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Continuous-time quantum walks in the presence of a quadratic perturbation
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We address the properties of continuous-time quantum walks with Hamiltonians of the form H = L + AL?,
with L the Laplacian matrix of the underlying graph and the perturbation AL? motivated by its potential use to
introduce next-nearest-neighbor hopping. We consider cycle, complete, and star graphs as paradigmatic models
with low and high connectivity and/or symmetry. First, we investigate the dynamics of an initially localized
walker. Then we devote attention to estimating the perturbation parameter A using only a snapshot of the
walker dynamics. Our analysis shows that a walker on a cycle graph spreads ballistically independently of the
perturbation, whereas on complete and star graphs one observes perturbation-dependent revivals and strong
localization phenomena. Concerning the estimation of the perturbation, we determine the walker preparations
and the simple graphs that maximize the quantum Fisher information. We also assess the performance of
position measurement, which turns out to be optimal, or nearly optimal, in several situations of interest. Besides
fundamental interest, our study may find applications in designing enhanced algorithms on graphs.
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I. INTRODUCTION

A continuous-time quantum walk (CTQW) describes the
dynamics of a quantum particle confined to discrete spatial
locations, i.e., to the vertices of a graph [1-3]. In these sys-
tems, the graph Laplacian L (also referred to as the Kirchhoff
matrix of the graph) plays the role of the free Hamiltonian,
i.e., it corresponds to the kinetic energy of the particle. Pertur-
bations to ideal CTQWSs have been investigated earlier [4—12],
however with the main focus being on the decoherence effects
of stochastic noise rather than the quantum effects induced by
a perturbing Hamiltonian. A notable exception exists, though,
given by the quantum spatial search, where the perturbation
induced by the so-called oracle Hamiltonian has been largely
investigated as a tool to induce localization on a desired
site [13—18]. In fact, quantum walks have found several ap-
plications ranging from universal quantum computation [19]
to quantum algorithms [20-25] and to the study of excitation
transport on networks [26-28] and biological systems [29,30].
As such, due to the diversity of the physical platforms on
which quantum walks have been implemented [31,32], a
precise characterization of the quantum-walk Hamiltonian is
desired.

In the present work we investigate the dynamics of
an initially localized quantum walker propagating on cy-
cle, complete, and star graphs (see Fig. 1) under perturbed
Hamiltonians of the form H = L + AL?. Characterizing these
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Hamiltonians amounts to determining the value of the cou-
pling parameter A, which quantifies the effects of the quadratic
term. For this purpose, we investigate whether and to what
extent a snapshot of the walker dynamics at a given time
suffices to estimate the value of A.

Besides the fundamental interest, there are a few reasons
to address these particular systems. The topologies of these
graphs describe paradigmatic situations with low (cycle and
star) or high (complete) connectivity, as well as low (star)
and high (cycle and complete) symmetry. At the same time,
CTQW Hamiltonians with quadratic perturbation of the form
AL? are of interest, e.g., because they represent a physically
motivated and convenient way to introduce next-nearest-
neighbor hopping in one-dimensional lattices or intrinsic
spin-orbit coupling in two-dimensional lattices. Moreover,
considering such perturbations is the first step towards the
description of dephasing and decoherence processes, which
result from making the parameter A a stochastic process.

To analyze both semiclassical and genuinely quantum fea-
tures of the dynamics, we employ a set of different quantifiers,
including site distribution, mixing, inverse participation ratio,
and coherence. In this framework, mixing has been studied
for CTQWSs on some circulant graphs [33], e.g., the cycle
and the complete graph, and also employed together with the
temporal standard deviation to study the dynamics of CTQWs
on the cycle graph [34]. Moreover, a spectral method has been
introduced to investigate CTQWSs on graphs [35,36]. Coherent
transport has been analytically analyzed for CTQWSs on star
graphs [37], showing the occurrence of perfect revivals and
strong localization on the initial node.

The rest of the paper is organized as follows. In Sec. II
we address the dynamics of an initially localized walker in
the different graphs. In Sec. III we focus on the estima-

©2020 American Physical Society
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FIG. 1. The three types of graphs considered in the present work:
(a) cycle, (b) complete, and (c) star graphs. Examples are for N = 5
vertices.

tion of the parameter of the perturbation by evaluating the
quantum Fisher information (QFI). We consider initially lo-
calized states as well as the states maximizing the QFI and we
compare the QFI to the Fisher information (FI) of the position
measurement. Moreover, we determine the simple graphs that
allow us to obtain the maximum QFI. In Sec. IV we summa-
rize and discuss our results and findings. In Appendix A we
provide further analytical details about the dynamics of the
CTQWs over the different graphs. In Appendix B we prove
the results concerning the (Q)FIL.

II. DYNAMICS

A graph is a pair G = (V,E), where V denotes the
nonempty set of vertices and E the set of edges. In a graph,
the kinetic energy term (i = 1) T = —V?/2m is replaced by
T = yL, where y € R is the hopping amplitude of the walk
and L = D — A the graph Laplacian, with A the adjacency
matrix (Aj, = 1 if the vertices j and k are connected and 0
otherwise) and D the diagonal degree matrix [D;; = deg(j)].
The hopping amplitude y plays the role of a time-scaling
factor; thus the time dependence of the results is significant
when expressed in terms of the dimensionless time y¢. Note
that in the following we set y = /i = 1 and, as a consequence,
hereafter time and energy will be dimensionless. We consider
finite graphs of order |V| = N, i.e., graphs with N vertices
which we index from 0 to N — 1, and we focus on the dynam-
ics of a walker whose initial state |1/(0)) is a vertex of the
graph, i.e., the walker is initially localized.

We consider the Hamiltonian

H =Ho+rH =L+ A%, (1)
where X is a dimensionless perturbation parameter. Because of
this choice, the eigenproblem of # is basically the eigenprob-
lem of L. The Laplacian eigenvalue ¢ = 0 is common to all
simple graphs, it is not degenerate for connected graphs, like
cycle, complete, and star graphs, and the corresponding eigen-
vectoris (1,...,1)/ +/N. The time evolution of the system is
coherent and ruled by the unitary time-evolution operator

Un(t) = e =" et g ) e, |, ©)

where the second equality follows from the spectral decompo-
sition of L. To study the dynamics of the walker, we consider
the following quantities, which basically arise from the den-

sity matrix p(t) = [y (1)) (¥ (1)].

The (instantaneous) probability of finding the walker in the
vertex k at time ¢ is

Pk, t|A) = [(k|Us ()| (0)) %, 3)

whereas the average probability is
_ 1T
P(k|A) = lim —/ P(k, t|A)dt. (G))
T—+o00 T 0

There are two main notions of mixing in quantum
walks [33,38,39]. A graph has the instantaneous exactly uni-
form mixing property if there are times when the probability
distribution P(z) of the walker is exactly uniform; it has the
average uniform mixing property if the average probability
distribution P is uniform.

In addition, we consider the inverse participation ratio
(IPR) [7,40,41]

N-1

Ity = Y _(klp@)lk)?

k=0

ZP2(k t1h), (5)

which allows us to assess the amount of localization in po-
sition space of the walker. Indeed, the IPR is bounded from
below by 1/N (complete delocalization) and from above by
1 (localization on a single vertex). In this sense, the IPR
is an alternative quantity to study the instantaneous exactly
uniform mixing. The inverse of the IPR indicates the number
of vertices over which the walker is distributed [42].

Finally, to further analyze the quantum features of the
dynamics, we consider the quantum coherence. A proper mea-
sure is provided by the /; norm of coherence [43]

N-1 N-1

Coy= Y lpp®l= Y lpjx®l =1 (6)
j k=0, jk=0
J#k

Refer to Appendix A for details about the analytical derivation
of the results shown in the following.

A. Cycle graph

In the cycle graph each vertex is adjacent to two other
vertices, so its degree is 2. Hence, the graph Laplacian is

N—-1

L=21-3"(k— Dkl +k+ Dk (D

k=0

The primed summation symbol means that we look at the
cycle graph as a path graph provided with periodic boundary
conditions; thus the terms | — 1)(0| and |[N)(N — 1| are |N —
1)(0| and |0){(N — 1|, respectively. The matrix representation
of this Laplacian is symmetric and circulant (a special case of
Toeplitz matrix) and the related eigenproblem is analytically
solved in Ref. [44] and reported in Table I.
The ground state (n = 0) is unique and equal to

Emin = 0, ®)

?

lemin) = T &)

gM
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TABLE 1. Eigenvectors |e,) and eigenvalues &, of the graph
Laplacian in the cycle graph. The asterisk denotes that the multi-
plicity of the eigenvalues depends on the parity of N. In particular,
the ground state n = 0 is always unique, whereas the highest-energy
level is unique for even N and doubly degenerate for odd N. Indepen-
dently of the parity of N, the remaining eigenvalues have multiplicity
2, since €, = ey_,.

| en) &n Hn

1 N—-1 _;
|en) — ﬁ Zk:o e 1(271)1/N)k|k)

withn=0,...,N—1

2[1 — cos(Z)] *

Instead, the highest-energy level depends on the parity of N
and is unique for even N (n = N/2),

Emax = 47 (10)
| Ml
lema) = —= > _(=Dk), (1)
and has degeneracy 2 for odd N [n = (N £ 1)/2],

=2[ 1+ cos (%) 12
Emax = [ Ccos N :Iv (12)

N-—1
(13)

N

where the phase factors are all either with the plus sign or with
the minus sign.

