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Abstract: Sleep-related hypermotor epilepsy (SHE) is characterized by hyperkinetic focal seizures,
mainly arising in the neocortex during non-rapid eye movements (NREM) sleep. The familial form is
autosomal dominant SHE (ADSHE), which can be caused by mutations in genes encoding subunits of
the neuronal nicotinic acetylcholine receptor (nAChR), Na+-gated K+ channels, as well as non-channel
signaling proteins, such as components of the gap activity toward rags 1 (GATOR1) macromolecular
complex. The causative genes may have different roles in developing and mature brains. Under this
respect, nicotinic receptors are paradigmatic, as different pathophysiological roles are exerted by
distinct nAChR subunits in adult and developing brains. The widest evidence concerns α4 and
β2 subunits. These participate in heteromeric nAChRs that are major modulators of excitability in
mature neocortical circuits as well as regulate postnatal synaptogenesis. However, growing evidence
implicates mutant α2 subunits in ADSHE, which poses interpretive difficulties as very little is known
about the function of α2-containing (α2*) nAChRs in the human brain. Planning rational therapy
must consider that pharmacological treatment could have different effects on synaptic maturation
and adult excitability. We discuss recent attempts towards precision medicine in the mature brain
and possible approaches to target developmental stages. These issues have general relevance in
epilepsy treatment, as the pathogenesis of genetic epilepsies is increasingly recognized to involve
developmental alterations.

Keywords: autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE); autosomal dominant
sleep-related hypermotor epilepsy (ADSHE); antiepileptic; cholinergic receptor nicotinic alpha 2
subunit (CHRNA2); cholinergic receptor nicotinic alpha 4 subunit (CHRNA4); cholinergic receptor
nicotinic beta 2 subunit (CHRNB2); K+-Cl− cotransporter type 2 (KCC2); neuronal nicotinic
acetylcholine receptor (nAChR); synaptogenesis

1. Introduction

Epilepsy is a common neurological disease, whose hallmark is the presence of recurring “seizures”,
i.e., transient events of abnormal neuronal activity in the brain that cause recognizable signs [1].
Overall, life expectancy is lower in epileptic patients, and the incidence of sudden death higher, not to
speak of the deteriorated quality of life and social stigma [2]. The symptoms can be often controlled by
antiepileptic drugs (AEDs), which can nonetheless cause serious side effects. Moreover, about 30% of
the patients are refractory to pharmacological treatment. For 10% to 50% of these, depending on age
and the site of seizure, surgery can be an effective therapeutic option [3].

Epileptic syndromes are heterogeneous, and so is their severity and the spectrum of cognitive,
behavioral and psychiatric comorbidities. Epilepsies can be broadly classified into focal (arising in
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networks limited to one hemisphere), generalized (rapidly engaging both hemispheres), combined focal
and generalized, and epilepsies with unknown onset [4]. The known etiological factors can be structural
(e.g., following trauma), genetic, immune, infectious, or metabolic [5]. In general, research on genetic
epilepsies offers invaluable suggestions about the underlying cellular and molecular mechanisms,
and on how to test hypotheses about the pathogenesis as well as novel therapeutic approaches in
animal models [6]. However, despite its wide diffusion in human populations (with an incidence of
3–4% in industrialized countries; [7]), epilepsy remains a relatively neglected disease [2]. Much further
effort is thus needed to analyze more deeply the epileptogenic process, which will hopefully suggest
how to develop new efficacious treatments to control the symptoms and, possibly, cure the disease.

2. Sleep-Related Hypermotor Epilepsy (SHE)

In 1977, Pedley and Guilleminault described for the first time sleepwalking in patients accompanied
by screaming, complex automatisms and epileptiform electroencephalographic (EEG) events [8]. Shortly
afterwards, Lugaresi and Cirignotta reported on patients showing sleep related tonic spasms and
hyperkinetic movements [9]. Subsequent observations established the epileptic nature of these
events and led to the term nocturnal frontal lobe epilepsy (NFLE), to denote epilepsy characterized
by short seizures arising in the frontal lobe during non-rapid eye movements (NREM) sleep and
accompanied by prominent motor manifestations [10,11]. Recently, the NFLE denomination was
replaced by sleep-related hypermotor epilepsy (SHE) because (1) seizures are present during day-
and night-sleep; (2) they can originate from frontal as well as extra-frontal areas [12,13]. In particular,
SHE is characterized by brief (<2 min) hypermotor seizures that mainly occur during stage 2 of
NREM sleep and may be preceded by sudden arousals. The hypermotor events consist of complex
and vigorous body movements, whose individual pattern tends to be highly stereotyped, suggesting
disinhibition of subcortical motor modules. The most severe forms may be associated with cognitive
deficits, intellectual disabilities and psychiatric comorbidities [12–14]. The first-line treatment is based
on the use of carbamazepine [15], which can however cause serious side effects. As in most other
epilepsies, about 30% of SHE patients are drug-resistant, and surgery can be resolutive in a fraction of
these patients [16]. Contrary to previous opinion, recent evidence from a wide cohort of SHE patients
indicates that the long-term outcome is rarely favorable, with only ~22% of the patients showing
5-year seizure remission [17]. Remission is affected by age of onset and the occurrence of seizures in
wakefulness [17].

