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Abstract: Endocrine disruptors (EDCs) can display estrogenic and androgenic effects, and their
exposure has been linked to increased cancer risk. EDCs have been shown to directly affect cancer cell
regulation and progression, but their influence on tumour microenvironment is still not completely
elucidated. In this context, the signalling hub protein RACK1 (Receptor for Activated C Kinase 1)
could represent a nexus between cancer and the immune system due to its roles in cancer progression
and innate immune activation. Since RACK1 is a relevant EDCs target that responds to steroid-active
compounds, it could be considered a molecular bridge between the endocrine-regulated tumour
microenvironment and the innate immune system. We provide an analysis of immunomodulatory
and cancer-promoting effects of different EDCs in shaping tumour microenvironment, with a final
focus on the scaffold protein RACK1 as a pivotal molecular player due to its dual role in immune and
cancer contexts.

Keywords: cancer; endocrine disruptors; tumour microenvironment; signal transduction; RACK1;
immune system; EMT; ER; cytokine release; inflammation

1. Introduction

Steroid hormones can interact with specific receptors, orchestrating a vast set of physiological
functions, including growth, development, reproduction, energy imbalance, metabolism, immunity
and behaviour [1]. These hormones derive from cholesterol and can be divided into corticosteroids
(glucocorticoids and mineralocorticoids) and sex steroids (androgens, oestrogens, and progestogens).
Steroid hormones are present in body fluids and act at nanomolar concentrations to ensure a continual
dialogue between the endocrine system and the other two main communication systems of the body,
the nervous system and the immune system. Any alteration of the endocrine system may also affect
these other two systems [1]. In this regard, certain man-made and natural chemicals, known as
endocrine-disrupting chemicals (EDCs), have been reported to affect the endocrine system functions,
interfering with hormone action, thereby increasing the risk of adverse health outcomes [2] including
reproductive impairment [3–5], cognitive deficits [6–8], metabolic diseases and disorders [9,10] and
various tumours, mainly breast (BC) and prostate cancer (PC) [11–14].

Human exposure to EDCs can occur via ingestion (food, dust and water), via inhalation (gases and
particles in the air) and through the skin. EDCs can be found in food contact materials, cosmetics,
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consumer goods (including furnishings, cleaning products), toys, as well as in drinking water. Moreover,
EDCs can act on similar or different pathways displaying cumulative or synergistic effects. These effects
can be observed in different temporal windows (i.e., pre- and postnatal life, puberty and adulthood),
with adverse effects in both the short- and long-term [15]. Hence, the deleterious effects of EDCs
represent a health issue due to their potency, constant and universal human exposure [16].

EDCs are known to display hormonal features, including oestrogen and androgen activities,
and they have been correlated with increased tumour risk considering their effects on cancer
progression [11–14]. The tumour microenvironment plays an important role in establishing the
cancer phenotype by interacting with the immune system. The role of EDCs in modulating the tumour
microenvironment has not been elucidated, but is of pivotal interest. In this regard, the scaffold protein
Receptor for Activated C Kinase 1 (RACK1) is an EDC target in the immune context [17–20] and an
important molecular player for cancer progression (reviewed in [21]). Therefore, EDCs-mediated
RACK1 regulation in both contexts could be central to understand the role of endocrine-mediated
microenvironment regulation and to link innate immune activation with cancer progression through
RACK1. In this review, we discussed RACK1 dual role as a possible molecular bridge for cell response
to EDCs in immune and cancer system.

2. Concepts of Endocrine Disruption

2.1. EDCs: Definition and Characterisation

The definition of EDCs proposed by the World Health Organisation (WHO) and International
Programme on Chemical Safety (IPCS) in 2002 [22] is now widely accepted scientifically: “An endocrine
disrupter is an exogenous substance or mixture that alters function(s) of the endocrine system and consequently
causes adverse health effects in an intact organism, or its progeny or (sub)populations” [22]. To provide
a uniform basis for searching, organising and evaluating mechanistic evidence to support the
identification of EDCs, a new approach based on ten key characteristics has been recently proposed.
These include EDCs’ chemical interactions with hormone receptors (HRs) (binding, agonism and/or
antagonism), HRs’ epigenetic and expression modifications, alterations of hormone signal transduction,
synthesis, metabolism, transport, distribution and clearance, all contributing to alter the cellular fate
of hormone-responsive cells [2]. In this regard, since endocrine signalling is involved in controlling
all aspects of pre- and post-natal development, alterations of endocrine system may play a role in
increasing susceptibility to several diseases and disorders, ranging from congenital malformations,
metabolic disorders, fecundity, neurological disorders, cardiovascular disease and hormonally sensitive
cancers including BC and PC [23]. Notably, as for endogenous responses, EDCs display a nonlinear,
non-monotonic dose-response indicating that low exposure levels could show stronger effects compared
to higher exposures [24]. This EDC effect can be ascribed to different molecular explanations, including
different tissue sensitivity to EDCs [25], receptor desensitisation or internalisation, negative feedback
loops. Altogether, these considerations finally suggest that EDCs functional characterisation needs an
elevated number of doses to identify safe thresholds.

EDCs can be classified based on their chemical features (e.g., non-steroidal oestrogens, parabens,
phthalates, bisphenols, perfluoroalkyl substances (PFASs), polybrominated diphenyl ethers (PBDEs),
polychlorinated biphenyls (PCBs)), adverse health effects or on the source of exposure (e.g., food contact
materials, diet, cosmetics and personal care products, pharmaceutics, cleaning products and
pesticides) [2] (Figure 1).
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Figure 1. Most known EDCs’ chemical features and their classification. Suspected and known 
chemicals, having the potential to interfere with the endocrine system, are present in a variety of 
sources and result in human adverse health effects (see text for details). 

