvement of Lemma [3.2}

Lemma 3.5. Let n be an integer, M >0,k € Z, let

P°(2n, Ag) 3 fon = Z Fie ({0P}) Vny oo Vrnir. Ui

and assume that, for any k, Gi(ki, ..., ken) =k is (M, k)-admissible.
Then, for any 5 > 0, one has
A()Cg<n)M2

prhHgﬁ = (1 +k2) Bn : (24>

The proof of this lemma is very technical and it is deferred to Appendix

B.1
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4 Formal construction of perturbed actions

In this section we look for a formal integral of motion which is a higher
order perturbation of ®y o := |¢)x|?. Thus we fix once for all the value of k.

To present the construction, we describe first an equivalent one, which
however is difficult to manage directly. Since Hj is completely resonant, it
is well known that one can construct, formally a canonical transformation T°
which transforms the Hamiltonian into

Hy+ Zy+ Zs + Ry (25)

with Z, and Zg which Poisson commute with H,. In particular Z, has been
computed in many papers (see e.g. [I] ) and is given by

AEE (Z w) DI (26)

Then, following the ideas by Poincaré, we look for &Dkﬁ, Poisson commut-
ing with Hs, s.t. @{6) = Dy + i)kﬁ is an approximate integral of motion of
(25)). Computing the Poisson bracket of this quantity with , one has that
this is a quantity of order at least 8 if

{Z4, Ci)k,(s} = {(bk,% Z6} = 9% ) (27)

which is clearly impossible since the Lh.s. is of order 8 and the r.h.s. of order
6, so we will modify it. Since Z; depends on the actions only, one has

0 -0

with w; = ¢ (J1;]% + 3, [k?). So one is led to separate the regions where
the w;’s are resonant and those in which they are non resonant. The resonant
regions and the nonresonant regions will be defined precisely in the following.
Denote RY T the restriction of Zg to the nonresonant regions, we will solve
the equation

{21 0es} = RY®. (28)
Looking for éff) in the class of polynomials with frequency dependent coef-

ficients, the approximate integral of motion that we are going to construct
is given by the sixth order truncation of T‘1<I>1({6). We proceed now to the
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construction of the integral of motion. Define the operator Ly, := {Hs, },
we have that for any f € P,

Lu,f={H, f} = _’iZfl,m <k2, (I — m)>¢%m
Im

where (K2, (I —m)) := 3, k3 (l; —my).
Equivalently, for any f € P,,, we can write

n 2n n
Lif=—iY  fi (Z k? <Z Okik = Y 51@1-,1@)) | R
k k =1 i=1

i=n+1
where 0, is kronecker’s delta.

Definition 5. We denote by
NH2 = kerLH2 = {f € UneNPQn : fl,m # 0& <k27 (l - m)> = 0} )

RH2 = {f € UneNPQn : fl,m # 0= <k2, (l — m)> # 0} .
Remark 14. Ly, : Ry, — Rp, is formally invertible.

Given a polynomial f, we indicate the projection of f on Ny, by fVN
and the projection on Ry, by ff#.

In particular, we have

R & T
H4 2 = ZQ Z wklwkzwk:ﬁwku

k1+ko=ks+ky

k2 +k2£k2+k2
Ny
Zy=H, ™

Define now

Ry
1R (1 R 2
Xa = —Lg H™, x¢:=—Lp] (5 {X4, H, H2} +{x4, Za} + H@) ;

1
Dpa = Ly, [Uil*, Pro = =L2 [Uk|” + Ly |vn]?

2X4

and
Nu 1 Ry Ny
ZG = H6 2 + (5 {X4, H4 2} + {X4, Z4}) ,

to proceed, we have to define the resonant /nonresonant decomposition of the
phase-space.
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Definition 6. For any n > 0, we denote by

n 2n n 2n
W&nﬁz{kzzﬂg}ezmst.EZky: k> k= @}
j=1

Jj=1 j=n+1 j=n+1
Write
Zs =Y Zoslr s Vry Ory ks Vi,
keMs

computing

Re = {(I)kg, Zﬁ} )
one gets

Re = Z Z6 k x (29)

keMg

with

Zﬁ,k,k = _iZG,k <5k1,k + 5k2,k + 6k3,k - 5k4,k - 5k5,k - 6k6,k> ¢k1wk2¢k3&k4@zk5@kﬁv

where 0, is Kronecker’s delta.
We introduce a function p € €, s.t.

[ Liffx| > 2
M@_{Oﬁm<1‘ (30)

Recalling that w; := ¢ (|¢;1* + X, [¥x]?), we denote by

1
ar (1) = (Why + Why + Why — Wiy — Wiy — Wie)

:(|¢k1|2 + |¢k2|2 + |7v/}k3|2 - |77Z)k4|2 - |1/}/€5|2 - |¢k6|2) (31)

and, given 0 < § < 1, we define the decomposition Rg := RYE + RE with

fR(]sVR = Z Z6 k. xP (akf;b))
k

¢ T (1 (42)).

We define ékﬁ to be the solution of equation (28)), which is explicitly given

by
~ . Z6,k,k akz(¢)
s '_chm(w[)( 5 )

keMg

and

16



Remark 15. ‘fk,(s(@/]) € P? <6, {%}§:O> C P? (6, {%}j:() with A := max; A;.

