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Abstract

The time delay measured between the images of gravitationally lensed quasars probes a combination of the angular
diameter distance to the source-lens system and the mass density profile of the lens. Observational campaigns to
measure such systems have reported a determination of the Hubble parameter H0 that shows significant tension
with independent determination based on the cosmic microwave background (CMB) and large-scale structure
(LSS). We show that lens mass models that exhibit a cored component, coexisting with a cusp, probe a degenerate
direction in the lens model parameter space, being an approximate mass sheet transformation. This family of lens
models has not been considered by the cosmographic analyses. Once added to the model, the cosmographic error
budget should become dependent on stellar kinematics uncertainties. We propose that a core component coexisting
with a cusp could bring the lensing measurements of H0 into accordance with the CMB/LSS value.

Unified Astronomy Thesaurus concepts: Gravitational lensing (670); Strong gravitational lensing (1643); Hubble
constant (758); Galaxy structure (622)

1. Introduction and Main Result

There appears to be a tension between measurements of the
Hubble parameter H0 based on the classic cosmic distance
ladder method and measurements obtained through a fit of the
standard ΛCDM model to the cosmic microwave background
(CMB) or large-scale structure (LSS) data (for a summary, see
Verde et al. 2019). The SH0ES collaboration (Riess et al. 2019)
reported = H 74.03 1.420 km s−1 Mpc−1 using supernovae
calibrated with Cepheids. This result is more than 4σ discrepant
with the best-fit ΛCDM value given by the Planck collabora-
tion, = H 67.36 0.540 km s−1 Mpc−1 (Planck Collaboration
et al. 2018), or with H0 measurements obtained from galaxy
clustering and galaxy lensing data (Abbott et al. 2018;
D’Amico et al. 2019; Ivanov et al. 2019; Tröster et al. 2019)
that are independent of but agree with the CMB result. The
tension is not so strong in the analysis of a supernova sample
calibrated with the tip of the red giant branch, which gives

=  H 69.8 0.8 stat 1.7 sys0 ( ) ( ) km s−1 Mpc−1 (Freedman
et al. 2019). On the other hand, a third, alternative method to
constrain H0 independently of both the distance ladder and
cosmological perturbation theory, is provided by measurements
of time delays in strongly lensed systems (Refsdal 1964;
Kochanek 2002, 2006). The H0LiCOW collaboration (Suyu
et al. 2017) used the time delays between multiple images
of strongly lensed galaxies hosting a quasar to obtain

= -
+H 73.30 1.8

1.7 km s−1Mpc−1 (Suyu et al. 2017; Birrer et al.
2019; Bonvin et al. 2019; Chen et al. 2019; Wong et al. 2019),
achieving 2.5% precision with a central value in agreement with
SH0ES. Combining the SH0ES and H0LiCOW measurements,
the result is in more than 5σ tension with CMB/LSS data.

Given the importance of these results to cosmology,
it is worth investigating them from every angle. In this Letter

we focus on the lensing time delay (“cosmography”) measure-
ments. It is well known that lensing analyses are subject to
systematic uncertainty associated with the choice of the family of
models used to reconstruct the lens potential (Falco et al. 1985;
Schneider & Sluse 2013, 2014; Xu et al. 2016; Unruh et al.
2017; Tagore et al. 2018; Sonnenfeld 2018; Gomer &
Williams 2019; Kochanek 2019). The H0LiCOW collaboration
is, of course, well aware of this problem, and had taken measures
to mitigate it by considering different families of lens models.
Nevertheless, H0LiCOW systems probe the baryonic-dominated
inner part of the lens, where theoretical understanding of the
mass profile is limited to challenging hydrodynamical simula-
tions. Moreover, given that we do not know what makes up the
dark matter, its distribution on galactic scales could exhibit
unexpected features. With these issues in mind, the question we
address in this Letter is: could a feature in the mass density
profile of H0LiCOW lenses bring the cosmographic result for H0

to agree with the CMB/LSS value? Another way to phrase this
question could be to accept, tentatively and for the purpose of
the exercise, the CMB/LSS value of H0; and then ask, given this
hypothesis, what would the cosmography data teach us about the
inner structure of galaxies.
We believe that we have found an interesting answer to this

