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Abstract: The problem of designing an optimal decentralized supervisor that enforces static (e.g.,
job and resource bounds) and behavioral (e.g., liveness, reversibility and controllability) constraints
simultaneously on a Petri net model is here addressed. The supervisor consists of multiple local
controllers assigned to different control sites, such that each control site can operate on a subset of
the net transitions. A transition can be employed by multiple sites, but is not necessarily controllable by
all of them. The key elements of the approach are an integer linear programming formulation that finds
the decentralized supervisor that maximizes the number of allowed states among a subset of those that
would be allowed by a global supervisor and a branch & bound procedure on the state set that ultimately
guarantees the maximal permissiveness of the solution.

Keywords: Petri Nets, Supervisory Control, Monitor places, Decentralized control.

1. INTRODUCTION

Supervisory control (SC) deals with the problem of designing
an agent (the supervisor) that allows only a given subset L (the
legal set) of the reachable states of a discrete event system
(DES). In the context of Petri nets (PNs) such supervisor is
often formulated in terms of linear inequalities on the states,
called Generalized Mutual Exclusion Constraints (GMECs),
such that any legal state satisfies them and any other reachable
state violates at least one of them (see, e.g., Giua et al. (1992);
Yamalidou et al. (1996)). Such indirect GMEC-based formula-
tion of the legal set is particularly amenable to control analysis
and synthesis, since the supervisor itself can be implemented as
a PN consisting of places (monitors), suitably connected to the
transitions of the PN model of the plant. Various specifications
that must typically be enforced on an (open-loop) PN model can
be formulated as a set of GMECs. These specifications can be
divided into static (e.g., bounds on job and resource usage) and
behavioral (e.g., deadlock prevention (DP), liveness enforce-
ment (LE), reversibility, controllability), the former depending
only on the reachable set, whereas the latter can be established
only by analyzing the reachability graph of the PN.

As discussed in (Basile et al., 2013b), the separate enforcement
of control specifications - as for example, in (Reveliotis and
Choi, 2006) reversibility is considered - in subsequent steps is
problematic for two reasons. Notice first that the enforcement
of a specification determines a contraction of the reachable
space, which may also result in the loss of a behavioral property
enforced previously. This issue is particularly relevant if multi-
ple behavioral properties are desired. The second reason is the
risk of obtaining redundant GMECs in the overall supervisor.
In the mentioned work this issue is addressed by compacting

the enforcement of all required specifications in a single step,
consisting in the design of the optimal GMEC-based supervisor
that separates the legal set L of all reachable states that abide
by all required specifications from the illegal one, denoted U .

A first extension of this problem to a decentralized setting is
discussed in (Basile et al., 2013a), where multiple control sites
can be employed in the design, each operating on a subset of
the PN transitions. The supervisor consists of multiple local
controllers, each associated to a different control site. Such
a control architecture, where a central coordinator is absent
and local supervisors are isolated, can address situations where
it is not possible to communicate with all plant sensors or
actuators, due to economic reasons or bandwidth limitations (a
particularly relevant issue in large scale systems deployed on a
wide geographic area and involving a large number of devices).

Decentralized control problems have been more often studied
in the context of formal languages and automata (Barret and
Lafortune, 2000; Lin and Wonham, 1990; Rudie and Won-
ham, 1992), while fewer works deal with PN-based formu-
lations (see, e.g., (Guan and Holloway, 1997; Chen and Hu,
1991; Iordache and Antsaklis, 2006)). Specifically, (Iordache
and Antsaklis, 2006) provides a sufficient condition for a set
of GMECs to be enforced in a decentralized setting (denoted
d-admissibility). In (Basile et al., 2013a), the focus is instead
on finding a decentralized supervisor (if one exists) that pre-
serves as many (globally) legal states as possible. The main
difficulty lies in the fact that the states allowed by a decentral-
ized supervisor do not necessarily configure a reachability sub-
graph compatible with all the given behavioral requirements.
Conversely, a given legal set L that fully satisfies the given
static and behavioral requirements may not be fully enforceable
by a decentralized supervisor. This difficulty is overcome by
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adopting a proposal-acceptance mechanism, where a candidate
legal set L (by construction, included in or equal to the set of
legal states that can be allowed by a global supervisor), is first
selected so as to guarantee the obtainment of all the desired
static and behavioral requirements, and then tested for the exis-
tence of a decentralized supervisor that can exactly enforce it.
A B&B algorithm generates the candidate legal sets by subse-
quent reductions of the global legal state set, guaranteeing a full
exploration of its subsets. The procedure proposed in this paper
exploits a similar proposal-acceptance mechanism, adapted so
as to deal with controllability in a decentralized setting from a
behavioral point of view.