2.2. EDCs’ Molecular Mechanisms: From Dichlorodiphenyltrichloroethane (DTT) and Diethylstilbestrol 
(DES) as Proof of Concept to Other Sustances 

Among the most known and studied EDCs, the insecticide DTT and synthetic non-steroidal 
oestrogen DES have been pivotal for the discovery of endocrine disruption. In this regard, DDT food 
contamination has been shown to negatively affect human health as demonstrated by the increase 
BC risk in females exposed to high DDT levels in utero [26]. Experimental data on the main 
metabolite of DDT, dichlorodiphenyldichloroethylene (DDE), provided direct evidence for 
immunosuppression resulting in the increased incidence of infectious diseases in DDT-exposed 
individuals [27,28]. DES has been reported to be the primary causative agent in clear cell carcinomas, 
reproductive disorders, infertility and spontaneous abortion in daughters of women exposed to DES 
[29]. In addition, DES exposure has also been correlated with obesity [30] and increased risk of 
prostate and testicular cancer [31]. While DDT and DDE effects are correlated with their weak and 
strong AR antagonist profile respectively, DES is characterised by an oestrogenic activity displayed 
by its binding to oestrogen receptor (ER) [18,19] change. 

A wide range of other substances, mostly man-made, are known or suspected to cause 
endocrine disruption. Several studies have identified a variety of EDCs molecular actions and 
chronic diseases associated with their exposure, representing a serious hazard for the population 
and the environment. In the following sections, the main EDCs classes and their molecular profile 
are discussed [16]. 

Bisphenols (BPA, BPAF, BPS) are industrial chemicals used in the production of polycarbonate 
plastics for food and beverages and epoxy resin-coated metal products [32]. Diet is considered the 
main source of BPA exposure in humans and, while banned for children food packing in the EU, the 
same is not true for general food packaging, thus making BPA exposure still present for pregnant 
women and, consequently, foetuses [33]. 

At the molecular level, BPA can interact with oestrogen receptors alpha and beta (ERα and 
ERβ), orphan receptor human oestrogen-related receptor gamma (ERRγ), Peroxisome 
Proliferator-Activated Receptor gamma (PPARγ) receptor, androgen receptor (AR), glucocorticoid 
receptor (GR) and G protein-coupled oestrogen receptor (GPER) [34]. The elevated number of 
receptors and signalling pathways influenced by BPA correlates with the multiplicity of health and 

Figure 1. Most known EDCs’ chemical features and their classification. Suspected and known chemicals,
having the potential to interfere with the endocrine system, are present in a variety of sources and
result in human adverse health effects (see text for details).

2.2. EDCs’ Molecular Mechanisms: From Dichlorodiphenyltrichloroethane (DTT) and Diethylstilbestrol (DES)
as Proof of Concept to Other Sustances

Among the most known and studied EDCs, the insecticide DTT and synthetic non-steroidal
oestrogen DES have been pivotal for the discovery of endocrine disruption. In this regard, DDT food
contamination has been shown to negatively affect human health as demonstrated by the increase BC
risk in females exposed to high DDT levels in utero [26]. Experimental data on the main metabolite
of DDT, dichlorodiphenyldichloroethylene (DDE), provided direct evidence for immunosuppression
resulting in the increased incidence of infectious diseases in DDT-exposed individuals [27,28]. DES has
been reported to be the primary causative agent in clear cell carcinomas, reproductive disorders,
infertility and spontaneous abortion in daughters of women exposed to DES [29]. In addition,
DES exposure has also been correlated with obesity [30] and increased risk of prostate and testicular
cancer [31]. While DDT and DDE effects are correlated with their weak and strong AR antagonist profile
respectively, DES is characterised by an oestrogenic activity displayed by its binding to oestrogen
receptor (ER) [18,19] change.

A wide range of other substances, mostly man-made, are known or suspected to cause endocrine
disruption. Several studies have identified a variety of EDCs molecular actions and chronic diseases
associated with their exposure, representing a serious hazard for the population and the environment.
In the following sections, the main EDCs classes and their molecular profile are discussed [16].

Bisphenols (BPA, BPAF, BPS) are industrial chemicals used in the production of polycarbonate
plastics for food and beverages and epoxy resin-coated metal products [32]. Diet is considered the main
source of BPA exposure in humans and, while banned for children food packing in the EU, the same is
not true for general food packaging, thus making BPA exposure still present for pregnant women and,
consequently, foetuses [33].

At the molecular level, BPA can interact with oestrogen receptors alpha and beta (ERα and ERβ),
orphan receptor human oestrogen-related receptor gamma (ERRγ), Peroxisome Proliferator-Activated
Receptor gamma (PPARγ) receptor, androgen receptor (AR), glucocorticoid receptor (GR) and G
protein-coupled oestrogen receptor (GPER) [34]. The elevated number of receptors and signalling
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pathways influenced by BPA correlates with the multiplicity of health and biologic parameters affected
by very low doses of BPA [35]. Similarly, BPA analogues can bind to ERα and ER and activate oestrogen
signalling pathway [34].

Strong evidence suggests that BPA exposure may display several adverse effects leading to a
variety of diseases including metabolic disorders (e.g., type 2 diabetes) [36,37], impaired memory
performance [38], neurodevelopment [39] altered reproductive processes [40,41] and cardiovascular
functions [42,43].

Conversely, BPA analogues binding to AR could affect its signalling cascade, which may potentially
lead to cancer [44–46], as discussed in the following section. Molecular dynamic (MD) simulations data
show that multiple binding sites with different affinities are available on AR for BPA, BPAF, and BPS,
thus explaining the distinct AR-related toxicity observed with bisphenol chemicals [47].