3. The Implication of Neuronal Nicotinic Receptors (nAChRs) in Autosomal Dominant
SHE (ADSHE)

The incidence of SHE among epileptic patients is estimated to be approximately 1.8 per
100,000 individuals [12]. Among SHE cases, 10% to 15% have genetic background and present
autosomal dominant transmission [11,18,19]. The first mutations linked to ADSHE (previously known
as autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE)) were found on genes encoding
nAChR subunits [19]. More recently, other genes were implicated in the disease. In the following
subsections, we overview the nAChR function in the neocortex and discuss the ADSHE-linked
mutations relative to nAChR subunits, the main focus of the present review. Other genes linked
to ADSHE are briefly described in Section 4. The pharmacological and developmental aspects are
respectively discussed in Sections 5 and 6, especially as they relate to nAChRs.

3.1. nAChRs in the Cerebral Cortex

In the neocortex and thalamus, acetylcholine (ACh) is mainly released by fibers ascending from
cholinergic nuclei respectively located in the basal forebrain and pons [20], but intra-cortical cholinergic
cells are also known [21,22]. Cholinergic nuclei are highly active during wakefulness, strongly decrease
their activity during NREM sleep, and reactivate during REM sleep [20]. ACh can activate metabotropic
muscarinic and ionotropic nAChRs [23]. The latter are ion channels constituted by five subunits
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surrounding a central pore permeable to cations. The mammalian neocortex widely expresses the
α4, α7, and β2 nAChR subunits, respectively coded by CHRNA4, CHRNA7, and CHRNB2 [24,25].
The main nAChR subtypes in the brain are the homopentamer (α7)5 and the heteropentamer α4β2*.
The former presents lower affinity for ACh, with half-effective concentration (EC50) of ~100–200 µM,
quick desensitization (time constant in the order of milliseconds), and a permeability ratio between
Ca2+ and Na+ (PCa/PNa) of ~10 [26,27]. Heteromeric α4β2 nAChRs have lower affinity for the agonists
(with apparent EC50 for ACh and nicotine of ~10 µM), a much lower permeability to Ca2+ (PCa/PNa ≈ 2),
and slow desensitization (time constant in the order of seconds; [26,27]). More specifically, two main
stoichiometries of α4β2 nAChRs coexist: the high-affinity (α4)2(β2)3 (with EC50 in the low micromolar
range) and the low-affinity (α4)3(β2)2 (EC50 ~60 µM; [28]). Other major nAChR subunits in the
neocortex are α2 (encoded by CHRNA2), α5 (CHRNA5), and β4 (CHRNB4), which can associate
with α4 and β2 to exert specific physiological roles in different neuronal populations and different
developmental stages [29–33]. While the distribution of α4 and β2 is broadly similar in Rodents and
Primates (reviewed in [31]), differences are observed in the distribution of α2 and β4 [34]. In the cerebral
cortex, both subunits are much more widespread in squirrel monkeys [35] and Macaca mulatta [36],
compared to Rodents [34]. In the latter, α2 appears to have a more localized expression, in specific
GABAergic cells of deep layers [33,37,38], It is presently unclear to what extent such differences extend
to the human species. Nonetheless, in those regions where it has been measured, α2 expression is
higher in humans than in mice [34]. Regardless of the properties of individual subtypes, the lower
affinity for ACh and the slow desensitization enable heteromeric nAChRs to regulate excitability on
a wider time scale, compared to α7.

Ion currents flowing through nAChRs drive membrane potential towards the reversal potential
of these channels, which results to be approximately 0 mV, irrespective of subunit composition [39].
Hence, nAChR activation generally depolarizes the cell, which can lead to activation of voltage-gated
Na+ and Ca2+ channels. Moreover, Ca2+ influx through nAChRs can stimulate calcium-induced
calcium release from intracellular stores, particularly at presynaptic sites [40]. Broadly speaking,
the effect of nAChR activation across cortical layers tends to be excitatory (e.g., [41]). However,
one should keep in mind that nAChRs are found on the soma and synaptic terminals of both excitatory
and inhibitory neurons, with a complex developmental pattern. Therefore, the specific effects of
nAChR activation on local networks in different regions, at different stages, are difficult to predict.
An important and debated issue is the time-course of ACh action, which may have different impact on
receptor subtypes with different kinetics and sensitivity to the agonists, as is often the case in mutant
ADSHE-linked receptors. The balance of slower (paracrine) and faster (synaptic) ACh effects is a vexed
question (recently discussed in [42,43]). The kinetics of ACh concentration in the smallest extracellular
domains depends on a variety of factors and can be only partially analyzed with current methodologies.
Nonetheless, there is agreement that the timescale of ACh action ranges from milliseconds to at least
seconds. In fact, ACh release events evoked by sensory cues or optogenetic stimulus present a rise time
of 0.2–0.5 s and peak levels of approximately 4–6 s [44]. Such a time scale covers the time constant of
desensitization of different heteromeric nAChR subtypes, justifying the conclusion that the alterations
of current kinetics and sensitivity to the agonists observed in ADSHE-linked nAChR variants (discussed
later) is a relevant factor in causing pathophysiological effects in neocortex networks.