Since for odd N the highest-energy level is doubly de-
generate, we may be interested in finding the corresponding
orthonormal eigenstates having real components.! Therefore,
we define the following states by linearly combining the two
eigenstates in Eq. (13) in one case with the plus sign and with
the minus sign in the other,? respectively:

1 .
lemax) = —= »_(=DFeH MK ),
N k=0

2 N T
+ _ k
) =y % ;(—1) cos (Nk)|k), (14)
2 ! T
— _ = _ k . -
emas) = ) 5 g D¥sin () 1K). (15)
The perturbation involves
N—1
L* =61+ (Jk—2)(k| — 4k — 1)(k| + H.c.),
k=0
(16)

where the Hermitian conjugate of |k — n) (k| is a hopping term
of +n vertices and as such should be |k + n)(k|. Hence, the
perturbed Hamiltonian (1) reads

N—1
H =2+ 6M)I + Z [Alk — 2) (k]|
k=0

'The further reason is that some numerical routines solving the
eigenproblem for real symmetric matrices may return orthonormal
eigenvectors with real components.

>The linear combination leading to Eq. (15) introduces also an
imaginary unit. However, this is a global phase factor and as such
we neglect it.

Probability

FIG. 2. Probability distribution P;(k, t|A) of the walker as a func-
tion of time in the cycle graph. The walker is initially localized in the
vertex |j = 2). The probability distribution is symmetric with respect
to the starting vertex, i.e., P;(j + k, t|A) = P;(j — k, t|A). Numerical
results suggest that revivals in the starting vertex are most likely not
exact. Indeed, to be exact, the periods of the cosine functions entering
the definition of the probability (18) have to be commensurable and
such periods strongly depend on the choice of N and A. Results are
for N =5and A =0.2.

— (1 +420)lk — 1) (k| + Hee.]. (17)

The perturbation AL? thus introduces the next-nearest-
neighbor hopping and affects the nearest-neighbor one and
also the on-site energies proportional to /.

In a cycle graph all the vertices are equivalent, so an
initially localized walker will show the same time evolution
independently of the starting vertex chosen. We denote the
initial state by | j). The probability of finding the walker in the
vertex k at time ¢ for a given value of A is (Fig. 2)

Pk, 1|0y = + 4 2
J\ _N N2

N—-1

X cos [(EnA —E))t — %T(n —m)(j — k)},

(18)

which is symmetric with respect to the starting vertex j, i.e.,
P;(j + k. t|x) = P;(j — k. t|1) (proof in Appendix A 1). The
average probability distribution is the same as the one reported
in [34], which is basically our unperturbed CTQW.?

The solution of the time-dependent Schroequation of the
unperturbed system (A = 0) can be expressed in terms of
Bessel functions [33]. This allows us to analytically prove the
ballistic spreading in a one-dimensional infinite lattice [45],
i.e., that the variance of the position is o2(t) = (X(t)%) —
(%(1))? oc t>. We expect the same ballistic spreading to char-
acterize the CTQW on a finite cycle at short times, i.e., as long
as the walker does not feel the topology of the cycle graph.

3The CTQW Hamiltonian in [34] is H = A/d, instead of being the
Laplacian. In regular graphs d, the degree of the vertex is the same for
all the vertices. The diagonal degree matrix D is thus proportional to
the identity, and this introduces an irrelevant phase factor in the time
evolution of the quantum state. The timescale of the evolutions under
the Hamiltonians A and A/d is clearly different, but the resulting
time-averaged probability distribution is the same.
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FIG. 3. Map of the probability distribution (18) as a function of
the position (vertex) and A at ¢ = 4. The walker is initially localized
in the center of the cycle graph (N = 100). The horizontal dashed
white line highlights Ay = — %, the value at which the variance of the
position is minimum. For clarity, here vertices are indexed from 1 to
N.

We can find a simple expression describing the variance
of the position for A # 0 at short times. The variance is
meaningful if we consider sufficiently large N, and the as-
sumption ¢ < 1 ensures that the wave function does not reach
the vertices |0) and |N — 1). Indeed, the position on the graph
is the corresponding vertex, but the topology of the cycle
graph allows the walker to jump from |0) to |[N — 1) and vice
versa. This in turn affects the computation of the variance.
To ensure the maximum distance from the extreme vertices,
we consider a walker initially localized in the central vertex.
We assume even N, so the starting vertex is |j = N/2). Under
these assumptions, we have that

o2(t) ~ [40(n — Ao)* + 2]12, (19)

with A9 = —% (see Appendix A 1). The spreading of the
walker is ballistic in spite of the perturbation. Nevertheless,
increasing |A — Ao| makes the walker spread faster by affect-
ing the factor in front of 2. Indeed, such a factor is related
to the square of the parameter characterizing the speed of
the walker [45]. The lowest variance is for A = A¢, which is
the value for which the nearest-neighbor hopping —(1 + 41)
equals the next-nearest-neighbor one XA [see Eq. (17)]. Nu-
merical simulations of the CTQW provide evidence that the
same behavior in Eq. (19) characterizes also the CTQW on
the cycle with odd N or when the starting vertex is not the
central one, again assuming that the wave function does not
reach the extreme vertices.

For completeness, we report in Fig. 3 the numerical results
for the probability distribution (18) at a given time and at
varying A. The pattern of the probability distribution is not
symmetric with respect to Ao. Nevertheless, at short times
the resulting variance of the position (19) turns out to be
symmetric with respect to Ag.

IPR

— N=5 mme N=100 o N=20
------- Delocalization = 1/N Localization = 1

FIG. 4. Inverse participation ratio for a walker initially localized
in the cycle graph. Numerical results suggest that for ¢+ > 0 the [PR
reaches neither the lower bound 1/N (green dash-dotted line), i.e.,
the delocalization, nor the upper bound 1 (orange dashed line), i.e.,
the localization. Whether or not the (de)localization is achievable is
most likely related to the choice of N and A. This choice in turn might
result in the commensurability or incommensurability of the periods
of the cosine functions entering the definition of the probability
(18). For large N the IPR approaches 1/N, since the probability
distribution approaches the uniform one. Results are for A = 0.2.

Next we numerically evaluate the IPR (5) for the proba-
bility distribution in Eq. (18); the results are shown in Fig. 4.
As expected from the previous results about the probability
distribution (see also Fig. 2), the IPR does not show a clear
periodicity, it strongly fluctuates, and there are instants of time
when it gets closer to 1, meaning that the walker is more
localized. The numerical results also suggest that the instanta-
neous exactly uniform mixing is achievable for N < 4, while
there is no exact delocalization for N > 4, as already conjec-
tured [33]. However, for large N the probability distribution
(18) approaches the uniform one and so the IPR approaches
1/N.

Finally, we focus on the time dependence of the coher-
ence (6) for an initially localized walker. The exact numerical
results are shown in Fig. 5. Under the assumption ¢ < 1, we
can find a simple expression. We Taylor expand the time-
evolution operator up to the first order, so the density matrix

— A=-0.25
), = =0.20
........ A= 0.00
--=-= A= 0.20

FIG. 5. Coherence for a walker initially localized in the cycle
graph with N = 5. For t <« 1 the minimum is for A = —i, as ex-
pected from the linear approximation in Eq. (20).

042214-4



CONTINUOUS-TIME QUANTUM WALKS IN THE PRESENCE ...

PHYSICAL REVIEW A 102, 042214 (2020)

TABLEII. Eigenvectors |e,) and eigenvalues ¢, with multiplicity
i, of the graph Laplacian in the complete graph.

n len) &n HMon
0 leo) = 5 2iso k) 0 1
1 leh) = < (o 1K) — 11D) N N-1

withl=1,...,N—1

is approximated as p(t) = p(0) — it[H, p(0)] + O(z?). Then,
with the Hamiltonian (17), the behavior characterizing the
earlier steps of the time evolution of the coherence is

C(t,A) = 4(A| + |1 4+ 4], (20)

consistently with the results shown in Fig. 5. Hence, at short
times the coherence is minimum for A = — }1. For such a value
the nearest-neighbor hopping —(1 + 4A) is null, while the
next-nearest-neighbor hopping A is nonzero [see Eq. (17)].

B. Complete graph

In the complete graph each vertex is adjacent to all the
others, so its degree is N — 1. Hence, the graph Laplacian is

N-1
L=(N—-1DI— Y [|j)kl 1)
jik=0,
j#k
and has the property
L"=N""'L. (22)

The eigenproblem related to Eq. (21) is solved in Table II.
The graph Laplacian has two energy levels: the level gy = 0,
having eigenstate |ey), and the (N — 1)-degenerate level &; =

N, having orthonormal eigenstates |e11), withl/ =1,...,N —
1. The perturbed Hamiltonian is therefore
H=(+NIL, (23)

i.e., it is basically the CTQW Hamiltonian of the complete
graph multiplied by a constant which linearly depends on A.
We observe that the value A* = —1/N makes the Hamilto-
nian null and so it makes this case trivial. The perturbation
affects the energy scale of the unperturbed system and thus
its timescale. Therefore, we can directly compare the next
results with the well-known ones concerning the unperturbed
system [33].
The time-evolution operator (2) is

. 1 ,
6717-[[ =]+ — e*lza)}\l()\.)t _
N[

where we have Taylor expanded the exponential, used
Eq. (22), and defined the angular frequency

1]L, (24)

wn(A) = g(l + AN), (25)
which depends on A. For large N, the time evolution ba-
sically results in adding a phase to the initial state, since
limpy_s 400 Uy () = exp[—i2wn(M)t]1.