Parabens are a large class of esters of the p-hydroxybenzoic acid, widely used as preservatives in
foods, drugs and cosmetics. The most common parabens used in cosmetics are methyl-, propyl-, ethyl-
and butyl-paraben. Despite their estrogenic and anti-androgenic effects, which have been linked to
infertility due to modulation of oestradiol concentrations [48,49], no direct links with cancers have
been reported [32]. In 2006, the European Medicine Agency (EMA) concluded on the absence of
sufficient clinical evidence of parabens adverse effects in humans [50], although more recently some
epidemiological studies showed effects on post-natal growth and increased weight in boys [51,52]
and positive and negative associations with thyroid (e.g., free thyroxine) and reproductive hormones
(e.g., oestradiol and progesterone), respectively, in pregnant women [53]. Consequently, further studies
on parabens should be considered due to their frequent human exposure [54], also considering
their ability to modify BPA and oestradiol pharmacokinetics by inhibiting enzymes pivotal for their
metabolism, such as several isoforms of glucuronosyltransferase (UGT), sulfotransferase (SULT) and
cytochrome P450 (CYP) [49].

Phthalates are a major group of industrial chemicals called plasticisers, used to increase flexibility
and hardiness in plastics. They have a variety of appliances and are employed in personal care products,
pharmaceuticals, medical care products, detergents and cleaning agents [55]. Moreover, a part of
human exposure also comes from eating and drinking foods in contact with phthalates-containing
products [56] and, to a lesser extent, from air contaminated with phthalate particles or vapours [32].
The most commonly used phthalates include di-n-butyl phthalate (DBP), di-2-ethyl-hexyl phthalate
(DEHP) and dimethyl-phthalate (DMP) and, since most phthalates are not firmly bound to their
matrix (notably the case for DEHP [57]), they can be transferred to and contaminate other substances,
making phthalate exposure in humans ubiquitous in the EU population [58–60]. At the molecular
level, DEHP has been shown to interact with AR displaying anti-androgen effects, PPAR receptors and
aryl-hydrocarbon receptor (AhR) [61] and, as also for DBP exposure [62], disrupt the thyroid axis by
influencing thyroid hormone cellular uptake and distribution [63].

Several adverse health effects have been linked to phthalate exposure. DEHP has been
associated with various reproductive disorders in males, including an increased risk of abnormal
sperm formation [64], reduced anogenital distance due to DEHP anti-androgenic features [65],
and altered testicular function from reduced testosterone and insulin-like-factor-3 levels [66]. Moreover,
DEHP exposure has also been correlated with developmental neurotoxicity [67,68], increased oestrogen
levels in pregnant women [69], increased risk of preterm birth [70] and developmental delay and
autism spectrum disorders due to alterations of thyroid hormones after prenatal exposure [71].

Perfluoroalkyl substances (PFASs) are a category of industrial chemicals employed for different
purposes, mostly associated with their oil and water repellent chemical features. PFASs’ environmental
persistency varies depending on their chemical features, as recently assessed by EFSA, and the ones
considered persistent environmental pollutants are now being dismissed [72]. Most common PFASs
include those employed for canned food containers and surfactants for waterproof surfaces, such as
perfluorononanoic acid (PFNA), perfluorohexane sulphonic acid (PFHxS), perfluorooctanoic acid
(PFOA) and perfluorooctane sulfonic acid (PFOS) [73]. It has been demonstrated that PFASs can be
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transferred to food [74], and consumption of food from PFASs-treated containers is associated with
higher PFASs levels and decreased amount of circulating thyroid hormones [75]. PFOA and PFOS are
of particular concern due to their long half-life (from four to five years) in humans, the ability to cross
the placenta and, consequently, their bioaccumulation. Challenges in molecular characterisation of
PFASs arise due to their chemical complexity and their continually changing profiles in the human
body, together with their very different metabolism between rodents and humans. Several effects
associated with PFAS exposure have been linked to influences on thyroid axis [76–79], weight gain [80],
PFOA-related autoimmune disease ulcerative colitis [81], liver function [82] and neurodevelopmental
disorders after prenatal exposure [83]. In addition to the PFAS-mediated thyroid effects, alteration in
immune response is correlated with PFASs levels [84,85]. Alteration in immune response included
increased production of pro-inflammatory cytokines correlated with PFASs and other EDCs exposures
in women during pregnancy and the postpartum period [86]. However, the involvement of endocrine
mechanisms and the role of nuclear receptors expressed in human immune cells [87] still need to be
completely elucidated.

3. Cancer Risk Linked to EDC Exposure

Strong evidence has accumulated on the implication of known and suspected EDCs in different
types of cancer. A correlation between DES exposure and clear cell adenocarcinoma of the vagina
was first reported in 1971 [88], but other particular cases include the association between chlordecone
(a banned chlorinated pesticide) [89] and BPA [90] with increased PC risk, and the correlation of
other EDCs, such as biocides and flame-retardants, with an increased incidence of papillary thyroid
cancer [91–93]. Moreover, BPA has been strongly suggested to be a human carcinogen for BC and PC
due to its tumour-promoting features [90], and PFOA, a member of one of the main EDC categories
named PFASs, has been associated with increased testis and kidney cancer incidence in individuals
exposed to industrially contaminated drinking water [94].

Since EDCs are exogenous chemicals and pollutants capable of altering the endocrine system by
interfering with different aspects of hormone action and displaying epigenetic effects, the correlation
between EDCs exposure and hormone-sensitive cancer types, in particular BC and PC, is of pivotal
interest. Interference of different EDCs with ER [95] and AR [96] has been widely screened, but for
other receptors such as GR potentially or known to be involved in the development and progression
of hormone-related cancer types, further studies are required. In addition, EDCs’ interference with
androgen-to-oestrogen converting enzyme aromatase—a cytochrome P450 involved in a variety of roles
ranging from bone mineralisation, glucose homeostasis, ovarian follicle development, placenta and
brain functions [97]—has been reported at both enzymatic and gene expression levels for different
categories, including bisphenols, PCBs, phthalates and several pesticides [98].

In the following sections, the links between EDCs exposure with cancer in females and males,
with a focus on BC and PC respectively, are discussed.