2. PRELIMINARIES

2.1 Petri net basics

A marked PN (Murata, 1989) is a 5-tuple N = ⟨P, T,Pre,
Post,m0⟩, where P and T are the (finite and nonempty) sets
of places and transitions, respectively, with |P | = np, |T | = nt,
and P ∩T = ∅, Pre,Post ∈ Nnp×nt are the input and output
matrices, and m0 ∈ Nnp is the (initial) marking vector, N being
the set of nonnegative integers. Pre and Post represent the
topology of the PN in terms of the connections between places
and transitions. More precisely, Prek,j [Postk,j] is the weight
of an arc going from pk [tj] to tj [pk] (it equals 0 if there is no
such arc). The incidence matrix C = Post − Pre provides
an equivalent information in the absence of self-loops. The
marking vector m defines the distribution of tokens in places.

A transition tj ∈ T is enabled in a marking m (denoted
m[tj⟩) iff m ≥ Preej , where ej is the jth versor of the
Rnt coordinate space. If m[tj⟩, then tj may fire at marking
m, yielding the marking m′ = m+Cej (denoted m[tj⟩m′).
The set of markings reachable from m0 by way of enabled
transition sequences is the reachability set, denoted R(N,m0).
The reachability graph is a directed graph RG = (V,A), where
V = R(N,m0) is the set of nodes and A ⊆ (V × V ) the
set of arcs, associated to the PN transitions through a labeling
function h : A→ T .

A strongly connected component (SCC) of a directed graph is a
maximal subgraph, such that any two of its nodes are connected
by a directed path. An SCC may consist of a single vertex, if
that vertex does not belong to any directed cycle. Let (S,AS) be
an SCC of RG. Then, if |S| ≥ 2 the PN can evolve inside S for
an arbitrary number of transition firings. (S,AS) is a terminal
SCC if there does not exist any (m1,m2) ∈ A with m1 ∈ S
and m2 ∈ V \ S.

A place pi ∈ P is bounded iff ∃k > 0 s.t. mi ≤ k,
∀m ∈ R(N,m0). A PN is bounded iff all its places are
bounded. A transition tj ∈ T is live iff ∀m ∈ R(N,m0),
∃m′ ∈ R(N,m) s.t. m′[tj⟩. N is live iff all its transitions are
live. N is reversible iff m0 ∈ R(N,m), ∀m ∈ R(N,m0).
A marking m ∈ R(N,m0), is dead if @tj ∈ T enabled in
m (total deadlock state). It also configures a terminal SCC
with a single vertex. A deadlock-free PN has no reachable dead
markings.

A PN is (Fumagalli et al., 2010): i) deadlock-free if all the
terminal SCCs of RG have cardinality strictly greater than 1,
ii) live if for any terminal SCC (S,AS) of RG it holds that
|S| ≥ 2 and {t|t = h(a),∀a ∈ AS} = T , and iii) reversible if
RG consists of a single SCC.

2.2 GMEC enforcement by means of monitors

A GMEC is a linear marking inequality lm ≤ b, with l ∈ Nnp ,
b ∈ N, completely defined by the pair (l, b), and associated
to the admissibility region M(l, b) = {x ∈ Nnp | lTx ≤
b}. The admissibility region of a set of GMECs (L, b), with
L = [lT1 lT2 . . . lTnc

]T and b = [b1 b2 . . . bnc ]
T , is obtained

as M(L, b) = ∩nc
i=1M(li, bi). Let m0 ∈ M(L, b). Then,

a supervisor consisting of nc monitor places connected to the
existing PN transitions by way of the incidence matrix CC =
−LC and marked according to mC0 = b − Lm0 enforces
the said constraints (Giua et al., 1992; Yamalidou et al., 1996).
The designed controller prevents only transition firings leading
to a violation of one of the GMECs, and is thus maximally
permissive. Let {m0} ⊆ L ⊆ R(N,m0) and assume that
there exists a set of GMECs (L, b) such that L ⊆ M(L, b)
and M(L, b) does not contain any other reachable marking.
Then, a supervisor implementing (L, b) exactly enforces L.

The problem of restricting the reachability set of a PN within
a set of legal markings L becomes somewhat more involved
in the presence of uncontrollable transitions. In the following,
we assume that T = Tc ∪ Tuc with Tc ∩ Tuc = ∅, where
Tuc is the set of uncontrollable transitions (represented as black
bars), and Tc is the set of controllable transitions (represented
as white bars), associated to uncontrollable and controllable
events, respectively.
Definition 2.1. Consider a PN N with Tc ̸= ∅. The sub-net Nu

obtained from N eliminating every transition in Tc is denoted
uncontrollable sub-net of N .

It is immediate to see that R(Nu,m) ⊆ R(N,m).
Definition 2.2. A legal marking set L ⊆ Nnp is behaviorally
controllable w.r.t. a marked PN N with initial marking m0 if∪

m∈LR(Nu,m) ⊆ L, whereNu is the uncontrollable sub-net
of N .

In other words, L is controllable if no forbidden marking is
reachable from any marking m ∈ L by firing a sequence
containing only uncontrollable transitions.

