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Mitotic progression is orchestrated by morphological and mechanical
changes promoted by the coordinated activities of the microtubule (MT)
cytoskeleton, the actin cytoskeleton and the plasma membrane (PM). MTs
assemble the mitotic spindle, which assists sister chromatid separation,
and contact the rigid and tensile actomyosin cortex rounded-up underneath
the PM. Here, we highlight the dynamic crosstalk between MTs, actin and
cell membranes during mitosis, and discuss the molecular connections
between them. We also summarize recent views on how MT traction
forces, the actomyosin cortex and membrane trafficking contribute to spindle
positioning in isolated cells in culture and in epithelial sheets. Finally,
we describe the emerging role of membrane trafficking in synchronizing
actomyosin tension and cell shape changes with cell–substrate adhesion,
cell–cell contacts and extracellular signalling events regulating proliferation.
1. Introduction
Mitotic progression is sustained by major cellular rearrangements that promote
morphological features supporting faithful segregation of the genetic material
and correct positioning of the daughter cells within the tissue. The actin and
microtubule (MT) cytoskeleton, cell–cell adhesion and membrane dynamics
are finely coordinated in space and time from mitotic entry to cytokinesis. In
this review, we will present recent progress in the understanding of the mech-
anisms by which MTs, actin and membrane trafficking crosstalk to orchestrate
mitosis, and describe how the interplay of intracellular mitotic events with cell-cell
junctions and the extracellular matrix, controls tissue development and homeo-
stasis. Our discussion will focus on findings derived from vertebrate cells in
culture and in tissues, while referring occasionally to Drosophila melanogaster and
Caenorhabditis elegans model systems for specific processes.

The review is organized in three parts: the first part will summarize the cur-
rent knowledge on actin and MT cytoskeleton in mitosis with focus on how
cortical actin and substrate adhesion contribute to spindle positioning. The
second part addresses the role of endocytosis in mitosis, illustrating how the
endocytic machinery assists reshaping and dynamics of the mitotic plasma
membrane (PM). Finally, in the third session, we provide an overview of the
interplay between mitotic cells and the surrounding tissue in terms of
cell–cell contacts and extracellular matrix.
2. Mitosis and cytoskeleton rearrangements
The main effector of mitotic progression is the mitotic spindle, an MT-based
structure that is assembled after nuclear envelope breakdown. It consists of a
central spindle composed of MT bundles, known as kinetochore fibres
(K-fibres), that connect poles to kinetochores (interpolar MTs connecting the
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spindle poles) and astral MTs emanating from the centro-
somes and protruding towards the cell periphery. The main
function of the spindle is to ensure faithful segregation of
the genetic material between daughter cells. However, it is
becoming increasingly clear that the spindle serves other pur-
poses, including the definition of the division plane [1]. In
this section, we will summarize the current view on how
the mitotic actomyosin cortex signals to the spindle apparatus
throughout mitosis.

2.1. Actin and microtubule cytoskeleton in mitosis
Mitotic entry is characterized by a major cell shape change
that reflects the reorganization of the cell cortex, defined as
a thin actin network that underlies, and is tethered to, the
PM [2] (figure 1a). Cortical actin filaments form a mesh
cross-linked by actin-binding proteins and myosin motors
conferring contractile and tensile properties to the cell surface
[3,4], which responds to extracellular stress and intracellular
signalling [5]. Specifically, in mitosis, the cortex becomes
thinner with increased tension due to RhoA activation [6,7],
thereby promoting the transition to a rounded-up shape
(figure 1b). Rounding forces peak in prometaphase, and are
maintained high till metaphase thanks to the Cdk1-mediated
phosphorylation of DIAPH1 (Diaphanous Homolog 1
protein), which controls cortical actin polymerization [8].
The almost perfect spherical geometry of the cell is key for
the mitotic spindle functions [9–11]. In prometaphase, the
bipolar spindle is assembled and in metaphase it is posi-
tioned in the cell with the correct orientation, which, in
general, is stably maintained in anaphase to pull sister chro-
matids apart. Both spindle orientation and chromosome
separation rely on the actomyosin cortex providing a rigid
scaffold that counteract the traction forces exerted on astral
MTs by MT motors pulling towards the spindle poles. At
cytokinesis onset, actomyosin contractility redistributes
from the poles to the equatorial region of the cell generating
an actomyosin flow that leads to the formation of the contrac-
tile ring [12,13] (figure 1c). What defines the localized polar
release of cortical tension that establishes the cortical contrac-
tility gradient from the poles to the cell equator remains
largely unclear. Evidence has been provided that also in cyto-
kinesis there is crosstalk between the cortical actomyosin and
spindle MTs that coordinates the site of furrow ingression
with the spindle position [14], with mechanisms that partly
involve the centralspindlin complex. Interestingly, in Droso-
phila neuroblasts, spindle-independent mechanisms also
contribute to defining the cleavage furrow positioning and
size asymmetry of daughter cells [15]. Whether these mech-
anisms are conserved in polarized systems in vertebrates is
not known. Importantly, important roles for the MT-actin
crosstalk have been described non only in mitosis, as recently
summarized in the comprehensive review by Dogterom &
Koenderink [11].

2.2. Adhesion in mitosis
In spite of a major mitotic reorganization of the actin cytoske-
leton, recent studies in cultured cells indicate that the mitotic
cortex retains a memory of the interphase organization of cell
adhesion to the substrates mediated by actin-based retraction
fibres. In interphase, canonical focal adhesion complexes,
formed by the focal adhesion kinase (FAK), talin and paxillin,
associate with the cytoplasmic tail of the β-integrin subunit of
integrin transmembrane receptors to form a signalling layer
connecting the extracellular matrix to the cytoplasm [16]
(figure 1a, interphase CM adhesion complexes box). Focal
adhesion complexes were thought to disassemble in mitosis
[17]. However, recent studies in HeLa cells suggest that a sig-
nalling layer of paxillin, vinculin and FAK remains under the
cell body, referred to as mitotic focal adhesion (figure 1b, mitotic
focal adhesion complexes box), to maintain substrate adhesion
[18] (see also §4.4). Further studies showed that untrans-
formed RPE-1 cells retain only β1-integrin adhesion, with
β1-integrin localized underneath the cell body and retraction
fibres, to promote spindle positioning and correct abscission
[19]. These findings are consistent with in vivo experiments
indicating that ablation of β1-integrin results in misoriented
metaphases and anaphases in epithelial tissues including
murine developing skin [20]. Great insights into the link
between the mitotic spindle and substrate adhesion came
from studies in cells cultured on adhesive micropatterns of
defined shapes, pioneered by Bornens and Théry [21,22]. Ele-
gant imaging and mechanosensing analyses conducted in
these laboratories led to the discovery that the mitotic distri-
bution of actin retraction fibres is a key predictor of the
division orientation, leaving open the issue of which mol-
ecules transduce the mechanistic signals from the substrate
to the spindle apparatus. Collectively, these results substanti-
ate the notion that a memory of interphase cues remains
during mitotic actomyosin reorganization and provides
spatial information that guides cell division.
2.3. Interplay between shape, the actomyosin cortex
and spindle orientation

