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Abstract. Line intensity mapping offers a new avenue for constraining cosmological parameters in
the high redshift Universe. However measurements of the growth of structure, a sensitive probe of
gravity, are affected by a well known degeneracy with astrophysical parameters, encoded in the mean
brightness temperature of the specific line. In this work we show how to break this degeneracy, to a
level that could allow constraints of the amplitude of cosmological fluctuations at the percent level,
using information in the mildly non-linear regime of structure formation as described by Lagrangian
Perturbation Theory. We focus on the 21-cm line with forecasts for HIRAX and the proposed Stage
ii experiment as illustrations.
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1 Introduction

Line intensity mapping has recently emerged as a potentially powerful technique to constraint cos-
mological parameters. In particular the 21-cm transition of the hydrogen atom can be used to probe
the distribution of the neutral hydrogen, in the post-reionization era, using receivers operating at
radio wavelengths. In total intensity, the 21-cm emission has been detected by cross-correlating the
21-cm data collected at the Green Bank Telescope with galaxy positions in Deep-II [1] and 2DF
[2], and more recently by Parkes radio telscope with Wiggle-z[3]. Several new instruments, such as
CHIME [4], HIRAX [5], BINGO [6], Tianlai [7] and the SKA[8], plan to measure the 21-cm signal
in auto-correlation over large area of the sky in the redshift range 1 < z < 6. Recently, within the
Cosmic Visions: “Dark Energy” program, a new, 21-cm interferometer has been proposed to measure
large-scale structure at high redshift (2 < z < 6).

One of the primary goal of the aforementioned 21-cm surveys it to detect the Baryon Acoustic
Oscillations and therefore measure the geometry and expansion rate of the Universe across cosmic
time. Traditional galaxy surveys usually have another science goal, to measure the growth rate of
Large Scale Structure (LSS) using redshift space distortions (RSD). The latter in particular is a very
sensitive probe of gravity [9]. In line intensity mapping, the signal we measure is the product of the
cosmological fluctuations in the specific line times the mean brightness temperature of the line, T̄b(z),
which is proportional to the total luminosity, or mass, of the sources emitting the photons. This
implies that in order to measure the growth of structure using intensity mapping we need to break
the degeneracy between T̄b(z) and the amplitude of cosmological fluctuations σ8(z), which in linear
theory would be perfectly degenerate1. This fact has been previously overlooked in the literature
[8, 10–12], where linear theory has been used to forecast the constraining power of future 21-cm
experiment under the (unrealistic) assumption that T̄b was perfectly known.

It has also been recently argued that the T̄b degeneracy can be broken by combining the HI
dataset with other probes [13, 14]. The alternative route we take is to model the signal using beyond
linear scales. The purpose of this short note is therefore two-fold. First we wish to highlight how
mildly non-linear clustering allows us to break the T̄b-σ8(z) degeneracy. The differences from linear
theory appear at scales large enough that perturbation theory with a parameterized bias model is
still quantitatively reliable. Second we advocate for the use of the Lagrangian Perturbation Theory
for biased tracers as a means of forecasting parameter constraints for high-redshift observations. In
this work we will focus on the 21-cm line, but our results apply more broadly to any other emission
line with unknown mean brightness, see [15] for a comprehensive list of intensity mapping surveys.

1The BAO measurements are instead not affect by this degeneracy, as the constraints are basically independent from
an overall rescaling of the power spectrum.
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This paper is organized as follows. In Section 2, we describe the signal and noise model for HIRAX
and the proposed Stage ii survey, and the assumptions that go into our modeling. The forecasting
methodology is described in Section 3 and largely follows Ref. [14]. Finally, Section 4 describes our
results and our conclusions are summarized in Section 5. For numerical results we assume a spatially
flat ΛCDM model with Ωm ' 0.31 and σ8 ' 0.8, consistent with recent measurements [16].

