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Abstract

The inclinations of exoplanets detected via radial velocity method are essentially
unknown. We aim to provide estimations of the ranges of mutual inclinations that
are compatible with the long-term stability of the system. Focusing on the skeleton
of an extrasolar system, i.e., considering only the two most massive planets, we
study the Hamiltonian of the three-body problem after the reduction of the angular
momentum. Such a Hamiltonian is expanded both in Poincaré canonical variables
and in the small parameterD2, which represents the normalised Angular Momentum
Deficit. The value of the mutual inclination is deduced from D2 and, thanks to the
use of interval arithmetic, we are able to consider open sets of initial conditions
instead of single values. Looking at the convergence radius of the Kolmogorov
normal form, we develop a reverse KAM approach in order to estimate the ranges
of mutual inclinations that are compatible with the long-term stability in a KAM
sense. Our method is successfully applied to the extrasolar systems HD 141399,
HD 143761 and HD 40307.

∗Key words and phrases: exoplanets, n-body planetary problem, KAM theory, Celestial Mechanics.
2010 Mathematics Subject Classification. Primary: 70F15; Secondary: 70H08, 37N05, 85A04, 85–08.

†FRIA Research Fellow.

1

http://arxiv.org/abs/1712.07390v1


2 M. Volpi, U. Locatelli, M. Sansottera

1 Introduction

Nowadays, the number of catalogued multiple-planet systems is rapidly reaching one
thousand. Their orbital characteristics are often quite different with respect to those of
our Solar System (for a review containing a classification of the possible architectures see,
e.g., [36]). In the present work, we will focus on the analysis of the long-term evolution
of the observed exoplanets, in a spirit similar to the classical studies of stability of our
Solar System.

Multiplanetary extrasolar systems raise new interesting challenges concerning the
mathematical aspects of the orbital dynamics. For instance, in our Solar System the
eccentricities of the celestial bodies play the role of small parameters in the power series
expansions considered in classical perturbation theory. On the other hand, the observed
eccentricities of the major planets in extrasolar systems are often so large (see, e.g., [4]),
that they prevent the convergence of the Laplacian expansion of the disturbing function
(see, e.g., [8]). Nevertheless, accurate analytical results based on classical expansions have
been obtained even for systems having moderate eccentricities via high-order expansions
(see, e.g., [23]).

In the present work, we limit our study to the exoplanets observed via radial velocity
(hereafter, RV) method, because of its ability to detect massive bodies. Therefore, RV
based observations are expected to capture information about the skeleton of an extrasolar
system, i.e., its major planets. As a main drawback, the RV method cannot detect the
orbital inclinations; moreover, its measure of the mass of each planet is affected by the
uncertainty factor sin i, being i the inclination of the plane of motion with respect to the
tangent plane to the celestial sphere (see, e.g., [2]). However, ranges of the most probable
values of the inclinations can be deduced by prescribing the long-time stability of the
system. This is done for instance in [19], where the properties of the numerically computed
orbital motions are investigated by using the frequency analysis method (see [18] and
references therein for an introduction to this kind of numerical explorations). We propose
here a novel procedure: a reverse KAM approach by using normal forms depending on
a free parameter related to the unknown mutual inclinations of the exoplanets. Our
approach is based on a careful adaptation of the algorithm constructing the Kolmogorov
normal form for the secular part of the Sun–Jupiter–Saturn (SJS) system (see [26]; see
also [13, 1, 29], that are the original articles giving the name to the KAM theorem).
The differences between the two contexts are remarkable. In [26] the parameters and the
orbital elements of the SJS system were very well known; all these data were used to
prove the existence of KAM tori confining the motion and, therefore, the stability of the
secular model. Here, we deal with systems for which some of the orbital elements are
unknown: we aim to infer information about their values by prescribing the stability and
therefore requiring that the algorithm constructing KAM tori is convergent. Actually,
from a practical point of view, its implementation is rather delicate. For instance, we use
the interval arithmetic to represent the coefficients of the secular expansions; this allows
us to consider sets of values of the free parameter in a comprehensive way instead of
studying many different numerical integrations, each corresponding to a single value of
that same parameter ranging in a suitably chosen discrete grid. Thus, our implementation
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is an interesting example of alternative use of validated numerics outside the context of
a rigorous proof where it is often used (see, e.g., [7]). We emphasise that this is done by
handling the difficulty due to the fact that the free parameter, related to the unknown
mutual inclination, directly contributes to the so-called Laplace-Lagrange approximation
(see, e.g., [23]). Therefore, it affects the secular frequencies possibly introducing dangerous
resonance relations.

