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Abstract. A theory of vibrational excitations based on power-law spatial correlations in the elastic con-
stants (or equivalently in the internal stress) is derived, in order to determine the vibrational density of
states D(ω) of disordered solids. The results provide the first prediction of a boson peak in amorphous
materials where spatial correlations in the internal stresses (or elastic constants) are of power-law form,
as is often the case in experimental systems, leading to a logarithmic enhancement of (Rayleigh) phonon
attenuation. A logarithmic correction of the form ∼ −ω2 ln ω is predicted to occur in the plot of the reduced
excess DOS for frequencies around the boson peak in 3D. Moreover, the theory provides scaling laws of
the density of states in the low-frequency region, including a ∼ ω4 regime in 3D, and provides information
about how the boson peak intensity depends on the strength of power-law decay of fluctuations in elas-
tic constants or internal stress. Analytical expressions are also derived for the dynamic structure factor
for longitudinal excitations, which include a logarithmic correction factor, and numerical calculations are
presented supporting the assumptions used in the theory.

1 Introduction

Understanding the physics of vibrational spectra of dis-
ordered systems is a classical topic in condensed-matter
physics [1–4]. Glasses and other disordered solids exhibit
anomalous features, compared with their crystalline coun-
terparts. Concerning the thermal properties, at few tens
of kelvin, the specific heat of glasses exhibits an excess
over the Debye prediction, in the form of a characteristic
maximum in the plot of C(T )/T 3. The peak is ascribed to
the presence of an excess of states over the Debye density
of states (DOS) ∼ ω2, known as the boson peak since its
temperature dependence conforms with that of the Bose
function, and thus appears to strongly depend on the fea-
tures of the vibrational modes in the THz frequency [5–8].

Thanks to neutron, X-ray and other inelastic scatter-
ing experiments [9–20], computer simulations [21–31], as
well as analytical theories [32–50], the nature of these ex-
cited modes has been widely investigated. Since the boson
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peak shows up in a frequency range where the broadening
of the acoustic excitations becomes of the order of mag-
nitude of resonance frequency, states near the boson peak
frequency are neither actually propagating nor localized,
and the boson peak itself appears to be closely related to
an underlying Ioffe-Regel crossover from ballistic phonon
propagation to diffusive excitations, the so-called diffu-
sons [51–54].

Among previous theories, the heterogeneous elasticity
theory (HET) [42, 55–58] uses a field-theoretical scheme
to derive the DOS, by assuming Gaussian uncorrelated
spatial fluctuations in the elastic constants of the sys-
tem [4]. The theory provides a quantitative relation be-
tween the boson peak and the Brillouin width (sound at-
tenuation coefficient) Γ , and reproduces the Rayleigh scat-
tering law Γ ∼ ωd+1. However, following numerical evi-
dence of a logarithmic enhancement correction of the form
Γ (k) ∼ −kd+1 ln(k) to the Rayleigh scattering law (with
wavenumber k, in d-dimension) [59], it has been shown an-
alytically that long-ranged power-law spatial correlations
in elasticity, or equivalently in the internal stresses, are
the cause of such enhancement [57].

Previous attempts to derive the logarithmic Rayleigh
law using HET with power-law correlations in elasticity
by Caroli and Lemaitre [60] were not successful due
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to two major simplifying approximations used in their
theory, namely the assumption of perfectly isotropic wave
propagation (with completely decoupled longitudinal and
transverse propagators), which leads to a cancellation of
terms and to the vanishing of the logarithmic correction.
Caroli and Lemaitre’s oversimplifying assumption of
isotropic wave propagation is at odds with numerical
evidence from ref. [59], which showed that wave propa-
gation in the presence of power-law–correlated elasticity
is locally anisotropic over relatively large length-scales,
leading to at least 5 non-vanishing local elastic constants
in 2D. In ref. [57], by finding the rigorous solution to the
self-consistent anistropic wave propagation problem, it
was possible to derive the logarithmic Rayleigh scattering
law, which is ubiquitously observed in experiments and
simulations [61–68], and to show that it is the direct
result of the power-law correlation in internal stresses or
elastic constants.