question. To summarize, we find that if one took the simple
power-law (PL) density models, shown by H0LiCOW to provide
a good fit to the lensing data, and then added a core component in
addition to the PL, then: (i) the lensing reconstruction problem
should be equally well solved by the PL+core models as it is for
the pure PL; and (ii) the addition of comparable cores to all
H0LiCOW lenses would systematically shift the inferred
cosmographic value of H0 downward in all systems, in
accordance with the fact that all of the systems analyzed by the
standard H0LiCOW analysis pipeline consistently hint to high H0.
The cores we need are a moderate deformation of the

nominal profile: at the Einstein radius (translating to a few
kiloparsecs for H0LiCOW systems, where the lenses are
massive elliptical galaxies), the core component need only
make up 10% or less of the total enclosed mass of the lens.
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Outside of the Einstein radius the relative core contribution
could become larger, potentially reaching as much as (1) of
the mass and opening a possible way to constrain our solution
with detailed kinematic modeling. However, current lensing
data do not constrain very well the outer extent of the core.

Single-source lensing data cannot distinguish a pure PL profile
from PL+core, because moving along the PL+core family of
models (as we shall define in Section 2) is an approximate mass
sheet transformation (MST; Falco et al. 1985). Therefore, PL
+core models probe a flat direction in the likelihood for H0.
Stellar kinematics could, in principle, break the mass sheet
degeneracy (MSD; Romanowsky & Kochanek 1999; Treu &
Koopmans 2002; Jee et al. 2015, 2016; Shajib et al. 2018).
However, as mentioned above, to solve theH0 tension we need an
effect of no more than 10% in enclosed mass within qE.
Constraining this with stellar kinematics would not be trivial and
would suffer from systematic uncertainties related to, e.g., the
velocity anisotropy modeling. Furthermore, kinematics modeling
uncertainties would come to dominate the determination of H0,
which should be revised (Kochanek 2019). Perhaps another
potential way to resolve the MSD would be to have multiple
sources lensed by the same object, as is usually the case in lensing
by galaxy clusters (Grillo et al. 2018, 2020).

It is worth pointing out that we are not aware of the presence
of PL+core profiles in simulations. In this sense, introducing
them is an ad hoc solution of the (cosmographic contribution
to) the H0 tension. But we are also not aware of observational
data that excludes such profiles. If one accepts PL+core
profiles, then the question arises what is the core component
made of. Since the inner part of the lenses is baryon-dominated,
we do not know at this point if the core is some baryonic
structure, or dark matter. It is exciting to speculate that the H0

tension could actually hint to new constraints on the nature of
the dark matter, perhaps along the lines of models such as in
Schive et al. (2014) or Spergel & Steinhardt (2000).

This Letter is organized as follows. In Section 2 we show
that adding an inner core component, on top of a (rescaled)
cusp component, is an approximate MST. We give some
simple examples, estimate the MSD-breaking effects, and
introduce λPL models as a family of models that is expected to
probe a flat direction in cosmographic measurements of H0. In
Section 3 we consider as input the CMB/LSS measurement of
H0 and use it to estimate the required morphology of
H0LiCOW lenses. In Section 4 we discuss our findings, and
the possibility that the (cosmographic part of the) H0 tension
might actually hint to a core component coexisting with a
central cusp in galaxies. In the Appendix we collect some
formulae for profiles that could serve as λPL models.

2. Adding a Core to a Cusp Is an MST

Lensing analyses (Suyu et al. 2017; Birrer et al. 2019;
Bonvin et al. 2019; Chen et al. 2019; Wong et al. 2019) take as
input a brightness map defined on the image plane, spanned by
coordinates q, and constrain the deflection anglea q( ) given by
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q q
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Here qS( ) is the projected surface mass density of the lens and
D D D, ,s l ls are the angular diameter distances from the source
to the observer, from the lens to the observer, and from the
source to the lens.
Given multiple images of a quasar contained in the host

galaxy, one constructs the time delay Dtij between quasar
images qi and qj,

tD = Dt , 5ij ij ( )

a q a q
q qt y yD =

-
+ -

2
, 6ij

i j
j i

2 2( ) ( )
( ) ( ) ( )

= + z
D D

D
1 , 7l

s l

ls
( ) ( )

where

òq q q qy
p

q k= ¢ ¢ - ¢d
1

ln . 82( ) ( ) ∣ ∣ ( )

If one has a model of qk( ), then it can be used to calculate tD ij

in Equation (6). Given a measurement of Dtij, one can extract
t= D D tij ij and thus tµ µ D DH t1 ij ij0 .