We believe that our approach can interestingly complement some recent results: in
particular, the concept of “AMD-stability” introduced in [21] to analyse the dynamics
of the multiple-planet extrasolar systems (see also [33] for an extension to the resonant
case). Roughly, that criterion requires that the Angular Momentum Deficit1 (hereafter
AMD) is smaller than a critical threshold, in order to ensure that the planetary orbits
cannot collide; therefore, the system is considered to be AMD-stable. In [21] five planetary
systems are recognised to belong to the so-called subcategory of “hierarchical AMD-stable
systems that are AMD-unstable but become AMD-stable when they are split into two parts”.
Among them, our Solar System is a typical example when considering the two subsystems
formed by the giant planets on one side and the inner ones on the other. We emphasise
that AMD-stability of the giant planets is not sufficient to prove the global stability of
the system as it does not provide a detailed enough information about the regularity
of their motions. Indeed, it is well known that the chaoticity of the secular motions of
the inner planets is induced by the gravitational perturbations due to Jupiter (see [16]).
Because of this chaoticity, it has been possible to select some scenarios (depicted by
suitably chosen numerical integrations) leading to the ejection of Mercury or to destructive
collisions between the terrestrial planets in a few billions of years (see [15] in the context
of the secular dynamics and [20], respectively). It is very natural to expect that these
destabilising effects would act dramatically faster, if also the secular dynamics of the
outer system were chaotic, instead of being extremely regular as it has shown to be (see,
e.g., [17] also as a review covering most of the properties of the Solar System that have
been briefly recalled here). A deeper knowledge of the dynamics of the outer planets is
therefore crucial in order to prove the effective (or long-time) stability of the complete
system. When a specific extrasolar system cannot be classified as globally AMD-stable,
the problem of ensuring its stability properties can be attacked by following a strategy
that is based on our reverse KAM approach, as outlined below.

In the case of hierarchical AMD-stable systems, when successful our approach can
ensure that there are values of the inclinations for which the subsystem formed by the
major planets is stable in a much stronger sense with respect to the AMD-criterion: the
eventual diffusion would be so weak that the orbit could not significantly go away from
a KAM torus before an extremely2 long interval of time (see [11]). In such a situation,
the motion of the biggest planets is indistinguishable from a quasi-periodic one. Such

1The Angular Momentum Deficit is defined as the difference between the total value of the angular
momentum and its value in the case of Keplerian circular coplanar orbits having radii equal to the
semi-major axes of the planets.

2 Actually, when the mild hypotheses assumed in [28] are satisfied, the diffusion time is estimated to
be super-exponentially big. This means that its order of magnitude is given by the exponential of the
exponential of the inverse of a fractional power of the distance from a reference KAM torus.
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a preliminary result would be essential in order to prove (at least) the metastability of
the less massive planets over times that are comparable with the expected lifetime of the
system. This highlights the usefulness of our reverse KAM approach.

In the present paper, we apply our KAM-stability to three extrasolar systems that
are modeled by a three-body approximation, which includes the star and the two biggest
planets. Quite remarkably, one of these systems, HD 141399, is hierarchical AMD-stable
according to the classifications given in [21]; another one, HD 40307, is included in the
category of the AMD-unstable systems. This work represents the first step in the direc-
tion of a complete proof of the so-called effective stability of such exoplanetary systems,
when they are studied in the framework of models including all their already discovered
planets (see [35] for a recent application of these concepts to the secular dynamics of
the Sun–Jupiter–Saturn–Uranus system). Of course, the whole implementation of our
strategy is not priceless: the required amount of computations (mainly by the algebraic
manipulations of the expansions) is extremely demanding.

Our paper is organised as follows. In Sect. 2 we recall the initial expansions of the
secular Hamiltonian model of the three-body planetary problem. In Sect. 3 we deal with
the algorithm constructing invariant tori for such a model. In Sect. 4 we describe the way
to infer information about the range of values of the mutual inclination. The applications
of our method to three extrasolar systems are discussed in Sect. 5. Finally, the conclusions
are outlined in Sect. 6.

2 Settings for the definition of the Hamiltonian model

As it has been mentioned in the Introduction our approach is based on a careful adaptation
of that described in [26]. However, for the sake of completeness, it is convenient to briefly
recall both the definitions and the preliminary canonical transformations that properly
introduce the secular model we are going to study.

2.1 The expansion of the Hamiltonian

Object of this study is a three-body planetary problem, formed by a central star (indicated
by the index 0) and two planets revolving around it, marked by the indexes 1 (inner) and
2 (outer). Thanks to the conservation of the angular momentum, we can perform the
reduction of the nodes which allows us to use the planar Poincaré variables

Λj =
m0mj

m0 +mj

√
(m0 +mj)aj λj = Mj + ωj

ξj =
√

2Λj

√
1−

√
1− e2j cos(ωj) ηj = −

√
2Λj

√
1−

√
1− e2j sin(ωj)

(1)

where aj , ej , Mj and ωj are the semi-major axis, the eccentricity, the mean anomaly
and perihelion argument of the j-th planet, respectively. We introduce the translation
Lj = Λj − Λ∗

j , where Λ∗
j is the value of Λj for the observed semi-major axis aj .
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Following [34], we expand the Hamiltonian both in the Poincaré variables and in the
parameter D2 , that is a sort of “normalised angular momentum deficit”,