3.1. EDCs Associated with Hormone-Sensitive Cancers in Females and Males: Focus on BC and PC

Among female individuals, BC is one of the most common malignancies worldwide [99] and its
aggressive nature is caused by abnormal regulation of cell proliferation and migration, contributing to
tissue invasion and metastasis formation [100]. On the other hand, among male individuals, PC is the
most common, non-dermatological epithelial malignant tumour in developed countries [101] and its
aggressive nature has been investigated and correlated with important signalling pathways—mostly
PI3K/Akt pathway-related—involved in proliferation, invasion, migration and cell survival [102–105].
These tumour-sustaining mechanisms are influenced by multiple endocrine-related pathways that can
be deregulated after EDCs exposure and strong experimental and epidemiologic evidence supports
the implication of hormonal-acting compounds in BC and PC incidence.
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3.1.1. Non-Steroidal Oestrogens (DES and Zearalenone)

In utero exposure to DES has been associated with increased BC incidence at puberty [106–108],
and epidemiologic data correlated exposure to oestrogenic compounds during foetal development
to increased risk of BC and PC [109–111]. In a recent study, in utero exposure to DES and BPA
was linked to increased BC susceptibility due to increased collagen deposition and extracellular
matrix density, which contribute to increase breast stiffness, and in turn correlated with a higher
BC risk [112]. DES induces increased ERα-mediated gene expression of CYP26A1 and CYP26AB1,
which are responsible for metabolism and elimination of retinoic acid [113,114]. Changes in CYP
metabolism due to DES could result in developmental toxicity as a result of epigenetic changes on
DNA methylation [115,116] and acetylation [117]. In addition to the widely studied effects of DES,
another non-steroidal oestrogen potentially implicated in BC and PC increased risk is the mycotoxin
zearalenone (ZEA), which has been found to exert its effects on both ER and GPER [118]. Interestingly,
it has been revealed that ZEA might display pro- and anti-proliferative potential on PC cells depending
on its cellular concentration [119]. Epidemiologic evidence identified a potential role of ZEA and its
metabolites α- and β-Zearalenol (α-ZOL, β-ZOL) in BC [120]. This observation is supported by further
in vitro studies that reported ZEA, α- and β-ZOL to display growth-promoting effects in breast tissue
by increasing protein synthesis and lipid metabolism, thus inducing a potential oestrogen positive BC
progression [121]. Notably, ZEA has been shown to induce ERα-mediated migration and invasion
of PC cells [122], while ERβ and NF-κB were shown to exert a protective role in PC cells against
ZEA-induced oxidative stress [123].

3.1.2. DDT

Epidemiological data reported a positive correlation between DDT, among other environmental
pollutants, with BC risk [124,125], but not for PC. Indeed, intra-uterine DDT exposure has been
identified as a putative BC risk factor [26] and positively associated with higher mammographic breast
density, an intermediate marker of BC risk [126,127], whereas DDT exposure in early childhood may
increase BC risk in adulthood [128]. Moreover, a prospective study on young women reported a
significantly increased BC risk with increasing p,p’-DDT serum levels [129,130]. This is possibly due to
the different actions of DDT metabolites, since isomers p,p’-DDT and o,p’-DDE display an oestrogenic
activity. In contrast, p,p’-DDE is mainly anti-androgenic and has been suggested to accelerate tumour
onset in BC mice model [131]. Interestingly, low-dose DDT exposure has been associated with increased
aromatase activity and mRNA transcription, increased aromatase-induced 17β-estradiol (a breast
carcinogen) biosynthesis and, ultimately, an increased ERα-mediated BC proliferation [132]. These data
align with the association between DDT and other organochlorine pesticides in BC tissue specimens and
the observed molecular dysfunction [133]. In addition, DDT exposure has been linked to differentially
methylated regions involved in BC susceptibility, suggesting that prenatal DDT exposure may induce
gene alterations with life-long consequences [134].

3.1.3. Bisphenols

BPA can interact with different hormone nuclear and membrane receptors and is considered a
possible BC risk factor due to its mammary cell growth-promoting properties [90]. Indeed, BPA exposure
was observed to result in the development of pre-cancerous and cancerous lesions in mammary glands
of rodent models [135] and its perinatal exposure has been reported to induce long-term alterations
in hormonal response, thus increasing BC development propensity [136]. In addition, repeated and
chronic exposure to BPA has also been shown to play a role in BC progression with poor patient
outcome [137], as suggested by gene expression data supporting increased cancer aggressiveness [138].
In 2020, it has been reported that in utero BPA exposure is associated with increased BC susceptibility
and higher BC risk [112]. At a molecular level, these observations are supported by several experimental
evidence, both in vitro and in vivo [135–138]. These include in vitro ERα-mediated effects of BPA
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and its analogues on the upregulation of genes involved in cell growth, migration, invasion and
cancer development [139], and low doses BPA-induced phosphorylation of its functional non-genomic
target Protein Kinase D1 (PKD1), which mediates cell proliferation and anchorage-independent
growth in BC cells [140]. Moreover, BPA oncogenic potential regarding BC is also found in its ability
to enhance GPER-induced cancerous phenotype [141] and focal adhesion assembly through focal
adhesion kinase (FAK), Src and ERK2 in a triple-negative BC model [142]. Others have shown that
exposure to xenoestrogens like BPA can increase adult prostate size and induce PC [143]. Indeed,
environmental exposure to BPA increased prostate sensitivity to develop prostate intraepithelial
hyperplasia (considered a pre-neoplastic lesion) following a second exposure in adulthood [144].

Bisphenol AF (BPAF), has replaced BPA in industrial settings but increasing amounts of data
suggest an increased ER binding affinities than BPA. Therefore, BPAF promotes BC cell growth and
progression, inducing endogenous transcription of oestrogen responsive genes through genomic and
nongenomic pathways involving the ERα and ERK1/2 activation, respectively [145]. In this regard,
BPAF promotes ER-positive BC cell proliferation by enhancing the crosstalk between the membrane
glycoprotein amphiregulin (AREG) and tyrosine kinase receptor signalling [145]. Moreover, BPAF can
trigger GPER signalling pathway leading to ERK and PI3K/Akt activation [146]. Similarly to BPA and
BPAF, BPS exposure could be potentially linked to BC progression [147], but further investigations are
needed regarding BPAF and BPS involvement in PC development.

