
       

 

 

PhD degree in Systems Medicine 

Curriculum in Human Genetics 

European School of Molecular Medicine (SEMM), 

University of Milan and University of Naples “Federico II” 

Settore disciplinare: BIO/12 

 

The genetic overlap between neuropsychiatric disorders: a 

meta-analysis of next generation sequencing data 

 

Iman Sadeghi Dehcheshmeh 

Ceinge, Naples 

Matricola: R11744 

 

Supervisor: Prof. Lucio Pastore, Ceinge, Napoli 

Added Supervisor: Prof. Valeria D’Argenio, Ceinge, Napoli 

 

Internal Supervisor: Prof. Francesco Salvatore, Ceinge, Napoli 

External Supervisor: Prof. Roderic Guigo’, CRG, Barcellona 

 

 

Anno accademico 2019-2020  



ii 

This Predoctoral Research has been performed with the support from the 

following scientific centers:  

• School of European Molecular Medicine (SEMM) 

 

• University of Milan 

• University of Naples Federico II  

• CEINGE - Biotecnologie Avanzate, Naples, Italy 

 

and:  

Centre de regulacio genomica (Centre for genomic regulation), Barcelona, 

Spain.   



iii 

 

 

 

 

 

“The world is meaningless and it’s residents are nothing, you’re nothing do 
not get engaged in pointless things 

Do you know what is laid before you after life, love and affection and the 
rest is nothing” 

- Rumi  



iv 

Acknowledgements 

I would like to thank first Dr. Natalia Vilor-Tejedor who has openly accepted to directly 

supervise my project. Natalia, as an astonishing person, both scientifically and personally, deeply 

tried to help, guide and teach me through my PhD path. I learned from her how to approach a 

scientific issue, collaborate with others, and be positive about what I am doing. Thanks a lot for 

supporting, cheering, and giving me confidence to accomplish the projects. Without you I 

wouldn’t be able to finish anything during last years. Muchas gracias Natalia!!! 

I thank Roderic Guigo, my excellent PI. Roderic, I learned from you how to be on the edge of 

science with a brilliant scientific record and, on the other hand, be humble and friend to the people 

you work with. The way you look at the issues always surprises me. I need to thank you to 

accepting me in your lab, trusting me, and letting me learn from you and your people. We always 

say you are a good boss and at the same time friendly. Gracies Roderic! 

I am grateful to all the people in the Roderic’s lab, at CRG, Barcelona, who have helped me 

from the beginning of my project when I joined the lab. The amazing people including Emilio 

Palumbo, Manuel Munoz, Valentin Wucher, and the rest who have patiently tried to help and teach 

me.  

I also thank Valeria D’Argenio from the lab in CEINGE, Napoli, Italy. Vale, you Are amazing. 

You are a person with a kind heart, patient and flexible who has been always willing to help me. 

You introduced me to the lab and provided a nice and friendly environment so I could learn from 

the people in the lab. Apart from this, you tried to help me with setting up in Naples, Italy so that 

as a foreigner I couldn’t feel a stranger. Grazie mille Vale! 



v 

I need to also thank all the people in the D’Argenio lab, CEINGE, Naples, Italy. You have 

always tried to provie me a friendly environment and accepted me as one of them. You are warm, 

friendly, helpful, and trustworthy people who taught me how to enjoy my life. I appreciate 

whenever I was unhappy you tried to cheer me up. Grazie ragazzi, Maria, Marcella, Maria Valeria, 

Flavio and Serena.  

 

 

 

 

 

 

 

 

 

This work is dedicated to two brothers who despite suffering most of 

their life due to harsh conditions, they never gave up fighting back to 

achieve the bests they want. -- I & A -- 

 

  



vi 

Summary 

Neurodegenerative and neuropsychiatric disorders (NDD-NPDs) are multifactorial, polygenic 

and complex behavioral phenotypes caused by brain abnormalities. Most genetic studies have 

focused on understanding the genetic component of specific brain diseases. Several brain diseases 

also show similar clinical and pathological symptoms. In recen years, multiple studies have used 

next generation sequencing (NGS) technologies such as RNA sequencing (RNA-Seq) to 

investigate molecular signature of brain diseases. However, many studies have only focused on a 

particular disease and limited brain regions. By using the data from a broad range of cortical 

regions from multiple brain diseases, we will be able to dig deeper into the molecular basis of 

neurological diseases. 

The main aim of this thesis was to examine the transcriptome-wide characterization of cortical 

brain regions across neurological disorders. We focused our research efforts on highlighting cross-

disease shared molecular signatures, and exploring co-expression networks and cell-type-specific 

patterns for NDD-NPDs. By processing and analyzing RNA-Seq data using a set of computational 

tools and statistical tests, we performed transcriptomic profiling of brain samples from eight 

groups of patients with Alzheimer’s disease (AD), Parkinson’s disease (PD), Progressive 

Supranuclear Palsy (PSP), Pathological Aging (PA), Autism Spectrum Disorder (ASD), 

Schizophrenia (SZ), Major Depressive Disorder (MDD), and Bipolar Disorder (BP)-in 

comparison with 2,078 brain samples from matched control subjects. 

In this thesis, we provide a transcriptomic framework to understand the molecular architecture of 

NPDs and NDDs through their shared- and specific gene expression in the brain. 
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Preface 

Neuroscience, as the field of studying central nervous system and brain functions has been 

developing in recent years. A major focus of neuroscience is understanding the mechanisms 

underlying the pathobiology of brain diseases. The mechanism of many brain diseases is very 

complex involving both genetic and environmental factors. With the advent of recent advance 

technologies such as Next Generation Sequencing (NGS), many studies have tried to exploit them 

to explore the molecular basis of brain diseases. We hypothesized that there are potential 

overlapping molecular signatures across major brain diseases including NDDs and NPDs.  

In this work, we contributed to 1) understanding the specific genes and mechanisms involved 

in the pathology of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s 

disease, Progressive? Supranuclear Palsy and pre-clinical Alzheimer’s disease, as well as 

psychiatric disorders including Schizophrenia, Autism Spectrum disorder, Major Depression 

disorder and Bipolar disorder, 2) gaining knowledge about shared molecular signatures across 

neurodegenerative and psychiatric disorders, 3) understanding the role of cortical regions in the 

pathobiology of diseaess, 4) unraveling cell-type-specific transcriptional changes across diseases, 

5) understanding the relationship of the brain diseases at the molecular level, 6) offering 

suggestions and recommendations for the future research on the molecular basis of these diseases. 

Our research showed that, at the molecular level, some neurodegenerative diseases and psychiatric 

disorders have similarities. Moreover, the results presented in this work revealed that some cortical 

regions are involved in some specific diseases while others are more broadly changed across 

diseases. These findings could pave the way for future studies to understand the basis of these 

complex diseases and find a more efficient treatment.  
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Chapter1. Introduction  
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he human brain is the central organ of the nervous system and makes up the 

central nervous system (CNS) along with the spinal cord. The brain monitors 

major functions throughout the body by processing, integrating, and 

coordinating the information sent from the organs, and making decisions as to the instructions 

delivered to the organs (Mesulam and -marsel Mesulam, 2002) (Figure 1-1). The brain has three 

major parts including cerebrum, cerebellum, and brainstem, of these the cerebrum is the largest 

part, which can be divided into two symmetrical hemispheres. The outer layer of grey matter, 

covering the core of the white matter is called the cerebral cortex. The cortex is divided into the 

neocortex and the allocortex (Mai, Majtanik and Paxinos, 2015). The neocortex consists of six 

neuronal layers and the allocortex has nearly four. Each one of the hemispheres splits into four 

major lobes including the frontal, temporal, parietal, and occipital lobes (Marshall and Morriss-

Kay, 2004). 

The cerebrum is connected by the brainstem to the spinal cord (Ghosh, 2007). The cerebral 

cortex is positioned on the top of multiple structures, such as the thalamus, the epithalamus, the 

 T 

https://paperpile.com/c/gvDCIq/jMIy
https://paperpile.com/c/gvDCIq/D9c7
https://paperpile.com/c/gvDCIq/ppLB
https://paperpile.com/c/gvDCIq/ppLB
https://paperpile.com/c/gvDCIq/KJXc
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pineal gland, the hypothalamus, the pituitary gland, and the subthalamus; the limbic structures, 

such as the amygdala and the hippocampus; the claustrum, the various nuclei of the basal ganglia; 

the basal forebrain structures, and the three circumventricular organs (Ghosh, 2007). Here, we 

are going to describe briefly the anatomy and function of major brain regions. These bigger 

regions or lobes are usually divided to subregions that are attributed to different functions of the 

CNS. 

 

1-1- Major brain lobes and their function 

1-1-1- Frontal lobe 

The frontal lobe is positioned over and in front of the temporal lobe, at the front-head of the cerebral 

hemispheres and located in front of the parietal lobe (Figure 1-1). The precentral gyrus, shaping 

the posterior margin of the frontal lobe, harbors the primary motor cortex, which monitors 

voluntary movements of specific body organs (Stuss and Knight, 2013). The frontal lobe comprises 

most of the dopaminergic neurons in the cerebral cortex. The dopaminergic neurons are related to 

reward, attention, focus, working memory tasks, planning, and motivation. The frontal lobe 

contains the prefrontal cortex (PFC) positioned at the most anterior edge of the lobe (Stuss, 2011). 

This part of the lobe is vital in working memory and executive monitoring by facilitating goal 

maintenance and complex tasks organization (de Souza et al., 2014). 

 

   

https://paperpile.com/c/gvDCIq/KJXc
https://paperpile.com/c/gvDCIq/MPjt
https://paperpile.com/c/gvDCIq/WIid
https://paperpile.com/c/gvDCIq/61wh
https://paperpile.com/c/gvDCIq/61wh
https://paperpile.com/c/gvDCIq/61wh
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Figure 1-1 | A schematic presentation of brain regions and related functions. (Image adopted from 

Dana foundation URL)  

https://www.dana.org/article/neuroanatomy-the-basics/
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The PFC splits into orbital, medial, and lateral PFC. The lateral PFC has two subregions 

including the dorsolateral and ventrolateral PFC. The dorsolateral PFC (dlPFC) is above the 

ventrolateral PFC (vlPFC) and is primarily involved in the executive control and guidance of 

memories that are regained from episodic memory (Fuster, 2015). The vlPFC is critical for the 

organization of meaningful stimuli that one experiences during lifetime, including names, 

images, and letters (Badre and Wagner, 2007). PFC impairment can lead to long-term and short-

term memory damages, and changes in individuals behaviors and their planning and organization 

abilities (Mah, Arnold and Grafman, 2004).Many studies have shown that the impairment of PFC 

is associated with multiple diseases such as Alzheimer’s (Sampath et al. 2017; Bakkour et al. 

2013), Huntington’s (Narayanan et al. 2014), Parkinson’s (Narayanan et al. 2013; Schmidt 2005), 

depression (Hare and Duman 2020), and schizophrenia (Wible et al. 2001). 

 

1-1-2- Temporal lobe 

The temporal lobe is below the lateral fissure on both sides of the cerebral hemispheres of 

the human brain (Ramachandran, 2002). It is implicated in processing sensory inputs into derived 

meanings for the appropriate recall of visual memories, language comprehension, and linking 

emotions (Squire, Stark and Clark, 2004). 

There is a region inside the temporal lobe called the hippocampus which is involved in 

memory formation and learning (Johnston and Amaral, 2004). Temporal lobe includes areas 

associated with the auditory, olfactory, vestibular, and visual senses, and in the perception of 

spoken and written language (Dawes et al., 2009). In addition to cortex, the temporal lobe 

contains white matter, part of the lateral ventricle, the tail of the caudate nucleus, the stria 

https://paperpile.com/c/gvDCIq/QpC2
https://paperpile.com/c/gvDCIq/kQNo
https://paperpile.com/c/gvDCIq/mhHL
https://paperpile.com/c/gvDCIq/QXJL
https://paperpile.com/c/gvDCIq/upQF
https://paperpile.com/c/gvDCIq/kXFw
https://paperpile.com/c/gvDCIq/hvll
https://paperpile.com/c/gvDCIq/hvll
https://paperpile.com/c/gvDCIq/hvll
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terminalis, the hippocampal formation, and the amygdala. The medial side of the temporal lobe 

contains areas involved in olfaction (the uncus and nearby cortex) and semantic memory (the 

hippocampal formation) (Squire, Stark and Clark, 2004; Dawes et al., 2009). The nearby 

amygdala creates responses to perceived sensory stimuli that have been processed by other parts 

of the brain. These responses include largely involuntary ones, mediated by the autonomic and 

somatic motor systems, and mental functions, particularly those called feelings or emotions, that 

motivate decision and voluntary actions (Squire, Stark and Clark, 2004; Rajmohan and 

Mohandas, 2007). 

Atrophy of the temporal lobe has been linked to frontotemporal dementia and Alzheimer’s 

disease (Wible et al. 2001; Jack et al. 1998; Wolk et al. 2017; Nativio et al. 2018). Dysfunction 

of temporal lobe has also been associated with psychiatric disorders such as schizophrenia 

(Bobilev et al. 2020), depression (Galioto et al. 2017), and autism (Galioto et al. 2017; Valvo et 

al. 2016). 

 

1-1-3- Parietal lobe 

The parietal lobe is positioned on the top of the occipital lobe and behind the frontal lobe and 

central sulcus (Behrmann, Geng and Shomstein, 2004). This region combines sensory 

information among various modalities, including spatial sense and navigation, the main sensory 

receptive area for the sense of touch (mechanoreception) in the somatosensory cortex which is 

just posterior to the central sulcus in the postcentral gyrus, and the dorsal stream of the visual 

system (Behrmann, Geng and Shomstein, 2004; Culham and Valyear, 2006). The majority of 

sensory inputs from the skin (touch, temperature, and pain receptors) are amplified via the 

https://paperpile.com/c/gvDCIq/hvll+upQF
https://paperpile.com/c/gvDCIq/hvll+upQF
https://paperpile.com/c/gvDCIq/hvll+upQF
https://paperpile.com/c/gvDCIq/upQF+YRVG
https://paperpile.com/c/gvDCIq/upQF+YRVG
https://paperpile.com/c/gvDCIq/aDbz
https://paperpile.com/c/gvDCIq/aDbz+qyOj


7 

thalamus to the parietal lobe. The parietal lobe is also involved in language processing. The 

superior and inferior parts of the parietal lobe are the regions for spatial awareness (Geranmayeh 

et al., 2012).  

Impairments in these regions are usually associated with hemineglect (Pouget and Sejnowski, 

1997). Also, left parietal lobe damage causes limbic apraxia Limb apraxia that is a heterogeneous 

disorder of skilled action and tool use that has long perplexed clinicians and researchers. It occurs 

after damage to various loci in a densely interconnected network of regions in the left temporal, 

parietal, and frontal lobes (Buxbaum and Randerath 2018). 

 

1-1-4- Occipital lobe 

The occipital lobe is the center of the visual processing of the brain comprising the major 

part of the visual cortex (Larsson and Heeger, 2006). The primary visual cortex is Brodmann area 

17 (BA17), which is also known as the visual one (V1). This region is positioned in the center, 

within the calcarine sulcus; the full extent of V1 often extends to the posterior pole of the occipital 

lobe. V1 is also known as the striate cortex due to the presence of a large stripe of myelin, the 

Stria of Gennari (Tong, 2003). The regions outside V1 are called the extrastriate cortex, 

functional for various visual tasks, such as visuospatial processing, color discrimination, and 

motion perception (Tootell and Nasr, 2017). 

Damage to one side of the occipital lobe causes homonymous loss of vision with exactly the 

same field cut in both eyes. Disorders of the occipital lobe can cause visual hallucinations and 

illusions. Visual hallucinations (visual images with no external stimuli) can be caused by lesions 

to the occipital region or temporal lobe seizures (Tokida et al. 2018). Visual illusions (distorted 

https://paperpile.com/c/gvDCIq/wP0P
https://paperpile.com/c/gvDCIq/wP0P
https://paperpile.com/c/gvDCIq/wP0P
https://paperpile.com/c/gvDCIq/wP0P
https://paperpile.com/c/gvDCIq/yIye
https://paperpile.com/c/gvDCIq/yIye
https://paperpile.com/c/gvDCIq/l1MQ
https://paperpile.com/c/gvDCIq/zkDt
https://paperpile.com/c/gvDCIq/FDXG
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perceptions) can take the form of objects appearing larger or smaller than they actually are, 

objects lacking color or objects having abnormal coloring. Lesions in the parietal-temporal-

occipital association area can cause word blindness with writing impairments (alexia and 

agraphia) (Liu et al. 2019). 

 

1-1-5- Limbic lobe 

The limbic lobe located at the inferomedial side of the cerebral hemispheres, contains two 

concentric gyri surrounding the corpus callosum (Rajmohan and Mohandas, 2007). The larger 

outer gyrus is named limbic gyrus and the smaller inner one the intralimbic gyrus. The limbic 

gyrus (limbic lobe) consists of the  the paraterminal gyrus, the subcallosal area, the cingulate 

gyrus, the parahippocampal gyrus, the dentate gyrus, the hippocampus and the subiculum (and 

some authors include amygdala) (Hirai et al., 2000).The cingulate gyrus dorsal to the corpus 

callosum is heavily interconnected with the association areas of the cerebral cortex. The 

parahippocampal gyrus in the medial temporal lobe contains several distinct regions, the most 

important being the entorhinal cortex (ERC) (Rajmohan and Mohandas, 2007). The ERC funnels 

highly processed cortical information to the hippocampal formation and serves as its major output 

pathway (Tsao et al., 2018). Cingulate gyrus is associated with autonomic functions that regulate 

heart rate and blood pressure as well as cognitive, attentional and emotional processing. 

Parahippocampal gyrus is involved in spatial memory, hippocampus in long-term memory, 

amygdala in anxiety, aggression, fear conditioning; emotional memory and social cognition, 

hypothalamus in regulation of the autonomic nervous system via hormone production and 

release, regulation of blood pressure, heart rate, hunger, thirst, sexual arousal and the circadian 

https://paperpile.com/c/gvDCIq/YRVG
https://paperpile.com/c/gvDCIq/nOKy
https://paperpile.com/c/gvDCIq/nOKy
https://paperpile.com/c/gvDCIq/nOKy
https://paperpile.com/c/gvDCIq/YRVG
https://paperpile.com/c/gvDCIq/7goR
https://paperpile.com/c/gvDCIq/7goR
https://paperpile.com/c/gvDCIq/7goR
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rhythm, and nucleus accumbens in reward and addiction (Karanian and Slotnick, 2017; Burke et 

al., 2018). 

Dysfunction of the limbic system is usually associated with many clinical manifestations, 

such as epilepsy, limbic encephalitis, dementia, anxiety disorder, schizophrenia, and autism. 

Degenerative changes in the limbic system likely have a role in the genesis of neurodegenerative 

diseases, particularly Pick's disease and Alzheimer's disease (Sakurai et al. 2019; Rajmohan and 

Mohandas 2007). Marked atrophy is found in the limbic system, most notably the dentate gyrus 

and hippocampus. In Alzheimer's disease, senile plaques and neurofibrillary tangles are dispersed 

throughout the cerebral cortex and basal ganglia, but the hippocampus and amygdala are often 

severely involved (Sakurai et al. 2019). It has been also shown that atrophy of limbic lobe is also 

associated with Parkinson’s disease (Gao et al. 2017).  

Anxiety disorders may be the result of a failure of the anterior cingulate and hippocampus to 

modulate the activity of the amygdala (top-down regulation). A fear circuitry, involving the 

amygdala, prefrontal and anterior cingulate has been described (bottoms-up regulation) 

(Cannistraro and Rauch 2003). 

Studies have shown reduced limbic volumes in schizophrenia. The evidence for this is the 

distortion of cortical neuronal organizations, decreased size of hippocampus and the reduced 

number of GABAergic cells in the cingulate and anterior thalamus with resultant glutamatergic 

excitotoxicity (Rajmohan and Mohandas 2007). 

Studies have also shown variation in the volumes of the amygdala and hippocampus in 

affective disorders. Functional studies have revealed decreased prefrontal and anterior cingulate 

activity in affective disorders. The anterior cingulate is the center for integration of attentional 

https://paperpile.com/c/gvDCIq/B0rS+w2Vh
https://paperpile.com/c/gvDCIq/B0rS+w2Vh
https://paperpile.com/c/gvDCIq/B0rS+w2Vh
https://paperpile.com/c/gvDCIq/B0rS+w2Vh
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and emotional output and helps effortful control of emotional arousal (Stathis et al.; Kaschka 

2002). 

Autism and Asperger's syndrome involve the disproportionate impairment in specific aspects 

of social cognition. Limbic structures involved include the cingulate gyrus and amygdala, which 

mediate cognitive and affective processing. The basolateral circuit integral for social cognition is 

disrupted in autism spectrum disorders (Bachevalier and Loveland 2006; Patriquin et al. 2016). 

