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Abstract 

Pump-and-treat (P&T) is a widely-adopted solution for the containment of solute plumes in 

contaminated aquifers. A cost-effective design of P&T systems requires optimizing 

(minimizing) the overall pumping rates (𝑄) . This optimization is a stochastic process, as Q 

is a random variable linked to the randomness of the aquifer hydraulic conductivity (𝐾). 

Previously presented stochastic approaches to minimize 𝑄 adopted two-dimensional (2D) 

Gaussian random spatial fields (r.s.f.) of log-transformed K. Recent studies based on 

geological entropy have demonstrated the limited ability of Gaussian r.s.f. to reproduce 

extreme K patterns, which mostly control transport in heterogeneous aquifers, when 

compared to non-Gaussian r.s.f. Moreover, 2D models generate different flow and transport 

connectivity than three-dimensional (3D) models. On these premises, this work aimed at 

extending previous works on P&T optimization in heterogeneous aquifers through Monte-

Carlo groundwater simulations of 2D and 3D Gaussian and non-Gaussian r.s.f. The results 

indicated that the mean ( 𝑄𝑛
̅̅̅̅ ) and variance (𝜎𝑄𝑛

2 ) of the optimal Q distribution depend 

strictly on the chosen model dimensionality and r.s.f. generator. In particular, 2D models 

and models embedding indicator-based (i.e. non-Gaussian) r.s.f. tended to generate higher 
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𝑄𝑛
̅̅̅̅  and 𝜎𝑄𝑛

2  than 3D models with increasing number of model layers (𝑁𝐿) and Gaussian 

models. This behavior can be explained considering the spatial ordering of K clusters in the 

simulated aquifers, which is measured through metrics derived from the concept of 

geological entropy.  It was found that 2D models and models embedding non-Gaussian r.s.f. 

displayed more spatially-persistent ordered K structures than 3D models and Gaussian 

models, resulting in higher 𝑄𝑛
̅̅̅̅  and 𝜎𝑄𝑛

2  . This is attributed to the relative amount of 

heterogeneity sampled by the solute source and the increased likelihood of more ordered 

𝐾 clusters to generate preferential flow and solute transport channeling than more 

disordered and chaotic systems, which enhance solute mixing. Combining P&T with 

physical barriers (i.e. cut-off walls) was helpful to reduce both 𝑄𝑛
̅̅̅̅  and 𝜎𝑄𝑛

2  in all tested 

scenarios, corroborating previous findings. However, the relative efficacy of a specific 

physical barrier geometry to reduce 𝑄𝑛
̅̅̅̅  and 𝜎𝑄𝑛

2  also depends on the chosen model 

dimensionality and r.s.f. generator. 

Keywords: aquifer heterogeneity, solute plume containment, pump-and-treat, stochastic 

modeling, geological entropy, cost-effective analysis. 

1 Introduction 

Pump-and-treat (P&T) is a widespread technique for solute plume management (e.g. 

Mackay and Cherry, 1989; EPA, 2005; Pedretti et al., 2013b; Beretta, 2015). Despite the 

decadal use of this technique and the emergence of alternative solutions for remediation 

purposes (e.g. Kuppusamy et al., 2016), P&T remains widely adopted for the containment 

of solute plumes (e.g. Truex et al., 2015; Pedretti et al., 2017; Casasso et al., 2020). This is 

mainly due to the relatively easy design of P&T systems, which conventionally includes one 

or more pumping wells located downstream of the detected plume and a facility for water 

treatment.  The principle of P&T as a containment system is based on the formation of a well 
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capture zone which collects the solute particles migrating from upstream of one or multiple 

wells, which form a hydraulic barrier (e.g. (Pedretti et al., 2013b). If the P&T is correctly 

tuned, the well capture zone is large enough to intercept the plume and all solute particles 

are collected by the hydraulic barrier. Otherwise, some solute particles can escape the well 

capture zone, creating a threat for groundwater resources located downstream of the 

hydraulic barrier. 

The cost of unit volume of treated water, which depends directly on the overall pumping 

rate of the hydraulic barrier, Q, represents a critical aspect to consider for a cost-effective 

design of a P&T system (e.g. Bayer et al., 2005). A 2001 study by U.S. EPA summarized 

remediation costs of 48 sites in the U.S., suggesting an average 4.9 Million USD as capital (i.e. 

installation) costs per facility, 82.5 USD/year as operating costs per m3 of pumped 

groundwater, averaging 31700 m3/year and an average 6 years of system operations (e.g. 

Wiegand & Shanahan, 2001). Using these reference values, the total operational cost of a 

single facility run for 6 years would be about 225 Million USD, i.e. 45 times larger than the 

initial capital costs, stressing the importance of minimizing Q to reduce the running costs of 

a P&T systems. 

Multiple physical and mathematical solutions have been proposed to reduce or minimize Q. 

From a physical perspective, P&T hydraulic barriers can be combined with physical 

barriers, such as low-permeable cutoff walls or diaphragms (e.g. Dominijanni et al., 2017; 

Pedretti et al., 2017; Yang et al., 2020). Compared to “conventional” (i.e., physical-barrier-

free) P&T systems, a “combined” P&T system is expected to decrease Q, as the physical 

barrier reduces the seepage flow between the solute plume source and the hydraulic 

barriers, while funneling the contaminant plume towards the extraction wells (e.g. Bayer et 

al., 2004). From a mathematical perspective, several analytical (e.g. Javandel and Tsang, 
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1986) and numerical (e.g. Wang and Zheng, 1997) algorithms can be used to find optimal 

pumping rates that ensure collecting the entire contaminant plume with the minimum Q. 

In complex heterogeneous formations, minimizing Q remains an uncertain task. As 

transport processes occur over multiple spatial scales which are usually difficult to 

characterize, the hydraulic parametrization of aquifers is usually incomplete, generating 

epistemic uncertainty (Tartakovsky, 2013). This is particularly true for key aquifer 

parameters that strongly controls the migration of solute transport in aquifers, such as the 

aquifer hydraulic conductivity, K , which can fluctuate over several order of magnitude 

within short spatial scales (e.g. Freeze, 1975; Sanchez-Vila et al., 2006). This issue severely 

complicates the decision-making process by regulators and administrations dealing with 

the containment of solute plumes using P&T, as the variability in hydrogeological 

parameters (particularly K) generates uncertainty in the decision-making process. 

Stochastic modeling, such as Monte Carlo (MC) simulations based on geostatistical 

modeling, can assist decision makers relying on model-based decisions when dealing with 

heterogeneity-driven uncertainty (e.g. Rubin et al., 1994; Freeze, 2004; Tartakovsky, 2013; 

Pedretti et al., 2017, 2020).  

Bayer et al. (2004) presented one of the first documented MC-based numerical analyses for 

the optimization of P&T systems under heterogeneity-driven uncertainty. They created 

two-dimensional (2D) Sequential Gaussian Simulations (SGS) of the log-transformed 

hydraulic conductivity (𝑌 = ln 𝐾). They simulated scenarios of correlated random spatial 

fields (r.s.f)  with increasing variance 𝜎𝑌
2 and correlation (integral) scales 𝐼𝑌, which were 

used to parametrize groundwater flow models, in turn used to perform particle tracking 

simulations. By targeting different  𝜎𝑌
2 and 𝐼𝑌 values, Bayer et al. (2004) aimed at testing the 

response of P&T in aquifers with different hydrogeological settings. Moreover, Bayer et al. 

(2004) considered different “combined” P&T configurations by changing the geometry of 
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the physical barriers located at different distances between the pumping wells and the 

contaminant source. Among the key results, Bayer et al. (2004) found that the uncertainty 

around the minimum Q was strongly controlled by 𝐼𝑌 and 𝜎𝑌
2, as well as by the geometry of 

physical barriers: simulations with higher 𝐼𝑌 (𝜎𝑌
2) resulted in stronger uncertainty than 

simulations with lower 𝐼𝑌 (𝜎𝑌
2). The presence of physical barriers generally reduced the 

mean Q, while the uncertainty around the mean depended on the type of physical barriers. 