3.1.4. Phthalates

Among other EDCs, phthalates may act on steroid biosynthesis and have been reported to cause
reproductive toxicity in females [148]. DBP and DEHP have been shown to induce proliferative effects
via the activation of PI3K/Akt signalling pathway, while also displaying oestrogenic effects at low
concentrations [149].

Regarding BC, phthalates’ action as potential oncogenic compound is still debated, and it is
necessary to plan further investigations [150]. Although the correlation between phthalates’ exposure
and PC development could potentially involve ERK5 and p38 mitogen-activated protein kinase
(p38 MAPK) signalling, the role of phthalates in PC has been rarely reported [151] except for obese
men exposed to DEHP and other phthalates [152].

3.1.5. PFASs

Experimental evidence has shown that PFOS and PFOA, despite not possessing oestrogenic
activity, enhanced 17β-oestradiol effect on oestrogen-responsive gene expression, ERK1/2 activation
and growth in a BC hormone-deprived in vitro model [153], thus promoting proliferation, migration
and invasion potential in human breast epithelial cells [154,155]. Nested case-control studies reported
controversial data on the correlation between PFASs exposure and BC risk [156,157]. Similarly to BC,
the same epidemiologic considerations are valid for PC and further investigations are needed [158].

4. Tumour Microenvironment (TME) and EDCs

4.1. Tumour Microenvironment as Promoter of Cancer Progression

The tumour mass consists of a heterogeneous population of cancer cells together with different
resident and infiltrating host cells, secreted factors and extracellular matrix proteins, collectively
known as the tumour microenvironment (TME) [159]. The dynamic interactions of cancer cells with
their microenvironment consisting of stromal cells including stromal fibroblasts, endothelial cells
and immune cells like microglia, macrophages and lymphocytes and the non-cellular components
of extracellular matrix (ECM) such as collagen, fibronectin and laminin [160,161] are essential to
promote cancer cell progression and metastasis [162]. Indeed, this intercellular crosstalk consists of
a composite network of soluble factors (e.g., ECM remodelling enzymes, growth factors, cytokines,
chemokines and inflammatory mediators), ECM, cell components and new emerging entities, such as
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exosomes, cell-free DNA (cfDNA), circulating tumour cells (CTCs) and apoptotic bodies [163,164].
The reciprocal cell–cell and cell–ECM interactions and the tumour cell hijacking of non-malignant cells
force stromal cells to lose their function and acquire new phenotypes that promote the development
and invasion of tumour cells [162], making the role of TME pivotal in favouring carcinogenesis and
loss of tissue integrity [165,166]. Since tumour development is highly influenced by microenvironment
dynamics, understanding how the different TME components potentially affect cancer progression is
of central interest.

Among all tumour cells interactors in TME—which also include multifunctional pericytes
involved in angiogenesis and tumorigenesis [167,168], tumour endothelial cells that support
primary tumour growth [169] and cancer-associated fibroblast (CAFs) that produce ECM
proteins for immunosuppression, recruit immunosuppressive cells and support tumour cells
proliferation [170–172]—tumour-associated macrophages (TAMs) play a pivotal role as cellular
components of the immune system. TAMs are key TME elements capable of affecting cancer
cell behaviour [173] through migration-stimulating factors that favour tumour cell motility,
metastasisation [174] and enhance cancer cell stemness by promoting Epithelial-Mesenchymal transition
(EMT) [175,176]. In addition, modification of ECM composition and organisation (mostly performed
by CAFs [177,178]) can also influence and promote tumour phenotype and metastasis formation when
stiffness/rigidity, tension and molecular density are altered [179].

4.2. Immune System in TME and Its Tumour-Associated Macrophages

An important role in TME regulation is held by the host immune system, which has been
reported to be involved in controlling development and progression of the tumour [180]. Indeed,
during tumour development, cancer cells become resistant to the innate immune response and
impair the adaptative response [181–183]. Cytotoxic CD8+ memory T cells, a common type of
T lymphocytes in the TME, are capable of killing tumour cells [184] through the recognition of
tumour-specific antigens and the consequent triggered, tri-phasic pathway immune response [185].
CD8+ T cells in the TME are supported by CD4+ T helper 1 cells (Th1), that release interleukin-2 (IL-2)
and interferon-gamma (IFN-γ) [183] and Th2 cells-producing IL-4, IL-5 and IL-13 to support B cell
response [181,186]. However, other immune cell populations can favour cancer progression by altering
TME. In this regard, Th17 cells at TME level release IL-17A, IL-17F, IL-21 and IL-22 with antimicrobial
action that favours tissue inflammation and promote tumour growth [185,186]. B lymphocytes in
TME have been shown to play pivotal roles in regulating cancer cell proliferation and survival,
induce chemoresistance and immune escape [164], and have also been linked to cancer-induced
immunosuppression by initiating TGF-β-dependent conversion of FoxP3+ cells that contribute to
tumour metastasisation [187,188]. CAFs have been reported to favour cancer cell proliferation by
supporting metastatic site growth [189,190] and secreting fibroblast secreted protein-1 (FSP1) and other
cytokines involved in initiating metastasisation in different cancer types, including BC [190,191].

A pivotal role in determining the importance of TME in cancer development and progression is
held by TAMs, which support cancer cell invasion and clonal expansion by favouring tissue remodelling
(e.g., Epidermal Growth Factor, EGF; matrix metalloproteinase-2 and 9, MMP2, MMP9; Membrane
type 1-matrix metalloproteinase, MT1-MMP) and pro-inflammatory molecules (e.g., IL-1β, TNF-α and
C-X-C motif chemokine ligand 10 (CXCL10) [192]. Moreover, TAMs immune functions can facilitate
tumour cell proliferation, migration and survival through cancer cell-induced release of specific growth
factors and cytokines [193], while expression of vascular cell adhesion molecule 1 (V-CAM1) allows
TAMs proliferation upon differentiation into inflammatory monocytes [194].