Finally we define the approximate integral of motion is given by
@1((6) = ®k,2 + (I)kA + ®k,6 + ék,ﬁ + LX4(ik,6' (32)

The following lemma gives the structure of its time derivative.

Lemma 4.1. Write
{H0} = —RE+ R

then
q+1 q+2 q+3 q+5

R = Z Ro; + Z Roj1 + Z Rojo + Z Ry; 3, (33)
j=4 j=5 Jj=6 J=7

with Ry; € Py, and there exists C > 0 s.t.
_ ) C 371
RQJ‘J e p3! (2]7 {5m+l} 0) .
Proof. One has

{H o 6)} = {H,, By}

o {Ha, @} + {Hi, o} + { Hy, B} (34)

4 {Ze, Do) + {24, c13k,6} + {HfHZ,ék,G} + {HQ, LX4<f>k,6} (35)
n—2

+ <{H2]7(I)k 6+ {H2]7 Lx4q)k6} + {H2(j+1)7 ‘I)k,4} + {H2(j+1)7 ‘i)k,ﬁ} + {HQ(j+2), q%,z})
~ (36)

+ {Har), D} + {HQ(n_l), Lxﬁk,ﬁ} + {Hap, ®r6) + {Hgn, ci>k76} (37)

+ {Hyp, @p6) + {Hgn, Lx4<i>k,6} . (38)

Due to the construction, we have that {Hs, ®x2} = 0 and {Hs, Px4a} =
- {H4, ékg}. Due to the fact that a; and p depend on the actions only and

{Zsxx, Ha} = 0, one has {Hg, ék’g} = 0 so that vanishes.
Since Z, is a function of the actions only, we have also

P ) e

ar(¥)

{Z4,<I>k6} —ZZ{Z4,Zﬁkk} p<

17



We note that {Hf%,ci)kﬁ} = — {HQ, LX4(1:>k76} in fact, by the definition of
x4 and {H2, Cﬁk,@-} = 0, one has

= R
{Hay Lo} = = { Mo, { LA H™ By} =

= {L;IleHg, {ékﬁ’ HQ}} + {&)k,G, Lu,L 1HRH2} { RHQ}

So, by (|29 . line ([35]) reduces to Zk Z6.kx (p( kw)) 1) = —RE.
It remains to study now (36)), (37) and (38). Using Lemma we have

{HQja &)k,G} = I+ Fyy,

c O\’ c’
Fl,j e P? (2] +4, {5i+1 }ZO> FQJ e P! (2] + 6, {5z+2 }ZO) ,
- c? !
Ly, 96 =FE + Fy, E, € P! (8 {(w} ) > FE, € P? (10 {5“}1_0) ,

SO

{H2]7 LX4q)k6

C 1
F3]€P2(23+6 pn) ) F,; € P (2]+8 {52+2}_0>,

Fy, € PP (2g+10 Z )
{Haj, Pr2} € Py,

{Haj, Pra} € Pojo,
{Hsj, P6} € Pojta.

— Py, + Fui+ Fs,

5 Measure estimates

In this section we estimate ||[¢x|?[|,.,, H<I> Huﬂ and H{H, CIDI({G)}

Hp

18



Lemma 5.1. There exists a constant C > 0 s.t. for any > 1, 6 € (0,1)
s.t. 0 < 6B <1, one has

C

(6)
||(I)k W) | ”g,B = ( +k2)2 min{(52ﬁ6,54ﬁ10}’ (39)

C
IRISs < e (40)

where R is defined by .
Proof. We recall that

— |1, = B + Preg + Prg + Ly, Pus.
By construction, ®y4 € P, ®x € P and there exists C; > 0 s.t. P4 €
P? <6 {&H }2 ) and, using Lemma . there exists Cy > 0 s.t. Lx4ci>k76 =
Ey+ By, By e P2 (8, {2 )0,), Bae P (10, {5} ).
Moreover, P* (6, {8} ) © P°(6,9), P*(8,{:&},) © P°(8,%)

and P! (10 {ng} ) c P° (10, 522) So, using Lemma and Lemma
with M = 2, we obtain

(6) C 1 1 1 1 1 <
H(I) |,l/}k| ||gﬂ—m @+@+5256+5258+54610 —
5C
S o
(1+K2)2 5236

where we used 0 < 63 < 1. Using (33), Lemma [4.1] Lemma [3.4] and Lemma
B.5] with M = 4, we get

n+1 n+2 n+3 n+5 )

||R||gﬁ < —|—k2 (Z@ +Z 52627 +Z 54523 +Z 56523

SO

C
(14 k2)*min{4§26, 54510}

IRllgs <

It remains to estimate the resonant part, namely HR?”; 5

19



Lemma 5.2. There exists a constant C > 0 s.t. for any 8 > 0 and § > 0
s.t. 0 < 6B <1, one has

(41)

The very technical proof is deferred to Appendix [B] We remark that the
difficult part consists in showing the presence of (1 + k2)2 at the denomina-
tors.

Finally, we obtain the following

Lemma 5.3. There exists a constant C' > 0 s.t. for any 5 > 0, one has

‘ o8 H{H’ q)@} -

,(6)
0N < .

