
1 Introduction

Tests of distributional symmetry about a known or unknown centre are used to answer

substantive questions in economics (see e.g. Kilian and Demiroglu, 2000). A case in point

is the analysis of time-reversibility (TR) that hinges on the distributional properties of time

series. TR holds if the statistical properties of a time series are not affected when it is

observed in reverse time. Tests of TR have been applied to the analysis of business cycle

symmetry (DeLong and Summers, 1986), the existence of Edgeworth price cycles (Beare

and Seo, 2014) and tests of the mixture-of-distribution hypothesis (Fong, 2003). TR can be

assessed relying on the coefficient of skewness of the j-th order difference of a time series

(DeLong and Summers, 1986).

We consider a test of the null hypothesis of distributional symmetry based on L-moments

and its application to time series data. L-moments are linear functions of expectations of

order statistics that characterize the shape of any distribution with finite mean (Hosking,

1990).

We make four contributions to the literature on tests of symmetry for dependent data.

First, we introduce the test of symmetry based on L-moments due to Harri and Coble (2011)

in the time series econometrics literature. Second, we study the comparative performance of

tests of symmetry based on the coefficient of skewness and on L-moments with Monte Carlo

experiments. Third, we introduce a bootstrap version of the test, suitable for time series

applications. Fourth, we analyse the symmetry of business cycles for the G7 countries.

The rest of the paper is organized as follows. Section 2 discusses tests of symmetry

and their bootstrap implementation. Section 3 presents the simulation study. Section 4 is

devoted to the empirical application and Section 5 concludes.1

2 Symmetry tests and their bootstrap implementation

Let {Xt}Tt=1 be a sample from a strictly stationary time series X = {Xt}∞t=−∞ with mean

µ and r-th central moment µr = E [(Xt − µ)r]. We focus on two tests of symmetry of the

1Additional results and details are available as Supplementary material.
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probability distribution of Xt about its centre.2

Test based on moments (τ̂3). If Xt is symmetrically distributed, µ3 = 0 and its coefficient

of skewness SK ≡ µ3/µ
3/2
2 = 0. When Xt is iid normally distributed, a test of symmetry

based on the squares of sample skewness, ŜK, is:

τ̂3 = T
ŜK

2

6

d→ χ2
1 (1)

The null hypothesis of the test, H0 : SK = 0, is rejected whenever τ̂3 is greater than the

upper critical value of a χ2
1.

Test based on L-moments (τ̂3,L). The first four L-moments of Xt are (Hosking, 1990):

`1 =

∫ 1

0

Q(u)du (2)

`2 =

∫ 1

0

Q(u)(2u− 1)du (3)

`3 =

∫ 1

0

Q(u)(6u2 − 6u+ 1)du (4)

`4 =

∫ 1

0

Q(u)(20u3 − 30u2 + 12u− 1)du (5)

where Q(α) is the quantile function, while `1 and `2 are measures of location and scale.

Population L-skewness (SKL, for r = 3) and L-kurtosis (KRL, for r = 4) are defined as

`r/`2 for r = 3, 4. For a standard Normal variate SKL = 0 and KRL = 0.1226. Since

|`r/`2| < 1 for r ≥ 3, SKL and KRL are bounded on the unit interval. This property makes

their interpretation somehow easier than conventional skewness and kurtosis that can take

arbitrarily large values. A test of the null of symmetry H0 : SKL = 0 relies on the squares

of ŜKL (Harri and Coble, 2011):

τ̂3,L =
ŜK

2

L

(0.1866T−1 + 0.8000T−2)

d→ χ2
1 (6)

Bootstrap inference. The asymptotic distributions of τ̂3 and τ̂3,L depend on the assumption

2Symmetry tests of regression residuals also play an important role in macroeconomics and finance, but
such analysis is beyond the scope of this article.
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that the underlying data are iid. To accommodate serially correlated data generating pro-

cesses (DGPs), we rely on a bootstrap approximation of the null sampling distribution of