These conclusions were further corroborated by a follow-up study (Bayer and Finkel, 

2006).  

In the recent years, questions have been posed regarding the actual ability of Gaussian-

based models to effectively reproduce solute transport in heterogeneous aquifers.  There is 

a growing consensus that reconstructed spatial fields created using Gaussian-based 

stochastic simulator may not honor the structure of extreme K patterns observed in real-

life aquifer, which strongly control transport in heterogeneous media (e.g. Journel and 

Deutsch, 1993; Gómez-Hernandez and Wen, 1998; Zinn and Harvey, 2003; Pedretti et al., 

2013a; Bianchi and Pedretti, 2018). Several studies have shown that non-Gaussian 

approaches allow reproducing the structured and connected 𝐾 patterns of natural aquifers. 

In particular, non-Gaussian models can generate r.s.f that closely mimic the connected 

nature of lithological facies in geological media, such as connected gravel and sands paleo-

channels or water-bearing fractures. Non-Gaussian r.s.f can be obtained through multiple 

approaches, such as indicator-based simulations (e.g. Carle and Fogg, 1997; Sartore et al., 

2016) or multiple-point geostatistics (e.g. Strebelle, 2002). 

Another relevant aspect when dealing with solute transport modeling is the chosen model 

dimensionality. Several studies showed that the scaling of contaminants in space and time 

depends directly on the selected model dimensionality. For instance, the numerical tracer 

tests under radial convergent flow in SGS-based fields (Pedretti et al., 2013a) showed that 
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breakthrough curves obtained from 2D fields characterized by the same geostatistics as 3D 

fields did not generate the typical anomalous or non-Fickian patterns associated to 

transport in heterogeneous media, such as breakthrough curves tailing. On the contrary, 3D 

SGS simulations were able to generate non-Fickian transport, remaking the fundamental 

difference in transport patterns depending on the selected model dimensionality under 

non-uniform flow configurations. One reason explaining the difference between transport 

in 2D and 3D r.s.f. is the different percolation thresholds characterizing the fields (e.g. 

Berkowitz and Balberg, 1993; Silliman, 1996), which affect the resulting flow and transport 

connectivity of the system (e.g. Fiori and Jankovic, 2012; Bianchi and Pedretti, 2018). A 

second reason is related to the relative size of the plume source (i.e. size of the injection line 

or block) compared to the amount of heterogeneity sampled by the source in the vertical 

direction (e.g. Pedretti et al., 2014), which may chance between 2D and 3D simulations. 

In the recent years, new metrics to describe the spatial structures of heterogeneous fields 

have emerged. One of them is geological entropy (Bianchi and Pedretti, 2017, 2018), an 

approach that improves the description of heterogeneous aquifers compared to classic 

variogram-based indicators (see also Section 2). Based on Shannon’s information entropy 

theory (Shannon, 1948), geological entropy is useful to measure the spatial order of 

categorical variables describing hydrogeological parameters, such as the lithofacies 

characterized by discrete K values. Simple metrics derived from geological entropy can be 

correlated to characteristic features of flow and solute transport in porous and fractured 

media, such as the temporal moments of the solute transport evaluated in control wells (i.e. 

the solute breakthrough curves) (Bianchi and Pedretti, 2017; Pedretti and Bianchi, 2019).   

This work extends the Monte Carlo (MC) analyses by Bayer et al. (2004) to evaluate the 

optimal use of P&T using 2D and 3D stochastic numerical modeling embedding both 

Gaussian and non-Gaussian r.s.f. The work has two overarching aims.  
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1) The first aim is to showcase the importance of selecting a specific model 

configuration (2D or 3D, Gaussian and non-Gaussian) for the numerical 

optimization of a P&T. To this end, we adopted a similar model setup presented by 

Bayer et al. (2004) and performed a scenario-based MC analysis simulating 

conventional and combined P&T configurations in 2D and 3D, Gaussian and non-

Gaussian r.s.f. with increasing number of layers (𝑁𝐿). For each combination of 

parameters, we calculated the first two moments (mean and variance) of the 

ensemble of resulting optimal pumping rates from each scenario. The difference in 

these moments among the tested scenarios are then analyzed and discussed. 

2) The second aim is to use geological entropy to interpret the results. In particular, we 

evaluate if two metrics derived from geological entropy, the entrogram scale 𝐻𝑠 and 

the local relative entropy 𝐻𝑅0 (mathematically defined in the Section 3.4), can 

explain the results for each P&T scenario. Geological entropy has not been 

rigorously applied yet to explore flow and transport under non-uniform (bounded) 

aquifer conditions, which is the case of P&T systems. This issue further motivates 

this study. 

2 Background 

We briefly revise some of the salient aspects of Bayer et al. (2004), hereafter “B2004”, and 

of geological entropy, which provide the background study for this analysis.  

2.1 Bayer et al. (2004) 

B2004 performed a parametric MC analysis based on numerical groundwater flow 

modeling and particle tracking analysis. Two-dimensional (i.e.  𝑁𝐿=1) numerical flow 

models were generated using the block-centered finite difference code MODFLOW-88 
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(McDonald and Harbaugh, 1988). The model had quadratic dimensions of 𝐿𝑋=300m and 

𝐿𝑌=300m and was oriented parallel to the Cartesian coordinates (x,y). The model had unit 

thickness (𝐿𝑍=1m). The system was discretized using a uniform unit-size space grid, 

resulting in a 300 × 300 × 1 cells. Steady-state flow was simulated assuming confined 

conditions and a regional flow gradient 𝑖 = 0.001 parallel to the y-coordinate. Prescribed 

head (Dirichlet) boundary conditions were set at the top and bottom boundaries. No-flow 

(Neuman) boundary conditions were set at the lateral boundaries. Particle tracking were 

performed using the code MODPATH (Pollock, 1994). They assumed an instantaneous 

injection of particles (mimicking the discretized solute mass) released from a quadratic 

zone with dimensions HS=50 m × WS=50 m. The closest edge of the source area was located 

at a variable distance 𝑟 from a pumping well, with pumping rate Q.  

Five different P&T scenarios were considered in the work by B2004. Scenario “A” (Figure 1, 

top-right panel) considered a “conventional” P&T scheme with no physical barriers. 

Scenario “B” and “C” (Figure 1, bottom-left panel) considered “combined” schemes, with one 

physical barrier respectively located upstream and downstream of the source area. Scenario 

“D” considered a double upstream and downstream barrier. Scenario “E” (Figure 1, bottom-

right panel) considered a barrier located upstream of the source and two lateral barriers at 

the left and right sides of the source. These P&T scenarios were tested in homogeneous and 

heterogeneous synthetic aquifers. The heterogeneous simulations were performed using 

SGS. Treating Y as a correlated Gaussian r.s.f. with zero mean (�̅�=0), four sets of simulations 

were obtained imposing two-point isotropic exponential covariance functions of Y, 𝐶𝑌, of 

form 

 𝐶𝑌(𝒉) = 𝜎𝑌
2 exp (

−|𝒉|

𝐼𝑌
) (1) 
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where h is the lag vector between two points. They set variable integral scales (up to 𝐼𝑌 =

1.53 𝑊𝑠) and variances (up to 𝜎𝑌
2 = 1.8). B2004 generated a total of 𝑁𝑀𝐶= 500 

unconditional r.s.f. fields, and for each combination of parameters listed in Table 1 they 

resolved flow and transport in each realization.  