The MSD comes from the fact that if the lensing
reconstruction problem (Equation (2)) is solved by a model
for qk( ), along with a model for the source position b, then the
reconstruction problem is also solved equally well by the
alternative MST model3

q qk lk l= + -l 1 , 9( ) ( ) ( )
b bl=l , 10( )

leaving q unchanged. While the lensing image-plane geometry
is invariant under the MST, the time delay is not invariant and
it is easy to verify that t l tD = Dlij ij, . This means that if we
measure H0 from some model κ, then the MST model kl would
give t t l D D =lH H Hij ij0 , 0 0( ) .
The actual reconstruction problem of H0LiCOW deals

with an extended source model, given by a map of the
brightness bIs ( ) on multiple source-plane pixels. Under an
MST, the distortion matrix q b q= ¶ ¶Aij i j( ) is rescaled to

q ql=lA Aij ij, ( ) ( ), which means that the magnification
m = A1 det becomes m m l=l

2. Importantly, the relative
magnification between images is unchanged. For H0LiCOW
systems the precise intrinsic luminosity of the source is
unknown, so absolute magnification cannot be measured. Thus
extended source information does not mitigate the MSD.
The “mass sheet” in MSD refers to the l-1 term in

Equation (9), which is a constant convergence term and thus it
acts as a q-independent mass sheet. H0LiCOW took careful
measures to account for the MSD due to external convergence
kext (see dedicated discussions in Suyu et al. 2017; Birrer et al.
2019; Bonvin et al. 2019; Chen et al. 2019; Wong et al. 2019).
This was done by using numerical simulations to estimate the

3 We note that the MST represents a subset of a more general set of
transformations that leave the lens equation invariant (Schneider &
Sluse 2014).
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cumulative contributions of mass along the line of sight in the
field of the lens systems. However, a cored density profile (3D
density ρ∼ const) extending over a finite radius Rc, and
dropping quickly afterward, can also give κ that is constant
inside4 q q = R Dc c l. Thus, if the images in the lensing data
only extend over angles q q< c, then the addition of a cored
density component, with kc that is constant inside qc, is (i) an
approximate MST, if it is done alongside a rescaling of the
previous κ model, and (ii) is not equivalent to an external
convergence term.5

To make things more concrete we define the λPL family of
profiles:

q q qk lk l k= + -l 1 . 11PL c( ) ( ) ( ) ( ) ( )

Here, we take kPL to represent the elliptic PL profile as used by
H0LiCOW to successfully model the lensing data in their
systems.6 The qkc ( ) term is chosen to satisfy qk » 1c ( ) for
q q< c and to fall faster than kPL at q q> c. We do not need to
assume that qkc ( ) is isotropic, but in what follows for
simplicity we will.

As a first example, consider the 3D cored density
profile r = S +

p
-r R R rc c c c

2 3 2 2 2( ) ( ) , where Sc is the critical
density of Equation (4). The convergence for this profile is
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Equation (11) gives an approximate MSD inside of q q< c.
We can estimate the corrections to the MSD by comparing the
Einstein angle qE for kPL and the Einstein angle q lE for kl in
Equation (11). For simplicity, in this exercise we take kPL to be

isotropic and given by qk = g q
q

- g

g
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MSD is exact and q q= lE E . For finite qc we find q q d= +lE E ,
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. From the form of δ we can

infer the parametric dependence of the breaking of the MSD.
The corrections to the image-plane geometry enter at order
q qc

2 2, and if l » 1 (that is, if we only add a small core) are

further suppressed by a factor l-1 . Note that for real systems
H0LiCOW find g » 2 so g - »1 1 1( ) (see Table 1).
More generally, if in Equation (11) we use a core component

that can be expanded as k q q= + +a1 ...c c
2 2 at q q< c, then

the leading-order image-plane corrections to the MSD at q q< c

scale as l q q-1 c
2 2( ) . This scaling remains true also when the

baseline term kPL (or whatever other baseline model is
considered, e.g., a composite stellar cusp+NFW model) is
anisotropic.
As another example, consider the 3D cored Navarro–Frenk–

White (NFW) density profile,

r
r

=
+ +

r
R r R r

, 12
c s

cNFW
0

2
( )