 

1-1-6- Insular cortex 

In primates, including humans, the insular cortex is located folded deep within the lateral 

sulcus of each hemisphere, hidden beneath parts of the frontal, parietal and temporal lobes 

(Gogolla, 2017). The human insular lobe splits into an anterior and a posterior part by the central 

insular sulcus. The extremities of these two parts differ substantially in their connectivity to other 

brain regions, while an intermediate middle insular zone exhibits mixed anterior and posterior 

connectivity features (Cunha-Cabral et al., 2019). Interoception, the perception of bodily states, 

is a key function of the insular cortex. The insula receives topographically arranged afferents 

from discrete thalamic relay nuclei and combines information about blood pressure and 

oxygenation, the motility of the digestive system, the timing and strength of the heartbeat, as well 

as pain, hunger, nausea, tickle, itch and many more bodily sensations (Davidovic, Starck and 

Olausson, 2019). Furthermore, the insula also executes strong top-down monitoring of autonomic 

functions, for example regulation of the heartbeat rate, blood pressure, or gastric motility, 

probably via direct projections to the lateral hypothalamic area, the parabrachial nucleus, and the 

nucleus of the solitary tract (Hassanpour et al., 2018). Hypometabolism and atrophy of the left 

https://paperpile.com/c/gvDCIq/fccr
https://paperpile.com/c/gvDCIq/fyhl
https://paperpile.com/c/gvDCIq/fyhl
https://paperpile.com/c/gvDCIq/fyhl
https://paperpile.com/c/gvDCIq/BJWj
https://paperpile.com/c/gvDCIq/BJWj
https://paperpile.com/c/gvDCIq/6f0D
https://paperpile.com/c/gvDCIq/6f0D
https://paperpile.com/c/gvDCIq/6f0D
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anterior insular cortex has been associated with progressive expressive aphasia, a condition of 

impairment of normal language function that leads individuals to lose the ability to communicate 

fluently while still being able to comprehend single words and intact other non-linguistic 

cognition (Namkung, Kim and Sawa, 2017; Balint et al., 2019). This condition is present in some 

cases of neurodegenerative conditions such as Pick's disease, motor neuron disease, corticobasal 

degeneration, frontotemporal dementia, and Alzheimer's disease (Namkung, Kim and Sawa, 

2017; Fathy et al., 2019). 

The insular cortex is suggested to be widely involved in mood disorder, panic disorder, post-

traumatic stress disorder (PTSD), obsessive-compulsive disorder, eating disorders, and 

schizophrenia (Menon and Uddin 2010). Functional neuroimaging studies have discovered, in 

patients with schizophrenia, a reduction in the strength of the causal influences from the insula-

centric salience network on the central executive network and the default mode network (Moran 

et al. 2013). The insula-mediated dynamic switching between the central executive network and 

the default mode network facilitates access to cognitive resources, such as attention and working 

memory, when a salient event is detected [20]. Thus, altered strength in the connectivity in these 

networks affects cognitive deficits in some cases of schizophrenia. This network deficit is also 

reported in some patients with autism spectrum disorder (Uddin et al. 2015), which may be 

consistent with the shared genetic and biological risks between autistic spectrum disorder and 

some cases of schizophrenia (Mihaylova et al. 2017). Blood marker examinations and brain-

volume assessments have also shown a relationship between damage of limbic cortex in people 

with bipolar disorder (Bond et al. 2020; Delvecchio et al. 2019). 

https://paperpile.com/c/gvDCIq/eqgj+406P
https://paperpile.com/c/gvDCIq/eqgj+406P
https://paperpile.com/c/gvDCIq/eqgj+406P
https://paperpile.com/c/gvDCIq/406P+Rqpp
https://paperpile.com/c/gvDCIq/406P+Rqpp
https://paperpile.com/c/gvDCIq/406P+Rqpp
https://paperpile.com/c/gvDCIq/406P+Rqpp
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1-1-7- Basal ganglia  

The basal ganglia (or basal nuclei) are a group of subcortical nuclei in the human brain, which 

are located at the root of the forebrain and top of the midbrain (Bostan, Dum and Strick, 2018). 

This region comprising the striatum, the globus pallidus, the substantia nigra, and the subthalamic 

nucleus, is engaged in various functions including eye movement, motivation, working memory, 

and decision making (Bogousslavsky and Tatu, 2017). The striatum, consisted of caudate, 

putamen, and ventral striatum (VS), is the main input of the basal ganglia, and the thalamus 

connects it to the cortex (Deffains et al., 2016). The dopaminergic projections from the midbrain 

to the striatum are a crucial modulator of striatal processing of glutamatergic cortical and thalamic 

signals on the striatum principal neurons (Surmeier, Plotkin and Shen, 2009). A reduction of the 

dopaminergic projections to the striatum is strongly associated with Parkinson’s disease (PD), 

characterized by motor and cognitive dysfunctions (Milosevic et al., 2018). The basal ganglia 

mainly controlled by dopaminergic neurons, appears to play a role in the mediation of cognitive 

and motor modules to make an appropriate decision on a final action for the task being performed 

(Wessel et al., 2016). 

Dysfunction and damage of basal ganglia is associated with multiple diseases including both 

neurodegenerative and psychiatric disorders. Disruption of the basal ganglia network forms the 

basis for several movement disorders such as Parkinson's disease (Milosevic et al. 2018), 

Huntington disease (Singh-Bains et al. 2019). Although motor diseases are the most common 

associated with the basal ganglia, evidence show that basal ganglia dysfunctions can lead to other 

disorders such as obsessive–compulsive disorder (OCD) (Liu et al. 2020) and Tourette syndrome 

and Tic disorder (Caligiore et al. 2017). 

https://paperpile.com/c/gvDCIq/lkLt
https://paperpile.com/c/gvDCIq/SVNF
https://paperpile.com/c/gvDCIq/1JFS
https://paperpile.com/c/gvDCIq/1JFS
https://paperpile.com/c/gvDCIq/1JFS
https://paperpile.com/c/gvDCIq/mur6
https://paperpile.com/c/gvDCIq/atHY
https://paperpile.com/c/gvDCIq/atHY
https://paperpile.com/c/gvDCIq/atHY
https://paperpile.com/c/gvDCIq/JgWw
https://paperpile.com/c/gvDCIq/JgWw
https://paperpile.com/c/gvDCIq/JgWw
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1-1-8- Brain cell types 

The brain is a mosaic made up of different cell types including neurons, glial cells, neural 

stem cells, and blood vessels. Neurons are divided into interneurons, pyramidal cells including 

Betz cells, motor neurons, and Purkinje cells (found in the cerebellum) (Tao and Zhang, 2016). 

The adult human brain approximately contains 90 billion neurons, with more or less the same 

number of non-neuronal cells. Almost 20% of the neurons are found in the cerebral cortex, and 

the rest of the neurons (80%) are located in the cerebellum (Chizhikov and Millen, 2020). 

Glial cells are divided into astrocytes (including Bergmann glia), oligodendrocytes, 

ependymal cells (including tanycytes), radial glial cells, microglia, and a subtype of 

oligodendrocyte progenitor cells (Jäkel and Dimou, 2017). Astrocytes are star-shaped cells that 

surround neurons and support neuron functions. Astrocytes also help neurons signal to other 

neurons by passing chemicals from one neuron to another. Although microglia are the primary 

immune cells of the brain, astrocytes can also help microglia when the brain is in trouble (Jäkel 

and Dimou, 2017; Vasile, Dossi and Rouach, 2017). Oligodendrocyte which is a type of glial 

cells covers the axons of neurons, making up the myelin sheath. They separate the axon from 

surrounding and help neurons pass electrical signals at high speed over long distances (Bradl and 

Lassmann, 2010). Microglia, another type of glial cells, are the immune cells of the human brain. 

They circulate inside the brain and constantly communicate with other glial cells, to test the 

environment for any problem (Gremo et al., 1997; Menassa and Gomez-Nicola, 2018). Mast cells 

are also white blood cells that communicate with the neuroimmune system in the brain (da Silva, 

Jamur and Oliver, 2014; Krystel-Whittemore, Dileepan and Wood, 2015) and mediate 

neuroimmune responses in inflammatory situations and help to keep the blood-brain barrier 

(Krystel-Whittemore, Dileepan and Wood, 2015).  

https://paperpile.com/c/gvDCIq/T4ae
https://paperpile.com/c/gvDCIq/SGe9
https://paperpile.com/c/gvDCIq/bYOM
https://paperpile.com/c/gvDCIq/bYOM+YOGD
https://paperpile.com/c/gvDCIq/bYOM+YOGD
https://paperpile.com/c/gvDCIq/opj0
https://paperpile.com/c/gvDCIq/opj0
https://paperpile.com/c/gvDCIq/9pmN+ZnYk
https://paperpile.com/c/gvDCIq/9pmN+ZnYk
https://paperpile.com/c/gvDCIq/9pmN+ZnYk
https://paperpile.com/c/gvDCIq/5uMl+dnHm
https://paperpile.com/c/gvDCIq/5uMl+dnHm
https://paperpile.com/c/gvDCIq/5uMl
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1-2- Techniques for assessing transcriptome profiling of brain tissues 

1-2-1- Microarrays 

The Microarray technique has emerged as a high-throughput technology for large-scale gene 

expression quantifications. It principally includes a large number of hybridization reactions 

between labeled target cDNA and probe sequence fixed to a solid surface (Schulze and 

Downward, 2001). Currently, microarrays technology is able to analyze genome-wide 

transcriptome analysis, upto 30,000 different mRNA types (Li, 2016).  Microarray has gained 

new features such as probing exon junctions to detect alternative splicing patterns (Clark, Sugnet 

and Ares, 2002). Before the advent of next generation sequencing (NGS) technologies, 

microarray has been widely harnessed for transcriptome profiling of brain tissues. Many research 

groups utilized it to analyze gene expressions in multiple brain diseases such as AD (Z. Wang et 

al., 2018), PD (Feng and Wang, 2017), ASD (Tammimies et al., 2015), Scz (Mirnics et al., 2000; 

Tammimies et al., 2015), BP (Logotheti et al., 2013), and MDD (Urbach, Bruehl and Witte, 

2006). However, microarray application is currently limited because of its use of indirect signal 

detection by hybridization. The limitations include (i) heavily dependent on known genome 

sequence data; (ii) using non-accurate hybridization reactions, and (iii) having a low range of 

signal detection due to background signals and the saturation of signals (Forster, Roy and Ghazal, 

2003). These issues usually lead scientists to think of other more accurate high-throughput 

technologies such as RNA-Seq. 

 

https://paperpile.com/c/gvDCIq/pRLV
https://paperpile.com/c/gvDCIq/pRLV
https://paperpile.com/c/gvDCIq/lwcZ
https://paperpile.com/c/gvDCIq/gJgk
https://paperpile.com/c/gvDCIq/gJgk
https://paperpile.com/c/gvDCIq/DpfN
https://paperpile.com/c/gvDCIq/DpfN
https://paperpile.com/c/gvDCIq/DpfN
https://paperpile.com/c/gvDCIq/DpfN
https://paperpile.com/c/gvDCIq/f2sy
https://paperpile.com/c/gvDCIq/yDcg
https://paperpile.com/c/gvDCIq/yDcg
https://paperpile.com/c/gvDCIq/yDcg
https://paperpile.com/c/gvDCIq/yDcg+uKy2
https://paperpile.com/c/gvDCIq/yDcg+uKy2
https://paperpile.com/c/gvDCIq/yDcg+uKy2
https://paperpile.com/c/gvDCIq/yDcg+uKy2
https://paperpile.com/c/gvDCIq/yDcg+uKy2
https://paperpile.com/c/gvDCIq/yDcg+uKy2
https://paperpile.com/c/gvDCIq/UWF8
https://paperpile.com/c/gvDCIq/UWF8
https://paperpile.com/c/gvDCIq/UWF8
https://paperpile.com/c/gvDCIq/pt4y
https://paperpile.com/c/gvDCIq/pt4y
https://paperpile.com/c/gvDCIq/pJfh
https://paperpile.com/c/gvDCIq/pJfh
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1-2-2- RNA-Seq 

RNA-Seq is a high-throughput technology that emerged as an NGS platform for 

transcriptome profiling. It can be run on different platforms such as the Roche 454 Life Science 

Genome Sequencer FLX System, the Illumina Genome Analyzer and the Applied Biosystems 

SOLiD technology (Janitz, 2011). In RNA-Seq, RNAs are, in principle, reverse transcribed into 

cDNA, and adapters are added to both ends of the generated cDNA. Then, these sequences are 

individually sequenced either unidirectionally (single-end seq.) or bidirectionally (paired-end 

seq.). The raw sequencing data are then aligned to a reference genome or assembled de novo to 

generate a resulting map of the transcriptome profile (Schuster, 2008). RNA-Seq has become 

very popular because of its advantages over other methods including microarray. These 

advantages include being able to identify novel transcripts (Vera et al., 2008), provide 

information about transcript structure, identifying genetic variations such as SNPs (Wang, 

Gerstein and Snyder, 2009), high sensibility of detecting molecules, and avoiding technical 

problems such as saturation and background noise signals (Mortazavi et al., 2008).  

The large amount of the data produced from RNA-Seq experiments requires vast 

computational resources and skills for analyses. A large number of bioinformatic tools such as 

ELAND, SOAP, MAQ, RMAP, Bowtie, TopHat, STAR and Cufflinks (Li et al., 2008; Li, Ruan 

and Durbin, 2008; Smith, Xuan and Zhang, 2008) have emerged to overcome the obstacles such 

as alignment of short-reads to the reference genome. Some of these tools that are even able to 

identify the splice variants of different transcripts include STAR, Bowtie and TopHat (Trapnell, 

Pachter and Salzberg, 2009). In addition, many automated pipelines that combine data analysis 

tools are rising in order to facilitate the use and monitoring of RNA-Seq data processing, enabling 

researchers to analyze large-scale data simultaneously in a short time.   

https://paperpile.com/c/gvDCIq/8X8F
https://paperpile.com/c/gvDCIq/vh6V
https://paperpile.com/c/gvDCIq/Cawy
https://paperpile.com/c/gvDCIq/Cawy
https://paperpile.com/c/gvDCIq/Cawy
https://paperpile.com/c/gvDCIq/hAJv
https://paperpile.com/c/gvDCIq/hAJv
https://paperpile.com/c/gvDCIq/sgiS
https://paperpile.com/c/gvDCIq/sgiS
https://paperpile.com/c/gvDCIq/sgiS
https://paperpile.com/c/gvDCIq/CW9O+sjok+PlUs
https://paperpile.com/c/gvDCIq/CW9O+sjok+PlUs
https://paperpile.com/c/gvDCIq/CW9O+sjok+PlUs
https://paperpile.com/c/gvDCIq/CW9O+sjok+PlUs
https://paperpile.com/c/gvDCIq/JGUH
https://paperpile.com/c/gvDCIq/JGUH
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1-3- Brain diseases 

We mentioned that the brain structure is divided into different regions and each region has 

several functions. Any abnormality or dysfunction of the brain regions can lead to one or several 

forms of the diseases which can debilitate one’s living. Brain diseases are usually categorized 

differently based on the symptoms, clinical characteristics, genetic causes, and types of damages. 

Here, we will describe two common classes of brain illnesses including neurodegenerative 

diseases and neuropsychiatric disorders. 

 

1-3-1- Neurodegenerative diseases 

Neurodegenerative diseases (NDD), which are chronic and progressive illnesses, are 

identified by selective and symmetric loss of neurons in motor, sensory, and/or cognitive systems 

(Brittany N. Dugger, 2017). Description of the patterns of cell loss and the association of disease-

specific cellular markers helped in their classification including senile plaques, neurofibrillary 

tangles, neuronal loss, and acetylcholine deficiency, Lewy bodies and depletion of dopamine, 

cellular inclusions, swollen motor axons, and g-aminobutyric acid-containing neurons of the 

neostriatum (Gan et al., 2018). Here, we describe several common NDDs including Alzheimer’s 

disease, Parkinsons’ disease, progressive supranuclear palsy and pathological aging.  

 

https://paperpile.com/c/gvDCIq/avup
https://paperpile.com/c/gvDCIq/uvRx
https://paperpile.com/c/gvDCIq/uvRx
https://paperpile.com/c/gvDCIq/uvRx
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1-3-1-1- Alzheimer’s disease 

Alzheimer’s disease (AD) is a well-known progressive, unremitting NDD that engages large 

regions of the cerebral cortex (particularly temporal lobe) and hippocampus (Bondi, Edmonds 

and Salmon, 2017). AD is characterized by the inclusion of insoluble forms of beta-amyloid (Aβ) 

plaques in extracellular spaces and in the walls of blood vessels, accumulation of the tau proteins 

in neurofibrillary tangles in neurons, synaptic loss and selective neuronal death (DeTure and 

Dickson, 2019). Aβ is generated via cleavage of amyloid precursor protein (APP) by a protein 

complex including γ-secretase, β-secretase enzymes, presenilin 1 (PS1; encoded by PSEN1), and 

PS2 (encoded by PSEN2) (Greenberg et al., 2019). Sporadic AD is the most prevalent type with 

an average age of onset of 80 years. In this form, a failure to clear Aβ peptide occurs in the CNS. 

Less than 1% of patients have autosomal dominant inherited Alzheimer’s disease (DIAD) with 

an average age of onset of 45 years (Hou et al., 2019). These patients usually have mutations in 

the genes APP, PS1, and PS2, leading to production of toxic forms of Aβ (Hou et al., 2019; Panza 

et al., 2019). AD shares many characteristics with other molecularly defined NDDs, such as 

Parkinson’s disease and the frontotemporal dementias, as well as with other brain disorders such 

as Down syndrome (Lott and Head, 2019). Currently, Aβ, APOE, and tau are the main risk factors 

frequently reported in association with AD.  

 

Molecular basis of Alzheimer’s disease 

Aβ in Alzheimer’s disease 

Aβ is cleaved from APP into a group of N-terminally truncated peptides with different 

lengths (from 38 to 43 amino acids) (Golde, Eckman and Younkin, 2000). Evidence shows that 

https://paperpile.com/c/gvDCIq/JNjo
https://paperpile.com/c/gvDCIq/JNjo
https://paperpile.com/c/gvDCIq/1gfm
https://paperpile.com/c/gvDCIq/1gfm
https://paperpile.com/c/gvDCIq/WwsD
https://paperpile.com/c/gvDCIq/WwsD
https://paperpile.com/c/gvDCIq/WwsD
https://paperpile.com/c/gvDCIq/qNzJ
https://paperpile.com/c/gvDCIq/qNzJ
https://paperpile.com/c/gvDCIq/qNzJ
https://paperpile.com/c/gvDCIq/qNzJ+RqFL
https://paperpile.com/c/gvDCIq/qNzJ+RqFL
https://paperpile.com/c/gvDCIq/qNzJ+RqFL
https://paperpile.com/c/gvDCIq/qNzJ+RqFL
https://paperpile.com/c/gvDCIq/qNzJ+RqFL
https://paperpile.com/c/gvDCIq/qNzJ+RqFL
https://paperpile.com/c/gvDCIq/3Qxl
https://paperpile.com/c/gvDCIq/f6jz
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Aβ is highly expressed in neurons (and other cell types) as a normal protein from APP in a normal 

brain (Hou et al., 2019). However, the exact mechanism of APP is unclear, but it is thought to be 

functional in synaptic plasticity. The first studies on patients with DIAD revealed that mutations 

in one of APP, PSEN1, and PSEN2 genes are related to the involvement of Aβ in AD (Suárez-

Calvet et al., 2014). Mutations in these genes cause an increase of Aβ, particularly the 42 amino 

acid Aβ isoform (Aβ42), which seems to be more toxic than other forms (Gaiteri et al., 2016). 

Also, mutations in PSEN1 and PSEN2 lead to elevated levels of Aβ42 (Kumar-Singh et al., 2006). 

The type of mutation and level of Aβ42 predict the average age of onset of AD (Bateman et al., 

2012). 

APOE and Alzheimer’s disease 

APOE on chromosome 19 is the strongest genetic risk factor for developing AD. APOE is 

involved in the normal catabolism of triglyceride rich lipoproteins. One of the first reports linking 

APOE to AD pathology was APOE immunoreactivity in Aβ deposits and neurofibrillary tangles, 

which are hallmarks of AD pathology (Namba et al., 1991). In addition, polymorphisms in the 

transcriptional regulatory region of APOE have demonstrated association with AD (Artiga et al., 

1998). APOE has three isoforms named APOE2, APOE3, and APOE4 with a prevalence of 7%, 

78%, and 15%, respectively (Saunders et al., 2011). APOE is highly expressed in the CNS, 

mainly in astrocytes and microglia. Based on reports, APOE4 contributes to nearly 50% of 

sporadic AD (Ashford and Wesson Ashford, 2004), and raises the risk of early onset of AD. On 

the other hand, APOE2 is usually associated with a lower risk of developing AD (Corder et al., 

1994). 
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Transcriptome profiling in Alzheimer’s disease 

RNA-Seq study on temporal and cerebellum samples from AD patients and controls showed 

that several SNPs influence the expression level of multiple genes detectable in the brain 

including ABCA7, BIN1, CLU, MS4A4A, MS4A6A, and PICALM (M. Allen et al., 2012). 