What defines the position of the mitotic spindle, and hence
of the division plane, has been object of intense investi-
gations. Two hypotheses have been proposed as a
molecular explanation of the spindle orientation. The first
envisions the active contribution of force-generating com-
plexes localized at specialized cortical regions able to exert
traction forces on astral MTs to move the spindle (figure
1b). The second is a more simplistic view that assumes that
the cell shape is the prominent factor determining the div-
ision orientation by compression. In fact, it is becoming
clear that both cell shape and active cortical forces synergize
to set the division plane, with modalities depending on the
developmental stage and in response to external challenges
[1]. Initial observations in artificially flattened amphibian
eggs suggested that the spindle axis aligns with the longest
axis of the cell, according to what is known as Hertwig’s rule
[23]. More sophisticated subsequent studies addressed the
relevance of tension and cell shape deformation on spindle
placement, revealing that in fact cell anisotropy acts as
major determinant of spindle alignment [24]. Moderately
anisotropic cells only partially obey the rule, with imperfect
alignment of the spindle axis both in unperturbed con-
ditions and upon mechanical cell stretching, while
elongated cells favour division along the major axis. Cells
in polarized epithelia undergo planar divisions, with the
spindle perpendicular to the apico-basal polarity axis, and
tend to follow Hertwig’s rule for what concerns orientation
in the anterior–posterior direction that relies on planar cell
polarity proteins, such as Dishevelled and Vangl2 [25,26].
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Figure 1. Schematic description of the organization of actin and microtubule cytoskeleton in interphase, metaphase and anaphase on vertebrate cells in culture. (a) In
interphase cells, actin is organized in stress fibres protruding from the plasma membrane to the extracellular matrix (ECM). Cell adhesion to the substrate is mediated by
focal adhesion complexes consisting of β1-integrins, the focal adhesion kinase (FAK), talin, paxillin, vinculin and clathrin (boxed in interphase CM adhesion complexes and
mitotic focal adhesion complexes). Actin-associated myosin molecules confer contractility to the cortex during migration. The mitotic dynein-adaptor NuMA is nuclear in
interphase. (b) At mitotic entry, the actin cytoskeleton is reorganized to form an isotropic contractile cortical network of actin filaments cross-linked by myosin II, which
promotes a cellular morphological change known as round-up. Concomitantly, the canonical focal adhesion complexes present in interphase disassemble leaving mitotic
focal adhesion complexes (boxed) containing β1-integrins and endocytic adaptors. Caveolin-1 organizes caveola-like structures at the cellular edges of retraction fibres to
couple adhesion geometry to spindle positioning. After nuclear envelope break down in prometaphase, a bipolar mitotic spindle is formed by microtubules (MTs)
nucleating from the two centrosomes, that capture sister chromatids at kinetochores and bring them on at the metaphase plate. In mitosis, the rigid actomyosin
cortex acts as a rigid scaffold to sustain spindle positioning and elongation, thanks also to a number of cortex-associated actin-binding proteins (actin-binding protein
box). Specifically, dynein-based MT motors are recruited localized region of the plasma membrane and exert pulling forces on astral MTs protruding from the spindle
poles to the cell periphery. These force-generating machines consist of dynein/dynactin assemblies, recruited at the plasma membrane by the trimeric complex NuMA/
LGN/Gαi. We recently showed that dimeric NuMA molecules assemble hetero-hexameric complexes with LGN, this way promoting the formation of cortical network of
MT-motors (see also figure 2). Actin clouds distributed around the spindle pole also assist spinel positioning (actin clouds box). (c) At cytokinesis, the spindle elongates to
separate sister chromatids. NuMA further enriches to the plasma membrane by direct binding to phospholipids at the polar region of the cell. Increased actomyosin cortex
contractility determines the cleavage furrow ingression at the cell equator.
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In response to external tension, the vertices of tight junctions
(TJs) in vertebrate MDCK cells reorient and instruct the
orientation axis by enriching at their site LGN, a component
of the force-generating machines pulling on astral MTs (see
§2.4 for a more detailed description of force-generating
motors) [27]. Filming divisions in the Drosophila notum
revealed that a similar mechanism accounts for spindle posi-
tioning also in this model system, as the LGN-binding
protein, NuMA, localizes to tricellular junctions [28]. The
link between TJs and spindle orientation seems to be lost
during embryonic development when planar and perpen-
dicular divisions alternate, at a given ratio, to shape
tissues, as documented in the murine developing skin
[20,29] and in zebrafish embryos [30].

Although these reports seem to depict TJs as the princi-
pal cues directing oriented divisions, actin has also been
shown to be important, but in different ways. We already
mentioned the scaffolding role of actomyosin in cell round-
up. Intriguingly, in Xenopus laevis embryonic epithelia,
actin filaments seem also to associate directly with spindle
MTs [31]. In addition, the discovery of the ability of centro-
somes to nucleate actin, suggested that centrosomes are the
ideal hub to regulate the crosstalk between MTs and the
so-called actin clouds [32] (figure 1b, actin clouds box, and
figure 1c). Actin clouds assemble in subcortical clusters or
around the centrosomes and disappear into the contractile
ring in cytokinesis [33]. They have been proposed to trans-
duce mechanical forces from the cortex to the spindle,
possibly influencing spindle positioning [34–36]. If so, an
interesting possibility is that asymmetric distribution of
actin clouds around the mother and daughter centrosome
can generate imbalanced connections of the two spindle
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poles with the cortex, thereby contributing to the unequal
centrosome partitioning that has been observed in cell
types, such as murine neural stem cells [37] and cultured
embryonic stem cells [38].

Beside actin itself, a plethora of actin-binding proteins
regulates the interplay between actin and the spindle
(figure 1b, actin-binding protein box) [39]. Cortical myosin-10
has been shown to regulate astral MT dynamics, providing
a physical link between the cortex and the spindle [40], that
is required for spindle orientation and acts in parallel to the
LGN-dependent dynein motors [41]. In endothelial cell,
myosin II has been shown to control MCAK-dependent MT
growth [42]. Ezrin-radixin-moesin (ERM) proteins are mem-
brane-actin binders that control cortical actin rigidity by
cross-linking actin filaments [43]. Consistently their depletion
causes membrane blebbing in Drosophila S2 cells and
defective cell rounding in vivo, ultimately leading to misor-
ientation. The orientation role of ERM proteins is conserved
in vertebrate cells grown on micropatterns. Upon activation
by the Ser-Thr kinase, Slik/PLKK1, ERM proteins promote
cortical recruitment of LGN and NuMA [44,45]. Intriguingly,
ERM proteins bind MTs, possibly contributing directly to
spindle orientation [46]. We recently reported that in meta-
phase HeLa cells, the actin-binding protein, Afadin, controls
spindle orientation by binding concomitantly to LGN and
to cortical F-actin [47]. Recent data from the Williams labora-
tory confirmed that in murine developing skin Afadin is
implicated in setting vertical and planar divisions in
anaphase [48].