Independent evidence supporting the existence of
power-law spatially decaying correlations in elasticity have
been shown in recent works [69, 70]. All these facts point
towards the importance of properly accounting for long-
ranged power-law elastic correlations in the description of
the vibrational properties of disordered systems.

A fundamental unanswered question, therefore, is what
impact the underlying long-ranged power-law correlations
of elasticity (or internal stresses) may have on the DOS.
The answer is presented in this paper, where we exploit
the successful framework of ref. [57] for the acoustic at-
tenuation, and apply it to study the properties of the
DOS. We reveal that the boson peak picks up a logarith-
mic correction which is most evident in the excess DOS.
We also show how the boson peak sensitively depends on
the strength of power-law correlations of elasticity. We
also examine the asymptotic scaling behavior of the DOS
in the frequency regimes where modes are quasi-localized
due to the disorder (hence undergoing diffusive-like propa-
gation instead of ballistic propagation typical of standard
phonons, as demonstrated for glasses in earlier works [52]).

2 Theory for longitudinal excitations in 2D

Numerical simulations, supported by theoretical analysis,
and analysis of experimental data, suggest a logarithmic
enhancement of the Rayleigh law in a certain frequency
domain [59]. In the appendix, we review the model that
only predicts the Rayleigh scattering law, such that the
mean free path �(ω) scales as ω−4 for small ω in 3D.

According to the theoretical analysis in ref. [57], such
enhancement to the Rayleigh scattering of phonons in
amorphous solids originates from long-range power-law
spatial correlations of elastic constants or internal stress.
For example, the shear stress tensor, σ(r) = σ0 +Δσ(r) is
expressed in terms of its mean value plus a random fluc-
tuation, i.e. Δσ(r) = 0 and Δσ(r′)Δσ(r′ + r) = B(r) =
κ2 cos(4θ)/(r2 + ζ2) for some constants κ, ζ. The pa-
rameter κ describes the strength of the disorder, while
ζ controls the regime of frequency where logarithmic en-
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Fig. 1. Scaled density of states in 2D with fixed parameters
kD = 1, b = 0.1, c0 = 0.5. The height of the curve has been
rescaled.

hancement occurs. The resultant 2D self-consistent equa-
tions between self-energy Σ(k, z) and the Green’s function
G(k, z) for longitudinal waves read [57]

G(k, z) =
1

−z + k2(c2
0 − Σ(k, z))

, (1)

Σ(k, z) = a

∫ qD

0

k2B̃(k − q)
−z + q2(c2

0 − Σ(k, z))
dq2, (2)

B̃(k) =
∫

eik·rB(r)dr, (3)

where the prefactor a is a new parameter reflecting the
strength of elastic heterogeneity and c0 denotes the lon-
gitudinal speed of sound. Determining Σ(k, z) via solving
the self-consistent equations above, one can compute the
Green’s function and hence obtain the density of states
(DOS), D(ω), via the standard Plemelj identity:

D(ω) =
2ω

π
Im{G(z)}, z = ω2 + i0. (4)

From ref. [57], we can write B̃(k−q) ∼ − ln(bk), which
is valid upon assuming the linear (acoustic) dispersion re-
lation between wavenumber q and frequency ω. The pa-
rameter b depends on ζ in B(r), in a way such that the
larger ζ is, the larger b turns into, thus the lower fre-
quency regime with log-effect emerges. Substituting this
into eq. (2) and re-introducing the parameter a, we solve
the self-consistent equation of self-energy Σ(z) in 2D:

Σ(z) = a

∫ qD

0

−zq ln(zb)
−z + q2(c2

0 − Σ(z))
dq, (5)

from which the scaled DOS is obtained as

D(ω)
ω

∝ − Im
∫ kD

0

k dk

−ω2 + k2(c2
0 − Σ(ω2))

. (6)

Figure 1 and fig. 2 are plots of DOS with different a and
b, scaled by the 2D Debye law ∼ ω. From fig. 1, we find
that the boson peak becomes flatter with smaller a val-
ues, which indicates weaker disorder in elasticity. Looking
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Fig. 2. Scaled density of states in 2D with fixed parameters
kD = 1, a = 0.2, c0 = 0.5. The height of the curve has been
rescaled.

at fig. 2, the boson peak shifts to lower frequency and
becomes stronger when b decreases. Also, it is clear that
the peak due to the contribution of the longitudinal pro-
rogation mode is flat, a result demonstrated in previous
work [71].