4.3. EDCs as Landscape Shapers in BC- and PC-Associated TME

It is noteworthy that EDCs can affect oestrogen signalling cascades by promoting a crosstalk
between BC cells and fibroblasts, which have been shown, for example, to increase aromatase expression
or secrete several growth factors able to trigger rapid oestrogen-related pathways in cancer cells [195],
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ultimately contributing to cancer cell progression, invasion and metastasis formation. Indeed, EDCs in
stromal cells are capable of mediating cellular differentiation and survival mechanisms [196–198],
although their effect on ERα-, ERβ-, and GPER-related functions and expression in the stromal
components still needs to be demonstrated.

BPS has been shown to exert oestrogenic activity on stromal and stem cells in BC context [199,200]
and to enhance lipid accumulation through an ER-mediated mechanism [200], while BPA is capable
of promoting cell survival after DNA damage [198] and driving adipocyte differentiation through its
ERR-γ activity [201,202]. Moreover, DDT and its metabolite DDE have been reported to induce an
oestrogenic microenvironment in breast adipose tissue [98], which may support cancer phenotype
establishment. In this regard, oestrogen-mediated signalling was observed to display an important
impact on ECM matrix composition [203]. Breast tumourigenesis and malignancy is tightly linked
with differential collagen crosslinking and clustered integrin-mediated formation of focal adhesion,
resulting in increased tumour stiffness [204]. In turn, integrin clustering and consequent increased
tumour rigidity have been shown to promote cancer growth by enhancing growth factor signalling and
focal adhesion assembly [205]. Interestingly, BPA has been reported to increase collagen fibre content and
cell proliferation [206], suggesting that EDCs can influence matrix remodelling in a pro-tumorigenic
manner. Indeed, high collagen content has been associated with increased carcinogenesis and
oestrogenic signalling was observed to modulate collagen, integrin, MMP2 and MMP9 expression
in BC context [207–209], supporting the hypothesis that environmental EDCs exposure may play
a mechano-transductive role in oncogenic ECM remodelling and cell-ECM crosstalk, especially in
TME context [210].

Regarding PC, EDC exposure has been reported to possibly reprogram or transform adult prostate
progenitor cells favouring their tumour-initiating capacity through ER signalling pathways. In this
regard, BPA has been shown to display carcinogenic potential by inducing PC cell proliferation,
differentiation defects of the adult epithelium, thus predisposing to prostate dysplasia. Moreover,
BPA has also been observed to induce epigenetic mechanisms leading to PC cell reprogram.
These considerations highlight the potential to provide evidence for an effect of EDCs exposure
on human prostate [211]. However, literature data lack studies on PC-related TME involvement and
the possible role of EDCs in this context.

In light of the effects of different classes of EDCs on BC and PC development and progression
discussed in the previous section, investigating EDCs role in TME functional alteration may
allow a deeper understanding of EDCs effects not only on the tumour stromal component
(i.e., fibroblasts) and their consequent involvement in cancer initiation and progress [212], but also
on the immune system cells that are present within the TME and that could play an important
role in establishing tumour development and progression. In this regard, accumulating evidence
suggests that EDCs can affect the immune system and induce functional alteration in the
immune response—both innate and adaptive [213,214]—potentially resulting in adverse reactions,
immunosuppression, autoimmunity and enhanced immunostimulation [215]. Notably, TNFα,
a pleiotropic cytokine involved in body’s inflammatory response, is mainly produced by monocytes
and macrophages after phthalates exposure [216]. In addition, EDCs can modulate production and
release of several pro-inflammatory interleukins, including IL-1β, IL-6 and IL-8 [216]. Moreover,
enhanced DEHP-induced chemokine production [217] and increased BPA-mediated monocyte
chemotactic protein (MCP-1 also known as CCL2) were observed [218]. EDCs have also been
reported to hamper neutrophils function (e.g., DDT-induced decreased chemotaxis, phagocytosis
adhesion and oxygen-dependent killing) [28] as wells as affect maturation of dendritic cells (DCs).
In this regard, BPA decreases DCs endocytic ability [219] and increases release of IL-5, IL-10 and
IL-13 upon TNFα [220]. Furthermore, DEHP and BPAF can suppress ERK1/2 and NF-κB activation
in DCs, affecting their maturation [219]. In lymphocytes context, DDT decreases NF-κB expression,
ultimately leading to reduced IL-2 production [221].
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EDCs can display their effect on the immune system through several mechanisms that mainly
involve estrogenic receptors ER, ERRs, PPARγ and GPER, thyroid receptors and AhR [222]. In this
regard, phthalates and BPA have been shown to induce alteration of cytokines levels through
ER-mediated signalling. Moreover, BPA alters ER and ERRs expression in a dose and sex-specific
manner. Indeed, BPA was observed to influence T-cell function through ERRα expression modulation,
suggesting that EDCs may exert their immunomodulatory activities by targeting ERRs [223]. In addition,
BPA acts as antagonist for PPARγ, an adipocyte-specific receptor involved in adipogenesis with typically
anti-inflammatory effects, indicating that EDCs can promote a pro-inflammatory phenotype in immune
cells [223].

Altogether, these observations highlight the importance of a deeper understanding of EDCs
immunomodulatory effect in TME context, based on the consideration that alteration of released
cytokine pattern and other immune-related features can affect cancer development and progression.
In this regard, investigating molecular EDC targets in both contexts is of pivotal interest for a better
characterisation of the crosstalk between the different TME components able to influence reciprocally.