D2 =
(Λ1 + Λ2)

2 − C2

Λ1Λ2

(2)

where C is the norm of the total angular momentum: by definition, D2 is O(e2 + i2) .
This parameter is therefore a measure of the difference between the actual total angular
momentum and the one of a similar system having circular and co-planar orbits (for which
D2 = 0). As a main difference with respect to the approach in [26], which we constantly
refer to, here we keep D2 as a free parameter in the expansions, while there it was replaced
by its particular value (computed for the Sun-Jupiter-Saturn system). The Hamiltonian
expansion in power series of the variables L, ξ, η, parameter D2 and in Fourier series of
λ writes

H(TF ) =

∞∑

j1=1

h
(Kep)
j1,0

(L) + µ

∞∑

s=0

∞∑

j1=0

∞∑

j2=0

Ds
2 h

(TF )
s;j1,j2

(L,λ, ξ,η) (3)

where µ = max{m1/m0, m2/m0} and

• h
(Kep)
j1,0

is a homogeneous polynomial function (hereafter h.p.f.) of degree j1 in L; in

particular, h
(Kep)
1,0 = n∗ · L, where the components of the angular velocity vector n∗

are defined by the third Kepler law.

• h
(TF )
s;j1,j2

is a h.p.f. of degree j1 in L, degree j2 in ξ and η, and with coefficients that
are trigonometric polynomials in λ.

2.2 The secular Hamiltonian at order two in the masses

The main idea of this work is based on the construction of invariant tori through the
application of a Kolmogorov normalisation algorithm. The Kolmogorov normalisation
scheme is also adapted to preliminary produce the secular approximation at order two in
the masses (see, e.g., [26, 23]). This means that in our model the torus corresponding to
L = 0 in the new coordinates will be invariant up to order two in the masses. For this aim,
we proceed by averaging over the fast angles the terms of the Hamiltonian (3) that do
not depend or are linear in the actions L. This elimination is obtained via a composition
of two Kolmogorov-like steps.

First, the transformed Hamiltonian writes, in the Lie series formalism,

expL
χ
(O2)
1

H(TF ) =
∞∑

j=0

1

j!
Lj

χ
(O2)
1

H(TF ) , (4)

where the generating function χ
(O2)
1 is determined as the solution of the following homo-

logical equation

2∑

i=1

n∗
i ·

∂χ
(O2)
1

∂λi

+ µ
∑

s=0 , j2=0
2s+j2≤NS

⌈
Ds

2 h
(TF )
s;0,j2

⌉

λ:KF

= µ
∑

s=0 , j2=0
2s+j2≤NS

Ds
2

〈
h
(TF )
s;0,j2

〉

λ
, (5)
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being 〈·〉ϕ the average over the generic angles ϕ. In the previous formula, we have
denoted with ⌈g⌉λ:KF

the truncation of the expansion of the generic function g up to a
trigonometric degree KF . The parameter KF is fixed so as to include the main quasi-
resonance of the system on hand: for instance, let us suppose the system is near to a
k∗
1 : k∗

2 resonance, then we set KF ≥ |k∗
1| + |k∗

2| . Moreover, in (5) the integer parameter
NS rules the considered order of magnitude in eccentricity and inclination: the choice of
the particular value of NS is again related to the main quasi-resonance of the system. In
fact, for the D’Alembert rules we know that the terms containing harmonics (k∗

1λ1−k∗
2λ2)

have order in eccentricity and inclination greater or equal than |k∗
1| − |k∗

2| and with the
same parity. Therefore, in order to include the effects of the k∗

1 : k∗
2 resonance in the

generating function χ
(O2)
1 , we have to truncate the expansion up to NS ≥ |k∗

1|− |k∗
2|. This

constraint takes into account that both ξ and η are O(e) and D2 is O(e2+ i2). To fix the
ideas, let us focus on the main extrasolar planets HD 141399 c and HD 141399 d, whose
periods are approximately equal to 202 days and 1070 days, respectively. Therefore, the
quasi-resonance 5 : 1 is expected to substantially affect the dynamics: according to the
previous discussion, we then fix KF ≥ 6 and NS ≥ 4. Of course, these criteria determine
just the lower bounds on the integer parameters KF and Ns : we stress that one could be
interested in producing larger expansions according to the available computational power.
In Section 5, Tab. 2 we will list the particular value of KF and NS for each of the systems
considered by our applications.