Beside the actin-MT cross-linkers, the number of proteins
implicated in spindle positioning in vertebrate cells is steadily
increasing and includes proteins involved in the regulation of
astral MT-polymerization, substrate adhesion, centrosome
organization, PM lipid composition and epithelial polarity.
For a comprehensive review, we refer readers to the recent
review by di Pietro et al. [1].

2.4. Microtubule motors moving the mitotic spindle
The functional principles of the macromolecular assemblies
exerting pulling forces on astral MTs to actively move the
spindle have been a subject of intense investigations. They
are assembled on cytoplasmic dynein-1 (hereafter dynein)
[49] and anchored at the cortex by conserved trimeric com-
plexes consisting of the GDP-loaded Gαi subunit of
heterotrimeric G-proteins, the switch protein, LGN, and the
dynein-binding protein, NuMA [50] (figure 1b, and close-
up in figure 2). The idea is that retrograde movement of cor-
tically anchored dynein results in pulling forces on the
spindle poles. The simplistic view of events recruiting
active dynein at the cortex envisions the generation of loca-
lized Gαi-GDP pools that bind to an inhibited closed form
of LGN inducing a conformational change compatible with
NuMA binding [51]. Recently, phosphorylated LGN was
shown to interact with the polarity protein DLG, further
securing LGN association with the cortex in metaphase
[52]. NuMA in turn recruits dynein and dynactin in a
MT-independent manner [53]. Elegant optogenetic exper-
iments by the Kyiomitsu laboratory revealed that targeting
NuMA to the cortex suffices to trigger MT-pulling, while tar-
geting dynein does not [54], suggesting that NuMA acts as a
dynein-activating adaptor. This idea is corroborated by our
biochemical reconstitution of the NuMA/dynein interface
showing that the N-terminal portion of NuMA contains a
Hook domain and a coiled-coil region, which bind directly
to the dynein light intermediate chain (Renna et al. 2020,
unpublished data), with topologies shared by characterized
dynein adaptors [55–58]. The C-terminus of NuMA harbours
sites for direct binding to MTs [59–62], lipids [63,64], LGN
[51,65] and 4.1R proteins [53,66] that are required for cortical
actomyosin integrity, making NuMA an ideal molecule to
link the mitotic PM to the spindle. Optogenetic targeting of
NuMA fragments at the cortex revealed that dynein/
NuMA-based force generators cluster in cortical domains vis-
ible by confocal microscopy, via an interaction module
located between the NuMA coiled-coil and the LGN-binding
domain [54]. In parallel, our recent structural studies showed
that LGN and the C-terminus of NuMA form doughnut-
shaped hetero-hexamers connected to one another by the
dimeric NuMA coiled-coils, resulting in a protein network
that is crucial for MT pulling [62]. The C-terminal MT-bind-
ing domain of NuMA is also required for the assembly of
force generators and spindle positioning [47,54], indicating
that NuMA either strengthens the anchoring of astral MTs
to the PM or stabilizes dynein on astral MTs.

The view of force generators enriched cortically by Gαi-
GDP/LGN/NuMA complexes leaves open the issue of
what generates a localized pool of Gαi-GDP triggering the
recruitment cascade. Studies in Drosophila neuroblasts uncov-
ered the activity of the G-protein coupled receptor (GPCR),
Tre1, in the accumulation of force generators at the apical
site [67]. It is likely that still uncharacterized GPCRs exert a
similar function in vertebrate systems.

Although most studies on spindle placement have focused
on the LGN-mediated recruitment of NuMA, it is becoming
clear that NuMA can be targeted to the PM independently
of LGN. NuMA harbours a basic lipid-binding domain that
is inhibited until metaphase by CDK1 phosphorylation
[63,64] (figure 1c). Upon CDK1 inactivation in anaphase,
NuMA is enriched at polar regions above the spindle poles
by direct binding to phospholipids, which, in turn, promotes
spindle elongation and sister chromatid separation. An inter-
esting line of evidence indicates that Wnt signals can orient
the division plane [38,68], possibly through the interaction of
the Wnt effector Dishevelled and NuMA [25].

Together, these findings support the notion that through-
out mitosis, spindle movements are orchestrated by the
coordinated action of dynein-containing force generators,
which are spatially organized in specific cortical regions
through multivalent interactions promoted by NuMA via
its ability to bind directly to MTs, lipids and 4.1R proteins.
3. Role of endocytosis in mitosis and cell
division

In this section, we will summarize the current view on the
involvement of membrane trafficking, epithelial polarity
and cell–cell contacts in mitosis, and how the cellular
machinery implicated in these processes communicates
with the spindle apparatus. As described in the previous
paragraphs, dividing cells are continuously subjected to ten-
sile and contractile forces, which vary during the different
phases of mitosis and cytokinesis, and are transduced and
controlled by the actin cytoskeleton. In addition to actomyo-
sin contractility, it is now emerging that endocytosis also has
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a critical role in PM remodelling, adherens junction (AJ)
turnover and force generation in the different phases of
cell division. Here, we will review evidence from the litera-
ture supporting the role of endocytosis in cell division,
while we refer the reader to other more exhaustive reviews
for the role of actin and the actomyosin complex [5,9,69–
71]. After a brief overview of the different endocytic path-
ways and their relevance to PM remodelling and force
generation, we will discuss the possible functions of endocy-
tic mechanisms in mitosis, cell division and epithelial
plasticity.
3.1. Endocytic regulation of PM remodelling and
mechanical forces

Different endocytic pathways are active in different cell types,
suggesting a variable impact of endocytosis on PM remodel-
ling and mechanical forces depending on the cellular context.
Endocytic pathways are broadly classified based on their
dependency on the clathrin-apparatus, and thus defined
as clathrin-mediated endocytosis (CME) and non-clathrin
endocytosis (NCE) [72] (figure 3).

CME is active in all cell contexts although with different
kinetic properties, such as lifetime and persistence of clathrin-
coated pits (CCPs) [73]. In CME, the cargo is recognized by
adaptor molecules—primarily AP2, but not exclusively
[74–77]—that bridge the cargo to clathrin (reviewed in
[78,79]). Vesicle fission is exerted by the large GTPase, dyna-
min (reviewed in [80]), which is also part of the scission
machinery in some clathrin-independent pathways [81]. In
addition, a number of reports suggest that actin plays a role
in CME, facilitating PM constriction and dynamin-dependent
fission. However, while this role of actin is essential in yeast
cells due to the presence of the stiff yeast cell wall [82], in
mammalian cells, it appears to be relevant only when they
are subjected to high membrane tension [83–85].