For  𝑄 = 0, the particles were allowed to leave the aquifer from the lower boundary (i.e. at 

y=0). For 𝑄 > 0 the pumping well generated a capture zone that tended to collect the 

particles, thus acting as a hydraulic barrier. For increasing 𝑄, the well had higher chance to 

collect the entire particle distributions than for 𝑄 → 0.  An optimal pumping rate (𝑄𝑜𝑝𝑡) was 

defined as the minimum pumping rate that allow the well collecting the whole particle 

cloud. A distribution of normalized optimal pumping rates (𝑄𝑛, mathematically defined in 

Section 3.5) was obtained from the ensemble of the 𝑁𝑀𝐶  realizations resolved for each 

combination of parameters. The first (𝑄𝑛
̅̅̅̅ ) and second (𝜎𝑄𝑛

2 ) moments of the distributions 

were used as metrics to evaluate and analyze the differences among the tested 

combinations of parameters.   

The analyses by B2004 concluded that the ensemble of 𝑄𝑜𝑝𝑡 was differently sensitive to the 

parameters listed in Table 1. Key results from the reference study worth noticing for the 

sake of the present study are the following: 

• Variograms-based indicators 𝐼𝑌 and 𝜎𝑌
2 had a dominant effect on the average 𝑄𝑜𝑝𝑡. 

Systems with higher 𝐼𝑌 and 𝜎𝑌
2 required, on average, larger 𝑄𝑛

̅̅̅̅  to capture all the 

particles. Variogram-based indicators had also a dominant effect on the uncertainty 

of optimal pumping rates, measured by 𝜎𝑄𝑛
2 . This was associated to the channeling 

effects of solute transport in the systems, which increased for higher 𝐼𝑌/Lx ratios 

and for increasing 𝜎𝑌
2(the latter determining a higher chance of increasingly larger 

K values). 
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• Both 𝑄𝑛
̅̅̅̅  and 𝜎𝑄𝑛

2  were generally reduced when using physical barriers coupled to 

the hydraulic barrier.  

• Certain types of physical barrier generated more reductions on the mean and 

uncertainty than others. The best scenario in terms of expected (mean) and 

uncertainty (variance) of the optimal pumping rates was obtained for scenario “E”, 

when the total length of the physical barriers was set to three times the plume width 

(Figure 1). 

2.2 Geological entropy 

Geological entropy (Bianchi and Pedretti, 2017, 2018) is an approach to explore and 

measure the spatial ordering of the classes of geological parameters over a three-

dimensional domain of interest. The principle of geological entropy is based on Shannon’s 

information entropy theory (Shannon, 1948), which is routinely used in statistical analysis 

- including (hydro)geological applications - to quantify the uncertainty of correlated or 

uncorrelated spatially-distributed variables (e.g. Journel and Deutsch, 1993; Scheibe, 1993; 

Mays et al., 2002; Pham, 2010; Huang et al., 2012; Bianchi et al., 2015; Pham and Yan, 2018). 

Among the previous studies using information entropy in hydrogeology, Journel and 

Deutsch (1993) presented a spatial entropy approach to show that multi-Gaussian models 

typically maximize the spatial disorder in the r.s.f. , but that this does not entail maximum 

entropy of the model outputs. This issue is key for risk assessment and solute transport 

modeling, which requires the full range of possible concentration outcomes from the 

models, particularly the highest (extreme) values leading to larger exposure to a specific 

contaminant.  

Bianchi and Pedretti (2017, 2018) presented an algorithm to compute the relative 

proportion of a facies within subdomains of increasing size (the approach is mathematically 
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defined in the section 3.4). Compared to the spatial entropy algorithm by Journel and 

Deutsch (1993), the peculiarity of geological entropy is that the occurrence of the outcomes 

of a facies proportion within the subdomain is considered as an independent event. Noticing 

that the algorithm is general and any categorical or continuous hydrogeochemical 

parameter could be used as an input (including K, porosity, storage coefficients or 

biochemical reaction rates), Bianchi and Pedretti (2017, 2018) used this method to evaluate 

the Shannon entropy of “hydrofacies”, i.e. the classes forming the lithofacies and 

parametrized by K, at increasing scales. Well-defined correlations were obtained between 

characteristic geological entropy metrics defining the hydrofacies and characteristics 

metrics defining solute transport in highly heterogeneous media. Specifically, Bianchi and 

Pedretti (2017, 2018)  showed that geological entropy metrics can predict non-Fickian 

transport behaviour in alluvial aquifers from knowledge of physical heterogeneity.  

Stochastic simulations of tracer tests were conducted in synthetic K fields based on realistic 

distributions of hydrofacies in alluvial aquifers are conducted to identify empirical relations 

between geological entropy metrics and the temporal moments of the resulting 

breakthrough curves (BTCs). Bianchi and Pedretti (2017, 2018) concluded that geological 

entropy performed better than classic stochastic indicators used to describe the 

heterogeneity of aquifers, such as two-point variograms fully  characterized in terms of 𝐼𝑌 

and 𝜎𝑌
2 (e.g. Dagan, 1989). The results of Bianchi and Pedretti (2017, 2018) agree with the 

conclusions from other studies, including Zinn and Harvey (2003), who showed that 

Gaussian r.s.f .characterized by identical 𝐼𝑌 and 𝜎𝑌
2 but different connectivity of K  patterns 

can generate different spatio-temporal scaling of solute plumes, invalidating the use of  𝐼𝑌 

and 𝜎𝑌
2 as good descriptors of solute transport. 
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3 Methodology 

The model setup by B2004, presented in Section 2, is inherited in this work and extended 

to simulate flow and transport in three-dimensional (3D) Gaussian and non-Gaussian 

stochastic fields. We start explaining the extension from 2D to 3D for the homogeneous 

setup, and then the heterogeneous setup embedding the new geostatistical simulations. We 

then define the P&T scenarios analyzed in this work and introduced the geological entropy 

metrics that allow measuring the spatial ordering of the generated random spatial fields. 

Ultimately, we define the dimensionless variables that allow comparing the results among 

different model configurations. 

3.1 Homogeneous model setup 

In the homogeneous configuration, all K values in the model were locally isotropic and equal 

to K=1 m/d. For the 2D model, a single layer with thickness b=1 m constant in all points 

was used. We placed 𝑁𝑝=200 particles regularly distributed as in a square, as conceptually 

shown in Figure 1, mimicking the source geometry and size adopted by B2004. We kept the 

same boundary conditions and gradient as in the reference study. Flow was resolved using 

the code MODFLOW 2000 (Harbaugh et al., 2000) and particle tracking using RW3D (e.g. 

Fernàndez-Garcia et al., 2005). 

In the 3D model configuration, the number of layers NL was increased to NL=10,25 and 50. 

Using unit-thickness layers, the resulting aquifer thickness B was 𝐵 = ∑ 𝑁𝐿. The overall 

transmissivity is therefore calculated as T=KB=∑ 𝑁𝐿. Keeping the same x,y coordinates of 

the source location in 2D, we placed an equivalent amount of particles 𝑁𝑝 in all layers 

forming the 3D model, resulting in a total number of particles 𝑝𝑎𝑙𝑙 = 𝑁𝑝 × 𝑁𝐿.  
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A fully-penetrating pumping well, with constant pumping rate Q, was set up at the center of 

domain along the x-axis, at a planar distance r from the closest edge of the source (Figure 

1). As in the reference work by B2004, the well acted as the sole hydraulic barrier, and 𝑄𝑜𝑝𝑡 

was defined as the minimum pumping rate required for complete plume control, i.e. all 𝑝𝑎𝑙𝑙 

particles released from the squared zone collected by the well.  

A simple iterative approach for the optimization process was adopted. Starting from an 

initial value 𝑄, an initial differential increment in pumping rates 𝑑𝑄 was set, such that 

 𝑄(𝑖 + 1, j) = 𝑄(𝑖, 𝑗) + 𝑑𝑄(𝑗) (2) 

where 𝑖 is the number of the iteration (𝑖 = 1, … , 𝑁), and 𝑗 is the repetition of the iterative 

process (𝑗 = 1, … , 𝐽). For 𝑗 = 1, the flow problem embedding 𝑄(𝑖 + 1,1) was resolved, 

particle tracking performed and the number of particles collected by pumping well (𝑝𝑤) 

was counted. While 𝑝𝑤 < 𝑝𝑎𝑙𝑙 , the iteration was repeated 𝑁 times until 𝑝𝑤 = 𝑝𝑎𝑙𝑙 . When this 

occurred at the 𝑁 iteration, the pumping rate to the previous iteration, i.e. 𝑄(𝑁 − 1,1), was 

stored and used as the initial 𝑄 for the round of iterations (𝑗 = 𝑗 + 1), while the increment 

𝑑𝑄 was divided by a factor 10, i.e.  

