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Abstract

Along-tract statistics analysis enables the extraction of quantitative diffusion metrics

along specific white matter fiber tracts. Besides quantitative metrics derived from

classical diffusion tensor imaging (DTI), such as fractional anisotropy and diffusivities,

new parameters reflecting the relative contribution of different diffusion compart-

ments in the tissue can be estimated through advanced diffusion MRI methods as

neurite orientation dispersion and density imaging (NODDI), leading to a more spe-

cific microstructural characterization. In this study, we extracted both DTI- and

NODDI-derived quantitative microstructural diffusion metrics along the most elo-

quent fiber tracts in 15 healthy subjects and in 22 patients with brain tumors. We

obtained a robust intraprotocol reference database of normative along-tract micro-

structural metrics, and their corresponding plots, from healthy fiber tracts. Each diffu-

sion metric of individual patient's fiber tract was then plotted and statistically

compared to the normative profile of the corresponding metric from the healthy fiber

tracts. NODDI-derived metrics appeared to account for the pathological
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microstructural changes of the peritumoral tissue more accurately than DTI-derived

ones. This approach may be useful for future studies that may compare healthy sub-

jects to patients diagnosed with other pathological conditions.

K E YWORD S

along-tract profile, brain tumors, diffusion tensor imaging, HARDI MR tractography, neurite

orientation dispersion and density imaging

1 | INTRODUCTION

Diffusion MR tractography depicts white matter (WM) bundles by

quantifying the displacement of water molecules within tissue over

time and correlating its directionality with the microstructural integrity

of myelinated fibers, both in normal and pathological conditions

(Catani & Thiebaut de Schotten, 2008; Jellison et al., 2004). Novel

approaches have been recently developed to measure and analyze dif-

fusion MRI (dMRI) data along WM tracts, quantifying within-tract sta-

tistical variability of classical diffusion tensor imaging (DTI)-derived

metrics such as mean, axial, and radial diffusivities (MD, AD, RD) and

fractional anisotropy (FA) (Colby et al., 2012; O'Donnell, Westin, &

Golby, 2009; Yeatman, Richie-Halford, Smith, Keshavan, &

Rokem, 2018). Along-tract analyses allow to precisely localize varia-

tions in diffusivity; conversely, the analysis of the average of metrics

over all voxels of the tract flattens subtle changes by considering the

bundle as a whole. DTI-derived metrics are currently used as surro-

gate measures of tissue microstructure, although they are sensitive to

WM deranging but inherently nonspecific. In fact, alterations in the

estimates derived from the tensor may depend from several possible

biological mechanisms underlying WM microstructural modifications,

including demyelination, reduction of axonal density, and increase of

neurite orientation dispersion (Adluru et al., 2014; Alexander, Dyrby,

Nilsson, & Zhang, 2017; Szczepankiewicz et al., 2015). More sophisti-

cated methods have been proposed to address DTI limitations and

disentangle the different microstructural contributions to FA. Among

them, the neurite orientation dispersion and density imaging (NODDI)

model enables a more detailed tissue characterization than the classi-

cal DTI metrics, and it is specific for brain tissue. NODDI was devel-

oped to quantify the microstructural complexity and orientation

dispersion of dendrites and axons in vivo, by estimating the relative

contribution of three different diffusion compartments to the total

diffusion signal in each voxel: intracellular volume, extracellular vol-

ume and free fluid volume (Zhang, Schneider, Wheeler-Kingshott, &

Alexander, 2012). The NODDI model has been deployed to examine

physiological alteration in neurites throughout aging (Nazeri

et al., 2015), and in neurological disorders (Rae et al., 2017; Winston

et al., 2014). A promising application of NODDI diffusion model is the

microstructural characterization of peritumoral tissue in patients with

brain malignancies, where conventional MRI and DTI are not capable

of discriminating tumor infiltration from vasogenic edema. Recent

studies demonstrated the feasibility of studying glioma patients with a

clinically compatible multicompartmental dMRI acquisitions and

subsequent NODDI analysis (Masjoodi, Hashemi, Oghabian, &

Sharifi, 2018; Wen et al., 2015) for the characterization of peritumoral

tissue, suggesting that NODDI can be employed to distinguish the

extraneurite compartment from edema. To our knowledge, NODDI-

derived quantitative microstructural diffusion metrics have never

been extracted along WM tracts, and the combination of tractography

and NODDI in depicting peritumoral modifications has not been

assessed yet.

Advanced methods for MR tractography incorporate acquisition

schemes allowing to perform both NODDI analysis and high angular res-

olution diffusion imaging (HARDI) tractography, such as q-ball

tractography (Berman et al., 2008) or constrained spherical

deconvolution (Tournier, Calamante, Gadian, & Connelly, 2004), which

were already proven applicable to brain tumor patients (Becker

et al., 2019; Caverzasi et al., 2015; Mormina et al., 2016; Sanvito

et al., 2020), and demonstrated higher accuracy than classic DTI-

tractography in the clinical setting (Bucci et al., 2013). Tractography is

extensively employed in the presurgical workup of patients with brain

tumors, to noninvasively identify the trajectories of eloquent WM tracts

located in the proximity or inside the lesions, that should be spared by

the surgeons to avoid serious impairment in patient's motor, cognitive,

or visual functions (Castellano, Cirillo, Bello, Riva, & Falini, 2017; Riva

et al., 2011). Fiber bundles can be incorporated into imaging to define

their relationship with the tumor, and may provide pathways for the

spread of disease, thus showing different diffusion characteristics when

pathologically infiltrated (Castellano et al., 2012; Caverzasi et al., 2015).

Given the clinical relevance of HARDI Tractography advanced

techniques, the increasing significance of quantitative along-tract ana-

lyses, and the limitations of DTI-derived metrics, the main aim of our

work was to combine the specificity of NODDI and the accuracy of

along-tract statistics. This approach was employed to explore the

microstructural WM tract variability in healthy volunteers, and the

tumor-induced WM abnormalities in patients with brain neoplasms. In

this study, for the first time, we propose a systematic quantification of

both DTI- and NODDI-derived diffusion metrics along the tract profile

of the most eloquent human WM bundles reconstructed by a q-ball

algorithm, bilaterally. The combination of along-tract statistics and the

NODDI model is hereby investigated, to assess whether along-tract

NODDI metrics reflect WM alterations more accurately than along-

tract DTI and localize them in specific WM tracts more precisely than

NODDI-derived maps alone. A reproducible database displaying

values from healthy subjects has been constructed and used as

intraprotocol reference, in order to perform statistical comparisons
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between controls and pathological groups, as well as single-subject

analyses.

2 | MATERIALS AND METHODS

2.1 | Subjects

Healthy controls' cohort included 15 healthy subjects (9 men, 6 women;

mean age, 38 years; range, 24–66 years), who had no history of neuro-

logical disorders, and no brain abnormalities on MRI scans. Patients'

cohort included 22 subjects with brain tumors (11 men, 11 women;

mean age, 47 years; range, 20–78 years), whose histopathological and

molecular data are summarized in Table 1. All subjects were enrolled in

the EDEN2020 project, were right-handed as determined by the Edin-

burgh Handedness Inventory test (Oldfield, 1971) and provided written

informed consent to have their data used for research purpose. All pro-

cedures were approved by the OSR Institutional Ethics Committee.