Two distinct types of clathrin-coated structures (CCSs) can
be visualized at the PM of mammalian cells: the dynamic
curved CCPs and the large, long-lived, flat clathrin lattices,
called ‘coated plaques’ (figure 3), first observed several dec-
ades ago [85–90]. The latter structures are very stable,
enriched in signalling receptors (e.g. EGFR, HGFR) and integ-
rins [90,91]. Given these characteristics, coated plaques have
been proposed to function as signalling and adhesion plat-
forms [92]. Importantly, they assemble and expand as the
rigidity of substrates increases, independently of actin and
actomyosin contractility, but due to the action of αvβ5 integrin,
which is particularly enriched at plaques. Importantly, αvβ5
integrin was shown to link CCSs to the substrate, in this
way stabilizing them and delaying their budding from the
PM, in a process termed ‘frustrated endocytosis’ [91]. A similar
process mediated by β1-integrin has also been described for
structures resembling clathrin-coated plaques present on col-
lagen fibres (called tubular clathrin/AP2 lattices) that are
critical to support 3D cell migration [93].

Coated plaques have therefore been proposed to represent
a novel class of mechanosensitive stable adhesion structures,
generated as a consequence of ‘frustrated endocytosis’ of
CCSs [91]. They differ from the canonical adhesion/focal
complexes that are strongly linked to the F-actin machinery
and display a fast turnover and require the rapid uptake/
recycling of integrins in order to allow polarization of recep-
tors and delivery of new membrane, needed for protrusion
formation and cell migration [94,95]. Instead, coated plaques
seem to be strictly related—in terms of molecular composition
and independence from actin—to αvβ5 integrin-enriched
structures that have been involved in adhesion during mitosis
[92]. Importantly, in mitosis, canonical adhesion complexes
are disassembled while adhesive structures resembling pla-
ques are maintained to preserve the interaction with the
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substrate needed to achieve effective mitosis, daughter cell re-
spreading and mitotic spindle orientation [19,96–99] (see also
§4.2 and 4.3).

Differently from CME, NCE pathways include a number
of heterogeneous endocytic mechanisms that are active in
different cellular contexts, and which diverge at the morpho-
logical and molecular levels, their cargo and upstream
regulatory signals [81]. These include, for instance, the
CLIC (clathrin-independent carriers) pathway, the so-called
fast endophilin-mediated endocytosis (FEME), and NCE
pathways involved in the internalization of the EGFR [100]
and of interleukin-2 receptor (IL-2R) [101] (figure 3). NCE
pathways have been implicated in PM remodelling to differ-
ent extents. For instance, the CLIC pathway is very
prominent in fibroblasts where it is thought to contribute to
large PM rearrangements [81,102], while FEME, given its
rapid turnover at the leading edge of the cell, is predicted
to have a great impact on PM remodelling during migration
[83]. However, among the different NCE mechanisms, the
caveolar pathway is the only one that has been directly
linked to mechanosensing functions.

Caveolae are 60–80 nm diameter PM invaginations, orga-
nized in clusters or ‘rosettes’, which are particularly abundant
on the surface of adipocytes, muscle and endothelial cells.
They are very stable structures with slow turnover at the PM.
Indeed, while there are few cargoes that can be internalized
through caveolae, it is becoming clear that their main function
is not endocytosis. Caveolae appear instead to have a critical
role in lipid homeostasis and in mechanoprotection [103].

Flattening of caveolae has been observed upon osmotic
swelling and cell stretching, and works as a buffering mech-
anism, reducing membrane tension and preventing rupture
[104–107]. This function is compatible with the abundance
of caveolae in tissue subjected to mechanical challenges
and with their stability at steady state. Importantly, caveolae
components, namely Cavins and EHD (Eps15-homology
domain) proteins, have been shown to be released upon
caveolae disassembly and to translocate into the nucleus
where they can transduce signalling via the activation of
specific transcriptional programs [108,109]. In particular,
EHD2 is critical for stabilizing caveolae structures at the
PM, but it is rapidly released upon disassembly of caveolae
due to mechanical stress and translocates to the nucleus
where it activates the transcription of signalling effectors
and cell cycle genes, as well as caveolae components them-
selves, to allow caveolae reconstruction after their
disassembly [109].

Given the importance of endocytic pathways in the regu-
lation of PM remodelling and lipid composition and in the
buffering of mechanical forces, it is not surprising that endo-
cytosis is tightly regulated during mitosis and cell division,
and that it has been implicated in the different steps of
cytokinesis, as we will discuss in the next paragraph.
3.2. Role of endocytosis and trafficking in the
regulation of PM remodelling during mitosis

Early studies in the field of endocytosis suggested that intern-
alization was inhibited during mitosis. Initial evidence in this
direction dates back to seventies [110], when it was shown
that phagocytosis and fluid-phase internalization were inhib-
ited in mouse embryonic fibroblasts and macrophages. This
was later supported by reports showing that pinocytosis
[111], autophagy [112] and CCP formation were affected in
mitotic cells [113,114].

Importantly, most studies pointing to endocytic arrest in
mitosis were performed under conditions of mitotic synchro-
nization, achieved using temperature shift or chemical agents,
which have a strong impact on CME [115]. By contrast,
experiments performed under physiological unperturbed
conditions, revealed that CME proceeds during all phases
of mitosis [115,116], albeit at a reduced rate. In particular,
during metaphase and anaphase (figure 4a–c), a decrease in
CCP density and a slowdown of CME was observed by lat-
tice-sheet microscopy, with a recovery during cytokinesis
(figure 4d ) [117]. The decrease in CCP formation could be
linked to actin. Indeed, the mitotic cell rounding is associated



CAVEOLAE

interphase prometaphase cytokinesismetaphase

endocytosis/ 
degradation

endocytosis/ 
degradation

general growth factor receptor with ligands (EGFR, PDGFR, etc.)

clathrin

clathrin, TACC3, ch-TOG complex

Rab11 Rab8 Rab35 rab positive recycling endosomes

endocytic adaptor proteins

centrioles

late 
endosome

lysosome

recycling

STOP STOP

CME
NCE

recycling

endosome

late 
endosome

lysosome polarized 
recycling 
endosome

Rab8

Rab11
Rab35

polarized 
recycling 
endosome

Rab35

Rab8

Rab11

(b)(a) (c) (d )

Figure 4. Role of endocytosis and endocytic proteins in mitosis and cell division. Regulation of the different endocytic pathways (CME, NCE and caveolae-dependent
endocytosis), recycling and degradative routes in cell division. (a) During interphase, growth factor receptors, as prototype of endocytosed PM proteins, are inter-
nalized through different pathways, converged to endosome and are either recycled back to plasma membrane or destined to lysosome for degradation (according to
the specific receptor, the growing conditions and the cell context). (b,c) Progressing into the different phases of mitosis, a decrease in CCP density and a slowdown
of CME was observed, as well as an attenuation of NCE and a reduced number of caveolae at the PM. Recycling of internalized proteins is blocked, and degradation
through lysosome is the preferred route. Caveolin-1 is redistributed to intracellular compartments. In metaphase, the tri-complex among clathrin, TACC3 and ch-TOG,
which creates a novel-binding surface for MTs, is shown as an example of the ‘moonlighting’ function of some endocytic factors in cell division. Note that, for
simplicity, clathrin is represented as a triskelion both at the PM and at the centrosomes, however in the latter case clathrin is acting as a monomer. (d ) During
cytokinesis, CME and NCE are fully active and recycling restarts, allowing for caveolae to come back to the cell surface. An extensive PM remodelling takes place at
the furrow: Rab8, Rab11 and Rab35 regulate the polarized recycling mechanism at the cell bridge required for efficient cytokinesis.

royalsocietypublishing.org/journal/rsob
Open

Biol.10:190314

7

with an increased tension of the actomyosin cortex [118],
likely contrasting the invaginations of membranes occurring
during endocytosis. In addition, the actin cortex thickens
during mitosis to form the contractile furrow [119–121]. In
parallel, recycling was also slowdown during prometaphase
and metaphase (figure 4a–c) to favour cell rounding, and res-
cued during cytokinesis (figure 4d ) to promote the increase of
cell area and the subsequent flattening of cells [122].