Mostafavi et al. (Mostafavi et al., 2018)  used a cohort of 478 individuals with AD and controls 

to investigate aging-related molecular networks in the DLPFC. They observed the correlation of 

a group of genes, including NPPL1 and PLXNB1 that influence genes associated with β-amyloid 

biology in a co-expression module in astrocytes. A large-scale transcriptional analysis in the CA1 

and CA3 brain regions of subjects with AD found candidate vulnerability genes including 

ABCA1, MT1H, PDK4, and RHOBTB3 and protective genes FAM13A1, LINGO2, and UNC13C 

in CA3, compared with controls (Miller et al., 2013). Also, using 1,647 postmortem brain tissues 

from late-onset AD (LOAD) patients and controls, Zhang et al. (Zhang et al., 2013) observed a 

microglia-specific module that is dominated by genes involved in pathogen phagocytosis, 

including TYROBP as a key regulator. A recent study (Annese et al., 2018) on hippocampus 

samples from a small group of AD patients and controls observed 2,064 genes, 47 lncRNAs and 

4 miRNAs deregulated in the hippocampal region and involved in cognitive functions and long-

term memory. we selected from a community-based neuropathological study. Combining brain 

tissue-specific protein interactomes with 414 expression profiles of symptomatic AD subjects 

and controls determined functionally distinct composite clusters of genes that reveal extensive 

changes in expression levels in AD, corresponding to synaptic transmission, metabolism, cell 

cycle, survival, and immune response (Canchi et al., 2019). It was revealed that, particularly, the 

loss of EGR3 regulation influences synaptic deficits by affecting the synaptic vesicle cycle. 
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1-3-1-2- Parkinson disease 

Parkinson’s disease (PD) is a common age-related NDD that has two forms of sporadic (99%) 

or familial (1%). PD is clinically identified by neuronal loss in certain brain regions including 

basal ganglia, substantia nigra and large intracellular aggregation of α-synuclein proteins (Poewe 

et al., 2017). In early stages, the degeneration of dopaminergic neurons is limited to the 

ventrolateral substantia nigra, but over time grows wider across other parts of substantia nigra 

(Fearnley and Lees, 1991; Damier et al., 1999). Multiple lines of evidence show that the onset of 

motor symptoms occurs after the loss of dopaminergic neurons (Dijkstra et al., 2014). The 

accumulation of Lewy bodies happens first in cholinergic and monoaminergic brainstem neurons, 

as well as in neurons of the olfactory system. With the progression of the disease, these inclusion 

bodies also appear in limbic and neocortical areas.  

 

Molecular basis of Parkinson’s disease 

Numerous point mutations and duplications of SNCA, the gene encoding α-synuclein, in 

heritable forms of PD firmly support the important role of α-synuclein as a risk factor in PD 

(Nalls et al., 2014). 

In addition, intracellular homeostasis of α-synuclein is maintained by the actions of the 

ubiquitin–proteasome system and the lysosomal autophagy system (LAS) (Kaushik and Cuervo, 

2015). Multiple investigations revealed that perturbation of these degradation systems could lead 

to α-synuclein aggregation (Xilouri, Brekk and Stefanis, 2013). Increasing age — the greatest 

risk factor for PD — is associated with reduced LAS and ubiquitin-proteasome system functions, 

which is consistent with observations of increased levels of α-synuclein in nigral dopaminergic 
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neurons during normal ageing (Chu and Kordower, 2007). Moreover, a number of mutations in 

heritable forms of PD are associated with reduced LAS function. These mutations occur in the 

gene encoding LRRK2 and in the gene encoding the lysosomal enzyme GBA, the most common 

genetic risk factor for PD (Sidransky et al., 2009), that are linked to weakened LAS function 

(Fernandes et al., 2016).  

 

Transciptome profiling in Parkinson’s disease 

The first microarray studies on patients with PD showed a significant down-regulation of 

genes involved in mitochondrial function and energy synthesis and maintenance in PD patients 

(Vogt et al., 2006; Patel et al., 2008). Transcriptome profiling of cerebro-spinal fluid (CSF) from 

27 PD patients and 30 healthy controls revealed several differentially expressed sequencing tags 

(DETs), including Dnmt1, Ezh2, CCR3, SSTR5, PTPRC, UBC, NDUFV2, BMP7, SCN9, SCN9 

antisense (AC010127.3), and long noncoding RNAs AC079630 and UC001lva.4 (close to the 

LRRK2 gene locus), as potential PD biomarkers (Hossein-nezhad et al., 2016). A study conducted 

by Henderson et al.(Henderson-Smith et al., 2016) on the posterior cingulate cortex of PD 

patients, showed that up-regulated genes in PD compared with controls were associated with the 

immune system, while down-regulated genes were involved in signal transduction and RNA 

processing. Also, RNA-Seq analysis on  Braak Lewy body stages of brain regions from PD 

donors and controls revealed differential expression patterns of many genes, including SNCA, 

ZNF184, BAP1, SH3GL2, ELOVL7, and SCARB2 that were associated with dopamine synthesis,  

the motor and immune system, and microglial activity (Keo et al., no date). A recent meta-

analysis by Kelly and colleagues  using microarray datasets of PD and AD showed down-
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regulation of 739 genes in PD. Top dysregulated genes were YWHAZ, SCNA, DCLK1, and 

SLC18A2, associated with  mitochondrial dysfunction and oxidative stress (Kelly et al., 2020).  

 

1-3-1-3- Progressive supranuclear palsy 

Progressive supranuclear palsy (PSP), another type of NDD which has similar characteristics 

to PD, is clinically characterized by behavioral, language, and movement aberrations (Williams 

and Lees, 2009). The classic type of PSP which is currently known as Richardson’s syndrome 

(PSP-RS), was first defined in 1964 by Steele, Richardson, and Olszewski (Steele, Richardson 

and Olszewski, 2014). PSP, with a prevalence of 5 cases per 100000 people, is strongly linked to 

tau-protein abnormalities, both neuropathologically and genetically (G. Höglinger et al., 2011; 

Coyle-Gilchrist et al., 2016). PSP probably begins with a presymptomatic phase, in which 

neuropathological abnormalities begin to accumulate, continues with a suggestive-of-PSP 

(soPSP) phase, in which individuals show mild symptoms, and ends with a fully symptomatic 

stage that, eventually, meets the clinical criteria for PSP-RS or another variant of PSP (vPSP) 

(Respondek et al., 2014). The neuropathological criteria for PSP involve the presence of 

neurofibrillary tangles, neuropil threads (made of tau protein), neuronal loss, gliosis, tufted 

astrocytes, and oligodendroglial coiled bodies in the basal ganglia and the brainstem (Respondek 

et al., 2014). The regional pattern of tau pathology and neuronal loss gives result into 

pathologically and clinically heterogeneous PSP phenotypes (Williams et al., 2007).  
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Molecular basis of progressive supranuclear palsy 

MAPT polymorphisms and haplotypes, the locus most strongly associated with PSP is the 

gene encoding the microtubule-associated protein tau (MAPT) (Hinz and Geschwind, 2017). A 

rare coding MAPT variant alters microtubule assembly and is a strong risk factor for both PSP 

and frontotemporal dementia (Coppola et al., 2012). Also, the first large GWA study (G. U. 

Höglinger et al., 2011) on PSP individuals recognized new genes associated with PSP including 

STX6, EIF2AK3, and MOBP. An SNP near the MOBP gene correlates more strongly with 

enhanced expression of the SLC25A38 gene, which encodes the protein appoptosin which in turn 

increases caspase-mediated tau cleavage, tau aggregation, synaptic dysfunction, and gait and 

balance deficits.45 Moreover, loss-of-function of EIF2AK3 causes a severe childhood-onset 

disease with cerebral tau pathology named Wolcott-Rallison syndrome (Bruch et al., 2015). 

Based on these studies, other genetic variations could also affect tau and, eventually, elevate the 

risk of PSP. 

Transcriptome profiling in progressive supranuclear palsy 

In a study on temporal cortex samples from 175 PSP patients, Allen et al. (M. Allen et al., 

2016) investigated associations between seven PSP risk variants and expression levels of 20 

genes in-cis. They observed highly significant associations for PSP risk alleles of rs8070723 and 

rs1768208 with higher LRRC37A4 and MOBP brain levels, respectively. Also, methylation 

levels of one CpG in the 3' region of ARL17B were associated with rs242557 and rs8070723. In 

another study by the same group (Allen, Wang, Serie, et al., 2018), the transcriptional 

associations with unique cell-specific tau pathologies was investigated in 268 PSP autopsies. 

They determined that NFT were positively correlated with a brain co-expression network 
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enriched for synaptic and PSP candidate risk genes including MAPT, NSF, CRHR1, STX6, IER5, 

BMS1, while tufted astrocytes (TA) were associated with a microglial gene-enriched immune 

network. Furthermore, they compared transcriptome profiles of PSP with AD in a recent meta-

analysis study (Allen, Wang, Burgess, et al., 2018). They found co-expression networks 

associated with myelination were lower in PSP temporal lobe in comparison with AD. However, 

these networks showed no difference between PSP and AD in cerebellum. These networks were 

significantly down-regulated in both AD and PSP compared with control subjects.  

 

1-3-1-4- Pathological aging 

Pathological aging (PA), also known as preclinical AD, is neuropathologically characterized 

by extracellular Aβ accumulation in senile plaques (Dickson, 1997) and intracellular tau in 

neurofibrillary tangles and neuropil threads. However, unlike in AD, dendritic and synaptic 

abnormalities, as well as neuronal loss, are absent in PA. Aβ deposits are found in the context of 

minimal cortical and limbic neurofibrillary pathology (Dickson et al., 1992). Lately, it was 

discussed that subjects with PA may have protective or resistance factors against neuronal loss 

and cognitive impairment. First studies revealed that morphologic and immunohistochemical 

characteristics of Aβ deposits were different between PA and AD. Diffuse plaques, principally 

composed of Aβ42 (Iwatsubo et al., 1994), were more abundant in pathological aging, and paired 

helical filament tau immunoreactivity or glial reaction was rarely observed in proximity to senile 

plaques (Dickson et al., 1992). Aβ42 levels are surprisingly more abundant in PA compared with 

AD (Maarouf et al., 2011), which might be due to higher levels of diffuse plaques in PA 

(Iwatsubo et al., 1994; Moore et al., 2012). A study on normal subjects, PA, and AD revealed 
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that Aβ oligomeric monomers and dimers in synaptoneurosomes may be lower in PA individuals 

in comparison with demented AD. By investigating synaptic densities around amyloid plaques 

in AD, a group of researchers observed deleterious effects of oligomeric Aβ (Koffie et al., 2012), 

correlated with synapse loss in individuals with apolipoprotein E ε4. Given the similar 

characteristics of soluble oligomeric deposits in PA and AD (Xu et al., 2016), and higher amount 

of synaptophysin and neprilysin levels in PA (Wang et al., 2005), the existence of unknown 

protective factors may alleviate deleterious effects of toxic Aβ on neuronal loss in PA.  

Transcriptome profiling in pathological aging 

Several studies have investigated transcriptome profiles of aging brain tissues from human 

and animal models. In a study conducted in 1904 human brain samples from age-associated 

phenotypes, Rhinn and colleagues (Rhinn and Abeliovich, 2017) performed gene expression and 

GWAS analysis for cerebral cortex. Their findings revealed the association of TMEM106B and 

GRN loci with aging, which previously showed correlation with cortical dementia. The 

TMEM106B gene variants are correlated with neuronal loss and cognitive deficits. Meta-analysis 

of transcriptome profiles in the hippocampus has revealed significant expression changes of 

several genes in aged rats(Uddin and Singh, 2013). More than 30 genes showed up-regulation, 

including APOE, Rela, S100b, Icam1, Igf1r, Abcc, Alf1, Cds, Actb and Cntn2.4, which are 

associated with neuronal formation, survival, migration and axonogenesis. In addition, 

transcriptome profiling of the temporal cortex of the primate Microcebus murinus was measured 

for 6 young adults, 10 healthy old animals and 2 old, and AD-like animals that showed ß-amyloid 

plaques and cortical atrophy (Abdel Rassoul et al., 2010). Differential expression analysis 

revealed 695 genes with altered expression in old and AD-like animals compared with young 

animals. Most of the genes that were up-regulated in old animals and down-regulated in AD-like 
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animals were associated with metabolic pathways, especially protein synthesis. The findings 

from this study suggest the presence of compensatory mechanisms during physiological brain 

aging that are absent in AD-like animals. Despite these studies on the brain tissues of aging-

associated phenotypes, the transcriptome signature of PA (or preclinical AD) is poorly 

understood. Allen and colleagues have tried, in an effort, to profile the transcriptome of temporal 

cortex and cerebellum tissues obtained from patients with PA, AD, PSP and control subjects 

(Mariet Allen et al., 2016). The data from this study was used in our analyses which we will 

describe later (see Methods and Results).  

 

1-3-2- Neuropsychiatric disorders 

Neuropsychiatric disorders (NPDs) are a group of sophisticated mental conditions with a 

wide range of clinical phenotypes (Hosseini et al., 2019).These conditions may be caused by 

traumatic brain injury (TBI), genetic factors, environmental factors, drug side effects, and 

infection (Miyoshi and Morimura, 2010; Fleiss, Rivkees and Gressens, 2018). The important 

element of NPD is that the symptoms show the perturbation of brain function, emotion, and 

mood. These symptoms vary from issues with focus and attention, learning, sadness, irritability, 

memory problems, mood issues, depression, language problems, hallucinations, and social issues 

(Miyoshi and Morimura, 2010). People with NPD may have numerous risk factors in a 

heterogeneous genetic context that make candidate genes difficult to detect. Here we focus on 

some of the most common NPDs. 
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1-3-2-1- Schizophrenia 

Schizophrenia (Scz) is a multifactorial and complex mental disorder, which is characterized 

by different categories of symptoms including positive, negative, and cognitive symptoms (Kahn 

et al., 2015). Positive symptoms that are associated with decreased cortical thickness in the 

superior temporal gyrus (Early interventions to prevent psychosis: systematic review and meta-

analysis, 2013) involve the loss of contact with reality such as delusions, hallucinations, and 

perturbation of speech and behavior (Stafford et al., 2013). The negative category consists of 

social abandonment, the inability to feel pleasure, and energy decline. Multiple negative 

symptoms are associated with decreased thickness in the left medial orbitofrontal cortex (Patel et 

al., 2014). Moreover, individuals with Scz usually demonstrate a wide range of cognitive 

dysfunctions (Kahn et al., 2015).  

 

Molecular mechanisms of schizophrenia 

It is hypothesized that a combination of genetic factors and the environment may have 

causative effects in Scz (Weinberger and Levitt, 2011; Howes and Murray, 2014). The first 

neurophysiological studies demonstrated the dysfunction of the neurotransmitters dopamine, 

glutamate, and γ-aminobutyric acid (GABA) as pathogenetic factors (Fusar-Poli and Meyer-

Lindenberg, 2013). Dopamimetic drugs cause paranoid moods and unusual behavior, while 

dopaminolytic medications are considered as the only available antipsychotic drugs (Kaalund et 

al., 2014). A decrease in D1 receptors in the dorsolateral prefrontal cortex may also be 

responsible for deficits in working memory (Brisch et al., 2014). The glutamate model is another 

assumption that correlates changes between glutamatergic neurotransmission and neural 
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oscillations that influence connections between the thalamus and the cortex (Hu et al., 2015). 

N-methyl-d-aspartate (NMDA) is a subtype of glutamate receptors that has a crucial function in 

memory and learning processes. The antagonists for these receptors such as ketamine and 

phencyclidine cause psychosis-like dissociative conditions, cognitive impairment, and unusual 

behavior (Hu et al., 2015). Unlike dopamine and glutamate, an unusual function of GABAergic 

neurons has been consistently reported (Lewis, 2014; Schmidt and Mirnics, 2015). For instance, 

glutamate decarboxylase 1 (GAD1), a gene involved in GABA synthesis, has shown consistent 

expressional changes. Although, GABA cell types and several brain areas are mainly involved in 

Scz pathology, the main focus has been placed on dysfunction of GABAergic neurons in PFC 

that express parvalbumin, as these neurons participate in major cortical activities, such as gamma 

frequency oscillations, that are perturbed in Scz brain (Reichenberg et al., 2014). Some of these 

abnormalities are also present in several other NPDs, such as major depression, anxiety disorders, 

and autism (Schmidt and Mirnics, 2015). 

Genetic studies have also identified many risk factors related to the pathology of Scz (Kahn 

et al., 2015). GWAS studies, for instance, have found significant variants in several loci including 

DRD2 (the gene encoding the dopamine D2 receptor), glutamate receptor components (GRM3, 

GRIN2A and GRIA1, the gene encoding metabotropic glutamate receptor 3 (mGluR3), GluN2A 

and GluA1, respectively), and SRR (encoding serine racemase, an enzyme for biosynthesis of an 

NMDA receptor allosteric site ligand) (Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014). The genes CRHR1 and CRHBP are also linked to suicidal 

behaviors in Scz patients (Salleh, 2004; Avramopoulos, 2018). These genes are functional in the 

control of the HPA axis. Stress-related situations may alter the function of the HPA axis, leading 

to long-term changes in regulation of emotion and behavior (Cherian, Schatzberg and Keller, 
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2019). Intriguingly, the majority of the Scz-linked genes are normally expressed during fetal 

development (Gulsuner et al., 2013; Birnbaum et al., 2014). This implies the overlap of genetics 

of Scz and that of brain development, as well as the onset of Scz in early life (Weinberger and 

Levitt, 2011).  

 

Transcriptome profiling for schizophrenia 

Gene expression has been largely investigated in Scz using conventional methods including 

Real-Time PCR to high-throughput technologies such as microarray, RNA-Seq and single-cell 

RNA-Seq. Anio et al (Arion et al., 2007) have investigated gene expression differences in 

dorsolateral prefrontal cortex samples from 14 matched pairs of schizophrenia and control 

subjects using microarray. Out of >1800 genes, the overexpression of SERPINA3, IFITM1, 

IFITM2, IFITM3, CHI3L1, MT2A, CD14, HSPB1, HSPA1B, and HSPA1A in Scz patients was 

shown to be strongly correlated with synaptic changes, oligodendrocyte, and signal transduction. 

One of the initial studies using cDNA microarrays analyzed expression of >7800 genes in 

matched subjects (Mirnics et al., 2000). It was identified that only a few groups of genes showed 

expressional changes in Scz patients, which were related to presynaptic secretory function (PSYN 

gene group). A broad investigation revealed down-regulation of the regulator of G-protein 

signaling 4 (RGS4) in Scz individuals (Mirnics et al., 2000, 2001). RNA-Seq on samples from 

the anterior cingulate cortex, dorsolateral prefrontal cortex, and nucleus accumbens from Scz 

patients and control subjects identified disease-related differences in the anterior cingulate cortex, 

with down-regulation of the transcription factor EGR1(Ramaker et al., 2017). Also, broad down-

regulation of genes specific to neurons and concordant up-regulation of genes specific to 
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astrocytes was observed in Scz samples. This study also showed disruption of GABA levels in 

schizophrenia patients. Transcriptional changes in amygdala tissue have also been demonstrated 

in Scz patients using RNA-Seq (Chang et al., 2017). Disruption of down-regulated genes related 

to synaptic transmission and behavior, and upregulated genes associated with immune response 

were observed in amygdala of Scz subjects. A combination of RNA-Seq and GWAS has shown 

wide-spread expression quantitative trait loci (eQTLs) in DLPFC of Scz patients compared with 

controls (Jaffe et al., 2018). The evidence showed that 48% of risk variants for Scz are associated 

with adjacent expression loci. Also, dysregulation of 237 genes in Scz showed disturbance of 

synaptic processes in early development of the brain. A few studies have also used scRNA-Seq 

to investigate gene expression alterations in Scz. For instance, Sken and colleagues (Skene et al., 

2018) using a combination of GWAS data and scRNA-Seq observed gene sets that were 

consistently associated with schizophrenia—intolerant to loss-of-function variation, NMDA 

receptor complex, postsynaptic density, PSD95 complex, RBFOX binding, CELF4 binding and 

FMRP-associated genes—all had more specific expression in neocortical S1 and hippocampal 

CA1 pyramidal cells, medium spiny neurons from the dorsal striatum and cortical interneurons.  

 

1-3-2-2- Autism spectrum disorder 

Autism spectrum disorder (ASD), is one of the most common NPDs that usually shows 

heritable cases with heterogeneous cognitive conditions (Lord et al., 2020). It is characterized by 

a broad range of symptoms including disability in social interaction, repetitive behaviors, 

abnormal body posturing and facial expressions, avoidance of eye contact, behavioral 

disturbances, deficits in language comprehension, and varying levels of intellectual disability 
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(Brugha et al., 2016). Many of these symptoms are present in other psychiatric disorders such as 

attention-deficit/ hyperactivity disorder (ADHD), anxiety, major depression, and Scz (Risi et al., 

2006). Different medications are currently prescribed to treat some of the related symptoms of 

ASD, including  irritability, and comorbidities, like depression and anxiety (Baxter et al., 2015).   

Pathobiology of ASD usually involves disruption of four social brain regions including the 

amygdala, orbitofrontal cortex (OFC), temporoparietal cortex (TPC), and insula (Bachevalier, 

1994; Baron-Cohen et al., 2000; Bachevalier and Loveland, 2006; McPartland, Coffman and 

Pelphrey, 2011; Pelphrey et al., 2011). In addition, commonly  structural and functional 

abnormalities are observed across other brain areas such as visual cortical regions, PFC, basal 

ganglia, hippocampus, sensorimotor cortex, cerebellum, and thalamus (Stanfield et al., 2008; 

Nickl-Jockschat et al., 2012; Patriquin et al., 2016). 