τ̂3 and τ̂3,L. Following Psaradakis (2003), we implement a symmetrized version of the sieve

bootstrap of Bühlmann (1997) that has some advantages over alternative bootstrap schemes

when small samples or linear DGPs are involved (Bühlmann, 2002; Psaradakis and Vávra,

2019). The assumption underlying the sieve bootstrap is that X can be described by the

following DGP:

Xt − µ =
∞∑
j=1

φj (Xt−j − µ) + εt (7)

where {φj}∞j=1 is a square-summable sequence and εt is an iid symmetrically distributed

zero-mean random variable. This DGP encompasses a large set of stochastic processes,

including Autoregressive Moving Average (ARMA) models. Notice that the symmetry of

the distribution of Xt is implied by the symmetry of the distribution of the error term εt.

Ensuring that the bootstrap pseudo-data satisfy symmetry is key to guarantee that τ̂3 and

τ̂3,L have reasonable power against the departures from the null hypothesis.

The sieve bootstrap approximates the DGP in Equation (7) with an AR(p) model, with

p increasing at a slower rate than the sample size. In practice, denoting with T either τ̂3

or τ̂3,L, we implement the following algorithm to estimate its asymptotic distribution under

the null hypothesis:

1. Select the order p an AR(p) model for a sample {Xt}Tt=1 minimizing the Akaike Infor-

mation Criterion in the range 1 ≤ p ≤ blog(T )2c;

2. Get least-squares estimates of the coefficients φ̂1, . . . , φ̂p of the AR(p) model Xt− µ̂ =∑p
j=1 φj (Xt−j − µ̂) + εt where µ̂ is the sample average of Xt;

3. Construct the residuals ε̂t = (Xt − µ̂)−
∑p

j=1 φ̂j (Xt−j − µ̂) for t = p+ 1, . . . , T ;
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4. Draw a random sample {ε∗t}
T
t=1 from the empirical distribution function of ε̃t where:

ε̃t =


ε̂t if t = p+ 1, . . . , T

−ε̂t if t = T + 1, . . . , 2T − p

5. Generate bootstrap replicates {X∗t }
T
t=1 relying on:

X∗t − µ̂ =

p∑
j=1

φ̂j
(
X∗t−j − µ̂

)
+ ε∗t

6. Construct the bootstrap analog of T , denoted as T ∗, applying a given test of symmetry

to the bootstrap time series {X∗t }
T
t=1;

7. Repeat steps 4-6 a large number of times to obtain a sample of size B of bootstrap

symmetry tests, {T ∗b }
B
b=1.

The empirical distribution of {T ∗b }
B
b=1 is used as a bootstrap approximation of the null

sampling distribution of T .

3 Simulation study

3.1 Experimental design

Our main results focus on a simple AR(1) DGP with different degrees of persistence:

M1 : Xt = ρXt−1 + εt for ρ = 0.0, 0.5, 0.9 (8)

To investigate the size of tests we rely on εt
iid∼ N(0, 1) and on symmetric parametriza-

tions of the Generalized Lambda Family (GLF) of Ramberg and Schmeiser (1974). The GLF

encompasses symmetric (S1-S3) and asymmetric (A1-A4) distributions. Symmetric distri-

butions S1-S3 all have kurtosis in excess of the Normal distribution. Moreover, recall that

the τ̂3 test requires six finite moments, while S3, A2 and A4 possess at most five moments.

All error distributions have been standardized to have zero mean and unit variance.
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We consider three different sample sizes – 40, 160 and 480 – that would correspond to

40 years of yearly, quarterly or monthly data. We use 100 burn-in observations to minimize

dependence of the AR process on initial conditions and rely on 199 bootstrap samples.