The current view is that CME is not completely shut
down during mitosis [123] and that the residual CME is criti-
cal to the internalization of specific cargoes in endosomes that
are partitioned equally or asymmetrically between the two
daughter cells. This is the case of the morphogen decapenta-
plegic (Dpp) in Drosophila or the planar cell polarity protein
(PCP) complex in mouse that are vital to preserve tissue
polarity and need to be inherited equally by daughter cells
[124,125]. By contrast, the Notch receptor is internalized in
SARA (smad anchor for receptor activation) endosomes that
are partitioned asymmetrically and determine the different
fates of the two daughter cells [126,127].

Caveolae have also been implicated in membrane remo-
delling during mitosis. Although there is an equilibrium
between the formation and disappearance of caveolae at the
PM during interphase, in mitosis, more caveolin-1 is shifted
to intracellular compartments, possibly due to the shutdown
of endosomal recycling (figure 4a,b). This redistribution is
reverted during cytokinesis and caveolae come back to the
cell surface after anaphase (figure 4c) [128]. This behaviour
suggests that caveolae dynamics might also contribute to
the variation of the cell surface observed during mitosis. At
the onset of mitotic cell rounding, caveolin-1 is targeted to
the retracting cortical region at the proximal end of retraction
fibres, where ganglioside GM1-enriched membrane domains
with clusters of caveolae-like structures are formed in an
integrin- and RhoA-dependent manner. Furthermore, Gai1–
LGN–NuMA, a well-known regulatory complex of spindle
orientation, is targeted to the caveolin-1-enriched cortical
region to guide the spindle axis towards the cellular edge
retraction [129].

Finally, other NCE pathways remain active during mito-
sis, such as the one responsible for the uptake of the EGFR
[130,131], as well as some macropinocytic events [132].

Thus, the emerging concept is that endocytosis, not only
remains active during mitosis and cytokinesis, but is also cru-
cial for the completion of these processes, because it
represents, together with recycling and exocytosis, a mechan-
ism to control membrane remodelling. Interestingly, lysosome
exocytosis—a process crucially involved in PM repair [133–
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135]—has been recently shown to contribute to the increase in
cell surface area when cells enter cytokinesis [136]. In particular,
the last step of cytokinesis seems to require extensive PM remo-
delling at the furrow, which involves exocyst-mediated
secretion to allow furrow contraction (figure 4d). All subunits
of the exocyst complex are found at the midbody and form a
ring-like structure needed for the completion of abscission. Sev-
eral Rabs have been found to localize at the furrow and/or the
midbody [137]. In particular, Rab11 and Rab35 regulate the
recycling mechanism at the cell bridge required for efficient
cytokinesis [138–141]. Similarly, Rab8-positive vesicles have
been observed to be concentrated and tethered at the midbody
(figure 4d) [142–144]. The fusion of these recycling endosomes
is mediated by the endosomal V-SNAREs, VAMP3 and
VAMP7, and their ablation inhibits the increase in surface
area during telophase and leads to cell division defects [116].

Finally, lipid composition is modulated during cytokinesis,
particularly at the furrow and midbody regions. Success-
ful abscission requires phosphoinositol-3-phosphate (PI3P)
production and phosphoinositol-4,5-bisphosphate (PI(4,5)P2)
hydrolysis [145,146]. A key function of PI3P is to recruit the
protein FYVE-CENT to the bridge, which acts as a scaffold for
TTC19 (tetratricopeptide repeat domain 19) [145]. As TTC19
binds to the ESCRT-III subunit, CHMP4B, it has been proposed
to regulate ESCRT-III function in abscission (see §3.3). Then,
prior to abscission, PI(4,5)P2 is hydrolysed by the PI5 phospha-
tase, OCRL, which is recruited to the bridge via Rab35-positive
endosomes that are recycled to the cleavage furrow [138,147].

Therefore, the balance between endocytosis and exocyto-
sis is a fine-tune regulator of the cell surface area during
division and affecting this equilibrium impairs cell rounding
and cytokinesis [116,148–150].

3.3. Endocytic proteins with functions in mitosis and
cytokinesis

Over the past decades, a number of endocytic proteins have
been directly implicated in different phases of mitosis, mitotic
spindle assembly and cytokinesis (table 1), independently of
their role in membrane trafficking. In some cases, the molecular
mechanism of action of these proteins in mitosis is equivalent to
the one they exert in membrane trafficking, although in a differ-
ent context. This is the case of the ESCRT-III machinery, which,
through their membrane remodelling ability, have been impli-
cated in several cellular functions, beyond multivesicular
body (MVB) maturation, including cytokinesis and PM repair
[152,153]. Indeed, the last phases of cytokinesis, namely the
abscission phase is topologically equivalent to the membrane
budding events mediated by ESCRT-III and required for intra-
luminal vesicle formation at MVBs [153]. Spiral filaments of
ESCRT-III have been visualized at the abscission site by electron
tomography and 3D-STORM microcopy [170–172]. These fila-
ments have been proposed to behave as elastic springs and to
use the elastic energy to remodel membranes [173]. Impor-
tantly, ESCRT-III filaments at the cytokinetic abscission sites
are very dynamic and are actively remodelled as cells progress
through cytokinesis, in a mechanism dependent on the ATPase
VPS4 [154,155]. This dynamic behaviour seems to be required
to create the force necessary for membrane juxtaposition and
abscission [154,155].

In other cases, endocytic proteins act in mitosis and cyto-
kinesis completely independently of their canonical role in
membrane trafficking, arguing for a true ‘moonlighting’
function of these factors in cell division. This is the case, for
instance, of clathrin, class II phosphoinositide 3-OH kinase α
(PI3KC2α), dynamin 2, intersectin 2 and RALA-binding
protein 1 (RALBP1) [156–163]. In particular, the mitotic role
of clathrin has been extensively investigated. The clathrin
heavy chain is recruited at the mitotic spindle of dividing
cells at the entry of mitosis [154,164,165]. This pool of clathrin
is not associated with membranes and its function is indepen-
dent of triskelia formation. Clathrin per se has no MT-binding
ability, but it forms a complex with transforming acidic coiled-
coil protein 3 (TACC3) and colonic hepatic tumour overex-
pressed gene (ch-TOG), creating a novel-binding surface for
MTs (figure 4c) [166–168]. Clathrin is critical for stabilizing
MTs within the K-fibres and its depletion causes defects in
chromosome separation and mitotic failure [159]. Interestingly,
class II phosphoinositide 3-OH kinase α (PI3 K-C2α), an
enzyme with critical role in CME, acts as a scaffold
protein—independently of its kinase activity–between clathrin
and TACC3 in mitosis, helping to cross-link K-fibres [169].
Downregulation of PI3 K-C2α causes spindle alterations,
delayed anaphase onset and aneuploidy, indicating that a
PI3 K-C2α/clathrin axis is required for genomic stability [169].

