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Abstract We consider two different design strategies for collecting “optimal” data
with the aim of estimating as precisely as possible the vector parameter in a dose-
response model. In particular, an exponential model with Gaussian errors is con-
sidered, and the maximum likelihood method is applied. Through a simulation
study we compare the performance of the the maximum likelihood estimator (MLE)
when: a) a locally D-optimum design is used to get a sample of independent obser-
vations (fixed procedure); b) a two-stage adaptive experimental procedure is applied
to collect data, which are dependent since the second stage D-optimal design is de-
termined by the responses observed at the first stage. In the latter case, the theoreti-
cal properties of the MLE are described; differently from the most of the literature,
asymptotic theory is applied only in the second stage since the first stage sample
size is assumed to be finite.

Abstract Consideriamo qui due diverse strategie per raccogliere dati “ottimali”
allo scopo di stimare con precisione il vettore dei parametri in un modello di
risposta alla dose. Consideriamo, in particolare, un modello esponenziale con erori
Gaussiani. Mediante uno studio di simulazione confrontiamo [’efficienza dello sti-
matore di massima verosimiglianza quando: a) si utilizza un disegno localmente D-
ottimo ottenendo un campione di osservazioni indipendenti (procedura fissa); b) si
utilizza una procedure adattiva a due stadi da cui si ottengono dati che sono dipen-
denti, dato che il disegno D-ottimo al secondo stadio ¢ determinato dalle risposte
osservate al primo stadio. In quest’ultimo caso descriviamo le proprieta teoriche
dello stimatore di massima verosimiglianza; al contrario di quanto viene fatto nor-
malmente in letteratura, la teoria asintotica viene qui applicata solo al secondo
stadio mentre la dimensione campionaria el primo stadio ¢ considerata fissa.
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1 Introduction

The exponential model is applied in many different contexts (medical, enviromental,
pharmaceutical) to interpret dose-response relationships. A three-parameters expo-
nential model can be written as

Y =6+ 061 exp(x/6,) +€, €~N(0;6%) (1)

where 6 = (6),6;,6,)" is a vector of unknown parameters and 7 (x,8) = 6 +
0 exp(x/0,) denotes the response mean at the dose x € 2~ = [a,b]. The inferen-
tial goal is to estimate 6 and thus efficient experimental designs arc very important.
An experimental design & can be defined as a finite discrete probability distribution
over Z; the information matrix of & is

M(E:0)= [ Vn(x,0)Vn(x.6) dE(x) @

where V1 (x, 0) denotes the gradient of the mean response 7 (x, 6) with respect to
0. A D-optimal design £*(0) minimizes the generalized asymptotic variance of the
maximum likelihood estimator (MLE) of 6, i.e.

§°(0) = argglgglM(ﬁ;G)la 3)

where Z is the set of all designs (see [4] and [1]).

Since 1M (x, 0) is a non-linear model, the D-optimal design (3) depends on the
unknown parameter 8. A common approach to tackle this problem is to use a locally
optimal design, where 8 in (2) is replaced by a guessed value § = (éo, 61, éz)T; n
independent observations are collected according to this locally D-optimal design
£*(0) and then used to compute the MLE.

Another possibility to obtain the data is to adopt a two-stage procedure. At the
first stage a locally D-optimal design £*(8) is applied to collect 11 responses (with
ny < n), which are used to estimate the unknown parameter. Let é,,l be the MLE of 6
based on first-stage responses. Then, at the second stage, np = n — n; additional re-
sponses are collected according to another locally D-optimal design, &; (é,,l ), where
6, , 1s used in (2) instead of 6. Finally, the MLE is computed employing the whole
sample of n = n; +ny data. Let us note that & (é,,l) is a random probability distri-
bution as it depends on the first-stage observations through é,,l; as a consequence,
the second-stage observations are not independent on the first-stage ones. Given
5;(@,,1 ), however, the second-stage observations are conditionally independent on
the first-stage data, and hence it can be proved that the likelihood function is the
same in both the following experimental settings (see Sect. 2.1):
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1) nindependent observations obtained according to &* (é) (fixed procedure or one-
stage);

2) n; independent observations accrued according to &~ (é) and then, given 6, '
other ny = n — n; independent responses coming from &; (én ,) (two-stage proce-
dure).

Let 6! and 25 denote the MLEs when the one-stage and the two-stage procedures,
respectively, are adopted to collect the data. In this paper we develop a simulation
study to compare the performance ofS and 9,%5 .