2 The 21-cm power spectrum model

2.1 Signals

We shall largely follow Ref. [14] in modeling the 21-cm signal and the HIRAX and Stage ii instruments.
We assume most of the hydrogen in the Universe is ionized, and the 21-cm signal comes only from
self-shielded regions such as galaxies (specifically between the outskirts of disks until where the gas
becomes molecular within star-forming regions) [17]. We assume the HI is a biased tracer of the
matter field, in redshift space, though we do not require that the bias be linear or scale-independent.
Typical values of the bias on large scales are bHI = 2− 6 over the range 2 < z < 6 [18].

The 21-cm signal is proportional to T̄b, which is the mean brightness temperature, related to
the mean intensity at frequency ν as Iν = 2kBT̄b(ν/c)

2 = 2kBT̄b/λ
2. The mean, T̄b, is proportional

to ΩHI, the HI density in units of the critical density [19]. Unfortunately the value of ΩHI is quite
uncertain (see e.g. Refs. [20, 21] for recent compilations of data).

We model the clustering of the HI using an ‘effective field theory’ (EFT) version of the redshift-
space Zeldovich power spectrum [22–24], including first and second order Lagrangian bias (b1 and b2)
following Refs. [25–27]. This model was shown in Ref. [17] to provide a very good description of the
real space HI power spectrum measured in hydrodynamical simulations. The multipoles of the power
spectrum can be expressed as

PHI,`(k) =
[(

1 + α`k
2
)
PZ,`(k) + b1Pb1,`(k) + b2Pb2,`(k)

+b21Pb21,`(k) + b22Pb22,`(k) + b1b2Pb1b2,`(k)
]

(2.1)

where b1 and b2 are (Lagrangian) bias terms and α` represent the lowest-order EFT terms (assumed
to go as σ4

8). There are several routes to the redshift-space power spectrum [28] in Lagrangian
Perturbation Theory. We choose to explicitly Hankel transform the correlation function multipoles,
though we have checked that we obtain the same answer using the code of ref. [29, 30]. The explicit
expressions for the power spectrum terms in Lagrangian perturbation theory can be found in several
places in the literature, see for instance refs. [25, 27, 29, 30].

While it is an approximation to include the non-linear corrections from the Zeldovich expression
and the counter terms but neglect 1-loop terms, we find that at high z and low k this approximation is
actually numerically quite accurate in comparison to N-body simulations and the resulting expressions
are much simpler to evaluate than the full 1-loop theory. The signal is smooth in µ, so we include
only ` = 0, 2 and 4 in our calculation of PHI(k, µ).

In Fig. 1 we show the contributions to the three lower multipoles of the power spectrum at
z = 4. The black line in each panel displays the corresponding linear theory dark matter power
spectrum, whereas the different terms in Eq. (2.1) are shown with coloured lines. On large scales
the dominant contribution to the Zeldovich power spectrum is coming from the terms proportional
to the linear bias b1, whose scale dependence is very similar to the linear theory power spectrum.
For k > 0.1-0.2hMpc−1 we start seeing differences between linear theory and our model, something
will allow us, in the next section, to break the degeneracy between the brightness temperature and
cosmological parameters. It is also worth noticing that the b1 terms and the ‘1’ term deviate from
each other at approximately the same scale, where non-linear bias terms also become important.

The accuracy to which we can disentangle the brightness temperature from σ8(z) obviously
depends on the fiducial value of the bias parameters. In order to fix reasonable values for the latter,
we fit the redshift-space clustering to a mock HI sample derived from a high resolution N-body
simulation. The simulation used a TreePM code [31] to evolve 25603 particles in a 256h−1Mpc box

– 2 –



0.05 0.10 0.50 1

10-1

1

101

102

103

k [h/Mpc]

P
ℓ(
k
)

linear

1

b1

b1
2

b2

b2
2

b1b2

ℓ = 0

0.05 0.10 0.50 1

10-1

1

101

102

103

k [h/Mpc]