5. RACK1 as a Possible Target of EDCs

Accumulating evidence indicates that EDCs can significantly affect the immune response
in human and wildlife [2]. Many EDCs can interfere with the immune system displaying
immunosuppressive properties, as well as enhanced autoimmune reactions and increased
inflammation [215]. Indeed, steroid hormones can influence the initiation of immune response
and the maintenance of peripheral tolerance of self-antigens, indicating that an altered regulation
of hormonal action can lead to immunotoxicity [16]. Several mechanisms have been associated
with oestrogen-induced immunotoxicity, including upregulation of co-stimulatory molecules and
pro-inflammatory cytokines [16]. Conversely, androgens and corticosteroids are reported to significantly
modulate the immune response resulting in anti-inflammatory and immunosuppressive actions [16].
Moreover, it is particularly interesting to consider the hormone dehydroepiandrosterone (DHEA),
since it is a precursor of androgens and oestrogens and exerts anti-glucocorticoid effects in several
systems, especially in the immune system [224–226], where DHEA counteracts cortisol effects.
This interaction of DHEA and glucocorticoids (GCs) in the immune system is partly related to the effect
of these hormones on the expression of the protein Receptor for Activated C Kinase 1 (RACK1) [227].

RACK1 is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins,
originally found to act as a shuttling protein for activated protein kinase C βII (PKCβII) and other PKC
isoforms [228]. Indeed, a defective PKCβII translocation due to age-associated RACK1 decline has
been described in different immune cells [229,230], highlighting that reduced expression of RACK1
is related to a significant decrease in immune cells functionality, including response to influenza
vaccination [231] and cytokines production [232–234]. Literature data report that DHEA can restore the
age-associated decline of RACK-1 expression and immune functions both in vitro and in vivo [233–235].
The key mechanism of DHEA positive effect on RACK1 expression and monocyte activation is the
conversion of DHEA to active androgens, which act via AR, justifying DHEA anti-glucocorticoid
action on RACK1 expression described in the immune context [20,227]. Indeed, the bioinformatics
analysis of the RACK1 promoter revealed the presence of a glucocorticoid response element (GRE)
consensus sequence identified at the nucleotide position −186/−165 relative to the transcription start
site [20]. Accordingly, physiological concentrations of cortisol can down-regulate RACK1 expression
by inhibiting its gene promoter activity [227]. Further evidence demonstrated that other corticosteroids
such as betamethasone, budesonide, methylprednisolone, prednisone and prednisolone can target
RACK1, supporting the notion that this protein is an important target of corticosteroid-induced
anti-inflammatory effects [236]. In this regard, DHEA counteracts GCs action on RACK1 expression by
interfering with GR splicing [237]. The human GR gene (NR3C1) is expressed in several isoforms and
the most representative are GRα and GRβ. GRα mediates most of the known glucocorticoid actions,
while the GRβ isoform lacks the ligand-binding domain and have a dominant negative effect on
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GRα [238]. DHEA can induce the up-regulation of GR mRNA, which is preferentially spliced toward
the β isoform due to an increase in expression of the splicing factor Serine/arginine (SR)-Rich Splicing
Factors 9 (SRSF9). On the other hand, cortisol upregulates SRSF3, the splicing factor promoting GRα
isoform. Therefore, DHEA and cortisol act on RACK1 expression by modulating SRSF9 and SRSF3
in a different way, highlighting that the anti-glucocorticoid effect of DHEA is exerted by modulating
GRβ expression and ultimately antagonising the GRα effect on RACK1 promoter [237]. Moreover,
DHEA-induced RACK1 expression and immune cell activation is related to DHEA conversion to
androgens, which act through their binding to RACK1 promoter [20]. Indeed, approximately one-half
of the AR cistrome overlaps with that of GR because the DNA-binding domain (DBD) of androgen and
glucocorticoid receptor is highly conserved. Hence, they recognise a response element usually described
as a canonical androgen/glucocorticoid response element (ARE/GRE) characterised by a well-conserved
5′-hexamer and a less stringent sequence requirement for the 3′-hexamer. Therefore, the GRE sequence
described in the RACK1 gene promoter is also a cis-regulatory target of AR [17,18,20] as further
confirmed by nandrolone induced-RACK1 expression and the immune response [18]. These data
demonstrate that a complex hormonal balance, between cortisol and androgens, can regulate RACK1
expression and immune activation [20] thus supporting RACK1 as a possible target of EDCs with a
consequent modulation of innate immune functionality and cell proliferation [16,18]. According to
these data, it has been demonstrated that p,p’-DDT and its main metabolite p,p’-DDE, a weak and strong
AR antagonist respectively, negatively modulate RACK1 expression and the innate immune response
thus reducing LPS-induced IL-8 and TNF-α production and CD86 expression [18] consistent with their
described immunosuppressive effects [239,240]. Moreover, p,p’-DDE exerts a stronger repression effect
than p’p’-DDT, according to its higher affinity for AR [18]. These results demonstrate that RACK1 is a
bridge between the endocrine system and the innate immune and it can be regulated in an opposite
way by agonists and antagonists of AR, thus supporting RACK1 as a target of EDCs.

RACK1 expression and immune functionality can be also modulated by the endogenous hormone
17β-oestradiol which up-regulates RACK1 expression levels and increases response to LPS [19].
Based on this observation, RACK1 expression and its related immunological implications were
investigated after treatment with the synthetic oestrogen DES or the oestrogen-active compound of
natural origin, ZEA. All compounds increased RACK1 transcriptional activity, which paralleled an
increase in LPS-induced IL-8, TNF-α production, and CD86 expression [19], which we previously
demonstrated to be dependent on RACK1/PKCβ activation [241]. These oestrogen-active compounds
effects are mediated by the plasma membrane GPER and AR activation, as flutamide can
completely prevent DES-induced RACK1 expression [19]. Hence, exposure to oestrogen-active
compounds is associated with increased immunostimulation, which should be considered indicative
of immunotoxicity [19].

Nowadays, RACK1 is known to be involved not only in the immune response but also acts as
a signalling hub, facilitating the cross-talk between several pathways involved in various biological
events such as neuronal activity [242,243] and cancer progression [19]. Indeed, RACK1 is aberrantly
expressed in several cancer types [244], including BC [21,245]. In this regard, RACK1 has been
suggested as a possible BC biomarker [246,247] since it has been directly correlated with increased
proliferation rate, migration and invasion of BC cells both in vitro and in vivo [248–250] and emerged
as superior predictor of BC prognosis [250]. Moreover, RACK1 has been revealed as strong regulator
of cell cycle progression and apoptosis [251,252] according to in vivo data showing its role in paclitaxel
chemoresistance in BC cells [252].