The second Kolmogorov-like step is performed in an analogous way so as to intro-
duce the normalised Hamiltonian up to order two in the masses H(O2) = expL

χ
(O2)
2

◦

expL
χ
(O2)
1

H(TF ) , where the new generating function χ
(O2)
2 is the solution of the homolo-

gical equation

2∑

i=1

n∗

i ·
∂χ

(O2)
2

∂λi

+ µ
∑

s=0 , j2=0
2s+j2≤NS

⌈
Ds

2 h
(TF )
s;1,j2

⌉
λ:KF

+ L
χ
(O2)
1

h
(Kep)
2,0 = µ

∑

s=0 , j2=0
2s+j2≤NS

Ds
2

〈
h
(TF )
s;1,j2

〉
λ
. (6)

As we already mentioned, we will focus on the secular part of the Hamiltonian 〈H(O2)〉λ:
for such an Hamiltonian, the actions L are first integrals. We consider the basic approx-
imation of the fast dynamics corresponding to quasi-periodic motions with an angular
velocity vector equal to n∗, by setting L = 0.

Let us define

H̃ = H(TF ) +
1

2

{
χ
(O2)
1 ,L

χ
(O2)
1

h
(Kep)
2,0

}

L,λ

+




χ
(O2)
1 , µ

∑

s=0 , j2=0
2s+j2≤NS

Ds
2 h̃

(TF )
s;1,j2





L,λ

+
1

2




χ
(O2)
1 , µ

∑

s=0 , j2=0
2s+j2≤NS

Ds
2 h̃

(TF )
s;0,j2





ξ,η

(7)

where {·, ·}L,λ and {·, ·}ξ,η are the terms of the Poisson bracket involving only the deriv-
atives with respect to the variables (L, λ) and (ξ, η), respectively. Then, according to [26],
we have that

〈H(O2)〉λ

∣∣∣
L=0

= 〈H̃ 〉λ

∣∣∣
L=0

+O(µ3) .
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We can finally introduce our secular model up to order two in the masses, by setting

H(sec)(D2, ξ,η) =
⌈
〈H̃ 〉λ

∣∣∣
L=0

⌉

(D2,ξ,η) : 2NS

, (8)

where
⌈
〈H̃ 〉λ

∣∣
L=0

⌉
(D2,ξ,η) : 2NS

indicates the averaged expansion (over the fast angles λ)

of the part of H̃ that is both independent from the actions L and truncated up to a
total order of magnitude NS in eccentricity and inclination. This means that a monomial
Ds

2 ξ
m1ηm2 is included in the truncation if and only if 2s + |m1| + |m2| ≤ 2NS . By

comparing (7) and (8), one can notice that our secular Hamiltonian model represented by

H(sec) does not depend on the second generating function χ
(O2)
2 whose explicit calculation

is therefore unnecessary.
The explicit form of (8) writes

H(sec) = h
(sec)
1,1 +

NS∑

s=2

s∑

l=1

Ds−l
2 h

(sec)
s,l (9)

where hs,l is a homogeneous polynomial function of degree 2l in ξ and η , ∀ 1 ≤ l ≤ s ≤
NS . The even parity of the exponents is determined by the D’Alembert rules: having
removed all the harmonics, the order in eccentricity that the terms must held is of the
same parity of zero. The expansion of the final Hamiltonian H(sec) presents terms in D2,
ξ and η up to a degree that is twice the one of the truncated expansions of χ

(O2)
1 as it

is determined by (5): this is set to ensure that all the terms generated by the Poisson
brackets in (7) are going to be taken into account.

3 Construction of invariant tori for our secular model

3.1 Preliminary set up for the Kolmogorov algorithm

We will perform a series of preliminary transformations in order to obtain the most con-
venient formulation of our Hamiltonian for the construction of the invariant torus. Firstly,
we will diagonalise the quadratic part of the Hamiltonian; secondly, we will transform the
variables into an action-angle set; we will then proceed with a partial Birkhoff’s normal-
isation, so as to remove the degeneration of the unperturbed Hamiltonian; finally, we will
shift the origin of the actions so that they are centred around a value consistent with the
observations.

It is well known that under mild assumptions on the quadratic part of the Hamiltonian
which are satisfied in our case (see Sect. 3 of [3] where such hypotheses are shown to be gen-
erically fulfilled for a planar model of our Solar System) one can find a canonical transform-
ation (ξ,η) = D(x,y) with the following properties: (i) the map (ξ,η) =

(
ξ(x),η(y)

)

is linear, (ii) D diagonalizes the quadratic part of the Hamiltonian, so that we can write

h
(sec)
1,1 in the new coordinates as

∑2
j=1 νj(x

2
j + y2j )/2 , where both the entries of the vector

ν have the same sign.
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Action–angle variables are introduced via the canonical transformation

xj =
√

2Ij cosϕj , yj =
√

2Ij sinϕj , j = 1, 2 . (10)

With these two last changes of coordinates the Hamiltonian (9) takes the form

H(I)(I,ϕ) = ν · I +
∞∑

s=2

s∑

l=1

Ds−l
2 h

(I)
s;l(I,ϕ) , (11)

where hs;l is an homogeneous polynomial function of degree 2l in the square roots of
actions I and a trigonometric polynomial of degree 2s in angles ϕ , i.e., it writes

h
(I)
s,l(I,ϕ) =

∑

i1+i2=2l

i1∑

j1=0

i2∑

j2=0

c
(I)
s;i1;i2;j1;j2

√
I i11 I

i2
2 cos

[
(i1 − 2j1)ϕ1 + (i2 − 2j2)ϕ2

]
. (12)

In the previous formula only cosines occur because of the parity relation due to the
D’Alembert rules.