 

𝑑𝑄(𝑗 + 1) = 0.1 𝑑𝑄(𝑗) 

𝑄(𝑖 = 1, 𝑗 + 1) = 𝑄(𝑁 − 1, 𝑗) + 𝑑𝑄(𝑗 + 1) 

(3) 

The process was repeated 𝐽 times until a desired precision in the optimal pumping rates is 

found. Here, we adopted 𝑄(𝑖 = 1, 𝑗 = 1) = 1, 𝑑𝑄(𝑝 = 1) = 1 and 𝐽 = 3, such at the 

minimum 𝑑𝑄 = 0.001. In other words, we obtained the estimation of the optimal pumping 

rates with an error of 0.1% of the initial 𝑑𝑄. The final optimal pumping rate resulting from 

the iterative process is then 
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 𝑄𝑜𝑝𝑡 = 𝑄(𝑁, J). (4) 

3.2 Heterogeneous setup  

The first approach to generate stochastic heterogeneous fields of Y was based on Sequential 

Gaussian Simulation (SGS), coded in SGEMS (Remy et al., 2009). The simulations were based 

on the same isotropic covariance functions used by B2004 (Equation 1) and identical to 2D 

and 3D configurations. A random field generated using the SGS approach is shown in Figure 

2a (left).  We note that the use of an isotropic covariance function for the 3D models implied 

that the resulting r.s.f. had the same variance and correlation length in the horizontal plane 

(𝐼𝑌(ℎ)) and in the vertical direction (𝐼𝑌(𝑧)). In turn, this implies that the relative ratio 𝐼𝑌(𝑧)/𝐿𝑧 

decreases as the vertical domain size increases. The importance of this selection on the 

model results is discussed in the remaining of this paper.  

The second approach was based on the non-Gaussian Sequential Indicator Simulation (SIS) 

(e.g. Deutsch & Journel, 1998; Emery, 2004; Soares, 1998), also coded in SGEMS. We 

imposed identical covariance function as in the SGS models and ensured reproduction of the 

global proportions of each category by binning the multivariate Gaussian Y probability 

density function (pdf) characterized by zero mean and specific variance used in the SGS 

simulations. Binning implied discretizing the pdf into NC classes, ensuring that the same 

overall empirical variance of the Y fields was maintained using SGS and SIS algorithms. After 

some initial trials, we found NC=10 as a suitable working value. A random field generated 

using the SIS approach is shown in Figure 2a (right). 

In B2004, all 2D simulations were unconditional, i.e. not conditioned to hard or soft data. 

The well pumping rate was fixed at a MODFLOW cell and a single Q value (a Neuman BC) 

was imposed. In 3D modelling, the well intercepted multiple layers, and Q must be 
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distributed along the cells forming the well’s vertical column. Under homogeneous 3D 

conditions, Q could be uniformly split into the number of layers forming the vertical column, 

i.e. 𝑄𝑘 = 𝑄/𝑁𝐿  (𝑘 = 1, … , 𝑁𝐿). Under heterogeneous 3D conditions, this approach was no 

longer valid, as a uniform distribution of pumping rates across the layers would force the 

model to pump water out from any cells, including those characterized by low K. Splitting Q 

using a deterministic weighting approach, such as based on the local K intercepted by the 

well cells, seemed also not fully accurate, as the net pumping efficiency of a system 

depended not only on the specific K cells where the pump is located, but also on the cluster 

of adjacent cells surrounding the pumping cell. We thus opted to generate conditional 

stochastic simulations, where the sole hard data conditioning the fields were imposed along 

at the well location. Specifically, we set a fixed hydraulic conductivity K=10 m/d in the cells 

forming the entire well column, and then assigned a uniform pumping rate to each cell. We 

tested conditional and unconditional scenarios for the 2D models and found minor 

deviations in terms on means and variance of the optimal pumping rates. As such, we 

adopted well conditioning throughout the entire work presented here. 

3.3 Tested scenarios 

For each stochastic simulation (SGS and SIS) and number of layers (𝑁𝐿=1, 10, 25 and 50), 

we reproduced three of the five P&T scenarios presented by B2004 (Figure 1): 

• Scenario “A” – “conventional” P&T with no physical barriers. 

• Scenario “C” – “combined” P&T with downgradient barrier. 

• Scenario “E” – “combined” P&T with upgradient and side barriers. 

The selection was made considering that Scenario “A” and “E” were the worst and best 

scenarios (respectively) in terms of P&T efficiency, according to the work by B2004. 

Scenario “C” was chosen as an intermediate scenario between A and E, being a common 
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simple geometry for physical barriers widely adopted in countries such as Italy (e.g. Rolle 

et al., 2009; Pedretti et al., 2013b, 2017; Beretta, 2015). The total length of the barriers, 𝑙𝑏, 

was assumed to be three times the width of the sources (𝑙𝑏 = 3𝑊𝑆). This was done to obtain 

a perfect lateral confinement of the source when simulating scenario “E” – i.e. the best 

configuration in terms of optimal pumping rates among those tested by B2004. The 

numerical implementation of the physical barriers in MODFLOW was done through the HFB 

package (Hsieh and Freckleton, 1993). The HFB package required a hydraulic conductivity 

𝑘𝑏 and a thickness 𝑋𝑏 for the barriers, 𝑘𝑏. After initial tuning, we found 𝑘𝑏 =  10−7 m/d and 

𝑋𝑏 = 0.5m as a working combination of parameters limiting the advection across the 

barriers. For the 3D models, fully-penetrating barriers were assumed. 

Operating within a MC framework, we adopted the first (𝑄𝑛
̅̅̅̅ ) and second (𝜎𝑄𝑛

2 ) moments of 

the ensemble of normalized optimal pumping rates to evaluate the MC results, and 

calculated from these moments coefficient of variation 𝐶𝑉,  

 
𝐶𝑉𝑄𝑛 =

√𝜎𝑄𝑛
2

𝑄𝑛
̅̅̅̅

. 
(5) 

The coefficient of variation is a useful statistic for comparing the degree of variation from 

one data series to another, even if the means are drastically different from one another. For 

𝐶𝑉𝑄𝑛 → 0 , the results suggest less uncertainty around the mean, while 𝐶𝑉𝑄𝑛 ≫

0 invalidates 𝑄𝑛
̅̅̅̅ , which becomes an aleatory outcome of the stochastic simulations. 

Considering the two tested geostatistical models (SIS and SGS), the three tested P&T 

scenarios (“A”,”C” and ”E”) and the four tested multidimensional model setups (𝑁𝐿=1, 10, 

25 and 50), a total of 24 combinations of possible model setups were simulated in this work. 

While the original work by B2004 considered multiple correlation lengths and variances  
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per r.s.f. and 500 stochastic simulations per scenario, in this analysis it was decided to 

reduce the computational burden by focusing on a single correlation length (𝐼𝑌 = 25), a 

single variance of 𝜎𝑌
2 = 1.8  and to 100 realizations per scenario. We performed a 

preliminary numerical test to evaluate whether the reduced amount of realizations used in 

this work was still sufficient to generate statistically valid results compared to the original 

work by Bayer et al. (2004). After calculating the confidence intervals of ensemble mean 

and variance by number of simulations (e.g. Ballio and Guadagnini, 2004), the results of this 

initial test suggested that 100 simulations were the minimum amount of simulations to 

obtain similar statistics as in the reference work by B2004 for the 2D scenario, which was 

used as a benchmark study. The resulting coefficient of variations were CV=0.07  for 𝑄𝑛
̅̅̅̅  and 

CV= 0.08 for 𝜎𝑄𝑛
2 . 