2.2 | MRI acquisition protocol

Datasets were acquired on a 3 T Ingenia CX scanner (Philips

Healthcare, Best, The Netherlands), using a 32-channel head coil.

NODDI protocol consisted in a two-shell acquisition based on axial

single-shot spin-echo echo planar imaging with an anterior–posterior

phase-encoding direction that included:

• HARDI acquisition: 60 diffusion-weighted volumes (diffusion gradi-

ents were applied along 60 noncollinear directions; b-value,

3,000 s/mm2).

• DTI acquisition: 35 diffusion-weighted volumes (diffusion gradients

were applied along 35 noncollinear directions; b-value,

711 s/mm2).

• 11 “B0” volumes without diffusion-weighting (b-value, 0 s/mm2),

whose acquisition was placed in between the aforementioned

diffusion-weighted volumes.

Finally, a “reverse B0” volume without diffusion-weighting was

acquired (b-value, 0 s/mm2), which shared with the NODDI sequence

all of the geometrical features but the phase-encoding direction, that

was posterior–anterior, in order to allow for the subsequent correc-

tion of susceptibility artifacts. Conventional MRI protocol included an

axial 3D fluid attenuated inversion recovery (3D-FLAIR) (TR/TE/TI

9,000/290/2,500 ms; flip angle, 40�; 204 slices; thickness, 0.7/

−0.5 mm gap; matrix, 204 × 197; SENSE reduction factor R = 2;

acquisition time 7 min 30 s), and a sagittal 3D T1-weighted sequence

(TR/TE 12/5.9 ms; flip angle, 8�; 236 slices; thickness, 0.8/0 mm gap;

matrix, 320 × 299; SENSE reduction factor R = 2; acquisition time

5 min 19 s) that was acquired after contrast agent administration in

patients, whereas contrast agent was not administered to the healthy

controls.

2.3 | NODDI preprocessing

All NODDI volumes were corrected for movement and eddy-current

distortions, using the “eddy” tool of FMRIB Software Library (FSL,

University of Oxford, https://fsl.fmrib.ox.ac.uk/fsl/). The reverse B0

volume was then used to correct the datasets for susceptibility-

induced artifacts, by applying FSL built-in “top-up” tool.

2.4 | Generation of NODDI, DTI, and HARDI maps

Once preprocessing was completed, the Watson-NODDI model was

fitted to the two-shell dMRI datasets (NODDI acquisition: 60 direc-

tions at b-value 3,000 s/mm2, 35 directions at b-value 711 s/mm2,

11 B0 volumes) using the MATLAB NODDI toolbox (http://mig.cs.ucl.

ac.uk/Tutorial.NODDImatlab) to extract the following NODDI maps

(Figure 1a): voxel fraction of Gaussian anisotropic diffusion (extracel-

lular volume fraction [FECV]), voxel fraction of non-Gaussian aniso-

tropic diffusion (intracellular volume fraction [FICV]), voxel fraction of

isotropic Gaussian diffusion (FISO), and orientation dispersion index

(ODI) maps. More in detail, the NODDI toolbox outputs the isotropic

and intraneurite compartments of each voxel, as well as the ODI map,

which quantifies angular variation of neurite orientation: the most

TABLE 1 Patients' sample characteristics

Variable Value

Age Mean age 47 years (range

20–78 years)

Sex

Male 11

Female 11

Side of tumor (left/right)

Left (L) 10

Right (R) 12

Histopathology

Gliomas 15 (6L/9R)a

Lower-grade glioma (WHO II-III) 8

IDH1/2 mutation and 1p19q

codeletion

1 (R)

IDH1/2 mutation and NO

1p19q codeletion

5 (1L/4R)

IDH1/2 wild type 2 (L)

Glioblastoma (WHO IV) 7

IDH1/2 mutation 1 (L)

IDH1/2 wild type 6 (2L/4R)

Gliomas (neuroradiological

diagnosis)

4 (L)

Metastasis 1 (R, lung cancer)

Meningiomas 2 (R)

aNumber of lesions for each side are reported in parentheses.
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coherently oriented fibers are the lowest is the ODI value. Then, the

output compartments were reparameterized in order to derive the

extraneurite compartment, as described in Caverzasi et al. (2016), so

that the sum of FICV, FECV, and FISO equaled 1 in each voxel.

NODDI compartment maps were also combined into a single 4D

RGB image (red for FECV, green for FICV, and blue for FISO, as in

Figure 1a) for visualization and quality-check purposes, as shown in

Caverzasi et al. (2016).

FSL built-in “dtifit” tool was separately applied to both DTI and

HARDI shells (DTI: 35 directions at b-value 711 s/mm2; HARDI:

60 directions at b-value 3,000 s/mm2) in order to estimate the diffu-

sion tensor, and to generate the following tensorial maps:

• for the DTI shell (Figure 1b): FA, MD, AD, and RD maps;

• for the HARDI shell (Figure 1c): FA, MD, AD, and RD maps.

2.5 | Tractography

For tractography, HARDI datasets (60 directions; b-value, 3,000 s/

mm2) were extracted from the NODDI datasets (once preprocessing

was completed). Diffusion imaging in Python (Dipy) software

(Garyfallidis & Brett, 2014; Soares, Marques, Alves, & Sousa, 2013)

was employed to perform tractography that was based on a q-ball

residual bootstrap algorithm (Berman et al., 2008; Caverzasi

F IGURE 1 Working pipeline. Representation of the steps necessary for the along-tract extraction of quantitative diffusion metrics.
(a) Computation of neurite orientation dispersion and density imaging (NODDI) maps: voxel fraction of Gaussian anisotropic diffusion
(extracellular volume fraction: FECV), voxel fraction of non-Gaussian anisotropic diffusion (intracellular: FICV), voxel fraction of isotropic Gaussian
diffusion (FISO), and orientation dispersion index (ODI) maps. The NODDI compartment maps were combined into a single 4-dimensional volume
visualized as RGB image (red for FECV, green for FICV, and blue for FISO). (b) Computation of diffusion tensor imaging (DTI) maps at b-value
711 s/mm2: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). (c) Computation of high angular
resolution diffusion imaging (HARDI) maps at b-value 3,000 s/mm2: FA, MD, AD, and RD. Color-coded FA maps display fibers with craniocaudal
direction in blue, fibers with anteroposterior direction in green, and fibers with mediolateral direction in red. (d) Tractography reconstructions
based on a q-ball residual bootstrap algorithm. Red = arcuate fascicle (AF), brown = frontal aslant tract (FAT), yellow = inferior fronto-occipital
fascicle (IFOF), orange = uncinate fascicle (UF), cyan = cingulum (CING), blue = corticospinal tract (CST), green = optic radiation (OR). (e) Fiber
reparameterization computed by the MATLAB Along-Tract Stats toolbox. Details of each tract are reported in Supplementary Figure 1. (f)
Skeleton of tract obtained by averaging the spatial coordinates of all streamline vertices and collapsing them in a single point. (g) Example of
diffusion metric plotted in line graph: FA along left AF
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et al., 2015; Caverzasi, Papinutto, Amirbekian, Berger, &

Henry, 2014).