 

Molecular basis of autism 

Genetic studies have revealed that ASD is a highly heritable disorder with an approximately 

40%-90% genetic contribution (Cross-Disorder Group of the Psychiatric Genomics Consortium 

et al., 2013; Gaugler et al., 2014). More than 100 genes and genomic regions have now been 

confidently associated with autism (Sanders et al., 2015; Satterstrom et al., 2020). At a population 

level, the contribution of de novo mutations to the risk of ASD is  estimated to be nearly 3% 

(Gaugler et al., 2014). Conservative estimates are that 10–20% of people with ASD harbour a de 

novo rare point mutation or CNV contributing to their presentation (Iossifov et al., 2014; Sanders 

et al., 2015). Many of the mutations are found in the genes related to other disorders. For example, 

mutations in the ADNP gene cause a syndrome called ADNP. Some of the other genes in which 

https://paperpile.com/c/gvDCIq/FoyO
https://paperpile.com/c/gvDCIq/FoyO
https://paperpile.com/c/gvDCIq/FoyO
https://paperpile.com/c/gvDCIq/JIci
https://paperpile.com/c/gvDCIq/JIci
https://paperpile.com/c/gvDCIq/JIci
https://paperpile.com/c/gvDCIq/JIci
https://paperpile.com/c/gvDCIq/fz4J
https://paperpile.com/c/gvDCIq/fz4J
https://paperpile.com/c/gvDCIq/fz4J
https://paperpile.com/c/gvDCIq/YuXJ+V9Nn+BaYl+5GLn+sWva
https://paperpile.com/c/gvDCIq/YuXJ+V9Nn+BaYl+5GLn+sWva
https://paperpile.com/c/gvDCIq/YuXJ+V9Nn+BaYl+5GLn+sWva
https://paperpile.com/c/gvDCIq/YuXJ+V9Nn+BaYl+5GLn+sWva
https://paperpile.com/c/gvDCIq/YuXJ+V9Nn+BaYl+5GLn+sWva
https://paperpile.com/c/gvDCIq/YuXJ+V9Nn+BaYl+5GLn+sWva
https://paperpile.com/c/gvDCIq/YuXJ+V9Nn+BaYl+5GLn+sWva
https://paperpile.com/c/gvDCIq/GR2e+gJEj+nhWd
https://paperpile.com/c/gvDCIq/GR2e+gJEj+nhWd
https://paperpile.com/c/gvDCIq/GR2e+gJEj+nhWd
https://paperpile.com/c/gvDCIq/GR2e+gJEj+nhWd
https://paperpile.com/c/gvDCIq/GR2e+gJEj+nhWd
https://paperpile.com/c/gvDCIq/GR2e+gJEj+nhWd
https://paperpile.com/c/gvDCIq/GR2e+gJEj+nhWd
https://paperpile.com/c/gvDCIq/GR2e+gJEj+nhWd
https://paperpile.com/c/gvDCIq/ZDeQ+T34g
https://paperpile.com/c/gvDCIq/ZDeQ+T34g
https://paperpile.com/c/gvDCIq/ZDeQ+T34g
https://paperpile.com/c/gvDCIq/ZDeQ+T34g
https://paperpile.com/c/gvDCIq/ZDeQ+T34g
https://paperpile.com/c/gvDCIq/ZDeQ+T34g
https://paperpile.com/c/gvDCIq/iEW8+n590
https://paperpile.com/c/gvDCIq/iEW8+n590
https://paperpile.com/c/gvDCIq/iEW8+n590
https://paperpile.com/c/gvDCIq/iEW8+n590
https://paperpile.com/c/gvDCIq/iEW8+n590
https://paperpile.com/c/gvDCIq/T34g
https://paperpile.com/c/gvDCIq/T34g
https://paperpile.com/c/gvDCIq/T34g
https://paperpile.com/c/gvDCIq/iEW8+aMR5
https://paperpile.com/c/gvDCIq/iEW8+aMR5
https://paperpile.com/c/gvDCIq/iEW8+aMR5
https://paperpile.com/c/gvDCIq/iEW8+aMR5
https://paperpile.com/c/gvDCIq/iEW8+aMR5
https://paperpile.com/c/gvDCIq/iEW8+aMR5


32 

rare mutations are associated with ASD are ARID1B, ASH1L, CHD2, CHD8, DYRK1A, POGZ, 

SHANK3, and SYNGAP1 (Van Dijck et al., 2016). The genes involved in syndromic ASD include 

FMR1 (encoding fragile X mental retardation protein; fragile X syndrome)(Abbeduto, McDuffie 

and Thurman, 2014), UBE3A (encoding ubiquitin-protein ligase E3A; Angelman 

syndrome)(Trillingsgaard and ØStergaard, 2004), TSC1 and TSC2 (encoding hamartin and 

tuberin; tuberous sclerosis complex)(Vignoli et al., 2015), PTEN (encoding phosphatase and 

tensin homologue) and MECP2 (encoding methyl-CpG-binding protein 2; Rett syndrome) (Neul, 

2012). Many of these ASD-linked genes are crucial in the brain development and function. They 

are functional in generation, growth, and organization of neurons, synaptic connections, cell-cell 

communication, dendritic projections (Trifonova, Khlebodarova and Gruntenko, 2017). 

1-3-2-3-  

Transcriptome profiling in autism 

In an study conducted by Wright and colleagues (Wright et al., 2017), a genome-wide 

expression analysis using RNA-Seq showed that histaminergic system (HS) genes including 

HNMT, HRH1, HRH2, and HRH3 were significantly altered in DLPFC tissue of ASD patients 

compared with controls. HS has an important role in cognition, sleep and other behaviors. 

Another study on PFC samples from 63 ASD individuals showed alteration of four TFs (EGR1–

4) that are involved in the regulation of neuronal function, including synaptic activity, neuronal 

plasticity, and neuronal cell death. Integrated system analysis using data from RNA-Seq exhibited 

a co-expression module enriched for transcriptional regulation, including ASD-associated 

transcription factors and chromatin remodelers (FOXP2, MECP2, and CHD8, etc.), and another 

module with many genes for synaptic transmission (SHANK2, SHANK3, NLGN1, NLGN3) (Li et 
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al., 2014). In addition, analysis of alternative splicing (AS) in the brain shows that neural 

microexons are frequently misregulated in the brains of individuals with ASD, which is 

associated with reduced levels of nSR100 a neuronal-specific splicing factor (Irimia et al., 2014). 

Transcriptome profiling using scRNA-Seq has also shed light on genes involved in ASD 

pathobiology. Single-cell transcriptomics (P. Wang et al., 2018) revealed that upregulated genes 

in multiple ASD cortex samples were enriched with genes highly expressed in inhibitory neurons, 

suggesting a potential increase of inhibitory neurons and an imbalance in the ratio between 

excitatory and inhibitory neurons in ASD brains. Also, the targets of several genes including 

CHD8, EHMT1 and SATB2 represented enriched expression in inhibitory neurons. Velmeshev 

and colleagues (Velmeshev et al., 2019) conducted snRNA-seq on 41 post-mortem brain samples 

from PFC and anterior cingulate cortex, from 15 subjects with ASD and 16 controls. Unbiased 

clustering identified significant alterations in gene expression, especially in upper layer (layer 

2/3) excitatory neurons, vasoactive intestinal polypeptide (VIP)-expressing interneurons, 

protoplasmic astrocytes and microglia.  

1-3-2-4- Bipolar disorder 

Bipolar disorders (BP) are a broad range of mood disorders affecting emotion, energy, thought, 

and behavior, and are identified by biphasic mood episodes of mania and depression. Individuals 

with BP usually demonstrate cognitive dysfunctions, particularly altered reaction time, verbal and 

visual memory and executive dysfunction (Cullen et al., 2016; Vieta et al., 2018). BP is prevalent 

in more than 1% of the worldwide population (Merikangas et al., 2011). The subdivisions of BP 

show an approximate prevalence of 0.6% for BP I, 0.4% for BP II 1.4% for sub-threshold 

manifestations of BP and 2.4% for the BP spectrum (Merikangas et al., 2011). The prevalence of 

BP I is the same in females and males, but BP II is more prevalent in women. BP co-occurs with 
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other NPDs such as anxiety disorders, substance use disorders, ADHD, depression, Scz and 

personality disorders (Merikangas et al., 2007). Patients with BP demonstrated thinner cortical 

gray matter in frontal, temporal and parietal areas of each brain hemisphere, with the biggest impact 

on left pars opercularis, left fusiform gyrus and left rostral middle frontal cortex (Strakowski et al., 

2012). 

 

Molecular basis of bipolar 

It is hypothesized that an interaction of genetics and environmental factors contribute to the 

pathology of BP (Lichtenstein et al., 2009; Mühleisen et al., 2014). The heritability of bipolar 

disorders is approximately above 80% (Hunt, 2008). Using GWAS, researchers have found 

numerous genetic variants across the genome linked to the BP. The most common variants are 

usually observed in the genes CACNA1C, ODZ4, TRANK1, and NCAN, emerged as primary 

candidates for the disease in the GWAS (Hunt, 2008; Mühleisen et al., 2014; Stahl et al., 2019). 

The gene CACNA1C encodes an L-type voltage-gated ion channel with well-established roles in 

neuronal development and synaptic signaling (Gershon et al., 2014). The gene ODZ4 encodes a 

large transmembrane protein that its structure is similar to the signal transduction molecules. 

During brain development, ODZ4 is involved in the regulation of neuronal and synaptic 

connectivity (Heinrich et al., 2013). The gene NCAN codes for a large secreted protein that is 

found predominantly in the extracellular space, the lumen of the Golgi apparatus, and the 

lysosomal cavities contributing to the modulation of cell adhesion, cell migration, and axon 

guidance (Schultz et al., 2014). TRANK1 encodes a large, mostly uncharacterized protein, highly 
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expressed in multiple tissues, especially the brain, and may play a role in maintenance of the 

blood–brain barrier (Jiang et al., 2019). 

1-3-2-5-  

Transcriptome profiling in bipolar 

Most transcriptome studies on BP have been performed on the frontal lobe and limbic cortex 

of the brain. Profiling of postmortem human dorsal striatum from 18 bipolar and 17 control 

subjects demonstrated fourteen differentially expressed genes, including immune response genes 

such as NLRC5, S100A12, LILRA4 and FCGBP (Pacifico and Davis, 2017). This study showed 

the association of a co-expression module related to medium spiny neurons in dorsal striatum. 

Gene expression analysis of DLPFC in the brain of BP subjects has also exhibited DE of several 

transcripts including Prominin 1/CD133 and ATP-binding cassette-sub-family G-member2 

(ABCG2) associated with neuroplasticity,  and serine/arginine-rich splicing factor 5 (SRSF5) and 

regulatory factor X4 (RFX4), related to circadian rhythms (Akula et al., 2014). In addition, large 

consortia including CommonMind consortium (CMC)(Hoffman et al., 2019) and PsychEncode 

(PsychENCODE Consortium, 2018) are seeking to unravel the molecular structure of several 

psychiatric disorders including BP using transcriptome profiling of different parts of the brain 

from post-mortem subjects. However, transcriptome profiling at the single cell level is still 

missing to shed light on cell-type specific gene expression associated with pathology of BP.  
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1-3-2-6- Major depressive disorder 

Major depressive disorder (MDD) is a common type of mood disorder defined by a wide 

range of symptoms such as lasting depression, significant alterations in mood, interests, pleasure, 

and cognitive function (Otte et al., 2016). MDD symptoms usually co-occur with the symptoms 

of other NPDs such as in Scz and BP (Ramaker et al., 2017). MDD affects nearly 6% of the adult 

population worldwide each year and is prevalent about twice as often in females than in males 

(Bromet et al., 2011). The genetic contribution to MDD is estimated to be approximately 35%, 

or more in familial studies (Flint and Kendler, 2014). This implies the role of other genetic 

variations, like rare mutations, in pathology of MDD. Furthermore, environmental factors, such 

as sexual, physical or emotional abuse in childhood, have been linked to MDD development (Li, 

D’Arcy and Meng, 2016). 

Smaller volumes of hippocampus, alterations in activity or connectivity of neural networks, 

such as the cognitive control network and the affective–salience network, are significant cortical 

changes related to the neurobiology of MDD (Etkin, Büchel and Gross, 2015). Cortical brain 

regions involved in MDD include the dorsal and medial PFC, the dorsal and ventral anterior 

cingulate cortex, the orbital frontal cortex and the insula (Pandya et al., 2012; Zhang et al., 2018). 

Also, hypometabolism of PFC, particularly in dorsolateral and dorsoventral brain regions, is 

repeatedly found in MDD (Zhang et al., 2018; Ichikawa et al., 2020). Moreover, the stress-

response mechanisms, such as the HPA axis, the autonomic nervous system and the immune 

system, are significantly altered in MDD (Kupfer, Frank and Phillips, 2016).  
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Molecular basis of major depression 

MDD is a heterogeneous disorder occurring more in familial cases. First-degree relatives of 

patients with MDD show a threefold increased risk of MDD and heritability for this disorder that 

has been quantified as approximately 35% (Geschwind and Flint, 2015). In addition, MDD has 

shown genetic similarity with other NPDs, including Scz and BP (‘Identification of risk loci with 

shared effects on five major psychiatric disorders: a genome-wide analysis’, 2013; Cross-

Disorder Group of the Psychiatric Genomics Consortium et al., 2013). Large-scale GWA studies 

have linked 15 genetic loci to the risk of MDD development (Hyde et al., 2016). Despite many 

limitations in the search of genetics of MDD, multiple candidate genes are frequently considered 

to be related to MDD. The Serotonin Transporter (5HTT/SLC6A4) and Serotonin Receptor 2A 

(HTR2A) (Lin et al., 2015) genes involved in the serotonergic system are candidate genes 

associated with MDD given that the majority of antidepressant drugs interact with these systems 

(Schneider et al., 2018). Multiple investigations have linked the genetic variations in the gene 

SLC6A4 to MDD (Mendonça et al., 2019; Ran et al., 2020). Using in vitro studies, it was shown 

that a 44-bp repeat polymorphism in the promoter region of the gene 5-HTTLPR affects 

expression levels of the serotonin transporter (Nonen et al., 2016; Schneider et al., 2018). Another 

candidate gene responsible for MDD is brain-derived neurotrophic factor (BDNF) that plays a 

role in neurogenesis (Hariri, 2011). Expression levels of BDNF have shown a decrease in the 

hippocampus of animals exposed to chronic stress (Phillips, 2017; Ferrer et al., 2019).  

The gene TPH2, encoding for Tryptophan hydroxylase, is another important gene involved 

in serotonin synthesis in the brain, that has shown linkage to MDD pathobiology (Tao et al., 

2018). It is situated on chromosome 12q, a region previously implicated in linkage studies of BP 

(Van Den Bogaert et al., 2006). In addition, genetic variants have been associated with the risk 

https://paperpile.com/c/gvDCIq/bzxwq
https://paperpile.com/c/gvDCIq/ZDeQ+a1xR
https://paperpile.com/c/gvDCIq/ZDeQ+a1xR
https://paperpile.com/c/gvDCIq/ZDeQ+a1xR
https://paperpile.com/c/gvDCIq/ZDeQ+a1xR
https://paperpile.com/c/gvDCIq/ZDeQ+a1xR
https://paperpile.com/c/gvDCIq/ixpP
https://paperpile.com/c/gvDCIq/ixpP
https://paperpile.com/c/gvDCIq/ixpP
https://paperpile.com/c/gvDCIq/LT9R
https://paperpile.com/c/gvDCIq/LT9R
https://paperpile.com/c/gvDCIq/LT9R
https://paperpile.com/c/gvDCIq/VTLD
https://paperpile.com/c/gvDCIq/VTLD
https://paperpile.com/c/gvDCIq/VTLD
https://paperpile.com/c/gvDCIq/S7nh+7Dg8
https://paperpile.com/c/gvDCIq/S7nh+7Dg8
https://paperpile.com/c/gvDCIq/S7nh+7Dg8
https://paperpile.com/c/gvDCIq/S7nh+7Dg8
https://paperpile.com/c/gvDCIq/S7nh+7Dg8
https://paperpile.com/c/gvDCIq/qN93+VTLD
https://paperpile.com/c/gvDCIq/qN93+VTLD
https://paperpile.com/c/gvDCIq/qN93+VTLD
https://paperpile.com/c/gvDCIq/qN93+VTLD
https://paperpile.com/c/gvDCIq/qN93+VTLD
https://paperpile.com/c/gvDCIq/ORA6
https://paperpile.com/c/gvDCIq/fhIU+B5Sl
https://paperpile.com/c/gvDCIq/fhIU+B5Sl
https://paperpile.com/c/gvDCIq/fhIU+B5Sl
https://paperpile.com/c/gvDCIq/LXTK
https://paperpile.com/c/gvDCIq/LXTK
https://paperpile.com/c/gvDCIq/LXTK
https://paperpile.com/c/gvDCIq/LXTK
https://paperpile.com/c/gvDCIq/c7Js
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of developing MDD. Zhang et al. observed a functional mutation (Arg441His) that causes loss 

of function in serotonin synthesis. This mutation has also been observed in several patients with 

MDD, while it was absent in healthy controls (Zhang et al., 2005). Furthermore, epigenetic 

studies have suggested that an interaction between genetics and environment could be the best 

model explaining the neurobiology of MDD. For instance, an interaction has been found between 

stress and DNA demethylation in glucocorticoid-response elements of FKBP5 (Menke et al., 

2013; Humphreys et al., 2019). This interplay causes elevated expression of FKBP5, resulting in 

glucocorticoid receptor resistance (Han et al., 2017).  

 

Transcriptome profiling in major depression 

DLPFC gene expression analysis using RNA-Seq in MDD subjects demonstrated altered 

expression of immune related genes including humanin like-8 (MTRNRL8), interleukin-8 (IL8), 

and serpin peptidase inhibitor, clade H (SERPINH1) and chemokine ligand 4 (CCL4) compared 

with controls (Pantazatos et al., 2017). Also, deficits in microglial, endothelial (blood-brain 

barrier), ATPase activity and astrocytic cell functions were shown to be contributing to MDD. 

Evidence shows that transcriptome signature is different in male and female. Labonte et al 

(Labonté et al., 2017) profiled transcriptome of six brain regions, including Orbitofrontal cortex 

(BA11), DLPFC (BA8/9), cingulate gyrus 25 (BA25; vmPFC), anterior insula, nucleus 

accumbens, and ventral subiculum from MDD subjects and controls. They observed a major 

rearrangement of transcriptional patterns in MDD, with limited overlap between males and 

females, an effect seen in both depressed humans and stressed mice. In addition, they found 

decreased expression of the female-specific hub gene Dusp6 in the mouse prefrontal cortex 

https://paperpile.com/c/gvDCIq/RCgl
https://paperpile.com/c/gvDCIq/RCgl
https://paperpile.com/c/gvDCIq/RCgl
https://paperpile.com/c/gvDCIq/Da2N+X3Xa
https://paperpile.com/c/gvDCIq/Da2N+X3Xa
https://paperpile.com/c/gvDCIq/Da2N+X3Xa
https://paperpile.com/c/gvDCIq/Da2N+X3Xa
https://paperpile.com/c/gvDCIq/Da2N+X3Xa
https://paperpile.com/c/gvDCIq/Da2N+X3Xa
https://paperpile.com/c/gvDCIq/tcLj
https://paperpile.com/c/gvDCIq/tcLj
https://paperpile.com/c/gvDCIq/tcLj
https://paperpile.com/c/gvDCIq/v4gb6
https://paperpile.com/c/gvDCIq/v4gb6
https://paperpile.com/c/gvDCIq/v4gb6
https://paperpile.com/c/gvDCIq/y9KvA
https://paperpile.com/c/gvDCIq/y9KvA
https://paperpile.com/c/gvDCIq/y9KvA
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mimicked stress susceptibility in females, but not males, by inducing ERK signaling and 

pyramidal neuron excitability. A recent study performed single nucleus RNA-Seq (snRNA-Seq) 

transcriptomics on ~80,000 nuclei from the DLPFC of male subjects with MDD and of healthy 

individuals (Nagy et al., 2020). The authors observed 26 cellular clusters, of which 60% showed 

transcriptional alterations in MDD subjects. They reported that the greatest expression changes 

were found in deep layer excitatory neurons and immature oligodendrocyte precursor cells 

(OPCs).   

 

1-3-3- Shared molecular signature across brain diseases 

Previously, we have described the clinical symptoms and molecular mechanisms of several 

brain diseases. Many of these conditions share similar clinical characteristics and genetic 

alterations. For instance, Scz, BP, and MDD have frequently shown overlapping symptoms, 

suggesting that they could, at least, share similar pathobiology (American Psychiatric Association, 

2013; Hafemeister, 2019).Several investigations have shed light on the heterogeneity within brain 

diseases and the degree of the similarities between closely related disorders (Matias, Morgado and 

Gomes, 2019; Pardiñas et al., 2019; Strohäker et al., 2019). Patterns of converging clinical and 

biological characteristics across NDDs such as AD, PD, and PA have been lately discussed 

(Parikshak, Gandal and Geschwind, 2015; Lynch et al., 2016; Santiago, Bottero and Potashkin, 

2017). This phenotypic overlap proposes potential similar molecular pathobiology, which is 

supported by recent large-scale genome-wide association studies (GWAS)(International 

Schizophrenia Consortium et al., 2009; Cross-Disorder Group of the Psychiatric Genomics 

https://paperpile.com/c/gvDCIq/q7Rl
https://paperpile.com/c/gvDCIq/q7Rl
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https://paperpile.com/c/gvDCIq/tT1qu+P2WYS+N9HPn
https://paperpile.com/c/gvDCIq/tT1qu+P2WYS+N9HPn
https://paperpile.com/c/gvDCIq/tT1qu+P2WYS+N9HPn
https://paperpile.com/c/gvDCIq/tT1qu+P2WYS+N9HPn
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Consortium, 2013; Gandal et al., 2018).  Similar examples can be found in genes that do not 

encode enzymes. 