ℓ = 2

0.05 0.10 0.50 1

10-1

1

101

102

103

k [h/Mpc]

ℓ = 4

Figure 1: The contributions to the monopole (left), quadrupole (middle) and hexadecapole (right)
moments of the redshift-space power spectrum at z = 4, see Eq. (2.1). We highlight z = 4 as it is the
middle of the range probed by a Stage ii instrument, but the contributions at the other redshifts look
qualitatively similar. We have not shown the α terms as they are simply proportional to k2 times the
term labeled ‘1’. The grey, vertical, dotted line marks the non-linear scale (see text).

assuming a ΛCDM cosmology with Ωm ' 0.31 and h ' 0.68. This is the same simulation as used in
Refs. [32, 33] and we refer the reader to those papers for more information. We populated the halos
and subhalos in that simulation with HI following Ref. [18] and measured the multipole moments of
the redshift-space power spectrum at z ' 2− 6 (see also Fig. 8 of Ref. [34]). The ` = 4 moment is too
noisy to be useful, but ` = 0 and 2 are resolved. We then fit b1, b2 and α` to the ` = 0 and 2 spectra,
finding good fits for k < knl. We set α4 = 0. The values of b1, b2, etc. are consistent with expectation
from Ref. [14]. Our main conclusions will be independent of the precise details, but should also be
regarded as tentative due to the extreme uncertainty in the manner in which HI traces large-scale
structure at such high redshifts.

2.2 Noise

In an interferometer the fundamental datum is the correlation between two feeds (or antennae) i and
j, known as a visibility [35]. On the scales of interest to us, and for an intensity measurement, the
visibility measures essentially the Fourier transform of the sky emission at a wavenumber set by the
spacing ~uij of the two feeds (in units of the observing wavelength). In particular, such feeds correspond
to a comoving wavenumber with component perpendicular to the line-of-sight k⊥ = 2π~uij/χ(z).
In interferometry the angular resolution of the survey is roughly set by the longest baseline. As
we will show momentarily this implies, for both HIRAX and Stage ii, that one loses signal in the
perpendicular direction on scales much smaller than what can be achieved with perturbation theory.
This is in contrast to single dish surveys, like SKA-MID, that have low angular resolution and cannot
measure high k⊥ modes [36]. For both types of instruments the radial resolution is given by the
frequency channel bandpass, which can in principle be made as small as required. The visibility noise
is inversely proportional to the number (density) of baselines, n(~u), normalized such that

∫
n(u)d2u =

Ndish(Ndish − 1)/2. It is explicitly given by [10, 13, 14, 37–43]

Pth = T 2
sys

(
λ2

Ae

)2(
4πfsky
Ωp(z)

)
1

npolν0tobsn(~u)

d2V

dΩ d(ν/ν0)
(2.2)

with ν0 = 1420 MHz and npol = 2 the number of polarizations. The effective area is Ae = πD2
e/4,

related to the physical area by an aperture efficiency, ηa = 0.7, such that D2
e = ηaD

2. We take the
field-of-view per pointing to be Ωp(z) = (λ/De)

2 – see e.g. ref. [14]. In a spatially flat model

d2V

dΩ d(ν/ν0)
= χ2 dχ

dz
ν0
dz

dν
= χ2 c (1 + z)2

H(z)
. (2.3)
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The system temperature is the sum of amplifier noise, sky and ground temperatures, Tsys = Tampl +
Tsky + Tground, with [34]

Tampl = 50η−1c K, Tsky = 2.7 K + 25 K
( νobs

400 MHz

)−2.75
, Tground =

1− ηc
ηc

300 K. (2.4)

and we assumed a 10% loss of power in the amplifier 1− ηc = 0.1. Shot noise from the finite number
of halos and galaxies hosting HI [18, 20, 44],