Let us stress that our aim is to provide ranges of inclinations which are compatible
with the stability of the system. These intervals of values are obtained as a function of the
angular momentum deficit parameter D2. Thus it is crucial to keep D2 as a parameter in
the Hamiltonian expansion as long as possible. We now proceed with a partial Birkhoff’s
normalisation in order to remove the degeneration of the unperturbed Hamiltonian. We
can visualise the Hamiltonian (11) as

·
·
·

h
(I)
4;4 . . .

h
(I)
3;3 D2 h

(I)
4;3 . . .

h
(I)
2;2 D2 h

(I)
3;2 D2

2 h
(I)
4;2 . . .

H(I)(I,ϕ) = ν · I D2 h
(I)
2;1 D2

2 h
(I)
3;1 D3

2 h
(I)
4;1 . . . .

(13)

This writing highlights two features of each term: the size of the perturbation in eccent-
ricity and inclination is determined by the columns; the degree in actions depends on the
rows. Our aim is then to remove the dependency on the angle variables up to the third
column. We determine the first generating function by solving

{B
(II)
1 , ν · I} −D2 h

(I)
2;1 = D2Z2;1 (14)

where Zs,l is the average of h
(I)
s;l over the angles ϕ.

In the same way, we determine the generating function B
(II)
2 as the solution of

{B
(II)
2 , ν · I} − h

(I)
2;2 = Z2;2 . (15)

The transformed Hamiltonian is computed as

H(II) = expL
B
(II)
2

◦ expL
B
(II)
1

H(I) . (16)
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Let us stress that expL
B
(II)
1

H(I) does not produce any contribution to the term h
(I)
2;2: this

justifies the term appearing in (15) for the generating function. At this point, all the
terms up to order 4 in eccentricity and inclination do not depend on the fast angles and
the Hamiltonian reads

H(II)(I,ϕ) = ν · I + D2 Z2;1(I) + Z2;2(I) +
∞∑

s=3

s∑

l=1

Ds−l
2 h

(II)
s;l (I,ϕ) . (17)

Analogously, we compute the generating functions B
(III)
1 , B

(III)
2 , B

(III)
3 in order to elim-

inate the dependency on the angle variables of the terms of order 6 in eccentricity and
inclinations. Finally, our Hamiltonian is computed as

H(III) = expL
B
(III)
3

◦ expL
B
(III)
2

◦ expL
B
(III)
1

H(II) . (18)

The last preliminary transformation of the Hamiltonian consists in a translation of
the actions. Being the action vector I nearly constant, i.e., I(t) ≃ I(0), we shift the
origin of the action about I(0) = I∗. This is done using a canonical transformation
T (I,ϕ) = (p+ I∗, q). The transformed Hamiltonian is given by

H(0)(p, q) = H(III) ◦ T (I,ϕ) .

Let us remark that in [26] the translation was determined in such a way to construct
a torus with a specific frequency ω; that frequency was accurately computed from the
numerical integration via Fourier analysis. The same approach cannot be adopted in
the present work: being the knowledge of the parameters of the system only partial any
numerically integration is unattainable.

3.2 Formal construction of the Kolmogorov invariant tori

We will now proceed with the construction of the Kolmogorov invariant tori. Firstly, we
expand the Hamiltonian H(0), whose expansion can be visually arranged as

...
...

...
...

...
f
(0,0)(p)
2 f

(0,1)
2 (p, q) . . . f

(0,s)
2 (p, q) . . .

H(0)(p, q) =
∑

ω(0) · p f
(0,1)
1 (p, q) . . . f

(0,s)
1 (p, q) . . . ,

0 f
(0,1)
0 (q) . . . f

(0,s)
0 (q) . . .

(19)

being the generic term f
(0,s)
j ∈ Pj,2s . This means that it is a homogeneous polynomial

of degree j in the actions p and a trigonometric polynomial of degree 2s in q. Therefore
it is possible to represent such type of terms on a computer because it is finite. There
is a striking difference between the visual schemes (13) and (19): in the latter, we do
not keep track of the expansions in powers of D2 . This is due to the fact that, in the
explicit applications, we replace the parameter D2 with convenient intervals of values.
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In Sec. 4 we will discuss in more detail this technical point, that is not essential for the
comprehension of the normalisation scheme.

Let us emphasise that the terms f
(0,s)
j in the s-th column are of order ‖I∗‖s, as it is

discussed, e.g., in [11]. Therefore the parameter I∗ rules the convergence of the series
with respect to the index s; according to the definitions in the previous sections, it is a
small quantity because I∗ is O(e2 + i2) .