For example, among the four clinically discernible ciliopathies with overlapping features 

caused by TMEM67 mutations, nephronophthisis with liver fibrosis (NPHP11) is distinguished 

from the other three by no or only mild neurological involvement, which can be explained by the 

hypomorphic nature of NPHP11-causing mutations55. Such observations indicate that different 

quantitative effects of mutations could result in either the presence or absence of specific 

symptoms or differing degrees of severity. Relevant examples for the latter might include 

mutations in enzymes required for O-mannosylation of proteins (for example, POMGNT1, 

POMT1 and POMT2) causing related types of muscular dystrophy-dystroglycanopathies 

distinguished by clinical severity56, and possibly SCN1A mutations causing familial febrile 

seizures (FEB, less severe), generalized epilepsy with febrile seizures plus (GEFS+, more severe) 

or Dravet syndrome (most severe). A group of researchers (Zhu et al., 2014; Brainstorm 

Consortium et al., 2018) observed a number of genes with particularly hot zone de novo mutations 

overlapped across multiple NPDs including Scz, ASD, intellectual disability (ID), and Epileptic 

encephalopathies (EE). Figure 1-2 illustrates some of these genes including ALS2CL, CHD4, 

GNAO1, ITPR1, KIAA2018, PAQR8, SCN2A, TRRAP and ZBTB40. 

https://paperpile.com/c/gvDCIq/tT1qu+P2WYS+N9HPn
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Figure 1-2 | The overlap of genes with de novo mutations across four mental illnesses (adopted 

from (Zhu et al. 2014))  
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In a large-scale GWAS study (Brainstorm Consortium et al., 2018),  genomic data for 265,218 

patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 

subjects, was used to quantify the degree of overlap for genetic risk factors of common brain 

disorders (Figure 1-3). The authors found that common variant risks for psychiatric disorders 

correlate significantly between ADHD, BP, MDD, and Scz. On the other hand, neurological 

disorders were more distinct from one another and from the psychiatric disorders, except for 

migraine, which showed correlation with ADHD, MDD, and Tourette syndrome. The authors also 

observed significant genetic similarity between disorders and early life cognitive measures (e.g., 

years of education and college attainment) of the subjects, revealing positive correlation with 

multiples NPDs such as anorexia nervosa and BP, and negative correlation with some neurological 

disorders including AD and ischemic stroke.  

https://paperpile.com/c/gvDCIq/7z67
https://paperpile.com/c/gvDCIq/7z67
https://paperpile.com/c/gvDCIq/7z67
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Figure 1-3 | Subsection of genetic risk correlations among brain disorders and quantitative 

phenotypes. Heritability analysis of brain disorders points to pervasive sharing of genetic risk among 

psychiatric disorders. These correlations are largely absent among neurological disorders but are 

present for both groups in relation to neurocognitive quantitative phenotypes. Only significant 

correlations shown. Line color and solidity indicate direction and magnitude of correlation, 

respectively (Brainstorm Consortium et al., 2018).   

https://paperpile.com/c/gvDCIq/7z67
https://paperpile.com/c/gvDCIq/7z67
https://paperpile.com/c/gvDCIq/7z67
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Gandal and colleagues (Gandal et al., 2018) used RNA-Seq and microarray to investigate 

transcriptome profiling of post-mortem samples from five major NPDs including ASD, Scz, 

MDD, BP, and alcoholism (AAD). They observed significant transcriptome overlap across ASD, 

Scz, BP, and MDD. Using co-expression network analysis, they further found that an astrocyte-

specific co-expression module was up-regulated in ASD, BD, and SCZ. Also, multiple neuron-

specific modules showed decreased expression in ASD, SCZ, and BD.  Ramaker et al. (Ramaker 

et al., 2017) also used RNA-Seq on brain samples from the anterior cingulate cortex (Acc), dlPFC, 

and nucleus accumbens from subjects with Scz, BP, MDD and controls. They found broadly 

down-regulated genes specific to neurons and up-regulation of astrocytes-specific genes in Scz 

and BP subjects compared with controls. One of the largest GWA studies was performed on 

232,964 cases and 494,162 controls with anorexia nervosa, ADHD, ASD, BP, MDD, obsessive-

compulsive disorder (OCD), Scz, and Tourette syndrome (Cross-Disorder Group of the 

Psychiatric Genomics Consortium. Electronic address: plee0@mgh.harvard.edu and Cross-

Disorder Group of the Psychiatric Genomics Consortium, 2019). The authors found significant 

genetic correlations between three groups of interconnected disorders including mood disorders, 

neurodevelopmental disorders, and compulsive disorders (Figure 1-4). They detected 109 loci 

linked to at least two disorders, including 23 loci with pleiotropic impacts on four or more 

disorders and 11 loci with antagonistic effects on multiple disorders.  

 

https://paperpile.com/c/gvDCIq/N9HPn
https://paperpile.com/c/gvDCIq/N9HPn
https://paperpile.com/c/gvDCIq/N9HPn
https://paperpile.com/c/gvDCIq/PsSMp
https://paperpile.com/c/gvDCIq/PsSMp
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https://paperpile.com/c/gvDCIq/PsSMp
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Figure 1-4 | SNP-based genetic correlations between eight disorders were depicted using an in-

directed graph to reveal complex genetic relationships. Only significant genetic correlations after 

Bonferroni correction in (A) were displayed. Each node represents a disorder, with edges indicating 

the strength of the pairwise correlations. The width of the edges increases, while the length decreases, 

with the absolute values of rg (Cross-Disorder Group of the Psychiatric Genomics Consortium. 

Electronic address: plee0@mgh.harvard.edu and Cross-Disorder Group of the Psychiatric Genomics 

Consortium, 2019).  

https://paperpile.com/c/gvDCIq/J6MoB
https://paperpile.com/c/gvDCIq/J6MoB
https://paperpile.com/c/gvDCIq/J6MoB
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One of the main challenges in the genetic field of neurodevelopmental diseases is to uncover 

disease-specific and shared neurobiological mechanisms (Geschwind and Flint, 2015). Integrative 

transcriptomic studies focus on the functional gap, but a comprehensive characterization of gene 

expression changes in brain regions from individuals with major brain NDDs and NPDs compared 

with healthy subjects is missing. We hypothesized that there are potential overlapping molecular 

signatures across major brain diseases including NDDs and NPDs. To address this, we performed 

large-scale transcriptomic profiling using bulk RNA-Seq samples from post-mortem brain 

regions.  

https://paperpile.com/c/gvDCIq/bzxwq
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Objectives 

Our main aim in this thesis was to explore the molecular signature of neurodegenerative and 

psychiatric disorders at the transcriptome level using analysis of RNA-Seq data by exploiting 

computational tools and statistical tests. The main objectives of the thesis were: 

1) To study disease-specific transcriptional changes  

a) To investigate the genes responsible for the pathobiology of neurodegenerative and 

psychiatric diseases 

b) To explore similar transcriptome signature across NDDs and NPDs 

c) To study the molecular pathways involved in the pathology of brain diseases 

2) To study cortical-specific transcriptional changes across NDD and NPDs 

a) To study the genes involved in the pathobiology of disease across regions 

b) To study shared molecular signature of cortical regions across diseases 

3) To explore molecular signatures that are coordinatedly altered across diseases 

a) To find the genes that behave in the same manner across NDDs and NPDs  

b) To find correlation between brain cell types and gene modules that are involved in multiple 

NDDs and NPDs   
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2-1- Samples and raw data 

RNA-Seq raw data were obtained from 4,711 post-mortem brain samples from subjects with 

AD (n = 906 samples), PD (n = 29), PA (n = 58), PSP (n = 168), SZ (n = 535), ASD (n = 187), 

MDD (n = 240), BP (n = 510), and matched controls pooled across alls studies (n = 2078), through 

23 previously-published studies (Lipska et al., 2006; Wu et al., 2012; Akula et al., 2014; He et 

al., 2014; Li et al., 2014; Xiao et al., 2014; Corley et al., 2016; Dumitriu et al., 2016; Liu et al., 

2016; Mariet Allen et al., 2016; Chang et al., 2017; Labonté et al., 2017; MacMullen, Fallahi and 

Davis, 2017; Pacifico and Davis, 2017; Pantazatos et al., 2017; Ramaker et al., 2017; Wright et 

al., 2017; Gandal et al., 2018; Jaffe et al., 2018; M. Wang et al., 2018) and consortia including 

CommonMind Consortium and PsychENCODE Consortium from Sage Synapse 

(https://www.synapse.org/) and the NCBI Gene Expression Omnibus (GEO) 

(https://www.ncbi.nlm.nih.gov/geo/) (see Table 2-1 | RNA-Seq expression datasets obtained to 

use in this study .The samples from individual studies were processed separately and analyzed 

according to a harmonized pipeline as described below in data processing section.  

 

 

 

 

  

https://www.ncbi.nlm.nih.gov/geo/
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Table 2-1 | RNA-Seq expression datasets obtained to use in this study 

Diagnosis Study/ 

Project  

Accession ID  # Samples Brain region Ref 

Controls Cases   

AD  Wang et al syn3159438 280 742 Anterior 

prefrontal cortex, 

perirhinal cortex,  

superior 

temporal gyrus,  

pars 

opercularis 

(M. Wang et al., 

2018) 

Allen et al  syn5550404 155 164 Temporal 

cortex, 

cerebellum 

(Mariet Allen et 

al., 2016) 

PD Dumitriu et al PRJNA283498 44 29 BA9 (Dumitriu et al., 

2016) 

PA Allen et al  syn5550404 Mentioned 

(155) 

58 Temporal 

cortex, 

cerebellum 

(Mariet Allen et 

al., 2016) 

PSP Allen et al  syn5550404 Mentioned 

(155) 

168 Temporal 

cortex, 

cerebellum 

(Mariet Allen et 

al., 2016) 

Scz Jaffe et al  syn12299750 320 175 Dorsolateral 

prefrontal cortex 

(DLPFC) 

(Jaffe et al., 

2018) 

Xiao et al PRJNA235930 12 10 BA9,  

BA24 

(Xiao et al., 

2014) 

Chang et al PRJNA379666 24 22 Amygdala (Chang et al., 

2017) 

Corley et al PRJNA343829 19 19 DLPFC (Corley et al., 

2016) 

Wu et al PRJEB2939 9 9 Superior 

temporal gyrus 

(Wu et al., 

2012) 

CommonMind 

consortium 

syn18097439 294 47 DLPFC (Fromer et al., 

2016) 

CommonMind 

consortium-HBCC 

syn18097439 167 87 DLPFC (Fromer et al., 

2016) 

BrainGVEX syn4590909 257 95 Frontal 

cortex 

(PsychENCODE 

Consortium et al., 

2015) 

https://paperpile.com/c/gvDCIq/7nLL4
https://paperpile.com/c/gvDCIq/7nLL4
https://paperpile.com/c/gvDCIq/7nLL4
https://paperpile.com/c/gvDCIq/7nLL4
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https://paperpile.com/c/gvDCIq/PnYIl
https://paperpile.com/c/gvDCIq/PnYIl
https://paperpile.com/c/gvDCIq/PnYIl
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https://paperpile.com/c/gvDCIq/lqqck
https://paperpile.com/c/gvDCIq/lqqck
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https://paperpile.com/c/gvDCIq/PnYIl
https://paperpile.com/c/gvDCIq/PnYIl
https://paperpile.com/c/gvDCIq/PnYIl
https://paperpile.com/c/gvDCIq/PnYIl
https://paperpile.com/c/gvDCIq/PnYIl
https://paperpile.com/c/gvDCIq/PnYIl
https://paperpile.com/c/gvDCIq/PnYIl
https://paperpile.com/c/gvDCIq/PnYIl
https://paperpile.com/c/gvDCIq/pfnbE
https://paperpile.com/c/gvDCIq/pfnbE
https://paperpile.com/c/gvDCIq/pfnbE
https://paperpile.com/c/gvDCIq/pfnbE
https://paperpile.com/c/gvDCIq/rsyME
https://paperpile.com/c/gvDCIq/rsyME
https://paperpile.com/c/gvDCIq/rsyME
https://paperpile.com/c/gvDCIq/rsyME
https://paperpile.com/c/gvDCIq/9ebrv
https://paperpile.com/c/gvDCIq/9ebrv
https://paperpile.com/c/gvDCIq/9ebrv
https://paperpile.com/c/gvDCIq/9ebrv
https://paperpile.com/c/gvDCIq/LF3vW
https://paperpile.com/c/gvDCIq/LF3vW
https://paperpile.com/c/gvDCIq/LF3vW
https://paperpile.com/c/gvDCIq/LF3vW
https://paperpile.com/c/gvDCIq/tBUBx
https://paperpile.com/c/gvDCIq/tBUBx
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https://paperpile.com/c/gvDCIq/RMkQK
https://paperpile.com/c/gvDCIq/RMkQK
https://paperpile.com/c/gvDCIq/RMkQK
https://paperpile.com/c/gvDCIq/RMkQK
https://paperpile.com/c/gvDCIq/RMkQK
https://paperpile.com/c/gvDCIq/RMkQK
https://paperpile.com/c/gvDCIq/RMkQK
https://paperpile.com/c/gvDCIq/RMkQK
https://paperpile.com/c/gvDCIq/832hL
https://paperpile.com/c/gvDCIq/832hL
https://paperpile.com/c/gvDCIq/832hL
https://paperpile.com/c/gvDCIq/832hL
https://paperpile.com/c/gvDCIq/832hL
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Ramaker et al PRJNA319583 70 71 anterior 

cingulate cortex, 

DLPFC, 

 nucleus 

accumbens  

(Ramaker et al., 

2017) 

ASD Wright et al PRJNA398545 39 13 DLPFC (Wright et al., 

2017) 

Li J et al PRJNA263196 6 6 Corpus 

callosum 

(Li et al., 2014) 

Liu et al PRJNA254971 38 34 Superior 

frontal gyrus 

(Liu et al., 2016) 

Yale-ASD syn4566141 30 15 DLPFC (PsychENCODE 

Consortium et al., 

2015) 

UCLA-ASD syn4587609 126 119 BA4/6, 

 BA38,  

BA7, 

BA17   

(PsychENCODE 

Consortium et al., 

2015) 

MDD Ramaker et al PRJNA319583 Mentioned 

(70) 

69 anterior 

cingulate cortex, 

DLPFC, 

nucleus 

accumbens  

(Ramaker et al., 

2017) 

Pantazatos et 

al 

PRJNA394722 29 30 DLPFC 

(BA9) 

(Pantazatos et 

al., 2017) 

Labonte et al PRJNA398031 122 141 Orbitofrontal 

cortex (BA11), 

DLPFC 

(BA8/9), 

cingulate 

gyrus 25 (BA25; 

vmPFC),  

anterior 

insula, 

nucleus 

accumbens, 

ventral 

subiculum  

(Labonté et al., 

2017) 

BP Xiao et al PRJNA235930 Mentioned 

(12) 

14 BA9,  

BA24 

(Xiao et al., 

2014) 

CommonMind 

consortium 

syn18097439 Mentioned 

(294) 

257 DLPFC (Fromer et al., 

2016) 

https://paperpile.com/c/gvDCIq/PsSMp
https://paperpile.com/c/gvDCIq/PsSMp
https://paperpile.com/c/gvDCIq/PsSMp
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https://paperpile.com/c/gvDCIq/832hL
https://paperpile.com/c/gvDCIq/832hL
https://paperpile.com/c/gvDCIq/PsSMp
https://paperpile.com/c/gvDCIq/PsSMp
https://paperpile.com/c/gvDCIq/PsSMp
https://paperpile.com/c/gvDCIq/PsSMp
https://paperpile.com/c/gvDCIq/v4gb6
https://paperpile.com/c/gvDCIq/v4gb6
https://paperpile.com/c/gvDCIq/v4gb6
https://paperpile.com/c/gvDCIq/v4gb6
https://paperpile.com/c/gvDCIq/y9KvA
https://paperpile.com/c/gvDCIq/y9KvA
https://paperpile.com/c/gvDCIq/y9KvA
https://paperpile.com/c/gvDCIq/y9KvA
https://paperpile.com/c/gvDCIq/rsyME
https://paperpile.com/c/gvDCIq/rsyME
https://paperpile.com/c/gvDCIq/rsyME
https://paperpile.com/c/gvDCIq/rsyME
https://paperpile.com/c/gvDCIq/RMkQK
https://paperpile.com/c/gvDCIq/RMkQK
https://paperpile.com/c/gvDCIq/RMkQK
https://paperpile.com/c/gvDCIq/RMkQK
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CommonMind 

consortium-HBCC 

syn18097439 Mentioned 

(167) 

58 DLPFC (Fromer et al., 

2016) 

BrainGVEX syn4590909 Mentioned 

(257) 

73 Frontal 

cortex 

(PsychENCODE 

Consortium et al., 

2015) 

Ramaker et al PRJNA319583 Mentioned 

(70) 

71 anterior 

cingulate cortex, 

DLPFC, 

 nucleus 

accumbens  

(Ramaker et al., 

2017) 

Pacifico et al PRJNA318642 18 18 Dorsal 

striatum 

(Pacifico and 

Davis, 2017) 

McMullen et 

al 

PRJNA321439 8 8 Putamen, 

Caudate 

nucleus 

2-2- (MacMullen, 

Fallahi and 

Davis, 2017) 

Akula et al PRJNA231202 11 11 DLPFC (Akula et al., 

2014) 

AD, Alzheimer’s disease; PD, Parkinson’s disease; PSP, progressive supranuclear palsy; PA, pathological 

aging; Scz, schizophrenia; ASD, autism spectrum disorder; MDD, majore depressive disorder; BP, bipolar 

disorder. 

 

 

 

 

 

 

 

 

https://paperpile.com/c/gvDCIq/RMkQK
https://paperpile.com/c/gvDCIq/RMkQK
https://paperpile.com/c/gvDCIq/RMkQK
https://paperpile.com/c/gvDCIq/RMkQK
https://paperpile.com/c/gvDCIq/832hL
https://paperpile.com/c/gvDCIq/832hL
https://paperpile.com/c/gvDCIq/832hL
https://paperpile.com/c/gvDCIq/832hL
https://paperpile.com/c/gvDCIq/832hL
https://paperpile.com/c/gvDCIq/PsSMp
https://paperpile.com/c/gvDCIq/PsSMp
https://paperpile.com/c/gvDCIq/PsSMp
https://paperpile.com/c/gvDCIq/PsSMp
https://paperpile.com/c/gvDCIq/m8rqA
https://paperpile.com/c/gvDCIq/m8rqA
https://paperpile.com/c/gvDCIq/7ty38
https://paperpile.com/c/gvDCIq/7ty38
https://paperpile.com/c/gvDCIq/7ty38
https://paperpile.com/c/gvDCIq/Dujok
https://paperpile.com/c/gvDCIq/Dujok
https://paperpile.com/c/gvDCIq/Dujok
https://paperpile.com/c/gvDCIq/Dujok
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2-3-  Transcriptomic Pipeline 

2-3-1- Data processing 

We used RNA-Seq fastq files as the initial source of analysis. The samples that were retrieved as 

SRA and BAM files were converted to fastq file formats using SRA-toolkit (Staff, SRAS, 2011) 

and SAM-tools(Ramirez-Gonzalez et al., 2012), respectively. For further sample processing, the 

Grape pipeline (Knowles et al., 2013) was used for RNA-Seq analysis, with Nextflow (Di 

Tommaso et al., 2017) as the execution backend, the STAR aligner v.2.6.0a tool (Dobin et al., 

2013) for mapping reads to the human genome build hg19 with GENCODE v.28 annotations, and 

the RSEM tool (Li and Dewey, 2011) for isoform quantification (using default options). Nextflow 

is a workflow management system that uses Docker technology for the multi-scale handling of 

containerized computation. Nextflow was developed as a solution to the numerical instability 

problems that happen when data-analytic pipelines are used on different computational platforms. 

Next, post-alignment quality control (QC) was performed using STAR aligner statistics, Qualimap 

v.2.2.1 tools (Okonechnikov, Conesa and García-Alcalde, 2016), and Picard tools v1.8 

(http://broadinstitute.github.io/picard/) by setting options to check for the total number of reads, 

total number of mapped reads, GC percentage, exonic rate, intronic rate, intergenic rate, duplication 

rate, and insertion/deletion rate. To control for differences in sequencing statistics, a matrix was 

generated from an aggregate of the above-mentioned QC tools according to the samples. Raw read 

counts were subsequently normalized against the read coverage, GC percentage, and gene length 

and log2-transformed using the cqn R package v.1.30.0 (Hansen, Irizarry and Wu, 2012). To filter 

out lowly-expressed genes, only genes with at least log2(FPKM) of 0.5 in half of the samples were 

kept for further analyses. The sva R package v.3.32.1(Leek, J. T., Johnson, W. E., Parker, H. S., 

Jaffe, A. E., & Storey, J. D., 2014) was used to correct for any batch effect of sequencing library 

https://paperpile.com/c/gvDCIq/FPFtk
https://paperpile.com/c/gvDCIq/9VkSi
https://paperpile.com/c/gvDCIq/9VkSi
https://paperpile.com/c/gvDCIq/9VkSi
https://paperpile.com/c/gvDCIq/J5oUU
https://paperpile.com/c/gvDCIq/J5oUU
https://paperpile.com/c/gvDCIq/J5oUU
https://paperpile.com/c/gvDCIq/dv8iu
https://paperpile.com/c/gvDCIq/dv8iu
https://paperpile.com/c/gvDCIq/dv8iu
https://paperpile.com/c/gvDCIq/dv8iu
https://paperpile.com/c/gvDCIq/boORG
https://paperpile.com/c/gvDCIq/boORG
https://paperpile.com/c/gvDCIq/boORG
https://paperpile.com/c/gvDCIq/boORG
https://paperpile.com/c/gvDCIq/ZVzN7
https://paperpile.com/c/gvDCIq/yemw6
https://paperpile.com/c/gvDCIq/D5DVP
https://paperpile.com/c/gvDCIq/Y2E0m
https://paperpile.com/c/gvDCIq/Y2E0m
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preparations. To remove sample outliers, standardized network connectivity Z-scores were 

measured and a cutoff of Z < -2 was set as the threshold (Shiffler, 1988; Cousineau and Chartier, 

2010). The design of the study is illustrated in Figure 1-2.  