Psn =

∫∞
0
n(Mh; z)M2

HI(Mh; z) dMh

[
∫∞
0
n(Mh; z)MHI(Mh; z) dMh]2

, (2.5)

with n(Mh; z) the halo mass function and MHI(Mh; z) the HI mass as a function of halo mass and
redshift, will also introduce additional power into these visibility data. The shot noise level depends
on the poorly known small scale physics of neutral hydrogen on halo and galactic scales, which should
then be marginalized over [45]. In this work we marginalize over the shot noise amplitude assuming a
fiducial value computed using Eq. 2.5 and the HI model in ref. [18]. This is what is done in a standard
analysis of galaxy surveys and is closer to what a data analysis of 21-cm data might look like.

The full observed 21-cm signal is given by the sum of the cosmological signal, proportional to
the HI power spectrum, and the noise terms,

P21(k, µ) = T̄ 2
b [PHI(k, µ) + Psn] + Pth. (2.6)

The above expression shows that in the linear regime the brightness temperature T̄b(z) is completely
degenerate with the amplitude of cosmological fluctuations σ8(z).

The range of scales which can be measured in a 21-cm inteferometer depends upon the baseline
configuration (i.e. the size and spacing of the receivers that will be correlated) and assumptions about
how well foregrounds can be subtracted [46–50]. The precise range of scales affected by foregrounds
is currently a source of debate. We include these complexities by restricting the range of the k⊥ − k‖
plane we include in our forecast. There are two regions of this plane we could lose to foreground
removal. The first is low k‖ modes, i.e. modes close to transverse to the line-of-sight, which are
swamped by the (large amplitude but spectrally smooth) foregrounds. For an optimistic scenario, we
follow [47, 51] and assume only modes with k‖ < 0.01hMpc−1 are unusable. Our pessimistic scenario

raises this to 0.1hMpc−1, as suggested in Ref. [48]. In addition to low k‖, imperfect calibration of the
instrument leads to leakage of foreground information into higher k‖ modes. This is usually phrased in
terms of a foreground “wedge” which renders modes with low k‖/k⊥ unusable [47–56]. Our optimistic
choice will be the ‘primary beam wedge’ defined with θFOV ≈ 1.22λ/2D, where the factor of two gives
an approximate conversion between the first null of the Airy disk and its FWHM. We shall contrast
this “optimistic” assumption with the “pessimistic” case θFOV ≈ 3 × 1.22λ/2D. The wedge could
potentially be even larger, possibly up the “horizon wedge” (see Refs. above). We do not consider
this possibility, as it renders the 21-cm experiment ineffective as a large-scale structure probe.

In this work we consider two instruments, one under construction, HIRAX, and the Stage ii
21-cm experiment proposed in [34]. We expect results for CHIME to be qualitatively similar to the
ones for HIRAX.

HIRAX [5] is a 32×32 array of six meters, D = 6 m, fully illuminated dishes under construction in
South Africa, observing at frequency corresponding to 0.8 < z < 2.5. The Stage ii 21-cm experiment
suggested by Ref. [34] is close to be a scaled version of HIRAX, consisting of a compact, square array
of 256 × 256 six meter dishes, observing half the sky in the redshift range 2 < z < 6. We shall take
these two instruments as indicative of current and possible future surveys. The details of the noise
model we will assume for both instruments can be found in Ref. [14].

To summarize, Figure 2 shows the cosmological signal in units of the total power, as a function of
k‖ and k⊥, for our benchmark 21-cm instruments: HIRAX (at z = 1.5) in the left panel, and Stage-II
(at z = 4) in the right panel. The dashed and dotted lines represent our two choice for foreground
removal2. The dot-dashed lines corresponds to the non-linear scale, knl, i.e. the smallest scales at