3.2. The α4 and β2 nAChR Subunits in ADSHE

In 1995, a missense mutation on CHRNA4 was associated with ADSHE [45]. This landmark study
provided the first evidence of a gene linked to epilepsy and pointed to mutant ion channels as a major
causal factor in genetic epilepsy. ADSHE-linked mutations were soon also found on CHRNB2 [46,47],
and the number of ADSHE mutations found on CHRNA4 or CHRNB2 has subsequently increased at
a steady pace [19,48,49]. Recently, variants of heteromeric nAChR subunits have been also suggested to
be implicated in other epileptic forms [50–52]. In contrast, despite the wide expression of α7 receptors
in the brain [30], evidence about the involvement of CHRNA7 in epilepsy is weak. The 15q13.3
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microdeletion, which comprises seven genes (quorum CHRNA7), has been correlated with genetic
predisposition to several neurological pathologies, including idiopathic generalized epilepsy [53].
However, the specific role, if any, of CHRNA7 copy number variation is unknown. The difficulty of
clarifying this issue is exacerbated by the fact that deleting CHRNA7 in murine models causes no
evident pathologic or behavioral effects [54,55], which questions the suitability of murine models in
this pathophysiological context.

Most ADSHE-linked mutations falling on CHRNA4 or CHRNB2 appear to cause
a “gain-of-function” phenotype in classical expression systems such as Xenopus oocytes and human
embryonic kidney cell lines [48,56], by increasing the receptor’s sensitivity to the agonists [47,57],
accompanied or not by a shift of the steady-state desensitization curve [46,58]. The molecular
mechanisms underlying these alterations remain somewhat controversial, especially regarding whether
these mutations affect the balance of receptor’s stoichiometries, or alter the intrinsic binding capacity,
or both (e.g., [58–61]). Nonetheless, these observations suggest that mutant nAChRs may be abnormally
activated in conditions of low ACh release, as is typical of NREM sleep. However, the possible
compensatory responses of the brain to altered nAChR function should not be neglected. In fact,
a positron emission tomography study in a group of patients carrying different ADSHE mutations (on
either CHRNA4 or CHRNB2) showed an altered distribution of nAChRs, including a decreased density
in right dorsolateral prefrontal cortex, accompanied by an increase in several subcortical regions [62].

To better understand the pathophysiology, mouse [63–67] and rat [68–70] strains have been
generated that express mutant α4 or β2 subunits linked to ADSHE. Some of the mutant strains
display spontaneous seizures during slow-wave sleep [68] or periods dominated by slow-wave
EEG activity [65]. Other strains display phenotypic features belonging to the ADSHE semiology,
such as dystonic arousal complex [64], spontaneous seizures accompanied by altered EEG pattern,
but unrelated to sleep [63,69], or disturbances of the normal sleep pattern [66]. The physiological
and morphological study of the effect of these mutations on neocortical neuronal populations and
networks is still somewhat fragmentary, but a spectrum of alterations of GABAergic activity has been
reported. Some mutations (α4Ser280Phe and α4insL) lead to hyperactivation of inhibitory neurons [63],
which could lead to synchronize pyramidal neurons, whereas α4Ser284Leu decreased GABA release
in rat sensorimotor cortex, which suggests network disinhibition [68], followed by upregulation of
the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway and expression
of connexin 43 [70]. Whether different mutations indeed cause epileptogenic effects by distinct
mechanisms, or a given mutation can produce different effects in different neuronal populations
or brain states remains an open question. Finally, conditional expression of the ADSHE mutation
β2Val287Leu indicates that some of the permanent defects of the neocortical network may be produced
at early postnatal stages [65,71]. This point is further discussed later.

3.3. The α2 nAChR Subunit and Its Mysteries

The critical implication of the cholinergic system in sleep-related epilepsy was further suggested
by the identification of a mutation on CHRNA2, giving the non-synonymous substitution Ile279Asn,
linked to a familial epilepsy with nocturnal wandering and ictal fear [72]. In this case, mutant nAChR
expression in heterologous systems displayed a strong increase in the nAChR sensitivity to the
agonists [72,73], similar to what was previously observed in several ADSHE-linked mutations on
α4 and β2 [57]. The peculiar neurological phenotype may depend on the high expression of the α2
subunit in the habenular-interpeduncular pathway [25,74], as well as in specific neuronal groups in the
hippocampus-subiculum [75,76] and amygdala [77].