Such algorithm was set as described by Caverzasi et al. (2015) in

order to fit the signal to spherical harmonics, to compute the orienta-

tion distribution functions, and to identify the primary and principal

fiber orientations. Streamline turning angle over a 60� threshold

(Caverzasi et al., 2015) and FA below a 0.10 threshold (Bello

et al., 2008) were used as stopping criteria; seed density was set at 73

per voxel. Trackvis software (http://trackvis.org) was employed to

draw and place single-plane seed- and target-regions of interest

(ROIs), in order to reconstruct the following WM fiber tracts bilaterally

(Figure 1d): arcuate fasciculi (AF), frontal aslant tracts (FAT), inferior

fronto-occipital fasciculi (IFOF), uncinate fasciculi (UF), cinguli (CING),

corticospinal tracts (CST), and optic radiations (OR). For each fascicle,

ROI placement was determined a priori using ROIs either adopted

from previous studies or based upon the anatomy of the fascicles as

known from other tractography or anatomical studies, as follows.

ROIs for AF, IFOF, and UF were placed as in Caverzasi et al. (2015);

ROIs for FAT were based on Sanvito et al. (2020); ROIs for CING were

based on the fascicle anatomy as known from Wakana, Jiang, Nagae-

Poetscher, van Zijl, and Mori (2004); seed-ROI and target-ROI for CST

were placed as in Yoo et al. (2019) and Castellano et al. (2012),

respectively; ROIs for OR were adapted from Chamberland

et al. (2017) and Chamberland, Tax, and Jones (2018) after lateral

geniculate nucleus was identified as shown in Kitajima et al. (2015). A

more detailed report of anatomical landmarks and references used for

ROI placement is displayed in Supplementary Table 1. Once tracking

and ROI-based targeting was completed, for each tract, results were

quality-checked using TrackVis, and all of the following were

excluded: obvious artifacts, streamlines directed toward the basal

ganglia, toward the contralateral hemisphere, and streamlines rep-

resenting fascicles other than the one of interest. For each pathologi-

cal case, an expert neuroradiologist selected the tract of interest as

the peritumoral fascicle passing nearest to the tumor that is usually

the most clinically relevant for the patient.

2.6 | Along-tract stats

Once tractography was performed and tracts were quality-checked, the

MATLAB toolbox along-tract-stats developed by Colby et al. (http://

www.github.com/johncolby/along-tract-stats: Colby et al., 2012) was

applied to each subject-specific tract, in order to obtain along-tract

NODDI-, HARDI- and DTI-metrics for each tract of each subject

(MATLAB2013). Since tractography does not imply any directional

information, raw streamlines were manually reoriented according to a

common origin, corresponding to the cranialmost portion of the tract

for FAT; the frontalmost portion of the tract for AF, IFOF, UF, CING,

and OR; the caudalmost portion of CST. Fiber origin was selected by an

expert neuroradiologist, both for healthy and pathological cases. A

lookup table of the 100 points selected along each tract shows how the

extremities were not considered by the algorithm, to guarantee better

intrasubject reproducibility and focus on the most consistent portion of

fiber tracts (Supplementary Figure 1). Streamlines were rep-

arameterized with cubic B-splines and automatically resampled by

the algorithm into 100 points (vertices) evenly distributed along

their lengths, as already recommended by Colby et al. (2012). Thus,

the n-vertex of each streamline could easily correspond to the set of

n-vertices belonging to other streamlines within the same tract

(Figure 1e). The toolbox also generated a “skeleton tract” obtained

by averaging the spatial coordinates of all streamline vertices within

one fiber tract (i.e., by “collapsing” the vertices, Figure 1f) that can

be useful for a synoptic inspection of the resampling. Each subject-

specific NODDI/HARDI/DTI map was then resampled, as well, in

order for the voxels to match the vertices of the streamlines, and

NODDI/HARDI/DTI metrics were extracted from the resampled

voxels. For each set of vertices along the tract, the toolbox outputs

included: (a) a mean scalar value representing the cross-sectional

mean of each NODDI/HARDI/DTI metric along the tract and (b) the

corresponding SD. Plotting the cross-sectional mean of each metric

allowed to visualize the profile of the metric of interest along each

tract, both in healthy controls and in patients (Figure 1g).

2.7 | Healthy controls' cohort: Internal reference
database of microstructural profiles of healthy fiber
tracts and statistical analyses

Microstructural metrics along each healthy subject's fiber tracts were

gathered in an internal reference database. From each tract-specific

cross-sectional means of the NODDI/HARDI/DTI metrics, we dis-

carded the values corresponding to the points number 1, 2, 99, and

100. This operation was considered necessary after realizing that

cross-sectional means assumed outlying values in the proximity of the

streamline endpoints. For each metric along each fiber tract, the

remaining 96 cross-sectional mean values obtained from all the

healthy subjects were plotted together in order to obtain metric-

specific “healthy microstructural profiles” of each fiber tract, showing

the mean, SD, and 95% confidence intervals of the cross-sectional

means from all the 15 healthy controls.

In order to assess the consistency of metrics across the 15 sub-

jects, the number of outlying values was computed from each metric

of every tract, through two independent statistical tests. Values were

considered outliers both according to the ROUT test (setting Q = 1%

as the maximum desired false discovery rate) and when higher than

Q3 + 1.5*IQR, or lower than Q1–1.5*IQR (IQR being the point-

specific interquartile range). Then, to describe the variability of our

internal reference database, the coefficient of variation (CV) of all

corresponding points was computed (% of SD/mean), and its median

and quartiles were obtained for each metric. Supplementary Table 2

summarizes the number of outliers and the CV distribution across the

dataset. Further descriptive statistics (i.e., minimum and maximum SD,

minimum and maximum confidence interval width) of the cross-

sectional means of NODDI/HARDI/DTI metrics along each fiber tract

were summarized in Table 2 and Supplementary Table 3 (see

Section 3).
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TABLE 2 Descriptive statistics of the normative reference NODDI-derived metrics from the healthy controls. For each of the 96 points along the
tracts, a cross-sectional mean from each subject was extracted, and SD and 95% CI width of the means from all subjects were calculated. This table
reports minimum and maximum values of SD and 95% CI width