 

 

2-3-2- Clustering and tSNE analysis 

T-distributed Stochastic Neighbor Embedding (t-SNE) method (Maaten and Hinton, 2008) 

was used to visualize variation across datasets using all normalized datasets which were pooled 

together in an expression matrix. t-SNE is a machine learning algorithm for visualization 

developed by Laurens van der Maaten and Geoffrey Hinton. It is a nonlinear dimensionality 

reduction technique appropriate for embedding high-dimensional data for visualization in a low-

dimensional space of two or three dimensions. Specifically, it models each high-dimensional 

object by a two- or three-dimensional point in such a way that similar objects are modeled by 

nearby points and dissimilar objects are modeled by distant points with high probability.  

 

Before using t-SNE, principal component analysis (PCA)(Monfreda, 2012) was used to 

reduce the number of dimensions and obtain a small number of principal components as input to 

the tSNE analysis. PCA is a data transformation technique that is used to reduce multidimensional 

data sets to a lower number of dimensions for further analysis. In PCA, a data set of interrelated 

variables is transformed to a new set of variables called principal components (PCs) in such a way 

that they are uncorrelated and the first few of these PCs retain most of the variation present in the 

entire data set. Thus, the first PC is a linear combination of all the actual variables in such a way 

https://paperpile.com/c/gvDCIq/oLyxe+nr9jw
https://paperpile.com/c/gvDCIq/oLyxe+nr9jw
https://paperpile.com/c/gvDCIq/vg1Wr
https://paperpile.com/c/gvDCIq/W5M5c
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that it has the greatest amount of variation. Second PC is also a linear combination of the original 

variables in such a way that it has the most variation in the remaining PCs. Here, top two variable 

principal components were used for plotting. Sample clustering was performed by calculating the 

distance from the expression matrix (log2(FPKM)), clustering using hclust function, and building 

a dendrogram  tree using the dendextend R package (Galili, 2015).  

 

https://paperpile.com/c/gvDCIq/wbJif
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Figure 2-1 | Schematic of the study design and the samples used for gene expression analysis 

via a universal pipeline. Brain RNA-Seq data were obtained from subjects with AD (n =906 

samples), PD (n = 29), PA (n = 58), PSP (n = 168), SZ (n = 535), ASD (n = 187), MDD (n = 

240), BP (n = 510), and matched controls (n = 2078). Figure from Sadeghi et al., 2020 (in 

preparation) 
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2-4- Differential Gene Expression (DGE) analysis  

For disease- and region-specific DGE analyses, normalized expression data from relevant 

studies were combined and DGE was calculated using linear mixed-effects models by the nlme R 

package v.3.1-140 (Pinheiro et al., 2012), with fixed effects of diagnosis, age, sex, and study (and 

brain region when calculating disease-specific DE) and a random effect for subjects to fix for 

overlapping subjects between the studies (expression ~ diagnosis + age + sex+ study + 1 | subject). 

Linear mixed models are an extension of simple linear models to allow both fixed and random 

effects, and are particularly used when there is non independence in the data, such as arises from 

a hierarchical structure (Lindstrom and Bates, 1988). Mixed models are especially useful when 

working with a within-subjects design because it works around the ANOVA assumption that data 

points are independent of one another. In a within subjects’ design, one participant provides 

multiple data points and those data will correlate with one another because they come from the 

same participant. Therefore, using a mixed model allows you to systematically account for item-

level variability (within subjects) and subject-level variability (within groups) (Fitzmaurice, Laird 

and Ware, 2012). 

The calculated log2 fold-change (log2FC) values were used for downstream analyses. 

Significantly differentially expressed genes (DEGs) for each disease compared to controls were 

filtered by using a p-value of < 0.05 and |log2FC| > 0.5 as a significant threshold.  

 

https://paperpile.com/c/gvDCIq/URBI4
https://paperpile.com/c/gvDCIq/URBI4
https://paperpile.com/c/gvDCIq/URBI4
https://paperpile.com/c/gvDCIq/yAhe
https://paperpile.com/c/gvDCIq/xnTW
https://paperpile.com/c/gvDCIq/xnTW
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2-5-  Prediction accuracy of regional transcriptome  

To see which regions have the largest transcriptional difference between disease and control, 

normalized expressions of DEGs for each region were used to build classifier models using 

random forest algorithms (Breiman, 2001). Random forest classifier is an ensemble learning 

method for classification, regression and other tasks that operate by constructing a multitude of 

decision trees at training time and outputting the class that is the mode of the classes 

(classification) or mean prediction (regression) of the individual trees (Belgiu and Drăguţ, 2016). 

Accuracy, sensitivity and specificity of the final models were used for comparing the results. 

To see discrimination of each disease from control whithin each region, top principal components 

were computed by a combination of PCA and tSNE using normalized expressions of DEGs.  

 

2-6- Gene enrichment analysis for DEGs 

A common approach to interpreting gene expression data is gene enrichment analysis based 

on the functional annotation of the differentially expressed genes (Werner 2008). This is useful 

for finding out if the differentially expressed genes are associated with a certain biological process 

or molecular function and may have an association with disease phenotypes (Curtis et al. 2005). 

The methods use statistical approaches to identify significantly enriched or depleted groups of 

genes. Transcriptomics technologies and proteomics results often identify thousands of genes 

which are used for the analysis. 

https://paperpile.com/c/gvDCIq/pL19a
https://paperpile.com/c/gvDCIq/ENQH
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 The Gene Ontology, containing standardised annotation of gene products, is commonly used 

for this purpose. It works by comparing the frequency of individual annotations in the gene list 

(e.g differentially expressed genes) with a reference list (usually all genes on the microarray or in 

the genome) (Gene Ontology Consortium 2015). Enrichment of biological pathways supplied by 

KEGG, Ingenuity, Reactome or WikiPathways can be performed in a similar way (Harris et al. 

2004). 

Gene enrichment analysis for DEGs for each disease against controls was performed by 

retrieving data from KEGG and GO databases using the gprofiler2 R package. A p-value of > 0.05 

followed by FDR correction was used to filter significant enrichments. 

 

2-7- Analysis of transcriptome similarity  

To analyze cross-disease transcriptome profile comparisons, we only kept the 10,313 genes 

that were common across all diseases. Pairwise gene expression comparisons were performed 

using Spearman’s correlation over log2FC values of the genes. Cohen’s d effect sizes were also 

estimated based on the correlation statistics obtained from pairwise comparisons. Moreover, brain 

region-specific comparisons across diseases were performed only for the genes shared between 

the diseases. 

In order to highlight the degree of overlap in gene signatures across diseases, as well as 

comparing disease pairs for shared brain regions, we performed an unbiased rank-rank 

hypergeometric overlap (RRHO) analysis using the RRHO R package v.1.24.0(Plaisier et al., 

2010). A one-sided version of the test only looking for over-enrichment was used. RRHO 

https://paperpile.com/c/gvDCIq/ML7Re
https://paperpile.com/c/gvDCIq/ML7Re
https://paperpile.com/c/gvDCIq/ML7Re
https://paperpile.com/c/gvDCIq/ML7Re
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difference maps were produced by calculating for each pixel the normal approximation of 

difference in the log odds ratio and standard error of overlap with expression data in the 

intersection list. P-values were calculated and FDR-corrected for multiple comparisons across 

pixels. In addition, a multidimensional scaling (MDS) analysis was performed using 

transcriptional correlations statistics obtained from log2FC values of the 10313 common genes 

across diseases. To do this, correlation values obtained from transcriptional comparisons were first 

used to calculate topological proximity values. Next, the adjacency of the diseases was obtained 

using the Igraph R package (Han et al., 2010). 

 

2-8- Gene co-expression network analysis 

In order to see at a more detailed level of the transcriptional overlap across diseases, we 

wanted to check the existence of the genes co-expressed or co-regulated together. To do so, we 

searched for co-expression modules acoss 10313 shared genes. We performed robust Weighted 

Gene Co-Expression Network Analysis (rWGCNA) using the WGCNA R package v.1.68 

(Langfelder and Horvath, 2008) to identify co-expressed gene modules using expression data that 

were first normalized for different covariates. WGCNA is a systems biology method that was first 

developed for describing the correlation patterns among genes across microarray samples. It can 

be used for finding clusters (modules) of highly correlated genes, for obtaining such clusters using 

the module eigengene or an intramodular hub gene, for relating modules to one another and to 

external sample traits (using eigengene network methodology), and for obtaining module 

membership measures. Correlation networks facilitate network-based gene screening methods that 

https://paperpile.com/c/gvDCIq/5lDo
https://paperpile.com/c/gvDCIq/5lDo
https://paperpile.com/c/gvDCIq/5lDo
https://paperpile.com/c/gvDCIq/k8FgY


61 

can be used to identify candidate biomarkers or therapeutic targets (Langfelder and Horvath, 

2008).  

The expression datasets from independent disease-specific DGE analyses were combined 

using the 10,313 genes common between all datasets. Batch effect correction for the studies was 

performed using the ComBat function from the sva R package. 

Co-expression analysis was then performed using signed networks. Co-expression networks 

were built using the blockwise modules function. The network dendrogram was created using the 

“average” linkage hierarchical clustering of the topological overlap dissimilarity matrix to identify 

modules of highly co-regulated genes. To obtain an approximately scale-free weighted co-

expression network, a power function with a soft-threshold of 10 was applied to the merged 

expression dataset. Modules were defined as branches of the dendrogram using the hybrid 

dynamic tree-cutting method, followed by a dynamic cut-tree algorithm to separate clustering 

dendrogram branches into gene modules. Modules were then summarized by their first principal 

component (ME, module eigengene) and those with high eigengene correlations were again 

merged. 

Because the topological overlap between two genes reflects both their direct and indirect 

interactions through all other genes in the network, this approach helps to build more cohesive and 

more biologically meaningful modules. To ensure the robustness of the module, random 

resampling was performed from the initial set of samples 100 times followed by consensus 

network analysis. The final module was achieved using network parameters including biweight 

midcorrelation (bicor), a minimum module size of 100, deepsplit of 4, merge threshold of 0.1, and 

negative pamStage. Each module was assigned by a unique (and arbitrary) color identifier. Genes 

https://paperpile.com/c/gvDCIq/k8FgY
https://paperpile.com/c/gvDCIq/k8FgY
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with the highest intramodular connectivity (those with more connections at the core of the 

network) were considered as hub genes. Module (eigengene)-disease associations were evaluated 

using a linear mixed-effects model. Significance values were FDR-corrected to account for 

multiple comparisons. Genes within each module were prioritized based on their module 

membership (kME), defined as a correlation to the module eigengene. 

 

2-9-  Co-expression modules gene ontology analysis 

Gene Ontology (GO) pathway enrichment for each gene module was performed using the 

ClusterProfiler (Yu et al., 2012) and the gprofiler2 R packages. Only pathways that comprise 10 

to 2000 genes were filtered for analysis. The top pathways with an FDR-corrected P-value < 0.05 

were considered significantly related. Next, transcription factor binding sites (TFBSs) enrichment 

analysis was performed for the genes within modules using the gprofiler2 R package, by using 

annotations from the TRANSFAC database (Wingender, 1996). 

 

2-10- Cell-type-specific gene expression analysis 

To analyze cell-type-specific gene expression within each module, we retrieved the single-

cell data for human brain cell types from the PanglaoDB database (Franzén, Gan and Björkegren, 

2019). PanglaoDB is a database that contains collections of single-cell experiments results and 

information of many tissues from human and mouse. The genes within each module were then 

compared to the marker genes for each brain cell type using the GeneOverlap R package v.1.20.0 

https://paperpile.com/c/gvDCIq/ETApD
https://paperpile.com/c/gvDCIq/ZQbIF
https://paperpile.com/c/gvDCIq/wFCGk
https://paperpile.com/c/gvDCIq/wFCGk
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(Shen, 2014). Fisher’s exact test with an FDR-correction for p-values was used to analyze the gene 

overlap comparisons. To check the consistency of the results, another cell-type-specific expression 

dataset composed of five main brain cell types including neurons, astrocytes, oligodendrocytes, 

microglia, and endothelial cells was obtained from another single-cell RNAseq study(Zhang et 

al., 2016). Gene symbols were mapped to Ensembl gene identifiers using the biomaRt R package. 

Specificity for the five brain cell types was calculated with the specificity.index function from pSI 

R package v.1.1 (Xu et al., 2014). Fisher’s exact test with FDR correction for p-values was applied 

to check for the significant cell-type specificity (FDR-corrected p-value <0.05 was considered 

statistically significant). 

 

2-11- Brain enhancer RNAs co-expression analysis 

In order to regulate the gene expression, there are many different types of regulatory factors 

involved at the level of epigenetics, genetics, transcriptional, and post-transcriptional level. 

Enhancer RNAs (eRNAs) are cis-regulatory elements in the genome that co-operate with 

promoters to regulate expression of target gene (Arnold, Wells and Li, 2019). Here, we aimed at 

searching for the relationship between gene co-expression modules and eRNA expression modules 

in the brain. An expression dataset for brain enhancer-RNAs (eRNA) was obtained from an 

independent study of human brain region-specific eRNAs co-expression analysis (Yao et al., 

2015). To estimate the co-expression of each gene module and each brain eRNA module Fisher’s 

exact test was used. A P-value <0.05 followed by FDR correction was used to filter the significant 

coregulations.  

https://paperpile.com/c/gvDCIq/5cDRg
https://paperpile.com/c/gvDCIq/LQ8ZR
https://paperpile.com/c/gvDCIq/LQ8ZR
https://paperpile.com/c/gvDCIq/LQ8ZR
https://paperpile.com/c/gvDCIq/LQ8ZR
https://paperpile.com/c/gvDCIq/KDiLS
https://paperpile.com/c/gvDCIq/KDiLS
https://paperpile.com/c/gvDCIq/KDiLS
https://paperpile.com/c/gvDCIq/XpqZ
https://paperpile.com/c/gvDCIq/rLNjP
https://paperpile.com/c/gvDCIq/rLNjP
https://paperpile.com/c/gvDCIq/rLNjP
https://paperpile.com/c/gvDCIq/rLNjP
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2-12- Software and code availability 

The R programming language version 3.5.0 (https://www.r-project.org/) was used for 

statistical analyses and data visualization. The functions and libraries used in this study are 

available as R packages: WGCNA, nlme, RRHO, GeneOverlap, pSI, ggplot2, Rtsne, gprofiler2 at 

CRAN (http://cran.r-project.org/) and/or Bioconductor (https://bioconductor.org/). A list of 

packages and tools used in this study is provided in Table 2-2. 
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Table 2-2 | List of packages and tools used for data analysis and visualization 

Package/tool Usage Ref. 

WGCNA Analysis of co-expression modules in a 

transcriptional dataset 

(Langfelder and Horvath, 2008) 

RRHO A tool for measuring geometric overlap 

across gene expression datasets using 

pairwise comparisons 

(Plaisier et al., 2010) 

GeneOverlap Analysis of gene overlap between two or 

more expression datasets 

(Shen, 2014) 

pSI Calculating specificity of gene 

expression for cell types 

(Xu et al., 2014) 

ggplot2 Data visualization (Wickham, 2011) 

Rtsne Analysis of t-SNE (Krijthe, 2015) 

caret Machine learning and random forest (Kuhn and Others, 2008) 

igraph Network visualization (Csardi, Nepusz and Others, 2006) 

gprofiler2 Gene ontology enrichment analysis (Raudvere et al., 2019) 

nlme Analysis of linear mixed effect model (Pinheiro et al., 2012) 

limma Linear model for differential gene 

expression analysis 

(Ritchie et al., 2015) 

dendextend Producing dendrogram and clustering 

tree   

(Galili, 2015) 

pheatmap Heatmap visualization (Kolde and Kolde, 2015) 

ComplexHeatmap Heatmap visualization (Gu, Eils and Schlesner, 2016) 

  

https://paperpile.com/c/gvDCIq/k8FgY
https://paperpile.com/c/gvDCIq/ML7Re
https://paperpile.com/c/gvDCIq/ML7Re
https://paperpile.com/c/gvDCIq/ML7Re
https://paperpile.com/c/gvDCIq/5cDRg
https://paperpile.com/c/gvDCIq/KDiLS
https://paperpile.com/c/gvDCIq/KDiLS
https://paperpile.com/c/gvDCIq/KDiLS
https://paperpile.com/c/gvDCIq/ulxy
https://paperpile.com/c/gvDCIq/eQVW
https://paperpile.com/c/gvDCIq/e640
https://paperpile.com/c/gvDCIq/FYLv
https://paperpile.com/c/gvDCIq/wJwS
https://paperpile.com/c/gvDCIq/wJwS
https://paperpile.com/c/gvDCIq/wJwS
https://paperpile.com/c/gvDCIq/URBI4
https://paperpile.com/c/gvDCIq/URBI4
https://paperpile.com/c/gvDCIq/URBI4
https://paperpile.com/c/gvDCIq/8S8n
https://paperpile.com/c/gvDCIq/8S8n
https://paperpile.com/c/gvDCIq/8S8n
https://paperpile.com/c/gvDCIq/wbJif
https://paperpile.com/c/gvDCIq/isoZ
https://paperpile.com/c/gvDCIq/B1iZ
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2-13- Data availability 

2-13-1-Raw data 

The raw data incorporated in this work were gathered from various resources. RNA-Seq raw 

data, metadata, and source files are available on the NCBI GEO database and Sage Synapse as 

described before. 

2-13-2-GitHub repository for the scripts 

 The scripts used for the analyses in this thesis will be available at the following Github 

address:  https://github.com/isadeghi87/Brain_RNAseq   

https://github.com/isadeghi87/Brain_RNAseq
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3-1- Sample processing and merging datasets 

We analyzed 4711 RNA-Seq samples from patients with AD (n = 906 samples), PD (n = 29), PA 

(n = 58), PSP (n = 168), SZ (n = 535), ASD (n = 187), MDD (n = 240), BP (n = 510), and matched 

controls pooled across alls studies (n = 2078) (). These samples were obtained from 7 brain lobes. 

The majority of samples were collected from the frontal lobe (from DLPFC), temporal lobe and 

from the cerebellum. 

The samples from each study were processed using the Grape RNA-Seq pipeline and 

underwent normalization and quality control. First, samples from each study were processed and 

the gene expression values were normalized and log2 transformed (as described in Materials and 

Methods).  For each condition, the normalized expression datasets were then merged together. 

We performed statistical tests to see the difference of several covariates such as age (using 

ANOVA), sex (gender; using chi square), PMI (using ANOVA), and RIN (using ANOVA) 

between patients and controls groups.  

3-1-1- Alzheimer’s data 

For AD, samples were obtained from three different studies. The number of AD samples were 

higher than that of controls. Statistical tests showed significant difference in age (p = 2.5 ×10-8), 

sex (p = 9 ×10-10), RIN (p = 0.008), PMI (p = 0.003), and study (p = 2.3 ×10-11). However, to 

correct for the effect of the variables, we included them in the model for differential gene 

expression. Multidimensional scaling (MDS) plots show that the samples are clustered into three 

groups which belong to three different studies. To remove the batch effect, we performed batch 

effect correction using the Combat function from the sva R package (described before). As is 

shown in Figure 3-2 after batch effect correction we do not see clustering of these three groups.  
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Figure 3-1 | A flowchart of the samples in this study. From left to right, the panels 

represent diagnosis, brain lobes, and brain subregions, with colors showing 

diagnosis. 
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Figure 3-2. QC plots are shown for AD datasets.  Normalized data from three cohorts analyzed in this 

study consisted of anterior prefrontal cortex, perirhinal cortex, superior temporal gyrus, pars 

opercularis, temporal cortex, and cerebellum brain samples from subjects with AD (n = 906) and 

controls (n = 479). Sample outliers were removed and batch-effects were corrected.  
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3-1-2- Parkinson’s data 

Samples for PD and matched controls were obtained from a single study. The number of 

samples for PD (n = 29) were lower than for controls (n = 44) (Figure 3-3). Statistical tests showed 

no significant differences between age (p = 0.19) and PMI (p = 0.17) of controls and PD patients, 

but a significant difference was observed for RIN (p = 4.3×10-5). MDS plot shows that the first 

principal component (PC1) catches most variability across the dataset.  

 

3-1-3- Pathological aging data 

Samples for PA and matched controls were obtained from two studies. The samples consisted 

of temporal cortex and cerebellum brain samples from subjects with PA (n =58) and controls (n 

=155) (Figure 3-4). The two groups showed significant differences in age (p = 0.003) and PMI 

(p = 1×10-4), but not in RIN (p > 0.05), sex (p > 0.05) and study (p > 0.05). MDS plot 

demonstrated separation of two clusters which contain samples from two different studies. Batch 

effect correction showed removal of the effect of study.  
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Figure 3-3 | QC plots for PD dataset. This dataset consisted of dorsolateral prefrontal cortex (BA9) 

brain samples from subjects with PD (n = 29) and controls (n = 44). Sample outliers were detected 

by standardized network connectivity z-scores and removed. Multidimensional scaling (MDS) plots 

show sample clustering by the first two expression principal components. Groups were balanced by 

available covariates and potential confounding factors. 
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Figure 3-4 | QC plots are shown for PA datasets. Normalized data from two studies analyzed here 

consisted of temporal cortex and cerebellum brain samples from subjects with PA (n =58) and 

controls (n =155). Sample outliers were detected by standardized network connectivity z-scores and 

removed. Batch effects were corrected for the studies. Multidimensional scaling (MDS) plots show 

sample clustering by the first two expression principal components. Groups were balanced by 

available covariates and potential confounding factors.  
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3-1-4- Pogressive supranuclear palsy data 

 

Like PA, PSP dataset was also obtained from two studies, consisting of temporal cortex and 

cerebellum brain samples from subjects with PSP (n = 168) and controls (n =155) (Figure 3-5). 