The clathrin/TACC3/ch-TOG complex was also shown to
localize at the centrosome and to play a critical role in the
maintenance of centrosome integrity. Interestingly, also dyna-
min 2 localizes at the centrosome and participates in centriole
cohesion and has been implicated in the last phases of cyto-
kinesis [162,163]. However, while the centrosomal function
is due to a role of dynamin in γ-tubulin association and MT
regulation, its role in cytokinesis seems to be related to its
canonical membrane remodelling and fission function.

Based on these findings, it emerges that cells have adopted
a strategy of using the same molecular machinery to exert
different functions depending on the cell state. This is achieved
byexploiting the samemechanismof action in endocytosis and
in mitosis (e.g. ability to deform membranes) and/or through
the acquisition of novel functions and binding abilities.
4. Cell division and epithelial dynamics:
the role of AJs and their regulation by
endocytosis

Epithelial morphogenesis represents a key process in organism
shaping during development. It takes place through spatially
and temporally regulated dynamic remodelling of epithelia
achieved via a series of events encompassing change of cell
shape and size, cell division and collective migration. In the
past decade, thanks to technological advances, a growing
body of evidence confirmed the impact of mechanical forces
on tissue morphogenesis and epithelial plasticity [174,175].

In the process of epithelial morphogenesis, AJs—together
with TJs and desmosomes—have emerged as critical regula-
tors that sense mechanical cues, propagate signals to
neighbouring cells and transduce forces into short- and long-
term cellular responses [176–178]. The response of epithelia
to tension by the remodelling of AJs is critical to regulate epi-
thelial morphogenesis, tissue size and architecture in vivo. The
short-term response of changes in AJ architecture is then trans-
lated into a long-term response through the activation of
signalling pathways and transcriptional programs controlling
proliferation, apoptosis and affecting tissue patterning [179].



Table 1. Summary of the endocytic proteins that are discussed in the main text and their role in mitosis and/or cytokinesis.

endocytic
protein role in mitosis and/or cytokinesis references

caveolin-1 caveolin-1 is enriched at cortical regions, where the Gαi1–LGN–NuMA complex is targeted, to guide

the spindle axis towards the cellular edge retraction; during mitosis, caveolin-1 redistributes from

the plasma membrane to intracellular compartments; these changes are reversed during

cytokinesis

[128,129]

Rab11, Rab35 Rab11 and Rab35 regulate the recycling mechanism at the inter-cellular bridge required for efficient

cytokinesis

[138–142,151]

Rab8 Rab8 participates in promoting membrane addition at the cleavage furrow [142–144,239]

VAMP3, VAMP7 VAMP3 and VAMP7 mediate the fusion of the recycling endosomes to the plasma membrane; their

ablation inhibits the increase in surface area during telophase and leads to cell division defects

[116]

OCRL the PI5 phosphatase, OCRL, hydrolysed PI(4,5)P2 in Rab35-positive endosomes that are recycled to

the cleavage furrow

[138, 147]

ESCRT-III

machinery

ESCRT-III spiral filaments behave as elastic springs and use the elastic energy to remodel

membranes

ESCRT-III complex (in particular, its subunit CHMP4B) is implicated in the abscission step of

cytokinesis, together with the centrosomal scaffold protein FYVE-CENT and TTC19

[145–147,152–155]

ATPase VPS4 ATPase VPS4 participates in the remodelling of ESCRT-III filaments [154,155]

intersectin 2 intersectin 2 participates to the control of mitotic spindle orientation [156]

RALBP1 RalBP1 is involved in regulating the dynamics of the actin cytoskeleton; during mitosis RalBP1 also

associates with the mitotic spindle and the centrosome, a localization that could be negatively

regulated by active Ral

[157–165]

clathrin the clathrin heavy chain is recruited at the mitotic spindle of dividing cells at the entry of mitosis;

this function is independent of triskelia formation

clathrin, in a complex with transforming acidic coiled-coil protein 3 (TACC3) and colonic hepatic

tumour overexpressed gene (ch-TOG), creates a novel-binding surface for microtubules; this

complex is critical for stabilizing MTs within the K-fibres and its depletion causes defects in

chromosome separation and mitotic failure

[159,166–169]

PI3KC2α PI3 K-C2α acts as a scaffold protein—independently of its kinase activity—between clathrin and

TACC3 in mitosis, helping to cross-link K-fibres

[169]

dynamin dynamin 2 localizes at the centrosome and participates in centriole cohesion and in the last phases

of cytokinesis

[162,163]
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Both the short-term and the long-term response mediated by
AJs is regulated by endocytic and trafficking pathways, as
we will discuss in this section.
4.1. AJs are critical sensors of forces in polarized
epithelia

The formation of separate and specialized domains is essential
to many cellular physiological processes. In epithelia, the estab-
lishment of polarity (i.e. apico-basal polarity and planar
polarity) is important for the function and the integrity of tissues
and consequently for organismal development [180]. Besides
the polarization observed in tissue, non-polarized cells can
also undergo an asymmetric distribution of biologicalmolecules
(i.e. proteins or lipids) to execute specialized functions, such
as cell division, cell migration during wound healing and
immune response, and degradation of the extracellular matrix.
The polarity and the function of epithelia as mechanical barriers
is ensured by the cell–cell contacts [181,182]. However, cell con-
tacts are far from being static structures: they undergo a
continuous remodelling to reshape tissue architecture during
development, growth and differentiation [179,180,183].

The organization of polarized epithelia in vertebrates is
maintained by a tripartite junctional complex, consisting of
TJs (zonula occludens), AJs (zonula adherens) and desmo-
somes (macula adherens) [184,185]. Desmosomes provide
resilience and stability to epithelia [185], TJs regulate the pas-
sage of ions, water and macromolecules in paracellular space
and establish cell polarity, and AJs are required in the very
first steps of cell-cell contact formation [184].

AJs are composed of nectin-based and cadherin-based adhe-
sions (for a review see [186,187]). The cadherin superfamily
consists of diverse proteins that share a well conserved trans-
membrane domain and an extracellular domain containing
five immunoglobulin-like repeats involved in direct interaction
with cadherins on neighbouring cells. The cadherin cytoplasmic
tail recruits β-catenin and p120-catenin [188]. It is through the
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interaction with β-catenin that E-cadherin binds α-catenin; this
interaction occurs only at cell contacts and mediates the
association of AJs with the actin cytoskeleton. E-cadherin and
β-catenin colocalize already in the Golgi complex and their bind-
ing is required for proper sorting of E-cadherin to AJs [189,190].
By contrast, the p120-catenin/E-cadherin association takes place
at the basolateral PM, where p120-catenin stabilizes E-cadherin
by preventing its endocytosis [191,192] (see also §4.2).