2 Theoretical properties of the two-stage design

2.1 Likelihood

The total likelihood is

X(QQYnzaxnzaanan) = g(e;)'nzb(np)'nlvxnl) 'g(xnzb'nlvxnl) '$(9§YH1 |X,,1)-$(an)

g(e;yn2|xn2) 'g(xn2|yn1 ,an)-‘ip(e;ynl |an)-$(xnl)
o< g(e;yn2|xn2) 'g(e;ym |an)

From the (4) we can see that the total likelihood for the dependent data of the two-
stage design is the same as the likelihood with independent data of the fixed design.

2.2 Asymptotics

In order to obtain the consistency and the asymptotic distribution of é,%s , the classi-
cal approach in the literature is to assume that both the sample sizes n; and n, grow
to infinity (see [6]).

A different approach is considered in [5], where n; is fixed and only n, goes to
infinity; this assumption is more realistic in many experimental situations and, in
addition, fixing n; should improve the approximation of the finite distribution with
the asymptotic one. Despite the second stage observations depend on the first-stage
data through 6,1, the MLE é,%s maintains good properties, as stated in the following
theorems (see [5] for the proofs).

Theorem 1. As ny — oo, é,%s converges in probability to the true value 0 of the
parameter.

Theorem 2. As n, — oo, \/n (é,%s — 6) converges in distribution to

o M[&(8,,).6)1*Z,
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Relative Efficiency
20
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Fig. 1 Relative efficiency
MSE(6)%)/MSE(62%) (on

the y-axes) versus different b
nominal values 6, (on the

x-axes). The model is expo-

nential with 6y, = —0.08265,

0; = 0.08265, 6, = 85 and -
o = 0.1. The vertical line ‘ ‘ ‘
represents the true value of ~
0,.

where Z is a 3-dimensional standard normal random vector independent of the ran-
dom matrix M (&} (6y,),0).

Theorem 3. As n, — oo, the asymptotic variance of /n (é,%s — 6) is

—1
GZEK /gg Vn(x,G)Vn(x,deéz*(ém)(x)) ] Q)

The expression of the asymptotic variance of é,%s provided in (5) justifies the use of
a D-optimal design to collect the second stage data.

3 Simulations

The goal of the simulation study is to compare the two-stage adaptive procedure
with the fixed design in terms of precision of the MLEs, 25 and 6,5

The D-optimum design &*(60) for the exponential model is provided in [3]. It is
a three point design equally supported at the extremes of the experimental domain
2 =a;b] and at

o= b= 6)exp(b/6;) —(a—6)exp(a/6r) ©)
exp(b/6;) —exp(a/6,) '
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Fig. 2 Relative efficiency
MSE(6)%)/MSE(62%) (on
the y-axes) versus different
nominal values 6, (on the
x-axes). The model is expo-
nential with 6y, = —0.08265,
0; = 0.08265, 6, = 85 and
o = 0.25. The vertical line
represents the true value of
0,.

Fig. 3 Relative efficiency
MSE(8)5)/MSE(62%) (on
the y-axes) versus different
nominal values 8, (on the
x-axes). The model is expo-
nential with 6y = —0.08265,
0; = 0.08265, 6, = 85 and
o = 0.5. The vertical line
represents the true value of
0.
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Hence, at each stage, 1/3 of the observations are taken at a, b and x*. Note that x*,
and hence £*(0), depends only on the non-linear parameter 6, of model (1). Herein,
we take a = 0 and b = 150. From model (1) with 8) = —0.08625, 6; = 0.08625 and
0, = 85 and 3 different values for c = 0.1;0.25;0.5,

1. we generate n; = 30 independent observations according to £*(6y) to compute
the first-stage MLE, 6, , where 6, € (0;150) is a nominal value for 6,;

2. we generate further n, = 300 independent observations according to é*(énl) to
obtain 625

3. we generate further 7, = 300 independent observations according to £*(8,) to
obtain 5.

For each choice of ¢ and 6, we repeat the computation of é,}s and é”2S 5000 times, to
get their Monte Carlo MSEs. Simulations are realized with R package in [2]. Figures
1,2 and 3 displays the relative efficiency MSE(,'S) /MSE(29) for different choices
of the nominal value 92, and for 0 = 0.1; 0.25; 0.5, respectively.

4 Conclusions

The simulations in Sect.3 show that the two-stage procedure outperforms the one-
stage (or fixed) procedure whenever the assumed nominal value 0, is much inferior
to the true value of 6, (in this example 6, = 85). For the other values of 0,, the
relative efficiency of the two-stage procedure is around one (never less then 0.5).
This behaviour appears to be more pronounced as ¢ increases. An explanation can
be seen in the slope of x* = x*(6,) in (6), which is larger for small value of 6,.
Hence, x*(6,) is far away from the true optimal dose if 6, < 85 and replacing 6,
with the first stage estimate may improve the results.

In conclusion, we suggest to apply the two-stage procedure to collect the data
if we do not have enough knowledge about the true value of 8, which is often the
case in real-life problems.
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