2For HIRAX, a cut at kmin
‖ = 0.1 hMpc−1 dominates over the wedge and it is therefore not shown in the plot.
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Figure 2: The fraction of the total power in HI, PHI/(PHI + Psn + Pth), at z = 1.5 (left) and z = 4
(right) for two proposed 21-cm instruments: HIRAX (left; [5]) and Stage ii (right; [34]). The color
scale shows the signal fraction while the white lines show the range of scales lost to foregrounds in
the optimistic (dashed) and pessimistic (dotted) scenarios. Only modes above and to the left of those
lines are recoverable. The white dot-dashed line shows knl, which we take to be the upper limit to
the scales that can be reliably modeled with perturbation theory.

which perturbative calculations of the sort discussed in this paper can be trusted[57],

k−2nl ≡ Σ2 =
1

6π2

∫
P (k)dk . (2.7)

For HIRAX, almost all the modes we could in principle exploit using perturbation theory have
signal-to-noise per mode larger than one, i.e. S/(S + N) > 0.5, which makes it an ideal survey for
cosmological analysis. We see that the foregrounds have little impact, and most of the information
remains available (as discussed above this only applies if the wedge does not extend all the way to
the horizon). The uncertainty in a measurement of the anisotropic power spectrum is larger along
the k⊥ direction, as expected since the thermal noise only affects perpendicular modes. In traditional
galaxy surveys the signal in high k‖ modes is usually suppressed by random motions of the galaxies
within their host halo, a non-perturbative effect known as Fingers-of-God (FOG). This is less true for
the low mass halos where neutral hydrogen resides at high redshift [17], making 21-cm surveys also
appealing from this perspective. We explicitly checked that removing FoG doesn’t change any of our
conclusions as they only become important at k|| > 1 hMpc−1 [17, 58].

The Stage-II case at z = 4 is shown in the right. At high redshift the non linear scale has moved
to larger wavenumbers compared to HIRAX, but still all the modes with k < knl can be measured
with very high signal to noise, with less than 20% loss of information compared to a noiseless case.
This plot suggests that even modes with k ' 1 hMpc−1 can be measured quite accurately, such that
further gains can be obtained if numerical methods can be developed to supersede analytical models
with parameterized bias. The figure also informs us that, within the perturbative regime, a smaller
array could also suffice to measure the growth of structure using RSD. This possibility is discussed
in Appendix A. At higher redshift the wedge has a larger impact and effectively cuts out half of the
plane, but still lots of modes remain available for cosmological analyses.

3 Forecasting methodology

We investigate the constraining power of 21-cm surveys through a Fisher matrix formalism [59, 60].
We work at the level of the fields and assume the covariance matrix is diagonal in wavenumber. We
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Figure 3: The parameter derivatives of the monopole (` = 0; left), quadrupole (` = 2; middle) and
hexadecapole (` = 4; right) moments of the redshift-space power spectrum at z = 4 for our fiducial
model. In all cases d lnP`/d ln T̄ is simply 2, and d lnP`/d ln(σ8) is close to 2 at low k. The scale-
dependent bias term, b2, is sub-dominant on the scales plotted (we have multiplied the plotted lines
by large factors for plotting purposes).

can then construct a Fisher matrix for the parameters θi = {T̄ , σ8, b1, b2, Psn}, given by [61]

Fij = Vobs

∫
d3k

(2π)3
1

2
Tr

[
C−1

∂C

∂θi
C−1

∂C

∂θj

]
=
Vobs

2

∫ kmax

0

k2 dk

2π2

∫ 1

0

dµ
∂iP ∂jP

P 2
21(k, µ)

, (3.1)

where i, j, run over the parameters and Vobs is comoving volume of the interferometric survey. We take
PHI =

∑4
`=0 PHI,`(k)L`(µ), with L` the Legendre polynomial of order `. For most of the parameters

the derivatives of PHI,` in Eq. (2.1) can be performed analytically, and we do the σ8 derivative using
centered finite difference.