98— (14+%2) [ 10
Proof. By Lemma [4.1], we know that

{H, @1({6)} — —RE 4R,

Using Lemmas and , we can choose ¢ in such a way that and
have the same size:

1 (3)s
56 314 - 36
It follows that § = ﬂ% and the thesis. O]

Finally, using these results and Lemma [2.1], we obtain

Lemma 5.4. There exists f*,C > 0 s.t. for any > B*, one has

H(b(ﬁ) -
k = 3+15
ps (1 +Kk2) (%10

Proof. This results is a simple consequence of Lemma [5.3[ and Lemma [2.1]
O

6 Proof of Theorem [I.1]

Proof of Theorem [L.1] Using Chebyshev’s inequality, one has

o0 (p(t)) — 8® ((0))

s {2 190 (6(0) = &7 O] > mllal?ll, | < ‘

Hs
milllexl?1,
(42)

20



But &7 (1(1)) — 2 ((0)) = [y &7 (v(5))ds, so

|

Thanks to the invariance of the measure, the L?(us)-norm is conserved under
the dynamics, so for any ¢ € R, we have

9 (4(1)) — <I>£6)(¢(0))HM = /Ot‘

<i>£f><w<s>>))% ds.

|80 @e| =& won| =[] .

I7%] Mg Hp
and in particular we obtain

|2 @) - @] <)o
B 1B
So,
0|
s {0 107 (1) = & WO > mlll s | < - < (43)
RlePIZ,

24
for any |t| < W, where we used Lemmas and . Using this
result, we can study the variation of the k-action. In fact

s {0 O = O] > mull s} < (44)
< ng {: |2l w(®) = &P @wO)| > Tl }

6 m
g {6 [ = 1, 2| () > B el )
6 m
g {0 |0 = 10,2 ©) > Tl }
2
|
< —=+18 o M2

_— 2 —
2 i el

2+
for any 8 > =5, |t]| < —nunzéé’
m' ng

the conservation of the Gibbs measure, (39)) with § = 5%73 and Lemma to
10

estimate the second and the third term. Then Theorem [I.1] is obtained by
reformulating this inequality.

, where we used Chebyshev’s inequality,

[]
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Proof of C’omllary 2| We consider two sequences n; ; := 11 (1 + k? ) Mok i=
1
(1+k:2) <Z] 1452 )

For any k € Z and any a < 1/2, we define

Ua,kiZ{ e = | (0 ||_

Using Theorem one has

.

ts(Iok) < ps {¢ e = [r(0)]?] > Mm} =
o {0 IO = 1O > 2] < s

for any [t| < C'ni\/ma8>t.
Denote J, := UJ, , one has that

e (35) <> g (35,) < . (45)

A Lemmas on Gaussian and (Gibbs measure

First, we recall that both Gibbs and Gaussian measures are constructed
with a limit procedure starting from the "finite dimensional" measure which,
in the Gaussian case, is defined by

e s o= ke (1HF2) 12

HooN = "7 nB) ZyN(B) ’
Zg,N(ﬁ) ;:/ e‘%Z\kKN(l—&-kQ)Wk\Q H dwkdd_}ka
My (H*) |k|<N

where Iy ({¥r}rez) == {¥r}rj<n- (See [6]).

Lemma A.l. Let N be an integer, 1 > v > 0, then there exists C(v) > 0
s.t. for any 8 > 0 one has

_B 2 2 —
Jrvcary Tipen { } 2 (021 ) iy
[p| < ——L—

( k2)2 VB

>e V),
( )

Moreover C is independent of N.

22



Proof. Using the independence of all the variables, one gets

_B 2 2 -
Jriy iy Hppren X{ }6 2 ()P Gy iy,

|vhr | < —

(1+42)% 3
Zg,N(ﬁ)
00 _B 2\ 2
27‘(‘ fO X ) & 2<1+k )pkpkdpk <1+k2)17’y
B H {Pk<(1+k2)%ﬂ} H fO e *rdzy
- o _B - 0 2z
k|<N 2m [y e 2 (1HR08 oy, k| <N Jo~ ez

=11 (1—6_W) >1] (1—6_W)
|k|<N kez

1e2)
2|klez log (1—€<2>> )
=e — ¢,

As N — oo, we get the following lemma

Lemma A.2. Let v be 1 >~y > 0. Then, for any 8 > 0, one has

_B 2 2 —
Jrv ey Tinen X { }e 2 (L0219 ) iy

[¥r]<
lim
N—oco ZSLN(B)

:/ HX ) d/,Lg’B.
kcZ |¢'k|<m
Proof. For any M > N, M € N, one has

e~ % Diwran (1487 ln [Ty dvwdiy

f I
HN(HS)|]<:|<N {|¢’“|<(1+k21)3¢a} ZQ»N(B)

_B 2 2 -
:/ H X ¢ 2 R (R HIk\<Md¢kd1/1k
Mar(H®) k|<N {wml} ngM(ﬁ)

(1+k2)%\/ﬁ

So, one has

¢~ % iwrcon (18 unl? L s dndiby =
} Zy1(B)