A transition t enabled under the net marking can be disabled by
way of a PN supervisor only if there is an arc from a control
place to t and the control place is insufficiently marked. There-
fore, to enforce a behaviorally controllable legal marking set by
means of a PN controller, an arc directed from a control place
to an uncontrollable transition must be avoided if there exists
a reachable marking where the control place alone disables the
transition, which would otherwise be enabled by way of the
plant marking.

2.3 GMEC optimization as a classification problem

A set of GMECs (L, b) configures a linear classifier, separating
the markings in M(L, b) from those outside. An illegal set U
can be separated by a legal set L by a classifier of this class if
the following condition holds:
Theorem 2.3. (Cordone et al., 2012) Let L and U be two given
(disjoint) marking sets. Then, there exists a linear classifier
separating U from L iff there does not exist a marking m ∈ U
such that m ∈ PL, where PL is the convex hull of L.

The maximal legal set L of states that guarantees the desired
static and behavioral properties, as well as the corresponding
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minimal set U , can be determined as explained in (Cordone
and Piroddi, 2011, 2013). Then, the optimal linear classifier
separating U from L is obtained by searching for an optimal
covering of the illegal set U with suitable subsets Ui, i =
1, . . . , nc, such that for each subset there exists a GMEC that
separates it from L. All feasible coverings of the illegal set U
can be systematically explored with the B&B method explained
in (Cordone and Piroddi, 2011, 2013).

3. THE PROPOSED METHOD

3.1 BC- and DC-feasibility

Let Ti, i = 1, . . . , ν, be ν subsets of the set of transitions T ,
identifying ν control sites Si such that any local supervisor
is allowed to act only on the transitions of one site. Subsets
Ti, i = 1, . . . , ν, do not necessarily form a partition nor a
covering of T . Let also Ti = Tci ∪ Tuci , i = 1, . . . , ν, with
Tci ∩ Tuci = ∅, where Tci collects all transitions associated to
events whose firing can be detected and disabled from site Si,
while transitions associated to events whose firing can be only
detected from site Si (but not disabled) are collected in Tuci .

Let L be the maximal set of markings compatible with all the
static and behavioral requirements of interest and realizable
with a global supervisor (denoted legal set in the sequel). We
assume that the static requirements include boundedness, so
that L is a bounded set, and that the behavioral requirements
include liveness, reversibility and controllability. By “global”
supervisor we here denote a controller that can operate on the
set of transitions ∪ν

i=1Ti (all observable), where only the transi-
tions in Tc = ∪ν

i=1Tci are controllable. Note that some globally
controllable transitions may become partially controllable in
the decentralized setting, i.e. controllable only by a fraction
of the sites which have access to them. The mentioned set L
can be determined exactly following the approach described
in (Basile et al., 2013b). Let also U be the corresponding set
of boundary illegal states (states outside L that can be reached
from legal states with a single transition firing), briefly referred
to as illegal set. The boundedness of L automatically implies
that of U (Basile et al., 2013b).

In the decentralized setting, only a subset L ⊆ L of the legal
markings will generally be allowed. While this would still guar-
antee the obtainment of all the static specifications, that depend
only on the individual states, the desired behavioral properties
could be lost due to the contraction of the reachable space
(which implies a modification of the behavioral characteristics
of the system, as described by the reachability graph). For this
reason, we will introduce the notions of BC- and DC-feasibility.
Specifically, we will denote L as:

(i) BC-feasible (behaviorally feasible) if the reachability sub-
graph induced by L on the PN possesses all required
behavioral properties (liveness, reversibility and global
controllability);

(ii) DC-feasible (decentralization-wise feasible) if L can be
exactly enforced by a supervisor that abides by the de-
centralization constraints and such that a transition t is
never disabled exclusively by monitor places belonging
to control sites from which t is uncontrollable (for local
controllability).

Only legal sets that are simultaneously BC- and DC-feasible
result in admissible supervisors for the problem at hand. The

notions of BC- and DC-feasibility extend the homologous B-
and D-feasibility properties introduced in (Basile et al., 2013a)
to include behavioral controllability (in (Basile et al., 2013a)
only the more restrictive structural controllability condition is
considered). Notice in this respect that controllability cannot be
ensured in the decentralization framework by analysis of the
reachability graph alone, but requires additional conditions on
the structure of the supervisor, thus entering in both the BC-
and DC-feasibility definitions. Such conditions do not prevent
the use of arcs from monitor places to transitions that they
cannot control, as long the disabling of such transitions does
not occur exclusively due to an insufficient marking of such
places (behavioral controllability).
Definition 3.1. A set L such that {m0} ⊂ L ⊆ L is denoted
BC-feasible if a GMEC-based supervisor enforcing exactly L
yields a live, reversible and controllable PN.