In a complete graph all the vertices are equivalent, so an
initially localized walker will show the same time evolution

1.0

0.8

0.6

— Py(0,1)

0.4 —mm Pyli)

Probability

0.2

O-Ofl'"’ T e —
0.0 0.4 0.8 1.2
t

FIG. 6. Probability of finding the walker in the starting vertex
Py(0,2|x) (red solid line) or in any other vertex Py(i,f|A) (blue
dashed line) as a function of time in the complete graph. The walker
is initially localized at the vertex |0). Results are for N =5 and
A=0.2.

independently of the starting vertex chosen. We denote the
initial state by |0). The probabilities of finding the walker in
|0) or elsewhere, |1 < i < N — 1), at time ¢ for a given value
of A are periodic (Fig. 6),

Py(0,tA) =1 — % sinfloy(A)el,  (26)
Py(i, t|A) = % sin®[wy (M)r]. 27)

Hence, the walker returns periodically to the starting ver-
tex and can be found in it with certainty. This occurs
for t; = 2km /(N + AN?), with k € N. Increasing the or-
der of the graph makes the angular frequency higher, and
limy_ 400 Po(0, £|A) = 1, while limy_, 1o Po(i, t|1) = 0. The
perturbation only affects the periodicity of the probabili-
ties. The probability distribution is symmetric with respect
to A*, since wy(A* £A)=£AN?/2 and sin’(AN?/2) =
sin?(—AN?/2). As expected, for A* the walker remains in
the starting vertex all the time, since wy(A*) =0 and so
Py(0, t|A*) = 1 V. The average probability distribution is the
same as the one reported in [33], which is basically our unper-
turbed CTQW.*

Next the IPR (5) for the probability distribution in Egs. (26)
and (27) reads

8(N — 1)
N2
16(N — 1)

+T

It)=1- sin®[wy (M)t]

sin*[wy (M)r]. (28)
The IPR has the same properties of the probability distribu-
tion: It is periodic, reaches the upper bound 1 (localization of
the walker) for #; such that Py(0, #;|[A) = 1, and limy_, 1o Z =
1, since for large N the walker tends to be localized in the
starting vertex (Fig. 7). The lower bound Z,, := min, Z actu-
ally depends on N,

for N < 4
for N > 4,

e

(29)

Isz(tl)={ L2416
N2 N3

Zloo

4The CTQW Hamiltonian in [33] is H = A/d. See also footnote 3.
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— N=5 meme N=10 N=20
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FIG. 7. Inverse participation ratio for a walker initially localized
in the complete graph. The IPR periodically reaches the upper bound
1 (orange dashed line), i.e., the localization, but for N > 4 does not
reach the value 1/N (green dash-dotted line), i.e., the delocalization.
The lower bound of the IPR is defined in Eq. (29). For N — +00 the
IPR approaches 1, since the probability of finding the walker at the
starting vertex approaches 1 [see Eqgs. (26) and (27)]. Results are for
A=0.2.

where
2[+arcsin (VN/2) + 7l] for N < 4
B N + AN?
2n(1/2+1) for N > 4,
N + AN?

with [ € N. Please notice that the two definitions of Z,, match
in N =4. For N < 4 there are instants of time when the
walker is delocalized (Z,, = 1/N) and there is instantaneous
exactly uniform mixing. Instead, for N > 4 the walker is never
delocalized, since Z,, > 1/N.

Finally, we focus on the time dependence of the coherence,
which we derive in Appendix A2 and show in Fig. 8. The
modulus of the off-diagonal elements of the density matrix
can be expressed in terms of the square root of probabilities
(see Appendix A); thus the coherence is periodic and it is
symmetric with respect to A*, as well as the probability dis-
tribution. As expected, the dependence on the perturbation is

—A=-02
O =74 voiv oy A= 0.0
---- A= 0.2
--- A= 04

FIG. 8. Coherence for a walker initially localized in the complete
graph with N = 5. The coherence is null, thus minimum, for A* =
—1/N and it is symmetric with respect to A*, so only the data for
A > A* are shown.

TABLE III. Eigenvectors |e,) and eigenvalues &, with multiplic-
ity u, of the graph Laplacian in the star graph.

n |eil> 8!1 Mn

0 leo) = 7= Yo 1K) 0 1
leh) = S (i 1K) = LI+ 1)) 1 N-2
with/=1,...,N -2

2 o)==V = DI -5 T N 1

encoded only in the angular frequency w, (%) and the coher-
ence is identically null, thus minimum, for A*. For A # A%,
the coherence periodically reaches the extrema

8N —-1)(N -2 2k + 1
max(C = # for th = (‘}‘_)7[’ (31)
N2 N + AN?
2k
inC=0 forty = ——, 32
min or t;, NN (32)

with k € N and assuming N > 2.

C. Star graph

In the star graph, the central vertex is adjacent to all the
others, so its degree is N — 1. On the other hand, the other
vertices are only connected to the central one, so their degree
is 1. Hence, the graph Laplacian is

N-1
L=1+(N=2)[0)(0] =Y (k)] +[0)(k),  (33)
k=1

where |0) denotes the central vertex.

The eigenproblem related to Eq. (33) is solved in Table III.
The graph Laplacian has three energy levels: the level ¢y = 0,
having eigenstate |ey); the (N — 2)-degenerate level ) = 1,
having orthonormal eigenstates |el]), withl=1,...,N —2;
and the level ¢; = N, having eigenstate |e,). The perturbation
involves

L?> =21 + (N?* — N —2)|0)(0|

N-—1 N—1

—NY (O +10)KkD+ D Ikl (34
k=1 k=1,
j#k

so the perturbed Hamiltonian (1) reads

H = (1420 +[N =2+ AN* =N —2)]|0)(0|

N-1 N-1
— (L4 AN) Y (IK)(O] + [0} (kD) + 2 Y 1)) {kl.
k=1 jk=1,
J#Fk

(35)

The perturbation AL? thus introduces the hopping among all
the outer vertices (next-nearest neighbors) and affects the hop-
ping to and from the central vertex, i.e., the nearest-neighbor
hopping, and also the on-site energies proportional to /.

For an initially localized state, there are two different time
evolutions. If at 1 = 0 the walker is in the central vertex |0),
then the time evolution is equal to the corresponding one
in the complete graph of the same size. Therefore, also the
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FIG. 9. Probability of finding the walker at the central vertex
Pi(0,¢|1) (green dotted line), at the starting vertex P;(1,¢|A) (red
dashed line) or at any other vertex P;(i, ¢|A) (blue solid line) as a
function of time in the star graph. The walker is initially localized at
the vertex |1). Results are for N = 5 and A = 0.2.

resulting probability distribution, the IPR, and the coherence
are equal between star and complete graphs. Instead, if at
t = 0 the walker is localized in any of the outer vertices,
then we have a different time evolution. All the outer vertices
|1 <i< N —1) are equivalent and differ from the central
vertex |0), so if we keep the central vertex as |0), we can
always relabel the outer vertices in such a way that the starting
vertex is denoted by |1).

The probabilities of finding the walker in the central vertex
|0), in the starting vertex |1), or in any other outer vertex |2 <
i <N —1) at time ¢ for a given value of A are, respectively
(Fig. 9),

Pi(0, 1)) = ]% sin’[oy (M)t], (36)

P(LtlA)=1— [(N —2)sin’[w; ()]

NN —1)

+ x ? sin?{[oy (A) — 0 ()]t}

+ ]lvsinz[wN(x)t]], (37)

Py(i 1)) =

— 1 2
NN |:sm [w1(A)t]

L
N —

1 sin?{[oy (A) — 0 ()]t}

- Ilvsinz[wN(x)t]], (38)

where the angular frequency is defined in Eq. (25). In partic-
ular, P;(0,¢|A) is periodic with period Ty := 7 /wy(A), it is
symmetric with respect to A* = —1/N, and P, (0, t|]A*) = 0,
which means that the walker occupies only the outer vertices
of the star graph. Indeed, A* makes the hopping terms to
and from the central vertex |0) null [see Eq. (35)]. Instead,
Pi(1,¢|A) and P;(i, t|1) are periodic if and only if the pe-
riods Ty, Ty, and 7 /[wy(A) — w;(X)] of the summands are
commensurable. When this happens, then the overall prob-
ability distribution is periodic. This happens also for the
particular values A = —1, —1/N, —1/(N + 1), which make

IPR

— N=5 —= N=10 oo N=100
------- Delocalization = 1/N Localization = 1

FIG. 10. Inverse participation ratio for a walker initially local-
ized at |1) on the star graph. Results suggest that for # > 0 there are
instants of time when the IPR is close to the upper bound 1 (orange
dashed line), i.e., the localization. In particular, the IPR periodically
reaches 1 when the probability distribution is periodic. For N > 4
the IPR does not reach the value 1/N (green dash-dotted line), i.e.,
the delocalization. For N — 400 the IPR approaches 1, since the
probability of finding the walker at the starting vertex approaches 1
[see Eqgs. (36)—(38)]. Results are for L = 0.2.

null w;, wy, and wy — w;, respectively. Indeed, when w,
(wy) is null, the probabilities (36)—(38) only involve sine
functions with wy (w(). When wy — w; =0, i.e., oy = wy,
all the sine functions have the same angular frequency. We
address in detail the periodicity of the probability distribution
in Appendix A3. For Pi(1,¢|A) and P;(i, t|A) results sug-
gest that there is no symmetry with respect to A. Increasing
the order of the graph makes the angular frequency higher,
and limy_, 4o Pi(1,£]A) = 1, while limy_, 1o P1(0,2|A) =
limy_ 100 P1 (i, £|1) = 0. Again, the perturbation affects the
probabilities only through the angular frequency. The average
probability distribution is the same as the one reported in [37],
which is exactly our unperturbed CTQW.