( )( )
( )

which contains one extra parameter Rc, defining the core, in
addition to the usual NFW density r0 and scale radius Rs. The
convergence kcNFW can be computed analytically even though
is not particularly illuminating (in the Appendix we collect
some formulae for profiles that could serve as the core
component in λPL models). With proper normalization such
that k =0 1cNFW ( ) it has the correct characteristics to function
as kc in Equation (11). We show kcNFW by the dashed black
line in Figure 1. We have set q = =R D 11s s l and q q= 0.5c s,
indicated by arrows at the bottom of the plot.
To illustrate the MSD, in Figure 2 we calculate the lensing

geometry and time delays for a toy model of a quasar sitting in
an extended host galaxy. To make things simple we replace the
extended host by a circle on the source plane, centered on the
quasar. We first do the lensing exercise for a pure PL model
with slope n=1.95 and ellipticity parameter q=0.8, similar
to typical H0LiCOW systems. The source-plane host “galaxy”
is shown by the red circle in the top panel (source plane). The
“quasar” is denoted by the magenta cross. The lensed images
are shown by red lines in the bottom panel (image plane). (It is
difficult to see these lines because they lie underneath the green
lines of the λPL model, as explained below.) We calculate the
dimensionless time delays tD ij at the quasar image positions
and show them next to the bottom panel (magenta, labeled PL).
The convergence for this PL model (along the qx axis) is shown
by the red line in Figure 1. We have chosen the PL
normalization such that q » 1E .
Next, we consider a λPL model with l = 0.75. The

convergence for this λPL model is shown by the blue line in
Figure 1. The source-plane host model as given by the MSD is
shown by the green circle in the top panel of Figure 2.
The quasar is shown by the blue cross. The images are shown
by the green line and blue crosses in the bottom panel.
As expected, they sit almost on top of the pure PL. The time

Table 1
Lens Systems from Millon et al. (2019)

H0 l = H67 0 γ qE (″) qs (″) Lens Redshift zl References

RXJ1131 -
+76.1 4.3

3.6
-
+0.88 0.04

0.06 1.98 1.6 19 0.295 Chen et al. (2016)
PG1115 -

+83.0 7.0
7.8

-
+0.81 0.07

0.07 2.18 1.1 17 0.311 Chen et al. (2019)
HE0435 -

+71.7 4.6
5.1

-
+0.93 0.06

0.07 1.87 1.2 10 0.4546 Chen et al. (2019)
DESJ0408 -

+74.6 2.9
2.5

-
+0.9 0.03

0.03 2 1.9 13 0.6 Shajib et al. (2019)
WFI2033 -

+72.6 3.5
3.3

-
+0.92 0.04

0.05 1.95 0.9 11 0.6575 Rusu et al. (2019)
J1206 -

+67.0 4.8
5.7

-
+1 0.08

0.08 1.95 1.2 4.7 0.745 Birrer et al. (2019)

Note. Values for H0 (in km s−1 Mpc−1) are from the PL fit (Figure 6 in Millon et al. 2019). Approximate values for the PL index γ, the Einstein radius qE, and the
NFW scale qs were read from PL and composite NFW+stellar fits reported by papers in the last column.

4 Here and elsewhere qq = ∣ ∣.
5 See Schneider & Sluse (2013) for a closely related discussion.
6 The elliptic PL profile is referred to as SPEMD in Suyu et al. (2017),
Bonvin et al. (2019), Birrer et al. (2019), Chen et al. (2019), and Wong
et al. (2019).
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delays for the λPL model images are shown next to the bottom
panel (blue, labeled λPL). As expected the λPL time delays
satisfy t l tD » Dlij ij, .

3. If We Assume H0 from CMB/LSS, What Do We Learn
about H0LiCOW Lenses?

If one used the toy example of Figure 2 to measure H0, and
if, assuming the pure PL model, one found, for example,

=H 740 km s−1 Mpc−1, then we expect that the λPL model
with l = 0.75 would give acceptable likelihood with »H 560
km s−1 Mpc−1. Our choice of λ in this example is, of course, an
exaggeration. To solve the H0 tension we only needl » 0.9. In
Table 1 we collect some key numbers for six H0LiCOW
systems. Taking »H 670 km s−1 Mpc−1 to represent the
CMB/LSS measurement, we show in the third column the
value of λ that is required to bring the cosmographic H0 from
each system down to the CMB/LSS value.