1
(1442)2 VB

lim X
M—o0 T (H®) k|<N {|"/’k|<

23



-,

[Ypl<——5—
(1+k2)2 VB
oo. Since 1 € LY(H*, ) and Ii<n X{

d,ugg.
s ot ’
[k|<N {'wk|<(1+k2)g\/§}

But []<n X{

}%erzx{ }a.e. on H® as N —

‘ k|<71
+k2)2 VB

< 1, by Lebesgue’s
1/’k<1'y}
(1+k2)2 VB
dominated convergence Theorem,

lim H X ditg :/ lim H X dpg s =
N—oo Hs W’k|<+'y s N—oo |¢k|<%~/
|]€|<N (1+k2)7\/3 |k’|<N (1+k2)

s / HX ) d/ng7ﬁ-
Hs keZ W’k|<(17

+42)% B

Remark 16. From Lemma and Lemma [A.2] we know that, if 1 >~ >0
and 8 > 0, one has

| T« C diig = OO, (46)
HS]{ZEZ {|¢k|<}

v

Lemma A.3. There exists a constant C > 0 and 8* > 0 s.t., for any B > 5,
one has

1> / e PPy, s > e 20, (47)

Proof. We remark that P =%, Hoj =39, g—;||w||ijgj
The first inequality is obvious.

We analyze now the second inequality. By the definition of P, if we fix sy,
by Sobolev’s inequality H*(T) C L"(T) if r € [1, 1—2_251] Therefore, choosing

1 .
‘12—q <5 < %, there exists a constant C,, s.t.

[l z2s < CE NN, §=2,...q. (48)

We fix § + s, <y < 1, denote D' := djez W7 then we have:

—BP L o—BP
/ L& g 2 /H X{jwi,o, <2 e " dHgp =
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Csob

Z‘ c; D"
e ]jfvzovq pi—1 d > ) 6_ C%Oquaxj CJD/]d
e I3 <5} Has = | X3 <%} fg,8

HS1— B HS1—= B
C .
> o~ Framax; chu/ HX
Hs [or| < ——7—
kez { R

C . ~ ~
> e fhqmaxc; DY —~C(y) > ¢~200)

} dﬂgﬂ

Y

where the inequalities in the last line are true thanks to Lemma [A.2] and for
[ sufficiently large. O]

Remark 17. pg is a good probability measure on H*® since ug < fig5 and
—2C(v) Z(B)
e Vs sh

For the proof is sufficient to note that

—B(iy Sl _ Z(P)
e e = 7,57

Using this result, we can obtain Lemma to estimate the L?-norm in
the Gibbs measure with the norm in Gaussian measure.

Proof of Lemma We have

2d
2 _ 2d < st |f| Hg,8
I, = [ 1ty < e S

and, from Lemma [A.3]

115 < 1156
O
Proof of Lemma As above we fix % <51 < % and % +5 <7y <1, we
denote D' := Y., —J—— so we have:

jez [y

M%ILUW%ZAUWMWMZ

> 2 e PPdu, 5 >
= /H X gz, <™ digs =

Csob

> o % gmax; c; D" 2 v d
=€ /H X oz, <2y Bos

Csob 15
— 6_ SBO qmanCjDJ ‘

2
‘fx{w <ZH,5°

H1= j
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m
We are now ready to give the proof of Lemma [2.4] namely the estimate
from below of the L?-norm of the actions in Gibbs measure.
Proof of Lemma We fix % < 851 < % and %+ s1 < v < 1, we denote
D= __ —L s

JEZ Wy T

e /H Tl TTx

[ < —L—
kez { 422 vE

| x g, <2

H51 =

}dﬂgﬂ =

_B ) -2 12 —
an(Hs) ¢k|4 HjeZ X{W,.K 1 }e 5 Sjien (144%) 1051 H|j|<N dipidi,
lim ")t
_B5. NP -
N—oo fHN(HS) e~ 2 2j<n (1)W1 [T} dibsdid;
(49)
Using the independence of the variables, we have that is equal to
Je Il X e R gy gy,
<Gt 3
c e_g(”kg)“”k'?dwkdz/_}k
| 0 -5 Z|j|;zv(1+7'2)\¢j\2 . B
s i€z X e J7k 1en didi;
s, (H*) ;ik {¢j<11} |Jj|;k Y5
X lim (+52)2 VP
N300 — 5 X< n A+l 12 ’
2 2|j|<N J _
fHI;V () € s [ L)< dijdib;
- J#k
(50)

where IT%; is the Dirichlet projection onto the frequencies {|n| < N,n # k}.
Furthermore, since

fCX{wkk

}e—§<1+k2>'¢k2dwkdzﬁk

1
(1+k2)%\/ﬁ

c 6_§(1+k2)‘¢k|2dwkdzﬁk

<1,
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one has that is lower than

|| < ——7—
(1+x2)2 VB

C e*§(1+k2)|wk|2dwkdlzk
B DL [ )
}e s |]|<N<1+‘7 )WJ' |j|<Ndwjdwj

I 1]y { }e—§<1+k2>'“"k'2dwkd¢k

X

an(HS) [jez X{

1< —Ly—
. (1+42)2 VB
X am SN REE WP -
Jrqey e ? TN " e i
%
N f0(1+k2)2\/ﬁpie—§<1+k2)l’1%dpk ]
- o0 *§(1+k2)p2 X 1 MQ?B
Jo pxe2 kdpx H pez |¢j|<(1+jz)%\/g

(1+};2)1_AY

4 2 ~
e I Gl
+ 0

. (1+k2)177
e—CM) 2 y e~ C() o,
> Zee dz > — re Ydx,
B2 (1+%%)" Jo B2 (1+%%)" Jo

where in the last line we use Lemma [A.2] So, for § large enough, using
Lemma one has

7Csob e D' 2
1l > e X e, <23,
A 1
> e*%qlmaxj c; D' 6_0(7) /2 :L,Qe—xdzk _ 012(7> '
a B2 (1+x2)* Jo 82 (14 k2)°

The support of the Gaussian measure is described in the following lemma
in which the main part is that we specify the dependence on /3 of the r.h.s.