Next we numerically evaluate the IPR (5) for the prob-
ability distribution in Egs. (36)—(38); the results are shown
in Fig. 10. The IPR oscillates between 1 and its minimum
value, which grows with N, similarly to what happens in the
complete graph. Indeed, for N — 400 the IPR approaches 1
(localization), since the probability of finding the walker at
the starting vertex approaches 1. The periodicity of the IPR
relies upon that of the probability distribution. When the latter
is periodic, the IPR periodically reaches 1, since the walker
is initially localized at a vertex, and periodically returns to it.
By considering P; (0, £]A) = 1/N, we notice that the instanta-
neous exactly uniform mixing is never achievable for N > 4
and so the IPR is never close to 1/N, independently of A. In-
stead, for N < 4 the mixing properties strongly depend on the
choice of N and A, e.g., it is achievable for A, = —1/(N + 1)
and for N = 2 A A = —1. The instantaneous exactly uniform
mixing is never achievable for A*, since P; (0, |A*) = 0Vz.

Finally, we focus on the time dependence of the coherence
of a walker initially localized in |1), which we derive in
Appendix A3 and show in Fig. 11. The coherence shows a
complex structure of local maxima and minima. However, it
is smoother and periodic for the values of A which make the
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FIG. 11. Coherence for a walker initially localized at |1) on the
star graph with N = 5. The coherence is smooth and periodic for
A* = —1/N.

overall probability distribution periodic (see Appendix A 3),
eg,r=—1,—1/N,—1/(N + 1).

III. CHARACTERIZATION

In this section we address the characterization of the
CTQW Hamiltonian (1), i.e., the estimation of the parameter A
that quantifies the amplitude of the perturbation ; = L?. Our
aim is to assess whether and to what extent we may determine
the value of A using only a snapshot of the walker dynamics,
i.e., by performing measurements at a given time ¢. Hence,
we briefly review some useful concepts from classical and
quantum estimation theories [46].

The purpose of classical estimation theory is to find an
estimator, i.e., a function A that, taking as input n experimental
data {x;};=1,, whose probabilistic distribution P(x;|A) de-
pends on A, gives the most precise estimate of the parameter. A
particular class of X is the unbiased estimators, for which the
expectation value is the actual value of the parameter 1, i.e.,
E[A] = fdx P(x|A\)A(x) = A. The main result regarding the
precision of an estimator A is given by the Cramér-Rao bound,
which sets a lower bound on the variance of any unbiased
estimator A, provided the family of distribution P(x|A) realizes
a so-called regular statistical model. In this case, the variance
of any unbiased estimator A satisfies the inequality

(39)

where F.(A) is the Fisher information of the probability dis-
tribution P(x|A),

2
Fer) = /dxw. (40)
P(x|A)

Regular models are those with a constant support, i.e., the
region in which P(x|1) # 0 does not depend on the parameter
A, and with nonsingular FI. If these hypotheses are not satis-
fied, estimators with vanishing variance may be easily found.
Optimal estimators are those saturating the inequality (39),
and it can be proved that for n — 400 maximum likelihood

estimators attain the lower bound [47].
In a quantum scenario, the parameter must be encoded
in the density matrix of the system. In turn, a quantum sta-
tistical model is defined as a family of quantum states {p; }

parametrized by the value of A. In order to extract information
from the system, we need to perform measurements, i.e., a
positive operator-valued measure (POVM) {&,,}, where m is
a continuous or discrete index labeling the outcomes. Ac-
cording to the Born rule, a conditional distribution P(m|1) =
Tr(p,&y) naturally arises. Unlike the classical regime, the
probability depends both on the state and on the measurement,
so we can suitably choose them to get better estimates. In
particular, given a family of quantum states {p, }, we can find
a POVM which maximizes the FI, i.e.,

Fo(0) < Fy(h) = Tr(p AD), (41)

where F, (1) is the quantum Fisher information and A, is the
symmetric logarithmic derivative (SLD), which is implicitly
defined as

O+ A n

2

The optimal POVM saturating the inequality (41) is given by
the projectors on the eigenspaces of the SLD. Since F,(A) =
maxg, {F.(A)}, we have a more precise bound on 02():) which
goes by the name of quantum Cramér-Rao (QCR) inequality

1

(43)

This establishes the ultimate lower bound of the precision in
estimating a parameter A encoded in a quantum state. Note
that the QCR inequality is valid for regular quantum statisti-
cal models, i.e., families of quantum states made of density
matrices with constant rank (i.e., the rank does not depend on
the parameter) and leading to nonsingular QFI [48-50].

In the present work we focus on pure states subjected to
the unitary evolution in Eq. (2), i.e., |¥,(¢)) = U (2)|¥(0)).
For such states the QFI reads

Fot, 1) = 40,9010, 92.(1)) — (¥ ()99, (0)) 7).
(44)
When dealing with CTQWs on a graph, a reasonable and

significant measurement is the position one. For such a mea-
surement the FI reads

N—1

_ [3,P(k, t|M)]?
Fot, ) = ;Z:(; e (45)

where P(k, t|A) is the conditional probability of finding the
walker in the kth vertex at time ¢ when the value of the
parameter is A.

When the perturbation H; commutes with the unperturbed
Hamiltonian H, [which is our case; see Eq. (1)], the unitary
time evolution simplifies to

Z/{A(f) — e—it’HOe—itk’H] . (46)

Then the QFI has a simple representation in terms of the
perturbation and of time. Indeed, if our probe |¢) at time
t = 0 does not depend on A and undergoes the evolution U (¢),
at a later time r > 0 we can write

Fot) = 42 [(WIHIY) — (Y Hi )]
= 4% ((AHL)) @7
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FIG. 12. Quantum (black solid line) and classical Fisher infor-
mation (colored nonsolid lines) of position measurement for an
initially localized state on the cycle graph. Results are for N = 5.

since |0, ¥, (1)) = —itH | (¢)) when [Hg, H1] = 0. We em-
phasize that the QFI does not depend on the parameter A to be
estimated. This is due to the unitary evolution and to the fact
that at ¢+ = O the probe |y) does not depend on A.

In the following, we evaluate the QFI of localized states,
whose dynamics is addressed in Sec. II, and we determine
the states maximizing the QFI for cycle, complete, and star
graphs. We compare the QFI with the FI for a position mea-
surement to assess whether it is an optimal measurement or
not. Moreover, we find the simple graphs allowing the maxi-
mum QFI. Refer to Appendix B for details about the analytical
derivation of the results shown in the following.

A. Localized states
1. Cycle graph
The QFI of an initially localized state in the cycle graph is

Fy(t) = 1361 (48)

and it is independent of N. We numerically evaluate the
FI (45) for the probability distribution in Eq. (18). The results
are shown in Fig. 12 and suggest that the FI never reaches
the QFIL. Specific behaviors of the FI strongly depend on the
choice of N and A.

2. Complete graph
The QFI of an initially localized state in the complete graph
is

F,(N, 1) = 4N*(N — 1)r%. (49)

The Fl is
AN*(N — 1)t? cos*[wn (M)t]
N2 —4(N — 1)sin*[wy(M)t]’

with wy(A) defined in Eq. (25). Due to the symmetry of
the graph, both the QFI and the FI do not depend on the
starting vertex, i.e., the estimation is completely indifferent
to the choice of the initially localized state. Unlike the QFI,
the FI does depend on A and is symmetric with respect to
A* = —1/N, as well as the probability distribution in Egs. (26)
and (27). In particular, F.(¢, A*) = F,(¢). However, we recall
that Py(0, ¢|]A*) = 1 and Py(i, t|A*) = 0, i.e., the walker is in

Fe(N,t, 1) = (50)

— QFI = FI(A=-0.2)
3000........ FI(A=0)
| F|(7\,=02)
g i
1000
0
0.0

FIG. 13. Quantum (black solid line) and classical Fisher infor-
mation (colored nonsolid lines) of position measurement for an
initially localized state on the complete graph. The same results are
obtained for a walker initially localized at the central vertex |0) of
the star graph of the same size. Results are for N = 5.

the starting vertex all the time. In this case the hypotheses
leading to the Cramér-Rao bound (39) do not hold, since the
model is not regular, and the bound may be easily surpassed.
Indeed, if we perform the measurement described by the
POVM {|0)(0[, 1 — |0){0|}, the variance of the estimator is
identically zero, outperforming both classical and quantum
bounds.

For A # A*, the periodicity of the probabilities in Egs. (26)
and (27) results in a dependence of the FI on A and an
analogous oscillating behavior (Fig. 13). The FI reaches pe-
riodically its local maxima when the numerator is maximum
and the denominator is minimum, and these maxima saturate
the quantum Cramér-Rao bound

Felte, A) = Fylt, A). (51)

This occurs for #, = 2k /(N + AN?), with k € N, i.e., when
the walker is completely localized and we definitely find it in
the starting vertex. Indeed, in the probability distribution the
parameter A is encoded only in the angular frequency; thus
knowing when the walker is certainly in the starting vertex
means knowing exactly its period, and thus the parameter A.
However, to perform such a measurement one needs some
a priori knowledge of the value of the parameter. In fact,
the POVM saturating the quantum Cramér-Rao bound (43)
strongly depends on the parameter A.