Following-up the identification of α2Ile279Asn, several large-scale genetic studies were carried
out on European patients presenting classical sporadic or familial ADSHE, finding no evidence
of epilepsy-linked CHRNA2 mutations [78,79]. More recently, in a Chinese cohort of 257 patients
(42 familial and 215 sporadic cases) three CHRNA2 single nucleotide polymorphisms have been
identified, two of which lead to non-synonymous amino acid substitutions (Thr22Ile and Thr125Ala) [80].
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For these, no functional studies are yet available. However, two CHRNA2 mutations identified in Italian
families affected by ADSHE were found to present a “loss-of function” phenotype, when expressed in
human cell lines [81,82]. In particular, α2Tyr252His strongly reduces the number of channels bound to
the agonist, without significantly altering the overall channel expression [82].

The apparently opposite behavior of mutant α2-containing (α2*) and α4β2* nAChRs linked to
typical ADSHE may depend on the specific functions of α2 in the human brain. The distribution of α2
in neocortex and thalamus differs between Rodents and Primates, with expression being considerably
higher in the latter. This led to hypothesize that the subunit promoter was still evolving at the time
of divergence between the two lineages [36]. Be that as it may, no evidence of seizures is found in
mice after the deletion of α2, but rather a potentiation of several nicotine-induced behaviors [83].
Hence, designing good animal models for this form of ADSHE will not be straightforward, and
determining the detailed function of α2* nAChRs in relation to human epilepsy will require substantial
further investigation, especially considering that no good pharmacological tools are available to
distinguish this nAChR subtype.

At the present time, we can hypothesize two possible pathogenetic mechanisms (not mutually
exclusive). First, in mouse neocortex, non-desensitizing α2* nAChRs are specifically expressed
in Martinotti interneurons, whose 15 Hz-bursting (β band) activity effectively synchronizes the
thick-tufted pyramidal cells in layer V [33]. A defective cholinergic response in Martinotti cells could
favor pyramidal cell disinhibition and hamper the alternation of UP and DOWN states during NREM
sleep oscillations. Testing this hypothesis in surgical samples from the human neocortex would not
be straightforward. Second, as other nicotinic subunits, α2 presents a peak of expression during the
second postnatal week and is thought to be implicated in synaptogenesis [84], The specific effects
of α2 at this stage are virtually unknown. It is possible that expression of a non-functional channel
protein affects the signaling machinery regulating maturation of the synaptic network. Nevertheless,
regardless of the specific cellular mechanism, the notion that α2 subunit variants have epileptogenic
potential is also supported by the observation that another mutation, Arg376Trp, is linked to the benign
familial infantile seizure syndrome [85].

Further recent studies have extended our knowledge of the pathophysiology of α2. Genome-wide
association studies point to CHRNA2 as a risk locus in cannabis use disorder [86] and nicotine
addiction [87], but not in schizophrenia [88] or bipolar disorder [89]. This is a further indication that
a functional distinction can be traced between α2 and other nAChR subunits, whose loci are linked
to the latter psychiatric disorders [90] and whose expression is altered in patients thereof [91,92].
Interestingly, nicotine addiction in an African American population [87] has been associated toα2Thr22Ile,
one of the variants linked to ADSHE [80], suggesting a pleiotropic influence of abnormal α2 function.
In conclusion, although evidence about the physiology and pathology of α2 nAChR is increasing at
a relatively quick pace, the spectrum of its functions is still largely unknown and appears to be linked
to heterogenous disease conditions, also involving peripheral tissue. An example is the CHRNA2
association with overweight/obesity in a Korean population [93] and its implication in systemic energy
homeostasis through a direct action onto adipocytes [94].

4. Other Genes Implicated in SHE

A list of identified or putative genes in ADSHE is given in Table 1. Further support to the
notion that the cholinergic system is crucially implicated in SHE is given by the observation that
a recessive form of the epilepsy is associated with mutant proline-rich membrane anchor 1 (PRIMA1),
which anchors acetylcholinesterase (AChE) to the synaptic membrane [95]. AChE terminates the
cholinergic signal by degrading the neurotransmitter. In the CNS, the functional form of AChE
is associated as a tetramer with PRIMA1 on synaptic membranes, particularly to the proline-rich
attachment domain located at the extracellular domain of PRIMA1 [96]. PRIMA1 is also implicated in
intracellular processing and axon targeting of AChE. Defective AChE could lead to altered cholinergic
responses, with an overstimulation of the nicotinic and muscarinic receptors [95]. Once again, however,
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the possible pathogenetic mechanism needs further clarification, as PRIMA deletion in mice indeed
leads to higher ACh levels, but also to a high degree of phenotypic compensation [97].

Besides nAChRs, the other ion channel known to be implicated in ADSHE is the potassium
sodium-activated channel subfamily T member 1 (KNa1.1, encoded by KCNT1). KCNT1 is linked to
severe forms of ADSHE [98] and other epilepsies, particularly epilepsy of infancy with migrating focal
seizures [99,100], accompanied by neurological and psychiatric comorbidities [98–100]. The KNa1.1
mutations cluster around the cytoplasmic NADP+ binding domain of the channel [98] and lead to
a “gain-of-function” phenotype in expression systems [100].