Normative NODDI
metrics

Left side Right side

Min
SD

Max
SD

Min 95% CI
width

Max 95% CI
width

Min
SD

Max
SD

Min 95% CI
width

Max 95% CI
width

Arcuate

fascicle

FICV 0.0177 0.0340 0.0196 0.0376 0.0162 0.0407 0.0178 0.0452

FECV 0.0235 0.0356 0.0262 0.0394 0.0238 0.0536 0.0264 0.0594

FISO 0.0124 0.0279 0.0137 0.0308 0.0122 0.0270 0.0135 0.0300

ODI 0.0154 0.0420 0.0170 0.0466 0.0194 0.0400 0.0214 0.0442

Frontal aslant

tract

FICV 0.0227 0.0402 0.0252 0.0444 0.0215 0.0407 0.0238 0.0452

FECV 0.0277 0.0801 0.0306 0.0888 0.0231 0.0737 0.0256 0.0816

FISO 0.0104 0.0986 0.0116 0.1092 0.0141 0.0837 0.0156 0.0926

ODI 0.0212 0.0882 0.0234 0.0978 0.0163 0.0810 0.0180 0.0896

IFOF FICV 0.0198 0.0351 0.0220 0.0388 0.0177 0.0437 0.0196 0.0484

FECV 0.0278 0.0590 0.0308 0.0654 0.0244 0.0439 0.0270 0.0486

FISO 0.0193 0.0650 0.0213 0.0720 0.0156 0.0606 0.0173 0.0672

ODI 0.0143 0.0427 0.0158 0.0474 0.0083 0.0375 0.0092 0.0416

Uncinate

fascicle

FICV 0.0199 0.0526 0.0220 0.0582 0.0208 0.0570 0.0230 0.0632

FECV 0.0337 0.0873 0.0372 0.0966 0.0289 0.0692 0.0320 0.0766

FISO 0.0281 0.0790 0.0312 0.0876 0.0222 0.0612 0.0246 0.0678

ODI 0.0166 0.0453 0.0184 0.0500 0.0272 0.0632 0.0302 0.0702

Cingulum FICV 0.0264 0.0618 0.0292 0.0686 0.0309 0.0449 0.0342 0.0498

FECV 0.0263 0.0601 0.0290 0.0666 0.0396 0.0617 0.0438 0.0682

FISO 0.0136 0.0395 0.0150 0.0437 0.0196 0.0394 0.0217 0.0436

ODI 0.0215 0.0744 0.0238 0.0824 0.0265 0.0559 0.0294 0.0618

Corticospinal

tract

FICV 0.0197 0.0932 0.0218 0.1032 0.0190 0.1147 0.0210 0.1270

FECV 0.0204 0.0965 0.0226 0.1068 0.0201 0.0892 0.0222 0.0988

FISO 0.0102 0.1452 0.0112 0.1608 0.0092 0.1805 0.0102 0.2000

ODI 0.0137 0.0498 0.0152 0.0552 0.0131 0.0493 0.0144 0.0546

Optic

radiation

FICV 0.0253 0.0825 0.0280 0.0912 0.0269 0.0520 0.0298 0.0576

FECV 0.0290 0.0820 0.0322 0.0908 0.0273 0.0619 0.0302 0.0686

FISO 0.0211 0.1105 0.0233 0.1224 0.0168 0.0789 0.0186 0.0872

ODI 0.0195 0.0393 0.0216 0.0434 0.0183 0.0444 0.0202 0.0492

Abbreviations: FECV, fraction of extracellular volume; FICV, fraction of intracellular volume; FISO, fraction of intracellular volume; NODD, neurite orientation

dispersion and density imaging; ODI, orientation dispersion index.
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In addition, to evaluate the relationship between NODDI and

HARDI/DTI metrics, Spearman's rank correlation coefficient (r) was

calculated between FICV and FECV, FA and ODI, and FA

and FICV.

Finally, in order to assess whether each fiber tract showed

hemispheric asymmetry in the diffusion metrics, each value

along each fiber tract was compared to its contralateral counter-

parts, as follows. For each metric extracted from each point

along the tract, the cross-sectional means from the healthy con-

trols were compared to the contralateral cross-sectional means

(e.g., along-tract FICV of Point 3 of left arcuate fasciculus

vs. along-tract FICV of Point 3 of right arcuate fasciculus, etc.)

using Wilcoxon matched pairs signed rank tests, applied to each

one of the 96 points. A nonparametric test was picked because

not all of the cross-sectional mean sets showed a Gaussian dis-

tribution: some of the sets failed a D'Agostino and Pearson nor-

mality test. After Wilcoxon test, a Bonferroni correction was

applied, taking in consideration that 96 comparisons were per-

formed for each tract-specific diffusion metric. We considered

the metrics significantly asymmetric exclusively for the tract

points for which Wilcoxon test showed a p < .05 after

Bonferroni correction.

2.8 | Patients' cohort: Comparing patient-specific
fiber tract profile to the microstructural profiles of
healthy fiber tracts

Since brain neoplasms cause differently distributed microstructural

abnormalities, depending on the tumor site, affecting different por-

tions of different fiber tracts, patients' data were analyzed at the

single-subject level. Tractography fascicle models and DTI/NODDI

maps were coregistered to FLAIR and postcontrast T1 images for

visualization, quality-check, and evaluation of the relationship

between tracts and tumor. Fiber tracts whose trajectories were adja-

cent to the tumor location were selected, and, for each NODDI/

HARDI/DTI metric, the microstructural profiles obtained from the

central 96 cross-sectional mean values were compared to the

corresponding microstructural profiles of healthy fiber tracts and plot-

ted in line graphs. First, a qualitative comparison was performed by

visually evaluating the plots, aiming at unraveling how different met-

rics changed with respect to each other in pathological conditions,

and whether NODDI-derived metrics accounted for the pathological

microstructural changes of the peritumoral tissue more accurately

than DTI-derived ones. Then, a quantitative comparison was per-

formed by calculating the extent to which the patient's metrics

diverged from the controls' reference database of healthy microstruc-

tural profiles, aiming at evaluating whether this divergence is present

both in the peritumoral tract and in the contralateral one. The diver-

gence of the patient-specific profile from the healthy microstructural

profile was considered significant for every point of the profile in

which the patient's metric exceeded ±≥2 SDs from the mean of the

healthy controls.

3 | RESULTS

3.1 | Healthy controls' cohort: “Healthy
microstructural profiles” of diffusion metrics

In the healthy controls' cohort, dMRI-derived diffusion metrics were

extracted along the trajectory of all the seven reconstructed WM bun-

dles, bilaterally, and are organized in an internal reference dataset.

Results are visually reproducible among the 15 subjects and, statisti-

cally, a very low percentage of observations is identified as outliers

(0.35% of observations on average, ROUT test; 1.71% on average,

IQR test—refer to Supplementary Table 2 for details). DTI-derived

(b = 711 s/mm2) AD quantified along the fibers always displays higher

absolute values with respect to MD and RD, and its course is specular

to RD in all tracts. MD curves lay in the middle, as expected

(Supplementary Figure 2a). Notably, all HARDI-derived metrics show

patterns analogous to the DTI-derived ones, but lower absolute values

(Supplementary Figure 2b). Further descriptive statistics of DTI- and

HARDI-derived diffusion metrics extracted from 96 points (cross-

sectional means) along each tract in the population of healthy controls

are shown in Supplementary Table 2.

The computation of along-tract NODDI-derived metrics reliably

segregates signals arising from the intraneurite (FICV), extraneurite

(FECV), and free water (FISO) compartments for the entire trajectory

of the fibers. Along all healthy fascicles, free water is almost absent,

and the highest intracellular volume (FICV) is mirrored by the lowest

FECV (Figure 2), with a significant inverse correlation in all fascicles

(Supplementary Figure 3). In addition, our analysis allows to disentan-

gle the two principal FA determinants: ODI and FICV (Figure 3). In all

seven WM fascicles, FA profiles maintain a strong inverse correlation

to ODI (Spearman's R < −.96 and p-value <.0001 for each fascicle).

On the contrary, a weaker positive correlation is found between FA

and FICV. Statistical correlations between metrics are shown in Sup-

plementary Figures 4 and 5; descriptive statistics of novel NODDI-

derived diffusion metrics quantified along healthy WM fiber bundles

are displayed in Supplementary Table 2 and Table 2.

Finally, subtle hemispheric asymmetries have been highlighted by

the paired comparison applied to individual diffusion metrics of each

healthy tract. In particular, significant asymmetries between the left

and right brain side emerge in the FICV of AF (higher on the left:

points [5–24], [27]), FAT (higher on the left: points [68–90]), and OR

(higher on the left: points [21–24]), in the FECV of AF (higher on the

right: points [11–13]), FAT (higher on the right: points [72–85], [89],

[92], [95]), IFOF (higher on the right: points [34–35]), CST (higher on

the right: points [32–34]), and OR (higher on the right: points

[66–69]), in the free fluid of AF (higher on the right: points [27–35];

[69–70]), CST (higher on the right: points [66–72]), and OR (higher on

the left: points [54–56]) (Figure 4a), in the orientation dispersion of

AF (higher on the right: points [3–13]; [18–43]) and IFOF (higher on

the right: points [47–48]), and in the FA of AF (higher on the left:

points [4–43]) (Figure 4b).