3. Star graph

The time evolution of the state localized in the center of
the star graph is equivalent to that of a localized state in the
complete graph, as already pointed out in Sec. II C. Thus, for
this state the QFI and FI are provided in Egs. (49) and (50),
respectively (see also Fig. 13).

Things change when we consider a walker initially local-
ized in one of the outer vertices of the star graph. In this case
the QFI is

F,(N,t) =4(N* + N — 2)t%. (52)

We numerically evaluate the FI (45) for the probability distri-
bution in Egs. (36)—(38) and the results are shown in Fig. 14.
Unlike the complete graph, for the star graph there is no satu-
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FIG. 14. Quantum (black solid line) and classical Fisher infor-
mation (colored nonsolid lines) of position measurement for a walker
initially localized at an outer vertex of the star graph. Results are for
N =5.

ration of the quantum Cramér-Rao bound. Note, however, that
for A* = —1/N the walker cannot reach the central site and in
principle one may exploit this feature to build a nonregular
model, as we discussed in the preceding section.

B. States maximizing the QFI

In the preceding section we studied how localized states
behave as quantum probes for estimating the parameter A of
the perturbation. However, we might be interested in find-
ing the best estimate for such a parameter by searching
for the state p, maximizing the QFI, hence minimizing the
variance o2(%). For this purpose, it is worth introducing an
alternative formula for QFI. When there is only one parameter
to be estimated and the state is pure, the QFI reads

8[1 — [{¥n (O arsr ()]
SA2 ’

This expression involves the modulus of the scalar product

(Un(ON45:.(1)) = (Y (0)|Usn (1) (0)), (54)

FyOut) = lim (53)

where
Usy (1) 1= e Ho+iHE =il o+ Gt 81 Ha ke

— e*iﬁ)ﬁH]t (55)

is a unitary operator given by the product of two unitary
operators (2) related to the time evolutions for A and A + §A
and the last equality holds since [H, H1] = 0 [see Eq. (1)].

The QFI strongly depends on the quantum state considered.
To maximize the QFI, we recall the following lemma from
Parthasarathy [51].

Lemma 1. Let W be any unitary operator in the
finite-dimensional complex Hilbert space .7 with spectral

resolution Zl;zl e P;, where ¢, ... e are the distinct
eigenvalues of W with respective eigenprojections Py, .. ., P.
Define

m(W) = II%iill [ Wy I (56)
Then the following hold.

(a) If there exists a unit vector [1g) such that (Yo |W |{g) =
0, then m(W) = 0.

(b) If (Y |W ) > O for every unit vector |1}, then
W) = mincos® [ ——L ). 57
g (132,

Furthermore, when the right-hand side is equal to <:052[(0,-0 —
0 Jo )/ 2]7

mW) = |{¥olW [0 I, (58)
where
1
V2

with |e;,) and |e,) arbitrary unit vectors in the range of P;, and
Pj,, respectively.

The idea is to exploit Lemma 1 to compute the QFI. We
consider [1p) as the initial state and we identify W with

Usy (1), since (Y ()| ¥aq60.(2)) = (¥0|Usx()]3o), so that

8{1 — /m[Us, ()]}
SA2 ’

Indeed, the state |¢) in Eq. (59) maximizes the QFI by
minimizing the modulus of the scalar product (54). The unit
vectors involved by |y) are eigenvectors of the unitary oper-
ator (55) and so, ultimately, of 7. In particular, such states
are those whose eigenvalues minimize Eq. (57). The eigenval-

ues of the unitary operator (55) are el = e”“’g?, with {812}

Vo) = —=(leiy) + lejy))s (59)

Fyt) = lim (60)

eigenvalues of H; = 7—[(2) and {¢;} those of Hy = L. Thus, we
can identify 6; = —8Are?. Because of this relation, we may
assume |e;) and |ej,) to be the eigenstates corresponding to
the lowest- and highest-energy eigenvalues. Indeed, in the
limit for At — O the cosine in Eq. (57) is minimized by
maximizing the difference 6; — 6;. Then the QFI reads

Fyt) = 2(2 — 620n) = 1762 (61)
Because of the choice of the state |), which involves the
lowest- and highest-energy eigenstates, the first equality fol-
lows from Eq. (47), whereas the second equality holds since
emin = 0 for simple graphs. An eventual phase difference be-
tween the two eigenstates in Eq. (59) would result in the same
QFI, but a different FI, as shown in Appendix B 4.

1. General graph

We prove that for a specific class of graphs the maximum
QFI is always equal to N*#2, provided the probe of the system
is the state (59). Indeed, according to Lemma 1, in order to
find quantum probes maximizing the QFI, we need to search
for systems whose eigenvalue separation is maximum. For
a graph of N vertices with no loops, the row sums and the
column sums of the graph Laplacian Ly are all equal to 0
and the vector (1, ..., 1) is always an eigenvector of L with
eigenvalue 0. It follows that any Laplacian spectrum contains
a zero eigenvalue and to maximize the QFI we need to find
graphs having the largest maximum eigenvalue.

Following Ref. [52], the Laplacian spectrum of a graph
G(V, E) is the set of the eigenvalues of Ly,

SL(G)= {I’Ll =Oa MZa"'vl’LN}v (62)
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where the eigenvalues p; are sorted in ascending order. To
study the maximum eigenvalue uy we introduce the comple-
mentary graph G of G. The complementary graph G is defined
on the same vertices of G and two distinct vertices are adjacent
in G if and only if they are not adjacent in G. So the adjacency
matrix A can be easily obtained from A by replacing all the
off-diagonal 0’s with 1’s and all the 1°s with 0’s. Alternatively,

Ay =Jy — 1y — Ay, (63)

where Jy denotes the N x N all-1 matrix and 1y the N x N
identity matrix. A vertex in G can be at most adjacentto N — 1
vertices, since no loops are allowed. Then the degree d; of a
vertexinGisN — 1 — dj,i.e., the complementto N — 1 of the
degree of the same vertex in G. The diagonal degree matrix is
therefore

Dy = (N — 1)1y — Dy. (64)

In conclusion, the Laplacian matrix Ly associated with the
complementary graph G is

Iy =Dy —Ay =Ny —Jy — Ly. (65)

Lemma 2. Any eigenvector ji of Ly is an eigenvector of Ly.
If the eigenvalue of ji for Ly is 0, then it is O also for Ly. If
the eigenvalue of ji for Ly is j;, then the eigenvalue for Ly is
N — ;. Thus, the spectrum of Ly is given by

S;(G) = {0,N — un, ..., N — pa},

where the eigenvalues are still sorted in ascending order.

Any Ly is positive semidefinite, i.e., u; = 0Vi, so this
holds for Ly too. According to these remarks and to Eq. (66),
we then observe that uy < N, i.e., the largest eigenvalue is
bounded from above by the number of vertices N. More-
over, the second-smallest eigenvalue w1, of Ly is the algebraic
connectivity of G: It is greater than O if and only if G is
a connected graph. Indeed, the algebraic multiplicity of the
eigenvalue O is the number of connected components of the
graph [53-55]. So if G has at least two distinct components,
then the second-smallest eigenvalue of Ly is N — uy =0,
from which uy = N.

Lemma 3. Given a graph G and its Laplacian spectrum
Sp(G) ={0, ua, ..., uy}, the largest Laplacian eigenvalue
wy is bounded from above by uy < N and the equality is
saturated only if the complementary graph G is disconnected.

This result in spectral graph theory has a direct impact on
our estimation problem. Since our perturbation is the square
of the graph Laplacian, the maximum QFI is given by Eq. (61)
and involves the lowest and the largest eigenvalue of the
Laplacian spectrum.

Lemma 4. The simple graphs G whose complementary
graph G is disconnected are the only ones providing the max-
imum QFI for the estimate of the parameter A in Eq. (1). For
such graphs, the largest eigenvalue of the graph Laplacian is
N and the lowest is 0. This results in the maximum QFI

FP(N, 1) = N42.

(66)

(67)

This lemma allows us to predict whether or not a graph
provides the maximum QFI and its value, with no need
to diagonalize the graph Laplacian. Some graphs satisfying
Lemma 4 are the complete, the star, the wheel, and the com-
plete bipartite graphs. The cycle graph allows the maximum

+ -
1604 (@) |wot> {(b) |yo>
120
Yy i
C 80 1
40|
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FIG. 15. Quantum (black solid line) and classical Fisher infor-
mation (colored nonsolid lines) of position measurement for the
states maximizing the QFI on the cycle graph for odd N: (a) |¥/),
where the highest-energy state is Eq. (14), and (b) |, ), where the
highest-energy state is Eq. (15). Indeed, for odd N the highest-energy
level is doubly degenerate. While the QFI does not depend on the
choice of the corresponding eigenstate, the FI does. Results are for
N =5.

QFI only for N < 4: For N = 2, 3 it is just a complete graph
and for N = 4 the complementary graph has two disconnected
components; for N > 4 it is connected.