3.4 Geological entropy 

Two metrics based on geological entropy were adopted in the analysis. The first metric was 

the entrogram scale (Bianchi and Pedretti, 2018), obtained after computing the entrogram 

of a r.s.f. In this work, the entrogram was  coded in Matlab language and calculated in the 

following basic steps, as graphically described in Figure 2b and Figure 2c.   

Firstly, the local entropy (𝐻𝐿) is computed within a randomly-selected three-dimensional 

subdomain (𝑛𝑏) in ℝ3. The subdomain has dimension 𝒍 =  𝑙𝑥  �̂�  +  𝑙𝑦 𝒋̂  +  𝑙𝑧 �̂�, where �̂� , 𝒋̂,

�̂� are the unit vectors �̂�=(1,0,0), 𝒋̂ (1,0,0), �̂� (0,0,1) and 𝑙𝑥 , 𝑙𝑦 and 𝑙𝑧 are the scalar 

components of 𝒍, which is also termed the “entrogram lag”. The 𝐻𝐿 is computed as 

 𝐻𝐿(𝒍, 𝑛𝑏) = − ∑ 𝑝𝐿,𝑖(𝒍, 𝑛𝑏)[ln 𝑝𝐿,𝑖(𝒍 , 𝑛𝑏)]

𝑛𝑠

𝑖=1

 (6) 
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where 𝑛𝑠=10 is the total number of “hydrofacies“ (i.e. the number of bins of the categorical 

K pdf) and 𝑝𝐿,𝑖(𝒍) are the local volumetric fractions (i.e., marginal probabilities of 

occurrence) of the categories within the subdomain. For 𝑙𝑧 ≤ 𝑁𝐿 , the size of the subdomain 

is equal in all directions; for 𝑙𝑧 > 𝑁𝐿 , the maximum subdomain size in the vertical direction 

remain fixed to 𝑁𝐿  while 𝑙𝑥 , 𝑙𝑦 increase (Figure 2b). The starting point of the random 

position of the subdomain is chosen using Matlab command randperm.  

Second, the local entropy is normalized as  

 𝐻𝑅
′ (𝒍, 𝑛𝑏) =

𝐻𝐿(𝒍, _𝑛𝑏)

𝐻𝐺
 (7) 

where 𝐻𝐺  defines the entropy of the entire system. Third, (6) and (7) are repeated 𝑁𝐵 times, 

each time for a different, randomly-selected starting point, keeping the same subdomain 

size (Figure 2c). An average entropy is then computed as  

 𝐻𝑅(𝒍) =
1

𝑁𝐵
∑ 𝐻𝑅

′ (𝒍, 𝑛𝑏) 
NB

𝑛𝑏 =1
 (8) 

After an initial sensitivity, we found 𝑁𝐵 = 100 as a suitable working value. The operation 

(Equations 6-8) is then repeating over a range of lags, from smaller to larger values, and the 

results are plot by increasing lags to form the entrogram curve. In Bianchi and Pedretti 

(2018), the entrogram was used to evaluate the spatial persistency of the hydrofacies. In 

particular, the more persistent a hydrofacies is, the later the entrogram scales to 𝐻𝑅 = 1. To 

quantify such persistency, Bianchi and Pedretti (2018) derived the entropic scale, 𝐻𝑠, as  

 𝐻𝑠 = ∫ [1 − 𝐻𝑅(𝑙)]d𝑙
∞

0

 (9) 
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and concluded that systems characterized by larger 𝐻𝑠 tended to maintain longer 

correlation of the spatial order of the hydrofacies, and thus higher chances to generate 

preferential flow and solute channeling. 

Another metric of interest to evaluate the spatial order of the system is the first-lag 

entrogram value, 𝐻𝑅0 , i.e. the value of the entrogram for 𝑙𝑥 , 𝑙𝑦, 𝑙𝑧 = 1. In Bianchi and Pedretti 

(2017), this metric was found to be well correlated to transport metrics defining the 

tendency of solute to experience preferential flow and channeled transport. Systems with 

lower 𝐻𝑅0  were more prone to show preferential flow and channeled transport than 

systems characterized by higher 𝐻𝑅0. 

3.5 Dimensionless optimal pumping rates 

Under homogeneous conditions for conventional P&T system, Javandel & Tsang (1986) 

developed an analytical formulation to optimize the well capture zones. Their solution 

suggested that the optimal pumping rate required to collect a contaminant with source 

width 𝑊𝑆 depended on the aquifer transmissivity 𝑇 and the gradient 𝑖. Accordingly, Bayer 

et al. (2004) introduced a dimensionless variable 𝑄𝑛, which allowed comparing the results 

obtained from different model setup, including homogeneous and heterogeneous flow 

fields. The variable 𝑄𝑛 was defined as  

 𝑄𝑛 =
𝑄𝑜𝑝𝑡

𝑇𝑒𝑓𝑓𝑖𝑊𝑠
 (10) 

where 𝑇𝑒𝑓𝑓=𝐾𝑒𝑓𝑓𝑏. The parameter 𝐾𝑒𝑓𝑓 is the effective hydraulic conductivity of the system, 

calculated numerically in this analysis as  

 𝐾𝑒𝑓𝑓 =
𝑄𝐵𝐶

𝐿𝑌𝐿𝑧𝐵𝑖
 (11) 
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where 𝑄𝐵𝐶  is the volumetric discharge at the outflow boundary condition, calculated using 

the water budget tool (Harbaugh, 1990) coupled to MODFLOW-2000. In other words, 𝐾𝑒𝑓𝑓 

is the hydraulic conductivity that balances the groundwater outflow for a hydraulic gradient 

𝑖 in presence of an active pumping well with rate 𝑄𝑜𝑝𝑡.  

4 Results & Analysis 

4.1 Optimal pumping rates  

The main results from the analysis (mean 𝑄𝑛
̅̅̅̅ , variance 𝜎𝑄𝑛

2  and coefficient of variation 𝐶𝑉𝑄𝑛) 

are summarized in Table 2 for each combination of model parameters. The results are 

expressed both as actual values and as a percentage of the relative difference from the 2D 

model setup based on SGS, which served as a reference scenario to compare the other 

results. 

A first important result is shown in Figure 3, which depicts the histograms of 𝑄𝑛 obtained 

using SGS-based r.s.f. A visual inspection of the figure shows the distributions of 𝑄𝑛 

generated from the 2D models (left column) are generally shifted towards larger values 

compared to the 3D models with 50 layers (right column). For each model dimensionality, 

the distributions tend to be more shifted to higher values for scenario “A” (top row) than 

for scenario “C” (mid row) and “E” (bottom row). Comparing the combined P&T 

configurations, Scenario “E” seems to generate distributions with lower 𝑄𝑛 than “C”, and the 

difference is apparently more pronounced in 2D models than in 3D models.   

This visual insight is quantitatively corroborated by the values reported in Table 2. The 2D 

model P&T setup “A” is the worst of the scenarios plotted in Figure 2. It provides the highest 

expected normalized optimal pumping rates (𝑄𝑛
̅̅̅̅  =1.624) and the largest uncertainty 

(𝜎𝑄𝑛
2 =0.917). Scenario “C” is the intermediate one (𝑄𝑛

̅̅̅̅  =1.303, 𝜎𝑄𝑛
2 =0.623), while 
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scenario “E” provides the best setup minimizing both the expected pumping rates (𝑄𝑛
̅̅̅̅ =

0.706) and the uncertainty (𝜎𝑄𝑛
2 =0.373). This result is consistent with and corroborates the 

conclusions by Bayer et al (2004), who also analyzed 2D SGS simulations.  