Let Lb = {m ∈ L | m[t > m′,m′ ̸∈ L, t ∈ Tc} denote
the set of boundary legal markings, i.e. the legal markings from
which the illegal set can be reached in a single transition step.
Notice that the described marking evolution can only occur
through the firing of a controllable transition, otherwise m
would not be legal. By selectively forbidding the mentioned
controllable transitions enabled in markings belonging to Lb,
no illegal marking will ever be reached. For each boundary legal
marking m ∈ Lb, let D(m) = {t ∈ Tc | m[t > m′,m′ ̸∈ L}
be the set of controllable transitions that must be disabled in
m. Finally, let Φ ∈ {0, 1}ν×nt be a binary function defining
the controllability of transitions from a certain site, i.e. such
that Φ(i, t) = 1 if t is controllable from site i, and 0 otherwise.
Let also k : {1, . . . , ndc} → {1, . . . , ν} map the individual
GMECs to the control sites (k(pc) = i indicates that the pcth
GMEC operates on site Si, i.e. the corresponding monitor is
connected only to transitions in Ti).
Definition 3.2. Let {m0} ⊆ L ⊆ L and assume that there
exists a set of GMECs (L, b), with L ∈ Nndc×np and b ∈ Nndc ,
that exactly enforces L. Set L is denoted DC-feasible iff

(i) For each pc = 1, . . . , ndc, there exists a control site Si

such that
∑np

p=1 L(pc, p)C(p, t) = 0 for all t ̸∈ Ti;
(ii) For each pair (m, t) with m ∈ Lb and t ∈ D(m) s.t.∑ν

i=1 Φ(i, t) ≥ 1, (L, b) satisfies the inequality

b(pc)−
np∑
p=1

L(pc, p)m(p) ≤ max(0,

np∑
p=1

L(pc, p)C(p, t))−1 (1)

at least for one pc ∈ {1, . . . , ndc} with k(pc) = i.

Expression (1) requires some further explanation. Notice that
the LHS of inequality (1) equals the marking of place pc cor-
responding to marking m of the uncontrolled PN, while the
RHS equals the weight of the arc (pc, t) minus 1. Indeed,
m(pc) = b(pc) −

∑np

p=1 L(pc, p)m(p) and Prec(pc, t) =

max(0,−Cc(pc, t)), where Cc = −LC. Therefore, the in-
equality expresses the disabling of t by pc.

Definition 3.2 ensures the (local) behavioral controllability of
the legal set, by ensuring that an arc a = (m,m′) ∈ A,
where m ∈ L and m′ ̸∈ L is forbidden by a control place
belonging to a control site Si for which the associated transition
is accessible and controllable, i.e. h(a) ∈ Tci . In doing this,
the use of arcs from control places to locally uncontrollable
transitions is not inhibited, as long as the latter are never
disabled only by such control places. Consider the partially
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Fig. 1. Monitor places pc1 and pc2 acting on the partially con-
trollable transition t. Monitor places and arcs are dashed.

controllable transition t in Fig.1, and two monitor places pc1
and pc2 associated respectively to site 1 and 2. Precisely,
assume that t is controllable from site S1 and uncontrollable
from site S2. From a structural point of view, the arc going from
pc2 to t is not admissible. On the other hand, if a behavioral
approach is adopted, the arc is admissible provided a marking
such as the one in Fig.1a, where t would be disabled precisely
by pc2, is forbidden. On the other hand, the markings in Figs.1b-
c are both legal since t results to be disabled from pc1, for which
it is controllable. In particular, in Fig.1c the fact that pc2 is
unmarked is devoid of consequences (the disabling action is
effectively performed by pc1).

Stated otherwise, there always exists at least a disabling con-
trol place for which such transitions are controllable, and the
presence of such arcs has no disabling effects under boundary
legal markings. This additional degree of freedom in the su-
pervisor structure may potentially increase its permissiveness,
as opposed to supervisors enforcing structural controllability
conditions.

3.2 The ILP core problem

As anticipated, the proposed approach operates by means of
a proposal-acceptance mechanism, where a BC-feasible can-
didate legal set L′ is first selected, and then tested for the
existence of a decentralized supervisor that can exactly enforce
it (DC-feasibility).

Let L′ ⊆ L and U denote the target legal and illegal state
sets for the decentralized control design problem. The test
is conceived as follows: we first solve an ILP problem that
maximizes the number of markings in L′ that can be allowed by
a decentralized supervisor. Then, if the optimal value is equal
to |L′|, the obtained decentralized supervisor also achieves the
required static and behavioral properties, thereby representing
a feasible solution for the overall supervisor design problem. If
the test has a negative outcome, there could still be a feasible
solution allowing only a subset of markings in L′. We use
this information to find smaller target legal sets and repeat the
procedure on them.

The core component of the method is the test procedure. To this
aim, let (L, b), L ∈ Nndc×np , b ∈ Nndc , denote the GMEC
parameters to be determined (the maximum number of GMECs
ndc is a design parameter). Let also γ ∈ {0, 1}|L′|+|U| be a
binary decision variable used to identify the states allowed by
the decentralized supervisor (γ(m) = 1 if m is allowed and 0
otherwise; in particular, γ(m) = 0, ∀m ∈ U).