2. Cycle graph

The cycle graph satisfies Lemma 4 only for N < 4. For

N > 4 the maximum QFI is lower than N*#? and it depends on

N. Indeed, the energy spectrum of the cycle graph is sensitive

to the parity of N, and the state maximizing the QFl at r = 0
is therefore

) = —

(&)

ﬁ(|€m1n> + lemax)); (68)
where |enin) is the ground state, while |e§$&) is the eigenstate
corresponding to the highest-energy level and it depends on
the parity of N. For even N it is unique, whereas for odd N
the highest-energy level is doubly degenerate, which is the
reason for the £ sign [see Eqgs. (14) and (15) and Table IJ.
The resulting QFI is

25612
16[1 + cos (5)]'72 i N is odd.

The QFI for odd N depends on N, and for large N it ap-
proaches the QFI for even N, which does not depend on N.
Even the FI discriminates between even and odd N, because
of the ambiguity in choosing the highest-energy eigenstate
for odd N (see Appendix B 1). For even N the position mea-
surement is optimal, i.e., F.(t) = F,(t). For odd N, both
eigenstates for n = (N £ 1)/2 in Table I lead to F.(¢) =
F, (). Instead, if we choose the linear combinations of them
in Egs. (14) and (15), the FI of position measurement is no
longer optimal, as shown in Fig. 15.

if N is even

Fqt) = (69)

3. Complete graph

The complementary graph of the complete graph has N
disconnected components, so it satisfies Lemma 4. A possible
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FIG. 16. Quantum (black solid line) and classical Fisher infor-
mation (colored nonsolid lines) of position measurement for two
of the states maximizing the QFI on the complete graph: (a) |¢,)
in Eq. (71) and (b) |¥)~") in Eq. (72). Due to the degeneracy of
the highest-energy level, there are several states providing the same
maximum QFI. While the QFI does not depend on the choice of such
states, the FI does. In both cases, the FI vanishes for A* = —1/N.
Also shown in (b) are the results for the maximum QFI state in
Eq. (77) for the star graph of the same size. Results are for N = 5.

choice of the state maximizing the QFI (at r = 0) is

1
i !
= —(leo) + l€7)), (70)
W/O) ﬁ(| 0) ‘ 1>)
where |ep) is the ground state, while |ell), with{=1,...,N —

1, is the eigenstate corresponding to the highest-energy level
&1 = N, which is (N — 1)-degenerate (see Table II). Then we
are free to choose any eigenstate from the eigenspace {|e’1)}
(or even a superposition of them) and the QFI is always given
by Eq. (67). On the other hand, the FI does depend on the
choice of |e!).

As an example, let us consider the two states

1
o) = EWO) + 1)) (71)
1
lvo ') = ﬁﬂeo) + e ). (72)

These states are equivalent for the QFI (both maximize it), but
they are not for the FI (see Fig. 16), which reads

" AN N + 2)% sin’ 2ty (V)]
Fe([dolN. 0. 3) = (N +2)* — 8N cos?[2twy ()]’ (73)
AN (N — D2 sin?[2twy (V)]

N2 — 4(N — 1)cos?[2tawy(M)]

Fe(lwd "N 1, 0) = (74)
In both cases the FI is symmetric with respect to A* = —1/N,

and for such value it vanishes. The local maxima occur for
te = w(k 4+ 1/2)/(N + AN?), with k € N, and are

max 4N4
JT:L- (‘1//(})71\7, l‘k,)\.) = N+2t/€2’ (75)
f;naX(lw(l)v_l>,N, tk,)\,) :4(N_ 1)N2t,? (76)

For these states the FI never reaches the value of the QFI (67),
so the position measurement on |1/f(’)) is not optimal.

4. Star graph

The complementary graph of the star graph has two dis-
connected components, so it satisfies Lemma 4. The state
maximizing the QFI (at ¢t = 0) is

[Yo) = %(l%) + le2)), (77
where |eg) is the ground state, while |e;) is the eigenstate
corresponding to the highest-energy level &, = N (see Ta-
ble II). The resulting QFI is given by Eq. (67). Since the
highest-energy level is not degenerate, there is no ambiguity
in the state maximizing the QFI. For such a state the FI reads
as Eq. (74), so also refer to Fig. 16(b).

IV. DISCUSSION AND CONCLUSION

In this paper we have investigated the dynamics and
the characterization of continuous-time quantum walks with
Hamiltonians of the form H = L + AL?, with L the Lapla-
cian (Kirchhoff) matrix of the underlying graph. We have
considered cycle, complete, and star graphs, as they describe
paradigmatic models with low and high connectivity and/or
symmetry. The perturbation AL? to the CTQW Hamiltonian
L introduces next-nearest-neighbor hopping. This strongly af-
fects the CTQW in the cycle and in the star graph, whereas it
is negligible in the complete graph, since each of its vertices
is adjacent to all the others and L? = NL. Clearly [L, AL?] =
0, so the commutator between the unperturbed Hamiltonian
and the perturbation is not indicative of how much the sys-
tem is perturbed. Therefore, we consider how different is
L? from L by assessing the Frobenius norm of the operator
A=L-L*N,ie.,|Alr =/Tr(ATA) [56]. This turns out
to be null for the complete graph, equal to /6N — 40 4+ 70/N
for the cycle and to \/N — 4+ 5/N — 2/N? for the star graph.
According to this, the cycle graph is the most perturbed and
the complete the least.

Our results indicate the general quantum features of
CTQWs on graphs, e.g., revivals, interference, and creation of
coherence, are still present in their perturbed versions. On the
other hand, interesting effects emerge, such as the appearance
of symmetries in the behavior of the probability distribution
and of the coherence. In the cycle graph (for ¢ <« 1), the
perturbation affects the speed of the walker while preserving
the ballistic spreading. The variance is symmetric with respect
to Ao, despite the fact that the probability distribution is not.
The value Xy makes the next-nearest-neighbor hopping equal
to the nearest-neighbor hopping. The physical interpretation
of this behavior is still an open question, which deserves
further investigation. In the complete graph the perturbation
does not affect the dynamics, since L?> = NL, so the resulting
perturbed Hamiltonian is proportional to L. In the star graph,
the perturbation affects the periodicity of the system. We have
determined the values of A allowing the system to be periodic,
thus to have exact revivals. In particular, the value A* = —1/N
makes the walker exist only in the outer vertices, provided it
starts in one of them.

Characterizing the perturbed Hamiltonian amounts to
estimating the parameter A of the perturbation. We have
addressed the optimal estimation of A by means of the
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TABLE IV. Asymptotic behavior of the quantum Fisher informa-
tion and of the classical Fisher information for large order N of the
cycle, complete, and star graphs, for localized and maximum QFI
states.

QFI FI
States Cycle Complete Star Cycle Complete Star
Localized o) OW?* OW?*» o) OW? OW?
Maximum QFI O(1) O(N*) ONW*) 0O(1) OW?* OW?)

quantum Fisher information and using only a snapshot of the
walker dynamics. The states maximizing the QFI turn out to
be the equally weighted linear combination of the eigenstates
corresponding to the lowest- and highest-energy levels.
In addition, we have found that the simple graphs whose
complementary graph is disconnected, e.g., the complete and
star graphs, are the only ones providing the maximum QFI
N*t2. Moreover, we have evaluated the Fisher information
of position measurements to assess whether it is optimal.
We sum up the asymptotic behavior of the (Q)FI for large
N in Table IV and for ¢+ « 1 in Table V. When the probe is
a localized state, the QFI in the cycle graph is independent
of the order N of the graph. In the complete graph, the local
maxima of the FI equal the QFI and occur when the walker is
localized in the starting vertex with probability 1; this happens
periodically. However, to perform such a measurement one
needs some a priori knowledge of the value of A. When the
probe is the maximum QFI state, the QFI in the cycle graph
depends on N, and FI is optimal for even N. In general,
when the highest-energy level is degenerate, the QFI does not
depend on the choice of the corresponding eigenstates when
defining the optimal state; instead the FI does.

Besides fundamental interest, our study may find applica-
tions in designing enhanced algorithms on graphs, e.g., spatial
searches, and as a necessary ingredient to study dephasing and
decoherence.
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APPENDIX A: ANALYTICAL DERIVATION OF THE
RESULTS FOR THE DYNAMICS

The dynamics of the system is essentially encoded in the
time evolution of the density matrix. For an initially localized

state |i), the density matrix is given by p(t) = |i(z))(i(?)],
whose generic element in the position basis is

pjk(®) = (L ONi) (U 1)1k, (A1)

where the time-evolution operator U, (¢) is defined in Eq. (2).
The probability distribution is given by the diagonal elements
of the density matrix

PG 112) = 1GNP = (@) GO ) = pj;@).  (A2)

On the other hand, the modulus of the off-diagonal elements
of the density matrix entering the definition of coherence in
Eqg. (6) can also be expressed in terms of probabilities:

10k ()] = 11U O | kU (0)]3)
= /P.(j, t1M)Pi(k, 1|1).

(A3)

1. Cycle graph

According to the time-evolution operator and to the spec-
tral decomposition in Table I, in a cycle graph an initially
localized state |j) evolves in time as

N—1
. 1 —iEM iQ2m in
@) = ﬁZe Eat TN e, ), (A4)
n=0

where E} := ¢, + Ae2 and exp[iZZ jn]//N = (e,|j). Then
the probability of finding the walker in the vertex k at time
tis

N-1
1 i A A . .
i = —i(E;—E )t iQ2m /N)(n—m)(j—k)
Pitk.113) = = > e e . (AS)

n,m=0

This expression leads to Eq. (18) as follows. Let p,, be the
summand, excluding 1/N?. The summation over m can be
split into three different summations: one over m = n (provid-
ing Z,, pnn = N), one over m > n, and one over m < n. Since
Pnm = p:(nn’ then Zm<n Pnm = Zm>n ptnn’ SO Zm>n(p”m +
Ph) =22 e Re{pum}, With Re{py} = coslarg(pum)].