The Kolmogorov’s normalisation algorithm requires to remove all the terms of the
Hamiltonian (19) of degree 0 or 1 in the actions p, with the exception of the term ω · p .

In order to do that, we start by determining the generating function χ
(1)
1 such that

{χ
(1)
1 ,ω(0) · p}+ f

(0,1)
0 = 0 , (20)

where χ
(1)
1 is a trigonometric polynomial of degree 2.

We will then obtain a new Hamiltonian

Ĥ(1) = expL
χ
(1)
1
H(0) (21)

whose generic term of the expansion is f̂
(1,s)
j ∈ Pj,2s . As a consequence of equation (20),

we have that f̂
(1,1)
0 = 0 .

We proceed in an analogous way to complete this first Kolmogorov’s normalisation
step: we compute the generating function χ

(1)
2 (p, q) such that

{χ
(1)
2 ,ω(0) · p}+ f̂

(1,1)
1 = 〈f̂

(1,1)
1 〉q ; (22)

then, χ
(1)
2 will be linear in p and of order 2 in q. Let us stress that it is possible to solve

the previous homological equations (20) and (22), provided that |k · ω(0)| > 0 for k ∈ Z2

with |k| = 1, 2 , being |k| = |k1|+ |k2| .
Therefore, we will obtain the new Hamiltonian H(1) = expL

χ
(1)
2
Ĥ(1), whose generic

term is now f
(1,s)
j ∈ Pj,2s . In the following it lies a profound difference with respect to

previous works (see for example [26]): due to the way χ
(1)
2 was determined, we have that

f
(1,1)
1 = f̂

(1,1)
1 + L

χ
(1)
2
ω(0) · p = 〈f̂

(1,1)
1 〉q . (23)

Therefore, f
(1,1)
1 is an homogeneous polynomial of degree 1 in p and independent from

q: hence, it shares the same functional properties of the term ω(0) · p . We then set for
appropriate values of ω(1)

ω(1) · p = ω(0) · p+ 〈f̂
(1,1)
1 〉q , (24)

hence changing the frequency vector associated to the searched invariant tori.
The generic r-th normalisation step is performed in the same way provided that the

following non-resonance condition holds true:

|k · ω(r−1)| > 0 , ∀ k ∈ Z2 \ {0} with |k| ≤ 2r . (25)
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One can start from an expansion of the Hamiltonian H(r−1) of the same form as in (19),

where the upper index 0 is replaced by r−1. Hence, the generating functions χ
(r)
1 , χ

(r)
2 are

introduced by solving the homological equations obtained by replacing the upper index 1
with r in formulas (20) and (22).

The new Hamiltonian is therefore given by

H(r) = expL
χ
(r)
2
Ĥ(r) with Ĥ(r) = expL

χ
(r)
1
H(r−1) . (26)

In order to better understand the ultimate goal of this algorithm constructing invariant
tori, let us suppose to be able to iterate it ad infinitum. We would end up with a
Hamiltonian of the form

H(∞)(p, q) = ω(∞) · p+O(‖p‖2) . (27)

Writing the equations of motion derived from the previous Hamiltonian, it appears evident
that the torus {p = 0 , q ∈ T

2} is invariant.

4 Parametric study on the D2 parameter

By borrowing the techniques used in [10] to ensure the existence of elliptic tori for planet-
ary systems, one could prove the convergence of the algorithm described in the previous
section under very general conditions. In practice, this means that: (i) the perturbation

(ruled by I∗) is small enough; (ii) the hessian of the main quadratic term f
(0,0)
2 (p) is

non-degenerate; (iii) the initial frequencies ω(0) belong to a suitable set having non-zero
Lebesgue measure.

Here we do not investigate theoretically the convergence of the algorithm that is instead
numerically analysed. In the spirit of a reverse KAM approach, we claim that some initial
conditions originate motions that are inside a stable region when the convergence is evident
from a numerical point of view.

We want to investigate the stability of extrasolar planetary systems for the widest
possible ranges of D2 (i.e., mutual inclinations) and we want to take into account the
uncertainties on other orbital elements due to the observational limitations. Therefore, we
have found convenient to represent the coefficients of the expansions of the Hamiltonians
with intervals. Let us emphasise that such an approach based on interval arithmetic
allows us to cover completely a set of values of the orbital elements. This provides a key
advantage to the normal form approach with respect to the explorations purely based
on numerical integrations. In fact, when dealing with numeric parametrical analysis the
latter methods require to consider grids of values of the initial conditions; moreover, the
synthetic coverage provided by the normal form approach (implemented with interval
arithmetic) is not possible.