3.2 Size

The size of the τ̂3 and τ̂3,L tests is investigated comparing the Monte Carlo rejection frequency

against the nominal size of the test, set to 5%. Figure 1a shows results based on the

asymptotic distribution of tests. For the Normal distribution both tests have empirical size

close to the nominal level only when the AR parameter does not exceed 0.5. In the remaining

cases both tests are strongly oversized and their performance deteriorates as the degree of

excess kurtosis (i.e. moving from S1 to S3) and/or the serial correlation increases. All in all,

Figure 1a highlights that implementing the two tests of symmetry based on their asymptotic

distribution is not advisable when data feature serial correlation or excess kurtosis.

In Figure 1b we investigate the size of tests when their null sampling distribution is ap-

proximated with the bootstrap. Both procedures now feature empirical rejection frequencies

close to the nominal level. Once again, both tests tend to be slightly oversized as the degree

of excess kurtosis and or the serial correlation increases. However, the empirical rejection

frequency gets closer to 5% as the sample size increases.

3.3 Power

To study the power of tests we rely on four asymmetric distributions – A1 to A4 – with

increasing degree of asymmetry and excess kurtosis. As documented in Section 3.2, both

procedures are oversized when relying on their asymptotic distributions, therefore we present

only results based on bootstrap critical values. Power analysis highlights that τ̂3,L is superior

to τ̂3 for what concerns its ability to detect asymmetries. Power gains from L-moments are

highest in smaller samples and increase as the degree of excess kurtosis and asymmetry rise.
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Figure 1: Size: empirical rejection frequency of tests of symmetry

(a) Asymptotic distribution (b) Sieve bootstrap

Notes: the figure shows the empirical rejection frequency of symmetry tests for each sample size, symmetric distribution and
autoregressive parameter, ρ. Blue bars denote the τ̂3 test, while gray bars identify the τ̂3,L test. A well sized test should have
empirical rejection frequency close to its nominal size, 0.05 (red dahsed line).

3.4 Further results

In Table 1 we analyse the behaviour of tests when data are generated with alternative DGPs.

To check whether the bootstrap procedure is capable of approximating other DGPs, we

generate data from MA(1) and ARMA(1,1) models. Independently of the size of the sample
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and of the DGP, under normality both tests have empirical size close to the nominal level.

Similarly, for both DGPs tests are correctly sized in samples of size 480 also under S1-S3.

In samples of size 40 and 160 and under S1-S3 distributions, the MA(1) model is more

challenging for the bootstrap approximation than the ARMA(1,1), especially as far as τ̂3 is

concerned. In fact, under both DGPs and independently of which symmetric distribution

is used, τ̂3,L has empirical size closer to 5% than τ̂3 when the sample size is 160. For these

linear DGPs power analysis confirms that τ̂3,L has higher power than τ̂3.

Next, we simulate data relying on a Generalized Autoregressive Conditionally Het-

eroskedastic (GARCH) model. Notice that this DGP does not admit the representation

in Equation (7); moreover, in this case the distribution of Xt is symmetric and leptokurtic

even when errors are normally distributed. While under normality of the errors both tests

are well sized independently of sample size, their performance deteriorates moving from S1

to S3 particularly in smaller samples. Under S1-S3, τ̂3,L has empirical size closer to 5% than

τ̂3 in samples of size 160 or larger. Also in this case τ̂3,L has higher power than τ̂3.

Lastly, we consider a Logistic Smooth Transition Autoregressive (LSTAR) DGP to fur-

ther assess ability of the sieve bootstrap algorithm to identify asymmetries generated by

nonlinear models. In this case, we limit the analysis to a DGP with normally distributed

errors and show that, independently of sample size, τ̂3,L has higher power than τ̂3.

All in all, Table 1 confirms that the sieve bootstrap delivers symmetry tests with ap-

propriate empirical size when the sample size is moderately large. In the case of sample size

equal to 40, we see that both tests are oversized when the error distribution is non-Gaussian.

Moreover, we can notice that for τ̂3,L the empirical size is closer to the nominal 5% level

than for τ̂3.