AF is the only tract with consistent hemispheric asymmetries in

corresponding points across both DTI- and NODDI-metrics, with the
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left AF presenting higher FICV, higher FA, and lower FECV and ODI

with respect to its right counterpart. In fact, FICV–FECV–ODI–FA

asymmetries overlap in points [11–13]; FICV–ODI–FA asymmetries

overlap in points [5–13], [18–24], [27]; FISO-ODI-FA asymmetries

overlap in Points 27–35 (Figure 4a,b). While AF asymmetry is clearly

highlighted also by the DTI-metric analysis, FAT asymmetry is exclu-

sively illustrated by the NODDI-metric analysis. Indeed, left FAT

shows significantly higher FICV for a considerable portion of the tract

(points [68–90]), associated with a lower FECV (points [72–85], [89],

[92], [95]) (Figure 4a).

F IGURE 2 Normative reference of neurite orientation dispersion and density imaging (NODDI) metrics along all tracts: fraction of
intracellular volume (FICV), fraction of extracellular volume (FECV), fraction of intracellular volume (FISO), and orientation dispersion index (ODI).
Mean and 95% CI of the cross-sectional means from 15 healthy controls computed for each NODDI-derived metric are displayed in line graphs:
FICV (green), FECV (red), FISO (light blue), and ODI (yellow). Supplementary Figure 3 shows how FICV and FECV are negatively correlated
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3.2 | Patients' cohort: Detecting alterations along
peritumoral WM tracts

In the patients' cohort, WM tracts were consistently reconstructed

in all cases. Eloquent peritumoral fiber bundles were selected for

qualitative assessment and quantification of dMRI-derived diffu-

sion metrics. No significant differences with the healthy

microstructural profiles are found in tracts contralateral to the

tumors. Comparing pathological microstructural profiles of peri-

tumoral fascicles to the “healthy microstructural profiles” enables

to identify some recurrent patterns across patients. Such patterns

describe how FA (HARDI-derived, b = 3,000 s/mm2) and NODDI-

metrics mutually diverge from the reference profiles, as illustrated

in the following paragraphs with the aid of representative case

F IGURE 3 Normative reference of neurite orientation dispersion and density imaging (NODDI) metrics along all tracts: fraction of
intracellular volume (FICV), fractional anisotropy (FA), and orientation dispersion index (ODI). Mean and 95% CI of the cross-sectional means from
15 healthy controls computed for FICV (green), fractional anisotropy (FA) (blue), and ODI (yellow) are shown together in order to highlight the
reciprocal relationships between the curves. In all tracts, FA is inversely correlated to the ODI profile, and only partially influenced by FICV values.
Table 1 provides further statistics regarding the cross-sectional means, and Supplementary Figures 4 and 5 show details on metric correlations
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F IGURE 4 Comparison of neurite orientation dispersion and density imaging (NODDI) metrics between left and right hemispheres. Wilcoxon
matched pairs signed rank tests and subsequent Bonferroni corrections were applied in order to disclose differences in along-tract NODDI
metrics between the right and left hemispheres. Significant differences are highlighted in line graphs (* = p < .05 after Bonferroni correction).
(a) Fraction of intracellular volume (FICV) (green), fraction of extracellular volume (FECV) (red), fraction of intracellular volume (FISO) (light-blue)
and (b) orientation dispersion index (ODI) (yellow), and fractional anisotropy (FA) (blue)
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figures and plots. As an additional analysis, along-tract MD (both at

b = 711 s/mm2 and b = 3,000 s/mm2) was evaluated and compared

to NODDI-metrics.

3.2.1 | Pattern A: Decreased FICV, increased
FECV, normal FA

Pattern A is the most commonly observed pattern (12 out of 22 sub-

jects, 54.5%, Supplementary Figure 6a) and consists in a FICV

decrease associated with a FECV increase. Both metrics significantly

diverge from the reference profiles in the same points where FA is

not significantly affected, or is affected in a remarkably shorter seg-

ment of the tract.

In 9 cases out of 12 (Patients #3–#11 in Supplementary

Figure 6a; 75% of subjects presenting with Pattern A), FA is not signif-

icantly affected at any along-tract points of the peritumoral fiber

tracts, whereas along-tract FICV and FECV show significant diver-

gence from the healthy profiles.

In these cases, altered NODDI metrics represent the only nonin-

vasive evidence of peritumoral WM suffering and microstructural

modifications. Furthermore, along-tract FICV seems to be more sensi-

tive than along-tract FECV, reflecting a microstructural abnormality of

a longer segment of the fascicle.

In the remaining 3 cases out of 12 (Patients #1, #2, and #12 in

Supplementary Figure 6a; 25%), also along-tract FA is significantly

reduced in some points, but FICV and FECV show a significant alter-

ation for a remarkably longer segment of the tract.

As a representative case for Pattern A, we selected Patient #1

(Figure 5), a 60-year-old man with a right temporo-insular glioblas-

toma, presenting with recurrent left motor epileptic seizures and mild

dysarthria. Preoperative HARDI tractography shows an intact right

AF, but our quantitative analysis reveals microstructural alterations.

NODDI-derived diffusion metrics significantly deviate from the refer-

ence curves in many different points. The major alteration can be

identified in the frontal portion of the tract that is in close proximity

to the tumor. In fact, patient's FICV is lower than the “healthy micro-

structural profiles” in points [5–86], FECV is higher in points [15–52],

[67–86], ODI is lower in points [18–33], [36–41] and higher in points

[68–78]. Conversely, patient's FA fails to disclose most of those

tissue-specific modifications, resulting within 2 SD from the normal

range until Point 67 of the tract. Pathological FA significantly diverges

from the internal reference standard only in points [68–76] that corre-

spond to the AF peritrigonal portion.

3.2.2 | Pattern B: Decreased FICV, increased
FECV, paradoxically increased FA

Pattern B is observed where the peritumoral tract segments show

FICV decrease and FECV increase in the peritumoral tract segments,

associated with a paradoxical FA increase (8 out of 22 subjects,

36.4%, Supplementary Figure 6b).

In 3 cases out of 8 (Patients #13, #19, and #20 in Supplementary

Figure 6b, 37.5% of patients with Pattern B), the FA increase is

observed in tract portions also characterized by along-tract FICV and

F IGURE 4 (Continued)
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FECV anomalies. In one case out of eight (Patient #14 in Supplemen-

tary Figure 6b, 12.5%), the FA increase partially colocalizes with the

along-tract FICV and FECV anomalies. In the remaining four cases out

of eight (Patients #15–#18 in Supplementary Figure 6b, 50%) the par-

adoxical FA increase is observed in tract portions where along-tract

NODDI metrics are not altered, whereas FA is in range in the points

corresponding to FICV decrease and FECV increase.

In all these cases, FA increase perfectly colocalizes with ODI

decrease. This paradoxical finding may be explained by the strong

influence of ODI (significantly reduced in the corresponding points)

on FA, as commented in Section 4.