Figure 3 shows the (log) derivatives with respect to T̄ , σ8 and the two bias parameters for
the multipoles at z = 4. The log-derivative with respect to T̄ is scale-independent and equal to
2. At low k the σ8 derivative is also close to 2, and shows only a mild scale dependence until
k ' 0.1hMpc−1. This is a manifestation of the degeneracy3 between T̄ and σ8 in linear theory. The
small oscillations correspond to the baryon acoustic oscillations, which is damped by different amounts
in models with different normalization. At very low k the b1 derivative is also nearly independent
of scale for the monopole, however it exhibits strong scale-dependence for ` = 4 and non-trivial
dependence even for ` = 2. In linear theory and with constant large-scale bias (b = 1 + b1; [25]) we
have PHI(k, µ) = [(1 + b1) + fµ2]2PL(k) so d lnP4/d ln b1 = 0 and d lnP2/d ln b1 = (1 + b1)−1 while
d lnP0/d ln b1 ≈ 1 for our fiducial parameters. For T̄ and σ8 the (log) derivatives are both 2 and
all of these (log) derivatives are k-independent. Note, however, that in the Zeldovich approximation
there is more structure to the derivatives due to the improved modeling of non-linear effects and the
non-multiplicative effects of biasing and this allows us to break some degeneracies. Similar results
hold at other redshifts.

The smaller scales included in our analysis are dictated by the non-linear scale, and we shall
choose values between kmax/knl = 0.5 (very conservative) and kmax/knl = 1 (aggressive), to under-
stand the sensitivity of our predictions to this quantity.

As described above the particularities of the 21-cm signal impose additional integration limits:
foreground removal sets a lower bound on k‖ while the wedge provides a lower bound on µ for usable
k-modes. In what follows we will investigate the “optimistic” and “pessimistic” scenarios described
above (and shown in Fig. 2).

4 Results

Figure 4 shows the forecasted constraint on σ8(z) from HIRAX in the redshift range 1.5 < z < 2.5.
We marginalize over b1 , b2 and Tb in each redshift bin of width ∆z = 0.5 and assume as sky fraction

3The degeneracy is also sometimes written as being between T̄ and fσ8, but we assume f is known.
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Figure 4: Forecast fractional error on the power spectrum normalization, σ8, from HIRAX. The
left panel shows an optimistic scenario with good foreground cleaning while the right panel shows a
pessimistic scenario. Blue lines show constraints from kmax = 0.50 knl while red lines show kmax =
0.75 knl and green those for kmax = 1.00 knl. These span the range of likely possibilities. The non-
linear information and the scale-dependent bias have dramatically broken the T̄b − b− σ8 degeneracy
which limits growth-of-structure measurements.

fsky = 0.5. The left panel considers the case of foreground removal down to kmin
‖ = 0.01 hMpc−1,

and wedge extending to 3 times the size of the primary beam. Different choices of kmax are shown
with different colors. For the very conservative value of kmax (the blue line in Figure 4) we obtain
a few percent constraint on σ8(z) at z = 1.5 and a 6.5% constraint at z = 2.5. This indicates that
even with a short lever arm in k, due to small value of kmax, we are still able to break the degeneracy
between cosmology and T̄b (and bias) present in linear theory. Pushing to kmax = 0.75knl, which we
can probably reach with current perturbative methods [30, 57, 62, 63], the combination of non-linear
structure formation and more complex bias has broken the degeneracy enough that the errors are
' 1% or lower. The case of kmax = knl assumes, optimistically, that the modeling could be extended
to the non-linear scale without the need to introduce further bias or EFT parameters. This level of
constraining power is beyond the reach of any other planned LSS survey, and are made possible by
the high signal-to-noise per mode of HIRAX in the mildly non-linear regime of structure formation.
The right panel shows the impact of removing more modes due to the presence of foregrounds, kmin

‖ =

0.1 hMpc−1. The conservative cut is the most affected since we have discarded a lot of the available
modes, e.g. at z = 1.5 the non linear scale is knl = 0.34 hMpc−1. The other two values of kmax

instead still deliver percent accurate measurements of the amplitude of cosmological fluctuations. In
all cases it was crucial to include the µ-dependence of the signal to break the degeneracies. This can
be clearly seen in Figure 3: the different multipoles have different response to bias parameters, T̄b
and σ8. Had we artificially set the anisotropic dependence of the clustering to zero, and used only the
monopole part of the power spectrum, we would have gotten much worse constraints, with σσ8

> 10%
independently of kmax and the foreground model.