4 The symmetry of business cycles of the G7 economies

A test of TR can be implemented by focusing on the symmetry of the distribution of the

j-difference of a time series (DeLong and Summers, 1986). TR implies that the joint distribu-

tions of (Xt, Xt−j) and (Xt−j, Xt) are equal for all t and all j = 1, 2, . . . In the presence of TR,

∆jXt ≡ Xt−Xt−j has a symmetric distribution and hence P (∆jXt > 0) = P (∆jXt < 0) = 1
2
.
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Table 2: Symmetry test - real GDP

Skewness (τ̂3) L-Skewness (τ̂3,L)

Country ŜK j = 1 j = 1, . . . , 4 ŜKL j = 1 j = 1, . . . , 4

Canada -0.2182 0.4645 0.1041 -0.0286 0.4975 0.3203

France -0.4897 0.1982 0.4324 -0.0016 0.9710 1.0000

Germany -0.6645 0.3914 0.0841 -0.0121 0.8068 1.0000

Italy -0.7051 0.0541 0.0000 -0.0199 0.7157 0.1522

Japan -1.6380 0.0581 0.0000 -0.1421 0.0851 0.0080

UK 0.1448 0.7838 0.0721 -0.0372 0.5155 0.1001

US -0.2985 0.4925 0.3844 -0.0425 0.3934 0.4765

Notes: the table shows sample skewness (ŜK) and L-skewness (ŜKL) for ∆yt and in columns 3-4, 5-7 the p-values of tests of
symmetry. The null hypothesis of the test is that the distribution of ∆jxt = ln(GDPt/GDPt−j) is symmetric. We report the
Bonferroni p-value for the joint null hypothesis that the distributions of ∆jxt for j = 1, . . . , 4 are symmetric.

The concept of TR has been widely used to investigate the so-called Mitchell–Keynes

hypothesis, which posits that expansions are more gradual than recessions (see e.g. Neftçi,

1984; DeLong and Summers, 1986). We focus on quarterly real GDP for the G7 economies

over the period 1970:Q1-2019:Q4.3 We analyse whether ∆jxt = ln(GDPt/GDPt−j) for

j = 1, . . . , 4 is TR. Notice that in this application the sample size ranges from 104 to 200,

therefore the small sample size distortions highlighted in the Monte Carlo analysis should

be largely attenuated.

Table 2 shows that, consistently with the Mitchell–Keynes hypothesis, the sample skew-

ness of real GDP growth is negative for all countries except UK. Interestingly, if we omit

the single largest observation in absolute value, ŜK turns negative also for UK, which is

expected, given that the low degree of resistance to outliers is a feature of conventional mo-

ments (see e.g. Bastianin, 2020). On the contrary, ŜKL for UK preserves its sign even when

omitting the largest observation in absolute value.

In Table 2 we also present the p-values of the τ̂3 and τ̂3,L test for ∆xt and the Bonferroni

p-values for the joint null hypothesis that the distributions of ∆jxt for j = 1, . . . , 4 are

symmetric. We have consistent evidence against symmetry only for Japan. On the other

hand, we can reject the null of symmetry for Italy when using the τ̂3 test, but not when relying

on τ̂3,L. A robustness analysis using Industrial Production data provides evidence against

3For Italy and Japan we have shorter sample periods.
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TR for the Japanese and US business cycles. All in all, the Mitchell–Keynes hypothesis

seems to be strongly supported only for Japan.

5 Conclusions

Our Monte Carlo simulations show that symmetry tests based on L-moments have better

size properties and more power than tests based on sample skewness. Tests of symmetry can

be applied to serially correlated and persistent time series, provided that their distributions

under the null hypothesis is approximated with an an appropriate bootstrap algorithm. In

fact, asymptotic results for iid data cannot applied to time series data in that they yield badly

sized tests. A byproduct our paper extends the results of Psaradakis (2003) showing that

the symmetrized version of the sieve bootstrap works well also for tests based on L-moments.

Our results highlight that when the DPGs are symmetric, but heavily depart from the linear

Gaussian case, the sieve bootstrap delivers tests with correct empirical size in moderately

large samples. In small samples both tests tend to be oversized, but the procedure based on

L-moments much less so.
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