To prove that the probability distribution is symmetric with
respect to the starting vertex j, i.e., that P;(j +k,t|A) =
P;(j — k,t|A), we consider Eq. (A5). The left-hand side is

N—1
1 P " .
(7 — —i(Ey—E)t ,i(2m /N)(n—m)(—k)
PG+t = 53 Y e e . (A6)

n,m=0

TABLE V. Behavior at short times 7 of the classical Fisher information of the cycle, complete, and star graphs, for localized and maximum
QFI states. The maximum QFI state is the superposition of the ground state and the highest-energy eigenstate. The QFI is always O(¢?), even
at short and long times [see Eq. (47)], since the perturbation #, is time independent.

FI
States Cycle Complete Star
Localized o(t?) o(t?) o(t?)
Maximum QFI O(t?) for energy eigenstates in Table I o@*) o@*)

O(t*) for odd N and highest-energy eigenstate (14) or (15)
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Now, letting [ = N —n (g = N — m) be the new summation Finally, we justify the expression of the variance of the po-
index, since ey_; = &; (ey—y = &4), we have that sition in Eq. (19). We assume even N, |j = N/2) as the initial
N state, and ¢ < 1. The variance requires the expectation values

1 . - & ) . ...
Pi(j+k,1]h) = — Z oI} =ED (i [N)g=D)(—K) of X and X~, and the vertex states are eigenstates of the position

operator. The probability distribution (18) is symmetric about

ha=t the starting vertex, thus () = N/2, and it involves summands
of the form
LZ BB R ===
1,q=0
= P;(j — k. 1]}). (A7) cos(at + B) = cos(at)cos B — sin(at) sin B

The second equality holds since the summand of index [ =
N (g = N) is equal to that of index [ = 0 (¢ = 0). Indeed,
according to Table I, the virtual E}; is equal to E} (the actual
energles have index running from O to N — 1). In addition,
exp{l (g — D)k} returns the same value if evaluated in [ = N since t < 1. Hence, letting o, = EA E; * and ﬂnm =
(g= N) orl =0(g=0). %(n—m)(k—j), we can write

2
(1 - %ﬂ) cos f—atsin f+0G), (A8)

2 ki p22 ki _ 32
<k cos 8,7, k 1 COS B — th oy, sin ﬂ”m>

= é(N —D@RN-1)— %[N(N —6) 4+ 2]+ 2:2(20A2 + 84 + 1)

N2 1\* 21,
= H[4o(r+5) +35|7 (A9)

Then the variance (19) follows and is symmetric with respect to Ay = —%.
2. Complete graph
The complete graph has two energy levels (see Table II); thus the unitary time-evolution operator has the spectral decompo-
sition
N-1

Us(t) = leo) (eol + e~V > " el )fel], (A10)
=1

with wy(X) defined in Eq. (25). Hence, a localized state |0) evolves in time according to

10(1)) = }V[l + (N = D ?v@rj0) + }V(l — e 2NN k). (A11)

Then the density matrix p(t) = |0(¢))(0(¢)| in the position basis is

N-1 N-1 N-1
p(t) =1 — (N = DAJI0)(0] 4+ (A + B) Y _ 10}{(k| + (A +B") Y _1k}OI+A D |j)kl, (A12)
k=1 k=1 Jik=1
where
4 .,
A= N sin“[wy (A)t], (A13)
B= Iiv(e*”’”w(” - 1. (Al4)

The diagonal elements of p(¢) provide the probability distribution in Eqs. (26) and (27). Instead, the off-diagonal elements
allow us to compute the coherence according to Eq. (6) and it reads

C(t)=2(N — )JA+B|+ (N — DN —2)|A|. (A15)
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3. Star graph

The star graph has three energy levels (see Table III); thus the unitary time-evolution operator has the spectral decomposition

Uy (1) = leo)(eol + €72 Y~ e el | + eV lea)feal,

(Al6)

with wy (1) defined in Eq. (25). Hence, a localized state |1), i.e., an outer vertex, evolves in time according to

]lv(l _ e—isz(K)t)I(» + (l + N__ze—nwl(k)z

1)) = TR

+

— 2wy (M)t 1 e i
)+ (-
NN — 1) N N-1

—i2w) (A)t —t2wN (M)t -

N(N 1)>Z|k (A17)

Instead, if the initial state is the central vertex |0), we recover the time evolution of a localized state in the complete graph of the
same size [see Eq. (A11)], and thus the same results. Then the density matrix po(z) = |1(¢))(1(¢)| in the position basis is

N-1 N-1

N—-1

p(6)=AIP10)(0] + [BP[1) (1] +CI> D k) (k| +[ICI> Y i)kl +AB*|0)(1] + > (AC*|0)(k| + BC*|1)(k|) + H.c. |,

k=2 k=2,
k>j

where H.c. denotes the Hermitian conjugate of the off-
diagonal terms only and

¥ _ e—iZaJN(k)t)7 (A19)
1 N -2 —i2wy ()t
B=— 4ol S (A20)
N N-1 NN —1)
1 e—iZwI(A)t e—iZwN(A)t
C=—— + (A21)
N N-1 NN = 1)

are the coefficients of |1(r)) in the position basis [see
Eq. (A17)]. The diagonal elements of p(t) provide the proba-
bility distribution in Egs. (36)—(38). Instead, the off-diagonal
elements allow us to compute the coherence according to
Eq. (6). Given the counting of the different matrix elements,
since |0« (t)| = |ox,j(t)l, the coherence reads

C(t) = 2|AB*| + 2(N — 2)(JAC*| + |BC*|)

+ (N =2)(N = 3)|C). (A22)

The issue of the periodicity of the probability distribution
is still pending. Ultimately, the overall probability distribution
is periodic if and only if the periods of the sine functions
involved by the probabilities (36)—(38) are commensurable.
Since such sine functions are squared, the periods are

T 27
= A2
Ti(A) = o1 (%) =T (A23)
Tv(h) := _ (A24)
N o)~ N+ ANZ’
Ty () = b4 _ 2m
N o) — o) (N — DI+ AN + D]’
(A25)

Two nonzero real numbers are commensurable if their ratio
is a rational number. The idea is therefore to express both
T () and Ty 1 (1) as multiple integers of Ty (A). From the ratio

k=2
(A18)

[

Ty(1)/Tw(2) we get

N(1 4+ AN)
L) = — 5 v = PyING.), (A26)
with A # —1 AL # —1/N, and from Ty 1 (1)/Ty(A),
_ N(1 4 AN) o
Tni(A) = VDO AN+ D] Iv(A) =: gyIn (L),

(A27)

with A #£ —1/N A A # —1/(N + 1). Then we need to find the
value of A such that p},, ¢4 € N at the same time. Combining
the definition of p}, and ¢} in Egs. (A26) and (A27), we find
that they are related to A and N by

A
- %le. (A28)

gy(N* — 1) — py

Note that Eq. (A28) is to be understood together with
Egs. (A26) and (A27). As an example, for p}, = gk we get
Ar=02-— N)/(N2 — 2) from Eq. (A28). However, the period
is unique, so we cannot choose any p;\\, = q,’},. Indeed, for such
a value of 1 we get p), = gy = 2 from Eqs. (A26) and (A27).
In the end, by considering the least common multiple £ of
the latter two integers, the total period of the probability
distribution is

T = L(ph. ay) v (). (A29)

The above ratios (A26) and (A27) between the different
periods are properly defined unless A = —1, —1/N, —1/(N +
1). Nevertheless, for such values of A the overall probability
distribution is actually periodic. If we let p, g € Z, we recover
them from Eq. (A28) for ¢ = 0, ¢ = —p, and p = 0, respec-
tively. These values of A make w;, wy, and wy — w; vanish,
respectively. When w; = 0 (wy = 0), the probabilities only
involve sine functions with wy (w;). When wy = wy, all the
sine functions have the same angular frequency.
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APPENDIX B: FISHER INFORMATION AND QUANTUM
FISHER INFORMATION FOR LOCALIZED STATES AND
STATES MAXIMIZING THE QFI

In this Appendix we prove the analytical results about
the quantum Fisher information in Eq. (44) and the Fisher
information in Eq. (45) in the different graphs. We provide
the FI for a local position measurement whose POVM is given
by {|0){0], [1)(1], ..., [N — 1){N — 1]}, i.e., by the projectors
on the vertex states. Lemma 1 (from Parthasarathy) leads to
the QFI in Eq. (61), because the state maximizing the QFI
involves the ground state and the highest-energy eigenstate.
The highest-energy level might be degenerate, but choosing
any eigenstate of such level results in the same QFI. Instead,
the FI does depend on such a choice.

1. Cycle graph
a. Localized state

The QFI in Eq. (47) requires the expectation values of
L? (16) and of
N-1
L* =701 + Z (|k — 4) (k| — 8|k — 3) (k|
k=0
+ 28|k — 2) (k| — 56|k — 1)(k| + H.c.), B1)

on the initial state | j). These are (L?) = 6 and (L*) = 70, from
which Eq. (48) follows.

b. States maximizing the QFI

In the cycle graph the ground state is unique, whereas the
degeneracy of the highest-energy level depends on the parity
of N (see Table I). We define E; := &pax + Asmax, where &max
is the highest-energy eigenvalue of L [see Egs. (10) and (12)
for even and odd N, respectively].