Noting that H0LiCOW found adequate fits to the lensing
reconstruction with the PL model, and given an estimate of λ
for each system from Table 1, we can use Equation (11) with
some models for kc to investigate the implied physical shape of
the lens galaxies. In Figure 3 we show the results of this
exercise for five systems,7 where we use kcNFW with q = 11s ″
and q = 5. 5c to play the role of kc. For simplicity we ignore the
ellipticity q of the PL component. Including it would shift the
PL line by a constant factor of

g-
q

1
2 if we project along the qx

direction, or - g-
q

1
2 if we project along qy, without adjusting kc.

Typical H0LiCOW lenses have ~q 0.8 and g ~ 2.
Considering Figure 3, it is important to note that the

particular shape of the profiles at angles q q> E is probably
poorly constrained by the lensing data. Despite the fact that
H0LiCOW utilizes extended host information, in practice the
host image pixels do not exceed q q 1.5 E or so. As we have

seen, the impact of the edge of the core component, which
breaks the MSD, enters the image plane geometry at order

l q q-1 c
2 2( ) . The λ values needed to sort out the H0 tension

imply l- »1 0.1 or so for most systems; even for the most
deviant system (PG1115) we have l- »1 0.2. This means
that q q 3c E would be enough to bring the MSD-breaking
deformation down to the 1% level for most systems. Moreover,
in a real analysis, some of this deformation would probably be
absorbed by the fitting for the source-plane host parameters. A
full-fledged analysis such as H0LiCOW, fitting λPL models to
the real data, would be needed to truly quantify the level of the
degeneracy. At this point, however, we emphasize that the
shape of the profiles in Figure 3 at q q> E comes from our
particular choice of kc in this example, and is not necessitated
by the data.
Finally, let us make a preliminary comparison with

constraints from kinematics. Cappellari et al. (2015) presented
an analysis of stellar kinematics in early-type galaxies with
stellar masses in the range M Mlog10 *( ) ∼10.2–11.7. These
systems may be reasonable analog systems to H0LiCOW
lenses. According to Cappellari et al. (2015), the total density
profiles of all of the analyzed galaxies are consistent within the
modeling uncertainties with simple PL all the way from
~r R0.1 e out to r∼4Re, where Re is the half-light radius. This

range of kinematics coverage is interesting because it overlaps
with and extends the range covered by the lensing analyses,
which typically probe r Re.
In Figure 4 we compare the 3D density of a λPL model with

the profiles found in the galaxy kinematics analysis of Cappellari
et al. (2015). The kinematics constraint, shown for the example of
the system NGC4649 (see Figure4(d) in Cappellari et al. 2015),
is given by the shaded band that envelopes a collection of 100
profiles obtained by randomly selecting model parameters from
the posterior distribution of the fit. The λPL models for l = 0.9
and l = 0.75 are shown by solid and dashed lines, respectively.
In the left panel we show the 3D equivalent of the cNFW model
considered in Figures 1 and 2. In this example, the PL component
in the λPL model is chosen to have8 g = 2.25. In the right panel
we show an example where the core component of the λPL
model is chosen to be a cored PL function r µ + -R rc c

2 2 3
2( )

(see the Appendix for details). In both examples we
assumed q q= = R De e lE .
The comparison of λPL models to the results from

Cappellari et al. (2015) should be regarded with caution, as
the family of dark matter density profiles considered in
Cappellari et al. (2015) was restricted to a generalized NFW
form that does not overlap with the λPL shape. With that in
mind, we take Figure 4 to suggest that, currently, constraints
from kinematics most likely cannot exclude λPL with l ~ 0.9,
which is the range of λ that would be implied from
cosmography if one calibrated H0 from CMB/LSS data. That
said, PL-core combinations with, e.g., l = 0.75 could perhaps
be constrained by data, motivating a dedicated kinematics
analysis specifically designed to test λPL profiles.

4. Discussion and Summary

Lensing data alone cannot resolve the MSD. Therefore, we
think that the likelihood function in the cosmographic

Figure 1. Convergence for a λPL model, with l = 0.75 (blue) and l = 0.9
(green). Thel = 1 pure PL case is shown as the red line, and the cNFW profile
is shown as the black dashed line. A value of l » 0.9 would bring the
H0LiCOW determination of H0 down to the CMB/LSS value. Note that for
H0LiCOW lenses, both lensing and kinematics data reach outward only
slightly beyond qE, and never constrain angles around the value of qc chosen in
this example.