Between PA patients and controls we observed significant differences in age (p = 4.9×10-21), PMI 

(p = 0.012), and RIN (p = 1×10-15). Here, we also observed clustering of samples from two studies 

in MDS plot, which was removed after batch effect correction.  

 

3-1-5- Schizophrenia data 

For Scz, normalized data from nine studies analyzed here consisted of granular frontal area 

9, DLPFC, anterior cingulate cortex, ventral anterior cingulate 25, amygdala, superior temporal 

gyrus, and nucleus accumbens brain samples from subjects with Scz (n = 535) and controls (n = 

1172) (Figure 3-6). Age and sex did not show difference between Scz and control groups. But 

we observed a significant difference in study (p = 1.5×10-8) between the groups. MDS plots 

showed removal of batch effect from study. 
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Figure 3-5 | QC plots are shown for PSP datasets. Normalized data from two studies analyzed here 

consisted of temporal cortex and cerebellum brain samples from subjects with PSP (n = 168) and 

controls (n =155). Sample outliers were detected by standardized network connectivity z-scores and 

removed. Batch effects were corrected for the studies. Multidimensional scaling (MDS) plots show 

sample clustering by the first two expression principal components. Groups were balanced by 

available covariates and potential confounding factors. 
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Figure 3-6 | QC plots shown for Scz datasets. Normalized data from nine studies analyzed here 

consisted of granular frontal area 9, DLPFC, anterior cingulate cortex, ventral anterior cingulate 25, 

amygdala, superior temporal gyrus, and nucleus accumbens brain samples from subjects with Scz (n 

= 535) and controls (n = 1172). Sample outliers were detected by standardized network connectivity 

z-scores and removed. Batch effects were corrected for the studies. Multidimensional scaling (MDS) 

plots show sample clustering by the first two expression principal components. Groups were balanced 

by available covariates and potential confounding factors.  
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3-1-6- Austism data 

For ASD, samples obtained from five studies consisted of corpus callosum, inferior temporal 

cortex, auditory cortex, V1C (primary visual cortex), superior frontal gyrus, and DLPFC brain 

samples from subjects with ASD (n = 187) and controls (n = 239) (Figure 3-7). Statistical tests 

showed a difference in study (p = 0.009) between the groups.  

 

3-1-7- Major depressive disorder data 

MDD dataset was obtained from normalized data from three studies consisting of anterior 

insula (aINS), nucleus accumbens (Nac), DLPFC, orbitofrontal cortex (OFC), ventral subiculum 

(vSub), cingulate gyrus 25 (Cg25), anterior cingulate cortex, brain samples from subjects with 

MDD (n = 240) and controls (n = 221) (Figure 3-8). The number of samples were balanced 

between the groups, as well as for age, PMI and brain lobe. There was a significant difference 

between sex of MDD compared with controls (p = 0.002). Pre-batch effect MDS plots show 

clustering of samples from three studies. This effect was removed after batch effect correction as 

is presented in post-batch effect MDS plots.  
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Figure 3-7 | QC plots are presented for ASD datasets. Normalized data from five studies analyzed 

here consisted of corpus callosum, inferior temporal cortex, auditory cortex, V1C (primary visual 

cortex), superior frontal gyrus, and DLPFC brain samples from subjects with ASD (n = 187) and 

controls (n = 239). Sample outliers were detected by standardized network connectivity z-scores and 

removed. Batch effects were corrected for the studies. Multidimensional scaling (MDS) plots show 

sample clustering by the first two expression principal components. Groups were balanced by 

available covariates and potential confounding factors.  
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Figure 3-8 | QC plots are shown for MDD datasets. Normalized data from three studies analyzed here 

consisted of anterior insula (aINS), nucleus accumbens (Nac), DLPFC, orbitofrontal cortex (OFC), 

ventral subiculum (vSub), cingulate gyrus 25 (Cg25), anterior cingulate cortex, brain samples from 

subjects with MDD (n = 240) and controls (n = 221). Sample outliers were detected by standardized 

network connectivity z-scores and removed. Batch effects were corrected for the studies. 

Multidimensional scaling (MDS) plots show sample clustering by the first two expression principal 

components. Groups were balanced by available covariates and potential confounding factors.  
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3-1-8- Bipolar disorder data 

BP dataset was obtained from combining normalized data from eight studies consisting of corpus 

callosum, inferior temporal cortex, auditory cortex, V1C (primary visual cortex), superior frontal gyrus, 

and DLPFC brain samples from subjects with BP (n = 511) and controls (n = 837) (Figure 3-9). Significant 

difference in age (p = 1.8×10-16), sex (p = 0.02), study (p = 1.6×10-19), and brain lobe (p = 3.4×10-13) 

between MDD patients and controls subjects. Batch effect of study was removed after correction 

as is shown in MDS plots.   
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Figure 3-9 | A set of QC plots shown for BP datasets. Normalized data from eight studies analyzed 

here consisted of corpus callosum, inferior temporal cortex, auditory cortex, V1C (primary visual 

cortex), superior frontal gyrus, and DLPFC brain samples from subjects with BP (n = 511) and 

controls (n = 837). Sample outliers were detected by standardized network connectivity z-scores and 

removed. Batch effects were corrected for the studies. Multidimensional scaling (MDS) plots show 

sample clustering by the first two expression principal components. Groups were balanced by 

available covariates and potential confounding factors.  
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3-2- tSNE analysis and sample clustering 

In order to see clustering of the samples which were merged from different datasets, tSNE 

analysis was used to visualize the variance across expression datasets. As described in Chapter 

2, we first performed PCA analysis to reduce the dimensions. This analysis was performed in two 

ways: using shared genes across diseases (10313 genes) and using union of normalized genes 

(17997 genes). tSNE space was able to separate disease conditions into clusters. PA and PSP 

were clustered together which was likely due to their specific transcriptional architecture (Fig. 

2). ASD was separated into three clusters that was explained by the variation across brain regions. 

Likewise, MDD, Scz and BP were separated into different clusters which was explained by 

variation across brain regions. t-SNE using union of normalized genes (Figure 3-10), showed 

more separation of phenotypes compared with the one obtained using shared genes (Figure 3-10). 

This is probably due to the genes present in one condition and absent in others.  
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Figure 3-10 | Samples clustering across datasets. tSNE visualisation showing pooled samples, colored 

by disease condition (left) and brain regions (right). Plots on the top are obtained using 10313 shared 

genes across diseases, while plots at the bottom are obtained using union of 17997 normalized genes.   
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3-3- Disease-and brain region-specific DGE 

Disease-specific DGE analyses were performed using a linear mixed-effects model. DGE 

results provided insights regarding transcriptional changes for the pathology of each disease. 

These results allowed us to determine the top differentially expressed genes (DEGs) across 

diseases ( 

Figure 3-11). PD, PSP, PA, and AD showed the highest number of DEGs (1188, 443, 123, 

and 81, respectively; P <0.05), suggesting that NDDs underwent more transcriptional changes 

compared to NPDs. We observed that some of the genes were differentially expressed in at least 

seven diseases (Figure 3-12). Gene enrichment analysis performed using DEGs for each disease 

revealed perturbation of central nervous system development, mitochondrion, neuron part, axon 

mechanism, neuron development, and dendrite functions (empirical permutation test with false 

discovery rate (FDR)-corrected p-value < 0.05) ( Figure 3-13). 
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Figure 3-11 | Disease-specific DGE across eight diseases. Top differentially expressed genes (DEGs) 

are labeled for each disease compared to controls (green; upregulation, red; downregulation) (P < 

0.05).  
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Figure 3-12 | A heatmap of differentially expressed genes across neurodegenerative disorders (NDD) 

and neuropsychiatric disorders (NPD). Each set of genes are differentially expressed either across 

NDD (blue rows) or across NPD (black rows). The row labels represent the genes differentially 

expressed in at least 7 diseases. (P < 0.05)    
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Figure 3-13 | Disease-specific gene enrichment analysis. Top significantly enriched pathways are 

represented for significantly differentially expressed genes across diseases (FDR-corrected p-value < 

0.05).   
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3-4- Cortical-specific differential gene expression 

Moreover, brain-region-specific DGE revealed the cerebellum had a high transcriptional 

alteration in AD, PSP, and PA (Figure 3-14 a, P < 0.05). Despite having small log2FC values, 

temporal and frontal lobe showed broad changes across multiple diseases (Figure 3-14 and Figure 

3-15). Limbic lobe showed greater changes for ASD and SZ.  

 

3-4-1- Top overlapping differentially expressed genes 

In order to see which genes are more differentially expressed across brain regions in different 

diseases, we compared DEGs obtained for each region in each disease. Top overlapping genes 

that were significantly differentially expressed across brain regions were CX3CR1 with a 

developmental role in the migration of microglia (Gyoneva et al., 2019), CHI3L1 which activates 

astrocytes following amyloid-beta aggregation in the brain(Muszyński et al., 2017; Gyoneva et 

al., 2019), NPAS4 with an inhibitory role in synapse development and synaptic plasticity (Spiegel 

et al., 2014), SERPINA3 and BAG3 which are associated with PD, AD, and other neuropathies 

as they enhance the formation of amyloid-fibrils in disease(Kamboh et al., 2006; Lei, Brizzee 

and Johnson, 2015; Cao et al., 2017), and NR4A1 (Rothe et al., 2017), a regulator of microglia 

activation (Figure 3-16).  
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Figure 3-14 | The number of region-specific differentially expressed genes (DEGs) corresponding to 

each disease (P < 0.05). (b) Density plot illustrating regional gene expression (log2FC) patterns for 

each disease.  
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Figure 3-15 | Region-specific DGE. Top differentially expressed genes (DEGs) are labeled for each 

region across diseases (P < 0.05).  
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Figure 3-16 | Top overlapping genes with differential expression across diseases, with size 

representing frequency of overlap and color showing log2FC value.  
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3-5- Prediction accuracy of regional transcriptome  

To assess which brain regions transcriptomic profiles were able to discriminate better 

between disease and control samples, we built classifier models using the expression of DEGs. 

High single-region accuracy for a disease was observed for temporal in Scz (88%), ASD (86%), 

PSP (80%) and AD (79%), for frontal in PD (86%) and for cerebellum in AD (80%) and PSP 

(79%) (Figure 3-17). Diseases with highest mean accuracy across regions were PD (86%), ASD 

(85%) and PSP (79%). MDD had the lowest accuracy (67%), suggesting its low transcriptional 

changes across diseases compared to controls (Figure 3-17 and Figure 3-18).  

As is shown in Figure 3-18, the number of samples for some comparisons such as occipital 

and limbic lobe in ASD is very low. Accordingly, the values obtained for prediction accuracy 

and other factors are not reliable.  
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Figure 3-17 | Power of each region to discriminate between transcriptomes of disease and control 

subjects. Each model was built using normalized expression of differentially expressed genes for each 

region. x-axis shows specificity and y-axis shows sensitivity of the model. Prediction accuracy (accu) 

of regions across diseases is shown.   
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Figure 3-18 | tSNE visualization of gene expression of brain regions across diseases compared to 

controls.   
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Table 3-1 | Prediction accuracy of regional transcriptomes for each disease 

Disease region accuracy kappa sensitivity specificity 

AD Frontal 0.72 0.18 0.9 0.26 

AD Cerebellum 0.8 0.59 0.8 0.79 

AD Temporal 0.79 0.44 0.94 0.45 

PD Frontal 0.86 0.7 0.91 0.79 

PA Temporal 0.69 0.05 0.89 0.14 

PA Cerebellum 0.77 0.32 0.92 0.36 

PSP Cerebellum 0.79 0.57 0.79 0.79 

PSP Temporal 0.8 0.6 0.95 0.67 

Scz Frontal 0.71 0.35 0.85 0.48 

Scz Limbic 0.53 0.06 0.62 0.44 

Scz Temporal 0.88 0.75 0.75 1 

Scz Basal ganglia 0.64 0.27 0.55 0.73 

ASD Frontal 0.72 0.38 0.53 0.83 

ASD Temporal 0.86 0.72 0.95 0.76 

ASD Cerebellum 0.7 0.41 0.73 0.68 

ASD Occipital 1 1 1 1 



96 

ASD Limbic 1 1 1 1 

BP Limbic 0.73 0.47 0.53 0.93 

BP Frontal 0.79 0.26 0.28 0.93 

BP Basal ganglia 0.63 0.27 0.64 0.62 

MDD Basal ganglia 0.68 0.36 0.65 0.71 

MDD Frontal 0.66 0.31 0.66 0.65 

MDD Insular 0.7 0.39 0.64 0.75 

MDD Limbic 0.64 0.29 0.72 0.57 

AD, Alzheimer’s disease; PD, Parkinson’s disease; PSP, progressive supranuclear palsy; PA, pathological 

aging; Scz, schizophrenia; ASD, autism spectrum disorder; MDD, majore depressive disorder; BP, bipolar 

disorder. 
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3-6- Differential gene expression (DGE) analyses reveal cross-disease transcriptome 

overlap 

Log2FC values of 10,313 genes that were common across all diseases were used for cross-

disease transcriptome overlap analyses. Cohen’s d effect sizes were also estimated based on the 

correlation statistics obtained from pairwise comparisons. The results demonstrated significant 

transcriptome overlaps across diseases with the highest positive correlations of gene expressions 

between AD-PD, ASD-SZ, ASD-PD, PA-PSP, AD-SZ, AD-ASD, and SZ-PD (Spearman’s ⍴ 

values ≥ 0.2, FDR-corrected P < 0.05, Cohen’s d > 0.2) (Figure 3-19 and Table 3-2). BP did not 

reveal significant transcriptome correlation with other diseases except with MDD (Spearman’s ⍴ 

= 0.13, Cohen’s d = 0.25). This is likely due to smaller Log2FC values in BP transcriptome (Fig. 

3a).  
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Figure 3-19 | Transcriptome similarities across diseases. (a) Transcriptome signature overlap obtained 

by Spearman’s correlations using log2FC values of the shared genes across diseases. Upper panel 

shows correlation 𝝆 values and the lower panel represents FDR-corrected p-values. (b) Barplot shows 

top pairwise transcriptome correlation across diseases measured by Spearman’s correlation of log2FC 

values from common genes (* FDR-correct P < 0.05). 
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Table 3-2 | Pairwise transcriptome correlations across diseases. 

 Correlation SEM FDR Cohen_d significance 

AD-ASD 0.402 0.010 0 0.88 *** 

AD-Scz 0.421 0.010 0 0.93 *** 

AD-BP -0.269 0.010 2E-168 -0.56 *** 

AD-MDD -0.272 0.010 1E-171 -0.56 *** 

AD-PD 0.608 0.010 0 1.53 *** 

AD-PA 0.002 0.010 0.8533 0.00  

AD-PSP 0.205 0.010 1.4E-96 0.42 *** 

ASD-Scz 0.605 0.010 0 1.52 *** 

ASD-BP -0.004 0.010 0.6899 -0.01  

ASD-MDD -0.158 0.010 4.0E-58 -0.32 *** 

ASD-PD 0.517 0.010 0 1.21 *** 

ASD-PA -0.100 0.010 3.3E-24 -0.20 *** 

ASD-PSP -0.319 0.010 2.6E-239 -0.67 *** 

Scz-BP 0.084 0.010 1.5E-17 0.17 *** 

Scz-MDD -0.247 0.010 5.2E-141 -0.51 *** 

Scz-PD 0.382 0.010 0 0.83 *** 
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Scz-PA -0.157 0.010 4.8E-57 -0.32 *** 

Scz-PSP -0.238 0.010 3.1E-131 -0.49 *** 

BP-MDD 0.126 0.010 1.8E-37 0.25 *** 

BP-PD -0.129 0.010 8.6E-39 -0.26 *** 

BP-PA -0.039 0.010 0.0001 -0.08 *** 

BP-PSP -0.106 0.010 1.3E-26 -0.21 *** 

MDD-PD -0.128 0.010 2.4E-38 -0.26 *** 

MDD-PA 0.023 0.010 0.0208 0.05 * 

MDD-PSP 0.146 0.010 3.1E-49 0.29 *** 

PD-PA 0.143 0.010 8.3E-48 0.29 *** 

PD-PSP 0.106 0.010 5.8E-27 0.21 *** 

PA-PSP 0.480 0.010 0 1.09 *** 

AD, Alzheimer’s disease; PD, Parkinson’s disease; PSP, progressive supranuclear palsy; PA, pathological 

aging; Scz, schizophrenia; ASD, autism spectrum disorder; MDD, majore depressive disorder; BP, bipolar 

disorder. 
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3-6-1- Geometric overlap analysis 

In addition, an unbiased rank-rank hypergeometric overlap (RRHO (Plaisier et al., 2010)) 

analysis was performed to highlight shared transcriptional changes across diseases. RRHO results 

revealed higher overlap of downregulated genes than upregulated ones across multiple diseases 

(Fisher’s exact test with FDR < 0.05, Figure 3-20). PD demonstrated an overlap of both 

downregulated and upregulated transcriptome with AD, ASD, and SZ (Fisher’s exact test, FDR < 

0.05). The observed overlap between PSP and AD was mainly due to coordinated upregulation of 

the transcriptome (Figure 3-20).  

https://paperpile.com/c/gvDCIq/ML7Re
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Figure 3-20 | RRHO maps of pairwise transcriptional comparisons across diseases. The bottom left 

guide panel represents the cross-disease overlapping relationship. Signals in the upper left quadrant 

display an overlap for shared upregulated genes, while signals in the bottom right quadrant depict 

shared downregulated genes. The color bar displays the degree of significance of the overlap between 

two diseases (Fisher’s exact test with FDR < 0.05).   
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3-7- multidimensional scaling analysis 

 

Moreover, a multidimensional scaling (MDS) analysis was performed by measuring 

distances from correlations of expressions (log2FC) of shared genes across diseases. AD showed 

high relationships with other diseases including PD, ASD, SZ, and PSP (Figure 3-21). Notably, 

PA showed proximity with PSP and PD. Although the global structure of the network reveals a 

transcriptome relationship between NPDs (ASD, SZ, BP, and MDD) on one side and between 

NDDs (AD, PD, PSP, and PA) on the other side, ASD and SZ shared significant correlations with 

both NPDs and NDDs (Figure 3-21).  
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Figure 3-21 | Multidimensional scaling plot displays cross-disease transcriptome relationships using 

pairwise Spearman’s correlations. Only significant transcriptome correlations after FDR correction 

are displayed. Nodes represent disease and edges depict the strength of the pairwise correlation.  The 

width of the edges increases with the absolute 𝝆 values.   



105 

 

3-8- Brain regions demonstrated transcriptome similarity across diseases 

Brain region-specific DGE for each disease was performed using linear mixed effect models. 

Transcriptome comparisons for each region across diseases were performed using log2FC values 

for the genes shared between the diseases. The limbic lobe demonstrated the highest correlation 

between SZ and BP (Spearman’s ⍴ = 0.9, Figure 3-22, Figure 3-23 and Figure 3-24). The 

cerebellum revealed significant transcriptome correlation across AD, PSP, and PA (Fisher’s exact 

test, FDR < 0.05) and not for ASD, suggesting its possible involvement in NDDs. On the other 

hand, the frontal and temporal lobe showed significant transcriptome overlap across AD, ASD, 

SZ, and PD (FDR < 0.05, Figure 3-22), indicating the impairment of the regions in a broader 

spectrum of diseases. A significant transcriptional overlap was also observed for basal ganglia 

between SZ and MDD and BP (FDR < 0.05, Fig. 4d). This suggests the involvement of basal 

ganglia in mood and psychotic disorders (Hwang et al., 2006; Liu et al., 2019; Macpherson and 

Hikida, 2019). These transcriptome similarities suggest engagement of each brain region in 

multiple diseases. 
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Figure 3-22 | | Brain region-specific transcriptome correlations across diseases. Only significant 

correlations after FDR correction (FDR < 0.05) are displayed. The outer layer represents diseases, 

while the inner layer displays brain regions defined by colors.  
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Figure 3-23 | Transcriptome signatures overlap within each region obtained by Spearman’s 

correlations using log2FC values of the shared genes across diseases  
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Figure 3-24 | RRHO maps of pairwise transcriptional comparisons for each region across diseases. 

The guide panel represents the cross-disease overlapping relationship. Signals in the upper left 

quadrant display an overlap for shared upregulated genes, while signals in the bottom right quadrant 

depict shared downregulated genes. The color bar displays the degree of significance of the overlap 

between two diseases (Fisher’s exact test with FDR < 0.05).  
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3-9- Network analyses identified disease-specific and shared transcriptional 

signatures 

To identify transcriptional signatures in the brain and gain insight into the underlying 

molecular mechanisms related to diseases, we constructed co-expression networks over all 

combined normalized datasets using weighted gene co-expression network analysis (rWGCNA) 

(Langfelder and Horvath, 2008). First, we tried a combination of different parameters to obrain 

specific modules (Figure 3-25). Our analysis identified eleven shared and disease-specific co-

expression modules (Figure 3-26a). Each module comprised between 50 and 5073 genes (Figure 

3-26b). Multidimensional scaling (Figure 3-27a) and correlation analysis (Figure 3-27b) revealed 

the relationship between the gene modules. Also, correlation analyses demonstrated a higher 

relationship between modules and disease (adjusted R2 >0.2, FDR <0.05) than other covariates 

(Figure 3-28).  