For even N, according to Eq. (68) the state maximizing the
QFlis

o)) = Zl+( Dfe™™ k), (B2)

and the maximum QFI (69) follows from Eq. (61). Then the
probability distribution associated with a position measure-
ment is
1
Py(k, t|)) = N[l + (=¥ cos(E;1)]. (B3)

Hence, observing that the dependence on the vertex is encoded
only into an alternating sign, the FI is

Fe(N,t, 1)
N/2—1 2 2
_ Z (03 Py (2K, t|A)] [0, Py (2k + 1, t[A)]
P Py 2k, t|)\) Py 2k 4+ 1,¢t|1)

_ Gt SN2 (E3) Nf' [ N, N ]

N2 — 14cos(E;t) 1 —cos(E;t)
et 2sin2(E,)N 2N

— Emax =gt = F,(t B4

N2 2 sin (E)‘l‘) mdx ( ) ( )

That is to say, the position measurement for the state maxi-
mizing the QFI in a cycle graph having an even number of
vertices is optimal, since the corresponding FI equals the QFIL.

For odd N, the situation is trickier: The state maximiz-
ing the QFI is not unique, because of the degeneracy of the
highest-energy level. We may consider the two corresponding
eigenstates according to Table I, which lead to the states
maximizing the QFI,

o5 (1) = —= Z [1+ (=Dfee ™ k), (BS)
N3
where 6y = wk/N. On the other hand, we may also consider

the linear combinations of such eigenstates [see Egs. (14)
and (15)], which lead to the states maximizing the QFI,

|I//0( ) \/_Z 1+\/_( l)kCOSOke lE”]lk) (B6)
N-1
1Y, (1) = [1+v2(=1) sin6e Bk).  (B7)
Yo \/2— Z e
Under the assumption of odd N and according to the results
N-1 N-1 N
> cos?f = sin’ 6 = > (B8)
k=0 =0
- ; 14+ (=N odd N
—Dfe = ———"=70, B9
> (=1 = (B9)

the maximum QFI (69) follows from Eq. (61) and does not
depend on the choice of these states. Instead, we prove that
the FI does depend on them. Again, there is an alternating
sign which depends on the vertex. In the following, we will
split the sum over even and odd indices, and for odd N it reads

N—-1 (N—-1)/2 (N—1)/2—1
> a=
k=0

Z ax, + Z A2k+1-
k=0 =

We first consider the states |<p (t)) in Eq. (BS). The prob-
ability distribution associated with a position measurement is

(B10)

PE(k,t|x) = ]iv[l + (=¥ cos(Ext F 6)]. (B11)

Hence the FI is
e (N=1)/2

+ 4y,
FlegiNot = =501 D

k=0
(N—1)/2—1

>
k=0

sin?(Ext = 6)
1 + cos(Ext F 6x)

sin*(Et F O41)
1 — cos(Eyt F Orr1)
4

. (N—1)/2
_ m]'i}( |: Z [1 — cos(Et F 0x)]
k=0

(N=1)/2—1
+ Z [1+cos(E)\tq:92k+1)]:|

k=0
ZM[N_I+1+N_1_1+1]
N 2 2
= ep = F,0). (B12)
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Indeed, for odd N,

(N=1)/2 (N=1)/2—1
Z cos(boy + @) —
k=0 k=0

> cosuer + @)=Y (~1)cosEh + ) =0.

N—1
(B13)
k=0

Now we focus on the state |1/fa'_ (1)) in Eq. (B6). The probability distribution associated with a position measurement is

1
Pj[,,"(k, tA) = ﬁ[l + 2\/5(—1)" cos 6 cos(E; 1) + 2 cos? )] (B14)
Hence the FI is
. (N—=1)/2
FHE YN 1A = 4et 1?2 sin*(Ext) Z/ cos? O
e MNP0 T N — 1+ 23/2 cos Oy cos(Ext) 4 2 cos? Oy
(N—1)/2—-1
n Z/: cos® Oyt (B15)
— 11— 242 c0s O 1 cOS(Ext) + 2 cos? Oy
Analogously for |, (¢)) in Eq. (B7), we find
. N-1)/2 .
F YN 1) = 4et 1% sin*(Ext) Z/ sin? 6
¢ oI N —~ 1+ 2/2 sin O cos(Ex 1) + 2 sin® O
(N—1)/2—-1 .
n Z/: sin? Ot (B16)
=0 1— 2\/5 sin 01 cos(Ext) + 2 sin? Ook+1

Numerical results suggest that ]—'f(h[f(f);N, 1, A) < Fu().
Notice that FE(|Y/i); N, t, A = —1/emax) = 0V 1. Indeed, for
such a value of A we have that E; = 0.

2. Complete graph
a. Localized state

The QFI in Eq. (47) requires the expectation values of L2
and of L* on the initial state |0). Because of Egs. (21) and (22),
we only need (L) = N — 1, from which Eq. (49) follows.

b. States maximizing the QFI

The complete graph has two energy levels: The ground
state is unique, but the highest energy level is N — 1 degen-
erate (see Table II). The QFI does not depend on the choice of
the eigenstate of the highest-energy level, but the FI does. As
an example, we consider two different states maximizing the
QFI |y}) and [y)™"), i.e., the states in Eq. (70) for / = 1 and
| = N — 1, respectively.

The first state is

1 1 .
lyl®) = 72[|eo> + Ee—z”‘w‘”um - |1>>}. (B17)

The probability distribution associated with a position mea-
surement is

1 1 cos[2twy (A
PO 11y = L 4 Ly cosiZten @]

B18
4 2N V2N ( )
1 1 cos[2twy (M)]
P LtNy=-4+—— ————, B19
(1, |A) 4+2N N (B19)
1
Po(k,t|r) = —, B20
v (K, £|)) N (B20)

(

with 2 <k <N —1. Then, since the N —2 contribu-
tions from the vertices 2 < k <N — 1 are null and since
0y, [PA‘} (k,t|A)] = 0, only the probabilities associated with the
vertices |0) and |1) contribute to the FI (45), which results in
Eq. (73).

Similarly, the second state is

1

—itwy (%)
S — [10) +---
N2 —N

1
[ZN0) =ﬁ{|€o> +

+|N—2)—(N—1)|N—1>]}. (B21)

The probability distribution associated with a position mea-
surement is

1 1
PNk, tIh) = + cos[2twn(M)],
1) = s+ e cosl2ron (]

(B22)
withO <k <N —2,and
1 —
Pﬁ—‘(N—l,tp\):E— cos[2twy(M)].  (B23)

Then, having N — 1 equal contributions from the vertices 0 <
k < N — 2 and a particular one from N — 1, the FI (45) results
in Eq. (74).

3. Star graph
a. Localized state

Considering the central vertex |0) as the initial state pro-
vides the same results observed in the complete graph of the
same size. Thus, we consider the initial state |1), i.e., one of
the outer vertices. The QFI in Eq. (47) requires the expectation
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values of L? (34) and of
N—1
L* = (N + N +2)[ = N* Y (|k)}(0] + [0) k)
k=1
+ (N = 2)(N* + N* + N + 1)|0)(0]
N-1
+ (N2 +N+1) Y [k
Jk=1,
J#Fk
on the initial state |1). These are (L?) = 2 and (L*) = N? +
N + 2, from which Eq. (52) follows.

(B24)

b. States maximizing the QFI

In the star graph the state maximizing the QFI, according
to Eq. (77), is
1 .
[Yo(1)) = —=(leo) + e Mlez)),  (B25)
V2
since both the ground and the highest-energy levels are not

degenerate (see Table III). Then the probability distribution
associated with a position measurement is

Py (0, 1) = % + _1\;]—1 cos[2twn(M)], (B26)
1 1
Py(k, t]2) = W=D N cos[2toy(L)], (B27)

with 1 < k < N — 1. Then the FI follows from Eq. (45).

4. Maximum QFI states: Role of the phase factor in the
superposition of energy eigenstates

So far we have studied the states maximizing the QFI
without bothering to consider a different linear combination

of the ground state and the highest-energy state. According
to Lemma 1 from Parthasarathy, the two eigenstates defin-
ing the state in Eq. (59) are equally weighted. However,
we may suppose that the second one has a phase factor,
ie.,

1

ﬁ(|€0) + €?]er)).

o) = (B28)

In this section, we study how the phase ¢ affects the FI and
QFL

The states |egp) and |e;) denote the eigenstates of min-
imum and maximum energy eigenvalues, i.e., &pi, and
&max, respectively, and we know that for simple graphs
leo) = (1,...,1)/~/N and enin = 0. Moreover, since the
Laplacian matrix is real and symmetric, we can always
deal with real eigenstates. Because of Eq. (47), we al-
ready know that the QFI is (61) and therefore it is
independent of a phase shift. On the other hand, the FI
reads

Fot,)) =2t sin®(Ext — ¢)

max
N—1

‘3 (ile1)?
= Niiler)? + 2/ Niler) cos(Eyt — ¢) + 17

(B29)
where Ej := enax + )Lsfnax and (ile;) € R, since the vectors
involved are real. Hence, the phase is encoded as a phase shift
in all the sine and cosine functions. However, this does not
result in a global time shift, because the quadratic term in 7 is

not affected by ¢.
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