7 The sixth system—J1206 (Birrer et al. 2019)—has l = 1 0.08, so while
it would admit a l ~ 0.92 core it is also consistent with no core component.

8 Note that Cappellari et al. (2015) find a characteristic spectral index g > 2
for all of their halos, while the lensing analyses typically find a softer
index g < 2.
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measurement of H0 would have a very flat (albeit not
completely flat) direction, corresponding to the effective
MST λ parameter of λPL models. The H0LiCOW collabora-
tion could thoroughly test this hypothesis on the real data. The
λPL models do not require more fitting parameters than, for
example, the composite stars+NFW models considered already
by H0LiCOW.

Stellar velocity data do resolve the MSD and could constrain
λPL models. Probably too large variations over the pure PL, in
terms of the total enclosed mass, are not allowed by the stellar
velocity data. However, we doubt that stellar velocity data can
test an λPL model with l » 0.9. Either way, if the systematic
uncertainty comes to be dominated by the stellar velocity
modeling, then the significance of the H0 tension would need to
be revised. In this respect, we agree with the recent discussion
of Kochanek (2019).

It would be very interesting if indeed H0LiCOW has
detected a core component in the lens galaxies. We are not
aware of such cores in N-body or hydrodynamical simulations.
Perhaps they could arise if, for example, the dark matter sector

contains a component of ultralight (Schive et al. 2014) or self-
interacting (Spergel & Steinhardt 2000) dark matter. On the
other hand, since typical H0LiCOW lenses have q qsE 
(inferred in their composite stars+NFW models), it is clear that
the lensing data probe the inner part of the lens halo where
baryons either dominate the dynamics or at least make a large
impact on it, making the simulations challenging. From this
point of view, a detection of λPL profiles with l » 0.9 could
be turned into a goal to explain. Before we venture to more
speculations, though, it would be reassuring to see a dedicated
lensing/time delay analysis that tests λPL models on the
real data.

We are grateful to Michele Cappellari, Raphael Flauger,
Claudio Grillo, Ranjan Laha, Sergey Sibiryakov, Yotam Soreq
and, especially, Simon Birrer, Frederic Courbin, Aymeric
Galan, Martin Millon, Alessandro Sonnenfeld, and Sherry
Suyu for useful discussions. K.B. is incumbent of the Dewey
David Stone and Harry Levine career development chair.

Figure 2. Example of PL-core MST for l = 0.75. Top: source plane. Bottom: image plane. Dimensionless time delays in inset.
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Figure 3. Inferred κ profiles (1D projection) for the lenses in Table 1. The vertical dashed line shows qE for each system. The core component is cNFW.
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Appendix
Some Examples of Cored Profiles

Here we first recall basic properties of the pure power-law
model, relevant for lensing analyses, and then give examples of
cored profiles that can be used to test our kc proposal. For
simplicity we only consider isotropic models.

Pure power law. Consider the PL 3D isotropic density
profile, designed to have projected Einstein radius RE:
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The convergence, deflection angle, and potential for this model
are
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Cored power law. Consider
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The convergence, deflection angle, and potential for this model
are9
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Here, ò=h
-
-

h
H dx x

x0

1 1

1
is the harmonic number and

F a b c x, ; ;2 1( ) is the Gauss hypergeometric function.
Cored NFW. Consider the cored NFW profile (cNFW) with

core radius

z=R R , A9c s ( )

where ζ parameterizes the ratio between the core radius Rc and
the usual NFW scale radius Rs. To use this profile as a properly
normalized core component, we write the 3D density as
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For this profile we were only able to find an analytical
expression for the convergence,
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Figure 4. 3D density: comparison with constraints from kinematics. Solid (dashed) line shows the λPL profile for l = 0.9 (l = 0.75). Shaded band shows the
posterior distribution of profiles from the kinematics fit of Cappellari et al. (2015). In this plot, for concreteness, we set RE=Re. Left: PL+cNFW. Right: PL
+cored PL.

9 For g = 3 we have a q q= +q
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where we define q q=b s. Near the origin, zb 1, , we have

k
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as required from our definition of a kcNFW component.
Because we consider a spherical profile, the deflection angle

and the potential can be obtained by the following numerical
integrals:
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