3 General theory for amorphous solids in 3D

The model in the last section describes purely longitudi-
nal waves in 2D and serves to illustrate the basic func-
tioning of the theoretical framework with an easy exam-
ple. Now we present the full theory, with the inclusion of
transverse waves, in 3D. Making similar assumptions of
elastic disorder as in refs. [55, 56], we consider an elas-
tic medium with a mass density m0, shear modulus G,
bulk modulus K = λ + 2G/3 where λ is the longitudi-
nal Lamé’s constant. The elastic constants are related to
the longitudinal and transverse local sound velocities as
cT ≡ G/m0, c2

L ≡ (K+4G/3)/m0 = (λ+2G)/m0, respec-
tively. The Lamé’s constant is set to be λ = λ0, while the
shear modulus includes a random spatial variation G(r) =
G0[1+ΔG(r)]. The random function ΔG(r) is supposed to
have a long-ranged power-law decay ΔG(r′)ΔG(r′ + r) =
B′(r) ∝ γ2/(r2 + ξ2)3/2 for some constants γ and ξ, in
agreement with recent evidence for glasses and granular
materials [69,70]. The explicit form of angular component
in B(r) is not relevant to results and is not shown in the
last expression. The self-consistent Born approximation
for the complex self-energy Σ(ω), based on the standard
replica-trick, leads to the set of self-consistent equations

Σ(ω) = g

∫ qD

0

−ω2q2 ln(ωb)[GL(q, ω) + GT (q, ω)]dq,

GL(k, ω) =
1

−ω2 + k2(cL − 2Σ(k, ω))
, (7)

GT (k, ω) =
1

−ω2 + k2(cT − Σ(k, ω))
.

We again assume the linear dispersion relation between k
and ω, which is verified by the dynamical structure factor
calculations in appendix B. Likewise, the new parame-
ter g, which absorbs the disorder-strength parameter γ, is
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Fig. 3. Plot of DOS with fixed parameters kD, cT , cL, b being
1, 0.5, 1, 0.1 respectively. The height of the curve has been
rescaled. Panel (a): reduced DOS, D(ω)/ω2, for different g
values; the dot-dashed line is a simple exponential trend line.
Panel (b): reduced excess DOS, D(ω)/ω2 − 1, for different g
values. The dashed line indicates a ∼ ω4 scaling in the DOS.
The dashed-dotted line indicates a logarithmic −ω2 ln ω trend
about the boson peak frequency.

the prefactor of the self-consistent equation for Σ(k, ω).
The Debye length and frequency are given by k−1

D and
ωD = cDkD, with cD = [1/3((cL + Re[Σ(0)])−3 + 2(cT +
Re[Σ(0)])−3)]−1/3 [56]. The DOS can be calculated as

D(ω) ∝ ω

∫ kD

0

k2[GL(k, ω) + 2GT (k, ω)]dk. (8)

In fig. 3, we show the typical reduced DOS D(ω)/ω2,
i.e. the usual boson peak representation, as well as the
reduced excess DOS, D(ω)/ω2 − 1, against ω/ωD. It can
be seen from fig. 3(a) that the boson peak frequency de-
creases sharply upon increasing g, hence upon increasing
the degree of elastic disorder, γ. Hence, a larger disorder
lifts up the boson peak and shifts it to lower frequencies,
in accordance with earlier findings from simulations [72].
We also note from fig. 3(a) that the boson peak drops
exponentially with its frequency ωBP upon increasing g,
which is a new law found here by our theory. This might
be related to the exponential decaying mode in spectra
of activation energies in metallic glasses [73]. In fig. 3(b),
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Fig. 4. Plot of reduced density of states (a) and reduced excess
DOS (b) with fixed parameters kD = 1.0, cT = 0.5, cL = 0.1,
g = 0.1 and varying b. The height of curve has been rescaled.
Panel (a): reduced DOS, D(ω)/ω2, for different b. Panel (b):
reduced excess DOS, D(ω)/ω2 − 1, for different b. The dashed
line indicates a ∼ ω4 scaling in the DOS.