1
27

1

Lemma A.4. For any s; < a < 5, M >0 and 3 large enough, there

exists a constant C' > 0 s.t.

s ({|W)l g > MY) < Ce M

Proof. We consider

a 2 Y a 2
M s ({[[0ll s > M}) < e g 5 ({[[0]

Hs1 > M})
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_ ezé/ QN gy 620/ eIV gy,
{1l gs1 >MINH> {1l rs1 >M}NH*
SeQé/ e B gy, = 20/ BT (147°) Wl gy
0B 5 (1452) " g1 5 325 (1442 o5 2 H dlpjd?/_}j
2
ste QZ (14352451 H d%d%

_ eQ(ijS

B(1+452) ™ v 12— 5 (14452 [y 2 dz/wdzﬁ

2CH fc JYYg (51)

o= 5 (1+52)|w; ‘dep d%

Using the substitution ), e, z; € RT, 0, € [0,27) and the fact

_ A /22j
v/ B(1+352)
hat

that fR+ e *dz =1, one has t (51)) is equal to

2CH/ (12000 o g,

~ 2a
) H ( 1+ —2a

O

Remark 18. From the previous lemma, if M goes to 400, we obtain that for
1
any s < 3,

ps (Yl = +00}) = 0.

In particular, we obtain that, for any s; > s, ug (H*\ H*') = 0.
Proof of Lemma Having fixed (8 large enough, 712 > 0, and a < g, there
exists a constant C' > 0 s.t. for any = > C, 2™ < e*", so, one has

| ldngs < [ ol g+ | e
He (Yl s <CINH? Yl gsr >CINH?

2a
scw/s eVl dpg 5 = C”H(Hﬁ(lﬂ 2! “—2a> o

where in the last line we proceed as in Lemma [A.4] So we proved that
9]/ € LY(H?, dpy,5). By Lemma 2.1 we have that ||v||%., € L'(H*, dpug).
0

Al ler gy
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B Technical lemmas

B.1 Proof of Lemma 3.5

We recall that, given a set K of indices (ki ..., k2,) with an even number
of components, we denote

Kl = {kl, ) kn} y K2 = {kn—l—l; ) an} :

Lemma B.1. Let k € Z?" and j € Z*™ be 2 integer vectors, each one
fulfilling the zero momentum condition and an (M, k) admissible condition.

Assume that K1 U Jo, = Ky U Jy, then there exist z,y € K1 U Jy and a
constant C, s.t. |x|, |y| > |k|/C. Furthermore {x,y} is uniquely determined

by K1 U Jo\ {z,y}.

Proof. For future reference we write the (M, k) admissible conditions for the
two vectors:

2n
Z aiki =k s (52>
i=1

2n
Z biji =k . (53)
i—1

We give now a recursive procedure in order to determine the elements x, y in
the statement.

From there exists  s.t. |k, | > |k|/2nM. By possibly interchanging
K, U Jy with Ky U J; and reordering the indexes, we can always assume that
[y = 1. So we have

> a0
In the following we will make several cases.
We look for the “companion” of ki in Ky U J;. We have two possibilities:

(A) Tt belongs to J; and therefore, by possibly reordering the indexes it is
given by j; (thus we have k; = j;)

(B) It belongs to K3 and therefore, by possibly reordering the indexes it is
given by k,,1 (thus we have k; = k1)

We begin by analyzing the case (A). We use the zero momentum condition
on k in order to compute ki as a function of the other components and we
substitute in (52]), which takes the form

n

Z(ai — a1>l€i + Z(Gi+n + al)ki+n =k. (54)

=2 i=1
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Then there exists at least one of the k;’s which has modulus larger then a
constant times |k|. There are two possibilities

(A.1) It belongs to Kj, thus (up to reordering) it is given by k,:

k
|kn| Z 9 | ’ & aq 7é Qp, (55)

(n—1)M
(A.2) It belongs to Ks, thus (up to reordering) it is given by kgy,:

k
|k2n| Z ﬁ & aq 7é —agy - (56)

We analyze first (A.1). Consider the companion of k,, there are two
further possibilities:

(A.1.1) It belongs to Jy, call it j,, (thus k, = j..),
(A.1.2) It belongs to Ky, call it ko, (thus k, = ko).

We analyze (A.1.1). In this case, given K3 U Jo \ {k1,k,} also Ko U Jp \
{j1, jm} is fixed. Then determines k,, and then determines k;. This
concludes the case (A.1.1).

We analyze now (A.1.2). Given K; U Jy \ {k1, k,} also Ko U Jy \ {J1, k2n }
is fixed. So, also J; U Jy \ {1} is determined. Then, by the zero momen-
tum condition on j one determines j; = k;. Still one has to determine
k, = ko,. To this end one would like to use . This is possible if the
coefficients of k,, and ko, do not cancel out. If this happens, then consider
k' = (k1,....kn_1,kny1, ..., kan_1) and iterate the argument of situation (A)
with it (which also fulfills the zero momentum condition). Iterating n pos-
sibly decreases by one at each step. Since k' (and its iterates) has to fulfill
an (M, k) relation, which in particular is inhomogeneous, the procedure ter-
minates with a nontrivial &’ of dimension at least 2. This concludes this
case.