The constraining power of the Stage ii instrument proposed in Ref. [34] is shown in Figure 5.
The left panels presents two choices of kmin

‖ for a foreground wedge that extends to the size of the
primary beam, and the right panel the same two cuts in k‖ but a three times larger wedge. For

reference the non-linear scales increases from knl = 0.4 hMpc−1 at z = 2 to knl = 0.9 hMpc−1 at
z = 6. As for the HIRAX case, the kmax = 0.5 knl case is the most affected by the low k‖ cut and
the constraints on σ8(z) are approximately 5%. For higher values of kmax the constraining power
of Stage ii is impressive, and show the impact that continual improvements in modeling (with a
combination of simulations and analytic approaches) could yield. We regard the most likely situation
as lying between the kmax = 0.75 knl and kmax = 0.50 knl cases. While the data themselves may be
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Figure 5: Forecast fractional error on the power spectrum normalization, σ8, from a future 21-cm
experiment. The left panels shows an optimistic scenario with good foreground cleaning of the wedge,
and two choices of kmin

|| , while the right panel shows a pessimistic scenario. Blue lines show constraints
from kmax = 0.50 knl while red lines show kmax = 0.75 knl and green those for kmax = 1.00 knl. These
span the range of likely possibilities.

fit to higher k, experience suggests that much of the information on those scales would serve to fix
non-linear modeling and bias parameters (see e.g. Ref. [64] for an example at lower z). In the range
2 < z < 5, the dominant source of noise in the measurement is the shot-noise, which keeps increasing
with redshift and it is not compensated by a corresponding increment in the signal. This explains why
the error bar on σ8(z) grows with redshift in this range. At z > 5 the thermal-noise becomes larger
than the shot-noise, but the bias parameters have also increased substantially and allow us to further
break the degeneracies and reduce the errorbar on σ8(z). As emphasized in the previous section, the
value of the HI bias at high redshift is extremely uncertain, therefore our results in this redshift range
could quantitatively change depending on the the way HI traces the underlying matter distribution.

Breaking the T̄b-σ8-b1 not only allow us to measure the growth of structure over redshift, but also
to constrain an important astrophysical parameter such as the cosmic abundance of neutral hydrogen,
which is proportional to the mean brightness temperature. Figure 6 shows the fractional constraint
on T̄b(z) for the Stage ii experiment. For the realistic choice of kmax = 0.75knl we obtain few percent
level constraints on the mean brightness of the 21 cm line in the redshift range 2 < z < 6, which
degrade by approximately a factor of 2 for the pessimistic foreground removal. It would be hard
to achieve similar percent level errorbars on the mean abundance of HI with measurements of the
column density distribution function, as they are dominated by systematic uncertainties and the small
number of high redshift quasars [21]. We therefore conclude that an experiment like Stage ii could
also be a powerful astrophysical probe.
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Figure 6: Forecast fractional error on the mean brightness temperature, T̄b, from a future 21-cm
experiment. The left panel shows an optimistic scenario with good foreground cleaning while the right
panel shows a pessimistic scenario. Color coding as in Figure 5.