When dealing with the proof of any KAM-type statement, it is essential to establish
an iterative scheme of estimates producing suitable majorants. The ultimate goal of such
a scheme is proving that the norms of the two sequences of generating functions (i.e.,

χ
(r)
1 and χ

(r)
2 in our settings) decrease exponentially. Therefore, when such a behaviour
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is met in the plot of the norms of the generating functions, this is the clear signature
of the existence of invariant KAM tori. In the case of a forced pendulum Hamiltonian
model (see [7]), the study of the behaviour of χ

(r)
2 succeeded in extrapolating a good

approximation of the breakdown of the golden ratio invariant torus. As it has been
discussed in the Introduction, the existence of KAM tori implies the long-time stability
of the dynamics in a region surrounding them. Therefore, this argument ensures that the
stability in KAM sense is firmly related to the convergence of the generating functions.
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Figure 1: Results relative to HD 40307. Behaviour of the norms of the generating
functions χ

(r)
2 as a function of the normalisation step r . On the left, for values of

D2 ∈ [0.0164 , 0.0564]. On the right for values of D2 ∈ [0.0814 , 0.0864]. The orbital
parameters of the system are listed in Tab. 1.

To fix the ideas, let us consider the specific case of the extrasolar multiplanetary system
HD 40307, whose orbital parameters are reported in Tab. 1. The plots of the norms of
the generating functions χ

(r)
2 are shown in Fig. 1 for two different ranges of values of the

parameter D2 . The norm ‖χ
(r)
2 ‖ is nothing but the sum of the absolute values of the

coefficients of the terms appearing in its expansion. We decide to focus on the behaviour
of χ

(r)
2 instead of the one of χ

(r)
1 because the former ones are usually bigger than the

latters. On the left hand side of Fig. 1 we can appreciate that the decrease of ‖χ
(r)
2 ‖ is

sharp and quite regular; we associate this behaviour to the convergence of the algorithm.
Often the algorithm crashes because the coefficients in the expansions of the Hamiltonians
inflate to the point where the non-resonant condition (25) is not satisfied anymore. By
comparison, the decrease of the norms in the plot on the right of Fig. 1 is notably slower
than the one on the left; for instance, the norm of the last computed generating function
on the right is 6 orders of magnitude bigger than the corresponding on the left.

Obviously we aim to automatise the identification of the converging procedures to
avoid a visual inspection for each specific instance. Having fixed the maximal normalisa-
tion order at r̄ = 33, in our codes the non convergence is established if at least one of the
following tests is true:

1. the ratio ‖χ
(r)
2 ‖ / ‖χ

(1)
2 ‖ is greater than 0.9 r−1 for some r;
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System Planet
m sin i
[MJ ]

MStar

[M⊙]
a

[AU]
e ω

[◦]

HD 141399 c 1.33 1.14 0.704 0.048± 0.009 220± 40
d 1.18 2.14 0.074± 0.025 220± 30

HD 143761 b 1.045 0.99 0.228 0.037± 0.004 270.6± 6
c 0.079 0.427 0.050± 0.004 175± 125

HD 40307 c 0.0202 0.77 0.081 0.060± 0.005 234± 1
d 0.0275 0.134 0.070± 0.005 170± 10

Table 1: Orbital parameters of the systems considered to apply the computational al-
gorithm for the parametric study on D2. For each column the unit of measure is reported
in square brackets. The angle i refers to the inclination of the orbital plane with respect
to the line of sight.

2. the norm ‖χ
(r̄)
2 ‖ is greater than 10−9 ‖χ

(1)
2 ‖.

Otherwise, we assume it is convergent.

5 Results

In order to explicitly apply our approach, we selected extrasolar systems where the ec-
centricities of the two major planets are small (i.e., less than 0.1). In Tab. 1 we report the
orbital parameters of the systems considered: for the sake of simplicity in the following
we use as planetary masses the minimal ones listed there.

For the sake of completeness, we define some of the parameters ruling the finite size
of the expansions of the Hamiltonians introduced in our formal algorithm (Secs. 2–3). In
Tab. 2 we list the values of the integer parameters KF and NS and of the mean motion
resonance that is considered to play the major role in the perturbation of the non-resonant
fast dynamics. Let us recall that KF gives the limitation on the generating function χ

(O2)
1

that is needed to construct the approximation of order 2 in the masses; moreover, NS

fixes the maximal order in e2 + i2 for the secular Hamiltonian H(sec) (see Sec. 2.2). The
series appearing in (11) and defining H(I) is truncated at the final value s = 15; the same
limitation is imposed on the expansions of H(II) and H(III). Finally, the maximal degree
in the actions p is fixed at 4 for the expansions of all the Hamiltonians H(r) involved in
the normalisation up to order r̄ = 33.