This concludes the analysis of (A.1).

We now analyze the case (A.2). We have two cases according to the
position of the companion of ky,.

(A21) It 1S k’n - Kl (thus k?n = an)

(A22) It is ij S J2 (thus ij = k2n>
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The situation of the case (A.2.1) is identical to that of (A.1.2) and has already

been analyzed.
We study now (A.2.2). Given KU Jy \ {k1, jom } also Ky U Ky \ {k1, kan}
is determined. But, by the second of , determines ks,. Then kq is

determined by .
This concludes the analysis of (A).

We come to (B). Substituting k; = k, 11 in (52) we get

(a1 + ans1)kr + Z(aikz‘ + Gitnkiin) =k . (57)

i=2
We have two possibilities

(B.1) —ay # aps1
(B.2) —a; = apy1
We analyze (B.1). We concentrate on j. By there exists one of the
Ji’s which is “big”. There are two cases
(B.1.1) it belongs to J; and thus it is [j1| > |k|/2mM
(B.1.2) it belongs to Jy and thus it is |jo,| > |k|/2mM
Analyze (B.1.1). There are again two cases according to the companion of j;
(B.1.1.1) It belongs to K7, thus it is k, = ji.
(B.1.1.2) It belongs to Jo, thus it is j,11 = Jj1-

Analyze (B.1.1.1). Given K3 U Jo \ {k1, k,} also Ko U Jy \ {kns1, 1} is deter-
mined. Thus also J; U Jy \ {j1} is determined. So, from the zero momentum
condition also j; = k,, is determined. From also k; is determined.

We analyze (B.1.1.2). First we remark that given K; U Jy \ {k1, j2n} also
Ky U Jy \ {knt1, jn} is determined, thus K7 U Ky \ {k1, kny1} is determined,
and then, by also k1 = k,, 1 is determined. Then we have to determine
one further large component.

Substituting 71 = jua1 in one gets

Z(szi + bitmivm) + (b1 + by1)j1 =k . (58)

i=2
We have two cases

(B.1.1.2.1) by + byyq £ 0
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(B.1.1.2.2) by + by = 0

Case (B1121) Given Kl U Jg \ {klyjm-i-l} also K2 U Jl \ {kn+1,j1} is
determined. Thus also J; U J3 \ {Jj1, jm+1} is determined, but then one can
use to compute j;. This concludes the analysis of this case.

Case (B.1.1.2.2). In this case becomes a (2M, k) admissible condi-
tion for j' := (j2, .-+, Jms Jma2s ---, Jom), Which also fulfills the zero momentum
condition. Thus one is again in the situation (B.1) but with j" in place of
j. Iterating the construction one decreases m at each step, and therefore the
procedure terminates in a finite number of steps.

We come to the case (B.1.2). We distinguish two cases according to the
position of the companion of ja,,.

(B.1.2.1) It belongs to Ko, thus it is ko,.

(B.1.2.2) It belongs to Ji, thus it is jop,.

Case (B.1.2.1). Given K; U Jy \ {k1,j2m} also Ky U Jy \ {kni1, kon} is
determined. Thus also J; U Jy \ {jom} is determined. Then by the zero
momentum condition on j also js,, = ks, is determined and one can use
to determine k;.

Case (B.1.2.2). By reasoning in a similar way one determines k; = k1.
Still one has to determine j,, = jo,,, and this can be done exactly (up to a
relabeling of the indexes) as in the case (B.1.1.2). It means that if by +b,,41 #
0 the argument is complete, otherwise we have to start a recursion as above
in the case (B.1.1.2.2).

In the case (B.2), becomes an (M, k) admissible condition for k&’ :=
(koy ..., kn, knta, ..., ka,) which also fulfills the zero momentum condition. Thus
the construction is repeated with k' in place of k and after a finite number

of steps the construction stops.
[

We can now prove Lemma 3.5
Proof of Lemma [3.5] The proof is similar to that of Lemma [3.2] In the same
way, we get an estimate analogous to , the only difference is that the sum
is not on T but on the set of (k, ) fulfilling the assumptions of Lemma
We denote this set by 7.

So, we estimate

1
Z~ [T O+ &) (1 +352.)

(k,j)eT

(59)
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If k = 0, then we can proceed exactly as in Lemma [3.2]
If k # 0, we note that at most [(2n!)]> couples (k,j) give the same set
K U Jy = Ky U Jp. So using Lemma [B.I], we obtain

1
Z [T, U+ k) (1+352.,) (60)

ij‘.T

ol ) —— (61)

C 1\
STy (Z <1+z2>> ' 2

B.2 Estimate of the resonant part

First, we introduce a lemma useful to estimate the measure of the resonant
region.
Given n € N and k = (ky,...,k,) € Z", we denote by M the cardinality of
Supp(k) and for any € > 0, we define the non smooth cutoff function

0if |z] >1 (T
= { Tifi 21 @ = (D).
Lemma B.2. Let 0 < e, n € N, k = (ky,....,k,) € Z", {a;}-, € 2"\ {0}.