As a representative case for Pattern B, we selected Patient #13

(Figure 6), a 30-year-old patient diagnosed with insular and capsular

disease progression of a relapsing astrocytoma grade III in the right

temporal lobe. Presurgical HARDI imaging allowed the right AF recon-

struction; along-tract NODDI analysis showed that right AF FICV

diverges from “healthy microstructural profiles” in points [44–57],

[74–76], and its FECV deviates in points [33], [37–55], [75–85]. In the

exact portion of the right AF corresponding to the lowest FICV (points

[44–47]), the FA profile shows an unexpected significant increase

with respect to the reference values, extended also to points

[22–32], [36–47].

3.2.3 | Patterns C and D

The remaining two patients did not fall into the abovementioned pat-

terns, and showed peculiar abnormalities of diffusivity metrics, that

we named Patterns C and D for consistency, respectively.

Patient #21 (Patten C, Supplementary Figure 6c and representa-

tive case in Figure 7) was a 49-year-old patient presenting with sud-

den confusion and tonic–clonic seizures, due to a right parietal

metastatic brain tumor. Diffusion-derived quantitative metrics along

her right AF emphasize severe WM microstructural damage, with all

the metrics resulting significantly abnormal with respect to the

“healthy microstructural profiles.” Significantly decreased values can

be appreciated for FICV (points [24–98]), ODI (points [37–45]), and

FA (points [24–27], [41–98]) along a conspicuous portion of the tract

profile. A significantly increased FECV is measured from points

[23–98], while a circumscribed FISO upsurge is evident along points

F IGURE 5 Peritumoral arcuate fasciculus (AF) in glioblastoma. Along-tract diffusion metrics of a right AF in the proximity of a glioblastoma
(WHO IV). (a) 3DT1 preoperative imaging is shown in the top-left corner, 3DFLAIR in the top-right corner, neurite orientation dispersion and
density imaging (NODDI)-compartment RGB map in the bottom image. R = right side. (b) Mean ± SD of reference metrics derived from the
15 healthy controls are displayed on the left (color-coded). Patient's metrics are displayed on the right (color-coded), overlaid on the mean ± SD of
reference metrics (gray). Divergences of more than ±2 SD from “healthy microstructural profiles” are reported. Fraction of intracellular volume

(FICV): decreased in points [5–86]; fraction of extracellular volume (FECV): increased in points [15–52], [67–86]; fraction of intracellular volume
(FISO): no divergences; orientation dispersion index (ODI): decreased in points [18–33], [36–41], increased in points [68–78]; fractional
anisotropy (FA): decreased in points [68–76]. Along-tract mean diffusivity (MD), extracted both at b = 711 s/mm2 and b = 3,000 s/mm2, is
displayed in Supplementary Figure 7a
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[42–69]. In this case, both DTI- and NODDI-metrics revealed severe

WM alterations, but NODDI-metrics provided additional insight

regarding the reciprocal modifications of water compartments.

Finally, the case of patient #22 (Patten D, Supplementary

Figure 6d) was characterized solely by an FISO along-tract upsurge, in

the absence of any other abnormal values of the remaining along-tract

diffusivity metrics.

3.2.4 | Comparing NODDI-metrics and MD

An additional analysis (Supplementary Figure 7) was performed on

MD. Along-tract MD extracted from different shells (b = 711 s/mm2

and b = 3,000 s/mm2) exhibited the same profile shape, but different

values (higher at lower b-value). Unlike FA variously displaying

increased or decreased values, MD from both shells in the peritumoral

tracts was either in range or increased, therefore being supposedly

related to anomalies in the extracellular compartment. NODDI-

metrics were overall more sensitive than MD for detecting WM

peritumoral alterations. Indeed, approximately half of the patients

(12 out of 22, 54.5%) exhibited more extensive or more pronounced

alterations in NODDI-metrics than in MD, and for 6 of these patients

(#6, #8, #12, #16, #17, #22) the increased sensitivity of NODDI-

metrics was particularly evident (Supplementary Figure 7).

4 | DISCUSSION

In this study, diffusion metrics derived from the NODDI analysis have

been integrated with the along-tract statistics tool proposed by Colby

et al. (2012), and thoroughly quantified along seven different WM

fiber tracts, bilaterally, in 15 healthy subjects and 22 patients with

brain tumors. We built an internal standard reference database con-

taining NODDI- and DTI-metrics along WM tracts of healthy controls

and we used it to plot tract-specific metric-specific healthy micro-

structural profiles that can be compared with patient cases. The main

finding of the study is that along-tract NODDI metrics are more sensi-

tive in detecting anatomical asymmetries in the healthy brain and,

F IGURE 6 Peritumoral arcuate fasciculus (AF) in astrocytoma grade III. Along-tract diffusion metrics of a right AF in the proximity of an
astrocytoma (WHO III). (a) 3DT1 preoperative imaging is shown in the top-left corner, 3DFLAIR in the top-right corner, neurite orientation
dispersion and density imaging (NODDI)-compartment RGB map in the bottom image. R = right side; L = left side. (b) Mean ± SD of reference
metrics derived from the 15 healthy controls are displayed on the left (color-coded). Patient's metrics are displayed on the right (color-coded),
overlaid on the mean ± SD of reference metrics (gray). Divergences of more than ±2 SD from “healthy microstructural profiles” are reported.
Fraction of intracellular volume (FICV): decreased in points [44–57], [74–76]; fraction of extracellular volume (FECV): increased in Point

33, [37–55], [75–85]; fraction of intracellular volume (FISO): decreased in Point 33, [44–48]; orientation dispersion index (ODI): decreased in
Point 3, points [24–32], [36–47]; fractional anisotropy (FA): increased in points [22–32], [36–47]. Along-tract mean diffusivity (MD), extracted
both at b = 711 s/mm2 and b = 3,000 s/mm2, is displayed in Supplementary Figure 7b
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also, more sensitive than DTI-metrics in identifying subtle tract-

specific peritumoral microstructural changes.

Recently, along-tract computation of DTI-derived diffusion met-

rics has been achieved by means of different algorithms. O'Donnell

et al. implemented a tract-based morphometry method to detect sub-

tle hemispheric asymmetry of MD and FA along the CING and AF of

healthy subjects, to highlight that those quantitative measures spa-

tially vary along tract trajectories and that the mean of a scalar value

in the entire tract may be inadequate to describe minimal WM

changes (O'Donnell et al., 2009). Furthermore, with the aim of facili-

tating data sharing and dissemination of this powerful type of

tractometry analysis despite its computational complexity, Colby et al.

and Yeatman et al. provided two different publicly available tools to

conduct along-tract measurements, potentially customizable by future

users depending on their exigencies. Above all, Colby et al. demon-

strated their tool extensibility by performing between-group analyses

and comparing the FA along the inferior longitudinal fascicle and AF

of children with fetal alcohol spectrum disorders and controls (Colby

et al., 2012). Additionally, a step forward has been taken by Yeatman

et al. by sharing a normative distribution of DTI-derived MD, RD, and

FA along different WM bundles in healthy brains, so that individual's

tract profiles of patients with multiple sclerosis (MS) could be com-

pared to the healthy tract profiles in a plot (Yeatman et al., 2018). Fur-

ther studies performing along-tract analysis of DTI metrics were

published by Talozzi et al. (2018) and Chen, Zhang, Yushkevich, Liu,

and Beaulieu (2016).