The use of 3D models generated qualitative similar conclusions regarding the impact of 

physical barriers on the P&T efficiency. However, the calculated 𝑄𝑛
̅̅̅̅  and 𝜎𝑄𝑛

2  are different 

than in the 2D models, suggesting the specific values obtained from the stochastic 

simulations are strongly linked to the model dimensionality. In Figure 3 the histograms 

from the 50-layers models seem slightly shifted towards lower values compared to the 2D 

models. The variance is also reduced in 3D models than in 2D models. Table 2 corroborates 

and quantifies this visual insight. Compared to the 2D models, the 3D SGS models with 25 

and 50 layers generate lower 𝑄𝑛
̅̅̅̅ , by 9-10% for Scenario “A” and by 64-66% for the Scenario 

“E” compared to the 2D scenarios. In terms of variance, the 3D SGS models with more than 

25 layers generate a reduction in 𝜎𝑄𝑛
2  of more than 97%.  

A second important result is that the distribution of optimal pumping rates depends on the 

choice of the selected r.s.f. generator. Figure 4 depicts the cumulative density functions 

(cdfs) obtained from the ensemble of results from all simulated scenarios, by number of 

layers adopted in the models. Starting from the top-left panel, the case with 𝑁𝐿 = 1 (i.e 2D 

simulations) shows that the cdfs from SIS-based models tend to shift the values towards 

higher pumping rates for all scenarios compared to SGS-based models. This is corroborated 

from Table 2, which shows that 𝑄𝑛
̅̅̅̅  increases by 32% (Scenario “A”), 38%  (“C”) and 13% 

(“E”) when passing from SGS to SIS. At the same time, the (uncertainty) also increases with 

SIS-based simulations, as 𝜎𝑄𝑛
2  increases by 45% (Scenario “A”), 59% (“C”) and 66% (“E”) 

when passing from SGS to SIS.   
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For all scenarios we found 𝐶𝑉𝑄𝑛 < 1, which suggests that the results of the diverse 

realizations are close to the expected value in all simulated scenarios. It is interesting to 

note that Scenario “E“ generates the highest coefficient of variations (𝐶𝑉𝑄𝑛 = 0.99) of the 

entire combination of parameters tested in this work. This suggests a larger relative 

uncertainty in the results obtained from Scenario “E” configuration than in the results 

obtained from the other physical barrier configurations, even though Scenario “E” generates 

the lowest expected normalized pumping rates. 

A graphical summary of the results presented in Table 2 is shown in Figure 5. Panel (a) 

shows the dependence of the mean pumping rates 𝑄𝑛
̅̅̅̅  with the number of layers 𝑁𝐿 , and 

panel (b) shows the correlation between the spread of the distributions 𝜎𝑄𝑛
2  and 𝑁𝐿 , by type 

of P&T configuration. The plots show a decreasing trend in 𝑄𝑛
̅̅̅̅  and 𝜎𝑄𝑛

2  for all P&T 

configurations as the number of layers increases. The decrease in variance is well correlated 

with 𝑁𝐿 . The monotonicity of this correlation, independent from the type of stochastic 

generator, can be attributed to the fact that an increasing number of layers implies an 

increasing vertical mixing at the source. By keeping the same vertical correlation length of 

the hydraulic conductivity while adding layers means that the initial source size is 

increased, and so encompasses more heterogeneity. This aspect is further discussed in the 

following Section 5. 

4.2 Geological entropy 

Geological entropy metrics were used to elucidate the difference between model results. 

Figure 6 illustrates the entrograms of the r.s.f. by type of stochastic generator and number 

of layers. Figure 6a represents the normalized 𝐻𝑅 values over the lags, i.e. the distance 

between points used to calculate the entrogram, and essentially illustrates the persistence 

of the relative (normalized) geological entropy in space. The small inset (Figure 6b) 
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represents the non-normalized geological entropy. The maximum non-normalized value 

reached for each curve in the small inset (at lag 300) is the global geological entropy of the 

system (𝐻𝐺). 

A first highlighted aspect that emerges from the figure is that non-Gaussian simulations 

(SIS) tend to increase the spatial correlation of the relative geological entropy compared the 

curves of the Gaussian simulation (SGS), consistent with analysis by Bianchi and Pedretti 

(2018). The small inset (Figure 6b) also suggests that SGS generates a much higher global 

entropy 𝐻𝐺 . This is explained considering that Gaussian r.s.f. show lower 𝐻𝐺  than SIS, as a 

consequence of the fact that Gaussian stochastic field generators tend to maximize spatial 

disorder through a minimization of the spatial continuity of extreme values (e.g. Journel and 

Deutsch, 1993). It results in shorter correlations of spatial ordering of K clusters. Note that 

this is true because of the relatively small scale of the domain compared to the heterogeneity 

scales (𝐼𝑌), which causes statistically non-ergodic conditions. If the field and/or the number 

of simulations were much larger, 𝐻𝐺  should have been the same in all tested scenarios, given 

that the pdf of Y is identical in all simulations. 

A second highlighted aspect is that the curves tend to scale according to the number of 

layers adopted in the simulations. In particular, we observe that simulations with lower 𝑁𝐿  

tend to present higher spatial persistency of the relative entropy that simulations with 

higher 𝑁𝐿 . This means that the simulations created by 2D models generate more spatial 

persistence of the order of K clusters compared to 3D simulations. This result is novel, as no 

previous studies had systematically analyzed the role of 𝑁𝐿  in the scaling of the geological 

entropy metrics. The analysis is consistent with the conclusions by Bianchi and Pedretti 

(2018), who observed an increase in spatial correlation of the order of K clusters when 

switching the models from 2D to 3D configurations. As discussed in the next section, in these 

simulations the vertical correlation length of the stochastic fields (𝐼𝑌(𝑧))  remains constant 
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while the vertical domain size (𝐿𝑍) grows for increasing number of layers; as such, the 

dependency of the entrograms with 𝑁𝐿  can be a direct consequence of the different amount 

of heterogeneity sampled by the source for increasing 𝑁𝐿 .  

The insight from the visual analysis of Figure 6 are corroborated quantitatively in Figure 7, 

where the comparison between 𝑁𝐿  and the two metrics of geological entropy is illustrated. 

Figure 7a compares  𝑁𝐿  and the entrogram scale  𝐻𝑆. Here, we note that the SIS r.s.f. tend to 

generate higher 𝐻𝑆 than SGS r.s.f., reinforcing the idea that SIS-based models are expected 

to generate higher continuity of extreme patterns, which control the spatial order of K 

clusters and in turn solute transport channeling, than SGS models. More specifically, for SGS 

r.s.f. the results seem to be independent from 𝑁𝐿  and ranging between 𝐻𝑆 =7.5-8. For SIS 

r.s.f the results range at higher values (𝐻𝑆 = 12 − 16) and are more correlated with 𝑁𝐿 . An 

inverse linear correlation of form  

 𝑁𝐿 = −𝑎1𝐻𝑆 + 𝑏1 (12) 

where 𝑎1=16.2 and 𝑏1=62.0 was found to well describe the correlation (Pearson’s 

coefficient 𝑅2 > 0.95). For 2D models (𝑁𝐿 = 0), 𝐻𝑆 for SIS r.s.f. is about 2× than for SGS r.s.f, 

for 3D models with  𝑁𝐿 = 50  the factor is about 1.5×, suggesting that the difference in 

spatial ordering is maximum for 2D models, consistent with the results presented above.  

Figure 7b shows the correlation between 𝑁𝐿  and the first-lag relative entropy 𝐻𝑅0. We found 

that SIS-based models generate lower 𝐻𝑅0 than SGS-based models. This finding agrees with 

the inverse relationship between 𝐻𝑆 and 𝐻𝑅0 to describe the tendency of a system to 

generate solute channeling. We also observed that 𝐻𝑅0 is positively correlated with 𝑁𝐿  for 

SIS r.s.f. An exponential function of form 

 𝑁𝐿 = 𝑎2 exp(𝑏2𝐻𝑅0)  (13) 
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where 𝑎2 = 9.6 × 10−3  and 𝑏2=65.1 was found to well describe the correlation (𝑅2>0.95). 