obviously, the excess over the Debye level is different from
zero only above a certain frequency threshold. The ex-
cess DOS turns out to vanish as ω4 for ω → 0. Upon
approaching the boson peak frequency, i.e. ω � ωBP ,
where the DOS D(ω) displays the ω2 dependence, the ex-
cess DOS tends to flatten out. The nature of vibrational
eigenmodes varies as ω changes. In particular, the asymp-
totic behaviour ∼ ω4 as ω → 0, is consistent with re-
sults of previous work using HET and Gaussian disorder
in elastic constants in [55], and with numerical evidence
in [68, 74–77]. Remarkably, when the frequency becomes
comparable to the boson peak frequency, an additional
trend representing a logarithmic correction dependence is
observed, as shown in fig. 3(b). This is the first prediction
of the logarithmic correction in the reduced DOS, which is
expected based on the generic direct proportionality rela-
tion between the excess DOS and the phonon attenuation
coefficient highlighted in refs. [56,68].

We also show how the boson peak changes with dif-
ferent values of b in fig. 4(a), where a similar monotonic
relation as in the purely longitudinal case is observed. In
fig. 4(b), clearly the excess D(ω)−ω2 is reduced upon in-
creasing b because of the interplay between the prominent
∼ ω4 behavior at lower ω and the influence of logarithmic
enhancement at higher ω.

4 Conclusions

In summary, we developed a theory of vibrational exci-
tations in disordered media with long-ranged power-law–
correlated disorder to extract the density of states (DOS).
The assumption of power-law–correlated disorder in elas-
tic properties (elastic constants or stresses), supported
by evidence found in glasses [69] and granular materi-
als [70], has been key to derive the logarithmic enhance-
ment ∼ −kd+1 ln k of Rayleigh scattering in glasses in our
previous work [57], by accounting for the anisotropic char-
acter of wave propagation in the solid locally. The theory
reproduces the boson peak in the DOS along with its de-
pendence on the strength γ (or g), and on the characteris-
tic scale b, of power-law–correlated disorder. Importantly,
the theory predicts a logarithmic correction ∼ −ω2 ln ω
visible in the reduced excess DOS around the boson peak
frequency, predicted here for the first time. The theory
also predicts that the boson peak decays exponentially
with its frequency ωBP upon increasing the strength of
disorder g, which might be related to evidence recently
found in metallic glasses [73]. The theory predicts the ex-
istence of a ∼ ω4 regime (in 3D) at low frequency below
the boson peak, which can be ascribed to Rayleigh scat-
tering. Similar ω4 modes have been recently discovered in
the non-Debye part of the spectrum, which may be as-
cribed to localized anharmonic modes [78,79], which have
been demonstrated to be universal in recent work [80,81].
It appears that the present theory, which is rather on the
continuum level and does not account for anharmonicity,
cannot predict those modes, while the predicted ω4 refers
most likely to Rayleigh scattering since we have checked
that for a 2D system the scaling is much closer to ω3.
The logarithmic feature in the reduced DOS predicted by
this theory calls for more detailed investigation of experi-
mental data in future analysis. Studying the influences of
anharmonicity [71,82], non-affine elasticity [83–85] as well
as glass stability [67] on the vibrational excitation modes
within the current theoretical model, will be the object of
future work.
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Appendix A. Longitudinal waves with
Gaussian disorder in elastic constant

The self-consistent Born approximation, using the replica
trick to evaluate the Green’s function of an elastic La-
grangian with quenched Gaussian disorder in the elas-
tic constant, was proposed in ref. [42]. This leads to a
self-consistent relation between the (complex) self-energy
Σ(z) and the 3D Green’s function G(z) of the longitudinal
waves as

Σ(z) =
γ

2

∑
|k|<kD

k2

−z + k2(c2
0 − Σ(z))

,

G(z) =
∑

|k|<kD

1
−z + k2(c2

0 − Σ(z))
, (A.1)

where parameters c0, γ correspond to the mean of the
sound velocity and to the variance of the elastic au-
tocorrelations, respectively. The Debye wavenumber is
kD = (6π2N/V )1/3 for a system with N particles and vol-
ume V , so that the frequency z = ω2 + i0 has a (Debye)
cut-off value at ωD = c0kD. With standard identification
1/N