A major recent advance was the discovery that ADSHE can be caused by genes not encoding
ion channels and not directly related to the cholinergic system (Table 1). In particular, mutant genes
encoding proteins of the gap activity toward rags 1 (GATOR1) complex [101], such as the disheveled,
egl-10 and pleckstrin domain-containing protein 5 (DEPDC5 [102–106]), and the nitrogen permease
regulator-like-2 (NPRL2) and 3 (NPRL3, [107,108]) have been implicated in the pathogenesis of many
focal epilepsies, including ADSHE. GATOR1 is a macromolecular complex that inhibits the mammalian
target of rapamycin complex 1 (mTORC1, [101]), thus regulating the cellular sensing of nutrients levels
and thereby brain homeostasis. Altered regulation of this pathway turns out to have a major impact
on brain structure and function, causing a spectrum of monogenic neurologic diseases. Although
the cellular mechanisms are still uncertain, hypoactivation of mTOR is implicated in focal epilepsy
syndromes, whereas hyperactivation causes aberrant formation of neural circuit [101]. Altogether,
these observations suggest that mTOR inhibitors could be added to the pharmacological toolkit in
SHE, but clinical studies are lacking [109]. Other genes putatively implicated in ADSHE (Table 1) are
the Ca2+-binding protein 4 [110] and the corticotropin-releasing hormone [111].

Table 1. Identified or putative genes in autosomal dominant sleep-related hypermotor
epilepsy (ADSHE).

Gene Protein Description Clinical
Phenotype References

CHRNA4 α4 nAChR subunit In heteromeric nAChRs Typical SHE [19,45,48,49,56]

CHRNB2 β2 nAChR subunit In heteromeric nAChRs Typical SHE [46–48,56,58]

CHRNA2 α2 nAChR subunit In heteromeric nAChRs

Seizures with
nocturnal

wandering and
ictal fear

[72]

SHE with
paroxysmal

arousals
[81,82]

KCNT1
KNa1.1

(also known as
KCa4.1,Slack, Slo2.2)

Na+-gated K+ channel

Severe SHE with
psychiatric and

cognitive
alterations

[98]

Epilepsy of infancy
with migrating
focal seizures

[99,100]

DEPDC5
NPRL2/3

DEPDC5
Nitrogen permease
regulator-like-2/3

DEPDC5 and NPRL
associate to form GATOR1,
which inhibits mTORC1

Wide spectrum of
focal epilepsies,
including SHE,
often associated

with brain
malformation

[101–108]

CABP4 Ca2+-binding protein 4.
Regulates voltage-gated

Ca2+ channels. Typical SHE [110]

CRH Corticotropin-releasing
hormone

Mutations in CRH
promoter Typical SHE [111]

SHE: Sleep-related hypermotor epilepsy; nAChR: neuronal nicotinic acetylcholine receptor; DEPDC5: pleckstrin
domain-containing protein 5; NPRL: nitrogen permease regulator-like; GATOR1: gap activity toward rags 1.
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5. Steps toward Precision Medicine in ADSHE

Many common AEDs control neuronal hyperexcitability by targeting voltage- or ligand-gated ion
channels. Although the antiepileptic action is frequently attributed to modulation of voltage-dependent
Na+ channels (NaV), many channel blockers used to treat epilepsy or other paroxysmal disorders
(e.g., cardiac arrhythmias) are rather promiscuous in their molecular targets [112,113]. A classic example
is phenobarbital, which exerts its main action by increasing the mean open time of the GABAA receptor
(GABAAR) channel [114] but also blocks at similar concentrations voltage-gated Ca2+ channels (CaV),
especially T-type (CaVT; [115]), and glutamate receptors (GluRs; [116]). Although the non-specific
action of AEDs can widen the spectrum of unwanted side-effects, it may also constitute a first step
towards precision medicine, i.e., by repurposing drugs that are particularly effective on the channel
types known to be implicated in a given type of epilepsy. Such an approach has been attempted
in KCNT1-related epilepsy, which is especially refractory to common AEDs. In vitro, the increased
function of mutant KNa1.1 is fully reversed by quinidine [100], a well-known K+ channel blocker used
as an antiarrhythmic and antimalaric. Unfortunately, clinical trials with quinidine on patients carrying
KCNT1 mutations gave mixed results, perhaps because of age-dependent effects and poor permeation
through the blood–brain barrier [117–119]. Moreover, as other blockers of voltage-gated K+ channels
(KV), quinidine is cardiotoxic, because of the tendency to facilitate fatal arrhythmias [118]. Nonetheless,
it could constitute a lead compound to generate drugs with more specific molecular action and lower
cardiotoxicity. A potentially useful molecular indication comes from the observation that quinidine
is more effective on patients carrying mutations within the intracellular regulator of conductance of
potassium 2 (RCK2) domain of KNa1.1, distal to the NADP+-binding site, implicated in the channel
sensitivity to Na+ [119]. Another current strategy is to identify compounds that bind the channel
pore more specifically than quinidine, by using computational methods based on the cryo-electron
microscopy-derived KNa1.1 structure [120].