The test procedure consists in solving an ILP problem. The
latter is first presented in a nonlinear form, as an Integer

Programming (IP) problem, for better readability. Its reduction
to an ILP problem is discussed further on.

max f =
∑
m∈L′

γ(m) − ϵ

ndc∑
pc=1

np∑
p=1

L(pc, p) − ϵ

ndc∑
pc=1

b(pc) (2a)

np∑
p=1

L(pc, p)m(p) − b(pc) ≤ (1 − γ(m))M,

pc = 1, . . . , ndc,m ∈ L′
(2b)

np∑
p=1

L(pc, p)m(p) − b(pc) ≥ 1 − (1 − δ(pc,m))M,

pc = 1, . . . , ndc,m ∈ L′ ∪ U (2c)

γ(m) +

ndc∑
pc=1

δ(pc,m) ≥ 1, m ∈ L′ ∪ U (2d)

γ(m2) − γ(m1) +

ndc∑
pc=1

ν∑
i=1

Φ(i, t)k(pc, i)δ(pc,m2) ≥ 0,

∀(m1,m2) ∈ L′ × (L′ ∪ U), s.t.

ν∑
i=1

Φ(i, t) ≥ 1,m1[t > m2 (2e)

Oc(pc, t) − Ic(pc, t) = −

np∑
p=1

L(pc, p)C(p, t),

pc = 1, . . . , ndc, t = 1, . . . , nt (2f)
np∑
p=1

L(pc, p)m0(p) − b(pc) ≤ 0, pc = 1, . . . , ndc (2g)

Oc(pc, t) ≤ X
O
(pc, t)M, pc = 1, . . . , ndc, t = 1, . . . , nt (2h)

Ic(pc, t) ≤ X
I
(pc, t)M, pc = 1, . . . , ndc, t = 1, . . . , nt (2i)∑

t/∈Ti

X
O
(pc, t) ≤ (1 − k(pc, i))M, pc = 1, . . . , ndc, i = 1, . . . , ν (2j)∑

t/∈Ti

X
I
(pc, t) ≤ (1 − k(pc, i))M, pc = 1, . . . , ndc, i = 1, . . . , ν (2k)

ν∑
i=1

k(pc, i) = 1, pc = 1, . . . , ndc (2l)

Oc(pc, t), Ic(pc, t) ≥ 0, pc = 1, . . . , ndc, t = 1, . . . , nt (2m)

X
O
(pc, t), X

I
(pc, t) ∈ {0, 1}, pc = 1, . . . , ndc, t = 1, . . . , nt (2n)

k(pc, i) ∈ {0, 1}, pc = 1, . . . , ndc, i = 1, . . . , ν (2o)

γ(m) ∈ {0, 1}, ∀m ∈ L′ ∪ U (2p)

γ(m) = 0, ∀m ∈ U (2q)

δ(pc,m) ∈ {0, 1}, pc = 1, . . . , ndc, ∀m ∈ L′ ∪ U (2r)

The cost function (2a) is a hierarchial objective function: the
primary objective is the maximization of the number of mark-
ings in L′ that are allowed by the decentralized supervisor,
while the secondary objective is to minimize the GMEC coef-
ficients. The purpose of the latter is to prevent ill-conditioning
of the optimization problem (GMECs are defined up to a mul-
tiplicative constant). To ensure that it doesn’t practically affect
the primary objective, it is weighted by a suitably small factor
(ϵ = 0.01 in the illustrated simulations). Notice, finally, that the
secondary objective also ensures that, if there exists a solution
with fewer monitors than ndc, one or more of the obtained
GMECs will have null parameters, allowing the designer to
easily discard them a posteriori.

Constraint (2b) ensures that all the legal states with γ(m) = 1
are allowed by all monitors, while constraint (2c) applies to
the remaining states in L′ as well as to illegal states in U
(γ(m) = 0), stating that m violates the GMEC associated
to monitor pc. Here, the binary variable δ(pc,m) is used to
associate each forbidden marking to the control place that
forbids it. By constraint (2d) each marking in L′ ∪ U is either
allowed (γ(m) = 1 and δ(pc,m) = 0 for all control places) or
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forbidden (γ(m) = 0 implies that δ(pc,m) must equal 1 for at
least one control place). The constant M is set to a sufficiently
large value (big-M parameter), so that constraint (2b) is always
satisfied for γ(m) = 0. Similarly, constraint (2c) automatically
holds if δ(pc,m) = 0. The big-M parameter is set to M = 10
in the examples documented in the paper.