Multiple approaches have established in different systems
that mechanical forces applied to epithelial monolayers
reinforce cell–cell junctions through a positive feedback loop
[178]. This reinforcement of cell contacts is based on different
mechanisms involving E-cadherin and the actomyosin cytos-
keleton. Application of an external force promotes the ‘catch
bonds’ effect: this is the result of conformational changes in
the interacting proteins found in AJs and/or in the actomyosin
complex, which increase their affinity and the stability of the
interaction [193]. For instance, E-cadherin undergoes a confor-
mational change in its extracellular domain, thereby
reinforcing homophilic interactions. This applies also to α-cate-
nin/F-actin bonds: unfolded α-catenin stabilizes F-actin and
promotes the recruitment of proteins, such as vinculin, α-acti-
nin, formin 1 and afadin, to cell-cell junctions (reviewed in
[194]). Vinculin in turn stabilizes ‘open’ α-catenin and triggers
F-actin nucleation and actomyosin rearrangements, thus further
promoting AJ reinforcement under tension [195].

The actomyosin network not only rearranges upon
AJ-mediated signalling, but it is also intrinsicallymechanosen-
sitive to tension. Mechanical load is sensed by the non-muscle
myosin II (MyoII), which regulates the attachment of actin to
myosin heads, transforming the motor into an actin anchor
thereby maintaining tension [196]. Similarly, other actin-
binding proteins, such as formins and eplins, were shown to
be mechanosensitive and to respond to increased tension
through conformational changes, enhancing their actin
polymerization ability [197–199] and inducing the polarization
of actomyosin across the tissue [200].

Thus, a number of junctional components and actomyosin-
binding proteins can sense mechanical cues and respond
accordingly. AJs are, therefore, considered as mechanosensing
and mechanotransducing platforms [193,194], able to respond
to and regulate different processes involving mechanical
forces, including collective cell migration, cell-to-cell intercala-
tion and cell division [179,201]. Endocytosis is thought to be
regulated in response tomechanical stimuli and to play a critical
role in these different cellular processes (see, for instance, [202–
204]). In the next sections, wewill focus on the role of endocyto-
sis and the endocytic machinery in AJ remodelling and in the
maintenance of epithelia integrity during cell division.

4.2. The role of endocytosis in AJ remodelling
Endocytosis is one of the major mechanisms involved in the
assembly and remodelling of AJs [192,205,206]. Immature
junctions require continuous cycles of endocytosis and recy-
cling to mature and assemble into more stable junctional
structures. However, once mature, AJs are also continuously
remodelled by trafficking of the component proteins (reviewed
in [192,205,206]). Internalization assays in MDCK cell mono-
layers revealed that a small fraction of E-cadherin is
constantly internalized through CME and then recycled back
to AJs, and suggested the existence of a storage compartment
from where E-cadherin can be rapidly recycled back to the PM
[190,207–209]. Depending on the cell context, E-cadherin has
also been shown to be internalized via NCE, including dyna-
min-dependent mechanisms and micropinocytosis [210–212].
Despite the entry route, constitutive endocytosis seems to
target E-cadherin to a recycling fate, and not to lysosomal
degradation, to allow for the rapid availability of E-cadherin
necessary for junction remodelling (figure 5a).

A critical regulator of E-cadherin (and VE-cadherin, the
vascular endothelial specific cadherin protein) endocytosis
and turnover is p120-catenin [213–216]. Indeed, its depletion
causes E-cadherin/VE-cadherin internalization and degra-
dation through a dual mechanism involving both the
proteasome and the lysosome. Thus, p120 acts as a negative
regulator of E-cadherin endocytosis and degradation, stabi-
lizing AJs at the cell surface. The molecular mechanism of
action of p120 is still under investigation. Structural and bio-
chemical studies suggest that the mechanism might rely on
the competitive binding between p120 and endocytic
adaptors on the E-cadherin cytosolic tail [215,216].

Importantly, AJ endocytosis and turnover is finely regu-
lated by multiple signalling pathways and it is induced
when cells need to detach from the neighbouring cells, for
instance, during migration and epithelial-to-mesenchymal
transition (EMT), or when cells need to divide within the epi-
thelium (figure 5b) [217–219]. Indeed, HGF and other growth
factors, including FGF, EGF and VEGF, have been shown to
stimulate E-cadherin (or VE-cadherin) endocytosis, disassem-
bly of AJs and destabilization of cell-cell contacts, to allow cell
scattering (in the case of HGF, see for instance [220]),
migration (in the case of HGF and EGF [221,222]) or to
increase endothelial permeability (in the case of VEGF
[223,224]). In some cases, these stimuli cause E-cadherin relo-
calization and its PM depletion, without affecting its protein
level, at variance with TGFβ, one of the most potent and best
characterized inducers of EMT [225]. Acute stimulation of
epithelial cells with TGFβ promotes E-cadherin internaliz-
ation and lysosomal degradation [226,227], while prolonged
stimulation induces downregulation of E-cadherin mRNA
and activation of the EMT transcriptional program, including
induction of EMT markers (e.g. N-cadherin and vimentin), as
well as EMT transcription factors (e.g. zeb, snail and slug)
[225]. These events lead to the loss of AJs and epithelial prop-
erties, and the acquisition of mesenchymal-like phenotypes.
4.3. The role of endocytosis in the maintenance of
epithelial integrity during cell division

The maintenance of epithelial integrity requires the persistence
ofAJs throughout development [179,182]. Nevertheless, AJs are
continuously remodelled in the epithelium and this dynamic
remodelling is crucial during the division of epithelial cells
within a tissue. Indeed, the disengagement of established AJs
between mitotic and neighbouring cells at the cleavage
furrow, and the assembly of newAJs between the two daughter
cells, is crucial during epithelial cell division [179,228].