Then there exists a constant C(n) > 0 s.t., denoting k= MmN Supp(k) a0 i
and a the correspondent coefficient in {a;}?_,,

/ (H Z@) X (Z a; 7:5) e~ 2tesupp(k) A H dz < 4aC(n)k?e.  (63)
RY \i=1 =1

leSupp(k)

Proof. We have that zle™ < (2l)!e7'e™2 < (2n)"e™2, so, denoting by I the
left side of (63]) and using the substltutlon 5 = 1y, we have

I < Cl / (Z 2@1 k;2 ) e~ 21eSupp(k) U H da;.

leSupp(k)

We denote A(x) := Zk;ﬁfc 2a;5%. So I is bounded from above by

7.2

g (AR5
H dxe = 2t Supp(k) 14 2 e~ kdu;,
RM 1 ( 2

IESupp (k) —e—A(r))’;—&
£k
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ek ~
/ H dze ZZGSupP(k) I#k ™ / . dl-]; = 4&C(n)k2g
RY-1 (—e— k2

+ ZESupp(k
14k

Proof of Lemma
2

Y

9,8

2= [ 5 Zusis (1_p(ak§w>>)

keMeg

SO

Hﬂ%é%HQ

=0) (3 20 (10 (57)) )
[ zust)zugato) (1= (A2)) (120 (52 ) i

(64)
As in Lemma [3.5] for Lemmas[3.1] and we can use Lebesgue’s dominated

convergence to exchange the order between the integral and the series.

So is equal to

5 [ ot 1o (40) (1 ()

k,j€EMsg

We analyze, now one single term of the series, namely:
Ze 1o (Oky 1 + Orpc - Ok — O — Ok e — Og i) (65)
XZﬁ,j (d’cl,k + 6k2,k + 5k3,k - 5k4,k - 5k5,k - 6k‘6,k) (66)

Tt (120 () (10 (22) s 0

We remark that:

ak(¢) = <|¢k1‘2 + |¢k2‘2 + |¢k3|2 - |¢k4|2 - ‘wk5|2 - |¢k6|2)’

With the transformation ¢ = re?, denoted by Sy ; := Supp(k, j), the integral
becomes

a;(r ap(r - (1+12)r2
frk€R+ H?:l T3 Tk, <1 —p (%)) (1 —p <%>> e BZleSkJ( ) i erSk,J- ’f’ldTl

Hles,w- fR+ e AT dr,
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€i(9j1 0o +0;3+0ky +0k5+0k =054 =05 =05 —0ky —Oky —0k3) HleSk do
J

% f@kE[O,Qﬂ
Hklesk,j fele[o,m do,

where
ap(r) = (ry, + 13, —i—?",%g —ry, = 7“,35 — 7’,36).
The only terms different from 0 are the terms where
6]'1 + ejz + 6]'3 + 9k4 + 6165 + 0k6 = 9j4 + 6j5 + 9j6 + 6161 + 9162 + 6k3
or equivalently
{j1>j27j37 k47 k57 kG} = {j47j57j67 kla k2> kS} .
This implies that the integrals that survive have this form:
a(r ax(r B s,  (1+2)r?
rer, ittty (10 (%2)) (10 (342)) U g i

B(1+12)r2
[lies,, Jr, €70 Trdr,

fzk€R+ 21 R g R s Rl Rhs Ak < ( )) ( <bk_(z)>> e Zlesk,j 2l HZESkJ le
Bﬁ(l +j1)2(1 —|—]2) (1 —|—j3) (1 + /{54) (1 + k‘5) (1 + k@) HleSk fR e— 2 2idz

where

~ V4 zZ zZ zZ zZ zZ
bk(z) :_< k1 + k2 + ks ky ks ke )

1+k2 1+k3 14k 1+kF 1+k2 1+Kk

0 if |z > 68
1if 2] < 63

We define the non smooth cutoff function x(x) = {
So we can estimate the integral with the following integral:

1
351+ 702 (1+ 72)" (L4 ) (L k) (1 + k) (1 + Kg)”

[T () r (a0) o [t 9

lGSkyj

We would like to know more information on the arguments of the cutoff
function that depend on the form of Zg jx and Z j .

Since in RE there are only terms in which {ki, ko, k3} # {ku, ks, ke}, this
implies also that there are only terms in which k; # k; fori =1,2,31=4,5,6,
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since if there exists at least an index 7 € {1,2,3}, and index [ € {4,5,6} s.t.
k; = k; this implies that {ky, ks, k3} = {k4, k5, k¢} and it is absurd.
In fact, without losing generality we can suppose that k; = k4, this means
that ko + k3 = ks + ke and k3 + k3 = k2 + k2, so ky = ks and k3 = kg or
ko = k¢ and k3 = ks, so {ki, ko, ks} = {ka, ks, ks }.
So one has j; # jyand k; # k; j = 1,2,3, 1 = 4,5,6. Moreover we know
that {jl,jg,j37 ]{34, ]{55, ]{56} = {j47j57j67 1{31, ]{52, kg} this means {jl,jg,jg} = {kl, ]CQ, ]fg}
and {k4, ks, ke } = {Jju, J5, Jo } and {J1, j2. Js, Ju, J5, Jo } = { k1, ko, ks, ka, ks, ke } =
{71, 92, g3, ka, ks, k6 }
So, up to permutation of the indices, we have 9 cases:

e . ) 7 _~‘ o Zjq Zj Zj3 . 2y . Zkg . Zkg
o i # i ki # R (2) = by(2) = (2 + 2+ 2 — 2 — - ).