Constraint (2e) applies to all transitions controllable at least by
one control site (

∑ν
i=1 Φ(i, t) ≥ 1). In detail, the constraint

requires that if m1 is a legal marking (γ(m1) = 1) and m2 is
an illegal one (γ(m2) = 0), the firing of a transition leading
from m1 to m2 must be forbidden at least by one control place
acting on a site from which t is controllable. More precisely,
δ(pc,m2), k(pc, i), Φ(i, t) are simultaneously equal to 1 if pc
forbids m2, and belongs to site Si, and t is controllable from
Si. Notice that the constraint is automatically satisfied for all
possible values of the decision variables k(pc, i) and δ(pc,m2)
if γ(m2) = 1 and/or γ(m1) = 0.

Equation (2f) calculates the supervisor net topology (weights
of the arcs connecting the monitors to the PN transitions)
corresponding to the GMEC parameters L and b, and (2g)
requires that the GMECs are satisfied in the initial marking.

Conditions (2h) and (2i) forbid the use of specific arcs, depend-
ing on the given decentralization conditions (each monitor can
operate only on the transitions associated to its control site).
For this purpose, if pc belongs to site Si (i.e., k(pc, i) = 1), the
binary parameters XO(pc, t) and XI(pc, t) are set to 0 for all
t ̸∈ Ti (constraints (2j) and (2k)). Condition (2l) specifies that
each monitor must be assigned to one module only.

Notice, finally, that γ is preset to 0 for declaredly illegal
markings (m ∈ U).
Remark 3.3. At a closer look, constraint (2e) is nonlinear, since
both k and δ are decision variables. Although this is not an issue
here, since in the solution approach the formulation will always
be employed with k assigned from outside (thereby simplifying
the problem to an ILP one), an alternative expression can be
used if necessary to linearize the problem. More precisely,
introducing a further binary variable ψ(pc, i,m), we can write:

ψ(pc, i,m) ≤ k(pc, i)

ψ(pc, i,m) ≤ δ(pc,m)

ψ(pc, i,m) ≥ k(pc, i) + δ(pc,m)− 1

for pc = 1, . . . , ndc, i = 1, . . . , ν, and ∀m ∈ L′ ∪ U . Then,
product k(pc, i)δ(pc,m2) in expression (2e) can be replaced by
ψ(pc, i,m2).

3.3 Conditions for BC-, and DC-feasibility and supervisor
optimality

Problem (2) can be used to find DC-feasible legal state sets, as
stated by the following Lemma.
Lemma 3.4. A set L ⊆ L is DC-feasible if there exists a set of
GMECs (L, b) that provides a feasible solution to problem (2),
for a given ndc and starting with L′ = L, and if the obtained
solution has γ(m) = 1 for each m ∈ L′.

Proof. By construction, any feasible solution of problem (2)
will respect the decentralization requirements (Def. 3.2.i),
thanks to constraints ((2j-2l), which enforce the condition that
each monitor must be assigned to a control site, i.e. that it
cannot have connections with the transitions not belonging to
that site. The optimal solution of problem (2) will allow a

subset of the states in L′. However, since by assumption the
obtained solution has γ(m) = 1 for each m ∈ L′, the obtained
decentralized supervisor enforces the whole of L. Constraint
(2e) enforces condition (ii) of Def. 3.2. Indeed, observe that it
is a non trivial constraint only if m1 and m2 are a legal and
an illegal marking, respectively (γ(m1) = 1, γ(m2) = 0),
such that m1[t >m2. This makes m1 a marking of Lb and t a
transition belonging to D(m1). Now, the monitor pc forbidding
m2 (δ(pc,m2) = 1) will be actually disabling t in m1. For this
to occur, its marking in correspondence to m1 will necessarily
have to be less than the weight of the arc (pc, t), as expressed
by condition (1). Also, by constraint (2e), pc must operate on a
control site Si for which t is controllable (Φ(i, t) ≥ 1).

The following result provides a necessary and sufficient condi-
tion for BC-feasibility as well.
Lemma 3.5. Let {m0} ⊂ L ⊆ L and (L, A) be a subgraph of
the reachability graph (V,A), such that A ⊆ A and (m,m′) ∈
A iff m,m′ ∈ L. The set L is BC-feasible iff

i) (L, A) has only one SCC;
ii) ∀tj ∈ T there exists a ∈ A such that h(a) = tj ;

iii) ∀a = (m,m′) ∈ A s.t. m ∈ L and h(a) ̸∈ Tc, it holds
that m′ ∈ L as well.

Proof. Assume that there exists a GMEC-based supervisor ex-
actly enforcing L. Such a supervisor will achieve reversibility,
liveness, and (global) behavioral controllability. Reversibility
follows immediately upon observing that the reachability graph
of a (bounded) reversible PN has a unique SCC (coinciding
with the entire graph itself) (Fumagalli et al., 2010), so that
any state is reachable from any other. Deadlock-freeness is also
automatically obtained since the PN can evolve indefinitely in a
SCC with cardinality greater than 1 (as implied by assumption
L ⊃ {m0}). The only additional requirement for liveness is
that ∀tj ∈ T there exists at least an arc in the reachability
graph associated to the firing of tj (Fumagalli et al., 2010). This
is ensured by condition (ii). Finally, condition (iii) implies that
there cannot be an arc a = (m,m′) ∈ A s.t. m ∈ L and
m′ ̸∈ L, with h(a) ̸∈ Tc. In other words, no illegal marking
is reachable from within L by firing only uncontrollable transi-
tions, as required by Def. 2.2.