Being interested in analyzing pathological metrics extracted from

peritumoral WM fibers, we aimed at integrating DTI-metrics with the

advanced NODDI-metrics that can be more accurate in unraveling

restrained microstructural tissue derangements. Thus, we

implemented a pipeline to extract both DTI- and NODDI-derived

quantitative diffusion metrics along WM tracts, and we applied it both

to healthy subjects and patients with brain tumors.

4.1 | Healthy controls' cohort

The reproducibility and reliability of our working pipeline was

assessed by extracting along healthy fascicles classical DTI metrics

such as FA, AD, MD, and RD, and confirming that their profiles follow

F IGURE 7 Peritumoral arcuate fasciculus (AF) in brain metastasis. Along-tract diffusion metrics of a right AF in the proximity of a brain
metastasis from lung cancer. (a) 3DT1 preoperative imaging is shown in the top-left corner, 3DFLAIR in the top-right corner, neurite orientation
dispersion and density imaging (NODDI)-compartment RGB map in the bottom image. R = right side. (b) Mean ± SD of reference metrics derived
from the 15 healthy controls are displayed on the left (color-coded). Patient's metrics are displayed on the right (color-coded), overlaid on the
mean ± SD of reference metrics (gray). Divergences of more than ±2 SD from “healthy microstructural profiles” are reported. Fraction of
intracellular volume (FICV): decreased in points [24–98]; fraction of extracellular volume (FECV): increased in points [23–98]; fraction of
intracellular volume (FISO): increased in points [42–69]; orientation dispersion index (ODI): decreased in points [37–45]; fractional anisotropy
(FA): decreased in points [24–27], [41–98]. Along-tract mean diffusivity (MD), extracted both at b = 711 s/mm2 and b = 3,000 s/mm2, is displayed
in Supplementary Figure 7c

14 PIERI ET AL.



the same pattern as the corresponding DTI-curves previously publi-

shed. Our along-tract DTI metrics analyses appeared consistent and

reliable, capable of depicting the waved profile of diffusion metrics

instead of averaging all voxels of WM bundles; we thus moved to

measure NODDI metrics along all healthy tracts. The added value of

NODDI parameters over DTI-derived metrics is known to rely on a

more regionally specific characterization of tissue microstructure, by

revealing WM composition more reliably than FA or MD (Reddy &

Rathi, 2016; Timmers et al., 2016). A normative dataset of NODDI

inherently microscopic measures along healthy fiber tracts is a power-

ful tool to establish a normative range of values where WM can be

considered as nonpathological. In this work, for the first time, we pro-

vide plots representing the signature “healthy microstructural profiles”

of NODDI metrics extracted along the principal WM fiber tracts,

together with tables that summarize the corresponding descriptive

statistics.

Moreover, the point-by-point quantification of the contribution

of distinct diffusion compartments to the total diffusion signal allows

to appreciate hemispheric asymmetries.

AF shows significant asymmetry of both DTI- and NODDI-met-

rics, more remarkable in the frontal portion of the tract. In particular,

left AF shows higher FA, higher FICV, and lower orientation disper-

sion than right AF. Conversely, FAT shows significant asymmetry

exclusively of NODDI-metrics (FICV higher on the left, in particular),

whereas the DTI-analysis does not highlight any significant asymme-

try. Interestingly, such asymmetry is specific for the caudalmost por-

tion of the tract (i.e., the inferior frontal branch). This result advocates

for a higher sensitivity of NODDI-metrics that are capable of

detecting more subtle microstructural variants when compared to

DTI-metrics. These observations regarding the asymmetry of FAT and

AF are consistent with them having a major role in the dorsal

phonological-articulatory stream of language (Friederici, 2012;

Hickok & Poeppel, 2007) that is known to be strongly left-hemisphere

dominant (Hickok & Poeppel, 2007). Indeed, such metric asymmetry

can be interpreted as a higher FICV and fiber coherence of these dor-

sal stream language tracts in the left-hemisphere. On the other hand,

metric asymmetry displayed by the other tracts are evident only for

few metrics and for very limited tract portions, consistently with the

notion that the neural networks they belong to motor system, visual

system, and ventral semantic system of language are less hemisphere

specific.

Finally, we further demonstrated that FA values in the WM, and

more specifically along tracts, strongly depends on ODI, whereas is

influenced by FICV (and FECV) more weakly. This finding is consistent

with previous studies (Zhang et al., 2012) and suggests that FICV and

FECV variations could reflect WM abnormalities in pathological condi-

tions without necessarily co-localizing with FA alterations. Besides

providing information about healthy microstructural profiles and their

asymmetry, this normative database served as an intrastudy reference

for comparison to pathological cases, representing an example of a

new method for the detection of previously indiscernible WM modifi-

cations in a broad spectrum of neurological and psychiatric diseases in

adult subjects.

4.2 | Patients' cohort

Since group-analysis in patients was not possible due to differently

distributed tissue abnormalities, we compared data extracted from

patients with brain tumors, at the single-subject level, to the healthy

cohort. First, the divergence between NODDI curves of pathological

metrics and their corresponding reference standard was clearly evi-

dent, both at a qualitative visual assessment and after point-by-point

statistical analyses. Relevantly, changes in the microstructural met-

rics are always confined to a specific peritumoral WM area. Thus,

these data remark that the quantitative assessment of diffusion-

derived metrics in the peritumoral WM is pivotal to more specifically

define tumor extension, infiltration, and biological behavior

(Castellano & Falini, 2016). Since actual tumor margins can extend

far beyond the ones detected by conventional MRI, tumor dimen-

sions may be underestimated during presurgical planning, leading to

incomplete resection and subsequent worse prognosis for the

patient. Convincing evidence showed that changes in classical DTI

metrics can pinpoint minor WM derangements caused by occult can-

cer infiltration, although the correlation between those alterations

and tissue microstructural properties is flawed, since DTI-derived

quantitative parameters are influenced by a multiplicity of tissue-

specific biological properties (Cortez-Conradis et al., 2013; Stern-

berg, Lipton, & Burns, 2014). The more accurate along-tract spatial

definition of WM alterations, the more efficient patient-tailored

management can be achieved. In addition, whereas NODDI-analysis

itself can provide information about peritumoral WM, along-tract

NODDI-analyses can add relevant pieces of information regarding

which WM fiber tract is affected by the microstructural abnormali-

ties, and to what extent (compared to the healthy controls' reference

database).

Another important point emerging from our results regards the

interpretation of FA along pathological tracts, sometimes aspecific or

even misleading.