Carbamazepine is considered a first-line drug in SHE, although no extensive studies on wide
cohorts of patients are available for other AEDs, and even carbamazepine is ineffective in >30% of
patients [109]. This drug dampens neuronal firing by retarding the recovery from inactivation of
NaV channels [121], but its action is not specific. In fact, the good efficacy of carbamazepine on
ADSHE has been attributed to the fact that the drug also exerts open channel block of heteromeric
nAChRs, with higher efficacy on some ADSHE-linked mutants [73,122,123]. Similar observations
were carried out on other drugs found to be effective on SHE, such as oxcarbazepine [124,125], or on
focal epilepsy in general, such as lamotrigine [126]. After absorption, oxcarbazepine is converted to
10,11-dihydro-10-hydroxy-carbamazepine (MHD). In humans, MHD is thought to be the therapeutic
relevant compound, with plasma concentrations of 30 to 150 µM, as the steady state concentration
of oxcarbazepine is negligible [127,128]. The spectrum of molecular targets of oxcarbazepine and
MHD is poorly known. These compounds are thought to exert on NaV channels effects similar to
those produced by carbamazepine [129], but other targets have been proposed. At the typical blood
concentrations, MHD produces a ~40% open channel block of α4β2 nAChRs [123]. A similar reasoning
applies to lamotrigine, which blocks α4β2 nAChRs in a range of concentrations (IC50 ~100 µM)
overlapping with those effective on NaV channels [130].

Based on these findings, targeting nAChRs would appear to constitute a possible therapeutic
method in ADSHE and offer the possibility of developing precision therapy in patients carrying
different mutations. In principle, one can expect the effect of administration of nAChR agonists in vivo
to be complex. The initial nAChR stimulation would be typically followed by channel desensitization,
the extent of which would critically depend on the final drug concentrations and could vary among
different mutant receptors. Probably because of its desensitizing effect, transdermal patches of nicotine
were initially found to show anti-seizure efficacy in a patient carrying α4Ser248Phe [131], and tobacco
consumption was reported to be correlated with lower incidence of seizures in a group of patients
displaying α4Ser248Phe and α4776ins3 mutations [132]. A recent study carried out on three boys carrying
α4Ser248Phe (now designated as α4Ser280Phe) showed that treatment with nicotine led to drastic reduction



Brain Sci. 2020, 10, 907 8 of 20

of seizures and cognitive improvement [133]. Because of the rarity of these mutations, however,
systematic evidence is still limited. Considering the encouraging results of the above studies, it would
be important to test the effects of nicotine in wider cohorts of patients carrying different mutations on
α4 as well as β2 nAChRs. We believe two critical aspects merit thorough investigation. First, nicotine
treatment has also been found to be effective in patients not carrying nAChR mutations [134]. Therefore,
it is essential to understand to what extent the antiseizure effects depend on general modulation of the
frontal network or specific modulation of mutant nAChRs. Second, the long-term effects of nicotine
depend on the compensatory response of the neocortex network to the drug. Tonic exposure to nicotinic
agonists leads to upregulation of α4β2* nAChRs by different mechanisms, which include increased
synthesis, membrane insertion, and stabilization of the expressed receptor [135]. These mechanisms
are thought to cause the addictive effects of nicotine, especially through higher expression in the
mesolimbic reward system [25]. It is clear that deeper studies are necessary to fully comprehend
the balance between the potentially anti-seizure desensitizing effects of nicotinic agonists and the
long-term action on receptors’ properties that could modulate the antiepileptic effect as well as cause
unwanted cognitive and addictive side effects, particularly in adolescent patients.

A follow-up strategy would be to generate more specific compounds to target specific
nAChR subtypes. With the currently available compounds, it is extremely difficult to distinguish
effectively, e.g., α4* and α2* nAChRs (especially in vivo), which could nonetheless represent possible
pharmacological targets for different forms of sleep-related epilepsy. A possible medicinal chemistry
approach could be to focus on several known peptide toxins. For example, disulfide-deficient
analogues of the αO-Conotoxin GeXIVA display higher affinity for α2β2 nAChRs compared to α7
and α3β4, although the comparison with α4β2 is still not available [136]. Unfortunately, from our
perspective, most previous medicinal chemistry studies have focused on α7 receptors, because of their
possible implication in neurodegenerative diseases [135]. From the point of view of strict precision
medicine, the cost of planning the targeting of individual mutant channels would be prohibitive.
Nonetheless, it should be possible to select compounds that allow to target different kinetic states,
provided this information is available from studies in expression systems. Pursuing these studies
should be considerably facilitated by the recent elucidation of high-resolution structure of heteromeric
nAChRs [137]. A different approach would be to modulate the functional expression of nAChRs.
For instance, nicotine itself was found to be able to normalize in vitro the balance of nAChR subunits
in presence of ADSHE mutations which alter such balance [59]. Whether this strategy can be applied
in vivo remains to be determined.