The results reinforce the idea that 2D systems are more prone to generate solute channeling 

than 3D systems with increasing number of layers. The minimum value found for the 2D SIS 

r.s.f. (𝐻𝑅0=0.07) is about 2.5× lower than the values found for 3D SGS r.s.f. 

4.3 Discussion 

The results from analysis suggest a dependence of the model layering and selected 

stochastic generator on the expected efficiency and uncertainty of the P&T systems. A first 

critical aspect to consider is that the stochastic simulations presented in this work adopted 

an isotropic correlation function with a fixed vertical integral scale, 𝐼𝑌(𝑧) ≈ 25, while the 

vertical size of the domain (𝐿𝑍) is increased proportionally to the number of layers, 𝑁𝐿 . By 

keeping 𝐼𝑌(𝑧) constant, the ratio  

 𝐼𝑍 = 𝐼𝑌(𝑧)/𝐿𝑧 (14) 

decreases as the number of layers increases, from 𝐼𝑍 =25 for 𝑁𝐿 = 1 to 𝐼𝑍 =0.5 for 𝑁𝐿=50. 

The same number of particles is added to each additional layer of the system as 𝑁𝐿  increases, 

in such a way that adding layers means that the initial source size is increased encompassing 

(sampling) more heterogeneity. Observing Figure 5, it is likely that after 25 layers (i.e. 𝐼𝑍 ≈

1) the first two statistical moments of the normalized pumping rates (𝑄𝑛
̅̅̅̅  and 𝜎𝑄𝑛

2 ) reached 

convergence for what refers to the level of system heterogeneity that is sampled considering 

the whole set of released solute plume. This is also in line with the marked drop of 𝜎𝑄𝑛
2  for 

𝑁𝐿  > 25. The impact of the source size on solute transport evolution is well known in in 

stochastic hydrology (e.g. de Barros, 2018). For instance, previous analyses on radially 

convergent transport by Pedretti et al. (2013a, 2014) adopting 3D SGS simulations of 

conservative solutes showed that 𝐼𝑍 had a strong influence on the formation of so-called 
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“anomalous” transport in heterogeneous media. Simulations with larger 𝐼𝑍 resulted in 

longer BTC tailing and were more prone to show solute transport channeling along 

preferential flow zones rather than systems with lower ratios.  

The results from the present work are well aligned with the results by Pedretti et al. (2013a, 

2014) and the previous works on geological entropy. Notably, the well-defined correlation 

existing between 𝐻𝑅0 and 𝑁𝐿  (Figure 7) emphasizes the importance of the source size 

(measured by 𝐼𝑍) and its effects of solute channeling. As described in detail in Bianchi and 

Pedretti (2017), 𝐻𝑅0 provides a statistical measure of the spatial order of the hydraulic 

conductivity among the smallest clusters of adjacent cells. This is true also for the cells 

corresponding to the source. As such, 𝐻𝑅0 can be seen as an indicator of spatial ordering of 

K at the source. Since solute particles move preferentially along the most conductive parts 

of the aquifer, smaller 𝐻𝑅0 means that the solutes tend to move from the initial positions at 

the source to the adjacent cells (and from there to the rest of the domain) along the better-

connected high-K zones forming the solute channels. Higher 𝐻𝑅0, on the other hand, means 

that the system is more disordered, or in other terms more chaotic and better mixed. In this 

sense, the migration of the particles from the initial positions to the adjacent cells, and then 

to the rest of domain, is more similar in all parts of the injection zone. As such, the effect of 

channeling is reduced for systems with higher 𝐻𝑅0 than for systems lower 𝐻𝑅0.  

Another related aspect with the importance of the adopted correlation lengths in these 

simulations is that the horizontal integral scale of the log-transformed hydraulic 

conductivity Y (𝐼𝑌ℎ) is identical to the vertical integral scale of Y, 𝐼𝑌(𝑧). Aquifers can be 

statistically anisotropic, with 𝐼𝑌ℎ > 𝐼𝑌(𝑧) or 𝐼𝑌ℎ < 𝐼𝑌(𝑧). For instance, in alluvial aquifers 

sandy-gravel bodies tend to be better correlated on the plane than in the vertical direction, 

due to sedimentary depositional processes (e.g. Kreitler, 1989; Scheibe and Freyberg, 1995; 

Koltermann and Gorelick, 1996). An opposite situation can be found in fractured aquifers 
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with vertically-oriented water-bearing fractures, as a consequence of other geological 

processes such as folding, faulting and deformation (e.g. Chilès, 2005; Dietrich, 2005; 

Pedretti et al., 2016, 2019). Corroborating if the results of a P&T optimization process are 

sensitive to selected anisotropy of the r.s.f. is left open for a future extension of the present 

analysis. 

In this line, a potential limitation related to the use of the entrogram as computed in this 

work is that the subdomain l , of size 𝑙𝑥 , 𝑙𝑦 and 𝑙𝑧, becomes an rectangular box as the number 

of layers 𝑁𝐿  >  𝑙𝑧.  We are currently developing a more general anisotropic version of the 

entrogram, which should account for the different size in the model grid dimensions. We 

postulate that the use of an anisotropic entrogram will be particularly beneficial for the 

analysis of statistically anisotropic r.s.f. This hypothesis will be also tested in a future 

development of this work.  

A further element to be analyzed in future extensions of the geological entropy includes the 

effects of hydromechanical dispersion. The present work was based purely on advective 

transport, as in the original work by Bayer et al. (2004). Recalling other studies on risk 

assessment (e.g. de Barros 2018), purely advective transport is usually adopted as a 

conservative approach for the decision-making process compared to the more physically 

based advective-dispersive transport. However, as in any other solute transport problems, 

the Péclet (Pe) number is expected to be an important parameter controlling the model 

outcomes. Pe→ 0 would increasingly smear the impact of K heterogeneity, tending to 

enhance mixing among the streamtubes. We postulate that all particles BTCs would look 

more alike, tending to a more statistically homogeneous transport even for low 𝐻𝑅0 or large 

𝐻𝑆. So, potentially the uncertainty around the mean values could reduce for low Pe. These 

aspects shall be tested through a sound and rigorous sensitivity analyses targeting a range 

of Pe values. 
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Summary and conclusion 

The cost-effective design and use of P&T require minimizing the overall pumping rates from 

the hydraulic barrier, a task plagued with uncertainty due to geological heterogeneity. Our 

stochastic modeling analyses extended the conclusion of previous works, particularly Bayer 

et al. (2004), evaluating the implication of model dimensionality and the selected 

geostatistical random spatial field (r.s.f.) generator on the expected optimal pumping rates 

(𝑄𝑜𝑝𝑡) and the uncertainty depending on different conventional and combined P&T 

configurations.  

There are three main conclusions from this work. 

1) The results of the P&T optimization process based on stochastic numerical modeling 

depends strictly on the selected model dimensionality. Using a 2D model, the expected 

behavior of the system (measured by the ensemble mean of normalized optimal pumping 

rates, 𝑄𝑛
̅̅̅̅ ) and the uncertainty (measured by the ensemble-mean variance 𝜎𝑄𝑛

2 ) are 

maximized compared to 3D models, for the same adopted r.s.f generator. This could be 

linked to the relative amount of heterogeneity sampled by the source related to the vertical 

size of the domain, which can be measured by 𝐼𝑍 = 𝐼𝑌(𝑧)/𝐿𝑧 . As 𝑁𝐿  increases, 𝐼𝑍 is lower and 

the expected pumping rates tend to be reduced in all P&T configurations, particularly for 

scenario “E”, where we found a decrease up to 67% for the model embedding 𝑁𝐿 = 50 

compared to the 2D model. The uncertainty also tends to decrease for growing 𝑁𝐿 , with 

reduction up to 99% in 𝜎𝑄𝑛
2  for certain P&T configurations, as a consequence of the fact that 

the source is better mixed for lower 𝐼𝑍. 
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2) The results of the P&T optimization process depend strictly on the selected stochastic 

field generator.  Non-Gaussian (SIS) simulations determine a generalized increase in 𝑄𝑛
̅̅̅̅  and 

𝜎𝑄𝑛
2  compared to Gaussian (SGS) simulations.  The use of 3D modeling does not help to 

reduce the departures between SGS and SIS compared to the 2D modeling; in some cases, a 

higher number of layers may even generate higher expected optimal pumping rates. The 

uncertainty around the mean also increased when using SIS-based modeling compared to 

SGS-based modeling. The use of combined P&T configurations, in particular Scenario “E”, 

was observed to be useful for both SGS and SIS simulations.  