 

https://paperpile.com/c/gvDCIq/k8FgY
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Figure 3-25 | Steps required for building robust gene co-expression network modules. (a) To obtain a 

final consensus network, co-expression network modules were built and tested using different 

network parameter sets.  
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Figure 3-26 | Cross-disease gene co-expression modules identified by network analysis. (a) A 

dendrogram plot displaying co-expression modules obtained from topological overlap of genes across 

diseases. Each color represents an individual module. (b) The corresponding plot at the bottom shows 

the number of genes within each module.   
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Figure 3-27 | Transciptome correlation of co-expression modules. (a) Multidimensional scaling plot 

depicts the modules relationship, with blue and red color representing positive and negative 

correlations, respectively. (b) Correlation plot corresponding to a, obtained from co-expression 

topological overlap of the modules.  
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Figure 3-28 | A heatmap of relationship between covariates and modules eigengene using linear 

regression. Values show adjusted R2 scores. (FDR < 0.05).  
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3-9-1- Brain cell-type-specificity of co-expression modules 

To check for the brain cell-types specificity for each module, single-cell data for human brain 

cell types were obtained from the PanglaoDB database (Franzén, Gan and Björkegren, 2019). 

Gene overlap comparisons between modules and cell types were computed using Fisher's exact 

test. The results demonstrated the specificity of the brown module for oligodendrocytes (FDR = 

2×10-20) and Schwann cells (FDR = 5×10-20), the yellow module for astrocytes (FDR = 6×10-9) 

and Bergmann glia (FDR = 1×10-6), the purple module for microglia (FDR = 1×10-7), the magenta 

module for neurons (FDR = 7×10-4) and pyramidal cells (FDR = 0.02), and the turquoise module 

for GABAergic neurons (FDR = 0.01, Figure 3-29).  

Using another single-cell expression dataset (Zhang et al., 2016) composed of five main brain 

cell types including neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells, results 

confirmed the enrichment of the yellow module for astrocytes (FDR = 3×10-176), the brown for 

oligodendrocytes (FDR = 5×10-152), the turquoise and magenta for neurons (FDR = 3×10-77 and 

9×10-31, respectively), and the purple for microglia (FDR = 3×10-43) (Figure 3-30). 
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Figure 3-29 | Brain cell type-specific enrichment of modules measured by comparing genes within 

each module to the brain single-cell dataset from PanglaoDB (Franzén, Gan and Björkegren, 2019).  

https://paperpile.com/c/gvDCIq/wFCGk


116 

 

Figure 3-30 | Brain cell type-specific enrichment of co-expression modules measured using a single-

cell expression dataset (Zhang et al., 2016) composed of five main brain cell types including neurons, 

astrocytes, oligodendrocytes, microglia, and endothelial cells. Fisher’s exact tests were used to 

perform the comparisons. Values show -log10(FDR-corrected p-values).  

https://paperpile.com/c/gvDCIq/LQ8ZR
https://paperpile.com/c/gvDCIq/LQ8ZR
https://paperpile.com/c/gvDCIq/LQ8ZR
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3-9-2- Transcriptome correlations of cell-type-specific modules 

In addition, to see transcriptome correlations of cell-type-specific modules (yellow for 

astrocyte, brown for oligodendrocytes, purple for microglia, and magenta and turquoise for 

neurons), we compared gene expression of each module across diseases using Spearman’s 

correlation test. Astrocyte and oligodendrocyte modules showed transcriptome similarity across 

PA, PSP and among Scz, PD, ASD, and AD (Spearman’s correlation 𝝆 > 0.2 and FDR-corrected 

p-value < 0.05) (Figure 3-31). For microglia, we observed transcriptome relationships between 

PD, ASD and AD, among PA and PSP and between MDD, Scz and BP (Spearman’s correlation 

𝝆 > 0.2 and FDR-corrected p-value < 0.05). In neuron-specific modules, positive transcriptome 

correlations were observed across, PA, PSP and Scz and among PD, ASD and AD (Spearman’s 

correlation 𝝆 > 0.2 and FDR-corrected p-value < 0.05). 
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Figure 3-31 | Transcriptome correlations of cell-type specific modules (astrocyte: yellow, 

oligodendrocyte: brown; microglia: purple; neuron: magenta and turquoise) across diseases.  
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3-9-3- Differential expression of co-expression modules 

Next, DGE for each module across diseases was computed using a linear mixed model. We 

observed that all modules except the red module are differentially expressed in AD. For ASD, five 

modules including the yellow, turquoise, red, purple, and magenta are dysregulated. All modules 

except the black module are up-regulated in MDD. PA and PSP show similarly down-regulation 

of the yellow module, turquoise, red, purple, magenta, brown and blue modules, and up-regulation 

of the black and green modules. PD shows up-regulation for the yellow, purple, green, brown and 

black modules and down-regulation of the turquoise and magenta modules. In Scz, we see mainly 

down-regulation of the modules (the turquoise, red, purple, magenta, and blue) and up-regulation 

of only black module. If we look at the behavior of each module across the diseases, we see that 

neuron-specific modules (magenta and turquoise) showed downregulation in all the diseases (FDR 

< 0.05) except in MDD (upregulation) and BP (no significant change observed) (Figure 3-32). 

These modules alongside the red module (with their hub genes; Figure 3-33 and Figure 3-34) were 

enriched for synapse organization, neuron part, and α-amino-3-hydroxy-5-methyl-4-isoxazole 

propionic acid (AMPA) receptor activity which mediates rapid synaptic transmission in the brain 

(Jia et al., 2020) (empirical permutation test with FDR < 0.05, Figure 3-35). An oligodendrocyte-

related module (brown and hub genes KIF13B, FMNL2, NDE1, and SLAIN1), which was 

upregulated in AD, PD, and MDD and downregulated in PA and PSP (FDR < 0.05, Figure 3-32 

and Figure 3-34) was enriched for neurogenesis, myelination, and cell projection (Figure 3-35). 

These results supported previous studies for the emerging role of oligodendrocytes in ND (Ahmed 

et al., 2013; Liu and Zhou, 2013; Dean et al., 2016; Krawczyk-Marć et al., 2019). Microglia-

associated module (purple and hub genes INPP5D, ARHGDIB, and TYROBP) revealed 

upregulation in AD, ASD, and PD, downregulation in BP, PA, PSP, and SZ (FDR < 0.05), and 

https://paperpile.com/c/gvDCIq/BV3Bb
https://paperpile.com/c/gvDCIq/BV3Bb
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https://paperpile.com/c/gvDCIq/r0dNT+pUWKN+GCoNT+d4qFm
https://paperpile.com/c/gvDCIq/r0dNT+pUWKN+GCoNT+d4qFm
https://paperpile.com/c/gvDCIq/r0dNT+pUWKN+GCoNT+d4qFm
https://paperpile.com/c/gvDCIq/r0dNT+pUWKN+GCoNT+d4qFm
https://paperpile.com/c/gvDCIq/r0dNT+pUWKN+GCoNT+d4qFm
https://paperpile.com/c/gvDCIq/r0dNT+pUWKN+GCoNT+d4qFm
https://paperpile.com/c/gvDCIq/r0dNT+pUWKN+GCoNT+d4qFm
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enrichment for cell activation and regulation of the immune system. These findings were in line 

with the evidence for microglial changes in AD (Hemonnot et al., 2019), ASD (Salter and Stevens, 

2017), and PD (Ferreira and Romero-Ramos, 2018), and also the crucial role of microglia in the 

CNS development and immunity (Graeber and Stre’rt, 1990; Mosser et al., 2017). An astrocyte-

specific module (yellow and hub genes YAP1 and FoxO1) enriched for circulatory system 

development, cell migration, and signal transduction (Figure 3-35) was upregulated in AD, ASD, 

MDD, and PD and downregulated in PA and PSP. An increase in astrocytic reactivity has 

previously been reported in response to amyloid-beta accumulation(Rodriguez-Vieitez et al., 

2016). Results confirmed previous evidence for the significant role of astrocytes in synapse 

formation, neuroprotection, and brain development (Kim et al., 2015; Li et al., 2019; Siracusa, 

Fusco and Cuzzocrea, 2019). 
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Figure 3-32 | Differential expression of modules across diseases shown by disease (a) and by module 

(b). 𝛽 values on y-axis computed by linear mixed effect model show relationship of modules 

eigengenes with diseases (*FDR < 0.05, **FDR < 0.01, ***FDR < 0.001).  
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Figure 3-33 | A network of top hub genes (nodes) within each module with highest changes across 

diseases. Each color shows a module. Edges indicate gene-gene weighted-correlations.   
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Figure 3-34 | The expression (log2FC) of modules top hub genes across diseases. Brain cell-type-

specific modules are annotated with colors.  
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Figure 3-35 | Heatmap plot of gene ontology enrichment for modules using top five significant 

pathways for each module (color key shows -log10(FDR)).  
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3-9-4- Enrichment analysis of transcription factors 

Finally, enrichment analysis of transcription factors and their binding motifs for each module 

revealed an overrepresentation of multiple motifs for several transcription factors including IRF-

4 (empirical permutation test; FDR-corrected p-value = 1×10-6 involved in neural survival (Guo 

et al., 2014), ELF1 (FDR-corrected p-value = 3.8×10-5) important for neurite growth (Gao et al., 

1996), BRN1 (FDR-corrected p-value = 0.003) playing role in neurogenesis (Dominguez, Ayoub 

and Rakic, 2013), and PLAG1 (FDR-corrected p-value = 4.6×10-5) involved in neocortical 

development (Sakai et al., 2019)(Figure 3-36). 

 

https://paperpile.com/c/gvDCIq/IHRnA
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https://paperpile.com/c/gvDCIq/oudY4
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Figure 3-36 | Enrichment of transcription factor binding sites (top two motifs shown) for each module.  
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3-9-5- Brain enhancer RNAs enrichment analysis 

Furthermore, to understand the relationship between the expression of brain enhancer RNAs 

(eRNA) and co-expression modules, enrichment analysis was performed using an independent 

dataset of eRNAs modules.(Yao et al., 2015) Results demonstrated the enrichment of multiple 

eRNA modules for the brain cell-type-specific modules (brown, yellow, turquoise, purple, and 

magenta)(Fisher’s exact test; FDR-corrected p-value <0.05, Figure 3-37), indicating their 

regulatory associations in brain circuits.  

 

3-9-6- Mitochondrial transcriptome enrichment analysis 

We have also performed mitochondrial transcriptome enrichment analysis for co-expression 

modules. In this analysis, the mitochondria were classified into synaptic and non-synaptic based 

on an independent study on mitochondrial modules. We observed that pink module was 

significantly enriched for non-synaptic, and turquoise module was enriched for both synaptic and 

non-synaptic mitochondria. These data show the involvement of pink and turquoise in 

mitochondrial function and their role in mitochondrial-related diseases such as neurodegeneratice 

diseases. AD and PD showed additional downregulation of a mitochondrial-related module 

(Figure 3-38Error! Reference source not found.), indicating the importance of mitochondria for 

synaptic connections, neuronal survival, and function (Schapira, 2008). 

 

 

https://paperpile.com/c/gvDCIq/rLNjP
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Figure 3-37 | Enrichment of brain enhancer RNAs for co-expression modules. The overlap between 

co-expression modules and eRNA modules from an independent dataset was computed by Fisher’s 

exact test (FDR < 0.05).   
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Figure 3-38 | The enrichment of co-expression modules for mitochondrial transcriptome. 

An independent study that previously reported mitochondrial co-expression modules was 

obtained and compared to co-expression modules in this study using Fisher’s exact tests 

(FDR < 0.05). Green and red colors represent an enrichment of synaptic and non-synaptic 

mitochondrial co-expression modules.  
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Chapter4.  Discussion 
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In this thesis, we aimed at exploring the molecular signature changes of cortical tissues from 

multiple brain diseases and understanding the similar and specific molecular pathology of 

neurodegenerative and psychiatric disorders. In order to achieve this, we exploited a large set of 

computational tools and statistical tests to analyze molecular signature of brain samples at the 

transcriptome level. The result found in this work are significantly strong that could provide a 

molecular framework to understanding pathogenesis of brain diseases.  

 

4-1- Thesis contribution 

Leveraging the transcriptome profile of post-mortem brain tissues, we highlighted the substantial 

overlapping molecular patterns across eight brain illnesses including NDDs and NPDs. Disease-

specific DGE showed high transcriptional alterations in PSP, AD, SZ, and PD, suggesting NDDs 

underwent more transcriptional changes compared to NPDs. At the cortical level, the largest 

transcriptional changes were observed in temporal, cerebellum, and frontal lobe across diseases, 

even though our study was limited because of the lack of particular brain regions for a few 

diseases. However, the results were confirmed by classifier models built for each region across 

diseases using the expression of DEGs, suggesting their important role in the pathobiology of 

diseases. Dysregulation of overlapping genes such as CX3CR1, CHI3L1, NPAS4, SERPINA3, and 

BAG3 across brain regions suggests shared perturbation of several mechanisms such as migration 

of microglia (Gyoneva et al., 2019), astrocytes activation, synapse development, and synaptic 

plasticity (Spiegel et al., 2014) across diseases. Microglia and astrocytes are vital in regulating 

neuronal activity and brain functioning during development and in the adult brain (Reemst et al., 

2016). These results support previous findings that dysfunction of molecular mechanisms in 

https://paperpile.com/c/gvDCIq/WxU1B
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microglia and astrocytes could contribute to neurodevelopmental diseases and potentially even 

late-onset neuropathology (Fakhoury, 2018; Li et al., 2019). 

Our new results also revealed shared transcription profiles between neurodegenerative and 

neurological diseases. Specifically, we observed similar transcriptional changes between AD-SZ, 

and AD-ASD, and between PD-ASD and PD-SZ. Moreover, within NDDs, we found 

transcriptome overlap between AD-PD and PA-PSP, while within NPDs, we found transcriptome 

similarity between SZ-ASD. These new findings provided insights about the shared cognitive 

impairment in ASD and SZ and their transcriptome similarity with NDDs (Sokol et al., 2011; 

Gonatopoulos-Pournatzis et al., 2020). Also, the results did not show a significant transcriptional 

correlation between AD and PA, suggesting their divergent molecular pathobiology (Murray and 

Dickson, 2014). Transcriptional relationships were not observed between MDD, BP, and other 

NPDs such as Scz and ASD as expected, which could be because of their heterogeneous nature 

(Gandal et al., 2018; Cross-Disorder Group of the Psychiatric Genomics Consortium. Electronic 

address: plee0@mgh.harvard.edu and Cross-Disorder Group of the Psychiatric Genomics 

Consortium, 2019).  

Cortical transcriptome comparisons demonstrated similar transcriptome in temporal and 

frontal lobe across NDDs and NPDs, implicating their impairment in the pathogenesis of a variety 

of brain diseases (Cobia et al., 2012; P. Allen et al., 2012; Maidan et al., 2016; Ng et al., 2017; 

Wolk et al., 2017; Matsuoka et al., 2018; Cajanus et al., 2019). Similar molecular patterns of the 

cerebellum were observed across AD, PSP, and PA, supporting its emerging role in the 

pathobiology of NDDs (Mormina et al., 2017; Kaufmann et al., 2019). Despite the lack of samples 

for all the diseases as mentioned before, basal ganglia and limbic lobe showed transcriptional 

similarities across Scz, ASD, BP and MDD, implying their involvement in several mood and 
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psychiatric disorders.These findings suggest, on one hand, the impairment of multiple brain 

regions (rather than one primary region) in disease and, on the other hand, the involvement of one 

region in multiple diseases. 

Co-expression network results revealed mainly downregulation of neuron-specific modules 

across multiple diseases including AD, PA, PSP, PD, ASD, and Scz. The microglial-related 

module showed both upregulation and downregulation reflecting activation or deactivation of 

microglia in brain dysfunction(Mosser et al., 2017; Salter and Stevens, 2017). Astrocyte- and 

oligodendrocyte-specific modules, similar to the microglial module, demonstrated broad 

dysregulation across diseases, representing the role of astrocytes and oligodendrocytes in 

neurogenesis, signaling, and cell development (Liu and Zhou, 2013; Gandal et al., 2018; Siracusa, 

Fusco and Cuzzocrea, 2019). ASD showed coordinated upregulation of astrocyte- and microglia-

specific modules on one hand, and downregulation of oligodendrocyte and neuron modules, on 

the other hand, in line with NDDs such as AD, PD, and PA, suggesting its similar molecular 

structure to that of NDDs (Kern et al., 2013). AD and PD showed additional downregulation of a 

mitochondrial-related module (Fig. S16b), indicating the importance of mitochondria for synaptic 

connections, neuronal survival, and function (Schapira, 2008) . 

 

4-2- Clinical prespective 

In the last decades, using advanced technology, our understanding of the causative 

mechanisms and genetic factors associated with neurodegenerative and psychiatric disorders has 

been improving. Nevertheless, one of key challenges in the field of neuroscience is implementing 

molecular findings into clinical applications in order to develop better diagnosis and more efficient 
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treatments for brain diseases. Regarding this, using highly efficient high-throuput sequencing data 

such as RNA-Seq and genome-wide sequencing methods to profile molecular structure of tissues 

engaged in disease could be both informative and applicable in clinics. Although the findings in 

this thesis may not be directly applied in the clinical settings, in the long term they could pave the 

way, as a significant help, for finding novel diagnostic and treatment approaches. For instance, 

understanding the similarity or specificity of the mechanisms involved in the pathogenesis of 

neurogenerative diseases could provide insights about finding molecular targets that could be 

considered for treatment of one or multiple diseases.  

 

4-3-  Limitations and strengths 

The work described in this thesis have its own limitations and strength. Although we tried to 

minimize the limitations as much as possible in order to provide more robust results, there were 

inevitable limitations. Fo instance, since tissue samples from all brain regions were not available 

for all the conditions, in some of them we might have missed the transcriptomic profile of the 

brain area in which the primary pathology is expected to be expressed (e.g. basal ganglia in PD). 

Additionaly, despite the large sample size included in the whole study, the number of samples for 

some diseases were lower compared to other diseases. Also, lack of some demographic data for 

the patients such as drug treatments could have provided us useful information as some 

medications are associated with transcriptomic changes after treatment.  

However, the work described in this thesis includes, to our knowledge, the largest 

transcipromic profiling of post-mortem brain samples from a wide range of brain regions collected 

from eight NDD and NPDs. Despite the limitations of the current analyses, molecular signatures 
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described here across NDD-NPDs can provide target leads for the development of therapeutic 

interventions that overcome indications solely based on clinical manifestations, thus paving the 

way for the rational design of  personalized and mechanistically-based therapies (Vilor-Tejedor et 

al., 2018). 

4-4- Future Research 

Given the design of our analyses, focusing on overlapping transcriptomic alterations, we do 

not expect to capture modifications directly linked to the underlying etiological mechanisms of 

the different conditions here studied. This will be addressed in future analyses with the same 

database, along with the exploration of diseases sharing common mechanisms (i.e. cerebral 

proteinopathies) or between the different stages of the same disease (i.e. preclinical and clinical 

stages of AD)(Nazeri et al., 2014; Yan et al., 2017). In line with this, we anticipate that future 

research will also benefit from the integration of transcriptomics with other omics modalities, such 

as genomics, proteomics, metabolomics, and epigenomics. This promises to provide deeper 

insights into the causative pathways through which genes and environment interact during life and 

influence the human brain (Casamassimi et al., 2017). Additional research could also benefit from 

further identification of sex-specific gene networks and transcription profiles to unravel the 

molecular mechanisms of brain diseases (Tiihonen et al., 2019; Villa, Della Torre and Maggi, 

2019; Kodama et al., 2020). 
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Conclusions 

The work presented in this work discusses transcriptional signatures of multiple 

neurodegeneratives diseases such as Alzheimer’s, Parkinson’s, Progressive supranuclear palsy, 

pre-clinical Alzheimer’s and psychiatric disorders including schizophrenia, autism, major 

depressive disorder and bipolar disorder. The summary of our contributions could be listed as 

following:  

• Neurodegenerative diseases show, in general, higher transcriptional changes 

compared to psychiatric disorders 

• There are transcriptional similarities between neurodegenerative diseases and 

psychiatric disorders.  

• Alzheimer’, autism and schizophrenia show higher transcriptional similarties. 

• Some cortical regions show higher transcriptional changes compared to other regions 

across diseases 

• Multiple brain regions show transcriptional similarities between neurodegenerative 

and psychiatric disorders, while some regions such as Cerebellum show involvement 

in neurodegenerative diseases. 

• There are some gene modules that coordinately change across brain diseases 

• There are co-expression gene modules specific to brain cell types that alter across 

diseases.  

• Transcriptome of some brain cell-types such as neurons change across both 

neurodegenerative and psychiatric disorders, while other cell-types (e.g. microglia) 

show transcriptional changes mostly in neurodegenerative diseases.   
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In this thesis, we provide a molecular framework to understand the molecular 

architecture of neurodegenerative and psychiatric disorders that could help the future 

studies and clinical approaches to find a better treatment.  
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