Alternatively, one could resort to compounds that regulate nAChRs less directly. For example,
fenofibrate is effective in drug resistant SHE and ADSHE, when applied in addition to classic AEDs [138].
Fenofibrate is a clinically used agonist of peroxisome proliferator-activated receptor α, a transcription
factor that when activated, is thought to negatively regulateβ2-containing nAChRs, by phosphorylation
mechanisms [138]. The AED effects discussed in the present Section are summarized in Table 2.

Table 2. Effects in vitro and in vivo of the antiepileptic drugs discussed in Section 5.

Compound Ion Channel
Targets

Effects on Ion
Channels In Vitro

Efficacy on
ADSHE-Linked

Mutations In Vitro
(Compared to WT)

Effects In Vivo
(ADSHE/SHE
Patients and

Murine Models)

References

Carbamazepine NaV Delayed recovery
from inactivation

First-line treatment
for ADSHE.

Ineffective in ~30%
of the patients

[109,121]

nAChRs
Open channel
block of α4β2,
α2β2, α2β4

Higher on α4Ser248Pheβ2,
α4776ins3β2,
α2Ile279Asnβ4;

lower on α2Ile279Asnβ2

[73,122,123]

GABAAR
Potentiation of
α1β3γ2 and
α1β2γ2

[139,140]
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Table 2. Cont.

Compound Ion Channel
Targets

Effects on Ion
Channels In Vitro

Efficacy on
ADSHE-Linked

Mutations In Vitro
(Compared to WT)

Effects In Vivo
(ADSHE/SHE
Patients and

Murine Models)

References

KV, CaV, GluRs

Multiple effects
overall leading to

inhibition of
glutamatergic
transmission

[112,141,142]

Oxcarbazepine
(metabolite of

carbamazepine)

Effective on a
fraction of patients

insensitive to
carbamazepine

[81,124,125]

NaV

Inhibition.
Negative shift of

activation and
inactivation of

SCN9A 1

[129,143]

nAChRs Weak open channel
block of α2β4 [123]

GABAAR
Potentiation of
α1β2 and γ2L

subtypes

Higher efficacy on
α2Ile279Asnβ4 [144]

Delayed rectifying
KV. Inhibition [129]

CaV
Inhibition; subtype

specificity
unknown

[112,142,145]

MHD (active
metabolite of

oxcarbazepine)

Overlaps with
oxcarbazepine [127,128]

NaV and CaV

Inhibitory effects,
but kinetic studies

on specific
subtypes are

lacking

[112]

nAChRs

Open channel
block of α4β2;
scarce effect on

α2β4

N.D. [123]

GABAAR No effect [144]

Phenobarbital N.A.

Reported to
decrease seizures
in patients with
KCNT1-related

Epilepsy

[146]

GABAAR Increases the mean
open time [114]

CaVT Block. [115]

GluRs Block of GluR3 and
GluR6 [116]

Quinidine

Mixed effects.
Stronger

antiseizure effects
on patients

carrying mutations
of RCK2 domain of

KNa1.1

[117–119]

NaV Use-dependent
block [147]

K+ channels,
included KNa1.1

Wide-spectrum K+

channel blocker
Reverses gain of

function in mutant KNa1 [100]

Lamotrigine NaV Blocker [113]

nAChRs

Non-competitive
inhibition of α4β2,

included open
channel block

N.D. N.D. [126]
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Table 2. Cont.

Compound Ion Channel
Targets

Effects on Ion
Channels In Vitro

Efficacy on
ADSHE-Linked

Mutations In Vitro
(Compared to WT)

Effects In Vivo
(ADSHE/SHE
Patients and

Murine Models)

References

Nicotine

Antiseizure effects
on patients

carrying
α4Ser248Phe or

α4776ins3

[131–133]

nAChRs
Activation,
followed by

desensitization

On mutant α4β2, often
higher sensitivity to

nicotine. (See main text)
[56–61]

Increased
sensitivity and

induction of
dystonic arousal
complex in mice

carrying
α4Ser248Phe or
β2Val287Leu

[64,67]

Fenofibrate nAChR (indirect
effect)

Inhibits nAChRs
by stimulating the

peroxisome
proliferator-activated

receptor α
(negative regulator

of β2* nAChR)

In slices from mice
carrying α4Ser252Phe:

lower IPSC 2 frequency
in cortical pyramidal

neurons

Reduction of
seizure frequency
in drug-resistant
SHE and ADSHE

patients, if applied
with classic AEDs

[138]

1 Sodium voltage-gated channel alpha subunit; 2 Inhibitory post-synaptic currents.

6. Developmental Aspects of ADSHE and Implications for Therapy

As is the case of other genetic epilepsies, the pathogenesis of ADSHE is increasingly recognized
to present a developmental component [48,107]. This hypothesis was originally formulated after
work in animal models conditionally expressing the β2Val287Leu nAChR subunit [65]. Subsequently,
the identification of DEPDC5 loss of function mutations led to recognize a spectrum of epilepsy
syndromes, among which ADSHE, associated with human brain malformation [101,106], as is also
indicated by the first murine models in which DEPD5 has been deleted [148–150].