The BC-feasibility test does not require the explicit calculation
of the set of GMECs enforcing the given set of states.
Definition 3.6. A set of GMECs (L, b) results in a maximally
permissive decentralized supervisor if it enforces a maximal
BC- and DC-feasible subset of the set L of (globally) legal
states.

The following result provides conditions for the optimality of a
decentralized supervisor.
Theorem 3.7. A decentralized supervisor is maximally permis-
sive if, denoting as L the set of legal states that it enforces,
either L = L or there does not exist L′ ⊆ L s.t.:

i) |L′| > |L|;
ii) Problem (2) applied with L′ = L′

yields a solution with
γ(m) = 1 for all m ∈ L′;

iii) There does not exist a (globally) uncontrollable transition
enabled in a marking of L′

whose firing causes the exit
from that set;
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iv) The subgraph of the reachability graph induced by L′

configures a unique SCC with at least an arc labeled with
each of the transitions.

Proof. By definition L is the maximal set of legal states for
the centralized supervisor design problem, so that if L = L
the decentralized supervisor is as permissive as the maximally
permissive optimal centralized supervisor. On the other hand,
if L ⊂ L and there exists a set L′

for which conditions (i–iv)
hold, then the supervisor is not optimal. Indeed, in that case
there would be a larger subset of globally legal states (cond.
(i)), both DC- (cond. (ii) implies that Lemma 3.4 holds) and
BC-feasible (Lemma 3.5 applies by cond.s (iii) and (iv)).

3.4 A B&B approach for the design of an optimal decentralized
supervisor

Based on the previous material, a given proposal subset L of
L can be tested for BC-feasibility analyzing the reachability
subgraph induced by L alongside Lemma 3.5, and for DC-
feasibility by applying problem (2) with L′ = L and checking
for the existence of solutions with γ(m) = 1 for all m ∈
L′ (Lemma 3.4). In practice, ndc is assumed fixed and the
available monitors are preassigned to the control sites, so that
variables k(pc, i) are given. Therefore the DC-feasibility of L is
ascertained by solving a relaxed version of problem (2), which
is in fact an ILP problem. An efficient systematic exploration of
all possible proposal subsets of L can then be carried out using
a B&B approach.

For this purpose, a generic node of the branching tree is as-
sociated to a specific assignment of the (globally) legal states,
defined by suitable subsets of L, Πi = {Lin,Lout}, where
Lin ⊆ L identifies the legal states that must be allowed by any
feasible solution of the current node, and Lout ⊆ (L \ Lin)
groups the legal markings that must not be included in the
solution. The remaining legal states, Lfree = L \ (Lin ∪Lout)
are the ones to perform the actual optimization on. Branching
results in more free states being assigned to Lin or Lout.

To reduce the number of proposal subsets to which Lem-
mas 3.4-3.5 actually need to be applied, the following pre-
processing can be applied at each node Πi, previous to the
solution of problem (2). Indeed, by Lemma 3.5 observe that
a feasible solution can allow at most a set of legal states L ⊆
Lin∪Lfree that configures a subgraph of the reachability graph
of the PN that forms a SCC. If there exists such a component
including all states in Lin and excluding all states in Lout, since
by definition it is unique, it allows to extend Lout with all the
free states that do not belong to the component. If such a SCC
does not exist, the node is unfeasible and can be eliminated.

If, after this pre-processing, the node is still potentially feasible,
and |Lin∪Lfree| is larger than the cardinality of the set of states
allowed by the current best solution, problem (2) is solved pre-
setting γ(m) = 1 for each m ∈ Lin and γ(m) = 0 for each
m ∈ Lout, thus restricting in practice the optimization to the
remaining free legal states. By construction, the ILP will find
the decentralized set of GMECs (if one exists) that allows all
the states in Lin and as many states in Lfree as possible, while
forbidding all the states in Lout. Then, if the set L of states
enforced by such a solution is also BC-feasible it provides a
local optimum and further branching of the node is not required.
In addition, if the solution is more permissive than the current

best it is stored in its stead. Notice that BC-feasibility certainly
holds if L = Lin ∪Lfree (after the pre-processing Lin ∪Lfree

configures a strongly connected subgraph), otherwise it must
be ascertained a posteriori. If BC-feasibility does not hold, the
node is branched (a feasible solution with fewer states could
exist). Finally, if the ILP terminates without finding solutions,
no decentralized supervisor exists that is compatible with the
given state assignments, and the node is eliminated.

For simplicity a binary branching policy is adopted. Two chil-
dren nodes are generated, inheriting the state assignments from
the father node. Then, a free marking not in L is picked out and
added to Lout for the first child node and to Lin for the second
one, respectively. Notice that including in Lin a free marking
that is not in L will force the ILP to find a different DC-feasible
solution with less allowed states, while setting it in Lout may
trigger further state assignments due to pre-processing.