A dual mechanism controls the interaction between mito-
tic and neighbouring cells. On the one hand, the tensile force
exerted by the actomyosin contractile ring helps to overcome
the strength of interaction between mitotic and non-mitotic
cells; on the other, the turnover of AJs at the furrow regulates
cell-to-cell communication events during the different steps
of cell division [71].
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Figure 5. Role of endocytosis in AJ remodelling during epithelial cell division. Endocytosis regulates assembly and remodelling of AJs and, in particular, of
E-cadherin. (a) In the epithelial monolayer, a small fraction of E-cadherin is constantly internalized and recycled back to the PM. The major described pathway
of E-cadherin internalization is CME, but, depending on the cell type, it can be endocytosed also through NCE. Despite the entry route, endocytosis of E-cadherin in
basal condition targets it mainly to a recycling fate (when compared with degradation), to allow the rapid availability of E-cadherin necessary for junction remodel-
ling. In epithelial polarized cells, two type of adhesive structures are present, which connect the cell to the extracellular matrix: the cell matrix adhesions and the
mitosis focal adhesions. The cell matrix (CM) adhesion complexes represent the canonical focal adhesion complexes, which links the extracellular matrix to the actin
cytoskeleton through the function of myosin. The mitosis focal adhesions are devoid of myosin and therefore miss the connection to the actin cytoskeleton. These
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EE, early endosome; LE, late endosome. (b) Growth factors and mitogenic stimuli accelerate E-cadherin turnover from the PM, both in the mitotic cell as well as in
the neighbouring cells, leading to E-cadherin targeting for lysosomal degradation. This causes a decrease in E-cadherin PM levels and a rearrangement of AJs that
become ‘loose’, thus facilitating furrow ingression and cytokinesis. In the mitotic cells, only mitosis focal adhesions are retained, which provide the positional
memory to the cell after cell division. These mitosis-resistant adhesion complexes are also enriched in clathrin and endocytic adaptor proteins, thus resembling
the so-called clathrin-coated plaques, previously described at the basal surface of non-polarized cells.
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First, AJs were shown to be critical for the asymmetric
furrowing generally observed in epithelial cells. Indeed,
when cells divide parallel to the plane of the epithelium,
the so-called planar epithelial cell division, an unequal
ingression of the cleavage furrow along the apical-basal
axis is observed (e.g. in cultured MDCK cells or hepatocytes,



royalsocietypublishing.org/journal/rsob
Open

Biol.10:190314

12
mouse intestine, vertebrate neuroepithelium and some
Drosophila tissues, reviewed in [219]). This basal-to-apical
asymmetric ingression of the furrow causes the apical position-
ing of the actomyosin contractile ring and of the midbody
[10,179]. This is due to the association of the ring with AJs
that are apically localized and, indeed, upon depletion of
E-cadherin or β-catenin or in the presence of β-catenin
mutations, the furrow becomes symmetric [229–231].

Second, AJs are important mechanotransducers that sense
changes in contractility occurring during furrow ingression:
they are rapidly remodelled and transduce information to the
neighbouring cells [179,193]. The critical signal is the withdra-
wal of the membrane of the neighbouring cell, which causes a
local decrease in E-cadherin levels just before the formation of
the new membrane interface between the two daughter cells.
The dilution of E-cadherin seems to be due to a local junction
elongation determined by the pulling forces exerted by the con-
tractile ring [232], but also to increased E-cadherin endocytosis
and degradation at the interface (figure 5b). The reduction in
E-cadherin levels are then sensed by the neighbouring cells
and determines a self-organized actomyosin flow in the neigh-
bouring cells that produces forces needed to re-establish cell
polarityand shape. This then feedbacks on junction remodelling
[202,232,233]. These observations point to the crucial role of
endocytosis and trafficking in regulating AJ-dependent cell
mechanics during division [234] and, indeed, it is known that
E-Cadherin endocytosis remains active during mitosis both in
vertebrate cells [235] and in Drosophila [236].

4.4. Interaction of mitotic cells with the extracellular
matrix: unexpected link between mitotic focal
adhesions and endocytic plaques

Not only is the regulation of cell–cell junctions critical to pre-
serve tissue integrity during epithelial cell division, but also
the adhesion of mitotic cells to the extracellular matrix
plays a crucial role in this process [22,234,237].

As discussed in §2.2, canonical cell-matrix adhesion com-
plexes are disassembled during mitosis, while mitosis-specific
adhesion sites are maintained, providing positional memory
tomitotic cells and allowingmitotic-spindle orientation, daugh-
ter cell separation and re-spreading (figure 5a,b) [96,97]. These
structures have been described by different laboratories to be
present in several cellular contexts and to display distinct fea-
tures [19,96,98]. Despite some differences, mitosis-resistant
adhesion sites are all enriched in integrins (αvβ5-integrin
and/or β1-integrin), while they are devoid of classical adhesion
components (such as talin or zyxin) and are completely inde-
pendent of actin [19,98]. Mitotic focal adhesions present a
peculiar dynamic, growing isotropically and hence are station-
ary, at variance with canonical interphase adhesion sites. They
are thus stable structures with a slow turnover. Interestingly,
the ability of cells to enter mitosis depends on substrate rigidity,
as cells are unable to divide on soft substrates, and this corre-
lates well with the growth and maturation of these mitosis
focal adhesion sites [19,238] that are assembled only at an opti-
mum stiffness (dependent on the cell type [239]).

Interestingly, a class of these adhesion complexes termed
‘reticular adhesions’ (RAs) because of their net-like appearance
[98], are enriched in proteins involved in endocytosis and traf-
ficking, including clathrin, AP2, eps15, Numb and others
(figure 5b) [98,99]. These findings led to the intriguing
hypothesis that mitotic focal adhesion sites and clathrin-coated
plaques are indeed closely related structures [92]. They are
both very stablewith slow turnover from the PM and composed
mainly of integrins, while actin is not enriched and does not play
any role in their dynamics. Additionally, both structures are
regulated by the rigidity of the substrate, as they both grow
and mature as the stiffness increases. Although more work is
needed to clarify the relationship between clathrin-coated pla-
ques and mitosis focal adhesions, these findings suggest an
additional and novel function for the endocytic machinery in
regulating forces at the PM crucial for mitosis and cell division.
5. Conclusion
Over the last two decades, our knowledge of the mechanisms
governing mitotic progression has significantly increased.
High-resolution imaging coupled with mechanotransduction
assays have uncovered important connections between the
functions of the mitotic spindle and the actomyosin cortex, as
well as between actomyosin contractility, membrane dynamics
and cell contacts with the surrounding environments. In paral-
lel, the molecular identity of key players of mitotic processes
have been discovered in endogenous settings by genome edit-
ing protocols. Collectively, these experiments have highlighted
how the mitotic spindle, that has so far been regarded as the
fundamental apparatus orchestrating cell division from a
mechanistic standpoint, acts in a synergic manner with the
actin cytoskeleton and membrane lipids throughout the differ-
ent mitotic phases. A remarkable notion stemming from the
most recent investigations is that the understanding of the
intimate crosstalk between MTs, actin and lipids, relies on
measurements of morphological cellular changes in time at a
nanometer resolution. In this perspective, the recent advances
in super-resolution microscopy and lattice light sheet
microscopy, combined with the possibility of fluorescently tag-
ging individual cellular components to follow their dynamics,
holds great promise of being able to grasp the fine details of
the events underlying mitotic progression at a molecular scale.

Finally, the study of the molecular mechanisms of mitosis
has been carried out primarily in cultured cells in isolation.
We believe that a major direction of future investigations will
be understanding how these mechanisms adapt to sustain
mitosis in tissues, under physiological conditions or in response
to extracellular stimuli and challenges. In this scenario, it will be
fascinating to explore how mitotic processes are regulated in
stem cells to promote cell fate definition of the daughter cells
during morphogenesis and regeneration. We are confident
that the technological tools are now advanced enough to
begin tackling these fundamental questions.
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