Here, we limit our discussion to what is known about the possible developmental effects of
mutant nAChRs in ADSHE. Several nAChR subunits (including β2) regulate synaptic maturation in
the neocortex. In mice, expression of these subunits peaks between the 2nd and the 3rd postnatal
week, a critical phase of synaptogenesis [84]. During this phase, α7 receptors are thought to regulate
dendritogenesis and the maturation of glutamatergic synapses [151–154], whereas high-affinity
β2* nAChRs, which may incorporate α5, are more specifically involved in the formation of
dendritic spines and participate in the regulation of dendritic morphology [155–158]. A simple
working hypothesis is that hyperfunctional nAChRs linked to sleep-related epilepsy could alter the
Ca2+-dependent modulation of actin cytoskeleton that shapes spine structure and GluR distribution in
excitatory synapses [152,156].

Another possible mechanism by which mutant nAChRs could affect synaptogenesis is suggested
by the coincidence of the expression peak of nAChR subunits with the so-called “GABAergic shift” [159].
During early brain development, activation of GABAARs has a depolarizing effect which contributes
to regulate brain morphogenesis. At later stages, GABA assumes the inhibitory role it normally has
in the adult brain. Such a functional transition depends on the progressive decrease of neuronal
intracellular chloride concentration ([Cl−]i). Because Cl− is the main permeant ion in GABAARs,
increasing the ratio between extra- and intracellular [Cl−] brings the reversal potential of GABAA

currents towards −70 mV, which allows the typical inhibitory action of GABAARs in mature networks.
The [Cl−]i decrease is brought about by the progressive increase of membrane expression of the Cl−

extruder K+-Cl− cotransporter type 2 (KCC2), as compared to Na+-K+-Cl− cotransporter 1 (NKCC1),
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which absorbs Cl−. In mice expressing β2Val287Leu, the KCC2 amount decreases around P8 in prefrontal
cortex compared to the controls, thus delaying the GABAergic shift [71]. This is likely to be one of the
contributing factors that cause the long-term synaptic alterations observed in ADSHE [48]. The main
physiological roles of nAChR subunits in developing and mature cerebral cortex are summarized in
Figure 1.

These notions point to the possibility of modifying the natural history of the disease,
by pharmacological modulation of synaptic maturation, to obtain permanent beneficial effects.
Studying how to target NKCC1 or KCC2 to regulate synaptogenesis is now a very active area
of epileptology [159–161]. More specifically, in a rat model of ADSHE, the development of seizures
was prevented by using furosemide, which can normalize Cl− homeostasis by blocking NKCC1 [162].
The other major line of research that may lead to effective treatment during development is founded
on the recent evidence about the developmental alterations produced by mutant components of
GATOR1 (Section 4). Promising results have been obtained in a murine strain in which conditional
deletion of Depdc5 in dorsal telencephalic neuroprogenitor cells leads to macrocephaly, accompanied
by spontaneous seizures and premature death. Early inhibition of mTORC1 with rapamycin improves
survival and prevents seizures, which further encourages the search of effective developmental
windows for anti-seizure treatment [150].Brain Sci. 2020, 10, x FOR PEER REVIEW 12 of 22 
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Figure 1. Implication of nicotinic acetylcholine receptor (nAChR) subunits at different postnatal
stages. The indicated nAChR subunits regulate glutamatergic synapse formation and the GABAergic
shift during the first 2–3 postnatal weeks. These notions mainly derive from experimental work in
rodents [71,84,151–158]. After the first postnatal month, nAChRs assume their permanent function in
cortical circuits, where they control the overall circuit excitability by regulating pyramidal neurons
(Pys), fast-spiking GABAergic interneurons (FSINs), and other GABAergic populations (particularly
somatostatin-expressing regular spiking non pyramidal cells, RSINs). The balance of nAChR function
in pre- and post- (or extra-) synaptic sites in different layers and the kinetics of cholinergic effects are
still matter of debate [23,24,29–33,41–43,48,54,76,163–165].



Brain Sci. 2020, 10, 907 12 of 20

7. Conclusions

The possibility of carrying out sophisticated kinetic analyses of the effects of drugs targeting ion
channels could lead to precision medicine aimed at modulating specific channel types and possibly
individual mutations. In ADSHE, these studies can avail of the detailed 3D structural information
now available for nAChRs. However, nAChRs as well as other ion channels have different functional
roles in mature and developing brains. Therefore, future work should address the issue of the
different effect of drugs targeting nAChRs or other molecules at different developmental stages. This is
particularly important if one consider the very long brain maturation in humans. Pharmacological
treatment could have different (even opposite) effects on synaptic maturation and adult excitability.
Besides contributing to explain the variable effects produced by the same drug on different patients,
these notions argue for the urgency of thorough epidemiological studies about the effects of different
AEDs, from childhood to adult age. In addition, more work of a fundamental nature is needed to
reach a general understanding of the long-term perturbations produced by single-site mutations in the
adult and developing mammalian brain, whose nature is still largely obscure. We believe the different
aspects of the treatment of ADSHE and other rare epilepsies are paradigmatic of the general problems
encountered in understanding and curing epilepsy.
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