Literature data here presented strongly suggest a tight correlation between EDCs exposure and
their involvement in cancer development and progression and, on the other hand, in alterations of
the immune system through their activity on TME and cellular signalling cascades. In this regard,
the identification of RACK1 as a possible EDC target in the immune context and, at the same time,
its importance in tumour progression may indicate that RACK1 could play a dual role in BC- and
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PC-associated TME establishment and in modification of the immune response, particularly related to
xeno-oestrogenic EDCs.

Different EDCs, in particular DES, ZEA, and BPA, have been shown to activate ER-related
pathways by binding different receptors (e.g., ERα, ERβ, GPER), thus inducing an oestrogenic TME
that determines an aberrant immunostimulation through the upregulation of co-stimulatory molecules
and pro-inflammatory cytokines. In parallel, they promote cancer phenotype through alterations
of key cellular and tumour-related mechanisms and ECM remodelling. Noteworthy, BPA has been
shown to activate FAK, Src and ERK2 kinases inducing focal adhesion (FAs) assembly to promote
cancer cell migration in a triple-negative BC model [142,253]. This is particularly relevant in cancer
context, since RACK1 has been demonstrated to directly bind FAK and this complex is recruited at
focal adhesion level for cancer cell migration and invasion [250,254]. Indeed, RACK1 acts as a scaffold
for phosphorylated FAK in response to integrin binding [255]. In this regard, integrin clustering is
sufficient to induce FAK Tyr397 phosphorylation necessary for its activation. In turn, FAK binding
to RACK1 generates a Src binding site, that furtherly promotes FAK-RACK1 complex formation and
full FAK activation. Notably, increased ECM rigidity due to TAMs and CAFs-mediated changes in
its composition can also induce integrin clustering and promote FAs assembly [205], highlighting
TME’s pivotal role in cancer phenotype establishment. Furthermore, since oestrogenic EDCs are able
to promote proliferation and migration of hormone-responsive BC cells (and, to a lesser extent, of PC
cells), RACK1 appears to be involved in this context due to its role in favouring EMT, as suggested in
other works. Since alterations of RACK1 expression in both in BC and PC cells have been reported to
be mediated by NF-κB through PI3K/Akt signalling cascade, oestrogenic EDCs can mediate GPER
activation leading to RACK1 overexpression, thus promoting the acquisition of RACK1 extra-ribosomal
functions which, in turn, favours EMT. On the other hand, in a mesenchymal cellular context
(e.g., MDA-MB-231 cell line), RACK1 has been proposed to display more structural functions [21],
and oestrogen-like EDCs may mostly influence FAK-related RACK1 roles (Figure 2). In addition to
their direct effects on both normal and cancer cells driving their conversion to tumour phenotype and
favouring cancer-progression respectively, EDCs can also display cancer-promoting indirect effect by
inducing alterations in the immune system. This in turn affects TME components, shaping TME cellular
and molecular composition in a tumorigenesis sustaining way. As previously discussed, several EDCs
have been correlated with monocytes and TAMs increased release of pro-inflammatory cytokines
(TNFα, IL-1β, IL-6 and IL-8), enhanced MCP-1 production, reduced DCs maturation and endocytic
ability and hampered neutrophils functions that lead to the establishment of a pro-inflammatory
carcinogenic-promoting environment (Figure 2). In addition to these effects, TAMs favour cell invasion
and clonal expansion through MMP2 and MMP9 release and support TME inflammation through their
V-CAM1-mediated differentiation into inflammatory monocytes.
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Figure 2. Schematic representation of the possible dual role of RACK1 in immune and breast/prostate
cancer contexts in EDC-related TME and tumour progression. Oestrogenic EDCs (e.g., BPA, DES, ZEA)
can promote the proliferation and migration of hormone-responsive and triple-negative BC cells where
RACK1 appears to be involved due to its role in favouring proliferation and Epithelial-Mesenchymal
Transition (EMT). Regarding prostate cancer, although RACK1 has been reported to promote PC cell
proliferation, migration and invasion [256] and to mediate hypoxic growth, chemoresistance and
tumorigenicity through TRPM8 channel and HIF-1α axis [257], most EDC-mediated mechanisms have
still to be completely elucidated and further investigation is required. Altogether, oestrogenic EDCs can
display cancer-promoting effects by inducing alterations in the immune system, including an increased
release of pro-inflammatory cytokines and ECM-remodelling factors (see text for details).

6. Conclusions

In light of EDCs as drivers of TME-promoted cancer phenotype and RACK1 role as both EDCs
target and signalling hub in the cancer context, we propose investigating RACK1 as a possible dual-role
molecular player in TME. Indeed, RACK1 can favour EDC-mediated pro-inflammatory events in the
immune context and, in parallel, promote cancer progression by binding key players necessary for
cell proliferation, migration, invasion, metastasization and EMT (Figure 2). In addition, this could be
particularly relevant for the development of in vitro and ex vivo strategies in which RACK1 could
serve as investigation tool for evalutaing the effects of EDCs and other hormone-like substances on the
immune functions and, simultaneously, their tumourigenic potential (Figure 3).
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Figure 3. Schematic representation of in vitro and ex vivo strategies to investigate EDCs effects on
TME. Due to its involvement in different key pathways in both cancer and immune context, RACK1
could be potentially used as a molecular tool to evaluate EDCs immune-correlated and tumorigenic
effects. A panel of different evaluation targets is illustrated within the figure. While a strictly
in vitro approach through cancer cells, immune cell co-cultures can benefit from genetic manipulation
(i.e., stable transfection of both cell lines with a reporter construct containing RACK1 promoter region),
an ex vivo strategy exploiting patient-derived organoid models for a better TME mimicking could
allow the evaluation of EDC-mediated effects on the ECM.
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