∑
|k|<kD

→ (3/k3
D)

∫ kD

0
k2dk, we can transform the

discrete sums into continuous integrals over the momen-
tum space:

Σ(z) =
3Nγ

2k3
D

∫ kD

0

k4

−z + k2(c2
0 − Σ(z))

dk,

G(z) =
(

3N

k3
D

)∫ kD

0

k2

−z + k2(c2
0 − Σ(z))

dk. (A.2)

The integral in eq. (A.2) can be calculated analytically,
giving

∫ kD

0

k4

−z + k2(c2
0 − Σ(z))

dk =

1
(c2

0−Σ)2

∫ kD

0

[(c2
0−Σ)k2−z](c2

0−Σ)k2+(c2
0−Σ)k2z2

(c2
0−Σ)k2−z

=
1

(c2
0 − Σ)2

∫ kD

0

(c2
0−Σ)k2+

(c2
0−Σ)k2z−z2+z2

(c2
0−Σ)k2 − z

dk

=
1

(c2
0 − Σ)2

∫ kD

0

[
(c2

0−Σ)k2+z+
z2

(c2
0−Σ)k2−z

]
dk

=
k3

D

3(c2
0−Σ)

+
zkD

(c2
0−Σ)2

+
z2

(c2
0−Σ)5/2

ln
∣∣∣∣(c

2
0−Σ)1/2k−√

z

(c2
0−Σ)1/2k+

√
z

∣∣∣∣.
(A.3)

Setting kD, c0, γ and a proper initial value of self-energy,
Σ0(z), we can use an iteration scheme to numerically de-
termine Σ(z).

Figure 5 shows a typical plot of DOS calculated in this
way, where kD = qD = 1 and c0 = 0.5. For convenience,
we let the prefactor (3Nγ/2k3

D) on the RHS in eq. (A.2)
be d.

0.1 0.2 0.3 0.4 0.5
ω

4.6

4.8

5.0

5.2

5.4

D(ω )/ω 2

Fig. 5. Typical DOS in 3D, based on solving eq. (A.2). Pa-
rameters kD, d, c0 are chosen to be 1, 0.1, 0.5 respectively. The
height of the curve has been rescaled.
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Fig. 6. Longitudinal dynamical structure factor S(k, ω) from
eq. (B.2). The peak position identifies resonance frequencies for
the longitudinal acoustic excitations. The acoustic frequencies
are found to correlate linearly with the wavenumber k. Other
parameters are the same as in fig. 3 in the main text, namely
b = 0.1 and cL = 1.

Appendix B. Dynamical structure factor

According to [57,86], the 3D longitudinal dynamical struc-
ture factor SL(k, ω) has the following expression:

SL(k, ω)=
1
π

[n(ω)+1]
k2

2ω

k2 Im Σ(ω)/ω

[k2c2
L(ω)

2ω − ω
2 ]2+[k2 Im Σ(ω)/ω]2

,

(B.1)
where n(ω)+1 = [1−exp(−�ω/kBT )]−1 is the Bose factor,
cL(ω) is the (generalized) longitudinal sound speed. In
the classical limit, �ω/kBT → 0, and using the fact that
Im Σ(ω) ∼ −ω2 ln(ωb), we have

SL(k, ω) ∝ k2

ω2

k2(−ω2 ln(ωb))/ω

[k2c2
L(ω)

2ω − ω
2 ]2 + [k2ω2 ln(ωb)/ω]2

. (B.2)

Taking the same parameters as in fig. 3 in the main
text, we show the longitudinal dynamical structure factor
in fig. 6, where the linear dispersion relation is evident
between the peak position and wavenumber k.
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At low ω, eq. (B.2) can be fitted with a damped har-
monic oscillator (DHO) model

S(k, ω) ∝ k2

ω2

Ω(k)2Γ (k)
(ω2 − Ω(k)2)2 + ω2Γ (k)2

, (B.3)

where Ω(k) corresponds to the excitation frequency and
Γ (k) is the width of the Brillouin line (full width at
half-maximum of the excitations). This is consistent with
the proportionality coefficient between peak position fre-
quency and k identifying the longitudinal speed of sound
(cL = 1).

Open Access This is an open access article distributed
under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which
permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
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