5 Conclusions

Intensity mapping surveys of HI using the 21 cm line at z > 1 can, in principle, map vast expanses of
space to constrain large-scale structure with unprecedented precision. If foregrounds can be controlled
and systematics well enough understood, such instruments would enable highly precise determinations
of cosmological parameters. Unfortunately the neutral hydrogen signal is modulated by the mean
brightness temperature of the line, T̄b, which is only weakly constrained. On the largest scales, this
introduces a degeneracy between T̄b and cosmological parameters such as the amplitude, σ8, which
cannot be broken without the use of external data. However we have shown that mildly non-linear
effects, in a regime which is still under theoretical control, effectively break this degeneracy. At the high
precision achievable on these scales with HIRAX or a Stage ii 21-cm experiment these perturbative
effects are sufficient to break the degeneracy without needing external data.

Our forecasts show that the breaking of the T̄b−σ8 degeneracy by quasi-linear effects is sufficient
to allow an both HIRAX and Stage ii to make (sub-)percent level measurements of the growth of
structure over a wide range of redshifts if the signal can be well modeled. The precise constraint
achieved depends upon the maximum k to which the signal can be modeled, with kmax = knl/2
returning similar performance to cross-correlations [14] and kmax = knl returning order of magnitude
stronger constraints. Being dominated by the higher ks our forecasts are relatively insensitive to
assumptions about ‘the wedge’ or low-k‖ modes lost to foregrounds. The constraints degrade to
higher z, where the increase shot-noise and thermal noise weaken the power of a Stage ii instrument.
It is also at these redshifts that the behavior of the 21-cm signal becomes increasingly important and
unknown. We have also shown the Stage ii could be quite useful in constraining, at the 5% percent
level or better, the mean HI abundance, a quantity of great astrophysical interest.

Our forecasts are done within the Zeldovich approximation, which allows for a treatment of
complex bias and redshift space distortions relatively easily, while being more accurate than linear
theory on quasi-linear scales and including more physics. While not a full model of non-linear structure
formation, we find it is quite accurate at high z when compared to N -body simulations and captures
much of the essential physics. This makes it ideal for forecasting the reach of 21-cm experiments
where the significant unknowns about 21-cm emission and the design of future instrumentation make
the flexibility and speed of an analytic approach highly desirable. We fully anticipate that fitting to
any actual data would be done with a more complete model, or with an emulator based on numerical
simulations. More generally, we would like to advocate the use of the Zeldovich approximation for
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forecasting in situations (like this one) where the matter field is quasi-linear on the scales of interest
and the bias could potentially be complex. The Zeldovich approximation is very stable and easy
to compute and, while not a full non-linear model, it allows the incorporation of complex bias and
matter-tracer decorrelation. We believe it can be useful during exploratory work, to refine the region
of interest before a more complex model (either from theory or numerical simulations) is used.
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A On the path to Stage ii

The Stage ii configuration proposed in Ref. [34] consists of a 256× 256 array of 6 meters dishes. As
we have seen in Section 2 and Figure 2, this instrument has signal-to-noise much larger than one on
any scale in the reach of perturbative methods. This suggests that a smaller array could therefore
deliver similar constraints, at a fraction of the cost.

A proper optimization study of future 21-cm experiments is beyond the scope of this work, so
in this section we limit ourselves to presenting the results of a Fisher analysis of a 128× 128 array of
6 meter dishes, i.e. 4 times smaller than the Stage ii. The left panel of Figure 7 shows the signal to
noise in our rescaled version of Stage ii at z = 4, which should be compared with the full array shown
in the right panel of Figure 2. Despite a reduced signal-to-noise compared to the larger experiment,
a 128 × 128 compact array is still able to measure most modes of interest for cosmology with high
signal to noise.

The right panel in Figure 7 shows the corresponding forecast for σ8(z), assuming kmin
|| =

0.1 hMpc−1. Compared to the full Stage ii, the constraints at z < 4 are almost indistinguishable, and
only at the very end of the redshfit range the 128 × 128 configuration performs substantially worse.
The forecasted errorbars are still of the order of one percent, which indicates that at least for this
science goal, a smaller array could be enough.
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