The branching process is initialized with a root node defined as
follows, Π0 = {{m0}, ∅}. Notice, finally, that by repeating the
procedure for increasing values of ndc one can also ascertain
the optimality of the supervisor in terms of its size.

4. SIMULATION EXAMPLE

Consider the PN represented in Fig. 2 taken from (Ghaffari
et al., 2003), for which we want to design a GMEC-based super-
visor that guarantees liveness, reversibility and controllability.
Resource (M1, M2, M3, and R) and idle (B1 and B2) places
are considered part of the process. The PN has 331 reachable
markings, only 300 of which are included in the initial SCC.

 

Fig. 2. Petri net of example.

Consider first the centralized supervisor design problem and
assume that Tc = {t1 t2 t3 t5 t8} and Tuc = T \ Tc. The
resulting optimal solution has 2 GMECs: m4 + m6 ≤ 2 and
3m3+m6+m7 ≤ 6 and allows 295 states of the 300 maximum
possible. It is interesting to note that if t5 is not assumed
controllable, the optimal solution of the problem allows 280
markings only, using the following 2 GMECs: m4 + m6 ≤ 2
and 3m3 + 2m6 +m7 ≤ 6.

The first monitor has an arc towards an uncontrollable transition
(t5), but this is fine, since it is never exclusively responsible
of its disabling. Indeed, there are 45 markings in which two
or more places (among which the mentioned monitor) disable
t5, but no marking is disabled by the monitor alone. In both
cases, the optimal solution is found already at the first node of
the B&B procedure. This can be justified by recalling that the
optimal solution of problem (2) is the maximal subset of L for
which a correct decentralized supervisor exists. So, even if it
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is smaller than L, it provides the optimal solution if – tested a
posteriori – it is found to be BC-feasible as well.

Now, consider the same problem in a decentralized setting,
where we can employ monitors of two control sites, defined
in 3 alternative scenarios (differing only for the role of t5) as
follows:

case a) S1 : T1 = [t5 t6 t8 t9],with Tc1 = [t8],

S2 : T2 = [t3 t5 t7 t8 t9 t10],with Tc2 = [t3 t8],

case b) S1 : T1 = [t5 t6 t8 t9],with Tc1 = [t5 t8],

S2 : T2 = [t3 t5 t7 t8 t9 t10],with Tc2 = [t3 t8],

case c) S1 : T1 = [t5 t6 t8 t9],with Tc1 = [t8],

S2 : T2 = [t3 t5 t7 t8 t9 t10],with Tc2 = [t3 t5 t8].

In all three cases the optimal supervisor has one GMEC per
control site (increasing ndc does not provide different solu-
tions), but the number of allowed markings is different (280
in cases (a) and (c), and 295 in case (b)).

An even more interesting case unfolds if one removes place R
from the PN, and adds the corresponding static constraint:

m4 +m7 ≤ 1 (3)
to the supervisor design requirements. In other words, our
aim here is to evaluate the cost of imposing the requirement
corresponding to place R, which was previously centralized,
in a decentralized way. This time the optimal solution requires
one monitor of control site S1, and 2 belonging to S2 in all three
studied scenarios. Again, increasing ndc to allow more GMECs
per control site does not provide solution improvements. The
number of allowed states is much smaller (128, 138 and 142
markings, respectively), implying that constraint (3) is not
easily implemented with the given decentralization conditions.
Also, the B&B is not solved at the initial node or immediately
after, but requires some non-trivial processing (25, 67, and 299
nodes, respectively).

Consider, e.g., the solution relative to case (b):
S1 : m4 +m6 ≤ 1 (4a)
S2 : m3 + 2m6 + 2m7 ≤ 2 (4b)

m4 +m5 + 3m7 ≤ 3 (4c)
The first monitor of site S2 has an arc towards t5 which is

uncontrollable from S2. There are 23 markings where such
monitor disables t5, always in combination with a simultaneous
disabling by place p3, and twice even by the unique monitor of
S1 (for which t5 is controllable).

5. CONCLUSIONS

A new approach to the synthesis of decentralized monitors
in the presence of static and behavioral (including liveness,
reversibility, and controllability) specifications has been pre-
sented. Starting from the legal and illegal sets of the centralized
control case, an ILP problem is formulated that aims at maxi-
mizing the number of legal states allowed by the decentralized
monitors. Even assuming that a feasible solution to such ILP
problem exists, there is no guarantee that the subset of legal
states enforced by the decentralized supervisor achieves the
required behavioral specifications. A branch & bound (B&B)
method has been developed to systematically and efficiently
explore all possible subsets of the legal states of the centralized
case to find the largest one that meets the constraints, i.e. that
can be implemented in a decentralized form and for which all
the (static and) behavioral specifications hold.
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