Despite being the diffusion metric most commonly studied to

define microstructural tissue alterations, in fact, FA may not specifi-

cally reflect real biological processes (Alexander et al., 2017). In partic-

ular, decreased FA values may reflect reduced myelination, reduced

axonal density, increased neurite dispersion, or even just a DTI meth-

odological failure in correctly quantifying the crossing fibers. The mac-

roscopic tissue anisotropy described by FA has two main contributing

factors at the microscopic level, that could be disentangled by the

NODDI analysis, but not by the classical DTI: microscopic anisotropy

reflected by FICV (positively correlated to FA), and orientation coher-

ence opposite to ODI (negatively correlated to FA). Our data underline

that variations in FA values in peritumoral WM mostly depend on

how FICV and ODI are affected by the tumor. Given the opposite

influence of these two metrics on FA, when they vary in the same

direction FA can result unaffected, as seen in the Pattern A, the most

common pattern in our cohort (54.5% of patients). Although a typical

FA decrease has been described in the nonenhancing peritumoral

regions as more associated with subsequent tumor recurrence in glio-

blastoma (Bette et al., 2017), our analyses disclose that also areas with
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normal FA may hide pathological tissue, as identified by the NODDI

metrics. Moreover, when ODI is greatly reduced, even a paradoxical

increase of FA can arise in pathological WM, even in the presence of

FICV and FECV alterations, as appreciable in the Pattern B. Surpris-

ingly, this scenario may be rather common (36.4% of cases in our

cohort). This phenomenon has already been described by voxel-based

analyses in cases of compressed fiber tracts, for example due to

severe hydrocephalus (Radovnický, Adámek, Derner, & Sameš, 2016),

and can be extremely misleading in diffusion data analysis, since high

FA values are commonly interpreted as markers of WM health.

Only two patients showed different patterns (Patterns C and D),

and even in such cases NODDI along-tract metrics provided additional

information with respect to DTI metrics, detecting a localized FISO

increase.

The added value of along-tract NODDI-metrics was clear also

when compared to MD, as MD was less sensitive than NODDI-

metrics overall, and showed a generalized tendency to increase

aspecifically, regardless of the infiltrative or vasogenic origin of the

edema.

The novelty of this work lies in precisely localizing the FA alter-

ation along the tract, and in combining this information with the more

comprehensive NODDI-derived ones. Unraveling the reciprocal rela-

tions of microstructural diffusion metrics across corresponding tract

sections may be pivotal to provide possible reasons for apparently

ambiguous results. Finally, the meaning of the specific alterations in

NODDI metrics in peritumoral WM still remains open to speculations.

In fact, while the increase of extracellular volume was frequently

found in gliomas and may be suggestive of peritumoral tissue infiltra-

tion from cancer cells (Patterns A and B), the circumscribed increase of

free fluid is only detected in few patients and may be interpreted as

indicative of a vasogenic edema component, as it is particularly evi-

dent in the single case of brain metastasis; this hypothesis is

supported by recent findings from other studies (Kadota et al., 2020).

Nevertheless, histological validation of these hypotheses is

necessary to correctly interpret NODDI-metrics alterations and

translate quantitative microstructural assessments into “virtual

biopsies.”

4.3 | Future perspectives and limitations

This study has some limitations. First, due to the relatively low num-

ber of healthy subjects enrolled, the NODDI-metrics healthy micro-

structural profiles and their corresponding values should be

considered an intrastudy reference rather than a standard reference

database for future studies. In addition, age- and gender-related vari-

ability of diffusion metrics were not accounted for, both when build-

ing the reference database and when performing patients' analysis, as

the unique internal-reference was compared to every patient regard-

less of the effect of such variability. Furthermore, the patient-to-

controls comparison relies on the correspondence between the along-

tract vertices computed from the streamlines, and “damaged” fascicle

models in tumor patients may affect the sampling of the vertices at

the tract extremities, ultimately resulting in a shift between vertices in

patients and controls. Nevertheless, we secured that this effect was

minimal by selecting peritumoral tracts that were not excessively

“damaged” by the tumor and by checking that the toolbox excluded

the extremities of the fascicle models from the sampling (see Supple-

mentary Figure 1). An additional limitation is that histopathological

data regarding tumor infiltration along tracts were not available for

our cohort; hence, only a better sensitivity of NODDI metrics in

detecting along tract microstructural alterations could be proven, and

potential NODDI false positive abnormal values could not be

detected.

The methodology of along-tract comparison of NODDI metrics

validated in this study can serve as a model for future researches will-

ing to assess along-tract pathological modifications induced by other

neurological or psychiatric conditions.

To our knowledge, previous along-tract studies on WM neu-

rodegeneration in Amyotrophic Lateral Sclerosis (ALS) (Sarica

et al., 2017) and MS (Yeatman et al., 2018) only evaluated “classic”

DTI metrics, possibly underestimating biologically specific alterations.

At the same time, studies exploiting the NODDI model to detect WM

anomalies in ALS (Broad et al., 2019), Parkinson's disease (Andica

et al., 2018), unilateral cerebral palsy (Nemanich, Mueller, &

Gillick, 2019), and stroke (Mastropietro et al., 2019) variously adopted

a voxel-wise or ROI-based approach to compute the mean of NODDI

metrics, possibly underestimating regionally specific alterations. Pre-

liminary results in stroke patients demonstrated the superior specific-

ity of NODDI in detecting subtle WM alterations when compared to

FA (Adluru et al., 2014), while studies conducted on MS patients

suggested a better detection of spinal cord lesions by means of

NODDI rather than DTI-based analysis (By, Xu, Box, Bagnato, &

Smith, 2017).

Therefore, applying the along-tract approach to extract the

NODDI-metrics could provide information about tract-specific subtle

anomalies that better reflects the microstructural status of WM tracts

in such neurodegenerative conditions, potentially leading to the

detection of tract-specific pathological patterns at an earlier stage of

diseases. Future studies following this approach could also improve

the analysis by employing the Bingham-NODDI model (Tariq,

Schneider, Alexander, Gandini Wheeler-Kingshott, & Zhang, 2016), in

order to estimate anisotropic orientation dispersion that Watson-

NODDI cannot evaluate.

Furthermore, since the NODDI model was originally

implemented to describe healthy cerebral tissue (Zhang et al., 2012),

its application to define tumor-induced WM alterations may lead to

biased parameter estimates (Nilsson, Englund, Szczepankiewicz, van

Westen, & Sundgren, 2018). However, it is important to highlight

that our analyses did not focus on characterizing the tumor core,

but rather on the anomalies of NODDI-derived metrics in the peri-

tumoral WM. Since the pre-operative characterization of WM

around the tumoral core still remains a clinical challenge, our study

proposes a feasible approach that may unravel its microstructural

composition. In this regard, further possible refinements may include

the along-tract estimation of additional quantitative indices,
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including VERDICT parameters (vascular, extracellular, and restricted

diffusion for cytometry in tumors). The VERDICT model fits MRI

data to complex biophysical models in order to estimate tumor-

specific microstructural features including cell radius and vasculariza-

tion (Panagiotaki et al., 2014). VERDICT-based along-tract analyses,

in particular, may help the characterization of tumor tissue infiltrat-

ing the WM tracts and may lead to a more biologically specific

analysis.

5 | CONCLUSION

The present work proposes the novel exploitation of along-tract

approach to extract NODDI-derived diffusion metrics along the pro-

file of WM tracts. The precise quantification of microstructural met-

rics along relevant fiber tracts of healthy controls and patients with

brain tumors enhances the sensitivity of quantitative tractography

both at a group and at a subject-specific level. By incorporating the

NODDI analysis into the structural and clinically relevant framework

of the tract anatomy, this study highlights the higher accuracy of the

FICV and ODI metrics in characterizing WM microstructural features

with respect to “classic” DTI-derived metrics, such as FA. The refer-

ence database of healthy controls' NODDI-metrics, created as an

internal standard for our analyses, is potentially useful to identify sub-

tle deviations of pathological tract microstructural profiles from the

healthy ones. Accordingly, our evaluations of patients with brain

tumors allow to recognize pathological tract profiles, possibly provid-

ing quantitative signatures of the microstructural changes of

peritumoral WM.
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