In Fig. 2 we present two plots relative to HD 141399. On the left, we show the
True/False output which results from the tests on the convergence described in Sec. 4: to
each value of the parameter D2 we assign 1 if the system is convergent, 0 otherwise. On
the right, we show the plot of the the mutual inclination as a function of the parameterD2.
By means of the interval arithmetic, we can take into account the observational errors
on the orbital parameters of the system, e.g., the eccentricities (as shown in Tab. 1).
Therefore, for each value of the parameter D2 we obtain a range of values for the mutual
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System Nearest Resonance KF NS

HD 141399 5 : 1 12 8
HD 143761 5 : 2 8 6
HD 40307 2 : 1 6 8

Table 2: Nearest resonance and values of the integer parameter KF and NS (as described
in Section 2.2) for each system.

inclination. For this reason, in all the plots concerning the mutual inclination (right of
Fig. 2 and Fig. 3) a central value with error-bars is drawn on the y coordinate. In Fig. 3,
we show the results for the systems HD 143761 and HD 40307.

We can summarise the results provided by our implementation of the Kolmogorov’s
normalisation scheme as follows: the systems HD 141399, HD 143761 and HD 40307 are
stable in the KAM sense, for mutual inclinations up to 18◦, 10◦ and 15◦, respectively. In
this context, if we would have taken into account the magnifying factor 1/ sin ij for the
mass of the j-th planet, we expect that the previous maximal mutual inclinations would
be slightly lower, except in the extreme case in which ij are close to zero. Indeed, the main
impact of considering larger masses would be increasing the size of the correcting terms
of order two in the masses with respect to those of order one in the secular Hamiltonian
H(sec).
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Figure 2: Results relative to HD 141399. On the left, the True/False output regarding the
convergence of the algorithm. On the right, the range of values of the mutual inclination
(in radians), where the thick line represent the mean value of the inclinations interval.
Both the plots are drawn as functions of the parameter D2.
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Figure 3: Plots of the mutual inclination as function of the parameter D2. On the left,
the results relative to HD 143761. On the right, those for HD 40307.

6 Conclusions and perspectives

Up to our knowledge, this is the first application of KAM theory to extrasolar planetary
systems. As it is discussed in the previous sections, actually we have not applied a
statement of the KAM theorem. Instead, we have exploited a keystone of the proof,
i.e., the study of the convergence of the generating functions. In this respect we can
say that our approach is computer aided: the norms of some of the initial generating
functions are evaluated after having explicitly calculated their expansions, instead of being
analytically estimated. The eventual convergent character of the constructing algorithm
in its entirety is inferred by the behaviour of said norms. Our results should legitimately
be included in the list of the applications of KAM theory to realistic physical models (see,
e.g., [5, 6, 9]). In fact, for what concerns the tori that are invariant with respect to the
secular Hamiltonian and characterized by the complete circulation of the arguments of
the pericenters, the values of the mutual inclinations for which the Lidov-Kozai resonant
region takes place can be considered as a natural upper limit3. In extrasolar systems
such a critical value of the mutual inclinations is usually located at about 40◦ (see [24]).
Therefore, for the three systems here considered, our results about the stability in the
KAM sense cover a set of values whose extension ranges between 25% and 50% of the
maximal one.

We shall now point out the weaknesses of our approach. Our constructing algorithm
does not work when the eccentricities of the planets are not small. In fact, the proced-
ure has generated divergent series when it has been applied to the systems HD 109271,
HD 155358 and HD 4732; in all of them there is at least one of the planets whose eccent-
ricity is between 0.1 and 0.25. Thus, it seems that our approach is limited to systems

3In the Laplace plane frame, the region of the Lidov-Kozai resonance is characterized by the libration
of the argument of the pericenter of the inner planet (see [25]). The implicit adoption of such a frame
has been essential in order to perform the reduction of the angular momentum sketched in Sec. 2.1.
Therefore, the comparison between our results and those for that resonant region is valid because also
our Hamiltonian model is written in the secular canonical coordinates with respect to the Laplace plane.
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with planetary eccentricities < 0.1. Since we are able to produce results for small in-
clinations of the major planets of the systems, the ideal situation is very similar to that
of our Solar System. This is not surprising, since the whole approach has been adapted
from the one described in [26], which in turn has been tailored to the Jovian planets.
In particular, the series expansion of the three-body planetary Hamiltonian is in power
series of some coordinates and parameters that are of the same order of the eccentricities
and the inclinations.

A natural goal for the future would be to remove the limitations affecting the approach
described in this paper. We think that some of them are intrinsic in the definition of
stability that we assumed. Actually, since the beginning we postulated that the motions
of the major planets are quasi-periodic and their orbits lie on KAM tori constructed
with expansions in small eccentricities and inclinations. Such a prescription is extremely
strict. In our opinion, any substantial improvement of the method will be based on a clever
weakening of the requirements. This should be done by identifying a suitable integrable
approximation of the secular dynamics that can be shown to be convergent even for large
eccentricities. In the very different context of the orbits of the Trojan bodies, this change
of attitude has been shown to produce substantial enhancements (see [30, 31]). In future
works, we plan to extend this kind of ideas to the problem of determining values of the
inclinations consistent with (a suitable type of) stability.
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