3)  Geological entropy can explain the different distributions of optimal pumping rates.  We 

found that 2D models and SIS-based models tend to be characterized by lower 𝐻𝑅0 and 

higher 𝐻𝑆 than 3D models and SGS-based models. This is particularly true when increasing 

the discretization of 3D models along the vertical direction, i.e. increasing 𝑁𝐿  and reducing 

in turn 𝐼𝑍. The higher mean pumping rates and uncertainty in 2D and SIS models can be thus 

explained considering that systems with lower 𝐻𝑅0 and higher 𝐻𝑠 tend to be more prone to 

solute transport channeling (Bianchi and Pedretti, 2017, 2018), which are consistent with 

the effect of 𝐼𝑍 at the source evaluated in previous works on radial convergent transport in 

3D heterogeneous systems (Pedretti et al., 2013a, 2014). As 𝑄𝑛
̅̅̅̅  and 𝜎𝑄𝑛

2  depend strictly on 

the amount of preferential flow and solute channeling in the system (e.g. Bayer et al., 2004; 

Bayer and Finkel, 2006), systems showing lower persistency of spatial order on K clusters 

are more homogeneous (“well-mixed”) and generate less spatial variability in solute 

patterns, thus requiring less pumping rates (lower Q) to collect all particles, than systems 

characterize by higher spatial persistency of K clusters. 
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Tables 

Table 1 Key input parameters of the model setup used in this study.    

Description Symbol Value Units 

Height of contaminant source 𝐻𝑠  50 m 

Width of contaminant source 𝑊𝑠 50 m 

Distance of the source from the pumping well 𝑟 50 m 

Total length of the physical barrier 𝑙𝑏 150 m 

Effective aquifer transmissivity 𝑇𝑒𝑓𝑓  variable m2/d 

Mean aquifer gradient 𝑖 0.001 - 

Integral scale of log-transformed hydraulic conductivity 𝐼𝑌  25 m 

Variance of log-transformed hydraulic conductivity 𝜎𝑌
2 1.8 - 
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Table 2 Resulting ensemble mean (Qn
̅̅̅̅  ) and variance (σQn

2 ) of the normalized optimal pumping rates by 

scenario. SGS/SIS refers to the type of stochastic simulator; NL is the number of layers. For each case, the next 
line represents the relative increment (as percentage) relatively to the case “SGS - NL=1” 

  P&T configuration “A” 

𝑵𝑳 1 10 25 50 

SGS/SIS SGS SIS SGS SIS SGS SIS SGS SIS 

𝑸𝒏
̅̅ ̅̅  1.624 2.142 1.835 2.173 1.479 1.683 1.467 1.668 

- 32% 13% 34% -9% 4% -10% 3% 

𝝈𝑸𝒏
𝟐  0.917 1.334 0.478 1.218 0.029 0.107 0.025 0.112 

- 45% -48% 33% -97% -88% -97% -88% 

𝐶𝑉𝑄𝑛
 

 
0.59 0.54 0.38 0.51 0.11 0.19 0.11 0.20 

- -9% -36% -14% -81% -67% -82% -66% 

  P&T configuration “C” 

𝑵𝑳 1 10 25 50 

SGS/SIS SGS SIS SGS SIS SGS SIS SGS SIS 

𝑸𝒏
̅̅ ̅̅  1.303 1.803 1.382 1.682 0.863 1.170 0.840 1.146 

- 38% 6% 29% -34% -10% -36% -12% 

𝝈𝑸𝒏
𝟐  0.623 0.988 0.331 0.522 0.021 0.130 0.017 0.141 

- 59% -47% -16% -97% -79% -97% -77% 

𝐶𝑉𝑄𝑛
 0.606 0.551 0.417 0.429 0.170 0.308 0.156 0.328 

 -9% -31% -29% -72% -49% -74% -46% 
 

 P&T configuration “E” 

𝑵𝑳 1 10 25 50 

SGS/SIS SGS SIS SGS SIS SGS SIS SGS SIS 

𝑸𝒏
̅̅ ̅̅  0.706 0.798 0.493 0.712 0.252 0.347 0.241 0.232 

- 13% -30% 1% -64% -51% -66% -67% 

𝝈𝑸𝒏
𝟐  0.373 0.620 0.089 0.268 0.004 0.021 0.007 0.026 

- 66% -76% -28% -99% -94% -98% -93% 

𝐶𝑉𝑄𝑛
 0.87 0.99 0.61 0.73 0.24 0.42 0.35 0.70 

 14% -30% -16% -72% -52% -60% -20% 
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Figures 

 

Figure 1 The top left panel illustrates the 3D conceptual models and boundary conditions adopted in the models. 
The mass in the source area (red), of size 𝑊𝑠 × 𝐻𝑠 = 50 × 50, is discretized in 𝑁𝑝=200 particles per layer. The 

other plots represent the bird-view of the system. In all scenarios, the distance of the pumping well (blue) from 
the bottom edge of the source is equal to the lateral extension of the source (𝑟 = 𝑊𝑆). For the combined scenarios 
“C” and “E”, the total length of the physical barrier is equal to three times the lateral extension of the source (𝑙𝑏 =
3𝑊𝑆).  
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Figure 2 (a) Planar views of two random realizations created using the SGS (left) and SIS (right) methods. (b) 
Increasing size (lag) of the subdomains (left) used to compute the entrogram (right). The entrogram shows the 
relative entropy (𝐻𝑅) against the entrogram lag; 𝐻𝑅0 refers to the smallest subdomain used to calculate 𝐻𝑅. (c) 
Randomly selected subdomains of two different scales used to compute the entrogram. 
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Figure 3 Histograms of the ensemble of the resulting optimal pumping rates (𝑄𝑛, unitless) for each of P&T 
scenario “A” – conventional P&T with no physical barriers; “C”: combined P&T with downgradient barriers; “E” 
– combined P&T with upgradient and lateral barrier) by number of layers (𝑁𝐿). The results refer to the 
Sequential Gaussian Simulations (SGS). 
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Figure 4 Cumulative density functions (cdfs) of the resulting optimal pumping rates (𝑄𝑛) for each of P&T 
scenario (“A”,”C”,“E”), by number of layers (𝑁𝐿) and type of random field generator (SGS=Sequential Gaussian 
Simulation; SIS= Sequential Indicator Simulation).  
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Figure 5  Ensemble-mean (a) and variance (b) of the optimal normalized pumping rates by number of layers, 
type of stochastic simulator and type of P&T setup. 
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Figure 6  Entrograms for the different geological setups. Note that all setups involve the same exponential 
variogram (integral scale 𝐼=1.53) and variance of the log-transformed hydraulic conductivity (𝜎𝑌

2 = 1.8), by 
number of layers (𝑁𝐿) and type of random field generator (SGS=Sequential Gaussian Simulation; SIS= 
Sequential Indicator Simulation) used in the simulations. The larger plot (a) illustrates the normalized (relative) 
geological entropy (𝐻𝑅), the smaller inset (b) shows the local geological entropy (𝐻𝐿). 
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Figure 7 Comparison between number of layers (𝑁𝐿) and metrics based on the geological entropy, by type of 
stochastic generator. On top (a), the metric is the entrogram scale (𝐻𝑆). At the bottom (b), the metric is the first-
lag normalized relative entropy (𝐻𝑅0) 
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