. 1f]l %jl) k4 - k57 bk( ) - B](Z) = (12;2 + 1232 + 12;% o 211%2 B 1?2%) ’

o if j; # ji, ka = ks = ke, bp(2) = b;(2) = (1'3{;2 + 1+ iﬁjg - 311“;3) ,

7 225, Zig Zky Zhs ke
. . -
if ju = Jo, ki # K, bk( ) = b;(2) <1+J§ 1457 ~ 1+k]  1+kZ T 14k )

ip s . 7 2z; Zj 2k 2k
o if j1 = Jo, ky = ks, bk( ) =bi(z) = <1+ij 1+§-§ - 21+2§ a 1+gg> ’

o if i = jo, ky = k5 = ke, byp(2) = bj(2) = (12-?% 1233 - 31?2};) ;

o if j1 =jo =Js, ki # ki, bk( ) = b j(2) = (31?;3 o 1?22 - 1?2? o 1?23) ’

o if j1 =jo=Js, ks = ks, bk( ) =bi(z) = (312;1 - 21122 o ifiig) ’

o if j1 = jo = ja, ka = ks = ke, bi(2) = b;(2) = <31?}% _31ikii§>'

We can resume all this cases writing
bi(2) = bj(z) = br(2) =
Zh Zja Zjs Ry Rks Rke
=|\a1i—5 +a +a 5 —a —a —a
(M% 1+y TS R I R gy 61+k§)

where a; € {0,1,2,3}, 320 | a; = 6, and {a;}_, s.t. if there exists i € {1,2,3}
s.t. a; # 1, for any [ € {1,2,3}, | # i s.t. a; =0, j; = j; and if there exists
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i" € {4,5,6} s.t ay # 1, for any I’ € {4,5,6}, ' # ¢ s.t. ay =0, ky = ky. In
this way we can write as

1 / - z
2 kg b ) e <€k, dz
BTy (1 +57) (1 + k3y) H st kj( ) L1 ¢

1€y 5
(69)

where z; € R,.

To obtain the norm of the resonant part, after studying the form of any
terms of the series, we have to estimate the norm of every single term.

Let N be an integer, then Lemma shows that if there exists at least
an index i = 1,2,3, a; # 0 s.t. [j;] < N or an index [ = 4,5,6, a; # 0 s.t.
|ki| < N, then there exists C) > 0 s.t. is bounded by

SBN?
T (1+2) (1+K3,)

If every j; and k; really present in the argument of the cutoff is bigger
than N, we adopt an other strategy, because the distance between the two
hyper-planes becomes bigger and non comparable with d3, so the presence
of the cutoff isn’t so essential, because the integral isn’t so different from the
integral over all the space. However, if all the indices in the argument of
the cutoff are bigger than N, the denominators 8% [[°_, (1 + j2) (1 + k2,,) is
small and this helps the convergence. Obviously, since there exists at least
an index j; or k; equal to k, this situation is possible only if |k| > N.

We denote by Ty the set of (k j) € Z'2 st {jl,jg,jg,k4,k5,k6} =
{klakQak37j47j57j6}7 Z:'L:l kz = Zz =n+1 kl? Z = Z?Zn+1jia and s.t.
there exists at least an index i € {1,2,3,4,5 6} S. t ki = k and at least
an index [ € {1,2,3,4,5,6} s.t. j; = k.

So, if k < N, we have

1

dBN*? | Zs.; || Z6 1
RE||”, <9C J .
” 6 Hg,ﬁ 1 36 ]kge;k H (1 +],) (1 + k3+z)

Instead, if k > N, we have that ||R§HE/3 is bounded by

9C,

SBN? Z | Z6 51| Z6 1|
p° jkeTk H?:l (1+ JZQ) ( + k3+2)

9 ZeillZ
+_6 Z | 6,7 6k| .
b jkeTk s.t Hz 1(1+j7,)(]‘+k3+z)
Vi ||,k | >N
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We know also that for every j in the sum there is an index i s.t. j; = k but,
due to the null momentum condition, there must be at least an other index
[st. |7 > % and the same holds also for any k. Moreover, from Lemma
|267j| are uniformly limited by a constant. So, in both the cases, as in
Theorem [3.5] we have

|Z6.511 Zo | . C 1
Z 3 2 2\ — 2)2 Z 4 2
[T U+ (T+A,) — (1+k2) [Tie T+ 1)

J,k€Tx l1,l2,l3,l4 =1

and, choosing 0 < € < 1,

ZeillZ C 1
Z 3 1| 6’J'|2| 6ik| k2 = 1+ k2)? Z L1+
jkeTe 8.1 Hi:l( +]z‘)( + 3+z‘) ( + ) l1,l2,13,l4 Hi:l( + Z)
Vi | il ki | >N Vi, || >N

C 1
= (1+ k2)? Ni-de 2 2y
ly, Hi:l (1 + li)

la,l3,l4
Vi, |l;|>N
One has > 1, 150504 L~ ﬁ, so, we can take
Vi, [1;[>N [T, (1+2) 2
1
2
0BN* = N’
one has N = —+ and finally
(68)8

SON? = 1 = (09)".

This implies that
(05)3
BO(1+ k%)

=g, < €
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